WO2006061916A1 - プリント基板及びプリント基板の製造方法 - Google Patents

プリント基板及びプリント基板の製造方法 Download PDF

Info

Publication number
WO2006061916A1
WO2006061916A1 PCT/JP2005/003304 JP2005003304W WO2006061916A1 WO 2006061916 A1 WO2006061916 A1 WO 2006061916A1 JP 2005003304 W JP2005003304 W JP 2005003304W WO 2006061916 A1 WO2006061916 A1 WO 2006061916A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
printed circuit
carbon
insulating material
heat
Prior art date
Application number
PCT/JP2005/003304
Other languages
English (en)
French (fr)
Inventor
Masanori Takezaki
Masayuki Komaru
Haruki Nitta
Takafumi Yagi
Yoshiyuki Mizuno
Original Assignee
U-Ai Electronics Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U-Ai Electronics Corp. filed Critical U-Ai Electronics Corp.
Priority to EP05719632A priority Critical patent/EP1821586B1/en
Priority to US11/792,611 priority patent/US7479013B2/en
Priority to DE602005017183T priority patent/DE602005017183D1/de
Publication of WO2006061916A1 publication Critical patent/WO2006061916A1/ja
Priority to US12/157,455 priority patent/US20080282538A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4641Manufacturing multilayer circuits by laminating two or more circuit boards having integrally laminated metal sheets or special power cores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1152Replicating the surface structure of a sacrificial layer, e.g. for roughening
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a printed circuit board and a method for manufacturing the printed circuit board.
  • the heat dissipation plate for cooling the electronic component is not required, and the electronic component is efficiently cooled while suppressing an increase in size of the electronic device.
  • a method of manufacturing such a printed circuit board is not required, and the electronic component is efficiently cooled while suppressing an increase in size of the electronic device.
  • the cooling method is one of the important technologies.
  • a method for cooling an electronic component a method of attaching a heat radiating plate (heat sink) made of a material having excellent heat conductivity to a heat generating surface of the electronic component is generally used (Patent Document 1). Further, there is a method in which the heat radiation fin is air-cooled by a cooling fan.
  • Patent Document 1 JP 7-235781 (Fig. 2 etc.)
  • An object of the present invention is to solve the above-described problems, and eliminates the need for a heat sink for cooling the electronic component, while suppressing the increase in size of the electronic device, and the electronic component. It is an object of the present invention to provide a printed circuit board capable of efficiently cooling the substrate and a method for efficiently manufacturing such a printed circuit board. Means for solving the problem
  • the printed circuit board according to claim 1 is provided with an insulating material portion composed of an electrically insulating material cover and at least one surface of the insulating material portion, or A wiring pattern formed on at least one surface and inside of the insulating material portion, on which one or a plurality of electronic components are mounted, and including a carbon layer portion mainly composed of carbon.
  • the carbon layer portion is disposed in a laminated manner inside or on the surface of the insulating material portion.
  • the printed circuit board according to claim 2 is the printed circuit board according to claim 1, wherein the printed circuit board is recessed or perforated in a thickness direction of the insulating material portion.
  • a heat receiving hole portion connected to the carbon layer portion disposed in a stacked manner on the surface is provided, and the heat receiving hole portion is configured such that the opening portion faces the back side of the electronic component.
  • the heat receiving hole is filled with a metal paste or a carbon paste.
  • the printed circuit board according to claim 3 is the printed circuit board according to claim 1 or 2, wherein the insulating material is recessed or perforated in a thickness direction of the insulating material portion.
  • a heat radiating hole portion connected to the carbon layer portion disposed in a laminated manner inside or on the surface, and the heat radiating hole portion has a surface opposite to the mounting surface of the electronic component. Or the surface on the same side as the mounting surface of the electronic component so that it does not overlap the electronic component when viewed from above, so that the opening faces the back side of the electronic component.
  • the heat radiation hole is filled with a metal paste or a carbon paste.
  • the printed circuit board according to claim 4 is the printed circuit board according to claim 3, wherein the carbon layer portion is disposed in a stacked manner inside the insulating material portion.
  • the heat receiving hole portion and the heat radiating hole portion connected to the carbon layer portion are configured as a single through hole communicating with each other.
  • the printed circuit board according to claim 5 is the printed circuit board according to any one of claims 2 to 4, wherein the metal paste or the carbon paste filled in the heat receiving hole portion is The top part is raised to the surface force of the insulating part, and the electronic part The gap with the back side of the product is reduced.
  • the printed circuit board according to claim 6 is the printed circuit board according to any one of claims 2 to 4, wherein the metal paste or the carbon paste filled in the heat receiving hole portion is The surface force of the insulating material part is raised so that the top part is substantially the same height or slightly higher than the wiring pattern, and can be directly or indirectly brought into contact with the back side of the electronic component.
  • the printed circuit board according to claim 7 is the printed circuit board according to any one of claims 2 to 6, further comprising a surface on the surface of the insulating material portion.
  • a heat receiving pattern formed to face the back side of the component and connected to the plurality of metal pastes or carbon pastes filled in the heat receiving holes, and the heat receiving pattern is a plurality of each of the plurality of metals in a top view. It is formed in a substantially planar shape over the range including paste or carbon paste.
  • the printed circuit board according to claim 8 is the printed circuit board according to any one of claims 1 to 7, wherein the car disposed in a stacked manner inside the insulating material portion.
  • the Bon layer part is configured such that at least a part thereof is exposed from the peripheral edge of the insulating material part.
  • the printed circuit board according to claim 9 is the printed circuit board according to any one of claims 1 to 8, wherein the wiring pattern includes a ground pattern connected to the ground.
  • the ground pattern and the carbon layer portion are electrically connected to each other.
  • the printed circuit board according to claim 10 is the printed circuit board according to claim 9, wherein a part or all of the heat radiating hole portion penetrates through the ground pattern.
  • the ground pattern and the carbon layer portion are electrically connected to each other V by a metal paste or a carbon paste filled in the heat radiation hole portion.
  • the printed circuit board according to claim 11 is the printed circuit board according to any one of claims 1 to 10, wherein the carbon layer portion is disposed inside the insulating material portion in the wiring pattern. If the insulating material portion is formed except for the vicinity of the wiring pattern Are arranged in a layered manner in a range covering almost the entire area of the inside or the surface.
  • the method for manufacturing a printed circuit board according to claim 12 includes a plate-like insulating material portion formed of an electrically insulating material and a wiring pad disposed on at least one surface of the insulating material portion.
  • the turn layer, or a wiring pattern layer disposed on and / or inside at least one surface of the insulating material portion, and carbon are mainly composed, and are separated from the wiring pattern layer through the insulating material portion.
  • a printed circuit board comprising at least one plate-like carbon-containing member disposed in a laminated form, and is pre-coated with an electrically insulating material forming the insulating material portion.
  • An electrically insulating material that forms the insulating material portion is interposed between the coated carbon-containing member that is the plate-like carbon-containing member and the wiring pattern layer or the conductor layer for forming the wiring pattern.
  • Crimp is provided with a printed circuit board laminates forming step of forming a printed circuit board laminate Te.
  • the method for manufacturing a printed circuit board according to claim 13 is the method for manufacturing a printed circuit board according to claim 12, wherein the insulating material portion is formed prior to the laminated board forming step for the printed circuit board.
  • a coated carbon-containing member forming step is provided for forming the coated carbon-containing member by press-bonding the electrically insulating material to be formed on both sides of the plate-like carbon-containing member.
  • the method for manufacturing a printed circuit board according to claim 14 is the method for manufacturing a printed circuit board according to claim 13, wherein the covering carbon-containing member forming step includes the step of forming the plate-like carbon-containing member.
  • the metal plate is removed by etching from the crimping step of pressing the carbon-containing member, the electrical insulating material, and the metal plate to obtain a laminate, and the laminate obtained by the crimping in the crimping step.
  • a metal plate removing step for obtaining the coated carbon-containing member is the method for manufacturing a printed circuit board according to claim 13, wherein the covering carbon-containing member forming step includes the step of forming the plate-like carbon-containing member.
  • the method for manufacturing a printed circuit board according to claim 15 is the method for manufacturing a printed circuit board according to claim 13 or 14, wherein the printed circuit boards are insulated from each other by the interposition of the insulating material portion.
  • the method for manufacturing a printed circuit board according to claim 16 is the method for manufacturing a printed circuit board according to any one of claims 12 to 15, wherein the printed circuit board is formed by the laminated board forming step.
  • a wiring pattern is formed from the conductor layer provided on the surface of the insulating material portion to form a wiring pattern layer, and the outer layer wiring pattern forming step is formed.
  • the method for manufacturing a printed circuit board according to claim 17 is the method for manufacturing a printed circuit board according to claim 16, wherein the printed circuit boards are insulated from each other by interposition of the insulating material portion.
  • a conductive hole for electrically connecting the wiring pattern layers disposed in the printed circuit board, and the conductive hole is formed in the printed circuit board laminate formed by the printed circuit board laminate forming step.
  • the method for manufacturing a printed circuit board according to claim 18 is the method for manufacturing a printed circuit board according to claim 16 or 17, wherein the printed circuit board is provided on a surface of the insulating portion.
  • the method for producing a printed circuit board according to claim 19 is the same as the method for producing a printed circuit board according to any one of claims 12 to 18, wherein the plate-like carbon is used.
  • the contained member is made of a material mainly composed of carbon in the voids of the mesh body knitted from the heat conductive material. Filled.
  • the carbon layer portion mainly composed of a single bon and having excellent thermal conductivity is disposed in a laminated manner inside or on the surface of the insulating material portion. Therefore, the heat generated from the electronic component by energization is transferred to the carbon layer part, diffused through the carbon layer part, and then radiated to the outside. As a result, the electronic component is cooled. Therefore, when an electronic component generates heat when energized, heat conduction to the carbon layer portion and thermal diffusion in the carbon layer portion can ensure heat dissipation of the electronic component, and cooling of the electronic component is possible. Has the effect of being able to be performed with high efficiency.
  • the printed circuit board according to claim 2 includes a heat receiving hole connected to the carbon layer portion in addition to the effect of the printed circuit board according to claim 1, and includes the heat receiving hole. Since the part is filled with a metal paste or carbon paste having excellent thermal conductivity, the heat generated from the electronic component by energization is mainly via the metal paste or carbon paste filled in the heat receiving hole part. It is conveyed to the department. Therefore, there is an effect that the heat generated from the electronic component can be reliably and efficiently transmitted to the carbon layer portion via the metal paste or carbon paste, and as a result, the electronic component can be cooled with high efficiency. it can.
  • the opening of the heat receiving hole is configured to face the back side of the electronic component, the heat from the electronic component is received by the heat receiving hole (metal paste or carbon paste), Heat conduction from the electronic component to the carbon layer can be performed reliably and with high efficiency, and the cooling efficiency of the electronic component can be further improved accordingly.
  • the heat dissipation hole portion connected to the carbon layer portion is provided.
  • the heat radiating hole is filled with a metal paste or carbon paste having excellent thermal conductivity, at least part of the heat transferred from the electronic component to the carbon layer is filled with the metal filled in the heat radiating hole. Heat is dissipated to the outside via paste or carbon paste. Therefore, the heat transferred from the electronic component to the carbon layer is reliably and efficiently radiated from the carbon layer to the outside via the metal paste or carbon paste in the heat dissipation hole. As a result, the electronic component can be cooled with high efficiency.
  • the opening of the heat radiating hole is disposed on the surface opposite to the mounting surface of the electronic component, or the surface on the same side as the mounting surface of the electronic component. Since it is arranged at a position where it does not overlap, it can be configured so that the opening of the powerful heat dissipation hole does not face the back side of the electronic component. As a result, the heat dissipation hole (metal paste or carbon paste) There is an effect that it is possible to further improve the cooling efficiency of the electronic component by suppressing the heat generation of the electronic component due to the heat radiation.
  • the heat receiving hole portion and the heat radiating hole portion are connected to each other in consideration of the effect of the printed circuit board according to claim 3.
  • These through-holes can be formed at the same time by a single process using, for example, a drill. This simplifies the machining process that does not require each hole to be machined separately, thereby reducing the machining cost accordingly.
  • the heat receiving hole is filled.
  • the top part of the metal paste or carbon paste has raised the surface force of the insulating material part, and the gap between the strong metal paste or carbon paste and the back side of the electronic component is reduced. Therefore, heat conduction from the electronic component to the heat receiving hole (metal paste or carbon paste) can be performed reliably and efficiently, and the cooling efficiency of the electronic component can be further improved accordingly. There is an effect.
  • the heat receiving hole is filled.
  • the metal paste or carbon paste has a raised surface force on the insulating material so that the top of the metal paste or carbon paste is almost the same height as or slightly higher than the wiring pattern. Has been. Therefore, heat conduction from the electronic component to the heat receiving hole (metal paste or carbon paste) can be performed reliably and efficiently, and the cooling efficiency of the electronic component can be further improved accordingly. effective.
  • the surface of the insulating material portion in addition to the effect of the printed circuit board according to any one of claims 2 to 6, the surface of the insulating material portion
  • a heat receiving pattern that faces the back side of the electronic component and is connected to a plurality of metal pastes or carbon pastes is formed, and the heat receiving pattern covers a range that includes a plurality of metal pastes or carbon pastes in a top view. It is formed in a substantially planar shape. Therefore, heat conduction from the electronic component to the heat receiving hole (carbon paste) is performed via the heat receiving pattern.
  • the heat receiving area of the electronic component force can be widened by the area of the heat receiving pattern, so that the heat conduction to the electronic component force metal paste or carbon paste can be performed more reliably and efficiently. As a result, the cooling efficiency of the electronic component can be further improved.
  • the printed circuit board according to claim 1 is laminated inside the insulating material portion. Since the carbon layer portion arranged in a shape is configured such that at least part of the carbon layer portion is exposed from the peripheral edge of the insulating material portion, at least part of heat transferred from the electronic component to the carbon layer portion is formed. The heat is radiated to the outside through the exposed portion of the carbon layer portion exposed from the peripheral edge of the insulating plate portion. Therefore, heat transferred from the electronic component to the carbon layer portion can be reliably and efficiently radiated to the outside through the exposed portion of the carbon layer portion exposed from the peripheral edge of the insulating material portion. As a result, the electronic component can be cooled with high efficiency.
