WO2006059784A9 - 高強度ばね用鋼および鋼線 - Google Patents

高強度ばね用鋼および鋼線

Info

Publication number
WO2006059784A9
WO2006059784A9 PCT/JP2005/022418 JP2005022418W WO2006059784A9 WO 2006059784 A9 WO2006059784 A9 WO 2006059784A9 JP 2005022418 W JP2005022418 W JP 2005022418W WO 2006059784 A9 WO2006059784 A9 WO 2006059784A9
Authority
WO
WIPO (PCT)
Prior art keywords
less
carbides
steel
strength
carbide
Prior art date
Application number
PCT/JP2005/022418
Other languages
English (en)
French (fr)
Other versions
WO2006059784A1 (ja
Inventor
Masayuki Hashimura
Hiroshi Hagiwara
Takanori Miyaki
Takayuki Kisu
Kouichi Yamazaki
Original Assignee
Nippon Steel Corp
Masayuki Hashimura
Hiroshi Hagiwara
Takanori Miyaki
Takayuki Kisu
Kouichi Yamazaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Masayuki Hashimura, Hiroshi Hagiwara, Takanori Miyaki, Takayuki Kisu, Kouichi Yamazaki filed Critical Nippon Steel Corp
Priority to BRPI0514009A priority Critical patent/BRPI0514009B1/pt
Priority to US11/630,222 priority patent/US10131973B2/en
Priority to EP05814388.4A priority patent/EP1820869B1/en
Publication of WO2006059784A1 publication Critical patent/WO2006059784A1/ja
Publication of WO2006059784A9 publication Critical patent/WO2006059784A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention relates to spring steel used for engine valve springs and suspension springs, and is particularly cold-coiled and has high strength and high toughness.
  • the present invention relates to spring steel and steel wire.
  • nitriding and shot peening are known to increase the surface hardness and dramatically improve durability against spring fatigue, but the sag characteristics of springs are not determined by the surface hardness. The strength or hardness inside the spring material is greatly affected. Therefore, it is important to make it a component that can maintain an extremely high internal hardness.
  • elements such as V, Nb, and Mo are added to form fine carbides that are solidified by quenching and precipitated by tempering, thereby restricting the movement of dislocations and improving sag resistance.
  • elements such as V, Nb, and Mo are added to form fine carbides that are solidified by quenching and precipitated by tempering, thereby restricting the movement of dislocations and improving sag resistance.
  • hot coiling is performed by heating to the austenitic region of the steel, followed by quenching and tempering, and high strength steel wire that has been previously quenched and tempered.
  • Cold There is a cold coiling to be used.
  • Cold coiling can use oil tempering or high-frequency treatment, which can be rapidly heated and cooled quickly when producing steel wire, so it is possible to reduce the old austenite grain size of the spring material. As a result, it is possible to manufacture springs with excellent fracture characteristics.
  • the equipment such as the heating furnace in the spring production line can be simplified, there is an advantage for the spring manufacturer, such as reducing the equipment cost. Cooling is being promoted through the use of rings.
  • Zr addition is effective (see, for example, Japanese Patent Application Laid-Open No. 2003-105485), but the amount added is more than 1 Oppm (23 ppm in the example). Because it is added, it has a large effect on oxides, causing problems such as reduced fatigue strength and increased inclusion appearance.
  • the present invention provides a spring steel having both high strength and good coiling properties by controlling oxides and sulfides in steel, which has not been noticed with conventional spring steel wires, by chemical elements.
  • the present invention does not focus only on the coarse carbides found in steel wires.
  • the present invention has been made to solve the above problems, and the gist thereof is as follows.
  • a spring steel characterized by comprising the balance Fe and inevitable impurities, and further limited to Al ⁇ 0.01% and Ti ⁇ 0.003%.
  • Occupied area ratio of equivalent circle diameter 0 or more is 7% or less
  • austenite grain size number is 10 or more
  • residual austenite ⁇ is 15% by mass or less
  • a heat-treated steel wire for springs characterized in that the cementite with a circle-equivalent diameter of 2 m or more has a low density of soot-based carbides and the area ratio of the diluted region is 3% or less. 5022418
  • Figure 1 is a photomicrograph showing the quenched and tempered structure.
  • Fig. 2 is a graph of an analysis example by EDX attached to the SEM.
  • A is a graph of an analysis example of a spherical carbide analysis example (alloy system)
  • (b) is an analysis example of a spherical carbide analysis example (cementite system). .
  • Fig. 3 is a drawing-substituting observation image photograph of the microstructure of the etched surface of the steel wire with the operation electron microscope.
  • (A) is a typical microstructure observation example
  • (b) is a drawing-substituting photograph of an observation image of an example of a non-uniform portion of carbide distribution.
  • Fig. 4 is a drawing-substituting photograph showing an inhomogeneous portion of carbide distribution (carbide dilute region) and fine carbide (needle shape, dendritic shape) based on its binarized image in an image observed with a scanning electron microscope.
  • FIG. 2 is a drawing-substituting photograph showing a non-uniform portion (diluted carbide region) and fine carbide (granularity) based on its binary image.
  • the inventor can control the steel for springs that can obtain even better performance by defining chemical components to achieve both high strength and workability, and can control the shape of carbides in the steel by heat treatment.
  • the inventors have invented a steel wire for springs that has sufficient coiling properties to produce a spring. Details are described below.
  • C is an element that has a great influence on the basic strength of steel, and is set to 0.45 to 0.7% so that sufficient strength can be obtained. If it is less than 0.45%, sufficient strength cannot be obtained. In particular, in order to ensure sufficient spring strength even when nitriding is omitted to improve spring performance, C of 50% or more is preferred. Further, it is preferably 0.6% or more from the viewpoint of balance of strength-coiling.
  • the relationship to the carbide dilute region is also close, and if it is less than 0.45%, the number of carbides is small, so the area ratio of the dilute region tends to increase, and sufficient strength and toughness or coiling (ductility) Is difficult to obtain. Therefore, it is preferably 0.5% or more, and more preferably 0.6% or more from the viewpoint of balance between strength-coiling.
  • the amount of undissolved carbide, lenticular martensite, and undissolved carbide can be reduced by setting the content to 0.68% or less.
  • Si is added as a deoxidizing element during steel production.
  • spring steel it is an element necessary to ensure spring strength, hardness, and sag resistance. Due to lack of stability, 1.0% was set as the lower limit.
  • Si also has the effect of spheroidizing and refining the carbide-based precipitates at the grain boundaries, and by adding it positively, it has the effect of reducing the area occupied by the grain boundaries.
  • the upper limit was set at 3.0%.
  • Si is also an element that contributes to temper softening resistance
  • Mn is often used to deoxidize and fix S in steel as MnS, and to increase the hardenability and to obtain sufficient hardness after heat treatment. To ensure this stability, 0.05% is made the lower limit. In order to prevent embrittlement due to Mn, the upper limit was set to 2.0%. Further, in order to achieve both strength and coiling properties, it is preferably 0.1 to 1.5%. Considering the influence on the carbide dilute region, when suppressing segregation of residual austenite alloy elements, it is preferably as low as possible, less than 0.4%, and further preferably 0.3% or less. On the other hand, Mn is an effective element because it can easily impart hardenability when it is necessary to ensure hardenability as the diameter of the heat-treated steel wire increases. If priority is given to hardenability, it may be added in excess of 0.4%. However, it is effective to reduce it to 10% or less when considering the thinning of carbides.
  • P hardens the steel, but further segregates and embrittles the material.
  • P who prayed to the austenite grain boundaries, causes delayed fracture due to a drop in impact value and hydrogen penetration. Therefore, it is better to have less. Therefore, P, where the embrittlement tendency becomes remarkable, was limited to 0.015% or less.
  • the content is preferably less than 0.01%. S: 0.0 15% or less
  • MnS Like S, P also embrittles steel when present in steel. Although the effect of Mn is minimized, MnS also takes the form of inclusions, so the fracture characteristics deteriorate. In particular, high-strength steel may cause fracture from a small amount of MnS, and it is desirable to reduce S as much as possible. The upper limit was set at 0.015%, at which the adverse effects became prominent. Furthermore, when the tensile strength of the heat-treated steel wire is high such that it exceeds 2 150 MPa, it is preferable to make it less than 0.0 1%.
  • N exists in the form of nitrides when alloying elements such as Ti and V are added to harden the matrix in the steel, affecting the properties of the steel wire.
  • Steel added with Ti, Nb, and V facilitates the formation of carbonitrides, and tends to cause precipitation of carbides, nitrides, and carbonitrides as pinning particles for austenite grain refinement. Therefore, it is possible to stably generate pinning particles under various heat treatment conditions applied until the spring is manufactured, and it is possible to finely control the austenite particle size of the steel wire. For this purpose, 0.0015% or more of N is added.
  • N is also an element that lowers the hot ductility, so that considering the ease of heat treatment, it is preferably 0.009% or less. Further, it is preferable that the lower limit is also small, but if considering the ease of production in the denitrification step, 0.0015% or more is preferable. In addition, by pinning effects such as V and Nb, austenite during heat treatment In this case, it is preferable to add a certain amount of N, and 0.007% or more may be added.
  • the upper limit is set to 0.01% in order to significantly reduce the spring performance.
  • the amount of oxygen should be small, but even if it is less than 0.0002%, the effect is saturated, so this is the lower limit. In consideration of the ease of practical deoxidation process, it is desirable to adjust to 0.005 to 0.002%.
  • W precipitates as carbides in the steel. Therefore, if one or two of these elements are added, these precipitates are formed, and temper softening resistance can be obtained, and tempering at high temperatures and strain relief annealing that is put in the process, such as nitriding, can be performed. Even after heat treatment, high strength can be achieved without softening. This suppresses a decrease in the internal hardness of the spring after nitriding, and facilitates hot setting and strain relief annealing, so that the fatigue characteristics of the final spring are improved. However, if too much W is added, the precipitates become too large and combine with carbon in the steel to produce coarse carbides.
  • W is that, unlike other elements, the shape of carbide containing cementite is made finer. In addition, since carbonitride of W is produced only at low temperatures, such as Ti and Nb, W itself is unlikely to remain as undissolved carbide.
  • temper softening resistance can be imparted by precipitation hardening.
  • the internal hardness is not greatly reduced even during nitriding or strain relief annealing. If the added amount is 0.05% or less, no effect is seen.If it exceeds 1.0%, coarse carbides are formed, and mechanical properties such as ductility may be impaired. Therefore, the added amount of W is set to 0.05 to 1.0%. . Furthermore, if considering the ease of heat treatment, 0.1 to 0.5% is preferable. Considering the balance with strength, about 0.16 to 0.35% is more preferable.
  • Cr is an effective element for improving the hardenability and temper softening resistance, but if added in large amounts, it not only increases the cost, but also coarsens the cementite wrinkles seen after quenching and tempering. As a result, the wire becomes brittle, making it easy to break during coiling. Therefore, in order to secure hardenability and resistance to temper softening, the lower limit is set to 0.05%, and the upper limit is set to 2.5% at which embrittlement becomes prominent.
  • the amount added is 2.0% or less. More preferably 1.7 About%.
  • the addition of Cr can deepen the hardened layer by nitriding. Therefore, the addition of 0.7% or more is preferable, and when adding hardening at nitriding and softening resistance at the nitriding temperature, adding over 1.0% is desirable. Addition of 1.2% or more is desirable especially when high strength and sag characteristics are required. Also, if Cr is added in a large amount, it may cause supercooled microstructure in the steel wire manufacturing process, and cementite-type spherical carbides are likely to remain. Therefore, considering the ease of heat treatment, 2 0% or less is preferable.
  • Zr is an oxide and sulfide-forming element.
  • oxides are finely dispersed, and like Mg, they become precipitation nuclei for MnS. As a result, fatigue durability is improved, and ductility is increased to improve coiling. If less than 0.001%, the effect is not seen, and even if added over 0.0005%, the formation of hard oxide is promoted, so even if the sulfide is finely dispersed, troubles due to oxide occur. It becomes easy.
  • nitrides and sulfides such as ZrN and ZrS are generated in addition to oxides, which reduces manufacturing troubles and fatigue resistance characteristics of springs.
  • the amount added is preferably 0.0003% or less. Although these elements are in trace amounts, they can be controlled by carefully selecting by-products and precisely controlling refractories.
  • Zr refractories are used frequently in places such as ladle, tundish, nozzle, etc. that are in contact with molten steel for a long time, so about 1 ppm can be added to about 200 t of molten steel.
  • auxiliary materials so that the specified range is not exceeded.
  • 2 g was collected from the part of the steel to be measured which is not affected by the surface scale, and sampled in the same manner as Annex 3 of JISG 1237-1997. Can be measured by ICP.
  • the calibration curve at KP is set to be suitable for trace amounts of Zr.
  • A1 is a deoxidizing element and affects oxide formation. Since it is easy to form hard oxides, if added carelessly, hard carbides are formed and fatigue durability is reduced. Especially for high-strength springs, the fluctuation stability of the fatigue strength is reduced rather than the fatigue limit of the spring itself, and if the amount of A1 is large, the incidence of breakage due to inclusions increases. Required. In addition, from the viewpoint of sulfide control, adding Zr to finely disperse and spheroidize the sulfide will reduce the effect if the amount of A1 is too large. Absent. For this reason, it is necessary to suppress the strength of steel materials for high-strength springs more than before, and it is limited to 0.01% or less (including 0%). Further, when high fatigue strength is required, the content is preferably 0.002% or less.
  • Ti is a deoxidizing element as well as a nitride and a sulfide-generating element, and therefore affects oxide and nitride and sulfide generation. Addition of a large amount tends to generate hard oxides and nitrides, so if added inadvertently, hard carbides are formed and fatigue durability is reduced. As with A1, especially in the case of high-strength springs, the stability of variation in fatigue strength is reduced rather than the fatigue limit of the spring itself, and if the amount of Ti is large, the incidence of fracture due to inclusions increases. Limited to 0.03% or less (including 0%).
  • adding Zr adds a large amount of Ti to finely disperse and spheroidize the sulfide. Is not preferred. Therefore, it is necessary to limit the strength of steel for high-strength springs more than before, and the upper limit is 0.003%. Furthermore, when high fatigue strength is required, it is preferable to make it 0.002% or less. 5 022418 Good.
  • Mo precipitates as carbides at a temperature about the tempering nitriding temperature By producing these precipitates, temper softening resistance can be obtained, and high strength can be exhibited without being softened even after heat treatment such as tempering at high temperature or strain relief annealing put in the process or nitriding. This suppresses a decrease in the internal hardness of the spring after nitriding, and facilitates hot settling and strain relief annealing, thus improving the final spring fatigue characteristics.
  • the precipitates become too large and combine with carbon in the steel to produce coarse carbides. This reduces the amount of C that should contribute to increasing the strength of the steel wire, making it impossible to obtain the strength equivalent to the added amount of C.
  • the steel material is drawn in advance from a ferrite-perlite structure by a patenting process.
  • the content is preferably 0.4% or less. Further, it is more preferably about 0.2%.
  • V 0.05 to 1.0%
  • V can be used to harden the steel wire at the tempering temperature and harden the surface layer during nitriding, in addition to suppressing the coarsening of the austenite grain size by the formation of nitrides, carbides and carbonitrides. If the added amount is 0.05% or less, the added effect is hardly observed. Addition of a large amount generates coarse undissolved inclusions and lowers toughness, and like Mo, it tends to cause a supercooled structure and easily causes breakage during cracking and wire drawing. Therefore, the upper limit is set to 1.0%, which is easy to handle industrially.
  • V nitrides, carbides, and carbonitrides are generated even at austenization temperature A of the steel at 3 or higher, so if the solid solution is insufficient, it remains as undissolved carbides (nitrides).
