WO2006057110A1 - リチウム一次電池およびその製造法 - Google Patents

リチウム一次電池およびその製造法 Download PDF

Info

Publication number
WO2006057110A1
WO2006057110A1 PCT/JP2005/018604 JP2005018604W WO2006057110A1 WO 2006057110 A1 WO2006057110 A1 WO 2006057110A1 JP 2005018604 W JP2005018604 W JP 2005018604W WO 2006057110 A1 WO2006057110 A1 WO 2006057110A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
active material
positive electrode
primary battery
Prior art date
Application number
PCT/JP2005/018604
Other languages
English (en)
French (fr)
Inventor
Kenichi Morigaki
Susumu Yamanaka
Tohru Hitomi
Shinji Fujii
Toshihiko Ikehata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/720,151 priority Critical patent/US8062793B2/en
Priority to JP2006547671A priority patent/JP5422100B2/ja
Priority to EP05790618.2A priority patent/EP1801901B1/en
Publication of WO2006057110A1 publication Critical patent/WO2006057110A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • Lithium primary battery and method of manufacturing the same Lithium primary battery and method of manufacturing the same
  • the present invention relates to a lithium primary battery including a negative electrode containing at least one selected from lithium metal and lithium alloy as a negative electrode active material, and particularly to at least one of low temperature high current discharge characteristics and high temperature storage characteristics.
  • the present invention relates to a superior lithium primary battery. Background art
  • a lithium primary battery using lithium metal or an alloy thereof as the negative electrode active material has high energy density at high voltage and is easy to miniaturize and reduce weight as compared to a conventional aqueous solution battery. Therefore, lithium primary batteries are used in a variety of applications, such as main power supplies for small electronic devices and backup power supplies.
  • a metal oxide such as manganese dioxide or a fluorinated graphite is used as a positive electrode active material of a lithium primary battery.
  • lithium primary batteries using graphite fluoride are superior in long-term storage ability and stability in high temperature range and have a wider operating temperature range than those using manganese dioxide.
  • lithium primary batteries In particular, in the case of a main power supply of a car-mounted electronic device, a knock-up power supply, etc., sufficient discharge characteristics are required in the temperature range of high temperature (about ⁇ 40 ° C. to about 125 ° C.).
  • the lithium primary battery exhibits the characteristic that when a large current discharge is performed, the voltage drops at the beginning of the discharge and then the voltage rises gradually.
  • the lithium primary battery using fluorinated graphite has a large initial voltage drop particularly in discharge in a low temperature range.
  • lithium primary batteries have increased internal resistance due to high temperature storage.
  • the battery stored at a high temperature of about 125 ° C. is discharged, the voltage drop immediately after the discharge will be large.
  • the polarization of the positive electrode and the negative electrode When the polarization of the positive electrode and the negative electrode is measured by low-temperature discharge at 20 ° C. or lower, the polarization of the negative electrode becomes larger than the polarization of the positive electrode at the beginning of the discharge. In addition, even after storage at high temperature, the polarization of the negative electrode becomes large. Therefore, if the reaction overvoltage of the negative electrode can be reduced, the low temperature characteristics and the high temperature storage characteristics can be greatly improved.
  • Patent Documents 1 and 2 In the field of lithium secondary batteries, for the purpose of improving charge-discharge reaction, research is being conducted on surface modification of a lithium metal negative electrode and the like. In particular, in order to reduce the generation of dendrites, it has been proposed to form a coating layer that also has a force such as carbon on the surface of the negative electrode (Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-168737
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-172540
  • a lithium primary battery in particular, a lithium primary battery using fluorinated graphite as a positive electrode exhibits a behavior in which the voltage is greatly reduced at the initial stage of discharge and then gradually increased at high current discharge.
  • the voltage drop at the beginning of the discharge is remarkable.
  • the internal resistance of the battery is increased mainly by the increase in the interfacial resistance of the negative electrode (the resistance due to the film resulting from the decomposition product of the electrolyte). Therefore, in the subsequent discharge, the voltage drop immediately after the start of the discharge becomes large.
  • a lithium primary battery using manganese dioxide as the positive electrode performs partial discharge.
  • the increase in internal resistance and the decrease in discharge characteristics become remarkable. It is believed that this is because Mn 3+ is disproportionate to Mn 4+ and Mn 2+ , and Mn + elutes.
  • the present invention relates to reducing the polarization of the negative electrode of a lithium primary battery, in particular, the polarization of the negative electrode during high current discharge at a low temperature or after high temperature storage. According to the present invention, it is possible to improve the low temperature large current discharge characteristics and the high temperature storage characteristics of a lithium primary battery without impairing other battery characteristics and reliability.
  • the lithium primary battery of the present invention comprises a positive electrode, a negative electrode, an organic electrolytic solution, and a separator interposed between the positive electrode and the negative electrode, the negative electrode containing a negative electrode active material, and a negative electrode active material And at least one force selected from lithium metal and lithium alloy.
  • the negative electrode has the following characteristics (a) to (c)!
  • At least a surface layer portion of the negative electrode is a composite of an amorphous carbon material and a negative electrode active material, and the surface layer portion faces the positive electrode via a separator.
  • a halogen atom, a lithium atom and an oxygen atom are present at a predetermined depth of 15 nm, and the molar ratio of the halogen atom to the lithium atom: XZLi is less than or equal to 0.7, and the molar ratio of the halogen atom to the oxygen atom : XZO is less than 1.3. Also in this case, it is preferable that at least the surface layer portion of the negative electrode is a composite of the amorphous carbon material and the negative electrode active material, and the surface layer portion faces the positive electrode via the separator.
  • the negative electrode has a surface layer portion in which fine particles are embedded, the average particle diameter (median diameter) of the primary particles of the fine particles is 2 m or less, and the surface layer portion faces the positive electrode through the separator. Ru.
  • the negative electrode may have a multilayer structure including a surface layer portion composed of a composite of an amorphous carbon material and a negative electrode active material, and a lower layer portion serving as the negative electrode active material.
  • the thickness of the surface layer portion is preferably 1Z3 or less of the thickness of the negative electrode.
  • the halogen atom is derived from the decomposition of the anion of the solute contained in the organic electrolytic solution or the impurity (HF or the like) of the solute.
  • a solute containing fluorine for example, LiBF 4
  • Lithium fluoride (LiF) is present in Lithium chloride (LiCl)
  • a solute containing chlorine eg, lithium perchlorate
  • the surface of lithium metal has a thin oxide film. Pre-discharge after assembly of the cell destroys the oxide film.
  • Oxygen is derived from the non-aqueous solvent contained in the organic electrolyte. Oxygen is considered to form, for example, lithium carbonate Li 2 CO 3. LiF
  • Li 2 CO 3 is considered to have the function of the protective film of the negative electrode in the organic electrolyte.
  • Lithium ions are considered to be more likely to diffuse in Li 2 CO than LiF.
  • X-ray photoelectron spectroscopy As a method of analyzing the composition at a predetermined depth of 5 nm to 15 nm from the facing surface of the negative electrode to the positive electrode, X-ray photoelectron spectroscopy (XPS) is the most common. In XPS, the abundance NA of element A can be obtained from the following equation.
  • NA (peak area of element A)
  • X correction factor of element A
  • the correction factor depends on the measuring device.
  • the molar ratio of elements can be calculated by determining the abundance of all elements detected. Usually, the abundance and molar ratio of elements can be obtained by the automatic calculation function of the analyzer.
  • XPS analysis is generally performed after etching by sputtering using argon ions.
  • the etching rate by sputtering of argon ions is accurately measured using a SiO 2 sample.
  • the pinching rate is applied as it is.
  • the measuring apparatus is Model 5600 manufactured by Physical Electronics, Inc. and sputtering is performed with argon ions at an acceleration voltage of 3 kV
  • the etching rate is 7.4 nm Z min.
  • the opposite surface of the negative electrode to the positive electrode before etching is the outermost surface (depth is Onm)
  • 5 ⁇ ! ⁇ 15 nm predetermined depth Analyze the composition in
  • the content of the amorphous carbon material in the total of the negative electrode active material and the amorphous carbon material in the entire negative electrode is preferably 5% by weight or less.
  • the content of the amorphous carbon material in the total of the negative electrode active material and the amorphous carbon material is preferably 5% by weight or less.
  • the amorphous carbon material is preferably fine particles having an average primary particle size (median diameter) of 0.1 ⁇ m or less.
  • the amorphous carbon material is preferably fine particles having a BET specific surface area of, for example, 20 m 2 / g or more by nitrogen adsorption.
  • the amorphous carbon material for example, at least one carbon black selected from the group consisting of acetylene black, ketjen black, contact black, furnace black and lamp black can be used.
  • ceramics, a lithium compound, a carbon material or the like can be used as the fine particles. These may be used alone or two or more of them may be used in combination.
  • Al 2 O, Fe 2 O, SiC, SiO, ZrO, etc. can be used as the ceramics.
  • These ceramics may be used alone or in combination of two or more. These ceramics have such hardness that they can be easily pressed into the surface of lithium or lithium alloy. In addition, these ceramics have low reactivity with lithium.
  • Li 3 PO, Li 2 SO 4 or the like can be used as the lithium compound. These are used alone.
  • Graphite, petroleum cotas, activated carbon, etc. can be used as the carbon material. These may be used alone or in combination of two or more.
  • graphite particles lithium intercalation reaction occurs between the graphite layers in the surface layer portion in which the particles are embedded. This reaction produces a red or gold lithium-graphite intercalation compound.
  • Carbon particles having an average primary particle size (median diameter) of 0.1 ⁇ m or less (i) Carbon particles having an average primary particle size (median diameter) of 0.1 ⁇ m or less.
  • acetylene black, ketjen black, contact black, furnace black And group consisting of lamp black At least one selected carbon black.
  • the average particle diameter (median diameter) of primary particles of these carbon blacks is preferably 0.1 m or less, and the BET specific surface area by nitrogen adsorption method is preferably 20 m 2 / g or more.
  • the carbon particles (i) to (iii) suppress an increase in internal resistance of the battery. Therefore, the polarization of the negative electrode at the time of discharge is effectively reduced.
  • Lithium alloys usable for the negative electrode active material include, for example, small amounts of aluminum (A1), tin (Sn) and the like. Lithium alloys are expected to have improved physical properties and surface conditions compared to lithium metals. However, compared to lithium, alloys have higher melting points, higher hardness, and impaired formability. Therefore, the amount of metal other than lithium contained in the lithium alloy is preferably small. The metal other than lithium is preferably, for example, 5% by weight or less of the entire alloy.
  • the positive electrode includes a positive electrode active material, a conductive material, and a binder.
  • the positive electrode active material preferably contains metal oxide or fluorinated graphite.
  • the present invention is particularly effective when using fluorinated graphite.
  • the metal oxide that is to be the positive electrode active material includes manganese dioxide and manganese.
  • the method for producing the positive electrode is not particularly limited, and for example, it can be produced by mixing a positive electrode active material having a metal oxide or fluorinated graphite power, a conductive material, and a binder.
  • a non-aqueous solvent in which a solute is dissolved can be used.
  • the solute preferably contains lithium tetrafluoroborate.
  • the non-aqueous solvent preferably contains ⁇ -petite ratatone.
  • the present invention also includes a composite of a negative electrode active material and an amorphous carbon material in at least a surface layer, and the negative electrode active material is at least one selected from a group of lithium metal and lithium alloy.
  • the present invention relates to a method of manufacturing a lithium primary battery including the steps of: preparing a negative electrode; and bringing the surface layer portion composed of the composite into contact with a positive electrode via a separator.
  • the present invention also includes a composite of a negative electrode active material and fine particles in at least a surface layer, and the negative electrode active material is at least one selected from a group of lithium metal and lithium alloy, and the fine particles are average particles of primary particles.
  • the present invention relates to a method of manufacturing a lithium primary battery including the steps of: preparing a negative electrode having a diameter (median diameter) of 2 m or less; and facing the surface layer portion made of the composite to the positive electrode through a separator. Examples of the process of preparing the negative electrode containing at least the surface layer portion of the composite of the negative electrode active material and the amorphous carbon material include the following.
  • a mixture containing an amorphous carbon material and a negative electrode active material is prepared and rolled to form a thin sheet, and a sheet of the obtained mixture and a sheet of a negative electrode active material (for example, lithium metal) And the process of crimping.
  • a negative electrode active material for example, lithium metal
  • a paste containing an amorphous carbon material, a binder and an organic solvent is prepared, and this paste is applied to a sheet of a negative electrode active material (eg, lithium metal) and dried, and then coated.
  • a negative electrode active material eg, lithium metal
  • amorphous carbon material on the surface of a negative electrode active material (for example, lithium metal) and simultaneously rolling the sprayed amorphous carbon material and the sheet.
  • a negative electrode active material for example, lithium metal
  • the step of preparing the negative electrode including at least the surface layer portion of the amorphous carbon material is preferably performed under an argon gas atmosphere or a reduced pressure atmosphere of 100 Pa or less.
  • Carbon black is a fine particle having a large BET specific surface area.
  • carbon black acts as an oxidant that burns very quickly and oxygen adsorption is high. Therefore, when it is brought into contact with lithium metal which is a strong reducing agent in dry air (dew point ⁇ 50 ° C. or less), the oxidation-reduction reaction may rapidly progress.
  • lithium metal which is a strong reducing agent in dry air (dew point ⁇ 50 ° C. or less)
  • the oxidation-reduction reaction may rapidly progress.
  • lithium metal When carbon black is brought into contact with lithium metal in a dry nitrogen atmosphere, lithium reacts with nitrogen to form lithium nitride.
  • the negative electrode containing at least the composite of the negative electrode active material and the fine particles in the surface layer can be obtained, for example, by simply embedding fine particles having an average particle diameter of 2 m or less of the primary particles in the surface layer of the negative electrode. it can.
  • the particles can be embedded in the surface layer portion of the negative electrode by pressing or pressing the particles onto the surface of the negative electrode.
  • the present invention it is possible to suppress an increase in the battery internal resistance in a low temperature region, to reduce the reactive over-voltage of the negative electrode, and to improve the low temperature large current discharge characteristics. Also also, it is possible to suppress an increase in battery internal resistance during high temperature storage. Furthermore, even when the battery after partial discharge is stored at high temperature, the discharge characteristics after storage can be improved. Therefore, according to the present invention, high reliability with excellent low-temperature large-current discharge characteristics and high-temperature storage property! It becomes possible to provide a lithium primary battery.
  • the active point of the discharge reaction can be increased, the reaction overvoltage of the negative electrode can be reduced, and the low temperature discharge characteristics can be improved. Further, according to the present invention, the high temperature stability and the long-term reliability of the lithium primary battery are not greatly impaired. Since the present invention relates to a primary battery, no charge reaction is assumed at all. Therefore, it is sufficient if the effect of suppressing the polarization of the negative electrode at the initial stage of discharge is exhibited.