  • the ground pattern connected to the ground Since the ground pattern and the carbon layer portion are electrically connected to each other, there is an effect that the ground area can be increased and the ground potential can be stabilized. If the influence of noise is suppressed and the operation of the electronic component can be stabilized, there is an effect.
  • the carbon paste is used by the metal paste or the carbon paste filled in the heat radiating hole.
  • Layer force This metal paste or carbon paste, which can dissipate heat to the outside reliably and with high efficiency, Therefore, it is not necessary to provide a separate connection path for electrical connection between the ground pattern and the carbon layer, thereby reducing processing costs and material costs. If you can do it, there will be an effect.
  • the carbon layer portion may act as a capacitor and adversely affect electronic components. This problem may occur especially when the area of the carbon layer portion is increased. Becomes prominent. Therefore, as described above, by connecting the carbon layer portion to the ground pattern (ground), the carbon layer portion can be prevented from acting as a capacitor, and the influence on the electronic component can be suppressed. effective.
  • the printed board according to claim 11 in addition to the effect produced by the printed board according to any one of claims 1 to 10, carbon is added to the insulating material portion. Since the carbon layer portion configured as the main body is disposed in a laminated form in the insulating material portion or in a range almost over the entire surface, the so-called shield effect can be obtained by the strong carbon layer portion. In other words, there is an effect that electromagnetic waves generated from the electronic components can be prevented from being released to the outside or the electronic components being affected by external noise.
  • the printed circuit board including the carbon-containing member disposed in a stacked manner so as to be separated from the wiring pattern layer through the insulating material portion.
  • a coated carbon-containing member which is a plate-like carbon-containing member previously covered with an electrically insulating material forming an insulating material portion, is used.
  • the covering carbon-containing member and the wiring pattern layer or the conductor layer for forming the wiring pattern are pressure-bonded via an electrically insulating material forming an insulating material part in the printed circuit board laminate forming process, thereby A laminated board for printed circuit boards is formed.
  • carbon-containing members have a weak bonding force between carbons, so that carbon pieces easily fall off from edge portions.
  • a situation in which the carbon pieces easily fall off occurs.
  • the carbon pieces to be laminated are removed, the carbon pieces adhere to the copper foil part of the printed circuit board and the wiring pattern part of the inner core material. There arises a problem that the printed circuit board is manufactured.
  • the coated carbon-containing member that is, the carbon-containing member that has been previously coated with the electrically insulating material (containing the coated carbon) Member) is used, there is an effect that it is possible to prevent the carbon pieces from dropping off the carbon-containing member during the printed circuit board laminate forming step. As a result, there is an effect that the incidence of wiring defects in the manufactured printed circuit board can be reduced.
  • the term "electrically insulating material forming the insulating material part" in claim 12 includes the case where there are two or more types, not just one type. That is, in the printed circuit board manufacturing method according to claim 12, the coated carbon-containing member, the electrically insulating material for coating the carbon-containing member, and the printed circuit board laminated plate forming step! Even if the electrically insulating material interposed between the one-bonn containing member and the wiring pattern layer or the conductor layer for forming the wiring pattern is the same electrically insulating material, a different electrically insulating material is used. In some cases, including deviations.
  • the method for manufacturing a printed circuit board according to claim 14 in addition to the effect produced by the method for manufacturing a printed circuit board according to claim 13, it is formed by a covering carbon-containing member forming step.
  • the coated carbon-containing member is first formed into a plate-shaped car by a lamination process.
  • An electrically insulating material is laminated on both surfaces of the Bon-containing member, and a metal plate having a metal force that can be removed by etching is laminated on the outer side of the electrically insulating material. Is formed.
  • the formed laminated body is etched by a metal plate removing step to remove the metal plate, thereby forming a coated carbon-containing member. Therefore, by using a metal plate that can be removed by etching, it is possible to easily produce a coated carbon-containing member.
  • the printed circuit board includes an insulating material portion.
  • the drilling step an outer peripheral hole larger than the outer periphery of the conductive hole is formed at a position corresponding to the conductive hole in the coated carbon-containing member obtained by the coated carbon-containing member forming step. Therefore, contact between the conductive holes that electrically connect each wiring pattern layer and the carbon-containing member is avoided, so that current outflow to the carbon-containing member that is irrelevant to the electrical connection in the printed board is prevented. There is an effect that can be done.
  • the outer layer wiring provided on the surface of the insulating material portion of the printed board laminate formed by the printed circuit board laminate formation process in the pattern formation process is formed by forming a wiring pattern from the conductor layer. Is done.
  • a printed circuit board is obtained. Since this printed board has a carbon-containing member in the inner layer, there is an effect that a printed board having excellent heat dissipation can be obtained.
  • the printed circuit board is formed by interposing an insulating material portion.
  • the printed circuit board laminated layer is formed by a conductive hole drilling process. Conductive holes are formed in the printed circuit board laminate formed by the plate forming step.
  • the wiring pattern layers arranged so as to be insulated from each other by the interposition of the insulating material portion are electrically connected. Therefore, there is an effect that it is possible to obtain a multilayer printed board having excellent heat dissipation by having a strong bon-containing member in the inner layer.
  • the printed circuit board is insulated. If there is a heat dissipation hole for connecting the wiring pattern layer on the surface of the material part on which one or more electronic components are mounted, and the carbon-containing member, In the hole drilling step, heat dissipation holes are drilled in the printed circuit board laminate formed by the printed circuit board laminate formation process. Next, in the heat dissipating material filling step, the heat dissipating material is filled in the heat dissipating holes drilled in the heat dissipating hole drilling step.
  • the printed circuit board manufactured by this manufacturing method can efficiently transfer heat generated using the electronic component as a heat source to the carbon-containing member. That is, there is an effect that a printed circuit board can be obtained in which heat generated from the electronic component is radiated with high efficiency and the electronic component is cooled with high efficiency.
  • the carbon-containing member is formed by filling the voids of the mesh body knitted from the heat conductive material with a material mainly composed of carbon, the weakness of the bond between carbons is reinforced by the mesh body. Therefore, there is an effect that the carbon-containing member force can effectively prevent the carbon pieces from falling off during the laminated board forming process for the printed circuit board. As a result, there is an effect that the occurrence rate of wiring defects in the manufactured printed circuit board can be reduced.
  • FIG. 1 is a top view of a printed circuit board in a first embodiment of the present invention.
  • FIG. 2 is a side sectional view of the printed circuit board taken along line II-II in FIG.
  • FIG. 3 is a flowchart of each step in the printed circuit board manufacturing method of the first embodiment.
  • ⁇ 4] It is a diagram schematically showing each step of forming a coated carbon sheet.
  • ⁇ 5 It is a diagram schematically showing each step of forming a laminated board.
  • FIG. 6 is a diagram illustrating a carbon sheet used for the printed circuit board according to the second embodiment.
  • FIG. 7 is a side sectional view of the printed circuit board according to the third embodiment.
  • Heat receiving hole heat receiving hole, heat dissipation hole
  • Carbon-containing materials materials mainly composed of carbon
  • a Coated carbon sheet (Coated carbon-containing material)
  • FIG. 1 is a top view of the printed circuit board 1 in the first embodiment of the present invention
  • FIG. 2 is a side sectional view of the printed circuit board 1 taken along the line II-II in FIG.
  • a part of the printed circuit board 1 is omitted.
  • the electronic component 2 is not shown, and the virtual outline of the electronic component 2 is shown using a two-dot chain line.
  • the printed circuit board 1 is a circuit board that constitutes an electronic device such as an engine control unit (ECU), and a plurality of electronic components 2 mounted on the upper surface side (the front side in FIG. 1 and the upper side in FIG. 2).
  • a conductive pattern 3 that electrically connects these electronic components 2, an insulating plate 4 in which the conductive pattern 3 is formed on at least one surface (a surface corresponding to the upper side of FIG. 2 in the insulating plate 4), and
  • the insulating plate 4 is mainly provided with a carbon sheet 5 disposed in a laminated manner.
  • Examples of the electronic component 2 include a resistor, a capacitor, a transistor, and an IC.
  • the electronic component 2 is not limited to these, and includes other electronic components that are widely mounted on a printed circuit board. It is.
  • the conductive pattern 3 is an electric wiring circuit that electrically connects between the electronic components 2 to at least one surface of the insulating plate 4 (the surface corresponding to the upper side in FIG. 2 of the insulating plate 4). It corresponds to a “wiring pattern” in this case, and is composed of a copper foil layer 3a and an adhesive layer 3b laminated on the upper surface of the copper foil layer 3a.
  • the surface of the conductive pattern 3 (copper foil layer 3a and plating layer 3b) is covered with a resist layer 12 to prevent the conductive pattern 3 from being short-circuited.
  • the conductive pattern 3 may be provided on the other surface of the insulating plate 4 (the surface corresponding to the lower side of the insulating plate 4 in FIG. 2) and inside the Z or the insulating plate 4, and may be a multi-layer.
  • a through hole TH is provided at a position to be electrically connected in the conductive pattern 3 of each layer, and the through hole TH is provided on the surface of the through hole TH.
  • the conductive pattern 3 of each layer is connected through the plating layer 11.
  • the insulating plate 4 is a substantially flat plate having electrical insulation, and is screwed and fixed to a housing (not shown) of an electronic device using screw holes 4a drilled in the four corners. Is.
  • the insulating plate 4 is obtained by curing an electrically insulating resin (epoxy resin in this embodiment) impregnated with paper, glass cloth (woven fabric or non-woven fabric) or the like. Note that a coating layer 15 constituting a surface layer of a coating carbon sheet A described later is also configured as a part of the insulating plate 4.
  • the insulating plate 4 has a plurality of heat receiving holes 6 and heat radiating holes 7 each having a substantially circular cross section in the thickness direction (vertical direction in FIG. 2).
  • the end portions of the heat receiving hole portion 6 and the heat releasing hole portion 7 are connected to a carbon sheet 5 described later.
  • the heat receiving hole 6 is a member for transmitting the heat to the carbon sheet 5 described later when the electronic component 2 generates heat by energization, and the heat radiating hole 7 radiates the heat of the carbon sheet 5 to the outside. It is a component for this purpose.
  • the heat receiving hole 6 is filled with carbon paste 8 that is mainly composed of carbon and has excellent thermal conductivity. Through 8, the heat of the electronic component 2 can be reliably and efficiently transferred to the carbon sheet 5 described later. Further, the opening of the heat receiving hole 6 (the front side in FIG. 1 and the upper side in FIG. 2) is arranged at a position facing the back side (lower side in FIG. 2) of the electronic component 2 as shown in FIGS. Therefore, the heat of the electronic component 2 can be transferred to the carbon sheet 5 reliably and efficiently.
  • the carbon paste 8 is also filled in the heat radiating hole 7, the heat transferred from the electronic component 2 to the carbon sheet 5 is reliably transmitted to the outside through the carbon paste 8. And heat can be dissipated with high efficiency. Further, since the opening of the heat radiating hole 7 (the back side in FIG. 1 and the lower side in FIG. 2) does not face the back side of the electronic component 2, the heat radiating hole 7 (carbon paste 8) ) Force The electronic component 2 can be prevented from being affected (heated) by the radiated heat.
  • the carbon paste 8 filled in the heat receiving hole 6 has a top portion as shown in FIG.
  • the upper surface of the insulating plate 4 is raised (Fig. 2 upper side), and the gap between the carbon paste 8 and the back side of the electronic component 2 (lower side of Fig. 2) is reduced accordingly. Power Heat conduction to the one-bon paste 8 can be performed reliably and with high efficiency, and the cooling efficiency of the electronic component 2 can be further improved.
  • a heat receiving pattern 9 is formed as shown in FIGS.
  • the heat receiving pattern 9 is for receiving heat from the electronic component 2 and transferring it to the carbon paste 8 in the heat receiving hole 6 and as shown in FIG. It is formed in a planar shape over a wide range including a plurality of carbon pastes 8.
  • the carbon pastes 8 are connected to each other by the heat receiving pattern 9.
  • the heat receiving area for the electronic component 2 can be expanded by the area of the heat receiving pattern 9, and the heat received by the heat receiving pattern 9 is diffused in the heat receiving pattern 9, Since it is transmitted to the carbon paste 8, heat conduction from the electronic component 2 to each carbon paste 8 can be performed more reliably and efficiently, and as a result, the cooling efficiency of the electronic component 2 can be further improved. it can.
  • the heat receiving pattern 9 is composed of the copper foil layer 9a, the plating layer, and the resist layer 12 in the same manner as the conductive pattern 3 described above, its formation is performed in the same process as the formation of the conductive pattern 3. It can be carried out. That is, since it is not necessary to perform a separate process for forming the heat-receiving pattern 9 that is powerful, the manufacturing cost can be reduced accordingly.
  • the top of the carbon paste 8 filled in the heat receiving hole 6 may be further raised from the surface of the insulating plate 4 and brought into contact with the back surface (lower side in FIG. 2) of the electronic component 2. Thereby, heat conduction from the electronic component 2 to the carbon paste 8 can be performed more reliably and efficiently.
  • the carbon paste 8 may be in direct contact with the back surface of the electronic component 2 or indirectly through the heat receiving pattern 9.
  • the carbon paste 8 is obtained by mixing methanol powder with carbon powder and phenolic resin as a binder to make a paste, filling the holes 6 and 7 and curing.
  • carbon powder having a particle size of 20 m or less.
  • other rosin solvents instead of phenol rosin and methanol.
  • the carbon sheet 5 is a sheet-like body that is composed mainly of carbon and has excellent thermal conductivity. As shown in FIG. 1 and FIG. 2, the insulating plate 4 is disposed in a laminated manner, and is spread over the entire surface of the insulating plate 4. Therefore, when the electronic component 2 generates heat by energization, the heat is transferred to the carbon sheet 5 through the heat receiving hole 6 (carbon paste 8) described above, and due to thermal diffusion in the carbon sheet 5. It is diffused throughout the printed circuit board 1.
  • the heat distribution in the printed circuit board 1 is similar to that in the conventional printed circuit board. Since the printed circuit board 1 as a whole can have a more gentle heat distribution, the heat peak (absolute value) in the vicinity of the electronic component 2 can be suppressed accordingly.
  • the carbon sheet 5 is configured to be exposed from the peripheral edge of the insulating plate 4 (right side in Fig. 2), the carbon sheet 5 is configured only from the heat dissipation hole 7 (carbon paste 8) described above. Heat can be dissipated from the exposed part to the outside with high efficiency.
  • the electronic component 2 can be appropriately cooled, so that it is not necessary to separately provide a heat sink for cooling the electronic component 2 as in a conventional printed circuit board. Therefore, it is possible to increase the mounting density of electronic components 2 in a limited space on the printed circuit board, thereby reducing the size of the entire electronic device, reducing the number of components, and reducing the component cost. And assembly costs can be reduced.
  • a ground pattern 10 is formed on the printed circuit board 1, and a carbon sheet 5 is electrically connected to the ground pattern 10. Therefore, the capacitance (area) of the ground pattern 10 (ground) can be increased by that amount, so that the potential of the ground can be stabilized. As a result, the influence of noise is suppressed, and the operation of the electronic component 2 is suppressed. Can be stabilized.
  • the ground pattern 10 is connected to the ground via a screw that is screwed into the screw hole 4a.