  • Nb can be used to harden the steel wire at the tempering temperature and harden the surface layer during nitriding, in addition to suppressing the coarsening of the austenite grain size by the formation of nitrides, carbides, and carbonitrides. If the added amount is less than 0.01%, the added effect is hardly observed. Addition of a large amount generates coarse undissolved inclusions and lowers toughness, and like Mo, it tends to cause a supercooled structure and easily causes breakage during cracking and wire drawing. That JP2005 / 022418 The upper limit was 0.05%, which is industrially stable and easy to handle. Nb nitrides, carbides, and carbonitrides are formed even at austenization temperature A of the steel of 3 points or higher. Therefore, if the solid solution is insufficient, it remains as undissolved carbides (nitrides). Cheap. Therefore, industrially, it is preferably 0.04% or less, and more preferably 0.03% or less.
  • Ni improves the hardenability and can increase the strength stably by heat treatment.
  • the ductility of the matrix is improved to improve the coilability.
  • quenching and tempering increases residual austenite wrinkles, which is inferior in terms of sag and material uniformity after spring forming. If the amount added is 0.05% or less, no effect is observed in increasing strength and improving ductility.
  • the addition of a large amount of Ni is not preferable, and if it is 3.0% or more, the residual austenite increases and the effect of increasing the hardenability and ductility is saturated, which is disadvantageous in terms of cost. Become.
  • Co can reduce the hardenability, but can improve the high-temperature strength. Further, since it inhibits the formation of carbides, it functions to suppress the formation of coarse carbides that are a problem in the present invention. Therefore, coarsening of carbides including cementite can be suppressed. Therefore, it is preferable to add. When added, the effect is small at 0.05% or less. However, when added in a large amount, the hardness of the Ferai phase increases and the ductility decreases, so the upper limit was made 3.0%.
  • B is effective in cleaning hardenability improving elements and austenite grain boundaries. Add B to elements such as P and S that reduce the toughness by praying to the grain boundaries, and improve the fracture characteristics. At that time, if B combines with N to generate BN, the effect is lost. The effect of the added amount is clear The lower limit is 0.0005%, and the upper limit is 0.0060% where the effect is saturated. However, even if a small amount of BN is formed, it will become brittle, and sufficient care must be taken not to generate BN. Therefore, it is preferably 0.003 or less, and more preferably, free N is fixed by a nitride-forming element such as Ti and B: 0.0010 to 0.0020% is effective.
  • decarburization can be prevented by adding Cu.
  • the surface layer is removed by a peeling process called “pilling”.
  • the surface layer is removed by a peeling process called “pilling”.
  • the fatigue life of the spring and the peeling process can be omitted.
  • the effect of suppressing the decarburization of Cu can be demonstrated at 0.05% or more, and even if Ni is added as described later, if it exceeds 0.5%, it tends to cause rolling flaws due to embrittlement. Therefore, we set the lower limit to 0.05% and the upper limit to 0.5%.
  • the amount of Ni added to prevent cracking during rolling is set to [Cu%] [Ni] according to the amount of Cu added. In the range of Cu 0.3% or less, no rolling flaws occur, so there is no need to regulate the amount of Ni added to prevent rolling flaws.
  • Mg forms oxides in the molten steel at a temperature higher than the MnS formation temperature, and already exists in the molten steel when MnS is formed. Therefore, it can be used as MnS precipitation nuclei, which can control the distribution of MnS. Also for that number
  • Mg-based oxides are finely dispersed in molten steel compared to Si and A-based oxides often found in conventional steels. Therefore, MnS with Mg-based oxides as the core will be finely dispersed in the steel. . Therefore, even if the S content is the same, the MnS distribution varies depending on the presence or absence of Mg, and the s'MnS particle size for adding them becomes finer. The effect can be obtained even in a small amount, and if Mg is added, MnS is refined.
  • the Mg addition amount is set to 0.0001 to 0.01%.
  • the content is preferably 0.0003% or less.
  • these elements are in trace amounts, they can be added by about 0.0001% by frequently using Mg-based refractories. Also, Mg can be added by carefully selecting auxiliary materials and using auxiliary materials with low Mg content.
  • the inclusions are highly sensitive, so it is desirable to further reduce the amount to 0.001% or less, and further to 0.0005% or less.
  • This Mg is effective in improving corrosion resistance, delayed fracture and preventing rolling cracking due to the effects of MnS distribution, etc. It is desirable to add as much as possible, so the addition amount control in a very narrow range of 0.0002 to 0.0005% Is preferred.
  • Ca is an oxide and sulfide-forming element.
  • spheroidizing MnS suppresses the length of MnS as a starting point for fatigue and other fractures, making it harmless. The effect is not clear if it is less than 0.0002%, and even if added over 0.01%, not only the yield is poor, but also oxides and sulfides such as CaS are generated, and manufacturing trouble and fatigue resistance characteristics of the spring Since it is reduced, it was set to 0.01% or less.
  • the amount added is preferably 0.001% or less.
  • Hf is an oxide-forming element and serves as a precipitation nucleus for MnS. So fine When dispersed, Zr is an oxide and sulfide-forming element. In spring steel, oxides are finely dispersed, and like Mg, they become MnS precipitation nuclei. As a result, fatigue durability is improved, and the ductility is increased to improve the coilability. The effect is not clear if it is less than 0.0002%, and even if added over 0.01%, the yield is poor, and oxides, nitrides such as ZrN and ZrS, and sulfides are produced, resulting in manufacturing problems. And 0.01% or less because it reduces the fatigue endurance characteristics of the spring. This addition amount is preferably 0.003% or less.
  • Te has the effect of spheroidizing MnS. If the content is less than 0.0002%, the effect is not clear. If the content exceeds 0.01%, the toughness of the matrix decreases, hot cracking occurs, and the fatigue durability decreases. The upper limit is 0.01%.
  • Sb has the effect of spheroidizing MnS, and if it is less than 0.0002%, the effect is not clear. If it exceeds 0.01%, the toughness of the matrix decreases, hot cracking occurs, and fatigue durability decreases.
  • the upper limit is set at 0.01%.
  • non-metallic inclusions including sulfides are suitable for spring steel, and the effect can be reduced.
  • the fatigue characteristics of the spring tend to be improved. Even when a surface hardening treatment such as nitriding is performed, higher fatigue properties and sag characteristics can be obtained if the basic strength of the steel wire is high. On the other hand, when the strength is high, the coiling property is lowered, and the spring manufacturing becomes difficult. Therefore, it is important not only to improve the strength, but also to give ductility that can be coiled at the same time. When used as a spring, not only fatigue durability but also sag is important, and heat treatment materials are used so that sag characteristics are good even under high load.
  • a tensile strength of 2000 MPa or more.
  • the coiling property decreases with increasing strength, it is necessary to use a component that achieves both temper softening resistance and coiling property. For this reason, it is desirable to have a chemical composition that makes this possible.
  • the tensile strength be 2250 MPa, and more than 2300 MPa. Therefore, the present invention defines chemical components that are assumed to achieve both high strength and high workability after heat treatment.
  • alloy elements such as C and other Mn, Ti, V, and Nb are added, but when a large amount of elements that form nitrides, carbides, and carbonitrides are added, they do not dissolve. Carbide tends to remain.
  • undissolved carbide includes not only so-called alloy-based carbides in which the above alloy forms nitrides, carbides, and carbonitrides, but also cementite-based carbides mainly composed of Fe carbide (cementite).
  • alloy carbides are complex carbides with nitrides (so-called carbonitrides), so here, these alloy-based carbides, nitrides, and their composite alloy precipitates are collectively referred to. It can be observed by mirror-polishing and etching these carbides. It can also be obtained by observation of carbonitrides using the transmission electron microscope replica method. These undissolved carbides, carbonitrides and nitrides, appear to be spherical because they are sufficiently dissolved during heating, and greatly reduce the mechanical properties of steel wires.
  • Figure 1 shows a typical observation example. According to this, there are two types of matrix acicular and spherical structures in steel.
  • steel is known to form a martensitic needle-like structure by quenching and to generate carbides by tempering to achieve both strength and toughness.
  • this spherical structure is undissolved carbide, and its distribution is a spring steel. It has been found that the performance of the wire is greatly affected.
  • This spherical carbide is considered to be a carbide that has not been sufficiently dissolved in quenching and tempering by oil tempering or high-frequency treatment, and has been spheroidized and grown or reduced in the quenching and tempering process.
  • Carbides of this size do not contribute at all to the strength and toughness by quenching and tempering. For this reason, it was found that not only was C wasted while fixing C in the steel, but also was a source of stress concentration, leading to a decrease in the mechanical properties of the steel wire.
  • Occupied area ratio of circle equivalent diameter 0.2 m or more is 7% or less
  • carbides affect its coiling properties, that is, bending properties up to fracture.
  • the strength is too high and the deformability is insufficient.
  • the cause may be coarse carbides precipitated in the steel.
  • Figures 2 (a) and (b) show examples of analysis by EDX attached to SEM. The same analysis results can be obtained for the replica method using a transmission electron microscope. It is done.
  • the conventional invention focuses only on carbides of alloy elements such as V and Nb, an example of which is shown in Fig. 2 (a), which is characterized by very small Fe peaks in the carbides.
  • Fig. 2 (a) which is characterized by very small Fe peaks in the carbides.
  • cementite which has a slightly solid solution of Fe 3 C with an equivalent circle diameter of 3 m or less and an alloy element as shown in Fig. 2 (b). It was found that the precipitation form of the carbides is important.
  • cementite-based spherical carbides When achieving both high strength and workability higher than those of conventional steel wires as in the present invention, if there are many cementite-based spherical carbides of 3 ⁇ m or less, the workability is greatly impaired.
  • the carbides that are spherical and have Fe and C as the main components as shown in Fig. 2 (b) will be referred to as cementite-based carbides.
  • carbides in steel can be observed by subjecting a mirror-polished sample to etching such as picral, but for detailed observation and evaluation of its dimensions, etc., observe it with a scanning electron microscope at a magnification of 3000 times or more.
  • the cementite type spherical carbide of interest here has a circular equivalent diameter of 0.2 to 3 m.
  • carbides in steel are indispensable for securing the strength and resistance to temper softening of steel, but their effective particle size is 0.m or less. There is no contribution to diameter miniaturization, it simply degrades the deformation characteristics. However, this importance is not recognized so much in the conventional technology, and attention is paid only to alloy carbides such as V and Nb.
  • Carbides with an equivalent circle diameter of 3 or less, especially cementite spherical carbides, are considered harmless. There have been no studies on carbides of about 0.1 to 5 m, which are the main subject of the invention.
  • the occupation area on the microscopic surface is defined as 7% or less.
  • the former austenite grain size has a great influence on the basic properties of steel wires as well as carbides.
  • old austenite The smaller the grain size, the better the fatigue characteristics and the better the coiling.
  • no matter how small the austenite particle size the effect is small if the above-mentioned carbide is contained more than specified.
  • the old austenite grain size number is less than 10
  • sufficient fatigue properties cannot be obtained, so it is prescribed that the old austenite grain size number is 10 or more. did.
  • finer particles are preferred for application to high-strength springs. 11 and even 12 and higher achieve both high strength and coiling. It becomes possible to make it.
  • Residual austenite often remains in the segregation area near the area between old austenite grain boundaries and subgrains. Residual austenite wrinkles become martensite due to work-induced transformation, and when induced and transformed during spring forming, local high-hardness parts are generated in the material, and rather the coiling characteristics as a spring are degraded. Also, if a recent spring has a manufacturing process that includes multiple processes of plastic deformation, such as shot peening or setting, which performs surface strengthening by plastic deformation, the work-induced martensite generated at an early stage is destroyed. Reduces strain and reduces workability and fracture characteristics of the spring in use. In addition, even when industrially inevitable deformations such as cracks are introduced, they are easily broken during coating.
  • the residual austenite is reduced as much as possible, and the processability is improved by suppressing the formation of process-induced martensite. Specifically, if the amount of residual austenite exceeds 15% (mass%), the sensitivity to crushing and so on becomes higher, and it easily breaks during coiling and other handling, so it was limited to 15% or less. .
  • the amount of retained austenite varies depending on the amount of alloying elements such as C and Mn and the heat treatment conditions. Therefore, it is important to enhance not only the component design but also the heat treatment conditions.
  • start temperature Ms point, end temperature Mi point When the martensite generation temperature (start temperature Ms point, end temperature Mi point) is low, martensite is not generated unless the temperature is sufficiently low during quenching, and residual austenite tends to remain.
  • Industrial quenching PT / JP2005 / 022418 uses water or oil, but the suppression of residual austenite wrinkles requires a high degree of heat treatment control. Specifically, it is necessary to maintain the cooling refrigerant at a low temperature, maintain a low temperature as much as possible after cooling, and ensure a long transformation time to martensite.
  • the temperature of the cooling refrigerant easily rises to close to 100 ° C, but it is preferable to maintain it at 60 T: or less, and it is also as low as 40 or less. Is more preferable. Furthermore, in order to sufficiently promote the martensite transformation, it is necessary to hold it in the cooling medium for 1 s or longer. It is also important to secure the holding time after cooling.
  • Figure 2 shows an example of a picture taken at a set magnification of 5000 times.
  • Fig. 3 (b) A and B microstructures as shown in A and B show carbides. 5 022418 We considered it as a sparse region and found it important to control the area ratio.
  • Figures 4 and 5 show examples of the enlargement of the heterogeneous part of the carbide distribution as shown in Fig. 3 (b).
  • Fig. 3 (b) Inside, fine carbides are precipitated in a disperse form different from the surrounding structure, the frequency of their existence is extremely low, and even if carbides are not clearly seen, they are deeply corroded from the surroundings, resulting in recesses. Is forming.
  • the carbides appear white in the observation image. Therefore, in the present invention, when the occupied area of the carbides observed in the corroded and recessed region is 60% or less, the carbides are diluted.
  • carbide is deposited in this carbide dilute region, there are both cases where needle-like or dendritic carbides are seen in the recessed regions (Fig. 4) and cases where granular carbides are seen (Fig. 5).
  • the size of the fine carbide is as follows: (1) In the case of acicular or dendritic carbide, the individual thickness is 0.3 ⁇ m or less. (2) In the case of granular carbide, the equivalent circle diameter is 0.7 ⁇ m or less.
  • Regions with larger carbides were excluded from carbide dilute regions. Regions with a dilute carbide distribution selected in this way and having an equivalent circle diameter of 2 m or more will affect the mechanical properties and cannot be ignored. Therefore, such a carbide dilute region with an equivalent circle diameter of 2 m or more was specified.
  • the steel wire is polished and electrolytically etched.
  • electrolytic etching current is generated at a low potential using a sample as an anode and platinum as a cathode in an electrolyte (a mixture of 10% by weight of acetylacetone, 1% by weight of tetramethylammonium chloride, and the remaining component methyl alcohol). The surface of the sample is corroded by electrolysis using an apparatus.
  • the potential should be constant at a potential suitable for the sample in the range of 50 to 200 mV vs s SCE.
  • a potential suitable for the sample in the range of 50 to 200 mV vs s SCE.
  • it is usually appropriate to keep constant at 1 lOOmV vs s SCE.
  • the amount of energization depends on the total surface area of the sample material, and “total surface area of the material” X 0.133 [c / cm 2 ] is the energization amount. Even if the sample is embedded, the total surface area of the sample is calculated by adding the area of the sample surface buried in the resin. After holding the current for lOsec, it is possible to easily observe carbide and microstructure in the steel such as cementite with a scanning electron microscope by stopping the current flow and washing.
  • a carbide dilute region By observing this corroded surface with a scanning electron microscope at a magnification of 1000 times or more, a carbide dilute region can be identified. In the observation of microstructure after etching with a scanning electron microscope, carbides appear white in the observed image, so a candidate region of a carbide thin region is photographed with a scanning electron microscope.