  • the discharge reaction of the lithium primary battery is a reaction in which lithium ions are also eluted in the negative electrode power and lithium ions are inserted into the positive electrode active material.
  • the discharge reaction involves the electronic resistance of the positive electrode and the negative electrode, the resistance to ion transport in the electrolyte impregnated in the electrode and the separator, and the reaction resistance accompanying the charge transfer of the positive electrode and the negative electrode.
  • the overvoltage caused by these resistance components changes.
  • the overvoltage of the negative electrode is smaller than the overvoltage of the positive electrode in the high temperature range above 0 ° C. However, in the low temperature range of 0 ° C. or less, the overvoltage of the negative electrode rapidly increases and, depending on the conditions, becomes larger than the positive electrode.
  • the reaction in which lithium ions are eluted from the negative electrode upon discharge causes a crystal grain boundary of lithium metal or lithium alloy, and a defect force of the crystal. Crystal defects are formed during extrusion or rolling of lithium metal or lithium alloy. A film made of lithium oxide or the like exists on the surface of lithium metal or lithium alloy. Further, in the organic electrolytic solution, there is a film which is a product of reductive decomposition product of the electrolyte mainly composed of lithium carbonate and the like. While these films function as a protective film that suppresses the decomposition of the electrolytic solution, they are considered to have an effect of suppressing the elution reaction of lithium ions.
  • the reaction resistance of the electrode is considered to be mainly caused by a film which is a decomposition product of the organic electrolyte solution.
  • the surface layer of the negative electrode contains an amorphous carbon material
  • lithium ions are temporarily inserted into the amorphous carbon material at the interface between the negative electrode and the organic electrolyte immediately after assembly of the battery.
  • the decomposition reaction of the electrolyte proceeds.
  • decomposition products of the electrolytic solution are formed at the interface between the negative electrode and the electrolytic solution in a short time.
  • the decomposition products act as a protective film that suppresses the continuous decomposition of the electrolyte.
  • This protective film is more stable than the film formed when lithium metal or lithium alloy is used alone, and suppresses the increase in internal battery resistance due to the subsequent decomposition of the electrolyte.
  • the reaction resistance of the negative electrode usually increases rapidly in a low temperature range (particularly 0 ° C. or less) where the temperature dependence is high.
  • a low temperature range particularly 0 ° C. or less
  • the rapid increase of the overvoltage of the negative electrode is suppressed even in the low temperature region.
  • the increase in internal resistance of the battery is suppressed, and the polarization of the negative electrode at the initial stage of discharge after storage is significantly reduced.
  • the effect of suppressing the increase in internal resistance can be obtained. The effect is particularly great when the amorphous carbon material is present up to the inside of the negative electrode.
  • a lithium-graphite intercalation compound When graphite is used as the fine particles, a lithium-graphite intercalation compound is formed.
  • the lithium-graphite intercalation compound causes an elution reaction of lithium ions in the same manner as the negative electrode material of the lithium ion secondary battery. Therefore, at the time of discharge, it is possible to utilize the elution reaction of lithium ions of the interlayer compound force which is not caused only by the elution reaction of lithium ions from lithium metal or lithium alloy. Therefore, the reaction overvoltage of the negative electrode can be further reduced.
  • FIG. 1 is a longitudinal sectional view of a coin-shaped lithium primary battery according to the present invention.
  • FIG. 2 is a view showing the relationship between the depth of the opposing surface force of the negative electrode to the positive electrode and the molar ratio of fluorine atoms to lithium atoms detected by XPS: FZLi.
  • FIG. 3 is a view showing the relationship between the depth of facing surface force of the negative electrode to the positive electrode and the molar ratio of fluorine atoms to oxygen atoms detected by XPS: FZO.
  • FIG. 4 is a schematic cross-sectional view of an example of the negative electrode according to the present invention.
  • FIG. 5 is a schematic cross-sectional view of another example of the negative electrode according to the present invention.
  • the lithium primary battery of the present invention comprises a positive electrode, a negative electrode, an organic electrolytic solution, and a separator interposed between the positive electrode and the negative electrode.
  • the shape or structure of the battery is not particularly limited, and examples thereof include cylindrical, square, button and coin shapes.
  • the lithium primary battery of the present invention mainly relates to the improvement of the negative electrode, and the composition and structure of the positive electrode, the organic electrolyte and the separator are not particularly limited.
  • the negative electrode includes a negative electrode active material, and the negative electrode active material is at least one selected from a group consisting of lithium metal and lithium alloy.
  • the negative electrode has one of the following features (a) to (c).
  • At least the surface layer of the negative electrode is a composite of the amorphous carbon material and the negative electrode active material, The surface layer portion faces the positive electrode via a separator.
  • the surface layer portion of the negative electrode may contain unavoidable impurities and carbon materials other than amorphous carbon, in addition to the amorphous carbon material and the negative electrode active material.
  • a halogen atom, a lithium atom and an oxygen atom are present at a predetermined depth of 15 nm, and the molar ratio of the halogen atom to the lithium atom: XZLi is less than or equal to 0.7, and the molar ratio of the halogen atom to the oxygen atom : XZO is less than 1.3. Also in this case, it is preferable that at least the surface layer portion of the negative electrode is a composite of the amorphous carbon material and the negative electrode active material, and the surface layer portion faces the positive electrode via the separator.
  • the negative electrode has a surface layer portion in which fine particles are embedded, the average particle diameter (median diameter) of the primary particles of the fine particles is 2 ⁇ m or less, and the surface layer portion faces the positive electrode through the separator. ing.
  • the surface layer of the negative electrode may contain unavoidable impurities in addition to the fine particles and the negative electrode active material.
  • Lithium metal may contain a slight amount of impurity, which is usually lithium alone in the metallic state.
  • Lithium alloys contain metals other than lithium, such as small amounts of aluminum (Al), tin (Sn), magnesium (Mg), indium (In), calcium (Ca) and the like.
  • the content of metals other than lithium contained in the lithium alloy is, for example, preferably 1 wt% or less, which is preferably 5 wt% or less of the entire alloy.
  • Lithium metal and a lithium alloy may be used in combination to form the negative electrode.
  • the composition of the negative electrode active material may be changed depending on the negative electrode site !.
  • the negative electrode having the above characteristics (a) or (b) can be produced by molding a negative electrode active material or a mixture containing a negative electrode active material and amorphous carbon.
  • a mixture containing the negative electrode active material and amorphous carbon a mixture containing lithium metal and amorphous carbon, a mixture containing lithium alloy and amorphous carbon, lithium metal and lithium alloy and amorphous And mixtures containing carbon dioxide.
  • lithium metal or lithium alloy The negative electrode can be produced from the one formed into an electrode shape.
  • the negative electrode can be manufactured from a mixture of a negative electrode active material and an amorphous carbon material formed into a sheet or an electrode. When forming lithium metal or lithium alloy into a sheet, extrusion, rolling, etc. are performed.
  • the negative electrode may or may not include a current collector such as a metal foil or mesh.
  • the entire negative electrode may be composed of a composite of an amorphous carbon material and a negative electrode active material !, or may be a structure that does not contain an amorphous carbon material except for the surface layer portion.
  • the boundary between the surface layer and the lower layer not containing the amorphous carbon material may be clearly separated. Even if the amount of the amorphous carbon material gradually changes in the thickness direction of the negative electrode. Good. For example, a large amount of amorphous carbon material may be distributed on the outermost surface of the surface layer portion, and the distribution of the amorphous carbon material may be gradually inclined toward the inside of the negative electrode.
  • the content of the amorphous carbon material in the total of the negative electrode active material and the amorphous carbon material is preferably 5% by weight or less, and more preferably 0.02% by weight or more and 2% by weight or less I like it. With such a content, it is possible to obtain an effect of stabilizing the interface between the negative electrode and the electrolytic solution without significantly reducing the energy density of the negative electrode.
  • the thickness of the surface layer portion is the thickness of the negative electrode 1Z3 or less is preferred, and 1Z5 or more, 1Z20 or less is more preferred.
  • the content of the amorphous carbon material in the surface layer portion, that is, the composite is preferably 5% by weight or less, and more preferably 0.02% by weight or more and 2% by weight or less. Even if the thickness of the surface layer is 1Z3 or less of the thickness of the negative electrode, it is sufficient to control the interface between the negative electrode and the electrolyte.
  • a halogen atom, a lithium atom and an oxygen atom exist at a predetermined depth of 5 nm to 15 nm from the facing surface of the negative electrode to the positive electrode.
  • Composition at that depth in XPS The molar ratio of halogen atom to lithium atom: XZLi is preferably 0.7 or less.
  • the molar ratio of halogen atom to oxygen atom: XZO is preferably 1.3 or less. In this case, the effect of stabilizing the interface between lithium and the electrolyte can be obtained.
  • the amorphous carbon material is preferably fine particles having an average particle diameter (median diameter) of 0.1 ⁇ m or less from the viewpoint of uniformly distributing in the vicinity of the active portion of the lithium surface. More preferably, the fine particles have a diameter of not less than 0. 03 ⁇ m and not more than 0.1 m.
  • the amorphous carbon material is preferably particles having a BET specific surface area of, for example, 20 m 2 / g or more by nitrogen adsorption from the viewpoint of causing a reaction with the electrolyte solvent to occur promptly, preferably 50 m 2 / g or more. More preferably, they are fine particles of 100 m 2 / g or less.
  • the surface is coated with a carbon material.
  • the area of the negative electrode facing the positive electrode is S
  • the area of the surface coated with the carbon material is Sc
  • Rs is 50 % Or more is preferable.
  • the interface between the negative electrode and the electrolytic solution You can control the state well.
  • the coverage Rs can be measured, for example, using a microscope or the like having a field of view in which the surface of the negative electrode facing the positive electrode can be observed entirely. In the surface image observed or photographed by a microscope or the like, the ratio of the area shielded by the carbon material to the area of the surface facing the positive electrode of the negative electrode is the coverage. The surface image is observed or photographed from a direction perpendicular to the surface of the negative electrode facing the positive electrode.
  • Amorphous carbon materials include carbon black, activated carbon, coats, glassy carbon (Dallasy carbon) and the like.
  • the amorphous carbon materials may be used alone or in combination of two or more.
  • carbon black is particularly preferable because it is in the form of fine particles having a high specific surface area.
  • As carbon black acetylene black, ketjen black, contact black, furnace black, lamp black and the like can be used.
  • the carbon black may be used alone or in combination of two or more. Since carbon black is fine particles, its primary particles may be aggregated to form secondary particles.
  • Carbon black is volatile In order to remove the components, adsorbed water, etc., it is desirable to use a force of drying with hot air at 150 ° C. to 250 ° C., or to use a force by performing drying under reduced pressure.
  • a negative electrode comprising at least a composite of a negative electrode active material and an amorphous carbon material in the surface layer portion, and a negative electrode active material selected from lithium metal and lithium alloy is selected.
  • the method of preparation is illustrated.
  • This method is suitable when the whole or almost the whole of the negative electrode is composed of a composite of the amorphous carbon material and the negative electrode active material.
  • a mixture containing an amorphous carbon material and a negative electrode active material is prepared and rolled to form a thin sheet, and a sheet of the obtained mixture, a sheet of lithium metal or lithium alloy, and the like. And the process of crimping.
  • the negative electrode plate can be obtained by cutting or punching the bonding sheet obtained by pressure bonding into a desired shape. This method is suitable for forming a negative electrode plate having a two-layer structure including a surface layer portion which is a composite of an amorphous carbon material and a negative electrode active material, and a lower layer portion which is a negative electrode active material.
  • a paste containing an amorphous carbon material, a binder and an organic solvent is prepared, this paste is applied to a sheet of lithium metal or lithium alloy, and after drying, a coating and A process of rolling the sheet and the sheet simultaneously may be mentioned.
  • This method is also suitable for forming a negative electrode plate of a two-layer structure including a surface layer portion composed of a composite of an amorphous carbon material and a negative electrode active material, and a lower layer portion serving as the negative electrode active material.
  • the negative electrode it is preferable to carry out the production process of the negative electrode as described above under an argon gas atmosphere or a reduced pressure atmosphere of 100 Pa or less. Moreover, it may be under a rare gas atmosphere other than argon. Under such atmosphere, oxidation reaction between carbon black and lithium metal Is a force that can prevent the formation of lithium nitride.
  • a method of preparing a negative electrode for a coin cell will be specifically described.
  • dry carbon black is sprayed onto a lithium metal sheet, and the sheet is heated to about 200 ° C. by a hot plate or the like. At that time, it is impregnated in molten lithium S-carbon, and a composite of carbon black and lithium is formed.
  • carbon black may be sandwiched between a pair of lithium metal sheets, and this may be heated to about 200 ° C.
  • the heat treatment is preferably performed under reduced pressure of 100 Pa or less in order to promote the impregnation of molten lithium into carbon black.
  • the lithium sheet fragments and the carbon black powder may be heated to prepare a molten mixture, which may be stirred in an inert atmosphere to accelerate uniform mixing.
  • the composite of lithium and carbon black is rolled into a sheet by a small-sized roller press installed in an inert atmosphere to make the thickness of the sheet uniform. If the thickness of lithium metal is thin, for example, 100 m or less, you may use a roller press to roll a sheet sprayed with carbon black or a sheet sandwiching carbon black without heating and melting. Yes.
  • a negative electrode can be obtained by cutting a sheet having a predetermined thickness into a predetermined shape using a punching die or the like. The obtained negative electrode is crimped to the inner surface of the case.
  • lithium metal or lithium alloy is formed into a sheet or electrode shape, and fine particles are pressure-bonded or pressed into the surface of the obtained sheet or molded body. It is obtained by When forming lithium metal or lithium alloy into a sheet, for example, extrusion processing, rolling caulks and the like are performed.
  • the negative electrode may or may not include a current collector made of metal foil, mesh or the like.
  • the fine particles are preferably harder than lithium oxide or lithium oxide in terms of ease of embedding on the surface of lithium metal or lithium alloy.
  • any material may be used as long as it has a hardness such that the surface layer such as lithium oxide can be broken and pressed into lithium metal or lithium alloy.
  • ceramics, lithium compounds, carbon materials and the like can be used for the fine particles. These may be used alone or in combination of two or more.
  • Al 2 O, Fe 2 O, SiC, SiO, ZrO, etc. can be used. this They may be used alone or in combination of two or more. These ceramics have a hardness that can be easily pressed into the surface of lithium or lithium alloy, and have low reactivity with lithium. It is also stable in lithium batteries and readily available with suitable particle sizes.
  • Li 3 PO, Li 2 SO 4 or the like can be used as the lithium compound. These are used alone.
  • Two or more of them may be used in combination. These are preferred in that they are stable to lithium and organic electrolytes.
  • carbon material graphite, petroleum coats, activated carbon and the like can be used. These may be used alone or in combination of two or more.