  • the carbon sheet 5 When the carbon sheet 5 is in an electrically isolated state, it acts as a capacitor, which may adversely affect the electronic component 2. In particular, as described above, when the area of the carbon sheet 5 is increased in order to obtain a shielding effect, the problem becomes remarkable. Therefore, by electrically connecting the strong carbon sheet 5 to the ground pattern 10 (ground), the carbon sheet 5 can be prevented from acting as a capacitor, and the adverse effect on the electrical component 2 can be suppressed. Can do.
  • connection between the ground pattern 10 and the carbon sheet 5 is performed by the carbon paste 8 filled in the heat radiating hole 7, as shown in FIGS.
  • the carbon paste 8 serves as both a heat conduction path for heat dissipation and an electrical connection path, the force that can only dissipate the heat of the power sheet 5 reliably and efficiently to the outside. Since it is not necessary to provide a separate connection path for electrically connecting the single sheet 5 and the ground pattern 10, processing costs and material costs can be reduced.
  • the carbon sheet 5 is a sheet composed of carbon alone.
  • an expanded carbon sheet obtained by expanding natural graphite after acid treatment and rolling it into a sheet at a high temperature of 20000 ° C or higher.
  • Graphite sheets that have been carbonized can be used.
  • the carbon sheet 5 since the bond between carbons is weak, carbon pieces are likely to fall off from the edge portions (outer peripheral edge portion and edge portion of the opening 5a). Therefore, as will be described later, when the printed circuit board 1 of the first embodiment is manufactured, the carbon sheet 5 is made of a material (electrically insulating material) containing an electrically insulating resin constituting the insulating plate 4. It is pressure-bonded together with other materials in the state of a coated carbon sheet A having a coating layer 15 formed on the surface. By using the carbon sheet 5 covered with the covering layer 15, it is possible to prevent the carbon pieces from falling off from the edge, and as a result, the wiring generated on the printed circuit board 1 due to the dropped carbon pieces. Defects can be prevented.
  • the carbon sheet 5 has an opening 5a having a substantially circular shape when viewed from above, and is formed with the plating layer 11 provided on the surface of the through hole TH. The contact is avoided, and the current force supplied through the plating layer 11 is configured not to flow out to the carbon sheet 5.
  • the printed circuit board 1 is described as a four-layer printed circuit board.
  • FIG. 3 is a flowchart of each process in the method for manufacturing the printed circuit board 1.
  • FIG. 4 is a diagram schematically showing each step of forming the coated carbon sheet A
  • FIG. 5 is a diagram schematically showing each step of forming the laminated plate.
  • a coated carbon sheet A is formed by a covered carbon sheet forming step (S 1).
  • a lay-up step is performed (Sla).
  • This layup process (Sla) is a process of laminating a pre-preda P and a copper foil layer Cu, which are made into a semi-cured state by impregnating a glass cloth with epoxy resin on both sides of the carbon sheet 5 (see FIG. 4 (a)).
  • the lamination press process is performed (Slb).
  • the lamination press process (Sib) is the carbon sheet 5, the pre-preda P, the copper foil layer C laminated by the lay-up process (Sla). This is a step of heat-pressing u in a vacuum state.
  • the prepreader P is cured to form a coating layer 15 that covers the carbon sheet 5 (see FIG. 4B).
  • the layers laminated by the layup process (Sla) are integrated to form a single plate-like body.
  • the copper foil layer removal step (S1 c) is a step of removing the copper foil layer Cu by etching from the plate-like body (see Fig. 4 (b)) obtained by the lamination press step (Sib).
  • a coated carbon sheet A in which the carbon sheet 5 is coated with the coating layer 15 is obtained (see FIG. 4 (c)).
  • the carbon sheet 5 is composed of carbon alone, the carbon pieces are likely to fall off from the edge portions (outer peripheral edge portions and edge portions of the openings 5a) where the bond between carbons is weak. .
  • the edge of the carbon sheet 5 is reinforced, and as a result, the carbon piece can be prevented from falling off. It can be done.
  • this coated carbon sheet forming step (S1) since the copper foil layer Cu that is easy to handle and can be easily removed by etching is used, the coated carbon sheet A can be easily produced. .
  • a perforating step is performed (S3).
  • the coated carbon sheet A obtained in the coated carbon sheet forming step (S1) is applied to the coated carbon sheet A from the outer periphery of the through hole TH according to the position of the through hole TH provided in the printed circuit board 1. This is the process of drilling a large outer hole (opening 5a) (see Fig. 4 (d)).
  • the coating carbon sheet A (carbon sheet 5) is perforated with holes having outer peripheries larger than the outer peripheries of the through holes TH, so that the plating layer 11 and the carbon sheet 5 It is possible to obtain the printed circuit board 1 in which current is prevented from flowing out.
  • the coated carbon sheet A is formed by the coated carbon sheet forming step (S1) as described above, while the inner layer is formed.
  • An inner-layer core material forming step for forming an inner-layer core material 1 (see FIG. 5) having conductive patterns on both sides is performed (S2).
  • this inner layer core material forming step (S2) a prepreader similar to the prepreader P is sandwiched between copper foils on both sides, and is heated and pressure-bonded under vacuum to harden the prepreader to form a copper-clad substrate for the inner layer core material.
  • the inner layer core material I is formed by etching the obtained copper-clad substrate for the inner layer core material to form an inner layer conductive pattern.
  • a laminated plate is formed using the coated carbon sheet A in which the opening 5a is formed by the drilling step (S3) and the inner layer core material I formed by the inner layer core material forming step (S2).
  • a copper-clad laminate (corresponding to the “laminated board for printed circuit board” in the claims) is formed.
  • this laminated plate forming step (S4) first, a lay-up step is performed (S4a).
  • the coated carbon sheet A having the openings 5a formed by the drilling process (S3), the inner-layer core material I formed by the inner-layer core material forming process, the pre-preda P, and the copper
  • the foil layer 3a is laminated in the order shown in FIG. 5 (a).
  • a lamination press step is performed (S4b).
  • the coated carbon sheet A, the inner layer core material I, the pre-preda P, and the copper foil layer 3a laminated in the lay-up step (S4a) are heat-pressed in a vacuum state.
  • Prepresser P is cured by thermocompression bonding, and the laminated layers are integrated into a single copper-clad sheet.
  • a laminated board is formed (see Fig. 5 (b)).
  • the insulating plate 4 is formed from the pre-preda P arranged in the lamination press step (S4b) and the coating layer 15 of the coating carbon sheet A.
  • a punching step is performed (S5).
  • the outer layer conductive pattern 3 and the inner layer core formed in the outer layer circuit forming step (S8) described later are formed at predetermined positions of the copper clad laminated plate formed in the laminated plate forming step (S4).
  • a through hole TH for electrically connecting the conductive pattern provided in the material I, a heat receiving hole portion 6 and a heat radiating hole portion 7 are formed at predetermined positions.
  • the carbon paste filling step (S6) is performed, and the heat receiving hole portion 6 and the heat radiating hole portion 7 are filled with the carbon paste 8 and cured. As a result, the heat receiving hole 6, the heat radiating hole 7, the carbon sheet 5 and the force carbon paste 8 are connected. In the carbon paste filling step (S6), the heat receiving hole 6 and the heat radiating hole 7 are connected by the carbon paste 8, so that the heat generated from the electronic component 2 is efficiently transmitted to the carbon sheet 5. Therefore, the printed circuit board 1 having excellent heat dissipation can be obtained.
  • the plating step (S7) is performed to form the plating layer 3b and the plating layer 11 in the copper foil layer 3a and the through hole TH, respectively.
  • the outer layer circuit forming step (S8) for forming the outer conductive pattern 3 is performed by etching the copper foil layer 3a and the plating layer 3b.
  • a resist ink application step (S9) is performed.
  • a resist ink is applied on the outer layer conductive pattern 3 formed in the outer layer circuit formation step (S8), thereby forming the conductive pattern 3 (copper foil layer 3a and adhesive layer 3b).
  • the resist layer 12 is coated on the surface.
  • the printed circuit board 1 which is a four-layer printed circuit board is obtained.
  • This printed circuit board 1 has excellent heat dissipation as described above due to the presence of the carbon sheet 5 disposed in the inner layer.
  • FIG. 6 is a view for explaining a carbon sheet 50 used for the printed circuit board according to the second embodiment.
  • symbol is attached
  • the carbon sheet 5 is a sheet composed of a single carbon.
  • a carbon sheet 50 described later is used instead of the carbon sheet 5.
  • the carbon sheet 50 was obtained by filling a void of a net-like body (copper knit) in which copper wires 50b were knitted by knitting, and rolling the carbon-containing material 50a. It is.
  • this carbon sheet 50 the weakness of the bond between carbons is reinforced by the copper wire 50b. Therefore, the carbon sheet 50 is more effectively removed than the carbon sheet 5 which also has a single carbon force. Can be prevented. Therefore, by using such a carbon sheet 50, dropping of carbon pieces from the coated carbon sheet obtained by coating the surface of the carbon sheet 50 with the coating layer 15 is more effectively suppressed.
  • the carbon pieces are more effectively prevented from falling off from the carbon sheet 50, so that the generation of the printed circuit board 1 having a wiring defect is further increased. It can be effectively prevented.
  • FIG. 7 is a side sectional view of the printed circuit board 100 in the third embodiment.
  • the carbon sheets 5 are arranged in a laminated form inside the insulating plate 4, whereas in the printed circuit board 100 of the third embodiment, the carbon sheet 105 is formed of the insulating plate 4. It is arranged in a layered manner on the backside surface (the lower surface in Fig. 7).
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • the heat receiving hole 6 in the third embodiment is formed to penetrate (pierce) the insulating plate 4, and one end side (lower side in Fig. 7) is a carbon sheet 105 described later. It is connected to the. As in the first embodiment, the heat receiving hole 6 is filled with the carbon paste 8 so that heat conduction from the electronic component 2 to the carbon sheet 5 can be performed reliably and efficiently. Has been.
  • the carbon sheet 105 is disposed in a laminated manner over the entire back surface (the lower surface in FIG. 7) of the insulating plate 4, and is compared with the case of the first embodiment. To the outside The exposed area is extremely large. Therefore, when the electronic component 2 generates heat by energization, the heat transmitted to the carbon sheet 105 through the heat receiving hole 6 (carbon paste 8) is diffused to the entire area of the printed circuit board 1 by thermal diffusion in the carbon sheet 105. At the same time, heat can be reliably and efficiently radiated from the carbon sheet 105 to the outside.
  • the force using the carbon sheet 105 the surface of which is not covered with the covering layer (the covering layer 15 in the first embodiment) formed of an electrically insulating material.
  • a carbon sheet 105 pre-coated with a material may be used.
  • the laminated board forming step for printed circuit board described in claim 12 corresponds to the laminated board forming step (S4) in the flowchart of FIG.
  • the covered carbon-containing member forming step according to claim 13 corresponds to the covered carbon sheet forming step (S1) in the flowchart of FIG.
  • laminating process described in claim 14 corresponds to the lay-up process (Sla) in the flowchart of FIG. 3, and the crimping process described in claim 14 includes the flowchart of FIG.
  • the metal sheet removing process described in claim 14 corresponds to the copper foil layer removing process (Sic) in the flowchart of FIG.
  • the covered carbon-containing member perforating step according to claim 15 corresponds to the perforating step (S3) in the flowchart of FIG.
  • the outer layer wiring pattern forming step according to claim 16 corresponds to the outer layer circuit forming step (S8) in the flowchart of FIG. 3
  • the solder resist film forming step according to claim 16 includes This corresponds to the resist ink application step (S9) in the flowchart of FIG.
  • the conductive hole drilling step according to claim 17 corresponds to the hole drilling step (S5) in the flowchart of FIG. 3, and the plating step according to claim 17 includes This corresponds to the plating step (S7) in the flowchart of FIG. [0110]
  • the heat radiation hole drilling step described in claim 18 corresponds to the hole drilling step (S5) in the flowchart of FIG. 3, and the heat radiation material filling step according to claim 18 is included. This corresponds to the carbon paste filling step (S6) in the flowchart of FIG.
  • both the hole portions 6 and 7 can be formed at the same time, for example, by a single drilling process, so that the machining process that eliminates the need to process both the hole portions 6 and 7 separately is simplified. This is because the processing cost can be reduced accordingly.
  • the heat receiving hole portion 6 and the heat radiating hole portion 7 are not necessarily limited to this, and it is naturally possible to independently form the recesses at different positions as holes having a depth up to the carbon sheet 5. .
  • the heat dissipation holes are recessed in the lower surface of the insulating plate 4 (lower side surface in FIG. 2).
  • You may comprise so that the number of recessed parts of the part 7 may become larger. Thereby, heat can be released from the carbon sheet 5 to the outside more efficiently.
  • the heat radiating hole 7 may be recessed on the same side as the heat receiving hole 6 (upper side in FIG. 2).
  • the heat radiating hole 7 is provided on the surface of the insulating plate 4 opposite to the side on which the electronic component 2 is mounted (lower side in Fig. 2) has been described.
  • the heat radiating hole 7 may not be provided on the surface opposite to the mounting surface. That is, do not provide the heat dissipation hole 7.
  • the heat radiating hole 7 is provided only on the same surface (the upper side in FIG. 2) as the side on which the electronic component 2 is mounted.
  • the force described when the heat receiving hole 6 and the heat radiating hole 7 are filled with the strong paste 8 is not necessarily limited to this. It is naturally possible to fill the metal paste instead of the carbon paste 8.
  • the paste using copper, silver, etc. is illustrated, for example.
  • epoxy resin is used as the electrically insulating resin contained in the prepreader P.
  • the electrically insulating resin is limited to epoxy resin. It is not a thing. That is, it is naturally possible to construct the pre-preder P using an electrically insulating resin such as phenol resin, modified polyimide, and polyimide instead of epoxy resin.
  • the force covering layer 15 using the pre-preda P containing epoxy resin is also formed in the coated carbon sheet forming step (S1) and the laminated plate forming step (S4).
  • the electrically insulating resin contained in the prepreader P may be different from the electrically insulating resin contained in the prepreader P for forming the laminate.
  • the force using a sheet composed of carbon alone as the carbon sheet 5 is mixed with other materials, not necessarily limited to a sheet composed of carbon alone.
  • other materials not necessarily limited to a sheet composed of carbon alone.
  • the carbon sheet 5 only needs to contain at least carbon.
  • the carbon-containing material 50a filling the network formed from the copper wire 50b may be composed of carbon alone. Can be a mixture of carbon and other materials.
  • the network knitted from the copper wire 50b is configured to be filled with the carbon-containing material 50a.
  • the members that form the network are Of course, it can be inferred that any material having thermal conductivity not limited to the copper wire 50b can be substituted.
  • a metal wire such as a silver wire may be used instead of the copper wire 50b.
  • the mesh shape of the mesh body is not limited to the knit shape as shown in FIG. 6, but other mesh shapes.
  • the carbon sheet 5 or the carbon sheet 50 is formed of the conductive pattern of each layer (the conductive pattern 3 of the surface layer (copper foil 3a) and the inner core material I
  • the arrangement position of the carbon sheet 5 or the carbon sheet 50 is limited to this.
  • Carbon sheet 5 or carbon sheet 50 force conductive pattern (surface layer conductive pattern 3 (copper foil 3a) and inner layer core material I conductive pattern) force is also at least one layer at a position separated by the insulating plate 4. What is necessary is just to be arrange
  • one of the two carbon sheets 5 (covered carbon sheet A) (covered carbon sheet A) A configuration may be adopted in which a single bon seat A) is not installed.
  • the carbon sheet 5 or the carbon sheet 50 may be provided on the surface on the side where the conductive pattern is not provided.
  • the carbon sheet 5 or the carbon sheet 50 has the conductive pattern (surface conductive pattern 3 (copper foil 3a) and When placed further between the inner layer core material I conductive pattern ( Figure 2 or (Refer to Fig. 5 (b)), but it is not limited to this. Insulation between conductive patterns of each layer (conductive pattern 3 of the surface layer (copper foil 3a) and conductive pattern of inner layer core material I) is not limited to this.
  • Two or more layers of carbon sheets 5 and 50 may be disposed in a laminated form via the plate 4, or the carbon sheets 5 and 50 may be combined and disposed in a laminated form.
  • the printed circuit board 1, 100 of each of the above embodiments that is, the printed circuit board 1, 100 having the carbon sheets 5, 50, 105 inside or on the surface thereof can be applied to a single-sided board, a double-sided board, and a multilayer board Is easily guessable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