  • the magnification is 1000 times or more, preferably 5000 to 10,000 times.
  • the size of the candidate region of this carbide dilute region is 2 If it is less than this, the region has little effect on the mechanical properties, so it is ignored. On the other hand, if the size of the candidate region for this carbide dilute region is 2 ⁇ m or more in the equivalent circle diameter, the internal carbide distribution is measured.
  • Carbide lean region candidate regions included in the photographed carbide lean region candidate regions are binarized by the image processor Luzex, and the area of the candidate region and the equivalent circle diameter and area occupied area of the carbide in the candidate region and the circle Each equivalent diameter was measured, and when the area occupied by the carbide was 60% or less of the candidate area, the candidate area was defined as a lean carbide area.
  • the area and equivalent circle diameter of the extracted carbide thin region extracted in this way are calculated by an image processing device, and the occupation area ratio of the carbide diluted region with a circle equivalent diameter of 2 zm or more that is found in the measurement visual field is measured. Then, it was stipulated that it would be 3% or less.
  • the observation area was randomly observed near the center of the radius of the heat treated wire (steel wire), the so-called 1/2 R part, and the measurement area was 3000 xm 2 That's it.
  • the coiling property is good, and even if the strength exceeds 2200MPa, the coiling property is not impaired, and good coiling is achieved. Is possible. Therefore, we set it as the upper limit.
  • the coiling property is better when the carbide lean region is smaller. Therefore, it is preferably 1% or less.
  • spring steel is drawn after continuous forging through billet rolling and wire rolling, and cold coiling springs are given strength by oil tempering or high-frequency treatment. At that time, the cementite carbide lean region is suppressed. In order to control this, it is important to avoid local inhomogeneities in the material and make the heat-treated structure homogeneous, and it is important to have a homogeneous and proper tempered martensite structure. At that time, it was found that a tempered structure of lath martensite is preferable.
  • Tempered lath martensite (1) Undissolved carbide, (2) Segregation, (3) Residual austenite, (4) Coarse old austenite grains, (5) Lens martensite (6) Local bait is considered. These (1) to (6) greatly affect the distribution of carbides after heat treatment of spring steel wires, and suppressing them is effective in reducing the area ratio of cementite-based carbide lean regions. Inhomogeneous, hard inclusions can be considered, but it is not necessary to consider because they hardly change during heat treatment such as quenching and tempering.
  • cementite-based spherical carbides and alloy-based carbides are thought to have grown with undissolved cementite-alloy carbides as the core during rolling, so that the components are sufficiently dissolved in each heating step such as rolling. This is very important.
  • it has been found that it is important to heat and roll at a high temperature at which it can be sufficiently dissolved in rolling and to use it for wire drawing.
  • lenticular martensite originally has a large amount of c and other alloying elements, it tends to form a thin film.Therefore, even if there is a large amount of undissolved carbide, there are many additive elements other than Fe containing C, which is a basic component. In some cases, lens martensi erosion is likely to occur, causing tissue heterogeneity.
  • heating is performed once at a temperature exceeding 1100 ° C before heat treatment drawing, and rolling is completed within 5 minutes after extraction so that precipitates do not grow greatly.
  • This heating temperature is preferably 1 150 ° C or higher, more preferably 1200 ° C or higher.
  • heating is performed at a temperature of 900 ° C or higher during patenting before wire drawing and in the quenching and tempering process thereafter.
  • the heating temperature during this patenting is preferably a high temperature, preferably 930 ° C or higher, and more preferably 950 ° C or higher.
  • the heating rate is 10 / s or more, the temperature is 3 min. Or more, the holding time is 5 min or less, the cooling rate is 50 / s or more to 100 ° C or less, and the heating rate is more than lO Heat and treat the holding time at the tempering temperature at 15 min or less. From the viewpoint of solid solution of carbides, it is desirable to heat sufficiently higher than A3 point. On the one hand austenite ⁇ particle size It is preferable to finish in a short time so that 2418 does not grow.
  • the quenching refrigerant is at a low temperature of 70 ° C or lower and 60 ° C or lower. This is to avoid the generation of residual austenite ⁇ ⁇ and Paynai ⁇ . It is also desirable to make the cooling time as long as possible to suppress residual austenite and complete the martensitic transformation sufficiently.
  • the appropriate chemical composition and heat treatment appropriate to it are performed to suppress lens martensite, residual austenite, and segregation, and to reduce the old one particle size. It is effective.
  • To reduce the particle size of the prior austenite it is effective to lower the heating temperature and shorten the heating time, but there is a risk of increasing the amount of undissolved carbide.
  • In order to suppress the dilute region and achieve higher strength it is necessary to control the chemical components from the time of rolling so as to suit them, and to dissolve the alloy elements sufficiently even in intermediate heating processes such as patenting.
  • Tables 1 to 3 show the components of the steel materials prepared for evaluating various performances
  • Tables 4 to 6 show the melting methods and properties of the steel materials.
  • Steel was melted in a small amount of vacuum melting furnace (10 kg, 150 kg, or 2 t) or O t converter. The furnace used for melting of each Example is shown. Pay close attention to the inclusion of oxide-forming elements from refractories and raw materials, such as melting in a vacuum melting furnace, using a magnesia crucible, etc. Adjusted as follows. Of these small samples, 150kg was rolled by welding to a dummy billet. The 10kg melt was forged up to ⁇ 13 and then processed in the order of heat treatment (normalization) and machining ( ⁇ 10mm x 400mni) to create a thin straight bar. At this stage, surface oxide distribution and carbide in steel were observed.
  • the inventive example (Example 33) and the comparative example (Example 62) of the present invention produced billets by continuous forging of smelted by a 270 t converter.
  • billets were made by rolling after melting in a 2 t-vacuum melting furnace. At that time, in the invention example, the temperature was maintained at a high temperature of 1200 ° C. or higher for a predetermined time. After that, in each case, the billet was rolled to ⁇ 8 mm.
  • the 10kg molten material is processed into a straight bar.
  • industrial patenting, wire drawing, quenching using a heating furnace, lead bath The steel wire was tempered using
  • the heating temperature in patenting is 900 ° C or higher, preferably 930: or higher. In the present invention, it is 950.
  • the present invention was heat-treated so as to have a tensile strength of 2200 MPa or more.
  • the comparative example was also heat-treated at the same tempering temperature.
  • the furnace passage time was set so that the steel internal temperature of the wire drawing material was sufficiently heated.
  • the heating temperature was 950 ° C.
  • the heating time was 300 seconds
  • the quenching temperature was 50 ° C. (oil bath actual temperature)
  • the cooling time was maintained at 5 minutes or longer.
  • tempering was tempered using a lead bath at a temperature of 450 and tempering time of 3 minutes to adjust the strength.
  • the resulting tensile strength in the air atmosphere is as specified in Table 1.
  • the obtained steel wire was used as it was for tensile properties, and a part was annealed at 400 ° C for 30 minutes to measure the hardness and subjected to a rotating bending fatigue test.
  • the surface heat treatment scale was removed by shot peening.
  • the fatigue test was a Nakamura rotary bending fatigue test.
  • the maximum load stress at which 10 samples had a life of 10 7 cycles or more with a probability of 50% or more was defined as the average fatigue strength.
  • the probability of fracture occurrence which is considered to be caused by inclusions, was evaluated as the inclusion appearance rate.
  • Tables 1 to 3 show chemical components and their evaluation results in Tables 4 to 6.
  • the chemical composition is outside the specified range, the elongation, which is an index of the coiling property, is small, the coiling characteristics are inferior, the Nakamura rotary bending fatigue strength is inferior, and the high strength spring Cannot be used.
  • Examples 61 to 63 are examples in which the amount of W is insufficient for the specification, so that the softening resistance is insufficient and sufficient fatigue durability cannot be ensured.
  • the internal hardness after heat treatment is HV550 or less, which is the same level as conventional springs, and it is clear that further softening resistance is required.
  • Examples 69 to 71 are cases in which the amount of Zr added is less than specified. When Zr is small, the control of sulfide is not sufficient, so that the coiling property (elongation) is lowered and the workability in high strength steel wire cannot be secured.
  • Example 72 Mg was added more than the specified amount, and in Example 73, hard oxide inclusions were observed in the former, and nitride-based hard inclusions were observed in the latter, and fatigue durability was reduced.
  • Examples 65, 74, and 75 are also examples in which the amount of oxide-forming element exceeds the specified level and the fatigue strength is reduced.
  • Examples 76 and 77 are examples in which the amount of C is insufficient from the regulation, and sufficient strength cannot be secured in the industrial quenching and tempering process, and the fatigue strength as a high-strength spring is insufficient.
  • Examples 78 and 79 the amount of C is added in excess of the specified amount. In this case, the strength can be secured, but the coiling characteristics are Inferior, high strength steel wire! : I can not secure sex.
  • Tables 7 to 9 show the chemical composition of the present invention and comparative steel when processed at ⁇ 4 mm.
  • Inventive example 1 of the present invention is a continuous refining of what was refined by a 250 t converter.
  • the billet ⁇ was made.
  • billets were made by rolling after melting in a 2 t-vacuum melting furnace. At that time, in the invention example, the temperature was maintained at a high temperature of 1200 ° C or higher for a certain period of time. In each case, the steel was rolled from a billet ⁇ to ⁇ 8 mm.
  • the rolled wire rod was made ⁇ 4 D1D1 by drawing. At that time, patenting was performed before drawing in order to make the structure easy to draw. At that time, it is desirable to heat at 900 or more so that the carbides and the like are sufficiently dissolved, and the invention example was heated at 930 to 950 and patented. On the other hand, Comparative Examples 68 and 69 were patented by conventional heating and used for wire drawing.
  • the wire rod was passed through the heating furnace, so the heating furnace passage time was set so that the steel internal temperature was sufficiently heated by simulating it.
  • the heating temperature was 950 ° C
  • the heating time was 300 seconds
  • the quenching temperature was 50 ° C (actually measured temperature in the oil bath) in the quenching using a radiation furnace.
  • the cooling time was also maintained as long as 5 minutes or longer.
  • the tempering temperature was 400-500 ° C, and the strength was adjusted by tempering using a lead bath with a tempering time of 3 minutes.
  • the resulting tensile strength in the air atmosphere is as specified in Table 11.
  • the heating temperature is 1000 ° C
  • the heating time is 15 seconds
  • the quenching is water cooling.
  • the tempering temperature was adjusted so that the strength was 2250 MPa or more.
  • the steel wire was polished to a mirror-like cross section in the longitudinal direction of the heat-treated steel wire, and further etched slightly with picric acid to raise the carbides. Since it is difficult to measure the size of carbide at the optical microscope level, photographs of 10 fields of view were randomly taken at a magnification of 500,000 times with a scanning electron microscope at 1/2 R of the steel wire. Using an X-ray microanalyzer attached to a scanning electron microscope, it was confirmed that the spherical carbide was a cementite-based spherical carbide, and the spherical carbide was binarized from the photograph using an image processor. The dimensions, number, and occupied area were measured. Total measurement area was 3088. 8 m 2.
  • Tensile properties were measured in accordance with I I S Z 224 1 using a J I S Z 220 1 9 test piece, and the tensile strength was calculated from the breaking load. It is known that the tensile strength is directly related to the fatigue endurance characteristics of the heat-treated steel wire, and it is preferable that the tensile strength is high as long as it does not hinder the additive properties such as coiling.
  • the notch bending test was carried out by the method of Example 1.
  • Fatigue test was bending fatigue test rotation Nakamura, subjected to removal after testing of the surface layer of the heat treatment scale, average maximum load stress ten samples indicates 1 0 7 or more cycles of life with a probability of 50% or more It was defined as fatigue strength.
  • Tables 7 and 12 for ⁇ 4 M steel wires, if the chemical composition is outside the specified range, it will be difficult to control carbides, and it will be seen in the elongation in the tensile test that is an index of coiling properties. In addition, the coiling characteristics may be inferior due to deformation characteristics, the tensile strength may be reduced, and the fatigue strength may be inferior.
  • the maximum oxide diameter can be reduced due to inadequate heat treatment conditions such as stabilization of carbides by prior annealing, residual undissolved carbides due to insufficient heating during quenching, insufficient quenching cooling, etc.
  • Former austenite Comparison materials with a grain size outside the specified range are also special Inferior properties, tensile properties and fatigue properties.
  • the strength is insufficient even if the carbide-related regulations are satisfied, the fatigue strength will be insufficient, and it cannot be used for high-strength springs.
  • Unmelted carbides can be avoided by rolling, especially when the extraction temperature is 120 ITC or higher, and the heating temperature during drawing and quenching is 900 ° C or higher. Furthermore, in order to reduce the particle size of the old austenite, it is possible to reduce the formation of undissolved carbides by either increasing the line speed or maintaining the temperature relatively low.
  • the grain number can be 10 or more.
  • the carbide dilute region is small, and good bending characteristics, temper softening resistance and fatigue strength can be ensured.
  • IQT high frequency heating
  • Rolling, patenting, and heating during quenching are all sufficient, avoiding undissolved carbides and segregation, maintaining fine austenite grain size, and suppressing carbide dilute regions, fatigue strength and coiling properties It is possible to achieve both.
  • the rolling heating temperature is 1 220 ° C
  • the patenting temperature is 950t: (Examples 7 and 18 only 930 ° C)
  • A 0T treatment (radiation furnace) is assumed.
  • B I QT (high frequency heating)
  • I QT high frequency heating
  • tempering conditions were selected for each steel type, and the tensile strength was set to 2200 MPa or more.
  • the coiling property was evaluated by the elongation in the tensile test. If this elongation is less than 1%, the coiling property becomes difficult. If it is 7% or more, it was judged that industrial spring machining is possible. In Comparative Examples 48 and 49, the amount of C was insufficient, the strength could not be secured even when the tempering temperature was lowered, and the fatigue strength was inferior.
  • the heating temperature at the time of quenching was 880 ° C, which was a low temperature compared to this component range, so a large number of undissolved carbides were observed, and sufficient coiling properties could not be secured.
  • Examples 6 1 to 63 contained a large amount of segregation shading elements such as C, Mn, and P, so the carbide dilute region became large, and sufficient coiling properties could not be secured.
  • Example 70 when the tempering temperature was set to 600 ° C and the strength was set low, the fatigue strength was insufficient.
  • Examples 7 to 73 are examples in which the residual austenite exceeded the specified value because the cooling rate could not be secured even if the carbide dilution region was small. Austenite Although the grain size was small, the amount of residual austenite was intentionally increased by setting the cooling oil during quenching to 80 or more. As a result, the strength was insufficient and fatigue characteristics could not be secured.
  • Example 74 to 77 the heating during quenching was set to 1000 ° C to suppress undissolved carbides. However, since the austenite grain size becomes large, sufficient ductility cannot be ensured, and the coiling property is reduced. could not be secured.
  • Examples 78 and 79 are examples in which sufficient Si tempering softening resistance and sagability could not be ensured because Si was lowered.
  • the steel of the present invention increases the strength to 2000 MPa or more by controlling spherical carbides, hard oxides, and sulfides containing cementite soot in the steel wire for cold coil springs.
  • the strength is increased to 2000 MPa or more and the coiling property is secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、高強度と冷間コイリング性が両立するばね用鋼線に供するばね用鋼ならびにばね用鋼線を提供するもので、質量%において、C:0.45~0.70%、Si:1.0~3.0%、Mn:0.05~2.0%、P:0.015%以下、S:0.015%以下、N:0.0015~0.0200%、t−O:0.0002~0.01を含有し、さらに、Al≦0.01%、Ti≦0.003%に制限したばね用鋼。更に、検鏡面に占めるセメンタイト系球状炭化物に関して、円相当径0.2μm以上の占有面積率が7%以下、円相当径0.2~3μmの存在密度が1個/μm2以下、円相当径3μm超の存在密度が0.001個/μm2以下を満たし、かつ旧オーステナイト粒径番号が10番以上、残留オーステナイトが15質量%以下、円相当径が2μm以上のセメンタイト系炭化物の存在密度が小さい希薄域の面積率が3%以下であることを特徴とする。