  • a carbon material that forms a clear intercalation compound with lithium like graphite is embedded in the surface of lithium, the graphite particles turn red in a few hours. When this is left in a dry air atmosphere for about 12 hours, a gold to red intercalation compound is formed on the lithium surface.
  • cotas, activated carbon, carbon black, etc. such a clear change is not observed, but it is also considered that a reaction with lithium has occurred. Lithium reacted with the carbon material is desorbed from the carbon material in the discharge reaction.
  • carbon particles having an average primary particle diameter (median diameter) of 0.1 ⁇ m or less carbon particles having a BET specific surface area of 20 m 2 Zg or more according to a nitrogen adsorption method.
  • carbon black selected from a group consisting of acetylene black, ketjen black, contact black, furnace black and lamp black, etc.
  • the amount of fine particles to be added to the surface layer of the negative electrode depends on the type of fine particles, the shape of the negative electrode, etc., and thus can not be generally specified or limited, for example, 0.1 to 50 gZm per unit surface area. 2 is preferred. If the amount of fine particles is in this range, the resistance caused by the fine particles which can not greatly reduce the energy density of the negative electrode does not greatly affect the discharge performance.
  • the average particle diameter (median diameter) of the primary particles of the fine particles is set to 2 ⁇ m or less so that the ratio of the negative electrode surface (facing surface to the positive electrode) is reduced. More preferably, the force is not more than 0.5 m.
  • the average particle diameter of the fine particles exceeds 2 ⁇ m, the proportion of the negative electrode surface where the fine particles are not embedded becomes large, and a sufficient effect of suppressing polarization at the initial stage of discharge can not be obtained.
  • the maximum particle size of the fine particles is preferably 5 ⁇ m or less.
  • the fine particles have an average particle diameter of 2 m or less and have a particle size distribution as sharp as possible.
  • a carbon black having an average particle diameter (median diameter) of primary particles of 0 .: m or less is suitable as fine particles. It is desirable that carbon black be dried with hot air at 150 to 250 ° C. or dried under reduced pressure to remove volatile components and adsorbed water before use.
  • fine particles are embedded in the state of primary particles, but like carbon black, fine particles which are easy to aggregate primary particles to form secondary particles.
  • secondary particles may be used.
  • the fine particles contain volatile components, adsorbed water, etc., they are removed. Specifically, the particles are dried with hot air at 100 to 200 ° C. (150 to 250 ° C. in the case of carbon black). After that, fine particles are sprayed on the surface of the lithium metal or lithium alloy sheet. Next, rolling is performed through a release paper such as a polyethylene film with a weak pressing force to such an extent that the thickness of the original sheet does not change, and fine particles are Embed in the surface layer. After that, the release paper is peeled off to remove fine particles not embedded in the surface layer of the sheet.
  • a desired negative electrode can be obtained by punching out a sheet having fine particles embedded in the surface layer portion into a predetermined size using a punching die. The negative electrode obtained is crimped to the inner surface of the coin-type battery case.
  • the negative electrode may be prepared by various other methods!,.
  • the particles may be embedded in advance by pressure bonding lithium metal or lithium alloy having a predetermined shape on the inner surface of the case and then spraying dried particles on the surface of lithium metal or lithium alloy.
  • the dried fine particles are dispersed in a solvent such as propylene carbonate or 1,2-dimethoxyethane to prepare a dispersion.
  • the disperison is applied onto a film, such as a polyester film, allowed to dry, and then transferred to a lithium metal or lithium alloy sheet surface.
  • the negative electrode It is preferable to carry out the above-mentioned production process of the negative electrode under an argon gas atmosphere or under a reduced pressure atmosphere of 100 Pa or less. Moreover, it may be under a rare gas atmosphere other than argon. With such an atmosphere, it is possible to prevent the progress of the oxidation reduction reaction between the fine particles and lithium and the formation of lithium nitride.
  • the positive electrode is not particularly limited, and includes, for example, a positive electrode active material, a conductive material, and a binder. Since the present invention improves the discharge characteristics at the initial stage of discharge by suppressing the overvoltage of the negative electrode, the positive electrode active material is not particularly limited.
  • a metal oxide or fluorinated graphite can be used as the positive electrode active material.
  • a metal oxide and fluorinated graphite can also be used in combination.
  • the metal oxide used for the positive electrode active material includes manganese dioxide, copper oxide and the like.
  • As the fluorinated graphite one represented by a chemical formula CF (0.8 ⁇ x ⁇ 1.1) can be preferably used.
  • Graphite fluoride is excellent in terms of long-term reliability, safety, high-temperature stability and so on. Graphite fluoride is obtained by fluorination of petroleum coats, artificial graphite and the like.
  • the conductive material of the positive electrode for example, carbon black such as acetylene black and ketjen black, or graphite such as artificial graphite can be used. These may be used alone or in combination of two or more.
  • binder for the positive electrode examples include polytetrafluoroethylene (PTFE) and polyvinyl fluoride. Den (PVDF), PVDF variant, tetrafluoroethylene-hexafluoropropyrene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), fluorinated Bi-idene monohexafluoropropylene copolymer, biphenyl diidene-croro trifluorethylene copolymer, ethylene tetrafluoroethylene copolymer (ETFE resin), biphenyl fluoride- Pentafluoropropylene copolymer, Propylene-Tetrafluoroethylene copolymer, Ethylene-Covered Trifluoroethylene Copolymer (ECTFE), Fluorinated vinylidene-hexafluoropropylene-tetrafluro
  • fluorine resin such as ole
  • a non-aqueous solvent capable of dissolving a solute can be used. It is also possible to use, as an additive, a few percent of vinyl carbonate, ethylene carbonate, ethylene sulfite, dimethyl sulfone, etc. as an additive.
  • lithium hexafluoroboronate LiPF 6
  • lithium tetrafluoroborate LiB 2
  • LiCF 2 SO 4 lithium trifluoromethanesulfonate
  • non-aqueous solvents include cyclic carbonates such as ⁇ -buty mouth ratatone ( ⁇ BL), ⁇ valero ratatone ( ⁇ VL), propylene carbonate (PC) and ethylene carbonate (EC); 1, 2-dimethoxetane ( DME), 1,2 Diethoxyethane (DEE), 1,3 Dioxolane, Dimethyl Carbonate (DMC), Jetyl Carbonate (DEC), Etyl Methyl Carbonate (E MC), N, N Dimethylformamide, Tetrahydrofuran, 2-Methyl Tetrahydrofuran, dimethyl sulfoxide, formamide, acetoamide, dimethyl formamide, dioxolane, acetonitrile, propylditolyl, nitromethane, ethyl monoglyme, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, propylene carbonate derivative, t
  • ⁇ -petite ratato ( ⁇ -BL) is stable over a wide temperature range, and is preferred in view of the ability to remove solutes.
  • a low boiling point solvent such as 1, 2-dimethoxyethane (DME) or the like in combination with ⁇ -BL.
  • DME 1, 2-dimethoxyethane
  • LiBF LiBF
  • the proportion of ⁇ -petite rataton in the whole non-aqueous solvent is 50% by weight or more.
  • the material of the separator may be any material having resistance to the environment inside the lithium primary battery, and for example, a non-woven fabric made of polypropylene, a non-woven fabric made of polytetrafluoroethylene, a polyester resin (polyethylene, polypropylene, etc.) A microporous film of or the like can be used.
  • a coin battery 10 as shown in FIG. 1 was produced.
  • the coin-type battery 10 includes a disk-shaped positive electrode 4, a disk-shaped negative electrode 5, and a separator 6 made of polypropylene and interposed between the positive electrode 4 and the negative electrode 5.
  • the positive electrode 4 is placed on the inner bottom surface of a stainless steel positive electrode case 1.
  • the negative electrode 5 is crimped to the inner surface of a stainless steel negative electrode case 2.
  • An insulating packing 3 made of polypropylene is attached to the periphery of the negative electrode case 2.
  • the peripheral edge of the positive electrode case 1 is crimped to the insulating packing 3 to seal the space for containing the positive electrode 4, the negative electrode 5, the separator 6 and the organic electrolyte (not shown).
  • the positive electrode 4 and the negative electrode 5 are disposed opposite to each other via the separator 6.
  • the positive electrode active material fluorinated graphite in which petroleum coat is fluorinated is used.
  • Graphite fluoride, acetylene black (conductive material), and styrene butadiene rubber (SBR) (binder) are mixed at a solid content weight ratio of 100: 15: 6, and a mixed solution of water and ethanol is used as a dispersion medium. I used to mix it well. The obtained mixture was dried at 100 ° C., and compression molded into a disk shape using a predetermined mold and a hydraulic press to obtain a positive electrode.
  • a 150 ⁇ m-thick sheet of lithium metal was cut into an appropriate length, and the cut pieces were arranged on a stainless steel bat and introduced into an argon glove box (negative electrode preparation atmosphere).
  • Acetylene black after drying was dispersed on a cut piece of lithium metal.
  • the vat containing the cut pieces of lithium metal was placed on a hot plate and heated at 200 ° C. for 1 hour to melt the lithium.
  • acetylene black composite of lithium metal and ⁇ Se Ji Ren black containing 2 weight 0/0 After cooling, three pieces of cut pieces composited with acetylene black were stacked and rolled to a thickness of 400 m with a small roller press.
  • the rolled composite was punched into a disk shape with a mold to obtain a negative electrode consisting entirely of a composite of lithium metal and acetylene black.
  • the negative electrode was crimped to the inner surface of the negative electrode case equipped with the insulating packing. The above steps were all performed in an argon glove box.
  • LiBF Lithium tetrafluoroborate
  • yBL non-aqueous solvent
  • the positive electrode was placed on the inner bottom surface of the positive electrode case, and a separator (thickness 100 ⁇ m) made of a non-woven polypropylene fabric circularly punched out was placed thereon. Thereafter, the electrolytic solution was poured into the positive electrode case, and the positive electrode and the separator were impregnated with the electrolytic solution. Next, the negative electrode case to which the negative electrode was crimped was attached to the positive electrode case so that the negative electrode and the positive electrode faced each other. The peripheral edge of the positive electrode case was crimped to the insulating packing attached to the negative electrode case to complete a sealed coin-shaped battery.
  • the size of the battery is 20 mm in diameter and 2 mm in height, and has a design capacity of 100 mAh.
  • the above assembly process was performed in dry air having a dew point of ⁇ 50 ° C. or less. Twelve similar coin batteries were made.
  • Example 2A Example 2A
  • a negative electrode was produced in the same manner as in Example 1A except that the negative electrode production atmosphere was changed to a closed container with a degree of vacuum of 100 Pa or less, and 10 coin batteries were produced.
  • furnace black Containing of furnace black contained in lithium metal / furnace black composite, using furnace black (FB) having an average particle size of 0.1 l ⁇ m and a BET specific surface area of 20 m 2 Zg instead of acetylene black
  • FB furnace black
  • a negative electrode was produced in the same manner as in Example 1A except that the amount was 5% by weight, and 12 coin batteries were produced.
  • ketjen black (KB) having an average particle size of 0.30 ⁇ m of primary particles and a BET specific surface area of 80 Om 2 Zg is contained in a composite of lithium metal and ketjen black.
  • a negative electrode was produced in the same manner as in Example 1A except that the black content was changed to 0.02% by weight, and 12 coin batteries were produced.
  • CB carbon black
  • a negative electrode was produced in the same manner as in Example 1A except that the content of 1 wt% was 1 wt%, and 10 coin batteries were produced.
  • Activated carbon with an average particle diameter of 5 ⁇ m and a BET specific surface area of 1600 m 2 Zg instead of acetylene black, and the content of activated carbon contained in the composite of lithium metal and activated carbon is set to 0.5% by weight
  • a negative electrode was produced in the same manner as in Example 1A, and 10 coin batteries were produced.
  • a negative electrode was produced in the same manner as Example 1A except that the negative electrode production atmosphere was changed to a dry nitrogen atmosphere (dew point of 50 ° C. or less), and 10 coin batteries were produced.
  • a negative electrode was produced in the same manner as in Example 1A except that the content of acetylene black contained in the composite of lithium metal and acetylene black was 10% by weight, and 10 coin batteries were produced.
  • Example 1A Twelve coin-shaped batteries were produced in the same manner as in Example 1A, except that a sheet of lithium metal was punched out into a disc and used as it was as a negative electrode without being compounded with carbon black. .
  • a negative electrode was produced in the same manner as in Example 1A except that the negative electrode production atmosphere was changed to a dry air atmosphere, and 10 coin batteries were produced.
  • Manganese dioxide (MnO 2) is used as the positive electrode active material, MnO and ketjen black (conductive
  • Example 4A Content of ketjen black in composite of lithium metal and ketjen black
  • a negative electrode was produced in the same manner as in Example 4A, except that 0.1 wt% was used.
  • a negative electrode using the same positive electrode as in Example 1A, using an organic electrolyte solution, a mixed solution of propylene carbonate (PC) and 1,3-dioxolane at a volume ratio of 3: 1 (non-aqueous solvent) LiPF ImolZL Concentration of
  • Example 10A Ten coin batteries were produced in the same manner as in Example 10A, except that a sheet of lithium metal was punched out into a disc and used as it was as a negative electrode without being compounded with carbon black.
  • Examples 1A to L 1A and Comparative Examples 1 to 3 Each cell was predischarged for 30 minutes at a constant current of 4 mA. Next, aging was performed at 60 ° C. for 1 day to stabilize the open circuit voltage (OCV) of the battery. After that, the OCV and the impedance at 1 kHz were measured at room temperature for each battery, and it was confirmed that no abnormality was observed in each battery.
  • OCV open circuit voltage
  • Examples 10A and 11A The battery of Comparative Example 3A was discharged (50 mAh) for 500 hours at a constant current of 0.1 mA and then stored at 80 ° C. for 10 days.
  • the reason for partially discharging the batteries of Examples 10A and 11A and Comparative Example 3A is that when MnO is used as the positive electrode active material, high temperature storage is performed after the partial discharge.
  • Example 8 A AB 0. 04 60 0. 1 A r 1 1 0 2. 3 1 3 98 2. 204 Example 9 A AB 0. 04 60 1 0 Ar 98 2. 2 1 3 96 2.0 1 8 Comparative Example 1 A None---1 06 2.1 18 1 00 1. 92 1 Comparative Example 2 A Artificial Graphite 2 1 2 5 To 'Air 1 00 2 1 90 95 2.049
  • Example 1A On the other hand, from the comparison of Example 1A with Comparative Example 2A using artificial graphite which is a crystalline carbon material, the improvement effect of the pulse discharge characteristics at -40 ° C is remarkable by the use of an amorphous carbon material. It is worth noting that This is because the reduction decomposition reaction of the electrolyte at the interface between the crystalline carbon material and the electrolyte is larger than that at the interface between the amorphous carbon material and the electrolyte, and the interface formed by the decomposition product Is considered to be due to the increase in reaction resistance.
  • Example 9A in which the content of acetylene black in the negative electrode was as large as 10% by weight, the initial discharge capacity was less than the design capacity, and the energy density of the battery was reduced. An improvement effect was seen.