 電子部品を冷却するための放熱板を不要として、電子機器の大型化を抑制しつつ、その電子部品を高効率に冷却することができるプリント基板およびそのようなプリント基板を効率的に製造する方法を提供する。  絶縁材部の内部または表面には、カーボンを主体に構成され熱伝導性に優れるカーボン層部が積層状に配設されているので、通電により電子部品から発熱した熱は、カーボン層部へ伝えられ、そのカーボン層部を拡散した後、外部へ放熱される。よって、電子部品が通電により発熱した場合には、カーボン層部への熱伝導およびカーボン層部での熱拡散によって、電子部品の放熱を確実に行うことができ、かかる電子部品の冷却を高効率に行うことができる。

Description

明 細 書
プリント基板及びプリント基板の製造方法
技術分野
[0001] 本発明はプリント基板及びプリント基板の製造方法に関し、特に、電子部品を冷却 するための放熱板を不要として、電子機器の大型化を抑制しつつ、その電子部品を 高効率に冷却することができるプリント基板及びそのようなプリント基板の製造方法に 関するものである。
背景技術
[0002] プリント基板に実装されたトランジスタや IC等の電子部品は通電によって高熱を発 するため、電子機器 (例えば、自動車用エンジンコントロールユニット「ECU」)の分野 においては、これら電子部品の発熱に対する冷却方法が重要な技術の一つとなって いる。電子部品の冷却方法としては、通常、熱伝導性に優れる材料からなる放熱板( ヒートシンク)を電子部品の発熱面に取り付ける方法が一般的である(特許文献 1)。 更に、放熱フィンを冷却ファンにて空冷する方法もある。
特許文献 1 :特開平 7-235781号公報(図 2など)
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、近年では、電子機器の小形'軽量ィ匕を達成するべぐその薄形化お よび高密度実装化が急速に進められており、そのため、放熱板を実装するための十 分なスペースをプリント基板上に確保することができな 、と 、う問題点があった。即ち 、電子部品を適切に冷却するためには、放熱板を大きくする必要があり、その分、電 子機器全体としての大型化を招く。その一方、放熱板を小さく構成したのでは、放熱 効率が低下して、電子部品を適切に冷却することができない。
[0004] 本発明の目的は、上述した問題点を解決するためになされたものであり、電子部品 を冷却するための放熱板を不要として、電子機器の大型化を抑制しつつ、その電子 部品を高効率に冷却することができるプリント基板およびそのようなプリント基板を効 率的に製造する方法を提供することを目的としている。 課題を解決するための手段
[0005] この目的を達成するために、請求の範囲第 1項記載のプリント基板は、電気絶縁性 材料カゝら構成される絶縁材部と、その絶縁材部の少なくとも一方の表面、又は、その 絶縁材部の少なくとも一方の表面及び内部に形成される配線パターンとを備え、 1又 は複数の電子部品が実装されるものであって、カーボンを主体として構成されるカー ボン層部を備え、そのカーボン層部が前記絶縁材部の内部または表面に積層状に 配設されている。
[0006] 請求の範囲第 2項記載のプリント基板は、請求の範囲第 1項記載のプリント基板に おいて、前記絶縁材部の厚み方向へ凹設または穿設され、その絶縁材部の内部ま たは表面に積層状に配設された前記カーボン層部に接続される受熱孔部を備えて おり、その受熱孔部は、その開口部が前記電子部品の裏面側に臨むように構成され ると共に、その受熱孔部の内部には、金属ペースト又はカーボンペーストが充填され ている。
[0007] 請求の範囲第 3項記載のプリント基板は、請求の範囲第 1又は第 2項に記載のプリ ント基板において、前記絶縁材部の厚み方向へ凹設または穿設され、その絶縁材部 の内部または表面に積層状に配設された前記カーボン層部に接続される放熱孔部 を備えており、その放熱孔部は、その開口部を前記電子部品の実装面と反対側の表 面に配設するか又は前記電子部品の実装面と同じ側の表面であって上面視におい て電子部品と重ならない位置に配設することにより、その開口部が前記電子部品の 裏面側に臨まないように構成されると共に、その放熱孔部の内部には、金属ペースト 又はカーボンペーストが充填されて 、る。
[0008] 請求の範囲第 4項記載のプリント基板は、請求の範囲第 3項のプリント基板におい て、前記カーボン層部が前記絶縁材部の内部に積層状に配設されている場合には 、そのカーボン層部に接続される前記受熱孔部と放熱孔部とが、互いに連通された 一本の貫通孔として構成されて 、る。
[0009] 請求の範囲第 5項記載のプリント基板は、請求の範囲第 2から第 4項のいずれかに 記載のプリント基板において、前記受熱孔部に充填された金属ペースト又はカーボ ンペーストは、その頂部が前記絶縁材部の表面力 盛り上げられており、前記電子部 品の裏面側との間隙が小さくされている。
[0010] 請求の範囲第 6項記載のプリント基板は、請求の範囲第 2から第 4項のいずれかに 記載のプリント基板において、前記受熱孔部に充填された金属ペースト又はカーボ ンペーストは、その頂部が前記配線パターンと略同等の高さ又は若干高くなるように 前記絶縁材部の表面力 盛り上げられており、前記電子部品の裏面側に直接または 間接的に接触可能とされている。
[0011] 請求の範囲第 7項記載のプリント基板は、請求の範囲第 2から第 6項のいずれかに 記載のプリント基板にぉ 、て、前記絶縁材部の表面にお!、て前記電子部品の裏面 側に臨むように形成され、前記受熱孔部に充填された複数の金属ペースト又はカー ボンペーストに接続される受熱パターンを備え、その受熱パターンは、上面視におい て前記複数の各金属ペースト又はカーボンペーストを含む範囲にわたって略面状に 形成されている。
[0012] 請求の範囲第 8項記載のプリント基板は、請求の範囲第 1から第 7項のいずれかに 記載のプリント基板において、前記絶縁材部の内部に積層状に配設された前記カー ボン層部は、少なくともその一部が前記絶縁材部の周端縁から露出して構成されて いる。
[0013] 請求の範囲第 9項記載のプリント基板は、請求の範囲第 1から第 8項のいずれかに 記載のプリント基板において、前記配線パターンは、グランドに接続されるグランドパ ターンを備えており、そのグランドパターンと前記カーボン層部とが互いに電気的に 接続されている。
[0014] 請求の範囲第 10項記載のプリント基板は、請求の範囲第 9項記載のプリント基板に おいて、前記放熱孔部の一部又は全部は、前記グランドパターンを貫通しつつ前記 絶縁材部の厚み方向へ凹設または穿設されており、その放熱孔部に充填された金 属ペースト又はカーボンペーストによって前記グランドパターンとカーボン層部とが互 V、に電気的に接続されて!、る。
[0015] 請求の範囲第 11項記載のプリント基板は、請求の範囲第 1から第 10項のいずれか に記載のプリント基板において、前記カーボン層部は、前記絶縁材部の内部に前記 配線パターンが形成される場合にはその配線パターンの近傍を除き、前記絶縁材部 の内部または表面のほぼ全域にわたる範囲に積層状に配設されている。
[0016] 請求の範囲第 12項記載のプリント基板の製造方法は、電気絶縁性材料から形成さ れる板状の絶縁材部と、その絶縁材部の少なくとも一方の表面に配設される配線パ ターン層、又は、その絶縁材部の少なくとも一方の表面および内部に配設される配 線パターン層と、カーボンを主体として構成され、前記絶縁材部を介することにより前 記配線パターン層と離間されて積層状に配設される少なくとも 1層の板状のカーボン 含有部材とを備えたプリント基板を製造するための方法であって、前記絶縁材部を形 成する電気絶縁性材料により予め被覆された前記板状のカーボン含有部材である 被覆カーボン含有部材と、前記配線パターン層又は配線パターンを形成するための 導体層との間に、前記絶縁材部を形成する電気絶縁性材料を介在させて圧着して プリント基板用積層板を形成するプリント基板用積層板形成工程を備えている。
[0017] 請求の範囲第 13項記載のプリント基板の製造方法は、請求の範囲第 12項記載の プリント基板の製造方法において、前記プリント基板用積層板形成工程に先立って、 前記絶縁材部を形成する電気絶縁性材料を前記板状のカーボン含有部材の両面 に圧着することにより、前記被覆カーボン含有部材を形成する被覆カーボン含有部 材形成工程を備えている。
[0018] 請求の範囲第 14項記載のプリント基板の製造方法は、請求の範囲第 13項記載の プリント基板の製造方法において、前記被覆カーボン含有部材形成工程は、前記板 状のカーボン含有部材の両面に、前記絶縁材部を形成する電気絶縁性材料を積層 すると共に、その電気絶縁性材料の外側にエッチング除去可能な金属力 構成され る金属板を積層する積層工程と、その積層工程により積層された前記カーボン含有 部材と前記電気絶縁性材料と前記金属板とを圧着して積層体を得る圧着工程と、そ の圧着工程による圧着により得られた積層板から、エッチングにより前記金属板を除 去して前記被覆カーボン含有部材を得る金属板除去工程とを備えている。
[0019] 請求の範囲第 15項記載のプリント基板の製造方法は、請求の範囲第 13又は 14項 記載のプリント基板の製造方法において、前記プリント基板は、前記絶縁材部の介在 によって互いに絶縁されて配置された前記配線パターン層を電気的に接続するため の導電用孔を備えており、前記プリント基板用積層板形成工程に先立って、前記被 覆カーボン含有部材形成工程により得られた被覆カーボン含有部材に対し、前記導 電用孔に対応する位置に、その導電用孔の外周より大きい外周の孔を穿設する被覆 カーボン含有部材穿孔工程を備えて 、る。
[0020] 請求の範囲第 16項記載のプリント基板の製造方法は、請求の範囲第 12から第 15 項のいずれかに記載のプリント基板の製造方法において、前記プリント基板用積層 板形成工程により形成されたプリント基板用積層板における前記絶縁材部の表面に 設けられた前記導体層から配線パターンを形成し、配線パターン層とする外層配線 パターン形成工程と、その外層配線パターン形成工程により形成された配線パター ン上にソルダレジスト膜を形成して前記プリント基板を得るソルダレジスト膜形成工程 とを備えている。
[0021] 請求の範囲第 17項記載のプリント基板の製造方法は、請求の範囲第 16項記載の プリント基板の製造方法において、前記プリント基板は、前記絶縁材部の介在によつ て互いに絶縁されて配置された前記配線パターン層を電気的に接続するための導 電用孔を備えており、前記プリント基板用積層板形成工程により形成されたプリント 基板用積層板に、前記導電用孔を穿設する導電用孔穿孔工程と、その導電用孔穿 孔工程により穿設された導電用孔に、前記絶縁材部の介在によって互いに絶縁され た前記配線パターン層を電気的に接続するめつきを施す通電用孔めっき工程とを備 えている。
[0022] 請求の範囲第 18項記載のプリント基板の製造方法は、請求の範囲第 16又は第 17 項記載のプリント基板の製造方法において、前記プリント基板は、前記絶縁材部の表 面に設けられ、その上に 1又は複数の電子部品が実装される前記配線パターン層と 、前記カーボン含有部材とを連結するための放熱用孔を備えており、前記プリント基 板用積層板形成工程により形成されたプリント基板用積層板に、前記放熱用孔を穿 設する放熱用孔穿孔工程と、その放熱用孔穿孔工程により穿設された放熱用孔に 放熱性材料を充填する放熱性材料充填工程とを備えている。
[0023] 請求の範囲第 19項記載のプリント基板の製造方法は、請求の範囲第 12から第 18 項の 、ずれかに記載のプリント基板の製造方法にお!、て、前記板状のカーボン含有 部材は、熱伝導性材料から編成された網状体の空隙にカーボンを主体とする材料を 充填したものである。
発明の効果
[0024] 請求の範囲第 1項記載のプリント基板によれば、絶縁材部の内部又は表面には、力 一ボンを主体に構成され熱伝導性に優れるカーボン層部が積層状に配設されてい るので、通電により電子部品から発熱した熱は、カーボン層部へ伝えられ、そのカー ボン層部を拡散した後、外部へ放熱される。その結果、電子部品が冷却される。よつ て、電子部品が通電により発熱した場合には、カーボン層部への熱伝導およびカー ボン層部での熱拡散によって、電子部品の放熱を確実に行うことができ、かかる電子 部品の冷却を高効率に行うことができるという効果がある。
[0025] 請求の範囲第 2項記載のプリント基板は、請求の範囲第 1項記載のプリント基板の 奏する効果に加えて、カーボン層部へ接続される受熱孔部を備えると共に、その受 熱孔部には熱伝導性に優れる金属ペースト又はカーボンペーストが充填されている ので、通電により電子部品から発熱した熱は、主に、受熱孔部内に充填された金属 ペースト又はカーボンペーストを介してカーボン層部へ伝えられる。よって、その金属 ペースト又はカーボンペーストを介して、電子部品から発熱した熱をカーボン層部へ 確実かつ高効率に伝えられるという効果があり、その結果、電子部品の冷却を高効 率に行うことができる。
[0026] 更に、受熱孔部の開口部は、電子部品の裏面側に臨むように構成されているので 、その電子部品からの熱を受熱孔部 (金属ペースト又はカーボンペースト)で受熱し て、電子部品からカーボン層部への熱伝導を確実かつ高効率に行うことができ、その 分、電子部品の冷却効率のより一層の向上を図ることができるという効果がある。
[0027] 請求の範囲第 3項記載のプリント基板によれば、請求の範囲第 1又は第 2項に記載 のプリント基板の奏する効果に加えて、カーボン層部へ接続される放熱孔部を備える と共に、その放熱孔部には熱伝導性に優れる金属ペースト又はカーボンペーストが 充填されているので、電子部品からカーボン層部へ伝えられた熱の少なくとも一部は 、放熱孔部内に充填された金属ペースト又はカーボンペーストを介して外部に放熱さ れる。よって、電子部品からカーボン層部へ伝えられた熱を、放熱孔部の金属ペース ト又はカーボンペーストを介して、カーボン層部から外部へ確実かつ高効率に放熱 することができるという効果があり、その結果、電子部品の冷却を高効率に行うことが できる。
[0028] 更に、放熱孔部の開口部は、電子部品の実装面と反対側の表面に配設されるか又 は電子部品の実装面と同じ側の表面であって上面視において電子部品と重ならない 位置に配設されているので、力かる放熱孔部の開口部が電子部品の裏面側に臨ま ないように構成することができ、その結果、放熱孔部 (金属ペースト又はカーボンぺー スト)力 の放熱により電子部品が発熱することを抑制して、電子部品の冷却効率の より一層の向上を図ることができるという効果がある。
[0029] 請求の範囲第 4項記載のプリント基板によれば、請求の範囲第 3項のプリント基板 の奏する効果にカ卩えて、受熱孔部と放熱孔部とは、互いに連通された一本の貫通孔 として構成されているので、これら両孔部を例えばドリルによる一度の加工で同時に 形成することができる。よって、それぞれの孔部を別々に加工する必要がなぐ加工 工程が簡素化されるので、その分、加工コストを低減することができるという効果があ る。
[0030] 請求の範囲第 5項記載のプリント基板によれば、請求の範囲第 2から第 4項のいず れかに記載のプリント基板の奏する効果に加えて、受熱孔部に充填された金属ぺー スト又はカーボンペーストの頂部が絶縁材部の表面力も盛り上げられており、力かる 金属ペースト又はカーボンペーストと電子部品の裏面側との間隙が小さくされている 。よって、電子部品から受熱孔部 (金属ペースト又はカーボンペースト)への熱伝導を 確実かつ高効率に行うことができ、その分、電子部品の冷却効率のより一層の向上 を図ることができると 、う効果がある。