Description

高強度ばね用鋼および鋼線
技術分野
本発明はエンジン用弁ばねや懸架ばねにもちいるばね用鋼に関す るものであり、 特に冷間でコィ リ ングされ、 高強度かつ高靭性を有 明
するばね用鋼および鋼線に関するものである。
背景技術 書
自動車の軽量化、 高性能化に伴い、 ばねも高強度化され、 熱処理 後に引張強度 1500MPaを超えるような高強度鋼がばねに供されてい る。 近年では引張強度 1900MPaを超える鋼線も要求されている。 そ れはばね製造時の歪取り焼鈍ゃ窒化処理など、 加熱によって少々軟 化してもばねとして支障のない材料硬度を確保するためである。
また、 窒化処理やショ ッ トピーニングでは表層硬度が高まり、 ば ね疲労における耐久性が格段に向上することが知られているが、 ば ねのへたり特性については表層硬度で決まるものではなく、 ばね素 材内部の強度または硬度が大きく影響する。 従って内部硬度を非常 に高く維持できる成分にしあげることが重要である。
その手法としては、 V、 Nb、 Mo等の元素を添加することで焼入れ で固溶し、 焼戻しで析出する微細炭化物を生成させ、 それによつて 転位の動きを制限し、 耐へたり特性を向上させた発明がある (例え ば、 特開昭 57— 3 Π53号公報参照) 。
一方、 鋼のコイルばねの製造方法では鋼のオーステナイ 卜域まで 加熱してコィ リ ングし、 その後、 焼入れ焼戻しを行う熱間コィ リ ン グとあらかじめ鋼に焼入れ焼戻しを施した高強度鋼線を冷間にてコ ィ リ ングする冷間コィ リ ングがある。 冷間コィ リ ングでは鋼線の製 造時に急速加熱急速冷却が可能なオイルテンパー処理や高周波処理 などを用いることができるため、 ばね材の旧オーステナイ ト粒径を 小さくすることが可能で、 結果として破壊特性に優れたばねを製造 できる。 またばね製造ライ ンにおける加熱炉などの設備を簡略化で きるため、 ばねメーカ一にとつても設備コス 卜の低減につながるな どの利点があり、 最近では太径の懸架ばねにおいても冷間コィ リ ン グを採用するなど冷間化が進められている。
しかし冷間コィ リ ングばね用鋼線の強度が大きくなると、 冷間コ ィ リ ング時に折損し、 ばね形状に成形できない場合も多く、 そのよ うな場合には強度と加工性が両立しないために工業的には不利とも いえる方法でコィ リ ングせざるを得なかった。 通常、 弁ばねの場合 、 オンライ ンでの焼入れ焼戻し処理、 いわゆるオイルテンパー処理 した鋼線を冷間でコィ リ ングすることが多いが、 例えば 900〜 1050 °Cに加熱してばね形状にコィ リ ングし、 その後 425〜 550°Cで焼戻し 処理するなど、 コィ リ ング時の折損を防止するために線材を加熱し て変形を容易な温度で熱間コィ リ ングし、 その後、 高強度を得るた めにコィ リ ング後の調質処理を行う発明がある (例えば、 特開平 5 一 179348号公報参照) 。 このようなコィ リ ング時の加熱とコィ リ ン グ後の調質処理はばね寸法の熱処理ばらつきの原因になったり、 処 理能率が極端に低下したりするため、 コス ト、 精度、 製品安定性の 点で冷間コィ リ ングされたばねに比べ劣る。
また炭化物に関しては、 例えば Nb、 V系の炭化物の平均粒径に注 目 した発明がなされているが、 V、 Nb系炭化物の平均粒径の制御だ けでは不十分であることを示している (例えば、 特開平 10— 25 1804 号公報参照) 。 この先行技術では圧延中の冷却水によって異常組織 が生じることを懸念する記述があり、 実質的には乾式圧延を推奨し ている。 このことは工業的には非定常作業であり、 通常の圧延と明 らかに異なることが推定され、 たとえ平均粒径を制御しても周辺マ ト リ ックス組織に不均一を生じると圧延 トラブルを生じることを示 唆している。
また、 セメン夕イ トを中心とした炭化物も制御することで性能向 上を図った発明がある (例えば、 特開 2002— 180198号公報参照) 。
しかしさ らなる疲労、 へたりなどのばね性能向上のためにはさ ら なる高強度化とばねの加工性 (コィ リ ング性) 確保が必要であり、 これまでの成分や熱処理後の炭化物の寸法制御だけでは限界があつ た。
このように強度と加工性を両立するような技術が模索され、 セメ ン夕ィ 卜系炭化物に着目した組織制御によって強度と加工性の両立 が図られてきた (前記特開 2002— 180 198号公報参照) 。 さ らに、 残 留オーステナイ トを防止することによって安定性を増した (例えば 、 特開 2000— 169937号公報参照) 。 これらはその熱処理工程に負う ところが大きい。 一方、 弁ばねでは酸化物が重点的に制御されてお り、 酸化物制御による疲労強度向上が主張されている。 この酸化物 は疲労強度そのものだけでなく、 耐破壊特性の安定性あるいは製品 ばらつきにも影響すると考えられ、 破面における介在物出現率を抑 制することが求められている (例えば、 特開平 6— 158226号公報参 照) 。
さらに酸化物だけでなく硫化物、 窒化物、 炭化物およびそれらの 複合介在物が存在していれば、 疲労強度を低下させたり、 加工性低 下の原因となる。 これまで弁ばねのような非常に高い引張強度を有 する鋼において前述の特許文献 6では T i Nを、 そして、 炭化物につ いても制御が試みられてきたが (例えば、 特開平 10— 25 1804号公報 参照) 、 硫化物にまで考慮した技術は少ない。 硫化物に注目した例として、 T i、 Cu、 Ca、 Z rの少なく とも 1種以 上を添加することが有効としているものがあるが、 その実施例では 大半が T i添加であり、 T iを添加しない場合でも Z r、 Caなど酸化物生 成元素を多量に添加している (例えば、 特開平 10— 1746号公報参照 ) 。 本発明の特徴の一つである Z rについて考えると l Oppm以上 (実 施例では 70ppm) という、 多量に添加されているため、 酸化物への 影響が大きく 、 疲労強度を低下させたり、 介在物出現率が高くなる などの弊害を生じる。
また、 他の例として、 Z r添加が有効とするものがあるが (例えば 、 特開 2003— 105485号公報参照) 、 その添加量は、 l Oppm以上 (実 施例では 23ppm) という、 多量に添加されているため、 酸化物への 影響が大きく、 疲労強度を低下させたり、 介在物出現率が高くなる などの弊害を生じる。
さらに、 Z r添加量を鋼中固溶量 0. 5 ppm以下に抑制すべきであるこ とが示され、 これを超えると介在物起因の弊害が生じることが明記 されている発明がある (例えば、 特開平 9 —3 10 145号公報参照) 。 しかし、 この添加量では硫化物制御には不十分であり、 そのことは 前述の特許文献 8からも容易に推測される。 発明の開示
本発明は冷間でコィ リ ングされ、 十分な大気強度とコィ リ ング加 ェ性を両立できる引張強度 2000MPa以上のばね用鋼線に供するばね 用鋼および鋼線を提供することを課題としている。
本発明は、 従来のばね鋼線では注目されていなかった鋼中の酸化 物、 硫化物を化学元素によって制御して高強度とコィ リ ング性を両 立させたばね用鋼を得るものである。 また、 本発明は、 単に鋼線に みられる粗大な炭化物だけに注目するのではなく、 マ トリ ックスの
4 P T/JP2005/022418 ミクロ組織まで制御することが有効であることを見出し、 これまで 強度を得るために必要とされてきたセメン夕イ ト系の微細な炭化物 の分布を制御することでさ らなる高性能の鋼線を得るものである。 本発明は上記課題を解決するためになされたものでその要旨は次 のとおりである。
( 1 ) 質量%で、 C : 0.45〜0.70% ,
Si: 1.0〜3.0%、
Mn: 0.ト 2.0%、
P : 0.015%以下、
S : 0.015%以下、
N : 0.0005〜0.007%、
t - O : 0.0002〜0.01%、
を含み、 残部 Feおよび不可避的不純物からなり、 さ らに、 Al≤0.01 %、 Ti≤ 0.003 %に制限したことを特徴とするばね用鋼。
( 2 ) ( 1 ) 記載の鋼に、 更に、 Cr: 0.05〜2.5%、 Zr : 0.0001〜0 .0005%を含有することを特徴とするばね用鋼。
( 3 ) ( 1 ) または ( 2) 記載の鋼を用いて、 圧延、 伸線加工、 熱 処理した鋼線であって、 該鋼線が検鏡面に占めるセメンタイ 卜系球 状炭化物および合金系炭化物に関し、
円相当径 0. 以上の占有面積率が 7 %以下、
円相当径 0.2〜 3 mの存在密度が 1個/ ^ m2以下、
円相当径 3 m以上の存在密度が 0.001個/ ^m2以下、
を満たし、 かつ旧オーステナイ ト粒度番号が 10番以上、 残留ォー ステナイ 卜が 15質量%以下、
円相当径 2 m以上のセメンタイ 卜系炭化物の存在密度が小さい 希薄域の面積率が 3 %以下、 であることを特徴とするばね用熱処理 鋼線。 5022418
( 4) ( 1 ) または ( 2 ) 記載のばね用鋼において、 さ らに、 質量 %で、 W : 0.05〜 1.0%、 Mo: 0.05〜 1· 0%、 V : 0.05〜 1.0%、 Nb
: 0.01〜0.05%、 Ni : 0.05〜3.0%、 Co: 0.05〜3.0%、 B : 0.0005 〜0.006 %、 Cu: 0.05〜0.5%、 Mg: 0.0002〜 0.01 %、 Ca: 0.0002〜 0.01%、 Hf : 0.0002〜0.01%、 Te: 0.0002〜 0.01 %、 Sb: 0.0002〜 0.01%の 1種または 2種以上を含むことを特徴とするばね用鋼。
( 5 ) ( 3 ) 記載のばね用熱処理鋼線において、 さ らに、 質量%で 、 Cr: 0.05〜2.5%、 W : 0.05〜1.0%、 Zr: 0.0001〜 0.0005 %、 Mo : 0.05〜 1.0%、 V : 0.05〜 1.0%、 Nb: 0.0卜 0.05%、 Ni : 0.05〜
3.0%、 Co: 0.05〜3.0%、 B : 0.0005〜0.006 %、 Cu: 0.05〜0.5% 、 Mg: 0.0002〜0.01%、 Ca: 0.0002〜0.01%、 Hf : 0.0002〜 0.01 % 、 Te: 0.0002〜0.01%、 Sb: 0.0002〜 0.01 %の 1種または 2種以上 を含むことを特徴とするばね用熱処理鋼線。 図面の簡単な説明
図 1は、 焼入れ焼戻し組織を示す顕微鏡写真である。
図 2は、 SEMに取り付けた EDXによる解析例のグラフで、 ( a ) は 球状炭化物分析例 (合金系) 、 ( b ) は球状炭化物分析例 (セメン タイ ト系) の解析例のグラフである。
図 3は、 操作型電子顕微鏡で鋼線のエッチング面のミクロ組織の 図面代用観察画像写真である。 ( a ) は典型的ミクロ組織観察例、 ( b ) は炭化物分布の不均一部の例の観察画像の図面代用写真であ る。
図 4は、 走査型電子顕微鏡による観察画像における、 炭化物分布 の不均一部分 (炭化物希薄域) 及びその二値化画像により微細炭化 物 (針状、 樹枝状) を示す図面代用写真である。
図 5は、 走査型電子顕微鏡による観察画像における、 炭化物分布 の不均一部分 (炭化物希薄域) 及びその二値化画像により微細炭化 物 (粒状) を示す図面代用写真である。 発明を実施するための最良の形態
発明者は、 高強度と加工性を両立するための化学成分を規定する ことで、 さ らに良好な性能を得ることのできるばね用鋼を、 また、 熱処理によって鋼中炭化物形状を制御することで、 ばねを製造する に十分なコィ リ ング性を確保したばね用鋼線を発明するに至った。 その詳細を以下に記す。
C : 0. 45〜0. 70 %
Cは鋼材の基本強度に大きな影響を及ぼす元素であり、 従来より 十分な強度を得られるように 0. 45〜0. 7 %とした。 0. 45 %未満では 十分な強度を得られない。 特にばね性能向上のための窒化を省略し た場合でも十分なばね強度を確保するには 0. 50 %以上の Cが好まし い。 さ らに強度ーコィ リ ングのバランス観点から好ましくは 0. 6 % 以上とするのがよい。
さ らに炭化物希薄域への関係も密接であり、 0. 45 %未満では炭化 物数が少ないため、 希薄域面積率が増加しやすく、 十分な強度と靭 性あるいはコィ リ ング性 (延性) が得られにくい。 そこで好ましく は 0. 5 %以上、 強度ーコィ リ ングのバランス観点からさらに好まし く は 0. 6 %以上とするのがよい。
また、 炭化物希薄域にも影響し、 鋼中 Cが未固溶炭化物を形成し ていると、 マ ト リ ックス中の実質 Cが減少するために、 前述のごと く希薄域面積率が増加する事もある。
一方、 C量が増加すると、 焼入れ焼戻し後の強度は向上する。 し かし焼入れ時のマルテンサイ 卜形態が中炭素鋼で一般的なラスマル テンサイ 卜からレンズマルテンサイ 卜にその形態を変化させること が知られている。 レンズマルテンサイ 卜を焼戻して生成させた焼戻 しマルテンサイ 卜組織の炭化物分布はラスマルテンサイ 卜を焼戻し た場合のそれと比較して、 炭化物密度が低かったり、 一定方向に並 んで分布するために結晶に極端に方向性を生じ、 ラスマルテンサイ 卜の焼戻し組織より も脆い。 0. 70 %を超えて添加すると、 焼入れ時 のレンズマルテンサイ ト量ゃ残留オーステナイ ト量が多くなる傾向 にあり、 焼戻し後の強度が高くなるものの延性が低下するため、 0. 70 %を上限とした。 また熱処理工程での C固溶が不十分であると局 部的に実質過共析となり、 粗大セメンタイ トを多量に析出するため 、 靭性を著しく低下させる。 このことは同時にコィ リ ング特性を低 下させる。
さ らに C量が多い場合には合金系やセメンタイ ト系の炭化物の固 溶が困難になる傾向にあり、 熱処理における加熱温度が低い場合や 加熱時間が短い場合には強度ゃコィ リ ング性が不足する場合も多い 。 このように C量を増加することでレンズマルテンサイ トゃ未固溶 炭化物の増加により、 脆化する場合も多い。
そのため、 好ましく は 0. 68 %以下とすることで、 未溶解炭化物と レンズマルテンサイ 卜生成と未溶解炭化物を減少させることができ る。
S i : 1. 0〜3. 0 %
S iは鋼製造時には脱酸元素として添加されるとともに、 ばね鋼で はばねの強度、 硬度と耐へたり性を確保するために必要な元素であ り、 少ない場合、 必要な強度、 耐へたり性が不足するため、 1. 0 % を下限とした。 また S iは粒界の炭化物系析出物を球状化、 微細化す る効果があり、 積極的に添加することで粒界析出物の粒界占有面積 率を小さくする効果がある。 しかし多量に添加しすぎると、 材料を 硬化させるだけでなく、 脆化する。 そこで焼入れ焼戻し後の脆化を 防ぐために 3.0%を上限とした。
Siは焼戻し軟化抵抗にも寄与する元素でもあるため高強度線材を 作成するにはある程度多量に添加することが好ましい。 具体的には 1.2%以上添加することが好ましい。 さ らに高強度ばねでは耐へた り性が重要であることから、 さらに好ましくは 1.6%以上、 さ らに 好ましく は 2.0 %以上の添加がよい。 一方、 安定的なコィ リ ング性 を得るためには好ましく は 2.6%以下とすることが好ましい。
Mn: 0.05〜2.0%
Mnは脱酸や鋼中 Sを MnSとして固定するとともに、 焼入れ性を高 めて熱処理後の硬度を十分に得るため、 多用される。 この安定性を 確保するために 0.05%を下限とする。 また Mnによる脆化を防止する ために上限を 2.0%とした。 さ らに強度とコィ リ ング性を両立させ るには、 好ましくは 0. 1〜1.5%が好ましい。 炭化物希薄域への影響 を考慮すると、 残留オーステナイ トゃ合金元素の偏析を抑制する場 合には極力低く、 0.4%未満、 さらには 0.3%以下に抑制することが 好ましい。 一方、 熱処理鋼線の直径が大きくなると焼入れ性を確保 する必要がある場合には Mnは容易に焼入れ性を付与できるために有 効な元素である。 この焼入れ性を優先させる場合には 0.4%を超え て添加してもよい。 ただし炭化物希薄域ゃコィ リ ングを考慮する場 合には 10%以下にすることが有効である。
P : 0.015%以下
Pは鋼を硬化させるが、 さ らに偏析を生じ、 材料を脆化させる。 特にオーステナイ ト粒界に偏祈した Pは衝撃値の低下や水素の侵入 により遅れ破壊などを引き起こす。 そのため少ない方がよい。 そこ で脆化傾向が顕著となる Pは 0.015%以下と制限した。 さらに熱処 理鋼線の引張強度が 2150MPaを超えるような高強度の場合には 0.01 %未満にすることが好ましい。 S : 0. 0 15 %以下
S も P と同様に鋼中に存在すると鋼を脆化させる。 Mnによって極 力その影響を小さくするが、 MnSも介在物の形態をとるため、 破壊 特性は低下する。 特に高強度鋼では微量の MnSから破壊を生じるこ ともあり、 S も極力少なくすることが望ましい。 その悪影響が顕著 となる 0. 0 15 %を上限と した。 さ らに熱処理鋼線の引張強度が 2 150M P aを超えるような高強度の場合には 0. 0 1 %未満にすることが好まし い。
N : 0. 00 1 5〜0. 02 %
Nは鋼中マ トリ ックスを硬化させる力 T i、 Vなどの合金元素が 添加されている場合には窒化物として存在し、 鋼線の性質に影響を 与える。 T i、 Nb、 Vを添加した鋼では炭窒化物の生成が容易になり 、 オーステナイ ト粒微細化のピン止め粒子となる炭化物、 窒化物お よび炭窒化物の析出サイ 卜になりやすい。 そのためばね製造までに 施される様々な熱処理条件で安定的にピン止め粒子を生成すること ができ、 鋼線のオーステナイ ト粒径を微細に制御することができる 。 このような目的から 0. 00 1 5 %以上の Nを添加させる。 一方、 過剰 な Nは窒化物および窒化物を核として生成した炭窒化物および炭化 物の粗大化を招く。 T i、 V、 Nbなどの窒化物/炭窒化物生成元素を 添加する場合には粗大な窒化物/炭窒化物を析出したり、 Bを添加 すると BNを析出するなどによって、 耐破壊特性を損なう。 そこでそ のような弊害の伴わない 0. 02 %を上限とする。
ただし Nは熱間延性を低下させる元素でもあるため、 熱処理など の容易性を考慮すると 0. 009 %以下が好ましい。 また下限について も少ない方が好ましいのであるが、 製造上のコス トゃ脱窒工程での 容易性を考慮すると 0. 00 15 %以上が好ましい。 また、 V、 Nbなどの ピン止め効果によって熱処理時のオーステナイ 卜粒径微細化を指向 する場合にはある程度多量の Nを添加するほうが好ましく、 0. 007 %以上添加しても良い。
t - O : 0. 0002〜0. 0 1