  • the decrease in the initial discharge capacity is considered to be due to the large amount of acetylene black. That is, it is considered that the reductive decomposition reaction of the electrolytic solution at the interface between the acetylene black and the electrolytic solution is increased, and the reaction resistance of the interface formed by the decomposition product is increased. Therefore, in order to improve the low temperature discharge characteristics, the content of the amorphous carbon material is preferably 5% by weight or less.
  • Example 7A in which a composite of lithium metal and carbon black was performed in a dry nitrogen atmosphere, the initial capacity was smaller than that of lOl mAh, that of Comparative Example 1A.
  • the pulse discharge characteristic at ⁇ 40 ° C. of Example 7 is 2. 259 V, which is an improvement effect as compared with Examples 1A to 6A and 8A in which the complexing was performed in an argon atmosphere or under a vacuum of less than lOOPa. was a small force. This is because the molten lithium and nitrogen react with each other in the process of compounding to form lithium nitride (Li N).
  • Li N is used to remove traces of dry air and
  • Examples 1A to 4A in which the average particle diameter of primary particles of the amorphous carbon material is 0.1 ⁇ m or less and the BET specific surface area is 20 m 2 / g or more, a decrease in initial discharge capacity is also observed.
  • the minimum voltage of -40 ° C pulse discharge was about 2.3V. That is, in Examples 1A to 4A, the lowest voltage power of the pulse discharge at 40 ° C. is improved by at least 0. IV over Comparative Example 1A, and the effect of improving the voltage drop at the initial stage of discharge is large .
  • the initial discharge capacity was almost the same as Comparative Example 3A.
  • the pulse discharge voltage at ⁇ 40 ° C. of Examples 10A and 11A was 2.3 V or more, and was improved by about 0.05 V more than 2.25 V of Comparative Example 3A.
  • the positive electrode active material is MnO, the electrolytic solution is different, so the negative electrode and the electrolytic solution
  • Example 1A The batteries after preliminary discharge of Examples 1A, 3A and 4A and Comparative Example 1A were disassembled in a dry atmosphere, and the negative electrode was taken out.
  • the extracted negative electrode was washed with DME (1, 2-dimethoxyethane), and then XPS (X-ray photoelectron spectroscopy) was performed.
  • XPS X-ray photoelectron spectroscopy
  • As an analyzer Model 5600 manufactured by Physical Electron! Cs, Inc. was used, and as the X-ray source, A1- ⁇ (14 kVZ 400 W) was used.
  • Etching was performed by argon ion sputtering at an acceleration voltage of 3 kV. Under this condition, the etching rate is 7.4 nm Z min in terms of SiO.
  • Measuring element and measuring range are Lils (65-4
  • FIG. 3 shows the relationship between the depth of the opposing surface force of the negative electrode to the positive electrode and the molar ratio of the detected fluorine atom to the oxygen atom: FZO. It is understood from FIG.
  • LiF lithium fluoride
  • Example 1 ⁇ ⁇ . 1
  • Example 3A Example 3A
  • Example 4A Example 4A
  • the molar ratio FZLi at a depth of 5 to 15 nm from the surface is particularly 0.7 or less, and the amount of LiF formed is small.
  • the oxygen atoms in the vicinity of the negative electrode surface are mainly decomposition products of lithium oxide (Li 2 O) or a solvent.
  • lithium carbonate Li 2 CO 3
  • oxygen atoms As lithium carbonate (Li 2 CO 3). The amount of oxygen atoms is
  • the effect of the present invention is associated with increasing the abundance of oxygen atoms near the surface of the negative electrode (particularly 5 to 15 nm from the surface) and reducing the abundance of fluorine atoms. .
  • increasing the amount of oxygen atoms present and reducing the amount of fluorine atoms present it is possible to form a stable lithium-electrolyte interface during high temperature storage, and to achieve high current discharge characteristics after high temperature storage or It is considered that the low temperature large current discharge characteristics are improved.
  • the effect of the present invention is to reduce the reaction resistance of the negative electrode and improve the discharge voltage at low temperature discharge by controlling the interfacial reaction between the negative electrode and the electrolytic solution. Therefore, as long as a solid positive electrode active material is used, the effects of the present invention do not differ greatly, and it is considered that similar effects can be obtained even if various oxides and fluorides are used.
  • Comparative Examples 1A decreased to 1.92 V, whereas in Examples 1A to 9A and Comparative Example 2A, all were 2 V or higher, The effect of improving the low temperature discharge characteristics after high temperature storage was obtained.
  • a high discharge voltage of 2. IV or more was obtained.
  • the discharge voltage is about 2.25 V, and the discharge characteristics are improved. The effect was remarkable.
  • LiCF 2 SO was dissolved in a mixed solvent of PC and DME.
  • Example 8A the initial 40 ° C pulse discharge voltage is 2. 313V, and LiBF is dissolved in yBL.
  • Example 8A It is 0.02 V higher than the understood example 1 A.
  • both the discharge capacity of Example 8A and the pulse discharge voltage of ⁇ 40 ° C. became lower than Example 1A. Since the battery after storage of Example 8A was slightly swollen, it is considered that the capacity deterioration and the deterioration of the low-temperature pulse characteristics became large because the gas generation by the high-temperature storage became large. Therefore, it is understood that using an electrolyte in which LiB 2 F is dissolved in y BL is advantageous for obtaining a lithium primary battery excellent in stability at high temperatures and storage characteristics.
  • Comparative Example 3A after storage at 80 ° C. can discharge only about 28 mAh, which is about half of the remaining capacity (50 mAh), whereas the batteries of Examples 10A and 11A have 46 mA h and 43 mAh, respectively. Discharge capacity was obtained. Furthermore, even with the pulse discharge at 40 ° C. after storage at 80 ° C., Comparative Example 3A dropped to 1.85 V greatly, whereas in Examples 10A and 11 A, it became 2. 185 V and 2. 204 V, respectively. The high temperature storage characteristics have been improved.
  • the interfacial reaction between the negative electrode and the electrolytic solution is controlled by using the negative electrode complexed with the amorphous carbon material according to the present invention, and the reaction resistance of the negative electrode It can be seen that the effect of suppressing the increase of the high temperature can be obtained and the high temperature storage characteristics can be greatly improved.
  • the negative electrode composited with the carbon material was used as V, and the batteries of the example and the comparative example were compared with each other using V, the negative electrode having a single lithium force.
  • the arc was smaller than the batteries of Examples 1A and 3A. This is the negative electrode and the electrolyte It is considered that the reaction resistance at the interface of is decreased.
  • the correlation between the reaction resistance value estimated from the diameter of the reaction arc obtained by the Cole-Cole plot and the lowest voltage in the pulse discharge at 40 ° C is poor.
  • the result of the AC impedance measurement Improvement of the power discharge characteristics I could not estimate the effect.
  • the correlation between the results of the AC impedance and the discharge characteristics of the battery after storage at 80 ° C also showed the same tendency.
  • FIG. 4 shows a cross-sectional conceptual view of the obtained negative electrode 5.
  • the negative electrode 5 includes a surface layer portion 13 which is also a composite force of acetylene black and lithium metal, and a lower layer portion 12 which is also a single force of lithium metal.
  • the negative electrode production atmosphere was changed to a reduced pressure atmosphere with a degree of vacuum of 100 Pa or less, the thickness of the cut piece of lithium metal sheet was changed to 360 m, and the average particle diameter of primary particles was 0.1 m instead of acetylene black.
  • FB furnace black
  • Example 14A When the cross section of the obtained negative electrode was observed, the thickness of the surface layer portion in which the furnace black was present was about 10 to 15 m. Assuming that the thickness was 15 m, the content of furnace black in the surface layer was 5% by weight. Ten coin batteries were produced in the same manner as in Example 1A, except that this negative electrode was used.
  • Example 14A
  • the negative electrode preparation atmosphere was changed to a reduced pressure atmosphere with a degree of vacuum of 100 Pa or less, the thickness of the lithium metal sheet was changed to 100 / zm, and the average particle diameter of primary particles was 0.2 m, BET instead of acetylene black.
  • a composite of lithium metal and carbon black was prepared in the same manner as in Example 1A except that carbon black (CB) having a specific surface area of 18 m 2 / g was used and the carbon black content was 1% by weight. Obtained.
  • the negative electrode preparation atmosphere is changed to a reduced pressure atmosphere with a degree of vacuum of 100 Pa or less, the thickness of the lithium metal sheet is changed to 30 / zm, and the average particle diameter of primary particles is 0.40 ⁇ m, instead of acetylene black
  • a composite of lithium metal and carbon black was prepared in the same manner as in Example 1A, except that a carbon black (CB) having a BET specific surface area of 50 m 2 / g was used and the carbon black content was 0.02% by weight. I got a thing.
  • the cut pieces were carbon black composite I spoon, overlapped with lithium aluminum alloy thick 320 mu m including A1 1 weight 0/0, punched into disks shaped in the mold, the surface layer portion and the lithium alloy composites
  • the negative electrode which also becomes lower layer part power of was obtained.
  • Ten coin batteries were produced in the same manner as in Example 1A except that the obtained negative electrode was used.
  • activated carbon with an average particle size of 5 ⁇ m and a BET specific surface area of 1600 m 2 / g instead of carbon black, the content of activated carbon contained in the composite of lithium metal and activated carbon is 2% by weight, A negative electrode was produced in the same manner as in Example 14A, and 10 coin batteries were produced.
  • a negative electrode was produced in the same manner as in Example 14A except that the negative electrode production atmosphere was changed to a dry nitrogen atmosphere (dew point of 50 ° C. or less), and 10 coin batteries were produced.
  • Example 18A
  • the content of the acetylene black contained in the surface layer portion is 10 weight 0/0, except that the thickness of the surface layer portion of about 200 mu m (the total thickness of the negative electrode 350 mu m), a negative electrode in the same manner as in Example 12A
  • the battery was fabricated, and 10 coin batteries were fabricated.
  • the negative electrode preparation atmosphere is dry air
  • a negative electrode was produced in the same manner as in Example 12A except that the atmosphere was changed, and 10 coin batteries were produced.
  • Example 12A Ten coin batteries were produced in the same manner as in Example 12A except that the same positive electrode as in Example 10A and the same organic electrolyte as in Example 10A were used.
  • a negative electrode was produced in the same manner as in 14A.
  • Ten coin batteries were produced in the same manner as in Example 19A except that this negative electrode and the same organic electrolyte as in Example 11A were used.
  • Example 19A Ten coin batteries were produced in the same manner as in Example 19A, except that a sheet of lithium metal was punched out into a disc and used as it was as a negative electrode without being compounded with carbon black.
  • Examples 12 to 20 and Comparative Examples 4 to 5 were pre-discharged for 30 minutes at a constant current of 4 mA. Next, aging was performed at 60 ° C. for 1 day to stabilize the open circuit voltage (OCV) of the battery. After that, the OCV and the impedance at 1 kHz were measured at room temperature for each battery, and it was confirmed that no abnormality was observed in each battery.
  • OCV open circuit voltage
  • the batteries of Examples 12A to 18A and Comparative Example 4A were stored for 10 days at 80 ° C. after aging.
  • the batteries of Examples 19A and 20A and Comparative Example 5A were discharged (50 mAh) for 500 hours at a constant current of 0.1 mA and then stored at 80 ° C. for 10 days.
  • the reason for partially discharging the batteries of Examples 19A, 20A and Comparative Example 5A is:
  • Example 12A On the other hand, from the comparison of Example 12A with Comparative Example 4A using artificial graphite which is a crystalline carbon material, the improvement effect of the pulse discharge characteristics at 40 ° C. becomes remarkable by using the amorphous carbon material.
  • the reductive decomposition reaction of the electrolyte at the interface between the crystalline carbon material and the electrolyte is larger than that at the interface between the amorphous carbon material and the electrolyte, and the reaction resistance of the interface by the decomposition product Is considered to be due to an increase in
  • Example 18A in which the thickness of the surface layer portion in which the content of acetylene black in the surface layer portion is as large as 10% by weight exceeds 1Z2 of the whole negative electrode, the initial discharge capacity becomes less than the design capacity, and the energy density of the battery decreases An improvement effect was seen in the pulse discharge characteristics at a force of 40 ° C.
  • the decrease in initial discharge capacity is considered to be due to the large amount of acetylene black. That is, it is considered that the reductive decomposition reaction of the electrolytic solution at the interface between the acetylene black and the electrolytic solution is increased, and the reaction resistance at the interface is increased. Therefore, in order to improve the low temperature discharge characteristics, it is preferable to set the content of the amorphous carbon material in the surface layer to 5% by weight or less and to set the thickness of the surface layer to 1Z3 or less of the entire negative electrode.
  • Example 17A in which the lithium metal / carbon black composite was used in a dry nitrogen atmosphere, the initial capacity was smaller than that of lOl mAh, that of Comparative Example 1A.
  • the pulse discharge characteristic at 40 ° C. of Example 17A is 2.245 V, and the improvement effect is smaller than in Examples 12A to 15A in which the complexing was performed in an argon atmosphere or under a vacuum of 100 Pa or less. This is because the molten lithium and nitrogen react with each other in the process of compounding to form lithium nitride (Li N).
  • Li N is used to remove traces of dry air and
  • Example 12A, 13A and 15A in which the average particle diameter of primary particles of the amorphous carbon material is 0.1 ⁇ m or less and the BET specific surface area is 20 m 2 / g or more, the initial discharge capacity decreases.
  • the lowest voltage of the 40 ° C pulse discharge was about 2.3V. That is, in Examples 12A, 13A, and 15A, the minimum voltage of -40 ° C. pulse discharge was about 2.3 V, and the effect of improving the voltage drop at the initial stage of discharge was strong.
  • the initial discharge capacity was almost the same as that of Comparative Example 5A.
  • the pulse discharge voltage at 40 ° C. was 2.34 V or higher, and about 0.4 was also improved compared to 2.25 V of Comparative Example 5A.
  • the positive electrode active material is MnO 2
  • the electrolytic solution is also different, so the interfacial reaction between the negative electrode and the electrolytic solution or the low temperature discharge
  • the effect of the present invention is to reduce the reaction resistance of the negative electrode and to improve the discharge voltage at low temperature discharge by controlling the interfacial reaction between the negative electrode and the electrolytic solution. Therefore, as long as a solid positive electrode active material is used, the effects of the present invention do not differ greatly, and it is considered that similar effects can be obtained even if various oxides and fluorides are used.
  • Comparative Example 1A decreased to 1.92 V, whereas in Examples 12A to 18A and Comparative Example 4A, all were 2 V or higher, and the high temperature was high.
  • the effect of improving the low temperature discharge characteristics after storage was obtained.
  • a high discharge voltage of 2. IV or more was obtained.