[0031] 請求の範囲第 6項記載のプリント基板によれば、請求の範囲第 2から第 4項のいず れかに記載のプリント基板の奏する効果に加えて、受熱孔部に充填された金属ぺー スト又はカーボンペーストは、その頂部が配線パターンと略同等の高さ又は若干高く なるように絶縁材部の表面力 盛り上げられており、電子部品の裏面側に直接または 間接的に接触可能とされている。よって、電子部品から受熱孔部 (金属ペースト又は カーボンペースト)への熱伝導を確実かつ高効率に行うことができ、その分、電子部 品の冷却効率のより一層の向上を図ることができるという効果がある。 [0032] 請求の範囲第 7項記載のプリント基板によれば、請求の範囲第 2から第 6項のいず れかに記載のプリント基板の奏する効果に加えて、絶縁材部の表面には、電子部品 の裏面側に臨むと共に、複数の金属ペースト又はカーボンペーストに接続される受 熱パターンが形成されており、その受熱パターンは、上面視において複数の各金属 ペースト又はカーボンペーストを含む範囲にわたって略面状に形成されている。その ため、電子部品から受熱孔部 (カーボンペースト)への熱伝導は、受熱パターンを介 して行われる。よって、その受熱パターンの面積分だけ電子部品力 の受熱面積を 広くすることができるので、電子部品力 金属ペースト又はカーボンペーストへの熱 伝導をより確実かつ高効率に行うことができるという効果があり、その結果、電子部品 の冷却効率のより一層の向上を図ることができるという効果がある。
[0033] 請求の範囲第 8項記載のプリント基板によれば、請求の範囲第 1から第 7項のいず れかに記載のプリント基板の奏する効果に加えて、絶縁材部の内部に積層状に配設 されたカーボン層部は、少なくともその一部が絶縁材部の周端縁から露出して構成さ れているので、電子部品からカーボン層部へ伝えられた熱の少なくとも一部は、絶縁 板部の周端縁から露出したカーボン層部の露出部を介して外部に放熱される。よつ て、電子部品からカーボン層部へ伝えられた熱を、絶縁材部の周端縁から露出する カーボン層部の露出部を介して、外部へ確実かつ高効率に放熱することができると いう効果があり、その結果、電子部品の冷却を高効率に行うことができる。
[0034] 請求の範囲第 9項記載のプリント基板によれば、請求の範囲第 1から第 8項のいず れかに記載のプリント基板の奏する効果に加えて、グランドに接続されるグランドバタ ーンを備えると共に、そのグランドパターンとカーボン層部とが互いに電気的に接続 されているので、グランドの面積を大きくして、グランドの電位を安定させることができ るという効果があり、その結果、ノイズによる影響を抑制して、電子部品の動作を安定 させることができると 、う効果がある。
[0035] 請求の範囲第 10項記載のプリント基板によれば、請求の範囲第 9項記載のプリント 基板の奏する効果に加えて、放熱孔部に充填された金属ペースト又はカーボンぺー ストによって、カーボン層部力 外部へ確実かつ高効率に放熱することができるだけ でなぐこの金属ペースト又はカーボンペーストがグランドパターンとカーボン層部と の電気的な接続経路を兼ねて ヽるので、グランドパターンとカーボン層部とを電気的 に接続するための接続経路を別途設ける必要がなぐその分、加工コストや材料コス トなどを抑制することができると 、う効果がある。
[0036] また、カーボン層部が電気的に孤立した状態におかれるとコンデンサとして作用し て電子部品に悪影響を及ぼすおそれがあり、特に、カーボン層部の面積を大きくした 場合には、この問題が顕著となる。そこで、上述のように、カーボン層部をグランドパ ターン (グランド)に接続することにより、カーボン層部がコンデンサとして作用すること を回避して、電子部品へ影響を及ぼすことを抑制することができるという効果がある。
[0037] 請求の範囲第 11項記載のプリント基板によれば、請求の範囲第 1から第 10項のい ずれかに記載のプリント基板の奏する効果に加えて、絶縁材部には、カーボンを主 体として構成されるカーボン層部がその絶縁材部の内部または表面のほぼ全域にわ たる範囲に積層状に配設されているので、力かるカーボン層部によっていわゆるシー ルド効果を得ることができ、電子部品から発生する電磁波が外部へ放出されたり、或 いは、外来のノイズにより電子部品が影響を受けたりすることを抑制することができる という効果がある。
[0038] 請求の範囲第 12項記載のプリント基板の製造方法によれば、絶縁材部を介するこ とにより配線パターン層と離間されて積層状に配設されるカーボン含有部材を備えた プリント基板を製造する場合に、絶縁材部を形成する電気絶縁性材料により予め被 覆された板状のカーボン含有部材である被覆カーボン含有部材が使用される。この 被覆カーボン含有部材と配線パターン層又は配線パターンを形成するための導体 層とが、プリント基板用積層板形成工程において、絶縁材部を形成する電気絶縁性 材料を介して圧着され、それによつて、プリント基板用積層板が形成される。
[0039] 一般的に、カーボン含有部材は、カーボン間の結合力が弱いために、縁端部から カーボン片が脱落し易い。プリント基板におけるスルーホールとの接触を回避するた めの開口部がカーボン含有部材に多数穿設されている場合には、特に、カーボン片 が脱落し易い状況が生じる。プリント基板の製造過程において、積層されるカーボン 含有部材力 カーボン片が脱落すると、そのカーボン片がプリント基板における銅箔 部分や内層コア材の配線パターン部分に付着し、その結果として、配線不良のプリン ト基板が製造されてしまうという問題が生じる。
[0040] 上記のように、請求の範囲第 12項記載のプリント基板の製造方法によれば、被覆 カーボン含有部材、即ち、電気絶縁性材料によって予め被覆されているカーボン含 有部材 (被覆カーボン含有部材)が使用されるので、プリント基板用積層板形成工程 の際に、カーボン片がカーボン含有部材カも脱落することを防止できるという効果が ある。その結果として、製造されたプリント基板における配線不良の発生率を低減で きるという効果がある。
[0041] なお、請求の範囲第 12項における「絶縁材部を形成する電気絶縁性材料」とは、 1 種類だけでなぐ 2種類以上である場合も含むものとする。即ち、請求の範囲第 12項 のプリント基板の製造方法にぉ 、て、被覆カーボン含有部材にお 、てカーボン含有 部材を被覆する電気絶縁性材料と、プリント基板用積層板形成工程にお!、て被覆力 一ボン含有部材と配線パターン層又は配線パターンを形成するための導体層との間 に介在させる電気絶縁性材料とが、同じ電気絶縁性材料である場合も、異なる電気 絶縁性材料である場合も!、ずれも含む。
[0042] 請求の範囲第 13項記載のプリント基板の製造方法によれば、請求の範囲第 12項 記載のプリント基板の製造方法の奏する効果に加えて、プリント基板用積層板形成 工程に先立って、被覆カーボン含有部材形成工程により、絶縁材部を形成する電気 絶縁性材料力 板状のカーボン含有部材の両面に圧着され、それによつて、電気絶 縁性材料によって被覆されて!ヽるカーボン含有部材 (被覆カーボン含有部材)が形 成される。
[0043] この被覆カーボン含有部材は、カーボン含有部材が電気絶縁性材料により被覆さ れているので、縁端部カゝらカーボン片が脱落し難い。よって、プリント基板用積層板 形成工程の際に、カーボン含有部材力 カーボン片が脱落することを防止できるとい う効果がある。その結果として、製造されたプリント基板における配線不良の発生率を 低減できるという効果がある。
[0044] 請求の範囲第 14項記載のプリント基板の製造方法によれば、請求の範囲第 13項 記載のプリント基板の製造方法の奏する効果に加えて、被覆カーボン含有部材形成 工程により形成される被覆カーボン含有部材は、まず、積層工程により、板状のカー ボン含有部材の両面に電気絶縁性材料が積層されると共に、その電気絶縁性材料 の外側にエッチング除去可能な金属力 構成される金属板が積層され、これらが圧 着工程により圧着されて積層体が形成される。形成された積層体は、金属板除去ェ 程によりエッチングされて金属板が除去されて、被覆カーボン含有部材とされる。よつ て、エッチングにより除去可能な金属板を用いることによって、被覆カーボン含有部 材を容易に作製することができると 、う効果がある。
[0045] 請求の範囲第 15項記載のプリント基板の製造方法によれば、請求の範囲第 13又 は 14項記載のプリント基板の製造方法の奏する効果に加えて、プリント基板が、絶縁 材部の介在によって互いに絶縁されて配置されている配線パターン層を電気的に接 続するための導電用孔を備えている場合には、プリント基板用積層板形成工程に先 立って、被覆カーボン含有部材穿孔工程において、被覆カーボン含有部材形成ェ 程により得られた被覆カーボン含有部材に対し、導電用孔に対応する位置に、その 導電用孔の外周より大きい外周の孔が穿設される。よって、各配線パターン層を電気 的に接続する導電用孔と、カーボン含有部材との接触が回避されるので、プリント基 板において電気的接続に無関係であるカーボン含有部材への電流の流出を防止で きるという効果がある。
[0046] 請求の範囲第 16項記載のプリント基板の製造方法によれば、請求の範囲第 12か ら第 15項のいずれかに記載のプリント基板の製造方法の奏する効果に加えて、外層 配線パターン形成工程により、プリント基板用積層板形成工程により形成されたプリ ント基板用積層板における絶縁材部の表面に設けられた導体層は、その導体層から 配線パターンが形成されて配線パターン層とされる。次いで、ソルダレジスト膜形成 工程により、配線パターンの上にソルダレジスト膜が形成されると、プリント基板が得ら れる。このプリント基板は内層にカーボン含有部材を有するものであるので、放熱性 に優れたプリント基板を得ることができるという効果がある。
[0047] 請求の範囲第 17項記載のプリント基板の製造方法によれば、請求の範囲第 16項 記載のプリント基板の製造方法の奏する効果に加えて、プリント基板が、絶縁材部の 介在によって互いに絶縁されて配置された配線パターン層を電気的に接続するため の導電用孔を備えている場合には、導電用孔穿孔工程により、プリント基板用積層 板形成工程により形成されたプリント基板用積層板に導電用孔が穿設される。次い で、通電用孔めっき工程において、めっきが施されることにより、絶縁材部の介在によ つて互いに絶縁されて配置された配線パターン層が電気的に接続される。よって、力 一ボン含有部材を内層に有することにより放熱性に優れた多層プリント基板を得るこ とができるという効果がある。
[0048] 請求の範囲第 18項記載のプリント基板の製造方法によれば、請求の範囲第 16又 は第 17項記載のプリント基板の製造方法の奏する効果に加えて、プリント基板が、絶 縁材部の表面に設けられ、その上に 1又は複数の電子部品が実装される配線パター ン層と、カーボン含有部材とを連結するための放熱用孔を備えている場合には、放 熱用孔穿孔工程において、プリント基板用積層板形成工程により形成されたプリント 基板用積層板に放熱用孔が穿設される。次いで、放熱性材料充填工程において、 放熱用孔穿孔工程により穿設された放熱用孔に放熱性材料が充填される。よって、 この製造方法により製造されたプリント基板は、電子部品を熱源として発生される熱 をカーボン含有部材に効率的に伝達できる。即ち、電子部品から発せられる熱を高 効率で放熱し、電子部品の冷却を高効率に行 、得るプリント基板を得ることができる という効果がある。
[0049] 請求の範囲第 19項記載のプリント基板の製造方法によれば、請求の範囲第 12か ら第 18項のいずれかに記載のプリント基板の製造方法の奏する効果に加えて、板状 のカーボン含有部材は、熱伝導性材料から編成された網状体の空隙にカーボンを 主体とする材料を充填したものであるので、網状体によって、カーボン間の結合の弱 さが補強される。よって、プリント基板用積層板形成工程の際に、カーボン含有部材 力もカーボン片が脱落することを効果的に防止できるという効果がある。その結果とし て、製造されたプリント基板における配線不良の発生率を低減できるという効果があ る。
図面の簡単な説明
[0050] [図 1]本発明の第 1実施形態におけるプリント基板の上面図である。
[図 2]図 1の II II線におけるプリント基板の側断面図である。
[図 3]第 1実施形態のプリント基板の製造方法における各工程のフローチャートである 圆 4]被覆カーボンシートを形成する各工程を模式的に示す図である。
圆 5]積層板を形成する各工程を模式的に示す図である。
圆 6]第 2実施形態のプリント基板に用いられるカーボンシートを説明する図である。 圆 7]第 3実施形態におけるプリント基板の側断面図である。
符号の説明
1 プリント基板
2 電子部品
3 導電パターン (配線パターン,配線パターン層)
3a 銅箔層(配線パターン,配線パターン層,導体層)
3b めっき層(配線パターン,配線パターン層)
4, 15 絶縁板 (絶縁材部)
4a ねじ穴
5, 50 カーボンシート(カーボン層,カーボン含有部材)
5a 開口部(孔)
6 受熱孔部 (受熱孔部,放熱用孔)
7 放熱孔部 (放熱孔部,放熱用孔)
8 カーボンペースト (放熱性材料)
9 受熱パターン
9a 銅箔層
9b めっき層
10 グランドパターン
11 めっき層
12 レジスト層(ソルダレジスト膜)
50a カーボン含有材料 (カーボンを主体とする材料)
50b 銅線 (熱伝導性材料)
A 被覆カーボンシート (被覆カーボン含有部材)
I 内層コア材 (配線パターン層) P プリプレダ (電気絶縁性材料)
Cu 銅箔層 (金属板)
TH スルーホール (導電用孔)
発明を実施するための最良の形態
[0052] 以下、本発明の好ましい実施形態について、添付図面を参照して説明する。図 1は 、本発明の第 1実施形態におけるプリント基板 1の上面図であり、図 2は、図 1の II II 線におけるプリント基板 1の側断面図である。なお、図 1及び図 2では、プリント基板 1 の一部が省略して図示されている。また、図 1では、電子部品 2の図示が省略される と共に、その電子部品 2の仮想的な外形が 2点鎖線を用いて図示されている。
[0053] プリント基板 1は、例えば、エンジンコントロールユニット(ECU)などの電子機器を 構成する基板であり、その上面側(図 1紙面手前側、図 2上側)に実装される複数の 電子部品 2と、それら各電子部品 2を電気的に接続する導電パターン 3と、その導電 ノターン 3が少なくとも一方の表面 (絶縁板 4における図 2上側に相当する面)に形成 される絶縁板 4と、その絶縁板 4の内部に積層状に配設されるカーボンシート 5とを主 に備えている。
[0054] なお、電子部品 2としては、例えば、抵抗器やコンデンサ、トランジスタ、 ICなどが例 示されるが、これらに特に限定されるものではなぐ広くプリント基板に実装される他 の電子部品も含まれる。
[0055] 導電パターン 3は、絶縁板 4の少なくとも一方の表面 (絶縁板 4における図 2上側に 相当する面)に、電子部品 2の間を電気的に接続する電気配線回路 (請求の範囲に おける「配線パターン」に相当する)として形成されており、銅箔層 3aとその銅箔層 3a の上面に積層されるめつき層 3bとから構成されるものである。導電パターン 3 (銅箔層 3a及びめつき層 3b)の表面には、導電パターン 3が短絡されることを防止するために 、レジスト層 12が被覆されている。