鋼中には脱酸工程を経て生じた酸化物や固溶した 0が存在してい る。 しかし、 この酸素量が多い場合には酸化物系介在物が多いこと を意味している。 酸化物系介在物の大きさが小さければばね性能に 影響しないが、 大きい酸化物が大量に存在しているとばね性能に大 きな影響を及ぼす。
合計酸素量 ( t — O ) が 0. 0 1 %を超えて存在するとばね性能を著 しく低下させるために、 その上限を 0. 0 1 %とする。 また酸素が少な ければ良いが 0. 0002 %未満にしても、 その効果が飽和するので、 こ れを下限とする。 実用上の脱酸工程などの容易性を考慮すると 0. 00 05〜0. 002 %に調整することが望ましい。
W : 0. 05〜 1. 0 %
Wは鋼中で炭化物と して析出する。 従ってこれらの元素を 1種ま たは 2種を添加すれば、 これら析出物を生成し、 焼戻し軟化抵抗を 得ることができ、 高温での焼戻しや工程で入れられるひずみ取り焼 鈍ゃ窒化などの熱処理を経ても軟化せず高強度を発揮させることが できる。 この事は窒化後のばね内部硬度の低下を抑制したり、 ホッ トセツチングやひずみ取り焼鈍を容易にするため、 最終的なばねの 疲労特性を向上させることとなる。 しかし、 Wは添加量が多すぎる と、 それらの析出物が大きくなりすぎ、 鋼中炭素と結びついて粗大 炭化物を生成する。 このことは鋼線の高強度化に寄与すべき C量を 減少させ、 添加した C量相当の強度が得られなくなる。 さ らに粗大 炭化物が応力集中源となるためコィ リ ング中の変形で折損しやすく なる。 また鋼線製造工程、 たとえば圧延、 パテンチングなどの工程 において過冷組織を生じやすくなり、 割れや破.断の原因になる。 また、 wは焼入れ性を向上させるとともに、 鋼中で炭化物を生成 し、 強度を高める働きがある。 従って極力添加する方が好ましい。
Wの特徴は他の元素とは異なり、 セメンタイ トを含む炭化物の形状 を微細にすることである。 また Wの炭窒化物は Ti、 Nbなどにく らべ 低温でしか生成しないため、 W自身も未溶解炭化物として残留しに く い。
さ らに、 V等の未溶解炭化物を残留しやすい元素によって生成さ れる炭化物の成長を抑制し、 未溶解炭化物の寸法を抑制する効果も 有する。
また、 析出硬化により焼戻し軟化抵抗を付与できる。 すなわち窒 化やひずみ取り焼鈍においても大きく内部硬度を低下させることが 無い。 その添加量が 0.05%以下では効果は見られず、 1.0%を超え ると粗大な炭化物を生じ、 かえって延性などの機械的性質を損なう 恐れがあるので Wの添加量を 0.05〜1.0%とした。 さ らに熱処理の 容易性などを考慮すると 0.1〜 0.5 %が好ましい。 強度とのバランス を考えると 0.16〜0.35%程度が更に好ましい。
Cr: 0.05〜2.5%
Crは焼入れ性および焼戻し軟化抵抗を向上させるために有効な元 素であるが、 添加量が多いとコス ト増を招くだけでなく、 焼入れ焼 戻し後に見られるセメンタイ 卜を粗大化させる。 結果として線材は 脆化するためにコィ リ ング時に折損を生じやすくする。 そこで焼入 れ性および焼戻し軟化抵抗の確保のために 0.05%を下限とし、 脆化 が顕著となる 2.5%を上限とした。
Crはセメンタイ 卜の加熱による溶解を阻害するため、 特に C >0. 55%と C量が多くなると Cr量を抑制した方が粗大炭化物生成を抑制 でき、 強度とコィ リ ング性を両立しやすい。 従って、 好ましく はそ の添加量を 2.0%以下にすることが好ましい。 さ らに好ましく は 1.7 %程度である。
一方、 窒化処理を行う場合には C rが添加されている方が窒化によ る硬化層を深くできる。 従ってその 0. 7 %以上の添加が好ましく、 さ らに窒化での硬化と窒化温度での軟化抵抗を付与する場合には 1. 0 %を超えて添加することが望ましい。 特に高い強度とへたり特性 が必要な場合には 1. 2 %以上の添加が望ましい。 また C rも多量に添 加されていると鋼線製造工程での過冷組織発生原因になったり、 セ メン夕イ ト系球状炭化物が残留しやすくなるので、 熱処理の容易性 を考慮すると 2. 0 %以下が好ましい。
Z r : 0. 000 1〜0. 0005 %
Z rは酸化物および硫化物生成元素である。 ばね鋼においては酸化 物を微細に分散するため、 Mgと同様、 MnSの析出核となる。 それに より疲労耐久性を向上させたり、 延性を増すことでコィ リ ング性を 向上させる。 0. 000 1 %未満ではその効果は見られず、 また 0. 0005 % を超えて添加しても硬質酸化物生成を助長するため、 硫化物が微細 分散しても酸化物起因の トラブルを生じやすくなる。 また多量添加 では酸化物以外にも Z rN、 Z r Sなどの窒化物、 硫化物を生成し、 製造 上の トラブルやばねの疲労耐久特性を低下させるので 0. 0005 %以下 とした。 さ らに高強度ばねに用いる場合にはこの添加量を 0. 0003 % 以下にすることが好ましい。 これらの元素は微量ではあるが、 副原 料を厳選し、 耐火物などを精密に制御することで制御可能である。
たとえば取鍋、 タンディ ッシュ、 ノズルなど溶鋼と長時間接する 場合のような場所に Z r耐火物が多用することにより 200 t程度の溶 鋼に対して 1 ppm程度添加することができる。 さ らにそれを考慮し つつ規定範囲を超えないように副原料を添加すれば良い。 鋼中 Z rの 分析方法は測定対象鋼材の表層スケールの影響を受けない部分から 2 gを採取し、 J I S G 1237- 1997付属書 3 と同様の方法でサンプル を処理した後、 I CPによって測定できる。 その際、 KPにおける検量 線は微量 Z rに適するように設定する。
A1≤0. 01 %
A1は脱酸元素であり酸化物生成に影響する。 硬質酸化物を生成し やすいために不用意に添加すると硬質炭化物を生成し、 疲労耐久性 を低下させる。 特に高強度ばねにおいてはばねの疲労限度そのもの より も疲労強度のばらつき安定性を低下させ、 A1量が多いと介在物 起因の破断発生率が多くなるため、 その量を制限することが需要家 から要求される。 また硫化物制御の観点から、 Z rを添加することで 硫化物を微細分散、 球状化させるには A 1量が多すぎるとその効果を 損なうため、 その点からも多量に添加するのは好ましくない。 その ため高強度ばね用鋼材においては従来より も抑制する必要があり、 0. 01 %以下 ( 0 %を含む) に制限した。 さ らに高疲労強度を要求す る場合には 0. 002 %以下にすることが好ましい。
T i≤ 0. 003 %
T iは脱酸元素であるとともに窒化物、 硫化物生成元素であるため 、 酸化物および窒化物、 硫化物生成に影響する。 多量の添加は硬質 酸化物、 窒化物を生成しやすいために不用意に添加すると硬質炭化 物を生成し、 疲労耐久性を低下させる。 A 1と同様に特に高強度ばね においてはばねの疲労限度そのものより も疲労強度のばらつき安定 性を低下させ、 T i量が多いと介在物起因の破断発生率が多くなるた め、 その量を 0. 003 %以下 ( 0 %を含む) に制限した。 また硫化物 制御の観点から、 Z rを添加することで硫化物を微細分散、 球状化さ せるには T i量が多すぎるとその効果を損なうため、 その点からも多 量に添加するのは好ましくない。 そのため高強度ばね用鋼材におい ては従来より も制限する必要があり、 0. 003 %がその上限である。 さ らに高疲労強度を要求する場合には 0. 002 %以下にすることが好 5 022418 ましい。
Mo: 0. 05〜 1. 0 %
Moは焼戻しゃ窒化温度程度の温度で炭化物として析出する。 これ ら析出物を生成することで焼戻し軟化抵抗を得ることができ、 高温 での焼戻しや工程で入れられるひずみ取り焼鈍ゃ窒化などの熱処理 を経ても軟化せず高強度を発揮させることができる。 この事は窒化 後のばね内部硬度の低下を抑制したり、 ホッ トセツチングゃひずみ 取り焼鈍を容易にするため、 最終的なばねの疲労特性を向上させる こととなる。 しかしその析出物が大きくなりすぎ、 鋼中炭素と結び ついて粗大炭化物を生成する。 このことは鋼線の高強度化に寄与す べき C量を減少させ、 添加した C量相当の強度が得られなくなる。 さ らに粗大炭化物が応力集中源となるためコィ リ ング中の変形で折 損しやすくなる。 また Moは添加することで焼入れ性を向上させると ともに、 焼戻し軟化抵抗を与えることができる。 すなわち強度を制 御する際の焼戻し温度を高温化させることができる。 この点は粒界 炭化物の粒界占有面積率を低下させるのに有利である。 すなわちフ イルム状に析出する粒界炭化物を高温で焼戻すことで球状化させ、 粒界面積率を低減することに効果がある。 また Moは鋼中ではセメン 夕イ トとは別に Mo系炭化物を生成する。 特に V等に比べその析出温 度が低いので炭化物の粗大化を抑制する効果がある。 その添加量は 0. 05 %以下では効果が認められない。 ただしその添加量が多いと、 圧延や伸線前の軟化熱処理などで過冷組織を生じ易く、 割れ伸線時 の断線の原因となりやすい。 すなわち、 伸線時にはあらかじめ鋼材 をパテンチング処理によってフェライ ト—パーライ ト組織としてか ら伸線することが好ましい。
Moは焼入れ性を大きく付与する元素であるため、 添加量が多くな るとパーライ ト変態終了までの時間が長くなり、 圧延後の冷却時や パテンチング工程では過冷組織が生じやすく、 伸線時に断線の原因 になったり、 断線せず、 内部クラックとして存在した場合には、 最 終製品の特性を大きく劣化させる。 Moが 1. 0 %を超えると、 焼入れ 性が大きくなり、 工業的にフェライ トーパーライ ト組織にすること が困難になるので、 これを上限とする。 圧延や伸線などの製造工程 で製造性を低下させるマルテンサイ ト組織の生成を抑制し、 工業的 に安定して圧延、 伸線を容易にするには 0. 4 %以下とすることが好 ましく、 さ らに好ましく は 0. 2 %程度である。
V : 0. 05 ~ 1. 0 %
Vについては窒化物、 炭化物、 炭窒化物の生成によるオーステナ ィ 卜粒径の粗大化抑制のほかに焼戻し温度での鋼線の硬化や窒化時 の表層の硬化に利用することもできる。 その添加量は 0. 05 %以下で は添加した効果がほとんど認められない。 また多量添加は粗大な未 固溶介在物を生成し、 靭性を低下させるとともに、 Moと同様、 過冷 組織を生じ易く、 割れや伸線時の断線の原因となりやすい。 そのた め工業的に安定した取り扱いが容易な 1. 0 %を上限とした。 Vの窒 化物、 炭化物、 炭窒化物は鋼のオーステナイ ト化温度 A 3点以上で も生成しているため、 その固溶が不十分な場合には未固溶炭化物 ( 窒化物) として残留しやすい。 従って工業的には 0. 5 %以下にする ことが好ましく、 さ らに 0. 2 %以下とすることが好ましい。
Nb : 0. 0 1〜0. 05 %
Nbについては窒化物、 炭化物、 炭窒化物の生成によるオーステナ ィ 卜粒径の粗大化抑制のほかに焼戻し温度での鋼線の硬化や窒化時 の表層の硬化に利用することもできる。 その添加量は 0. 0 1 %以下で は添加した効果がほとんど認められない。 また多量添加は粗大な未 固溶介在物を生成し、 靭性を低下させるとともに、 Moと同様、 過冷 組織を生じ易く、 割れや伸線時の断線の原因となりやすい。 そのた JP2005/022418 め工業的に安定した取り扱いが容易な 0. 05 %を上限とした。 Nbの窒 化物、 炭化物、 炭窒化物は鋼のオーステナイ ト化温度 A 3点以上で も生成しているため、 その固溶が不十分な場合には未固溶炭化物 ( 窒化物) として残留しやすい。 従って工業的には 0. 04 %以下にする ことが好ましく、 さらに 0. 03 %以下とすることが好ましい。
N i : 0. 05〜3. 0 %
N iは焼入れ性を向上させ、 熱処理によって安定して高強度化する ことができる。 またマ ト リ ックスの延性を向上させてコィ リ ング性 を向上させる。 しかし焼入れ焼戻しでは残留オーステナイ 卜を増加 させるので、 ばね成形後にへたりや材質の均一性の点で劣る。 その 添加量は 0. 05 %以下では高強度化や延性向上に効果が認められない 。 一方、 N iの多量添加は好ましくなく、 3. 0 %以上では残留オース テナイ トが多くなる弊害が顕著になるとともに、 焼入れ性や延性向 上効果が飽和し、 コス ト等の点で不利になる。
Co : 0. 05〜3. 0 %
Coは焼入れ性を低下させる場合もあるが、 高温強度を向上させる ことができる。 また炭化物の生成を阻害するため、 本発明で問題と なる粗大な炭化物の生成を抑制する働きがある。 したがってセメン タイ トを含む炭化物の粗大化を抑制できる。 従って、 添加すること が好ましい。 添加する場合、 0. 05 %以下ではその効果が小さい。 し かし多量に添加するとフェライ 卜相の硬度が増大し延性を低下させ るので、 その上限を 3. 0 %とした。
B : 0. 0005〜0. 006 %
Bは焼入れ性向上元素とオーステナイ ト粒界の清浄化に効果があ る。 粒界に偏祈して靱性を低下させる P、 S等の元素を Bを添加す ることで無害化し、 破壊特性を向上させる。 その際、 Bが Nと結合 して BNを生成するとその効果は失われる。 添加量はその効果が明確 になる 0.0005 %を下限と し、 効果が飽和する 0.0060 %を上限とした 。 ただしわずかでも BNが生成すると脆化させるため BNを生成しない よう十分な配慮が必要である。 したがって好ましくは 0.003以下で あり、 さ らに好ましくは Ti等の窒化物生成元素によってフリーの N を固定しておく とともに、 B : 0.0010〜0.0020 %にすることが有効 である。
Cu: 0.05〜0.5%
Cuについては、 Cuを添加することで脱炭を防止できる。 脱炭層は ばね加工後に疲労寿命を低下させるため、 極力少なくする努力が成 されている。 また脱炭層が深くなつた場合にはピ一リ ングとよばれ る皮むき加工によって表層を除去する。 また Niと同様に耐食性を向 上させる効果もある。 脱炭層を抑制することでばねの疲労寿命向上 やピーリ ング工程の省略することができる。 Cuの脱炭抑制効果ゃ耐 食性向上効果は 0.05%以上で発揮することができ、 後述するように Niを添加したとしても 0.5%を超えると脆化により圧延きずの原因 となりやすい。 そこで下限を 0.05%、 上限を 0.5%とした。 添加 によって室温における機械的性質を損なう ことはほとんどないが、 Cuを 0.3%を超えて添加する場合には熱間延性を劣化させるために 圧延時にビレッ ト表面に割れを生じる場合がある。 そのため圧延時 の割れを防止する Ni添加量を Cuの添加量に応じて [Cu%] く [Ni ] とすることが好ましい。 Cu 0.3%以下の範囲では圧延きずが生じ ないことから、 圧延きず防止を目的と して Ni添加量を規制する必要 がない。
Mg: 0.000ト 0.01%
Mgは MnS生成温度より も高い溶鋼中で酸化物を生成し、 MnS生成時 には既に溶鋼中に存在している。 従って MnSの析出核として用いる ことができ、 これにより MnSの分布を制御できる。 またその個数分
18 布も Mg系酸化物は従来鋼に多く見られる Si、 Aし系酸化物より微細に 溶鋼中に分散するため、 Mg系酸化物を核とした MnSは鋼中に微細に 分散することとなる。 従って同じ S含有量であっても Mgの有無によ つて MnS分布が異なり、 それらを添加する方力 s'MnS粒径はより微細に なる。 その効果は微量でも十分得られ、 Mgを添加すれば MnSは微細 化する。 しかし 0.0005 %を超えると硬質酸化物を生じやすくするほ か、 MgSなどの硫化物も生じ始め、 疲労強度の低下ゃコィ リ ング性 の低下を招く。 そこで Mg添加量を 0.0001〜0.01%とした。 高強度ば ねに用いある場合には 0.0003 %以下とすることが好ましい。 これら の元素は微量ではあるが、 Mg系耐火物を多用することで 0.0001 %程 度添加できる。 また副原料を厳選し、 Mg含有量の少ない副原料を用 いることで Mgを添加できる。 また高強度弁ばねに用いる場合には介 在物感受性が高いため、 さらに少量の 0.001%以下、 さ らには 0.000 5%以下に抑制することが望ましい。 この Mgは MnS分布等の効果によ り、 耐食性、 遅れ破壊の向上および圧延割れ防止などに効果があり 、 極力添加する方が望ましいので 0.0002〜0.0005 %の非常に狭い範 囲での添加量制御が好ましい。
Ca: 0.0002〜0.01%
Caは酸化物および硫化物生成元素である。 ばね鋼においては MnS を球状化させることで、 疲労等の破壊起点としての MnSの長さを抑 制し、 無害化することができる。 その効果は 0.0002%未満では明確 ではなく、 また 0.01%を超えて添加しても歩留まりが悪いばかりか 、 酸化物や CaSなどの硫化物を生成し、 製造上の トラブルやばねの 疲労耐久特性を低下させるので 0.01%以下と した。 この添加量は好 ましくは 0.001%以下であることが好ましい。
Hi : 0.0002〜0.01%
Hfは酸化物生成元素であり、 MnSの析出核となる。 そのため微細 分散することで Zrは酸化物および硫化物生成元素である。 ばね鋼に おいては酸化物を微細に分散するため、 Mgと同様、 MnSの析出核と なる。 それにより疲労耐久性を向上させたり、 延性を増すことでコ ィ リ ング性を向上させる。 その効果は 0.0002 %未満では明確ではな く、 また 0.01 %を超えて添加しても歩留まりが悪いばかり力、、 酸化 物や ZrN、 ZrSなどの窒化物、 硫化物を生成し、 製造上の トラブルや ばねの疲労耐久特性を低下させるので 0.01%以下とした。 この添加 量は好ましく は 0.003 %以下であることが好ましい。
Te: 0.000ト 0.01%
Teは MnSを球状化させる効果がある。 0.0002%未満ではその効果 が明確ではなく、 0.01%を超えるとマ ト リ ックスの靭性を低下させ 、 熱間割れを生じた入り、 疲労耐久性を低下させたりする弊害が顕 著となるため、 0.01%を上限とする。
Sb: 0.0002〜0.01%
Sbは MnSを球状化する効果があり、 0.0002%未満ではその効果が 明確ではなく、 0.01 %を超えるとマ ト リ ックスの靱性を低下させ、 熱間割れを生じた入り、 疲労耐久性を低下させたりする弊害が顕著 となるため、 0.01%を上限とする。
なお、 このような成分で製造された鋼は硫化物も含む非金属介在 物がばね鋼に適した形態となり、 その影響を小さくできる。
引張強度 2000MPa以上
引張強度が高ければばねの疲労特性が向上する傾向にある。 また 窒化などの表面硬化処理を施す場合でも、 鋼線の基本強度が高けれ ばさらに高い疲労特性やへたり特性を得ることができる。 一方、 強 度が高いとコィ リ ング性が低下し、 ばね製造が困難になる。 そのた め単に強度を向上させるだけでなく、 同時にコィ リ ング可能な延性 を付与することが重要で なお、 ばねとしての使用では疲労耐久性だけでなく、 へたりが重 要であり、 高負荷荷重でもへたり特性が良好なように熱処理素材は