  • the discharge voltage is about 2.25 V. The effect of improving the discharge characteristics is remarkable
  • the interfacial reaction between the negative electrode and the electrolytic solution is controlled by using the negative electrode complexed with the amorphous carbon material according to the present invention, and the reaction resistance of the negative electrode It can be seen that the effect of suppressing the increase of the high temperature can be obtained and the high temperature storage characteristics can be greatly improved.
  • the negative electrode composited with carbon material V was used, and the batteries of the example and the comparative example were compared by using a negative electrode which had V and a single lithium force.
  • the arc was smaller than the batteries of Examples 4A and 5A. It is considered that this is because the reaction resistance at the interface between the negative electrode and the electrolytic solution is reduced.
  • the correlation between the reaction resistance value estimated from the diameter of the reaction arc obtained by the Cole-Cole plot and the lowest voltage in the pulse discharge at 40 ° C is poor.
  • the result of the AC impedance measurement Improvement of the power discharge characteristics I could not estimate the effect.
  • the correlation between the results of the AC impedance and the discharge characteristics of the battery after storage at 80 ° C also showed the same tendency.
  • Graphite fluoride, acetylene black (conductive material), and styrene butadiene rubber (SBR) (binder) are blended in a weight ratio of 100: 15: 6, and a mixed solution of water and ethanol is used as a dispersion medium. The mixture was thoroughly kneaded. The resulting mixture is dried at 100 ° C., and then the specified mold and hydraulic press are used. The resultant was compression molded into a disk shape using a machine to obtain a positive electrode.
  • Lithium metal is used for the negative electrode active material, and fine particles of Al.sub.2O (product of
  • the average particle size of the primary particles of Al 2 O is 0.7 ⁇ m, and the BET specific surface is
  • a sheet of lithium metal having a thickness of 200 ⁇ m was introduced into a negative electrode preparation atmosphere, and Al 2 O after pressure reduction drying was uniformly dispersed at a rate of 9 g Zm 2 on the surface thereof. After that, a 40 m thick poly
  • the sheet of lithium metal was rolled using a roller press through an ethylene film.
  • the rolled sheet was punched into a disk shape with a mold to obtain a negative electrode in which fine particles were embedded in the surface layer.
  • the negative electrode was crimped to the inner surface of the negative electrode case 2 equipped with the insulating packing 3 as shown in FIG.
  • FIG. 5 shows a schematic cross-sectional view of the obtained negative electrode 5.
  • the negative electrode 5 is made of lithium 12 and scattered in the state in which Al 2 O fine particles 11 are embedded in the surface layer portion. Form secondary particles
  • Some primary particles are fixed in the vicinity of the surface without being embedded in the surface layer.
  • LiBF Lithium tetrafluoroborate
  • yBL non-aqueous solvent
  • the positive electrode 4 was placed on the inner bottom surface of the positive electrode case 1, and a circular separator 6 (100 m in thickness) made of polypropylene and punched into a circular shape was placed thereon. Thereafter, the electrolytic solution was poured into the positive electrode case 1, and the positive electrode 4 and the separator 6 were impregnated with the electrolytic solution. Next, the negative electrode case 2 to which the negative electrode 5 was crimped was attached to the positive electrode case 1 so that the negative electrode 5 and the positive electrode 4 were opposed to each other. The peripheral edge of the positive electrode case 1 was crimped to the insulating packing 3 attached to the negative electrode case 2 to complete a sealed coin-type battery 10.
  • the size of the battery is 23 mm in diameter and 2 mm in height, and has a design capacity of 1 lO mAh.
  • the above assembly process was performed in dry air having a dew point of ⁇ 50 ° C. or less. Ten similar coin batteries were made. Comparative Example 1B
  • a sheet of lithium metal was made without embedding Al 2 O 3 particles in the surface layer of the negative electrode.
  • Example 1B Ten coin batteries were produced in the same manner as in Example 1B, except that the grain size was m, and the BET specific surface area was 25 m 2 / g).
  • Li PO manufactured by Kanto Chemical Co., Ltd., the average particle diameter of primary particles is 2 m
  • SiO 2 manufactured by High Purity Chemical Laboratory Co., Ltd., average particle diameter of primary particles
  • Acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., primary particles) instead of Al
  • Example 1B Ten coin batteries were produced in the same manner as in Example 1B, except that an average particle diameter of 0.040 m and a BET specific surface area of 60 m 2 Zg were used.
  • LiCF 2 SO 4 (solute) is dissolved at a concentration of ImolZL in a mixed solvent (non-aqueous solvent) of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 3: 1.
  • carbon black (average particle diameter of primary particles 0.1 l m, BET
  • ketjen black (average particle size of primary particles 0. 03 ⁇ m, BE
  • Petroleum courts (average primary particle diameter 1 ⁇ m, BET specific surface instead of Al 2 O 3 particles
  • SiC fine particles (average primary particle diameter 2 m, BET specific surface area instead of Al 2 O fine particles
  • ZrO particles average particle diameter of primary particles 1 ⁇ m, BET specific surface
  • Li SO fine particles (average primary particle diameter 2 ⁇ m, BET ratio table instead of Al 2 O fine particles
  • Activated carbon fine particles (average particle diameter of primary particles 2 m, BET ratio table instead of Al 2 O fine particles
  • SiO 2 average primary particle diameter 15 ⁇ m, BET specific surface area 2 m 2
  • SiO 2 average primary particle diameter 5 ⁇ m, BET specific surface area 7 m 2
  • the batteries of Examples 1B to 14B and Comparative Examples 1B to 3B were predischarged at a constant current of 5 mA for 30 minutes. Next, it was aged for 1 day at 60 ° C. to stabilize the open circuit voltage (OCV) of the battery. After that, the OCV and the impedance at 1 kHz were measured at room temperature for each battery, and it was confirmed that no abnormality was observed in each battery.
  • OCV open circuit voltage
  • Example IB A 1 2 ° 3 0. 7 1 0 1 1 2 2. 353
  • Example 2 B Artificial Graphite 2 1 5 1 1 0 2. 340
  • Example 3 B 1 25 1 1 3 2.
  • Example 5 B S i 0 0 0. 5 50 1 1 5 2.
  • 34 1 Example 6
  • Acetylene rack '0. 04 60 1 1 4 2. 3 95
  • Example 7 B A 1 2 0 3 0. 7 1 0 1 1 8 2. 356
  • Example 8 B Car wood 'rack' rack 0. 1 20 1 1 2 2.
  • Example 9 B B Sketch Imm hook 0. 03 800 1 1 3 2. 4 1 1
  • Example 12 B Z r 0 2 1 5 1 1 2 2. 307 Example ⁇ L i S 0 4 2 1. 8 1 1 1 2. 283 Example 14 B Activated carbon 2 1 500 1 1 2 2. 3 1 6 Comparative example Without IB-1 1 2 2. 1 25 Comparative example 2 B S i 0 1 5 2 1 08 2. 1 7 3 Comparative example 3B S i 0 5 7 1 1 0 2. 1 7 5
  • the pulse discharge voltage at 40 ° C. was 2.38 V or more, and an improvement of 0.25 V or more was obtained relative to Comparative Example 1B.
  • Example 6 and 9 with an average particle size of 0.04 ⁇ m or less No significant difference was observed in the pulse discharge voltage between Example 10, which has a diameter of 1 ⁇ m and a specific surface area of 20 m 2 Zg. From this, it is understood that the specific surface area of the fine particles, which is equal to only the particle size of the fine particles, is a major factor for the improvement of the discharge characteristics. This is consistent with the idea that the property improvement action depends on the decomposition reaction of the electrolyte and the protective layer formed on the negative electrode surface by the reaction product.
  • Examples 6B, 8B and 9B in which carbon black having an average particle diameter of 0.1 ⁇ m or less and a BET specific surface area of 20 m 2 Zg is used as a fine particle a pulse at 40 ° C.
  • the discharge voltage is about 3.4 V, which greatly improves the discharge characteristics.
  • the pulse discharge voltage at ⁇ 40 ° C. is approximately 0.5 V It could be improved to the extent.
  • the improvement effect is extremely small as compared with each example of the present invention.
  • the discharge capacity of Comparative Example 2B was 108 mAh, which was slightly smaller than Comparative Example 1B. Therefore, when large particles are used, an adverse effect on discharge characteristics is predicted.
  • Manganese dioxide (MnO 2) is used as the positive electrode active material, MnO and ketjen black (conductive
  • Example 15B Ten coin batteries were produced in the same manner as in Example 15B, except that 2 / ⁇ and BET specific surface area 15 m 2 / g were used.
  • ketjen black (average particle size 0. m, BET specific surface area
  • carbon black (average particle diameter of primary particles 0.1 l m, BET
  • Example 15B Ten coin batteries were produced in the same manner as in Example 15B, except that the lithium metal sheet was punched out into a disk and used as the negative electrode without embedding the fine particles in the surface layer of the negative electrode. did.
  • the batteries of Examples 15B to 18B and Comparative Example 4B were predischarged for 30 minutes at a constant current of 5 mA. Next, aging was performed at 60 ° C. for 1 day to stabilize the open circuit voltage (OCV) of the battery. After that, for each battery, the impedance at OCV and 1 kHz was measured at room temperature, and it was confirmed that no abnormality was observed in each battery.
  • OCV open circuit voltage
  • Example 15B A 1 2 ° 3 0. 7 1 0 1 0 2 2. 3 2 8
  • Example 18B Car book 'n'f' rack 0. 1 2 0 1 0 5 2. 3 8 0
  • the pulse discharge voltage at ⁇ 40 ° C. is 2.36 V or more, and 0 in comparison with Comparative Example 4B.
  • the improvement effect of 11 V or more was obtained.
  • the positive electrode active material is an acid compound
  • embedding fine particles in the surface layer of the negative electrode has the effect of improving the low-temperature large-current discharge characteristics.
  • remarkable effects were obtained when carbon particles with an average particle size of 0.1 ⁇ m or less and carbon particles with a BET specific surface area of 20 m 2 Zg or more were used.
  • the power was Sl 01 mAh, and the low-temperature pulse voltage was 2. 115 V, which was superior to Comparative Example 1B. While the electrolyte is LiCF SO
  • Example 7B in which 3 3 Z (PC + DME) is used, the discharge capacity after storage is 97 mAh, and the low-temperature pulse voltage is also reduced to 2.084 V, and the deterioration due to storage is Example 1 B, 2B and 6B It became bigger than. Since the battery after storage of Example 7B was slightly swollen, the decomposition reaction of the electrolytic solution proceeded to generate a relatively large amount of gas by storage at high temperature, and the deterioration was large as described above. Conceivable. Therefore, from the viewpoint of improving the stability at high temperatures,
  • Comparative Example 2B the capacity after high temperature storage was reduced to 94 mAh, and the capacity deterioration due to high temperature storage was larger than that of Comparative Example 1B. Since the discharge capacity before storage was a little small at 108 mAh, it is considered that the presence of large particles between the positive and negative electrodes caused the discharge reaction to be uneven and the capacity to decrease.