[0056] なお、導電パターン 3は、絶縁板 4における他方の表面 (絶縁板 4における図 2下側 に相当する面)及び Z又は絶縁板 4の内部に設けられて 、てもよく、多層の導電バタ ーン 3が設けられている場合には、各層の導電パターン 3における電気的接続をす べき位置にスルーホール THが設けられ、このスルーホール THの表面に設けられた めっき層 11を介して、各層の導電パターン 3が接続される。
[0057] 絶縁板 4は、電気絶縁性を有する略平板状体であり、その四隅部に穿設されたねじ 穴 4aを利用して電子機器の筐体 (非図示)に螺合固定されるものである。この絶縁板 4は、紙、ガラスクロス (織布又は不織布)などに含浸させた電気絶縁性榭脂 (本実施 形態ではエポキシ榭脂)を硬化させたものである。なお、後述する被覆カーボンシー ト Aの表層を構成する被覆層 15もまた、絶縁板 4の一部として構成される。
[0058] この絶縁板 4には、図 1及び図 2に示すように、断面略円形の受熱孔部 6及び放熱 孔部 7が板厚方向(図 2上下方向)に複数穿設されており、これら受熱孔部 6及び放 熱孔部 7の端部は、後述するカーボンシート 5に接続されている。受熱孔部 6は、電 子部品 2が通電により発熱した場合に、その熱を後述するカーボンシート 5へ伝える ための部材であり、放熱孔部 7は、カーボンシート 5の熱を外部へ放熱するための部 材である。
[0059] 受熱孔部 6の内部には、カーボンを主体として構成され熱伝導性に優れるカーボン ペースト 8が充填されているので、通電により電子部品 2が発熱した場合には、この力 一ボンペースト 8を介して、電子部品 2の熱を後述するカーボンシート 5へ確実かつ高 効率に伝達できる。更に、受熱孔部 6の開口部(図 1紙面手前側、図 2上側)は、図 1 及び図 2に示すように、電子部品 2の裏面側(図 2下側)側に臨む位置に配設されて いるので、電子部品 2の熱を確実かつ高効率にカーボンシート 5へ伝えることができ る。
[0060] 同様に、放熱孔部 7の内部にもカーボンペースト 8が充填されているので、電子部 品 2からカーボンシート 5へ伝えられた熱を、このカーボンペースト 8を介して、外部へ 確実かつ高効率に放熱することができる。更に、放熱孔部 7の開口部(図 1紙面奥側 、図 2下側)は、電子部品 2の裏面側に臨まないように配設されているので、その放熱 孔部 7 (カーボンペースト 8)力 放熱された熱により電子部品 2が影響を受ける (発熱 する)ことを抑制することができる。
[0061] ここで、受熱孔部 6に充填されたカーボンペースト 8は、図 2に示すように、その頂部
(図 2上側)が絶縁板 4の表面力 盛り上げられており、その分、カーボンペースト 8と 電子部品 2の裏面側(図 2下側)との間隙が小さくされているので、電子部品 2から力 一ボンペースト 8への熱伝導を確実かつ高効率に行うことができ、電子部品 2の冷却 効率のより一層の向上を図ることができる。
[0062] また、受熱孔部 6の開口部近傍、即ち、電子部品 2の裏面に対応する範囲には、図 1及び図 2に示すように、受熱パターン 9が形成されている。受熱パターン 9は、電子 部品 2からの熱を受熱して、受熱孔部 6のカーボンペースト 8へ伝えるためのものであ り、図 1に示すように、上面視において各受熱孔部 6に充填された複数のカーボンぺ 一スト 8を含む広い範囲にわたって面状に形成されている。各カーボンペースト 8は、 この受熱パターン 9により互いに接続されて 、る。
[0063] よって、この受熱パターン 9の面積分だけ電子部品 2に対する受熱面積を拡大する ことができ、また、その受熱パターン 9で受熱された熱は、その受熱パターン 9内で拡 散され、各カーボンペースト 8へ伝えられるので、電子部品 2から各カーボンペースト 8への熱伝導をより確実かつ高効率に行うことができ、その結果、電子部品 2の冷却 効率のより一層の向上を図ることができる。
[0064] 更に、受熱パターン 9は、上述した導電パターン 3と同様に、銅箔層 9a、めっき層お よびレジスト層 12から構成されているので、その形成を導電パターン 3の形成と同じ 工程で行うことができる。即ち、力かる受熱パターン 9を形成するための工程を別途行 う必要がないので、その分、製造コストの低減を図ることができる。
[0065] なお、受熱孔部 6に充填されたカーボンペースト 8の頂部を絶縁板 4の表面から更 に盛り上げて、電子部品 2の裏面(図 2下側)に接触させても良い。これにより、電子 部品 2からカーボンペースト 8への熱伝導をより確実かつ高効率に行うことができる。 この場合、カーボンペースト 8は、電子部品 2の裏面に直接接触していても良ぐ或い は、受熱パターン 9を介して間接的に接触していても良い。
[0066] ここで、カーボンペースト 8は、メタノールにカーボン粉末およびバインダーとしての フエノール榭脂を混合しペースト状にした後、各孔部 6, 7に充填して硬化させたもの である。この場合、カーボン粉末は、 20 m以下の粒径のものを用いることが好まし い。なお、フエノール榭脂およびメタノールに代えて、他の榭脂ゃ溶剤を使用すること は当然可能である。
[0067] カーボンシート 5は、カーボンを主体として構成された熱伝導性に優れるシート状体 であり、図 1及び図 2に示すように、絶縁板 4の内部に積層状に配設されると共に、そ の絶縁板 4のほぼ全面にわたる範囲に広がって配設されている。そのため、電子部 品 2が通電により発熱した場合には、その熱は、上述した受熱孔部 6 (カーボンぺー スト 8)を介してカーボンシート 5へ伝わり、そのカーボンシート 5における熱拡散によ つて、プリント基板 1の全域へ拡散される。
[0068] その結果、プリント基板 1における熱の分布は、従来のプリント基板のように電子部 品 2近傍のみが極端に高温となることがなぐカーボンシート 5による熱拡散によって 電子部品 2近傍の熱を四方へ移動させることにより、プリント基板 1全体としてよりなだ らかな熱の分布とすることができるので、その分、電子部品 2近傍における熱のピーク (絶対値)を抑制することができる。
[0069] また、カーボンシート 5は、その端部が絶縁板 4の周端縁(図 2右側)から露出して構 成されているので、上述した放熱孔部 7 (カーボンペースト 8)からだけでなぐかかる 露出部からも熱を外部に高効率に放熱することができる。
[0070] その結果、電子部品 2を適切に冷却することができるので、従来のプリント基板のよ うに電子部品 2を冷却するための放熱板を別途設けることを不要とすることができる。 よって、その分、プリント基板上の限られたスペースにおける電子部品 2の実装密度 を高めることができ、電子機器全体としての小型化を図ることができると共に、部品点 数を低減して、部品コストや組み立てコストを抑制することができる。
[0071] 更に、カーボンシート 5を絶縁板 4の内部(内層)のほぼ全域にわたる広い範囲に積 層状に配設することにより、いわゆるシールド効果を得ることができるので、電子部品 2から発生する電磁波が外部へ放出されたり、或いは、外来のノイズにより電子部品 2 が影響を受けたりすることを抑制することができる。
[0072] ここで、プリント基板 1には、グランドパターン 10が形成されており、このグランドパタ ーン 10には、カーボンシート 5が電気的に接続されている。よって、その分、グランド パターン 10 (グランド)の容量 (面積)を拡大することができるので、グランドの電位を 安定させることができ、その結果、ノイズによる影響を抑制して、電子部品 2の動作を 安定させることができる。なお、グランドパターン 10は、ねじ穴 4aに螺合されるねじを 介してグランドに接続される。 [0073] また、カーボンシート 5が電気的に孤立した状態となると、コンデンサとして作用して しまい、電子部品 2に悪影響を及ぼすおそれがある。特に、上述のように、シールド 効果を得るべくカーボンシート 5の面積を大きくした場合には、その問題が顕著となる 。そこで、力かるカーボンシート 5をグランドパターン 10 (グランド)へ電気的に接続す ることにより、カーボンシート 5がコンデンサとして作用することが回避して、電機部品 2へ悪影響を及ぼすことを抑制することができる。
[0074] 更に、このグランドパターン 10とカーボンシート 5との接続は、図 1及び図 2に示すよ うに、放熱孔部 7に充填されたカーボンペースト 8によって行われる。即ち、このカー ボンペースト 8は、放熱用の熱伝導経路と電気的な接続経路とを兼ねているので、力 一ボンシート 5の熱を外部へ確実かつ高効率に放熱することができるだけでなぐ力 一ボンシート 5とグランドパターン 10とを電気的に接続するための接続経路を別途設 ける必要がなぐその分、加工コストや材料コストなどを抑制することができる。
[0075] カーボンシート 5は、カーボン単体により構成されるシートであり、例えば、天然黒鉛 を酸処理後膨張させ圧延加工でシートにした膨張カーボンシートゃ榭脂シートを 20 00°C以上の高温で炭化処理したグラフアイトシートなどを使用できる。
[0076] このカーボンシート 5は、カーボン間の結合が弱いために、縁端部(外周縁部や開 口部 5aの縁端部)からカーボン片が脱落しやすい。そこで、後述するように、この第 1 実施形態のプリント基板 1を製造する場合には、カーボンシート 5は、絶縁板 4を構成 する電気絶縁性榭脂を含有する材料 (電気絶縁性材料)から形成される被覆層 15を 表面に被覆した被覆カーボンシート Aの状態で他の材料と共に圧着される。被覆層 1 5により被覆されたカーボンシート 5を用いることによって、縁端部からのカーボン片の 脱落を防止することができ、その結果として、脱落したカーボン片に起因してプリント 基板 1に生じる配線不良を防止することができる。
[0077] また、カーボンシート 5には、図 1及び図 2に示すように、上面視略円形の開口部 5a が開口形成されており、スルーホール THの表面に設けられためっき層 11との接触 が回避されており、めっき層 11を介して通電される電流力 カーボンシート 5へ流出 しな 、ように構成されて 、る。
[0078] 次に、図 3—図 5を参照して、上記の構成を有するプリント基板 1の製造方法を説明 する。なお、以下の説明では、プリント基板 1を 4層プリント基板として説明する。
[0079] 図 3は、プリント基板 1の製造方法における各工程のフローチャートである。また、図 4は、被覆カーボンシート Aを形成する各工程を模式的に示す図であり、図 5は、積 層板を形成する各工程を模式的に示す図である。
[0080] 図 3に示すように、 4層プリント基板であるプリント基板 1の製造方法では、まず、被 覆カーボンシート形成工程 (S1)により、被覆カーボンシート Aを形成する。この被覆 カーボンシート形成工程(S1)では、まず、レイアップ工程を行う(Sla)。このレイアツ プ工程(Sla)は、カーボンシート 5の両面に、それぞれ、エポキシ榭脂をガラスクロス に含浸させて半硬化状態とさせたプリプレダ Pと銅箔層 Cuとを積層する工程である( 図 4 (a)参照)。
[0081] レイアップ工程(Sla)の後、積層プレス工程を行う (Slb) 0積層プレス工程(Sib) は、レイアップ工程(Sla)により積層されたカーボンシート 5、プリプレダ P、銅箔層 C uを、真空状態で加熱圧着する工程である。加熱圧着により、プリプレダ Pを硬化させ て、カーボンシート 5を被覆する被覆層 15が形成される(図 4 (b)参照)。また、積層プ レス工程(Sib)によりプリプレダ Pが硬化されると、レイアップ工程(Sla)により積層さ れた各層が一体化されて一枚の板状体が形成される。
[0082] 積層プレス工程 (Sib)の後、銅箔層除去工程を行う(Sic)。銅箔層除去工程 (S1 c)は、積層プレス工程 (Sib)により得られた板状体(図 4 (b)参照)から、銅箔層 Cu をエッチングにより除去する工程であり、その結果として、カーボンシート 5が被覆層 1 5により被覆された被覆カーボンシート Aが得られる(図 4 (c)参照)。
[0083] 上記した通り、カーボンシート 5はカーボン単体により構成されるために、カーボン 間の結合が弱ぐ縁端部 (外周縁部や開口部 5aの縁端部)からカーボン片が脱落し やすい。しかし、被覆カーボンシート Aは、カーボンシート 5が被覆層 15により被覆さ れているので、カーボンシート 5の縁端部が補強されており、その結果として、カーボ ン片の脱落を防止することができるのである。
[0084] また、この被覆カーボンシート形成工程(S1)では、取り扱いが容易であり、エッチ ングにより容易に除去可能な銅箔層 Cuを用いるので、被覆カーボンシート Aを容易 に作製することができる。 [0085] 被覆カーボンシート形成工程 (SI) (銅箔層除去工程 (Sic) )の後、孔開け工程を 行う(S3)。この孔開け工程 (S3)では、被覆カーボンシート形成工程 (S1)により得ら れた被覆カーボンシート Aに、プリント基板 1に設けられるスルーホール THの位置に 応じて、そのスルーホール THの外周より大きな外周の孔(開口部 5a)を穿設するェ 程である(図 4 (d)参照)。
[0086] この孔開け工程(S3)〖こより、被覆カーボンシート A (カーボンシート 5)にスルーホ ール THの外周より大きな外周を有する孔が穿設されることによって、めっき層 11から カーボンシート 5への電流の流出が防止されたプリント基板 1を得ることができる。
[0087] また、本実施形態におけるプリント基板 1の製造方法では、図 3に示すように、上記 のような被覆カーボンシート形成工程 (S1)により被覆カーボンシート Aを形成する一 方で、内層の導電パターンを両面に備える内層コア材 1 (図 5参照)を形成する内層コ ァ材形成工程を行う(S2)。
[0088] この内層コア材形成工程(S2)では、プリプレダ Pと同様のプリプレダを両側力 銅 箔で挟み、真空下で加熱圧着してプリプレダを硬化させて内層コア材用の銅張り基 板を得、次いで、得られた内層コア材用の銅張り基板をエッチングして内層の導電パ ターンを形成することにより、内層コア材 Iを形成する。
[0089] 次に、孔開け工程 (S3)により開口部 5aが穿設された被覆カーボンシート Aと、内層 コア材形成工程 (S2)により形成された内層コア材 Iとを用い、積層板形成工程 (S4) により、銅張り積層板 (請求の範囲における「プリント基板用積層板」に相当する)を形 成する。
[0090] この積層板形成工程 (S4)では、まず、レイアップ工程を行う(S4a)。このレイアップ 工程 (S4a)では、孔開け工程 (S3)により開口部 5aが穿設された被覆カーボンシート Aと、内層コア材形成工程により形成された内層コア材 Iと、プリプレダ Pと、銅箔層 3a とが、図 5 (a)に示す順序で積層される。
[0091] レイアップ工程(S4a)の後、積層プレス工程を行う(S4b)。この積層プレス工程(S 4b)では、レイアップ工程(S4a)により積層された被覆カーボンシート A、内層コア材 I、プリプレダ P、銅箔層 3aを、真空状態で加熱圧着する工程である。加熱圧着により プリプレダ Pが硬化され、それによつて、積層された各層が一体化されて一枚の銅張 り積層板が形成される(図 5 (b)参照)。なお、積層プレス工程 (S4b)にお ヽて配置さ れたプリプレダ Pと、被覆カーボンシート Aの被覆層 15とから、絶縁板 4が形成される