2000MPa以上の引張強度を有することが多い。 また窒化する場合は 窒化条件の温度 500°Cにさらされても大きく軟化しない、 いわゆる 焼戻し軟化抵抗を付与することが必要である。 一方、 高強度化によ りコイ リ ング性は低下するので、 焼戻し軟化抵抗とコィ リ ング性を 両立する成分とすることが必要である。 このことから、 それを可能 とする化学成分で、 高強度ばね用鋼線では引張強度 2250MPa、 さら には 2300MPa以上とすることが望ましい。 そのため、 本発明は熱処 理後に高強度と高加工性を両立することを想定した化学成分を規定 するものである。
未溶解炭化物
高強度を得るために Cおよびその他 Mn、 T i、 V、 Nbなどいわゆる 合金元素を添加するが、 それらのうち窒化物、 炭化物、 炭窒化物を 形成する元素を多量に添加した場合、 未溶解炭化物が残留しやすく なる。 ここでいう未溶解炭化物とは上記の合金が窒化物、 炭化物、 炭窒化物を生成したいわゆる合金系炭化物だけではなく、 Fe炭化物 (セメンタイ ト) を主成分とするセメンタイ ト系炭化物を含む。 ま た合金系炭化物も厳密には窒化物との複合炭化物 (いわゆる炭窒化 物) になるものも多いため、 ここではこれら合金系の炭化物、 窒化 物およびその複合した合金系析出物を総称して合金系炭化物と記す これら炭化物を鏡面研摩しエッチングすることで観察することが できる。 または透過型電子顕微鏡のレプリカ法による炭窒化物の観 察でも得られる。 これらの未溶解炭化物である炭窒化物, 窒化物は 加熱時に十分に溶解していることから球状に見えることが多く、 鋼 線の機械的性質を大きく低下させる。 図 1 に典型的な観察例を示す。 これによると鋼にはマ トリ ックス の針状組織と球状組織の 2種が認められる。 一般に鋼は焼入れによ つて、 マルテンサイ トの針状組織を形成し、 焼戻しによって炭化物 を生成させることで強度と靱性を両立させることが知られている。 しかし、 本発明では図 1 にあるように必ずしも針状組織だけではな く、 球状組織も多く残留していることに注目し、 この球状組織が未 溶解の炭化物であり、 その分布がばね用鋼線の性能に大きく影響す ることを見出した。 この球状の炭化物はオイルテンパー処理や高周 波処理による焼入れ焼戻しにおいて、 十分に固溶されず、 焼入れ焼 戻し工程で球状化かつ成長または縮小した炭化物と考えられる。 こ の寸法の炭化物は焼入れ焼戻しによる強度と靭性には全く寄与しな い。 そのため、 鋼中 Cを固定して単に添加 Cを浪費しているだけで なく、 応力集中源にもなるため、 鋼線の機械的性質を低下させる要 因となることを見出した。
そこでこの検鏡面に占める球状炭化物に関して以下の規定を加え 、 これらによる弊害を排除するためには下記の規制が重要である。
円相当径 0. 2 m以上の占有面積率が 7 %以下、
円相当径 0. 2〜 3 mの存在密度が 1個/ / z m 2以下、
円相当径 3 m超の存在密度が 0. 00 1個/ / m 2以下
鋼を焼入れ焼戻ししてから冷間コィ リ ングする場合、 炭化物がそ のコィ リ ング特性、 すなわち破断までの曲げ特性に影響する。 これ まで高強度を得るために Cだけでなく、 C r、 V等の合金元素を多量 に添加することが一般的であつたが、 強度が高すぎて、 変形能が不 足してかコィ リ ング特性を劣化させる弊害があった。 その原因に鋼 中に析出している粗大な炭化物が考えられる。
図 2 ( a ) 、 ( b ) に SEMに取り付けた EDXによる解析例を示す。 この結果は透過電子顕微鏡でのレプリカ法でも同様の解析結果が得 られる。 従来の発明は V、 Nb等の合金元素系の炭化物だけに注目し ており、 その一例が図 2 ( a ) であり、 炭化物中に Feピークが非常 に小さいことが特徴である。 しかし本発明では従来の合金元素系炭 化物だけでなく、 図 2 ( b ) に示すように、 円相当径 3 m以下の F e3 Cとそれに合金元素をわずかに固溶した、 いわゆるセメンタイ ト 系炭化物の析出形態が重要であることを見出した。 本発明のように 従来鋼線以上の高強度と加工性の両立を達成する場合には 3 ^ m以 下のセメン夕イ ト系球状炭化物が多いと、 加工性が大きく損なわれ る。 以後、 このように球状かつ図 2 ( b ) に示したような F eと Cを 主成分とする炭化物をセメンタイ 卜系炭化物と記す。
これらの鋼中炭化物は鏡面研磨したサンプルにピクラールなどの エッチングを施すことで観察可能であるが、 その寸法などの詳細な 観察評価には走査型電子顕微鏡により 3000倍以上の高倍率で観察す る必要があり、 ここで対象とするセメン夕イ ト系球状炭化物は円相 当径 0. 2〜 3 mである。 通常、 鋼中炭化物は鋼の強度、 焼戻し軟 化抵抗を確保する上で不可欠ではあるが、 その有効な粒径は 0. m以下で、 逆に 1 / mを超えるとむしろ強度やオーステナイ ト粒径 微細化への貢献はなく、 単に変形特性を劣化させるだけである。 し かし従来技術ではこの重要性がそれほど認識されず、 V、 Nbなどの 合金系炭化物にのみ注目し、 円相当径 3 以下の炭化物、 特にセ メンタイ ト系球状炭化物は無害と考えられ、 本発明で主に対象とし ている 0. 1〜 5 m程度の炭化物に関しては検討された例は見当た らない。
また、 本発明で対象としている円相当径 3 m以下のセメンタイ ト系球状炭化物の場合には寸法だけでなく、 数も大きな要因となる 。 したがってその両者を考慮して本発明範囲を規定した。 すなわち 円相当径の平均粒径で 0. 2〜 3 mと小さ く とも、 その数が非常に 多く、 検鏡面における存在密度が 1個 を超えるとコィ リ ン グ特性の劣化が顕著になるのでこれを上限とする。
さ らに、 炭化物の寸法が 3 ^ mを超えると寸法の影響がより大き くなるため、 検鏡面における存在密度が 0. 00 1個/ m 2を超えると コィ リ ング特性の劣化が顕著になる。 したがって、 炭化物円相当径 3 m超の炭化物の検鏡面における存在密度 0. 00 1個 Z m 2を上限 とし、 本発明の範囲をそれ以下とした。
また、 セメン夕イ ト系球状炭化物の寸法がたとえ規定どおりに小 さい場合でも、 円相当径 0. 2 m以上のセメンタイ ト系炭化物の検 鏡面における占有面積が 7 %を超えるとコィ リ ング特性の劣化が顕 著になり、 コィ リ ングできなくなる。 そこで本発明では検鏡面にお ける占有面積を 7 %以下と規定した。
旧オーステナイ ト粒度番号が 10番以上
焼戻しマルテンサイ ト組織を基本とする鋼線では旧オーステナイ 卜粒径は炭化物と並んで鋼線の基本的性質に大きな影響をもつ。 す なわち旧オーステナイ 卜粒径が小さい方が疲労特性ゃコイ リ ング性 に優れる。 しかし、 いく らオーステナイ ト粒径が小さく とも上記炭 化物が規定以上に多く含まれていると、 その効果は少ない。 一般に オーステナィ 卜粒径を小さくするには加熱温度を低くすることが有 効であるが、 そのことは逆に上記炭化物を増加させることになる。 従って炭化物量と旧オーステナイ ト粒径のバランスのとれた鋼線に 仕上げることが重要である。 ここで炭化物が上記規定を満たしてい る場合について旧オーステナイ ト粒径番号が 10番未満であると十分 な疲労特性ゃコィ リ ング性を得られないので旧オーステナイ ト粒径 番号 10番以上と規定した。
さ らに高強度ばねに適用するにはさ らに細粒の方が好ましく、 1 1 番、 さ らには 12番以上とすることで高強度とコィ リ ング性を両立さ せることが可能になる。
残留オーステナイ 卜が 15質量%以下
残留オーステナイ トは偏析部ゃ旧オーステナイ ト粒界やサブグレ イ ンに挟まれた領域付近に残留することが多い。 残留オーステナイ 卜は加工誘起変態によってマルテンサイ トとなり、 ばね成形時に誘 起変態すると材料に局部的な高硬度部が生成され、 むしろばねとし てのコィ リ ング特性を低下させる。 また最近のばねはショ ッ トピー ニングゃセツチングなど塑性変形による表面強化をおこなうカ^ こ のように塑性変形を加える工程を複数含む製造工程を有する場合、 早い段階で生じた加工誘起マルテンサイ トが破壊ひずみを低下させ 、 加工性や使用中のばねの破壊特性を低下させる。 また打ちきず等 の工業的に不可避の変形が導入された場合にもコィ リ ング中に容易 に折損する。
さ らには窒化やひずみ取り焼鈍などの熱処理においても徐々に分 解することで機械的性質を変化させ、 強度を低下させたりコィ リ ン グ性が低下するなどの弊害をもたらす。
従って、 残留オーステナイ トを極力低減し、 加工誘起マルテンサ イ トの生成を抑制することで、 加工性を向上させる。 具体的には残 留オーステナイ ト量が 15 % (質量%) を超えると、 打ち疵などの感 受性が高くなり、 コィ リ ングやその他取り扱いにおいて容易に折損 するため、 15 %以下に制限した。
C 、 Mnなどの合金元素添加量や熱処理条件によって残留オーステ ナイ ト量は変化する。 そのため、 成分設計だけでなく熱処理条件の 充実が重要である。
マルテンサイ ト生成温度 (開始温度 Ms点、 終了温度 Mi点) が低温 になると、 焼入れ時にかなりの低温にしなければマルテンサイ トを 生成せず、 残留オーステナイ トが残留しやすい。 工業的な焼入れで P T/JP2005/022418 は水またはオイルが用いられるが、 残留オーステナイ 卜の抑制は高 度な熱処理制御が必要となる。 具体的には冷却冷媒を低温に維持し たり、 冷却後も極力低温を維持し、 マルテンサイ 卜への変態時間を 長く確保するなどの制御が必要となる。 工業的には連続ラインで処 理されるため、 冷却冷媒の温度は容易に 1 00 °C近く まで上昇するが 、 60 T:以下に維持することが好ましく、 さ らには 40で以下と低温が より好ましい。 さらにマルテンサイ ト変態を十分に促進するために 1 s 以上冷却媒体内に保持する必要があり、 冷却後の保持時間を確 保することも重要である。
セメン夕イ ト系炭化物密度希薄域面積率 : 3 %以下
鋼を様々な熱処理を行い引張強度を 2 1 00MP a以上に調整した場合 、 一般に焼戻しマルテンサイ 卜と呼ばれる転位の多いフェライ 卜素 地にセメン夕イ トが分散した組織となる。 しかしセメン夕イ トの分 布は決して均一ではなく、 その密度に不均質を生じることが多い。 その原因は本発明で規定した C量の鋼を焼入れた場合、 ラスマルテ ンサイ 卜だけでなく、 レンズマルテンサイ トが生じ、 焼戻し過程に おける炭化物析出メカニズムが異なることもその一因である。 さ ら に現実の鋼には偏析、 バン ド組織のような添加元素の不均質も存在 していること、 残留オーステナイ トのように焼入れ過程ではオース テナイ トであるが、 焼戻し過程でフェライ トとセメンタイ トに分解 する場合もある。 したがってセメン夕イ ト生成サイ トも様々である ため、 均一に分散させることが困難である。
本発明では高強度 (高硬度 =疲労耐久特性、 窒化特性、 へたりに 直結) と材料の延性 (本発明ではばねのコィ リ ング特性に直結する 機械的性質) を両立させるために、 ミクロ組織を均質化することが 重要である。 図 2 に設定倍率 5000倍で撮影した例を示す。 具体的に は図 3 ( b ) A、 Bに示すようなミクロ組織の不均一領域を炭化物 5 022418 希薄域とみなし、 その面積率を制御することが重要であることを見 出した。
炭化物希薄域のさらに厳密な定義は後述するが、 その大きさが円 相当径で 2 m未満の場合には力学的にも大きな影響がないため、 無視できる。
セメンタイ 卜系炭化物密度希薄域の定義
こ こで炭化物希薄域の定義についてさ らに詳しく述べる。
鋼線を鏡面研磨し、 電解エッチングを施すと、 わずかにフェライ 卜が溶出することで、 凹凸を生じて、 結晶粒界や生成した炭化物を 浮き出たせることができる。 これを利用して走査型電子顕微鏡で鋼 線のエッチング面のミクロ組織、 特に炭化物分布を詳細に観察でき る。
その中で図 3 ( b ) に示すような炭化物分布の不均一部分の拡大 例を図 4、 図 5 に示す。 内部には微細な炭化物が周辺組織と異なる 分散形態で析出していたり、 その存在頻度が極めて少なかったり、 さ らに炭化物が明確に見られない場合でも周辺にく らベて深く腐食 され、 凹部を形成している。
エッチング後のミクロ組織観察において炭化物は観察画像中では 白く見えるため、 本発明では、 この腐食されて凹んだ領域中に観察 される炭化物の占有面積が 60 %以下の場合、 炭化物希薄域とした。 この炭化物希薄域に炭化物が析出している場合には、 凹んだ領域中 に針状または樹枝状炭化物が見られる場合 (図 4 ) と、 粒状炭化物 が見られる場合 (図 5 ) の両者があるが、 その微細炭化物の大きさ は ( 1 ) 針状または樹枝状炭化物の場合、 その個々の太さが 0. 3 ^ m以下、 ( 2 ) 粒状炭化物の場合、 円相当径で 0. 7 ^ m以下である 。 これ以上大きな炭化物の存在する領域は炭化物希薄域から除外し た。 このようにして選択した炭化物分布が希薄な領域の円相当径が 2 m以上の領域は力学特性に影響をあたえるため、 無視できない。 したがってこのような円相当径 2 m以上の炭化物希薄域を規定対 象とした。
セメンタイ ト系炭化物密度希薄域の測定方法
熱処理後の鋼線を研磨して電解エッチングし、 ( 1 ) 微細な炭化 物析出し、 周囲に比べて炭化物個数密度が小さい場所と ( 2 ) エツ チングによって腐食され凹部を形成している場所を現出させる。 電解エッチングでは、 電解液 (ァセチルアセトン 10質量%、 テト ラメチルアンモニゥムクロライ ド 1質量%、 残成分メチルアルコー ルの混合液) 中にサンプルを陽極、 白金を陰極として低電位による 電流発生装置を用いて電解作用によりサンプル表面を腐食する。
電位は一 50〜― 200mV v s SCEの範囲でサンプルに適した電位で一 定とする。 本発明の鋼線に対しては通常一 l OOmV v s SCEで一定にす ることが適している。
通電量はサンプル素材の総表面積に依存し、 「資料の総表面積」 X 0. 133 [ c / cm2 ] を通電量とする。 埋め込んだ場合でも樹脂中に 埋もれたサンプル面の面積も加えてサンプル総表面積を算出する。 通電してから l O s e c保持した後、 通電を停止し、 洗浄することで容 易に走査型電子顕微鏡でセメン夕イ トなど鋼中炭化物、 ミクロ組織 を観察することができる。
この腐食面を走査型電子顕微鏡で 1000倍以上の倍率で観察するこ とで、 炭化物希薄域を特定できる。 走査型電子顕微鏡によるエッチ ング後のミクロ組織観察において炭化物は観察画像中では白く見え るため、 炭化物希薄域の候補領域を走査型電子顕微鏡で撮影する。 その倍率は 1000倍以上であり、 5000〜 10000倍が好ましい。
まず、 この炭化物希薄域の候補領域の大きさが円相当径で 2 未満であれば領域は力学特性への影響が小さいため、 無視する。 一 方、 この炭化物希薄域の候補領域の大きさが、 円相当径で 2 ^ m以 上であれば、 内部の炭化物分布を測定する。 撮影した炭化物希薄域 の候補領域に含まれる炭化物希薄域の候補領域を画像処理装置ルー ゼックスにて二値化し、 候補領域の面積および円相当径と候補領域 内の炭化物の面積率占有面積および円相当径をそれぞれ測定し、 炭 化物の占有面積率が候補領域の 60 %以下の場合、 その候補領域を炭 化物希薄域とした。
このように抽出した炭化物希薄域の面積および円相当径を画像処 理装置で算出し、 測定視野内に見られる円相当径 2 z m以上の炭化 物希薄域の占有面積率を測定し、 本発明ではそれが 3 %以下になる よう規定した。
観察部位は脱炭や中心偏析などの特殊な状況を排除できるように 熱処理線材 (鋼線) の半径の中央付近、 いわゆる 1 / 2 R部を無作 為に観察し、 測定面積は 3000 x m 2以上である。
この炭化物希薄域の面積率が 3 %以下であればコィ リ ング性が良 好であり、 2200MP aを超える高強度であってもコィ リ ング性を損な う ことなく、 良好なコィ リ ングが可能である。 そこでそれを上限と した。 コィ リ ング性はこの炭化物希薄域が小さい方で良好である。 したがって好ましく は 1 %以下にすることが好ましい。
ちなみにさらに厳密に無視する炭化物希薄域の大きさを円相当径 1 m未満とした場合でも希薄域面積率が 5 %を超えると曲げ加工 性が低下する。
セメンタイ ト系希薄域面積率の抑制方法
一般にばね鋼は連続錶造後にビレツ 卜圧延、 線材圧延を経て伸線 され、 冷間コィ リ ングばねではオイルテンパー処理や高周波処理に よって強度を付与する。 その際、 セメンタイ ト系炭化物希薄域を抑 制するためには材料の局部的な不均質を避け、 熱処理組織を均質に することが重要で、 均質かつ適正な焼戻しマルテンサイ 卜組織にす ることが重要である。 その際、 ラスマルテンサイ トの焼戻し組織が 好ましいことを見出した。
焼戻しラスマルテンサイ 卜組織中の局部的な不均質の原因として は ( 1 ) 未溶解炭化物、 ( 2 ) 偏析、 ( 3 ) 残留オーステナイ ト、 ( 4 ) 粗大な旧オーステナイ ト粒、 ( 5 ) レンズマルテンサイ ト、 ( 6 ) 局部的なベイナイ トなどが考えられる。 この ( 1 ) 〜 ( 6 ) についてはばね用鋼線の熱処理後の炭化物の分布に大きく影響し、 これらを抑制することがセメンタイ 卜系炭化物希薄域面積率を小さ くするのに有効である。 なお不均質には硬質介在物も考えられるが 焼入れ焼戻し等の熱処理ではほとんど変化しないため考慮する必要 はない。
たとえば合金系未溶解炭化物ゃセメン夕ィ ト系球状炭化物を抑制 するにはオイルテンパー処理や高周波処理などの鋼線の強度を決定 する最終熱処理だけでなく、 伸線に先立つ圧延時にも注意を払う必 要がある。 すなわちセメンタイ ト系球状炭化物や合金系炭化物は圧 延などでの未溶解のセメンタイ トゃ合金炭化物が核となって成長し たと考えられることから、 圧延などの各加熱工程において十分成分 を固溶させることが重要である。 本発明では圧延においても十分に 固溶できる高温に加熱して圧延し、 伸線に供することが重要なこと を見出した。
もし圧延段階ゃパテンチング段階での炭化物の固溶が不足して最 終熱処理に供されると、 未固溶炭化物まわり に拡散途上の Cが偏析 する。 またたとえ炭化物が固溶しても未固溶炭化物の痕跡として C や Nの濃化域が残留することが多く 、 焼入れ時にその未固溶炭化物 まわりや濃化域に局部的なレンズマルテンサイ トを生成しやすくな る。
レンズマルテンサイ トは元来 c量やその他合金元素が多いと生成 しゃすい傾向になるため、 未溶解炭化物が少なく とも、 偏祈が大き い場合や基本成分の Cを含む Fe以外の添加元素が多い場合にはレン ズマルテンサイ 卜が生じやすく、 組織不均質の原因となる。