  • Example 2B In the case of Example 2B in which artificial graphite is used as the fine particles, the capacity after high-temperature storage is 105 mAh, and the low-temperature pulse voltage is 2.129 V, and excellent results are obtained. Also, the average particle size is 0.1 l m In Examples 6B and 8B using carbon black having a BET specific surface area of not more than 20 m 2 Zg or less, the low-temperature pulse voltage is about 2.2 V, and the industrial applicability with further excellent results is obtained
  • the lithium primary battery of the present invention has excellent low temperature / high current discharge characteristics and high temperature storage characteristics, so it is excellent in safety and reliability, and is useful as a power source for portable electronic devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

明 細 書
リチウム一次電池およびその製造法
技術分野
[0001] 本発明は、リチウム金属およびリチウム合金よりなる群力 選ばれる少なくとも 1種を 負極活物質として含む負極を具備するリチウム一次電池に関し、特に低温大電流放 電特性および高温保存特性の少なくとも一方に優れたリチウム一次電池に関する。 背景技術
[0002] 負極活物質にリチウム金属またはその合金を用いたリチウム一次電池は、従来の水 溶液系電池に対して高電圧でエネルギー密度が高 、ため、小型化および軽量ィ匕が 容易である。そのため、リチウム一次電池は、小型電子機器の主電源やバックアップ 用電源など、様々な用途に使用されている。
[0003] リチウム一次電池の正極活物質には、一般に、二酸ィ匕マンガンなどの金属酸ィ匕物 や、フッ化黒鉛が用いられている。特にフッ化黒鉛を用いたリチウム一次電池は、二 酸ィ匕マンガンを用いたものよりも、長期貯蔵性や高温領域での安定性に優れ、幅広 い使用温度範囲を有する。
[0004] しかし、電子機器の多機能化や小型化に伴い、リチウム一次電池の特性のさらなる 改善が要望されている。特に車載用電子機器の主電源や、ノ ックアップ電源などの 場合、低温力も高温 (約— 40°C〜約 125°C)の温度領域で、十分な放電特性が要求 される。リチウム一次電池は、大電流放電を行うと、放電初期に電圧が降下した後、 緩やかに電圧が上昇するという特性を示す。フッ化黒鉛を用いたリチウム一次電池は 、特に低温領域での放電において、初期の電圧降下が大きくなる。
[0005] 低温での放電特性を低下させている要因の一つは、有機電解液の粘度変化である 。電解液の溶媒として用いる γ—プチ口ラタトン(y BL)の粘度は、低温で増大する。 よって、電解液のイオン伝導度は低温で低下する。低沸点で低粘度である 1, 2—ジ メトキシェタンと Ί BLとの体積比 1: 1の混合溶媒を用いることも提案されて!、る。この 場合、— 20°C程度の低温領域では、放電電圧が上昇し、改善効果が見られる。しか し、この電池は、 100°C程度の高温で保存した場合のガス発生が大きい。よって、高 温保存時に、電池が膨れを生じ、正常な放電ができなくなるという欠点がある。
[0006] さらに、リチウム一次電池は、高温保存により内部抵抗が増大する。よって、例えば 約 125°Cの高温で保存した電池を放電すると、放電直後の電圧降下が大きくなつて しまう。
[0007] 20°C以下での低温放電により、正極および負極の分極を測定すると、放電初期 では、負極の分極が、正極の分極よりも大きくなる。また、高温保存後の電池でも、負 極の分極が大きくなる。従って、負極の反応過電圧を低減できれば、低温特性およ び高温保存特性を大きく改善することができる。
[0008] リチウム二次電池の分野では、充放電反応の改良を目的として、リチウム金属から なる負極の表面改質などに関する研究が行なわれている。特にデンドライトの発生を 低減するために、負極表面にカーボンなど力もなる被覆層を形成することが提案され て 、る(特許文献 1および 2)。
[0009] しかし、充電を行わな 、一次電池では、そもそもデンドライトの発生は大きな問題で はない。また、リチウム金属は、放電により表面力も溶解する。よって、負極の表面改 質のために膜や層を形成しても、これらは放電時に脱落してしまう。よって、リチウム 二次電池の負極における表面改質技術を一次電池に適用する試みは、ほとんど行 われていない。
特許文献 1 :特開平 6— 168737号公報
特許文献 2 :特開平 10— 172540号公報
発明の開示
発明が解決しょうとする課題
[0010] リチウム一次電池、特にフッ化黒鉛を正極に用いたリチウム一次電池は、大電流放 電において、放電初期に電圧が大きく低下し、その後、緩やかに上昇するという挙動 を示す。特に 0°C以下の低温度環境下での大電流放電では、放電初期の電圧降下 が顕著である。また、リチウム一次電池を高温で保存する場合、主に負極の界面抵 抗 (電解液の分解生成物力 なる皮膜による抵抗)が増大することにより、電池の内 部抵抗が増大する。よって、その後の放電において、放電開始直後の電圧降下が大 きくなる。特に、二酸ィ匕マンガンを正極に用いたリチウム一次電池は、部分放電を行 つた後に高温で保存すると、内部抵抗の増大と放電特性の低下が顕著となる。これ は、 Mn3+が、 Mn4+と Mn2+〖こ不均ィ匕し、 Mn +が溶出するためと考えられている。
課題を解決するための手段
[0011] 本発明は、リチウム一次電池の負極の分極、特に低温での大電流放電時あるいは 高温保存後の負極の分極を低減することに関連する。本発明によれば、他の電池特 性や信頼性を損なうことなぐリチウム一次電池の低温大電流放電特性や高温保存 特性を改善できる。
[0012] 本発明のリチウム一次電池は、正極と、負極と、有機電解液と、正極と負極との間に 介在するセパレータとを具備し、負極は、負極活物質を含み、負極活物質は、リチウ ム金属およびリチウム合金よりなる群力 選ばれる少なくとも 1種力もなる。
[0013] ここで、負極は以下の(a)〜(c)の!、ずれかの特徴を有する。
(a)負極の少なくとも表層部は、非晶質炭素材料と負極活物質との複合物力 なり、 前記表層部は、セパレータを介して、正極と対面している。
(b)負極の正極との対向表面から 5ηπ!〜 15nmの所定の深さには、ハロゲン原子、リ チウム原子および酸素原子が存在し、ハロゲン原子のリチウム原子に対するモル比: XZLiは、 0. 7以下であり、ハロゲン原子の酸素原子に対するモル比: XZOは、 1. 3以下である。ここでも、負極の少なくとも表層部は、非晶質炭素材料と前記負極活 物質との複合物力 なり、表層部は、セパレータを介して、正極と対面していることが 好ましい。
(c)負極は、微粒子が埋め込まれた表層部を有し、微粒子の一次粒子の平均粒径( メディアン径)は 2 m以下であり、表層部は、セパレータを介して、正極と対面してい る。
[0014] 負極が上記特徴 (a)を有する場合、負極は、非晶質炭素材料と負極活物質との複合 物からなる表層部と、負極活物質力 なる下層部とを含む多層構造でもよい。この場 合、表層部の厚さは、負極の厚みの 1Z3以下であることが好ましい。
[0015] 負極が上記特徴 (b)を有する場合、ハロゲン原子は、有機電解液に含まれる溶質の ァ-オンの分解または溶質の不純物 (HF等)に由来する。フッ素を含む溶質 (例え ば LiBF )を用いた場合、負極の正極との対向表面から 5nm〜15nmの所定の深さ には、フッ化リチウム (LiF)が存在する。塩素を含む溶質 (例えば過塩素酸リチウム) を用いた場合には、塩化リチウム (LiCl)が存在する。リチウム金属の表面は、薄い酸 化物皮膜を有する。電池の組立後に予備放電すると、酸化物皮膜は破壊される。そ の後、リチウムと有機電解液とが反応し、新たな皮膜が形成される。その際、ハロゲン 原子が負極に取り込まれると考えられる。酸素は、有機電解液に含まれる非水溶媒 に由来する。酸素は、例えば炭酸リチウム Li COを形成していると考えられる。 LiF
2 3
や Li COは、有機電解液中で負極の保護皮膜の作用を有すると考えられる。
2 3
[0016] リチウムイオンは、 LiFよりも Li COの中を拡散しやすいと考えられる。フッ化リチウム
2 3
(LiF)が負極の表層部に多く存在する場合、リチウムイオンの負極への移動は生じ に《なる。よって、反応抵抗 (過電圧)が大きくなると考えられる。従って、フッ化リチ ゥムのようなハロゲン化リチウムの生成を抑制することにより、負極の分極を低減する ことができる。
[0017] 負極の正極との対向表面から 5nm〜15nmの所定の深さにおける組成を分析する 手法としては、 X線光電子分光分析 (XPS)が最も一般的である。 XPSにおいて、元 素 Aの存在量 NAは下記式から求められる。
NA= (元素 Aのピーク面積) X (元素 Aの補正係数)
なお、補正係数は測定装置に依存する。検出された全元素の存在量を求めることに より、元素のモル比を計算できる。通常、分析装置の自動計算機能により、元素の存 在量やモル比を得ることができる。
[0018] 有機電解液が付着した負極は、低沸点溶媒で洗浄を行っても、有機物を完全に除 去することは困難である。よって、最表面の分析結果は、付着物の影響が大きくなる 。そこで、一般的にはアルゴンイオンによるスパッタリングでエッチングを行った後に、 XPS分析が行われる。アルゴンイオンのスパッタリングによるエッチングレートは、 Si O試料を用いて正確に測定されている。通常、他の試料においても、 SiO試料のェ
2 2 ツチングレートがそのまま適用される。例えば測定装置が Physical Electronics, Inc.製 の Model 5600であり、加速電圧 3kVでアルゴンイオンによるスパッタリングを行う場合 、エッチングレートは 7. 4nmZ分である。なお、エッチングを行う前の負極の正極と の対向表面を最表面(深さは Onm)と考えて、最表面から 5ηπ!〜 15nmの所定の深 さにおける組成を分析する。
[0019] 負極が非晶質炭素を含む場合、負極全体において、負極活物質と非晶質炭素材料 との合計に占める非晶質炭素材料の含有量は 5重量%以下であることが好ま 、。 表層部においても、負極活物質と非晶質炭素材料との合計に占める非晶質炭素材 料の含有量は 5重量%以下であることが好まし 、。
[0020] 非晶質炭素材料は、一次粒子の平均粒径 (メディアン径)が 0. 1 μ m以下の微粒子 であることが好ましい。また、非晶質炭素材料は、例えば窒素吸着による BET比表面 積が 20m2/g以上の微粒子であることが好ましい。非晶質炭素材料には、例えば、ァ セチレンブラック、ケッチェンブラック、コンタクトブラック、ファーネスブラックおよびラ ンプブラックよりなる群力 選ばれる少なくとも 1種のカーボンブラックを用いることが できる。
[0021] 負極が上記特徴 (c)を有する場合、微粒子には、セラミックス、リチウム化合物、炭 素材料などを用いることができる。これらは単独で用いてもよぐ 2種以上を組み合わ せて用いてもよい。
セラミックスには、 Al O、 Fe O、 SiC、 SiO、 ZrOなどを用いることができる。これ
2 3 2 3 2 2
らは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。これらのセラミックス は、リチウムもしくはリチウム合金の表面に容易に圧入できる硬度を有する。また、こ れらのセラミックスは、リチウムとの反応性も低い。
[0022] リチウム化合物には、 Li PO、 Li SOなどを用いることができる。これらは単独で用い
3 4 2 4
てもよく、 2種以上を組み合わせて用いてもよい。
[0023] 炭素材料には、黒鉛、石油コータス、活性炭などを用いることができる。これらは単 独で用いてもよぐ 2種以上を組み合わせて用いてもよい。なお、黒鉛微粒子を用い る場合、微粒子が埋め込まれた表層部では、黒鉛層間へのリチウムの挿入反応が起 こる。この反応により、赤色もしくは金色のリチウム 黒鉛層間化合物が生成する。
[0024] 特に好ましい微粒子として、以下を挙げることができる。
(i)一次粒子の平均粒径 (メディアン径)が 0. 1 μ m以下の炭素粒子。
(ii)窒素吸着法による BET比表面積が 20m2Zg以上の炭素粒子。
(ii)アセチレンブラック、ケッチェンブラック、コンタクトブラック、ファーネスブラックおよ びランプブラックよりなる群力 選ばれた少なくとも 1種のカーボンブラック。なお、これ らのカーボンブラックについても、一次粒子の平均粒径 (メディアン径)は 0. 1 m以 下が好ましぐ窒素吸着法による BET比表面積は 20m2/g以上が好ましい。
上記炭素粒子 (i)〜(iii)は、電池の内部抵抗の増大を抑制する。よって、放電時の 負極の分極は効果的に低減される。
[0025] 負極活物質に用いることのできるリチウム合金は、例えば少量のアルミニウム (A1)、 すず (Sn)などを含む。リチウム合金は、リチウム金属に比べて物性や表面状態の改 良が期待される。ただし、合金は、リチウムに比べ、融点が上昇したり、硬度が硬くな り、加工性が損なわれたりする。よって、リチウム合金に含まれるリチウム以外の金属 は少量であることが好ましい。リチウム以外の金属は、例えば合金全体の 5重量%以 下であることが好ましい。
[0026] 正極は、正極活物質と、導電材と、結着材とを含む。正極活物質は、金属酸化物ま たはフッ化黒鉛を含むことが好ましい。本発明は、フッ化黒鉛を用いる場合に、特に 有効である。正極活物質となる金属酸ィ匕物には、二酸ィ匕マンガンが挙げられる。正 極の製造法は、特に限定されないが、例えば金属酸ィ匕物またはフッ化黒鉛力 なる 正極活物質と、導電材と、結着材とを混合することにより作製できる。
[0027] 有機電解液には、溶質を溶解した非水溶媒を用いることができる。溶質は、テトラフ ルォロ硼酸リチウムを含むことが好ましい。非水溶媒は、 γ—プチ口ラタトンを含むこ とが好ましい。
[0028] 本発明は、また、負極活物質と非晶質炭素材料との複合物を少なくとも表層部に含 み、負極活物質がリチウム金属およびリチウム合金よりなる群力 選ばれる少なくとも 1種力 なる負極を調製する工程と、前記複合物からなる表層部を、セパレータを介 して、正極と対面させる工程と、を含むリチウム一次電池の製造法に関する。
本発明は、また、負極活物質と微粒子との複合物を少なくとも表層部に含み、負極活 物質がリチウム金属およびリチウム合金よりなる群力 選ばれる少なくとも 1種力 なり 、微粒子は一次粒子の平均粒径 (メディアン径)が 2 m以下である負極を調製する 工程と、前記複合物からなる表層部を、セパレータを介して、正極と対面させる工程 と、を含むリチウム一次電池の製造法に関する。 [0029] 負極活物質と非晶質炭素材料との複合物を少なくとも表層部に含む負極を調製す る工程には、例えば以下を挙げることができる。
第 1に、非晶質炭素材料および負極活物質を含む混合物を調製し、これを所定形 状の負極に成形する工程が挙げられる。
第 2に、非晶質炭素材料および負極活物質を含む混合物を調製し、これを圧延し て薄いシートを形成し、得られた混合物のシートと、負極活物質 (例えばリチウム金属 )のシートとを圧着する工程が挙げられる。