[0092] 積層板形成工程 (S4)の後、孔開け工程が行われる(S5)。この孔開け工程 (S5) では、積層板形成工程 (S4)により形成された銅張り積層板の所定位置に、後述する 外層回路形成工程 (S8)により形成される外層の導電パターン 3と内層コア材 Iに設 けられた導電パターンとを電気的に接続するためのスルーホール TH、並びに、受熱 孔部 6及び放熱孔部 7が所定の位置に穿設される。
[0093] 孔開け工程 (S5)の後、カーボンペースト充填工程 (S6)を行い、受熱孔部 6及び 放熱孔部 7にカーボンペースト 8を充填して硬化させる。これによつて、受熱孔部 6及 び放熱孔部 7とカーボンシート 5と力 カーボンペースト 8により連結される。このカー ボンペースト充填工程 (S6)により、受熱孔部 6及び放熱孔部 7がカーボンペースト 8 により連結されたことによって、電子部品 2から発生される熱がカーボンシート 5へ効 率的に伝えられるので、放熱性に優れたプリント基板 1を得ることができる。
[0094] 次!、で、めっき工程 (S7)を行 、、銅箔層 3a及びスルーホール THに、それぞれ、 めっき層 3b及びめつき層 11を形成する。めっき工程(S6)の後、銅箔層 3a及びめつ き層 3bをエッチングすることにより、外層の導電パターン 3を形成する外層回路形成 工程 (S8)を行う。
[0095] 外層回路形成工程 (S8)の後、レジストインク塗布工程 (S 9)を行う。レジストインク 塗布工程 (S9)は、外層回路形成工程 (S8)により形成された外層の導電パターン3 上にレジストインクを塗布することにより、導電パターン 3 (銅箔層 3a及びめつき層 3b) の表面にレジスト層 12を被覆する工程である。
[0096] このレジストインク塗布工程(S9)によりレジスト層 12が導電パターン 3上に被覆され ると、 4層プリント基板であるプリント基板 1が得られる。このプリント基板 1は、内層に 配設されたカーボンシート 5の存在により、上記した通り、優れた放熱性を有する。
[0097] 次に、図 6を参照して、第 2実施形態のプリント基板 1について説明する。図 6は、第 2実施形態のプリント基板に用いられるカーボンシート 50を説明する図である。なお、 前記した第 1実施形態と同一の部分には同一の符号を付して、その説明は省略する [0098] 上記したように、第 1実施形態のプリント基板 1では、カーボンシート 5として、カーボ ン単体により構成されるシートを用いた。これに対し、第 2実施形態のプリント基板で は、カーボンシート 5に換えて、後述するカーボンシート 50を用いる。
[0099] カーボンシート 50は、図 6に示すように、銅線 50bをメリヤス編みによって編成した 網状体 (銅ニット)の空隙に、カーボン含有材料 50aを充填して圧延加工して得られ たものである。
[0100] このカーボンシート 50は、カーボン間の結合の弱さが銅線 50bによって補強されて いるために、カーボン単体力も構成されるカーボンシート 5に比べてカーボン片の脱 落をより効果的に防止できる。よって、そのようなカーボンシート 50を用いることにより 、カーボンシート 50の表面に被覆層 15を被覆して得られた被覆カーボンシートから のカーボン片の脱落はより効果的に抑制されることになる。
[0101] その結果、積層板形成工程 (S4)にお 、て、カーボンシート 50からカーボン片が脱 落することがより効果的に防止されるので、配線不良を有するプリント基板 1の発生を より効果的に防止することができる。
[0102] 次に、図 7を参照して第 3実施形態について説明する。図 7は、第 3実施形態にお けるプリント基板 100の側断面図である。第 1実施形態のプリント基板 1では、カーボ ンシート 5が絶縁板 4の内部に積層状に配設されていたのに対し、第 3実施形態のプ リント基板 100では、カーボンシート 105が絶縁板 4の裏側表面(図 7下側の面)に積 層状に配設されている。なお、前記した第 1実施形態と同一の部分には同一の符号 を付して、その説明は省略する。
[0103] 図 3に示すように、第 3実施形態における受熱孔部 6は、絶縁板 4に貫通形成 (穿設 )されており、その一端側(図 7下側)が後述するカーボンシート 105に接続されてい る。なお、受熱孔部 6の内部には、第 1実施形態と同様に、カーボンペースト 8が充填 されており、電子部品 2からカーボンシート 5への熱伝導を確実かつ高効率に行うこと ができるようにされている。
[0104] また、カーボンシート 105は、図 7に示すように、絶縁板 4の裏側表面(図 7下側の面 )全域において積層状に配設されており、第 1実施形態の場合と比較して、外部への 露出面積が極めて大きくされている。よって、電子部品 2が通電により発熱した場合 には、受熱孔部 6 (カーボンペースト 8)を介してカーボンシート 105に伝えられた熱を 、カーボンシート 105における熱拡散によってプリント基板 1の全域へ拡散しつつ、そ のカーボンシート 105から外部へ確実かつ高効率に放熱することができる。
[0105] なお、この第 3実施形態では、その表面が電気絶縁性材料から形成される被覆層 ( 第 1実施形態における被覆層 15)によって被覆されていないカーボンシート 105を用 いた力 電気絶縁性材料によって予め被覆されたカーボンシート 105を用いてもよい 。電気絶縁性材料によって予め被覆されたカーボンシート 105を用いることによって 、上記した第 1実施形態と同様に、縁端部力 のカーボン片の脱落を防止し得、その 結果として、脱落したカーボン片に起因してプリント基板 1に生じる配線不良を防止 することができる。
[0106] なお、請求の範囲第 12項記載のプリント基板用積層板形成工程としては、図 3のフ ローチャートにおける積層板形成工程 (S4)が該当する。また、請求の範囲第 13項 記載の被覆カーボン含有部材形成工程としては、図 3のフローチャートにおける被覆 カーボンシート形成工程 (S1)が該当する。
[0107] また、請求の範囲第 14項記載の積層工程としては、図 3のフローチャートにおける レイアップ工程 (Sla)が該当し、請求の範囲第 14項記載の圧着工程としては、図 3 のフローチャートにおける積層プレス工程 (Sib)が該当し、請求の範囲第 14項記載 の金属板除去工程としては、図 3のフローチャートにおける銅箔層除去工程 (Sic)が 該当する。
[0108] また、請求の範囲第 15項記載の被覆カーボン含有部材穿孔工程としては、図 3の フローチャートにおける孔開け工程 (S3)が該当する。また、請求の範囲第 16項記載 の外層配線パターン形成工程としては、図 3のフローチャートにおける外層回路形成 工程 (S8)が該当し、請求の範囲第 16項記載のソルダレジスト膜形成工程としては、 図 3のフローチャートにおけるレジストインク塗布工程(S9)が該当する。
[0109] また、請求の範囲第 17項記載の導電用孔穿孔工程としては、図 3のフローチャート における孔開け工程 (S5)が該当し、請求の範囲第 17項記載のめっき工程としては 、図 3のフローチャートにおけるめっき工程(S7)が該当する。 [0110] また、請求の範囲第 18項記載の放熱用孔穿孔工程としては、図 3のフローチャート における孔開け工程 (S5)が該当し、請求の範囲第 18項記載の放熱性材料充填ェ 程としては、図 3のフローチャートにおけるカーボンペースト充填工程(S6)が該当す る。
[0111] 以上、実施形態に基づき本発明を説明したが、本発明は上述した実施形態に何ら 限定されるものではなぐ本発明の趣旨を逸脱しない範囲内で種々の改良変更が可 能であることは容易に推察できるものである。
[0112] 例えば、第 1実施形態のプリント基板 1では、図 2に示すように、受熱孔部 6と放熱孔 部 7とが互いに連通された一本の貫通孔として構成される場合を説明した。これは、 これら両孔部 6, 7を例えばドリルによる一度の加工で同時に形成することができため 、両孔部 6, 7をそれぞれ別々に加工する必要がなぐ加工工程が簡素化されるので 、その分、加工コストを低減することができるからである。
[0113] 但し、必ずしもこれに限られるわけではなぐ受熱孔部 6及び放熱孔部 7をカーボン シート 5までの深さの孔部としてそれぞれ異なる位置に独立に凹設することは当然可 能である。例えば、絶縁板 4の上側表面(図 2上側面)に凹設される受熱孔部 6の凹 設数に対し、絶縁板 4の下側表面(図 2下側面)に凹設される放熱孔部 7の凹設数が より多くなるように構成しても良い。これにより、カーボンシート 5から外部への熱の放 熱をより高効率に行うことができる。なお、この場合には、放熱孔部 7を受熱孔部 6と 同じ側の面(図 2上側面)に凹設しても良い。
[0114] また、第 1実施形態のプリント基板 1では、カーボンシート 5の端部の一部が絶縁板 4の周端縁 (図 2右側)から露出して構成される場合を説明したが、必ずしもこれに限 られるわけではなぐカーボンシート 5の端部全域が絶縁板 4の周端縁から露出され ないように構成することは当然可能である。これにより、例えば、絶縁板 4の周端縁に 端面端子 (導電パターン)を形成する場合に、カーボンシート 5との接触 (導通)を考 慮する必要がなくなり、好適である。
[0115] また、第 1実施形態のプリント基板 1では、絶縁板 4の電子部品 2が実装される側と 反対側の表面 (図 2下側)に放熱孔部 7を設ける場合を説明したが、かかる実装面と 反対側の表面に放熱孔部 7を設けないようにしても良い。即ち、放熱孔部 7を設けな いか、或いは、放熱孔部 7を電子部品 2が実装される側と同じ側の表面(図 2上側面) のみに設けるのである。これにより、かかる実装面と反対側の表面(図 2下側面)が筐 体などにより囲まれている場合には、放熱孔部 7から放熱された熱が筐体との対向面 間にこもってしまうことを防止することができる。
[0116] また、上記各実施形態のプリント基板 1, 100では、いずれも受熱孔部 6及び放熱 孔部 7を備えて構成される場合を説明したが、必ずしもこれに限られるわけではなぐ これら受熱孔部 6及び放熱孔部 7のいずれか一方又は両方を省略して構成すること は当然可能である。
[0117] また、上記各実施形態のプリント基板 1, 100では、受熱孔部 6及び放熱孔部 7に力 一ボンペースト 8が充填される場合を説明した力 必ずしもこれに限られるわけではな ぐカーボンペースト 8に代えて金属ペーストを充填することは当然可能である。なお 、金属ペーストとしては、例えば、銅や銀などを用いたペーストが例示される。
[0118] ここで、 1枚のプリント基板 1, 100に受熱孔部 6又は放熱孔部 7が複数ある場合に は、それらすベての孔部 6, 7に同じ種類のペースト(金属ペースト又はカーボンぺー スト 8)を充填する必要は必ずしもなぐ 1枚のプリント基板 1, 100に金属ペーストと力 一ボンペースト 8との両ペーストを使用することは当然可能である。
[0119] また、第 1実施形態において、プリプレダ Pに含まれる電気絶縁性榭脂としてェポキ シ榭脂を用いたが、これは電気絶縁性榭脂がエポキシ榭脂に限定されることを意味 するものではない。即ち、エポキシ榭脂に換えて、フエノール榭脂ゃ変形ポリイミドゃ ポリイミドなどの電気絶縁性榭脂を使用してプリプレダ Pを構成することは当然可能で ある。
[0120] また、上記第 1実施形態では、被覆カーボンシート形成工程 (S1)及び積層板形成 工程 (S4)においても、エポキシ榭脂を含むプリプレダ Pを使用した力 被覆層 15を 形成するためのプリプレダ Pに含まれる電気絶縁性榭脂と、積層板を形成するための プリプレダ Pに含まれる電気絶縁性榭脂とが異なる榭脂であってもよい。
[0121] また、上記第 1実施形態では、カーボンシート 5としてカーボン単体により構成され るシートを用いた力 必ずしもカーボン単体のみ力 構成されるシートに限定されるも のではなぐ他の材料を混合させて構成されたシートを用いることは当然推察可能で ある。即ち、カーボンシート 5は、少なくともカーボンを含むものであればよい。
[0122] 同様に、第 2実施形態において使用したカーボンシート 50において、銅線 50bから 編成される網状体を充填するカーボン含有材料 50aは、カーボン単体により構成さ れるものであってもよ 、し、カーボンと他の材料との混合物であってもよ 、。
[0123] また、上記第 2実施形態において使用したカーボンシート 50では、銅線 50bから編 成された網状体にカーボン含有材料 50aを充填するように構成したが、網状体を形 成する部材は、銅線 50bに限定されるものではなぐ熱伝導性を有する材料であれ ば置換し得ることは当然推察可能である。例えば、銅線 50bに換えて、銀線などの金 属線を用いてもよい。また、網状体の網目の形状は、図 6に示したようなメリヤス編み 形状に限定されるものではなぐ他の網目形状とすることは当然推測可能である。
[0124] また、上記第 1実施形態のプリント基板 1の製造方法として、 4層プリント基板の製造 方法を例示したが、これに限定されるものではなぐ片面基板、両面基板、 4層以外 の多層基板の製造方法に適用可能であることは当然推測可能である。
[0125] また、上記第 1及び第 2実施形態のプリント基板 1では、カーボンシート 5又はカー ボンシート 50が、各層の導電パターン (表層の導電パターン 3 (銅箔 3a)及び内層コ ァ材 Iの導電パターン)の間に絶縁板 4を介して一層ずっ配設される場合(図 2又は 図 5 (b)参照)について説明した力 カーボンシート 5又はカーボンシート 50の配設位 置はこれに限定されるものではなぐカーボンシート 5又はカーボンシート 50力 導電 パターン (表層の導電パターン 3 (銅箔 3a)及び内層コア材 Iの導電パターン)力も絶 縁板 4を介して離間された位置に少なくとも一層配設されていればよい。
[0126] 例えば、図 5 (b)に示した 4層プリント基板用の銅張り積層板において、 2層設けら れたカーボンシート 5 (被覆カーボンシート A)のうち、一方のカーボンシート 5 (被覆力 一ボンシート A)を非設置とする構成であってもよい。また、片面基板において、カー ボンシート 5又はカーボンシート 50を、導電パターンが設けられていない側の表面に 設けるような構成であってもよ 、。
[0127] また、上記第 1及び第 2実施形態のプリント基板 1では、カーボンシート 5又はカー ボンシート 50が、絶縁板 4を介して各層の導電パターン (表層の導電パターン 3 (銅 箔 3a)及び内層コア材 Iの導電パターン)の間に一層ずっ配設される場合(図 2又は 図 5 (b)参照)について説明したが、これに限定されるものではなぐ各層の導電バタ ーン (表層の導電パターン 3 (銅箔 3a)及び内層コア材 Iの導電パターン)の間に絶縁 板 4を介して二層以上のカーボンシート 5, 50が積層状に配設されていても良ぐ或 いは、カーボンシート 5, 50が組み合わされて積層状に配設されていても良い。 また、上記各実施形態のプリント基板 1, 100、即ち、カーボンシート 5, 50, 105を 内部又は表面に備えるプリント基板 1, 100を、片面基板、両面基板、多層基板に適 用可能であることは容易に推察可能である。