さ らに熱処理時にオーステナイ ト粒径が大きいと、 レンズマルテ ンサイ 卜の大きさも大きくなりやすいため、 そのセメンタイ ト系炭 化物希薄域を抑制するには不利である。
残留オーステナイ トも多量に存在すると、 セメン夕イ ト系炭化物 の分布が希薄な領域を多く生じる。
さ らに焼入れ性が不足してマルテンサイ 卜組織にならない場合、 ペイナイ 卜が生じる場合もばね鋼として適正なラスマルテンサイ 卜 の焼戻し組織とは異なる不均質を生じるため、 セメン夕イ ト系炭化 物希薄域を抑制するには不利である。
このような知見のもと、 圧延では熱処理伸線前において 1 100°Cを 超える温度で一度加熱し、 析出物が大きく成長しないように抽出後 5分以内に圧延を完了させる。 この加熱温度は好ましくは 1 150°C以 上、 さ らには 1200°C以上であることが好ましい。
さ らに伸線前のパテンチング時およびそれ以降焼入れ焼戻し工程 においても 900°C以上の温度で加熱し熱処理する。 このパテンチン グ時の加熱温度は高温であることが好ましく、 930°C以上、 さ らに は 950°C以上が好ましい。
焼入れ焼戻し時には加熱速度 10 / s 以上、 A 3点以上の温度で 保定時間 5 m i n以下、 冷却速度 50で / s 以上で 100°C以下まで冷却し 、 さらに l O : / s 以上の加熱速度で加熱し、 焼戻し温度での保定時 間が 15m i n以下で処理する。 炭化物の固溶の観点からは A 3点より 高く十分に加熱することが望ましい。 一方ではオーステナイ 卜粒径 2418 が成長しないように短時間で終了させることが好ましい。
焼入れ時の冷媒は 70°C以下、 さ らに 60°C以下と低温である方が好 ましい。 これは残留オーステナイ 卜とペイナイ 卜の生成を避けるた めである。 また冷却時間も極力長く して残留オーステナイ トを抑制 し、 十分にマルテンサイ 卜変態を完了させることが望ましい。
パテンチングが省略される場合もあるが、 あらかじめ圧延段階か ら焼入れ加熱時に十分に炭化物を固溶できるように高温で加熱して おく ことが重要である。
このように炭化物希薄域面積率を小さくするには適切な化学成分 とそれに適した熱処理を行う ことで、 レンズマルテンサイ ト、 残留 オーステナイ ト、 偏析を抑制し、 旧ォ一ステナイ ト粒径を小さ くす ることが有効である。 旧オーステナイ ト粒径を小さくするには加熱 温度を低く し、 加熱時間を短くすることが有効であるが、 未溶解炭 化物を増加させる危険があるため、 未溶解炭化物を抑制しつつ、 炭 化物希薄域を抑制し、 さらに高強度を達成するには化学成分とそれ に適するように圧延時から制御し、 パテンチングなど中間での加熱 工程でも十分に合金元素を溶解する必要がある。 実施例
<実施例 1 >
表 1 〜 3 に各種性能を評価するために作成した鋼材の成分を、 そ して表 4〜 6 に鋼材の溶製方法、 性質等を示す。 鋼材は少量真空溶 解炉 (1 0kg、 1 50 kg , 2 t のいずれか) または O t 転炉で溶製した 。 各実施例の溶製に用いた炉を示す。 真空溶解炉での溶製の塲合、 マグネシア坩堝を使用するなど、 耐火物や原料のからの酸化物生成 元素の混入に十分の注意を払い、 実用転炉溶製材と同様の組成にな るように調整した。 これらの少量溶解サンプルのうち、 150kg材はダミービレツ 卜に 溶接することで圧延した。 また 10kg溶解材は Φ 13まで鍛造後、 熱処 理 (焼準) 、 機械加工 ( Φ 10mm x 400mni) の順に処理して細い直棒 を作成した。 この段階で表層酸化物分布、 鋼中炭化物などの観察を 行った。
一方、 本願発明の発明例 (実施例 33) および比較例 (実施例 62) は 270 t 転炉によって精練したものを連続铸造によってビレッ トを 作成した。 またその他の実施例は 2 t —真空溶解炉で溶製後、 圧延 によってビレッ トを作成した。 その際、 発明例では 1200°C以上の高 温に一定時間保定した。 その後いずれの場合もビレツ 卜から Φ 8 mm に圧延した。
ばね製作において、 これらの材料はさ らにパテンチングー伸線さ せ、 さ らに工業的な連続炉を用いた焼入れ焼戻しすることが一般的 である。
そこで、 本試験材において、 10kg溶解材は直棒に加工されている ので、 それらをダミーワイヤーロッ ドに連結することで、 工業的な パテンチング、 伸線さらには加熱炉を用いた焼入れ、 鉛槽を用いた 焼戻しを行って鋼線とした。
150kg溶解材、 2 t —真空溶解材および 270 t 転炉溶製材は実機圧 延されているため、 そのままパテンチング、 伸線さ らには加熱炉を 用いた焼入れ焼戻しを行って鋼線とした。 パテンチングにおける加 熱温度は 900°C以上であり、 930 :以上が好ましい。 本発明では 950 でとした。
これらの材料は伸線によって Φ 4 mmと した。 一方、 比較例は通常 の圧延条件で圧延され伸線に供した。
また、 Φ 4 mmで処理した場合の本発明と比較鋼の化学成分、 引張 強度、 コィ リ ング特性 (引張試験における伸び) 、 焼鈍後硬さ、 平 418 均疲労強度を評価した。
化学成分によって強度は異なってく るが、 本発明については引張 強度 2200MPa以上になるように熱処理した。 一方、 比較例に関して も同じ焼戻し温度で熱処理した。
すなわち、 焼入れ焼戻し処理では伸線材の鋼内部温度が十分に加 熱されるよう、 加熱炉通過時間を設定した。 本実施例では加熱温度 950°C、 加熱時間 300秒、 焼入れ温度 50°C (オイル槽実測温度) 、 そ の冷却時間も 5分以上と長く保定した。 さらに焼戻しは鉛槽を用い て温度 450で、 焼戻し時間 3分で焼戻し、 強度を調整した。 その結 果得られた大気雰囲気での引張強度は表 1 中に明記したとおりであ る。
得られた鋼線はそのまま引張特性に供すると共に、 一部には 400 °C X 30分の焼鈍を行つて硬さを測定し、 回転曲げ疲労試験に供した 。 疲労試験片ではショ ッ トピーニングにより表層の熱処理スケール を除去した。
引張特性は J I S Z 2201 9号試験片により J I S Z 2241に準拠して行 い、 その破断荷重から引張強度を算出した。
疲労試験は中村式回転曲げ疲労試験であり、 10本のサンプルが 50 %以上の確率で 107サイクル以上の寿命を示す最大負荷応力を平均 疲労強度と した。
また破断サンプルの破面の破壊起点を走査型電子顕微鏡で確認す ることで、 介在物起因と考えられる破断の発生確率を介在物出現率 として評価した。
表 1〜表 3 に化学成分とその評価結果を表 4〜表 6 に示す。 φ 4 mmの鋼線に関しては化学成分が規定範囲外であるとコィ リ ング性の 指標となる伸びが小さく コィ リ ング特性が劣ったり、 中村式回転曲 げ疲労強度が劣り、 高強度ばねには使用できない。 実施例 61〜63は W量が規定に不足しているため、 軟化抵抗が不足 し、 十分な疲労耐久性を確保できなかった例である。 450 : x i hr 保定の窒化シミュレー ト熱処理後の内部硬度は従来ばね並の HV550 以下であり、 さらなる軟化抵抗が必要なことが分かる。
実施例 64、 65は Zrは規定内であるものの、 A1が規定より多く添加 された例で酸化物系介在物の存在形態に影響を及ぼし、 疲労耐久性 が低下する傾向にある。
また、 Zrによる硫化物制御能力にも影響し、 たとえ Zrが規定どお りの添加量であっても A1が多いと硫化物析出に適さない酸化物を生 成させるため、 コィ リ ング性にも影響して、 それを低下させる。 実施例 66〜68は Zr添加量が規定より も多い場合である。 Zrが多い 場合には酸化物系介在物の寸法に影響し、 疲労耐久性を低下させる 。 この場合も硫化物析出に適さない酸化物の生成させるため、 コィ リ ング性にも影響して、 それを低下させる。
実施例 69〜71は Zr添加量が規定より も少ない場合である。 Zrが少 ない場合には硫化物の制御が十分でないためにコィ リ ング性 (伸び ) を低下させ、 高強度鋼線における加工性を確保できない。
実施例 72は Mgを、 実施例 73は Tiを規定より多く添加した場合で、 前者は酸化物系、 後者は窒化物系の硬質介在物が観察され、 疲労耐 久性が低下している。
実施例 65、 74、 75も酸化物生成元素の添加量が規定を超え、 疲労 強度が低下した例である。
さ らに実施例 76、 77は C量が規定より不足した場合で、 工業的な 焼入れ焼戻し工程において十分な強度を確保できず、 高強度ばねと しての疲労強度が不足した例である。
また実施例 78、 79はさ らに C量が規定量より も過剰に添加された 場合である。 この場合強度は確保できるものの、 コィ リ ング特性が 劣り、 高強度鋼線における加!:性を確保できなレ 。
表 1
Figure imgf000039_0001
表 2
化学成分
Figure imgf000040_0001
表 3
化学成分
Figure imgf000041_0001
表 4
Figure imgf000042_0001
表 5
Figure imgf000043_0001
表 6
Figure imgf000044_0001
ぐ実施例 2 >
Φ 4 mmで処理した場合の本発明と比較鋼の化学成分を表 7 〜 9 に 示し、 セメン夕イ ト系炭化物希薄域面積率、 合金系/セメンタイ ト 系球状炭化物の占有面積率、 円相当径 0. 2〜 3 mのセメン夕イ ト 系球状炭化物存在密度、 円相当径 3 / m超のセメン夕イ ト系球状炭 化物存在密度、 旧オーステナイ ト粒度番号、 残留オーステナイ ト量 (質量%) 、 引張強度、 コィ リ ング特性 (引張伸び) および平均疲 労強度を表 10〜 12に示す。
サンプル製造方法 (W i re- r od )
本願発明の発明例 1 は 250 t転炉によって精練したものを連続铸 造によってビレツ 卜を作成した。 またその他の実施例は 2 t —真空 溶解炉で溶製後、 圧延によってビレッ トを作成した。 その際、 発明 例では 1200°C以上の高温に一定時間保定した。 その後いずれの場合 もビレツ 卜から φ 8 mmに圧延した。
サンプル伸線
圧延線材は伸線によって Φ 4 D1D1とした。 その際、 伸線し易い組織 とするために伸線前にパテンチングした。 その際、 十分に炭化物等 が固溶するように 900で以上に加熱することが望ましく、 発明例は 9 30〜950でで加熱し、 パテンチングした。 一方、 比較例 68、 69は従 来の 加熱でパテンチングされ伸線に供した。
サンプル製造方法 (0T、 I QT-W i re)
焼入れ焼戻し処理 (オイルテンパー処理) では伸線材を加熱炉を 通過させるため、 それをシミュレー ト して鋼内部温度が十分に加熱 されるよう、 加熱炉通過時間を設定した。 本実施例では輻射炉を用 いた焼入れでは加熱温度 950°C、 加熱時間 300秒、 焼入れ温度 50°C ( オイル槽の実測温度) とした。 その冷却時間も 5分以上と長く保定 した。 さ らに焼戻し温度 400〜 500°C、 鉛槽を用いて焼戻し時間 3分 で焼戻し、 強度を調整した。 その結果得られた大気雰囲気での引張 強度は表 1 1中に明記したとおりである。
さ らに高周波加熱を用いる場合には加熱温度 1000°C、 加熱時間 15 秒、 焼入れは水冷である。 その強度を 2250MPa以上となるように焼 戻し温度を調整した。
化学成分によって炭化物量、 強度は異なってく るが、 本発明につ いては引張強度 2 l OOMPa程度かつ請求項に示す規定を満たすように 化学成分にあわせて熱処理した。 一方、 比較例に関しては単に引張 強度をあわせるように熱処理した。 何れもショ ッ トピーニングによ りスケールを除去して試験に供した。 ミク口組織評価方法
炭化物の寸法および数の評価は熱処理ままの鋼線の長手方向断面 に鏡面まで研磨し、 さ らにピク リ ン酸によってわずかにエッチング して炭化物を浮き出させた。 光学顕微鏡レベルでは炭化物の寸法測 定は困難なため、 鋼線の 1 / 2 R部を走査型電子顕微鏡で倍率 X 50 00倍にて無作為に 10視野の写真を撮影した。 走査型電子顕微鏡に取 り付けた X線マイクロアナライザ一にてその球状炭化物がセメン夕 ィ 卜系球状炭化物であることを確認しつつ、 その写真から球状炭化 物を画像処理装置を用いて 2値化することで、 その寸法、 数、 占有 面積を測定した。 全測定面積は 3088. 8 m 2である。
引張、 疲労 (回転曲げ)
引張特性は J I S Z 220 1 9号試験片により I I S Z 224 1に準拠して行 い、 その破断荷重から引張強度を算出した。 引張強度は熱処理鋼線 の疲労耐久特性に直結することが知られており、 コィ リ ング等の加 ェ性を阻害しない範囲で引張強度は高い方が好ましい。
ノ ッチ曲げ試験は実施例 1 の方法で行った。
疲労試験は中村式回転曲げ疲労試験であり、 表層の熱処理スケー ルを除去後試験に供して、 10本のサンプルが 50 %以上の確率で 1 07 サイクル以上の寿命を示す最大負荷応力を平均疲労強度とした。 表 7 〜 1 2に示すとおり、 φ 4 Mの鋼線に関しては化学成分が規定 範囲外であると炭化物の制御が困難になり、 コィ リ ング性の指標と なる引張試験における伸びに見られるように変形特性からコィ リ ン グ特性が劣ったり、 引張強度を低下させ、 さ らには疲労強度が劣る 場合もある。 また化学成分が規定範囲内であっても事前の焼鈍によ る炭化物の安定化や焼入れ時の加熱不足による未固溶炭化物の残留 、 焼入れの冷却不足など、 熱処理条件の不備により最大酸化物径ゃ 旧オーステナイ 卜粒径が本規定範囲外にある比較材もコィ リ ング特 性あるいは引張特性、 疲労特性が劣る。 一方、 炭化物に関する規定 を満たしても強度が不足していると疲労強度が不足し、 高強度ばね には使用できない。
圧延、 特に抽出温度を 1 20ITC以上の高温で、 伸線時のパテンチン グおよび焼入れ時の加熱温度をそれぞれ 900°C以上にすることで未 溶解炭化物を避けることができる。 さ らに旧オーステナイ ト粒径を 小さ くするため、 通線速度を早くするか、 温度を比較的低温に維持 するかのいずれかの手法により未溶解炭化物の生成を抑制しつつォ —ステナイ ト粒度番号を 10番以上にすることができる。 またその際 、 Cやその他合金元素の偏析を抑制できるため、 炭化物希薄域も小 さ く、 良好な曲げ特性と焼戻し軟化抵抗および疲労強度をすベて確 保できる。 I Q T (高周波加熱) 処理を想定した場合には焼入れ時 の加熱温度は輻射炉加熱のそれより も数十 高く設定した。 逆に加 熱時間は短時間である。
圧延、 パテンチング、 焼入れ時の加熱のいずれも十分で未溶解炭 化物、 偏析を避けつつ、 オーステナイ ト粒径を微細に維持し、 炭化 物希薄域を抑制した場合には疲労強度とコィ リ ング性を両立するこ とが可能である。
表に示した実施例は特に示さない限り、 圧延加熱温度 1 220°C、 パ テンチング温度 950t:であり (実施例 7および 18のみ 930°C ) 、 A : 0T処理 (輻射炉) を想定した場合 940で、 B : I QT (高周波加熱) を 想定した場合、 1000°Cで加熱し焼入れた。 焼入れ後はそれぞれの鋼 種に合わせた焼戻し条件を選択し、 引張強度を 2200MP a以上になる ように設定した。
コィ リ ング性においては、 引張試験における伸びで評価した。 こ の伸びが 1 %未満の場合にはコィ リ ング性が困難となるため、 7 % 以上であれば工業的なばね加工が可能と判定した。 比較例 48、 49は C量が不足し、 焼戻し温度を低下させても強度が 確保できず、 疲労強度に劣った。
比較例 50、 5 1では焼入れ時の加熱温度を 880°Cと本成分範囲に対 して低温で加熱したために未固溶炭化物が多数みられ、 十分なコィ リ ング性を確保できなかった。
また合金元素を多量に添加した比較例 52〜 59では通常の加熱にお いて固溶が不十分なため、 未固溶炭化物が多く見られ、 コィ リ ング 性を確保できなかった。
比較例 60は焼入れ時の加熱温度を 1020でと高く したため、 炭化物 希薄域が大きくなり十分なコィ リ ング性を確保できなかった例であ る。
さ らに実施例 6 1〜63は C、 Mn、 Pなどの偏析しゃすい元素が多量 に含まれるため炭化物希薄域が大きくなり、 十分なコィ リ ング性を 確保できなかった。
実施例 64〜67では圧延加熱温度が 1050°Cと比較的低温加熱で圧延 したため、 圧延材段階では未固溶炭化物が残留し、 さらに短時間の パテンチング、 焼入れ加熱ではその影響を排除しきれなかったため に炭化物希薄域が大きくなり、 十分なコィ リ ング性を確保できなか つた。
実施例 68、 69では故意にパテンチングを 890°Cで行い伸線したも ので、 焼入れ段階では十分に加熱して未固溶炭化物を抑制したもの の、 オーステナイ ト粒径が大きくなつたり、 成分の偏析ゃ未固溶炭 化物の影響をうけて焼入れ組織に不均質を生じ、 炭化物希薄域が規 定量より も多く観察された。 その結果、 コィ リ ング特性を十分に確 保できなかった。
実施例 70では焼戻し温度を 600°Cとして強度を低く設定した場合 で、 疲労強度が不足した。 実施例 7 1〜73はたとえ炭化物希薄域が小さく とも冷却速度を確保 できないなどの理由で残留オーステナイ トが規定以上になった例で ある。 オーステナイ 卜粒径は小さいものの、 やはり焼入れ時の冷却 油を 80で以上として故意に残留オーステナィ 卜量を大きく した。 そ の結果、 強度が不足し、 疲労特性が確保できなかった。
実施例 74〜77は焼入れ時の加熱を 1000°Cとし、 未固溶炭化物を抑 制した場合であるが、 オーステナイ ト粒径が大きくなるため、 十分 な延性を確保できず、 コィ リ ング性を確保できなかった。
さらに実施例 78、 79は S iが低下しているため、 十分な焼戻し軟化 抵抗、 へたり性を確保できなかった例である。
表 7
Figure imgf000050_0001
表 8
Figure imgf000051_0001
表 9
Figure imgf000052_0001
表 10
Figure imgf000053_0001
表 11
Figure imgf000054_0001
表 12
Figure imgf000055_0001
産業上の利用可能性
本発明鋼は、 冷間コィ リ ングばね用鋼線中のセメンタイ 卜を含む 球状炭化物、 硬質酸化物、 硫化物を制御することで、 強度を 2000MP a以上に高強度化するとともに、 ばね用鋼線中のセメンタイ トを含 む球状炭化物の占有面積率、 存在密度、 オーステナイ ト粒径、 残留 オーステナイ ト量を小さくすることで、 強度を 2000MPa以上に高強 度化するとともに、 コィ リ ング性を確保し高強度かつ破壊特性に優 れたばねを製造可能になる。