[0030] 第 3に、非晶質炭素材料、結着剤および有機溶剤を含むペーストを調製し、このべ 一ストを負極活物質 (例えばリチウム金属)のシートに塗工し、乾燥後、塗膜とシートと を同時に圧延する工程が挙げられる。
第 4に、負極活物質 (例えばリチウム金属)の表面に、非晶質炭素材料を散布し、散 布された非晶質炭素材料とシートとを同時に圧延する工程が挙げられる。圧延前に、 負極活物質のシートを、ホットプレートなどを用いて、 100〜200°Cに加熱することに より、非晶質炭素材料をシートに圧着しやすくなる。
[0031] 非晶質炭素材料を少なくとも表層部に含む負極を調製する工程は、アルゴンガス 雰囲気下または lOOPa以下の減圧雰囲気下で行うことが好ましい。カーボンブラック は、 BET比表面積の大きい微粒子である。よって、カーボンブラックは、非常に燃え やすぐ酸素吸着量が多ぐ酸化剤として作用する。よって、ドライエア (露点— 50°C 以下)中で強還元剤であるリチウム金属と接触させると、酸化還元反応が急激に進行 することがある。また、乾燥窒素雰囲気下でカーボンブラックをリチウム金属と接触さ せると、リチウムと窒素とが反応し、窒化リチウムが生成する。
[0032] 負極活物質と微粒子との複合物を少なくとも表層部に含む負極は、例えば一次粒子 の平均粒径が 2 m以下の微粒子を、負極の表層部に、単に埋め込むだけで得るこ とができる。例えば、微粒子を負極表面に圧着もしくは圧入することにより、負極の表 層部に微粒子を埋め込むことができる。
発明の効果
[0033] 本発明によれば、低温領域での電池内部抵抗の増大を抑制し、負極の反応過電 圧を低減することが可能となり、低温大電流放電特性を向上させることができる。また 、高温保存時の電池内部抵抗の増大も抑制できる。さらに、部分放電後の電池を高 温で保存した場合でも、保存後の放電特性を改良することができる。よって、本発明 によれば、低温大電流放電特性および高温保存性に優れた信頼性の高!ヽリチウム 一次電池を提供することが可能となる。
[0034] 本発明によれば、放電反応の活性点を増加させることができ、負極の反応過電圧 を低減することが可能となり、低温放電特性を向上させることができる。また、本発明 によれば、リチウム一次電池の高温安定性および長期信頼性などが大きく損なわれ ることがない。本発明は一次電池に関するものであるから、充電反応は全く想定され ていない。よって、放電初期における負極の分極を抑制する効果が発揮されれば十 分である。
[0035] 以下、本発明の効果の発現機構について詳述する。
リチウム一次電池の放電反応は、負極力もリチウムイオンが溶出し、正極活物質にリ チウムイオンが挿入される反応である。放電反応は、正極および負極の電子抵抗、 電極およびセパレータに含浸された電解液中でのイオン輸送に対する抵抗、正極お よび負極の電荷移動に伴う反応抵抗を伴う。電極の構造、電池の構成、放電温度、 放電電流密度などの条件により、これらの抵抗成分による過電圧は変化する。負極 の過電圧は 0°Cを超える高温領域では正極の過電圧よりも小さい。しかし、 0°C以下 の低温領域では、負極の過電圧が急激に増大し、条件によっては正極よりも大きくな る。
[0036] 放電にぉ 、て、負極からリチウムイオンが溶出する反応は、リチウム金属やリチウム 合金の結晶粒界や、結晶の欠陥力 生じると考えられる。結晶の欠陥は、リチウム金 属ゃリチウム合金の押し出し加工、もしくは圧延加工の際に形成される。リチウム金属 やリチウム合金の表面には、酸化リチウム等からなる皮膜が存在する。また、有機電 解液中では、炭酸リチウム等を主体とする電解液の還元分解生成物力 なる皮膜が 存在する。これらの皮膜は、電解液の分解を抑制する保護皮膜として作用する反面 、リチウムイオンの溶出反応を抑制する作用を有すると考えられる。
[0037] リチウム一次電池の組立直後に電池を予備放電することにより、組立前にリチウム 金属やリチウム合金の表面に形成された皮膜は破壊されると考えられる。よって、負 極の反応抵抗は、有機電解液の分解生成物カゝらなる皮膜が主要因と考えられる。
[0038] 負極の表層部が非晶質炭素材料を含有する場合、電池の組立直後に、負極と有 機電解液との界面で、一時的に非晶質炭素材料にリチウムイオンが挿入され、電解 液の分解反応が進行する。その結果、短時間で電解液の分解生成物が負極と電解 液との界面に形成される。分解生成物は、継続的な電解液の分解を抑制する保護皮 膜として作用する。この保護皮膜は、リチウム金属やリチウム合金を単独で用いた場 合に形成される皮膜に比べて安定であり、以降の電解液の分解による電池内部抵抗 の増大を抑制する。
[0039] 負極の反応抵抗は温度依存性が高ぐ通常、低温領域 (特に 0°C以下)では急激に 増大する。ただし、上述のように、電池の内部抵抗の増大が抑制されるため、低温領 域でも負極の過電圧の急激な増大は抑制される。同様に、高温保存時においても、 電池の内部抵抗の増大が抑制され、保存後の放電初期における負極の分極は大幅 に低減する。さらに、部分放電後の電池を高温で保存した場合でも、内部抵抗の増 大を抑制する効果が得られる。その効果は、負極の内部まで非晶質炭素材料が存 在する場合に特に大きくなる。
[0040] また、一次粒子の平均粒径 2 μ m以下の微粒子を、負極の表層部に埋め込むこと により、リチウム金属やリチウム合金の結晶に、新たな欠陥が形成される。よって、負 極からリチウムイオンが溶出する反応の活性点が増大し、負極の反応過電圧は低減 する。
[0041] 微粒子として黒鉛を用いる場合には、リチウム一黒鉛層間化合物が形成される。リ チウム—黒鉛層間化合物は、リチウムイオン二次電池の負極材料と同様に、リチウム イオンの溶出反応を起こす。よって、放電時には、リチウム金属やリチウム合金からの リチウムイオンの溶出反応だけでなぐ層間化合物力 のリチウムイオンの溶出反応 を利用することが可能となる。よって、負極の反応過電圧を、より一層低減させること ができる。
[0042] 微粒子には、(i)一次粒子の平均粒径 (メディアン径)が 0. 1 μ m以下の炭素粒子、
(ii)窒素吸着法による BET比表面積が 20m2Zg以上の炭素粒子、または (iii)ァセチ レンブラック、ケッチェンブラック、コンタクトブラック、ファーネスブラックおよびランプ ブラックよりなる群力も選ばれた少なくとも 1種のカーボンブラックを用いることが特に 有効である。これらを用いた場合、現時点では理由は不明確である力 電池の内部 抵抗の増大を抑制する効果が見られる。なお、前記理由としては、以下の作用が想 定される。
[0043] 一次電池で用いられて ヽる有機電解液の溶媒 (例えばプロピレンカーボネイトや γ -プチ口ラタトンなど)を、一般的な炭素材料を負極活物質とするリチウムイオン二次 電池に用いると、電池内で溶媒の分解反応が促進することが知られている。負極表 層部に埋め込まれた炭素粒子と電解液との界面でも、同様の分解反応が生じている と考えられる。この分解生成物が、リチウム Ζ電解液界面における電解液の分解反 応を抑制し、以降の電池内部抵抗の増大を抑制していると考えられる。
図面の簡単な説明
[0044] [図 1]本発明に係るコイン形のリチウム一次電池の縦断面図である。
[図 2]負極の正極との対向表面力 の深さと、 XPSで検出されたフッ素原子のリチウ ム原子に対するモル比: FZLiとの関係を示す図である。
[図 3]負極の正極との対向表面力 の深さと、 XPSで検出されたフッ素原子の酸素原 子に対するモル比: FZOとの関係を示す図である。
[図 4]本発明に係る負極の一例の断面概念図である。
[図 5]本発明に係る負極の他の一例の断面概念図である。
発明を実施するための最良の形態
[0045] 本発明のリチウム一次電池は、正極と、負極と、有機電解液と、正極と負極との間に 介在するセパレータとを具備する。電池の形状もしくは構造は特に限定されず、例え ば円筒形、角形、ボタン形、コイン形などがある。本発明のリチウム一次電池は、主と して、負極の改良に関し、正極、有機電解液およびセパレータの組成や構造に、特 に制限はない。
[0046] 負極は、負極活物質を含み、負極活物質は、リチウム金属およびリチウム合金より なる群力 選ばれる少なくとも 1種力 なる。
負極は以下の(a)〜(c)の 、ずれかの特徴を有する。
(a)負極の少なくとも表層部は、非晶質炭素材料と負極活物質との複合物力 なり、 前記表層部は、セパレータを介して、正極と対面している。負極の表層部は、非晶質 炭素材料と負極活物質の他に、不可避の不純物や、非晶質炭素以外の炭素材料な どを含んでもよい。
(b)負極の正極との対向表面から 5ηπ!〜 15nmの所定の深さには、ハロゲン原子、リ チウム原子および酸素原子が存在し、ハロゲン原子のリチウム原子に対するモル比: XZLiは、 0. 7以下であり、ハロゲン原子の酸素原子に対するモル比: XZOは、 1. 3以下である。ここでも、負極の少なくとも表層部は、非晶質炭素材料と前記負極活 物質との複合物力 なり、表層部は、セパレータを介して、正極と対面していることが 好ましい。
(c)負極は、微粒子が埋め込まれた表層部を有し、微粒子の一次粒子の平均粒径( メディアン径)が 2 μ m以下であり、表層部は、セパレータを介して、正極と対面してい る。負極の表層部は、微粒子と負極活物質の他に、不可避の不純物を含んでもよい
[0047] リチウム金属は、通常は金属状態のリチウム単体である力 微量の不純物を含んで もよい。リチウム合金は、リチウム以外の金属、例えば少量のアルミニウム (A1)、スズ( Sn)、マグネシウム(Mg)、インジウム(In)、カルシウム(Ca)などを含む。リチウム合 金に含まれるリチウム以外の金属の含有量は、例えば合金全体の 5重量%以下であ ることが好ましぐ 1重量%以下がより好ましい。リチウム金属とリチウム合金とを併用し て負極を構成してもよい。
[0048] 負極活物質の組成は、負極部位によって変化させてもよ!、。例えば負極の表層部 では、リチウム単体を用い、下層部ではリチウム合金を用いることも可能である。下層 部では、例えばアルミニウムを 0. 2重量%程度含むリチウム合金を用いることが好ま しい。
[0049] 上記特徴 (a)もしくは (b)を有する負極は、負極活物質または負極活物質と非晶質 炭素とを含む混合物を成形したものカゝら作製することができる。負極活物質と非晶質 炭素とを含む混合物には、リチウム金属と非晶質炭素とを含む混合物や、リチウム合 金と非晶質炭素とを含む混合物や、リチウム金属とリチウム合金と非晶質炭素とを含 む混合物などが含まれる。例えば、リチウム金属またはリチウム合金をシート状もしく は電極形状に成形したものから負極を作製することができる。また、負極活物質と非 晶質炭素材料を含む混合物をシート状もしくは電極形状に成形したものから負極を 作製することができる。リチウム金属またはリチウム合金をシート状に成形する際には 、押し出し加工、圧延加工などを行う。負極は、金属箔、メッシュなど力 なる集電体 を含んでもよぐ含まなくてもよい。
[0050] 負極は、その全体が非晶質炭素材料と負極活物質との複合物力 構成されて!、て もよいが、表層部以外は非晶質炭素材料を含まない構造でもよい。複合物からなる 表層部と非晶質炭素材料を含まない下層部との境界は、明確に分かれていてもよい 力 負極の厚み方向において、徐々に非晶質炭素材料の量が変化してもよい。例え ば表層部の最表面に非晶質炭素材料が多く分布し、負極内部に向力つて傾斜的に 非晶質炭素材料の分布が減少してもよ 、。
[0051] 負極全体において、負極活物質と非晶質炭素材料との合計に占める非晶質炭素 材料の含有量は 5重量%以下が好ましぐ 0. 02重量%以上 2重量%以下が更に好 ましい。この程度の含有量であれば、負極のエネルギー密度を大きく低下させること なぐ負極と電解液との界面を安定ィ匕させる効果が得られるからである。
[0052] 負極活物質と非晶質炭素材料との複合物からなる表層部と、非晶質炭素材料を含 まない下層部との境界を認識できる場合、表層部の厚みは、負極の厚みの 1Z3以 下が好ましぐ 1Z5以上、 1Z20以下が更に好ましい。また、表層部、すなわち複合 物における非晶質炭素材料の含有量は、 5重量%以下が好ましぐ 0. 02重量%以 上 2重量%以下が更に好ましい。表層部の厚みが負極の厚みの 1Z3以下でも、負 極と電解液との界面を制御するのに十分である。複合物からなる表層層を薄くするこ とで、電解液の過剰な分解反応が抑制される。特に微弱電流で放電する場合には、 表層層を薄くすることが好ましい。特に、正極にフッ化黒鉛を用いる場合には、放電 初期の電圧低下が顕著であり、放電の進行に伴って放電電圧が上昇する。よって、 複合物からなる表層部を薄くして、放電初期の特性を改良することが極めて有効であ る。
[0053] 負極の正極との対向表面から 5nm〜15nmの所定の深さには、ハロゲン原子、リチ ゥム原子および酸素原子が存在することが好まし ヽ。 XPSでその深さにおける組成 を測定した場合、ハロゲン原子のリチウム原子に対するモル比: XZLiは、 0. 7以下 であることが好ましい。また、ハロゲン原子の酸素原子に対するモル比: XZOは、 1. 3以下であることが好ましい。この場合、リチウムと電解液との界面を安定ィ匕させる効 果が得られる。
[0054] 非晶質炭素材料は、リチウム表面の活性部近傍に均一に分布させる観点から、一 次粒子の平均粒径 (メディアン径)が 0. 1 μ m以下の微粒子であることが好ましぐ 0. 03 μ m以上、 0. 1 m以下の微粒子であることが更に好ましい。また、非晶質炭素 材料は、電解液溶媒と速やかに反応を起こさせる観点から、例えば窒素吸着による B ET比表面積が 20m2/g以上の微粒子であることが好ましぐ 50m2/g以上、 100m2/g 以下の微粒子であることが更に好ましい。また、表面の少なくとも 50%以上が炭素材 料で被覆されていることが好ましい。すなわち、負極の正極との対向表面の面積を S 、炭素材料で被覆された表面の面積を Sc、被覆率を Rs= (Sc/S) X 100 (%)と定 義するとき、 Rsは 50%以上であることが好ましい。
[0055] 負極の正極との対向表面の 50%以上を炭素材料で被覆する(被覆率を 50%以上( 好ましくは 50〜90%)に制御する)ことにより、負極と電解液との界面の状態を良好 に制御することができる。被覆率 Rsは、例えば、負極の正極との対向表面を全体的 に観察できる視野を有するマイクロスコープ等を用いて測定することができる。マイク ロスコープ等により観察もしくは撮影された表面像において、負極の正極との対向表 面の面積に対する、炭素材料で遮蔽された面積の割合が被覆率となる。表面像は、 負極の正極との対向表面に対して垂直な方向から観察もしくは撮影する。
[0056] 非晶質炭素材料には、カーボンブラック、活性炭、コータス、ガラス状カーボン (ダラ ッシーカーボン)などが含まれる。非晶質炭素材料は、 1種を単独で用いてもよぐ 2 種以上を組み合わせて用いてもよい。これらのうちでは、微粒子状で、比表面積の高 いものが得やすいことから、特にカーボンブラックが好ましい。カーボンブラックには、 アセチレンブラック、ケッチェンブラック、コンタクトブラック、ファーネスブラック、ランプ ブラックなどを用いることができる。カーボンブラックは、 1種を単独で用いてもよぐ 2 種以上を組み合わせて用いてもよい。なお、カーボンブラックは微粒子であるため、 その一次粒子が凝集して二次粒子を形成していてもよい。カーボンブラックは、揮発 成分、吸着水などを除去するために、 150°C〜250°Cの熱風で乾燥する力、または 減圧乾燥を行って力も用いることが望まし 、。
[0057] 以下に、負極活物質と非晶質炭素材料との複合物を少なくとも表層部に含み、負 極活物質がリチウム金属およびリチウム合金よりなる群力 選ばれる少なくとも 1種か らなる負極を調製する方法を例示する。
第 1に、非晶質炭素材料および負極活物質を含む混合物を調製し、これを所定形 状の負極に成形する工程が挙げられる。この方法は、負極全体またはほぼ全体を非 晶質炭素材料と負極活物質との複合物から構成する場合に好適である。