Claims

請求の範囲
[1] 電気絶縁性材料から構成される絶縁材部と、その絶縁材部の少なくとも一方の表 面、又は、その絶縁材部の少なくとも一方の表面及び内部に形成される配線パター ンとを備え、 1又は複数の電子部品が実装されるプリント基板において、
カーボンを主体として構成されるカーボン層部を備え、
そのカーボン層部が前記絶縁材部の内部または表面に積層状に配設されているこ とを特徴とするプリント基板。
[2] 前記絶縁材部の厚み方向へ凹設または穿設され、その絶縁材部の内部または表 面に積層状に配設された前記カーボン層部に接続される受熱孔部を備えており、 その受熱孔部は、その開口部が前記電子部品の裏面側に臨むように構成されると 共に、その受熱孔部の内部には、金属ペースト又はカーボンペーストが充填されて いることを特徴とする請求の範囲第 1項記載のプリント基板。
[3] 前記絶縁材部の厚み方向へ凹設または穿設され、その絶縁材部の内部または表 面に積層状に配設された前記カーボン層部に接続される放熱孔部を備えており、 その放熱孔部は、その開口部を前記電子部品の実装面と反対側の表面に配設す るか又は前記電子部品の実装面と同じ側の表面であって上面視において電子部品 と重ならない位置に配設することにより、その開口部が前記電子部品の裏面側に臨 まないように構成されると共に、その放熱孔部の内部には、金属ペースト又はカーボ ンペーストが充填されていることを特徴とする請求の範囲第 1又は第 2項に記載のプ リント基板。
[4] 前記カーボン層部が前記絶縁材部の内部に積層状に配設されている場合には、 そのカーボン層部に接続される前記受熱孔部と放熱孔部とが、互いに連通された一 本の貫通孔として構成されていることを特徴とする請求の範囲第 3項のプリント基板。
[5] 前記受熱孔部に充填された金属ペースト又はカーボンペーストは、その頂部が前 記絶縁材部の表面から盛り上げられており、前記電子部品の裏面側との間隙が小さ くされていることを特徴とする請求の範囲第 2から第 4項のいずれかに記載のプリント 基板。
[6] 前記受熱孔部に充填された金属ペースト又はカーボンペーストは、その頂部が前 記配線パターンと略同等の高さ又は若干高くなるように前記絶縁材部の表面力も盛 り上げられており、前記電子部品の裏面側に直接または間接的に接触可能とされて いることを特徴とする請求の範囲第 2から第 4項のいずれかに記載のプリント基板。
[7] 前記絶縁材部の表面において前記電子部品の裏面側に臨むように形成され、前 記受熱孔部に充填された複数の金属ペースト又はカーボンペーストに接続される受 熱パターンを備え、
その受熱パターンは、上面視にお!、て前記複数の各金属ペースト又はカーボンぺ 一ストを含む範囲にわたって略面状に形成されていることを特徴とする請求の範囲第
2から第 6項のいずれかに記載のプリント基板。
[8] 前記絶縁材部の内部に積層状に配設された前記カーボン層部は、少なくともその 一部が前記絶縁材部の周端縁から露出して構成されていることを特徴とする請求の 範囲第 1から第 7項のいずれかに記載のプリント基板。
[9] 前記配線パターンは、グランドに接続されるグランドパターンを備えており、
そのグランドパターンと前記カーボン層部とが互いに電気的に接続されていることを 特徴とする請求の範囲第 1から第 8項のいずれかに記載のプリント基板。
[10] 前記放熱孔部の一部又は全部は、前記グランドパターンを貫通しつつ前記絶縁材 部の厚み方向へ凹設または穿設されており、
その放熱孔部に充填された金属ペースト又はカーボンペーストによって前記グラン ドパターンとカーボン層部とが互いに電気的に接続されていることを特徴とする請求 の範囲第 9項記載のプリント基板。
[11] 前記カーボン層部は、前記絶縁材部の内部に前記配線パターンが形成される場合 にはその配線パターンの近傍を除き、前記絶縁材部の内部または表面のほぼ全域 にわたる範囲に積層状に配設されていることを特徴とする請求の範囲第 1から第 10 項の 、ずれかに記載のプリント基板。
[12] 電気絶縁性材料カゝら形成される板状の絶縁材部と、その絶縁材部の少なくとも一 方の表面に配設される配線パターン層、又は、その絶縁材部の少なくとも一方の表 面および内部に配設される配線パターン層と、カーボンを主体として構成され、前記 絶縁材部を介することにより前記配線パターン層と離間されて積層状に配設される少 なくとも 1層の板状のカーボン含有部材とを備えたプリント基板の製造方法において 前記絶縁材部を形成する電気絶縁性材料により予め被覆された前記板状のカー ボン含有部材である被覆カーボン含有部材と、前記配線パターン層又は配線パター ンを形成するための導体層との間に、前記絶縁材部を形成する電気絶縁性材料を 介在させて圧着してプリント基板用積層板を形成するプリント基板用積層板形成ェ 程を備えていることを特徴とするプリント基板の製造方法。
[13] 前記プリント基板用積層板形成工程に先立って、前記絶縁材部を形成する電気絶 縁性材料を前記板状のカーボン含有部材の両面に圧着することにより、前記被覆力 一ボン含有部材を形成する被覆カーボン含有部材形成工程を備えていることを特徴 とする請求の範囲第 12項記載のプリント基板の製造方法。
[14] 前記被覆カーボン含有部材形成工程は、
前記板状のカーボン含有部材の両面に、前記絶縁材部を形成する電気絶縁性材 料を積層すると共に、その電気絶縁性材料の外側にエッチング除去可能な金属から 構成される金属板を積層する積層工程と、
その積層工程により積層された前記カーボン含有部材と前記電気絶縁性材料と前 記金属板とを圧着して積層体を得る圧着工程と、
その圧着工程による圧着により得られた積層板から、エッチングにより前記金属板 を除去して前記被覆カーボン含有部材を得る金属板除去工程とを備えていることを 特徴とする請求の範囲第 13項記載のプリント基板の製造方法。
[15] 前記プリント基板は、前記絶縁材部の介在によって互いに絶縁されて配置された前 記配線パターン層を電気的に接続するための導電用孔を備えており、
前記プリント基板用積層板形成工程に先立って、前記被覆カーボン含有部材形成 工程により得られた被覆カーボン含有部材に対し、前記導電用孔に対応する位置に 、その導電用孔の外周より大きい外周の孔を穿設する被覆カーボン含有部材穿孔ェ 程を備えていることを特徴とする請求の範囲第 13又は 14項記載のプリント基板の製 造方法。
[16] 前記プリント基板用積層板形成工程により形成されたプリント基板用積層板におけ る前記絶縁材部の表面に設けられた前記導体層から配線パターンを形成し、配線パ ターン層とする外層配線パターン形成工程と、
その外層配線パターン形成工程により形成された配線パターン上にソルダレジスト 膜を形成して前記プリント基板を得るソルダレジスト膜形成工程とを備えていることを 特徴とする請求の範囲第 12から第 15項のいずれかに記載のプリント基板の製造方 法。
[17] 前記プリント基板は、前記絶縁材部の介在によって互いに絶縁されて配置された前 記配線パターン層を電気的に接続するための導電用孔を備えており、
前記プリント基板用積層板形成工程により形成されたプリント基板用積層板に、前 記導電用孔を穿設する導電用孔穿孔工程と、
その導電用孔穿孔工程により穿設された導電用孔に、前記絶縁材部の介在によつ て互いに絶縁された前記配線パターン層を電気的に接続するめつきを施す通電用 孔めっき工程とを備えていることを特徴とする請求の範囲第 16項記載のプリント基板 の製造方法。
[18] 前記プリント基板は、前記絶縁材部の表面に設けられ、その上に 1又は複数の電子 部品が実装される前記配線パターン層と、前記カーボン含有部材とを連結するため の放熱用孔を備えており、
前記プリント基板用積層板形成工程により形成されたプリント基板用積層板に、前 記放熱用孔を穿設する放熱用孔穿孔工程と、
その放熱用孔穿孔工程により穿設された放熱用孔に放熱性材料を充填する放熱 性材料充填工程とを備えていることを特徴とする請求の範囲第 16又は第 17項記載 のプリント基板の製造方法。
[19] 前記板状のカーボン含有部材は、熱伝導性材料から編成された網状体の空隙に カーボンを主体とする材料を充填したものであることを特徴とする請求の範囲第 12か ら第 18項のいずれかに記載のプリント基板の製造方法。
PCT/JP2005/003304 2004-12-08 2005-02-28 プリント基板及びプリント基板の製造方法 WO2006061916A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05719632A EP1821586B1 (en) 2004-12-08 2005-02-28 Printed board and printed board manufacturing method
US11/792,611 US7479013B2 (en) 2004-12-08 2005-02-28 Printed board and manufacturing method thereof
DE602005017183T DE602005017183D1 (de) 2004-12-08 2005-02-28 Leiterplatte und leiterplatten-herstellungsverfahren
US12/157,455 US20080282538A1 (en) 2004-12-08 2008-06-11 Print board and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004355203A JP4316483B2 (ja) 2004-12-08 2004-12-08 プリント基板の製造方法及びプリント基板
JP2004-355203 2004-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/157,455 Continuation US20080282538A1 (en) 2004-12-08 2008-06-11 Print board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2006061916A1 true WO2006061916A1 (ja) 2006-06-15

Family

ID=36577746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003304 WO2006061916A1 (ja) 2004-12-08 2005-02-28 プリント基板及びプリント基板の製造方法

Country Status (7)

Country Link
US (2) US7479013B2 (ja)
EP (1) EP1821586B1 (ja)
JP (1) JP4316483B2 (ja)
KR (1) KR100912051B1 (ja)
CN (1) CN101103654A (ja)
DE (1) DE602005017183D1 (ja)
WO (1) WO2006061916A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047899A1 (en) 2000-12-12 2002-06-20 Shri Diksha Corporation Lightweight circuit board with conductive constraining cores
USRE45637E1 (en) 2005-08-29 2015-07-28 Stablcor Technology, Inc. Processes for manufacturing printed wiring boards
CN103298243B (zh) 2006-07-14 2016-05-11 斯塔布科尔技术公司 具有构成电路一部分的核心层的增层印刷线路板衬底
US7738249B2 (en) * 2007-10-25 2010-06-15 Endicott Interconnect Technologies, Inc. Circuitized substrate with internal cooling structure and electrical assembly utilizing same
JP5076196B2 (ja) * 2007-10-29 2012-11-21 三菱電機株式会社 プリント配線板およびその製造方法
JP5262188B2 (ja) * 2008-02-29 2013-08-14 富士通株式会社 基板
JP5581218B2 (ja) * 2008-12-25 2014-08-27 三菱電機株式会社 プリント配線板の製造方法
US7787249B2 (en) * 2009-02-03 2010-08-31 Honeywell International Inc. Systems and methods for printed board assembly isolated heat exchange
JP2011166029A (ja) * 2010-02-12 2011-08-25 Panasonic Corp 配線基板、それを用いた電子装置、及び配線基板の製造方法
CN102036472A (zh) * 2011-01-05 2011-04-27 倪新军 一种微波高频金属基电路板
US8569631B2 (en) * 2011-05-05 2013-10-29 Tangitek, Llc Noise dampening energy efficient circuit board and method for constructing and using same
US8491315B1 (en) * 2011-11-29 2013-07-23 Plastronics Socket Partners, Ltd. Micro via adapter socket
JP5440650B2 (ja) * 2012-05-07 2014-03-12 富士通株式会社 基板の製造方法
KR101399980B1 (ko) * 2012-12-28 2014-05-29 하이쎌(주) 탄소 섬유 기판을 이용한 led용 방열 플렉서블 모듈 및 이의 제조 방법
KR101391187B1 (ko) * 2013-01-24 2014-05-07 하이쎌(주) 방열특성이 향상된 플렉서블 모듈 및 이의 제조 방법
US9332632B2 (en) 2014-08-20 2016-05-03 Stablcor Technology, Inc. Graphene-based thermal management cores and systems and methods for constructing printed wiring boards
KR102253473B1 (ko) * 2014-09-30 2021-05-18 삼성전기주식회사 회로기판
KR102374256B1 (ko) * 2015-02-23 2022-03-15 삼성전기주식회사 회로기판 및 회로기판 제조방법
WO2016143688A1 (ja) * 2015-03-06 2016-09-15 京セラ株式会社 巻回体および基板用シート
KR102411999B1 (ko) * 2015-04-08 2022-06-22 삼성전기주식회사 회로기판
KR102538908B1 (ko) * 2015-09-25 2023-06-01 삼성전기주식회사 인쇄회로기판 및 그 제조방법
US10736222B2 (en) 2016-06-29 2020-08-04 AT&S Austria Technologies & Systemtechnik Aktiengesellschaft Cooling component carrier material by carbon structure within dielectric shell
KR102149794B1 (ko) * 2018-11-26 2020-08-31 삼성전기주식회사 인쇄회로기판 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008186A (ja) * 2001-06-21 2003-01-10 Sony Corp 半導体装置
JP2004228410A (ja) * 2003-01-24 2004-08-12 Kyocera Corp 配線基板
JP2004289006A (ja) * 2003-03-24 2004-10-14 Mitsubishi Electric Corp カーボンアルミ芯基板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812792A (en) * 1983-12-22 1989-03-14 Trw Inc. High-frequency multilayer printed circuit board
US4859189A (en) * 1987-09-25 1989-08-22 Minnesota Mining And Manufacturing Company Multipurpose socket
US5261155A (en) * 1991-08-12 1993-11-16 International Business Machines Corporation Method for bonding flexible circuit to circuitized substrate to provide electrical connection therebetween using different solders
GB9225260D0 (en) 1992-12-03 1993-01-27 Int Computers Ltd Cooling electronic circuit assemblies
JPH07235781A (ja) 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd プリント基板取付け装置
JPH0823183A (ja) 1994-07-06 1996-01-23 Matsushita Electric Ind Co Ltd 部材の冷却構造
US5929375A (en) 1996-05-10 1999-07-27 Ford Motor Company EMI protection and CTE control of three-dimensional circuitized substrates
JPH1140902A (ja) 1997-07-18 1999-02-12 Cmk Corp プリント配線板及びその製造方法
US6257329B1 (en) * 1998-08-17 2001-07-10 Alfiero Balzano Thermal management system
JP4365061B2 (ja) 1999-06-21 2009-11-18 三菱電機株式会社 回路形成基板製造方法及び回路形成基板
JP2004179257A (ja) 2002-11-25 2004-06-24 Alps Electric Co Ltd 放熱構造を備えた半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008186A (ja) * 2001-06-21 2003-01-10 Sony Corp 半導体装置
JP2004228410A (ja) * 2003-01-24 2004-08-12 Kyocera Corp 配線基板
JP2004289006A (ja) * 2003-03-24 2004-10-14 Mitsubishi Electric Corp カーボンアルミ芯基板

Also Published As

Publication number Publication date
US20080076276A1 (en) 2008-03-27
EP1821586B1 (en) 2009-10-14
KR20070085917A (ko) 2007-08-27
CN101103654A (zh) 2008-01-09
EP1821586A4 (en) 2008-01-02
US20080282538A1 (en) 2008-11-20
DE602005017183D1 (de) 2009-11-26
US7479013B2 (en) 2009-01-20
JP4316483B2 (ja) 2009-08-19
JP2006165299A (ja) 2006-06-22
KR100912051B1 (ko) 2009-08-12
EP1821586A1 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
WO2006061916A1 (ja) プリント基板及びプリント基板の製造方法
JP2006165299A5 (ja)
JP5129645B2 (ja) 部品内蔵配線基板の製造方法
JP3311899B2 (ja) 回路基板及びその製造方法
JP3588230B2 (ja) 配線基板の製造方法
WO2004068923A1 (ja) メタルコア多層プリント配線板
EP1916885B1 (en) Printed circuit board and electronic component device
JP2006332449A (ja) 多層プリント配線板及びその製造方法
CN111132476A (zh) 双面线路散热基板的制备方法
JP3214696B2 (ja) パワーモジュール及びその製造方法
JP2010062199A (ja) 回路基板
JP2004031732A (ja) 積層樹脂配線基板及びその製造方法
JP2008198747A (ja) プリント基板及びプリント基板の製造方法
JP2500308B2 (ja) 多層印刷配線板の製造方法
CN108353498B (zh) 基板及基板的制造方法
JP3862454B2 (ja) 金属ベース多層回路基板
KR20080030366A (ko) 다층복합 열전도성 알루미늄 인쇄회로기판 및 이의제조방법
JP4012022B2 (ja) 多層配線基板、多層配線基板用基材およびその製造方法
JP2006128226A (ja) 電気部品内蔵多層プリント配線板及びその製造方法
JP2010123830A (ja) プリント配線板とその製造方法
JP4591181B2 (ja) プリント配線板
KR20100021810A (ko) 전자부품 내장형 인쇄회로기판 및 그 제조방법
JP2004327482A (ja) 多層配線板、多層基板用基材およびその製造方法
US11564313B2 (en) Wiring body and method for manufacturing same
JP2004289006A (ja) カーボンアルミ芯基板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005719632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580042316.6

Country of ref document: CN

Ref document number: 1020077012939

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005719632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11792611

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11792611

Country of ref document: US