Claims

請 求 の 範 囲
1 . 質量%で、 C : 0.45〜 70%、
Si : 1.0〜3.0%、
Mn ·· 0. ト 2.0%、
P : 0.015%以下、
S : 0.015%以下、
N : 0.0005〜0.007%、
t - O : 0.0002〜0.01%、
を含み、 残部 Feおよび不可避的不純物からなり、 さらに、 Al≤0.01 %、 Ti≤ 0.003 %に制限したことを特徴とするばね用鋼。
2. 請求項 1記載の鋼に、 更に、 Cr : 0.05〜2.5%、 Zr: 0.0001 〜0.0005 %を含有することを特徴とするばね用鋼。
3. 請求項 1 または 2記載の鋼を用いて、 圧延、 伸線加工、 熱処 理した鋼線であって、 該鋼線が検鏡面に占めるセメン夕イ ト系球状 炭化物および合金系炭化物に関し、
円相当径 0. 以上の占有面積率が 7 %以下、
円相当径 0.2〜 3 ii mの存在密度が 1個/; m2以下、
円相当径 3 /xm以上の存在密度が 0.001個ノ m2以下、
を満たし、 かつ旧オーステナイ ト粒度番号が 10番以上、 残留ォ一 ステナイ 卜が 15質量%以下、
円相当径 2 m以上のセメンタイ 卜系炭化物の存在密度が小さい 希薄域の面積率が 3 %以下、 であることを特徴とするばね用熱処理 鋼線。
4. 請求項 1 または 2記載のばね用鋼において、 さ らに、 質量% で、 W : 0.05〜し 0%、 Mo: 0.05〜 1.0%、 V : 0.05〜 1.0%、 Nb: 0 .01〜0.05%、 Ni : 0.05〜3.0%、 Co : 0.05〜 3.0 %、 B : 0.0005〜0
.006 %、 Cu: 0.05〜0.5%、 Mg : 0.0002〜0.01%、 Ca : 0.0002〜 0.0 1%、 Hf : 0.0002〜0.01%、 Te : 0.0002〜0.01%、 Sb : 0.0002〜 0· 0 1%の 1種または 2種以上を含むことを特徴とするばね用鋼。
5. 請求項 3記載のばね用熱処理鋼線において、 さ らに、 質量% で、 Cr : 0.05〜2.5%、 W : 0.05〜1.0%、 Zr: 0.0001〜 0· 0005 %、 Mo: 0.05〜 1.0%、 V : 0· 05〜 1.0%、 Nb: 0.01〜 0.05 %、 Ni : 0.05 〜3.0%、 Co: 0.05〜3.0%、 B : 0.0005〜0.006 % , Cu: 0.05〜0.5 %、 Mg: 0.0002〜0.01%、 Ca: 0.0002〜0.01%、 Hi : 0.0002〜 0.01 %、 Te : 0.0002〜0.01%、 Sb: 0.0002〜 0.01 %の 1種または 2種以 上を含むことを特徴とするばね用熱処理鋼線。
PCT/JP2005/022418 2004-11-30 2005-11-30 高強度ばね用鋼および鋼線 WO2006059784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0514009A BRPI0514009B1 (pt) 2004-11-30 2005-11-30 arame de aço tratado termicamente para uso em molas
US11/630,222 US10131973B2 (en) 2004-11-30 2005-11-30 High strength spring steel and steel wire
EP05814388.4A EP1820869B1 (en) 2004-11-30 2005-11-30 Spring-use heat treated steel wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004346996 2004-11-30
JP2004346995 2004-11-30
JP2004-346996 2004-11-30
JP2004-346995 2004-11-30

Publications (2)

Publication Number Publication Date
WO2006059784A1 WO2006059784A1 (ja) 2006-06-08
WO2006059784A9 true WO2006059784A9 (ja) 2006-08-10

Family

ID=36565205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022418 WO2006059784A1 (ja) 2004-11-30 2005-11-30 高強度ばね用鋼および鋼線

Country Status (5)

Country Link
US (1) US10131973B2 (ja)
EP (2) EP2465963B1 (ja)
KR (1) KR100851083B1 (ja)
BR (1) BRPI0514009B1 (ja)
WO (1) WO2006059784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170755A1 (ja) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 曲げ加工性に優れた熱処理鋼線

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968938B1 (ko) * 2006-11-09 2010-07-14 신닛뽄세이테쯔 카부시키카이샤 고강도 스프링용 강 및 고강도 스프링용 열처리 강선
JP4163239B1 (ja) * 2007-05-25 2008-10-08 株式会社神戸製鋼所 疲労特性に優れた高清浄度ばね用鋼および高清浄度ばね
KR100985357B1 (ko) * 2007-06-19 2010-10-04 주식회사 포스코 피로수명이 우수한 고강도, 고인성 스프링, 상기 스프링용강선재와 강선 및 상기 강선과 스프링의 제조방법
WO2010070958A1 (ja) 2008-12-19 2010-06-24 新日本製鐵株式会社 表面硬化用機械構造用鋼及び機械構造鋼部品
US8734600B2 (en) * 2009-07-09 2014-05-27 Nippon Steel & Sumitomo Metal Corporation High strength steel wire for spring
JP5676146B2 (ja) 2010-05-25 2015-02-25 株式会社リケン 圧力リング及びその製造方法
JP5425736B2 (ja) 2010-09-15 2014-02-26 株式会社神戸製鋼所 冷間加工性、耐摩耗性、及び転動疲労特性に優れた軸受用鋼
EP2431489A1 (en) * 2010-09-20 2012-03-21 Siemens Aktiengesellschaft Nickel-base superalloy
US9523404B2 (en) * 2011-08-18 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Spring steel and spring
WO2013041541A1 (en) * 2011-09-20 2013-03-28 Nv Bekaert Sa Quenched and partitioned high-carbon steel wire
JP6033796B2 (ja) 2012-01-31 2016-11-30 日本発條株式会社 リング状ばねおよびその製造方法
JP6018394B2 (ja) * 2012-04-02 2016-11-02 株式会社神戸製鋼所 高強度ばね用中空シームレスパイプ
JP5973903B2 (ja) 2012-12-21 2016-08-23 株式会社神戸製鋼所 耐水素脆性に優れた高強度ばね用鋼線およびその製造方法並びに高強度ばね
CN105121680B (zh) 2013-04-23 2017-03-08 新日铁住金株式会社 耐疲劳特性优异的弹簧钢及其制造方法
WO2016143850A1 (ja) 2015-03-10 2016-09-15 新日鐵住金株式会社 懸架ばね用鋼及びその製造方法
JP6453693B2 (ja) * 2015-03-31 2019-01-16 株式会社神戸製鋼所 疲労特性に優れた熱処理鋼線
KR101745192B1 (ko) 2015-12-04 2017-06-09 현대자동차주식회사 초고강도 스프링강
KR101745196B1 (ko) 2015-12-07 2017-06-09 현대자동차주식회사 초고강도 스프링강
KR101745210B1 (ko) 2015-12-15 2017-06-09 현대자동차주식회사 고내구 코일스프링강
KR101776490B1 (ko) 2016-04-15 2017-09-08 현대자동차주식회사 내식성이 우수한 고강도 스프링강
KR101776491B1 (ko) * 2016-04-15 2017-09-20 현대자동차주식회사 내식성이 우수한 고강도 스프링강
WO2021075509A1 (ja) 2019-10-16 2021-04-22 日本製鉄株式会社 鋼線
US12006994B2 (en) * 2019-10-16 2024-06-11 Nippon Steel Corporation Valve spring
DE112020006562T5 (de) 2020-06-15 2023-01-12 Sumitomo Electric Industries, Ltd. Federstahldraht
US11807923B2 (en) 2020-06-17 2023-11-07 Sumitomo Electric Industries, Ltd. Spring steel wire

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941502B2 (ja) 1980-08-05 1984-10-08 愛知製鋼株式会社 耐へたり性のすぐれたばね用鋼
GB2113751B (en) * 1982-01-12 1985-10-30 Sumitomo Metal Ind Steel wire for use in straned steel core of an aluminum conductor steel reinforced and production of same
JPH02274837A (ja) * 1989-04-14 1990-11-09 Kawasaki Steel Corp 精密機械用軸受材
JP2627373B2 (ja) * 1991-07-08 1997-07-02 金井 宏之 高強度極細金属線
JPH05179348A (ja) 1991-07-11 1993-07-20 Tougou Seisakusho:Kk 熱間コイリングによるコイルばねの製造方法
JPH06158226A (ja) 1992-11-24 1994-06-07 Nippon Steel Corp 疲労特性に優れたばね用鋼
US5776267A (en) * 1995-10-27 1998-07-07 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and fatigue
JP4083828B2 (ja) 1996-05-17 2008-04-30 株式会社神戸製鋼所 疲労特性に優れたばね用鋼
JP3219686B2 (ja) 1996-06-12 2001-10-15 株式会社神戸製鋼所 耐水素脆性および疲労特性に優れたばね鋼、当該ばね鋼の製造方法および当該ばね鋼を用いたばね
JPH10121201A (ja) * 1996-10-14 1998-05-12 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度ばね
JP3403913B2 (ja) 1997-03-12 2003-05-06 新日本製鐵株式会社 高強度ばね用鋼
EP1018565A4 (en) 1998-06-23 2003-07-23 Sumitomo Metal Ind STEEL WIRE ROD AND METHOD OF MANUFACTURING STEEL FOR SAID WIRE
JP3595901B2 (ja) 1998-10-01 2004-12-02 鈴木金属工業株式会社 高強度ばね用鋼線およびその製造方法
JP4464524B2 (ja) 2000-04-05 2010-05-19 新日本製鐵株式会社 耐水素疲労特性の優れたばね用鋼、およびその製造方法
JP3737354B2 (ja) * 2000-11-06 2006-01-18 株式会社神戸製鋼所 捻回特性に優れた伸線加工用線材およびその製造方法
DE60129463T2 (de) * 2000-12-20 2008-04-17 Kabushiki Kaisha Kobe Seiko Sho, Kobe Walzdraht für hartgezogene feder, gezogener draht für hartgezogene feder und hartgezogene feder und verfahren zur herstellung von hartgezogenen federn
JP3971571B2 (ja) 2000-12-20 2007-09-05 新日本製鐵株式会社 高強度ばね用鋼線
EP1347069B1 (en) * 2000-12-20 2007-11-07 Nippon Steel Corporation High-strength spring steel and spring steel wire
JP3851095B2 (ja) 2001-02-07 2006-11-29 新日本製鐵株式会社 高強度ばね用熱処理鋼線
JP2003105485A (ja) 2001-09-26 2003-04-09 Nippon Steel Corp 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法
JP2003213372A (ja) * 2002-01-25 2003-07-30 Sumitomo Denko Steel Wire Kk ばね用鋼線およびばね
US6742697B2 (en) 2002-04-29 2004-06-01 The Boeing Company Joining of structural members by friction plug welding
JP2004011002A (ja) 2002-06-10 2004-01-15 Sumitomo Metal Ind Ltd 伸線加工用の素線及び線
JP3764715B2 (ja) 2002-10-22 2006-04-12 新日本製鐵株式会社 高強度冷間成形ばね用鋼線とその製造方法
JP4423219B2 (ja) * 2004-03-02 2010-03-03 本田技研工業株式会社 耐遅れ破壊特性及び耐リラクセーション特性に優れた高強度ボルト

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170755A1 (ja) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 曲げ加工性に優れた熱処理鋼線

Also Published As

Publication number Publication date
WO2006059784A1 (ja) 2006-06-08
BRPI0514009B1 (pt) 2015-11-03
EP2465963B1 (en) 2015-10-07
KR100851083B1 (ko) 2008-08-08
US10131973B2 (en) 2018-11-20
EP1820869B1 (en) 2015-10-07
EP1820869A1 (en) 2007-08-22
EP1820869A4 (en) 2010-01-13
EP2465963A1 (en) 2012-06-20
BRPI0514009A (pt) 2008-05-27
KR20070005013A (ko) 2007-01-09
US20080279714A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
WO2006059784A9 (ja) 高強度ばね用鋼および鋼線
JP4555768B2 (ja) 高強度ばね用鋼線
JP5200540B2 (ja) 高強度ばね用熱処理鋼
KR100968938B1 (ko) 고강도 스프링용 강 및 고강도 스프링용 열처리 강선
JP5114665B2 (ja) 高強度ばね用熱処理鋼
KR100514120B1 (ko) 고강도 스프링강 및 스프링강선
JP4478072B2 (ja) 高強度ばね用鋼
JP4980496B2 (ja) 高強度ばね用伸線熱処理鋼線および高強度ばね用伸線前鋼線
JP3851095B2 (ja) 高強度ばね用熱処理鋼線
US20100028196A1 (en) High Strength Spring Steel and High Strength Heat Treated Steel Wire for Spring
JP2007169688A (ja) 冷間切断性と疲労特性に優れた冷間成形ばね用鋼線とその製造方法
JP3971571B2 (ja) 高強度ばね用鋼線
JP4559959B2 (ja) 高強度ばね用鋼
KR20100077250A (ko) 고강도 스프링강 및 스프링강선
JP3971569B2 (ja) 高強度ばね用熱間圧延線材
JP3971570B2 (ja) 高強度ばね用熱間圧延線材
JP3971602B2 (ja) 高強度ばね用熱間圧延線材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067025105

Country of ref document: KR

Ref document number: 200580017449.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11630222

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005814388

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067025105

Country of ref document: KR

NENP Non-entry into the national phase in:

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814388

Country of ref document: EP

ENP Entry into the national phase in:

Ref document number: PI0514009

Country of ref document: BR