[0058] 第 2に、非晶質炭素材料および負極活物質を含む混合物を調製し、これを圧延し て薄いシートを形成し、得られた混合物のシートと、リチウム金属もしくはリチウム合金 のシートとを圧着する工程が挙げられる。圧着で得られた接合シートを、所望の形状 に裁断もしくは打ち抜くことにより、負極板が得られる。この方法は、非晶質炭素材料 と負極活物質との複合物力 なる表層部と、負極活物質力 なる下層部とを含む 2層 構造の負極板を構成する場合に好適である。
[0059] 第 3に、非晶質炭素材料、結着剤および有機溶剤を含むペーストを調製し、このべ 一ストを、リチウム金属もしくはリチウム合金のシートに塗工し、乾燥後、塗膜とシートと を同時に圧延する工程が挙げられる。この方法も、非晶質炭素材料と負極活物質と の複合物からなる表層部と、負極活物質力 なる下層部とを含む 2層構造の負極板 を構成する場合に好適である。
[0060] 第 4に、リチウム金属もしくはリチウム合金のシートの表面に、非晶質炭素材料を散 布し、散布された非晶質炭素材料とシートとを同時に圧延する工程が挙げられる。圧 延前にリチウム金属もしくはリチウム合金のシートを加熱することにより、非晶質炭素 材料と負極活物質との複合物からなる表層部が形成されやすくなる。加熱温度は 10 0〜200°Cが好適である。この方法は、非晶質炭素材料と負極活物質との複合物か らなる表層部を薄く形成する場合に好適である。
[0061] 上記のような負極の製造工程は、アルゴンガス雰囲気下または lOOPa以下の減圧 雰囲気下で行うことが好ましい。また、アルゴン以外の希ガス雰囲気下であってもよい 。このような雰囲気であれば、カーボンブラックとリチウム金属との間で酸ィ匕還元反応 が進行したり、窒化リチウムが生成したりするのを防止できる力 である。
[0062] コイン形電池用の負極を調製する方法の一例を具体的に述べる。アルゴングロ一 ブボックス内において、リチウム金属のシート上に乾燥したカーボンブラックを散布し 、ホットプレート等により、シートを 200°C程度に加熱する。その際、溶融したリチウム 力 Sカーボンブラックに含浸され、カーボンブラックとリチウムとの複合物が形成される。 また、一対のリチウム金属のシートでカーボンブラックを挟持し、これを 200°C程度に 加熱してもよい。加熱処理は、溶融リチウムのカーボンブラックへの含浸を促進する ために、 lOOPa以下の減圧下で行うことが好ましい。さらに、リチウムシート断片と力 一ボンブラック粉末とを加熱して溶融混合物を作製し、これを不活性雰囲気内で撹 拌して、均一混合を加速しても良い。
[0063] 次に、不活性雰囲気内に設置した小型ローラプレス機により、リチウムとカーボンブ ラックとの複合物をシート状に圧延し、シートの厚みを均一化する。リチウム金属の厚 みが薄ぐ例えば 100 m以下の場合には、カーボンブラックを散布したシートや、力 一ボンブラックを挟持したシートを、加熱溶融せずに、ローラプレス機で圧延してもよ い。所定厚みとなったシートを打ち抜き金型等で所定形状に切り出すことにより、負 極が得られる。得られた負極はケースの内面に圧着する。
[0064] 上記特徴 (c)を有する負極は、例えば、リチウム金属またはリチウム合金をシート状 もしくは電極形状に成形し、得られたシートや成形体の表面に、微粒子を圧着もしく は圧入することで得られる。リチウム金属またはリチウム合金をシート状に成形する際 には、例えば、押し出し加工、圧延カ卩ェなどを行う。負極は、金属箔、メッシュなどか らなる集電体を含んでもよぐ含まなくてもよい。
[0065] 微粒子は、リチウム金属もしくはリチウム合金の表面への埋め込み易さの点で、リチ ゥムゃ酸化リチウムよりも硬度が高いものであることが好ましい。ただし、酸化リチウム などの表面層を破壊してリチウム金属もしくはリチウム合金内に圧入することが可能な 硬度を有するものであれば良い。例えば、微粒子には、セラミックス、リチウム化合物 、炭素材料などを用いることができる。これらは単独で用いてもよぐ 2種以上を組み 合わせて用いてもよい。
[0066] セラミックスには、 Al O、 Fe O、 SiC、 SiO、 ZrOなどを用いることができる。これ らは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。これらのセラミックス は、リチウムもしくはリチウム合金の表面に容易に圧入できる硬度を有し、リチウムとの 反応性も低い。また、リチウム電池内で安定であり、適当な粒径を有するものを入手し やすい。
[0067] リチウム化合物には、 Li PO、 Li SOなどを用いることができる。これらは単独で用
3 4 2 4
いてもよぐ 2種以上を組み合わせて用いてもよい。これらは、リチウムや有機電解液 に対して安定である点で好まし 、。
[0068] 炭素材料には、黒鉛、石油コータス、活性炭などを用いることができる。これらは単 独で用いてもよぐ 2種以上を組み合わせて用いてもよい。黒鉛のようにリチウムと明 確な層間化合物を形成する炭素材料は、リチウム表面に埋め込むと、数時間で黒鉛 粒子が赤色に着色する。これを、ドライエア雰囲気内で、 12時間程度放置すると、金 色から赤色の層間化合物が、リチウム表面に形成される。コータス、活性炭、カーボ ンブラックなどの場合には、このような明確な変化は観察されないが、同様に、リチウ ムとの反応が生じていると考えられる。炭素材料と反応したリチウムは、放電反応にお いて、炭素材料から脱離する。よって、微粒子として炭素材料を用いる場合には、炭 素材料の埋め込みによるリチウム溶出量の増大のみならず、リチウム脱離反応を利 用することが可能となる。その結果、反応過電圧を低減させる効果は大きくなる。
[0069] 炭素材料の中でも、 (i)一次粒子の平均粒径 (メディアン径)が 0. 1 μ m以下の炭素 粒子、(ii)窒素吸着法による BET比表面積が 20m2Zg以上の炭素粒子、(iii)ァセチ レンブラック、ケッチェンブラック、コンタクトブラック、ファーネスブラックおよびランプ ブラックよりなる群力も選ばれた少なくとも 1種のカーボンブラックなど、を用いる場合 には、電池の内部抵抗の増大を抑制する効果も得られる。内部抵抗の増大が抑制さ れるのは、リチウム上に固定された炭素材料はリチウムと同電位となるためである。す なわち、リチウム上に固定された炭素材料が電解液に接触すると、リチウムイオンの 挿入反応と溶媒の分解反応が即時に起こり、リチウム表面が電解液の分解生成物で 被覆される。この分解生成物は、リチウム Z電解液界面における電解液の分解反応 を抑制する保護層として作用する。よって、以降の電池内部抵抗の増大は抑制され ると考えられる。特に、低温環境下では、電池内部抵抗の増大が大幅に抑制される。 その結果、大電流放電時における電圧低下を改善する効果は顕著となる。
[0070] 負極の表層部に添加される微粒子の量は、微粒子の種類や負極形状などに依存 するため、一概には言えず、特に限定もされないが、例えば、単位表面積あたり 0. 1 〜50gZm2が好ましい。微粒子量がこの程度であれば、負極のエネルギー密度を大 きく低下させることがなぐ微粒子に起因する抵抗が、放電性能に大きく影響すること もないからである。
[0071] 本発明では、微粒子の一次粒子の平均粒径 (メディアン径)は、微粒子が埋め込ま れな 、負極表面 (正極との対向面)の割合が少なくなるように、 2 μ m以下として 、る 力 0. 5 m以下であることが更に好ましい。微粒子の平均粒径が 2 μ mを超えると、 微粒子が埋め込まれない負極表面の割合が大きくなり、放電初期の分極を抑制する 十分な効果が得られない。
[0072] 微粒子の最大粒径は 5 μ m以下であることが好ま ヽ。粒径 5 μ m以上の大きな粒 子が混入すると、その粒子周辺部には、微粒子を圧力することが困難となり、微粒子 が埋め込まれない負極表面の割合が大きくなることがある。従って、微粒子は、平均 粒径 2 m以下であり、かつ、できるだけシャープな粒度分布を有することが好ましい 。このような観点から、一次粒子の平均粒径 (メディアン径)が 0.: m以下である力 一ボンブラックは、微粒子として好適である。カーボンブラックは、 150〜250°Cの熱 風で乾燥するか、または減圧乾燥を行い、揮発成分や吸着水を除去して力 用いる ことが望ましい。
[0073] 負極の表層部には、微粒子が、一次粒子の状態で埋め込まれていることが好まし いが、カーボンブラックのように、一次粒子が凝集して二次粒子を形成しやすい微粒 子の場合には、二次粒子を用いてもよい。
[0074] 以下に、コイン型電池用の負極を調製する方法を例示する。
まず、微粒子中に、揮発成分、吸着水などが含まれている場合には、これを除去す る。具体的には、微粒子を 100〜200°C (カーボンブラックの場合には 150〜250°C )の熱風で乾燥させる力 減圧乾燥を行う。その後、リチウム金属もしくはリチウム合金 のシートの表面に、微粒子を散布する。次に、ポリエチレンフィルムなどの離型紙を介 して、元のシートの厚みが変化しない程度の弱い加圧力で圧延を行い、微粒子をシ ート表層部に埋め込む。その後、離型紙を剥がし、シート表層部に埋め込まれていな い微粒子を除去する。微粒子が表層部に埋め込まれたシートを、打ち抜き金型を用 いて、所定寸法に打ち抜くことで、所望の負極が得られる。得られた負極は、コイン型 電池のケース内面に圧着する。
[0075] 上記方法は例示に過ぎず、他の様々な方法で負極を調製してもよ!、。例えば、予 め、ケース内面に所定形状のリチウム金属やリチウム合金を圧着し、その後、リチウム 金属やリチウム合金の表面に、乾燥した微粒子を散布することで、微粒子を埋め込ん でもよい。あるいは、プロピレンカーボネイトや 1, 2—ジメトキシェタンなどの溶媒に、 乾燥した微粒子を分散させて、デイスパージヨンを調製する。このディスパージヨンを ポリエステルフィルムなどのフィルム上に塗布して、乾燥させ、その後、リチウム金属も しくはリチウム合金のシート表面に転写させる。
[0076] 上記のような負極の製造工程は、アルゴンガス雰囲気下または lOOPa以下の減圧 雰囲気下で行うことが好ましい。また、アルゴン以外の希ガス雰囲気下であってもよい 。このような雰囲気であれば、微粒子とリチウムとの間で酸ィ匕還元反応が進行したり、 窒化リチウムが生成したりするのを防止できるからである。
[0077] 正極に特に制限はないが、例えば、正極活物質と、導電材と、結着材とを含む。本 発明は、放電初期の放電特性を、負極の過電圧を抑制することにより改善するもの であるため、正極活物質は特に限定されない。
[0078] 正極活物質には、例えば金属酸ィ匕物やフッ化黒鉛を用いることができる。金属酸化 物とフッ化黒鉛とを併用することもできる。正極活物質に用いる金属酸ィ匕物には、二 酸化マンガン、酸化銅などがある。フッ化黒鉛は、化学式 CF (0. 8≤x≤l. 1)で表 されるものを好ましく用いることができる。フッ化黒鉛は、長期信頼性、安全性、高温 安定性などの点で優れている。フッ化黒鉛は、石油コータス、人造黒鉛などをフッ素 化して得られる。
[0079] 正極の導電材には、例えば、アセチレンブラック、ケッチェンブラックなどのカーボン ブラックや、人造黒鉛などの黒鉛を用いることができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもょ 、。
[0080] 正極の結着材には、例えば、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リ デン(PVDF)、 PVDFの変生体、テトラフルォロエチレン一へキサフルォロプロピレ ン共重合体(FEP)、テトラフルォロエチレン パーフルォロアルキルビニルエーテル 共重合体(PFA)、フッ化ビ-リデン一へキサフルォロプロピレン共重合体、フッ化ビ -リデンークロ口トリフルォロエチレン共重合体、エチレンーテトラフルォロエチレン共 重合体 (ETFE榭脂)、フッ化ビ-リデンーペンタフルォロプロピレン共重合体、プロ ピレンーテトラフルォロエチレン共重合体、エチレン クロ口トリフルォロエチレン共重 合体(ECTFE)、フッ化ビ-リデン一へキサフルォロプロピレンーテトラフルォロェチ レン共重合体などのフッ素榭脂、スチレンブタジエンゴム(SBR)、変性アタリ口-トリ ルゴム、エチレン アクリル酸共重合体などを用いることができる。これらは単独で用 いてもよぐ 2種以上を組み合わせて用いてもよい。
[0081] 有機電解液には、溶質を溶解する非水溶媒を用いることができる。電解液には、添 加剤として、ビ-レンカーボネイト、ビュルエチレンカーボネイト、エチレンサルファイト 、ジメチルスルホンなどを数%程度添カ卩して用いても良!、。
[0082] 溶質には、へキサフルォロリン酸リチウム(LiPF )、テトラフルォロ硼酸リチウム(LiB
6
F )、トリフルォロメタンスルホン酸リチウム(LiCF SO )、リチウム 'ビスペンタフルォロ
4 3 3
ェチルスルホン酸イミド(LiN (SO C F ) )などを用いることができる。これらは単独で
2 2 5 2
用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0083] 非水溶媒には、 γ -ブチ口ラタトン( γ BL)、 γ バレロラタトン( γ VL)、プロピレン カーボネイト(PC)、エチレンカーボネイト(EC)などの環状炭酸エステル; 1, 2—ジメ トキシェタン(DME)、 1, 2 ジエトキシェタン(DEE)、 1, 3 ジォキソラン、ジメチ ルカーボネイト (DMC)、ジェチルカーボネイト (DEC)、ェチルメチルカーボネイト(E MC)、 N, N ジメチルホルムアミド、テトラヒドロフラン、 2—メチルテトラヒドロフラン、 ジメチルスルホキシド、ホルムアミド、ァセトアミド、ジメチルホルムアミド、ジォキソラン 、ァセトニトリル、プロピル二トリル、ニトロメタン、ェチルモノグライム、トリメトキシメタン 、ジォキソラン誘導体、スルホラン、メチルスルホラン、プロピレンカーボネイト誘導体 、テトラヒドロフラン誘導体などを用いることができる。これらは単独で用いてもよぐ 2 種以上を組み合わせて用いてもよい。これらのうちでは、特に、 γ -プチ口ラタトン(γ - BL)が、幅広い温度範囲で安定であり、溶質を溶力しゃすい点で好ましい。ただし 、低温でのイオン伝導度を改良する観点から、低沸点溶媒である 1, 2—ジメトキシェ タン (DME)などを γ -BLと混合して用いることが好ま 、。また、非水溶媒が Ί -BL を含む場合、溶質には LiBFを用いることが好ましい。 γ -プチ口ラタトンを他の溶媒
4
と併用する場合には、非水溶媒全体に占める γ -プチ口ラタトンの割合は 50重量% 以上であることが好ましい。
[0084] セパレータの材料は、リチウム一次電池内部の環境に耐性を有する材料であれば よいが、例えば、ポリプロピレン製の不織布、ポリフエ-レンスルフイド製の不織布、ポ リオレフイン榭脂(ポリエチレン、ポリプロピレンなど)製の微多孔フィルムなどを用いる ことができる。
[0085] 次に、本発明を実施例に基づいて具体的に説明する力 以下の実施例は本発明 を限定するものではない。
なお、実施例および比較例では、図 1に示すようなコイン形電池 10を作製した。コィ ン形電池 10は、ディスク状の正極 4、ディスク状の負極 5、正極 4と負極 5との間に介 在するポリプロピレン製の不織布力もなるセパレータ 6を具備する。正極 4は、ステン レス鋼製の正極ケース 1の内底面上に載置されている。負極 5は、ステンレス鋼製の 負極ケース 2の内面に圧着されている。負極ケース 2の周縁部には、ポリプロピレン製 の絶縁パッキング 3が装着されている。正極ケース 1の周縁端部が絶縁パッキング 3 にかしめつけられることにより、正極 4、負極 5、セパレータ 6および有機電解液(図示 せず)を収容する空間が密封されている。正極 4と負極 5とは、セパレータ 6を介して 対向配置している。
[0086] 《実施例 1Α》
(i)正極の作製
正極活物質には、石油コータスをフッ素化したフッ化黒鉛を用いた。フッ化黒鉛と、 アセチレンブラック (導電材)と、スチレンブタジエンゴム(SBR) (結着剤)とを、固形 分重量比 100 : 15 : 6で配合し、水とエタノールの混合液を分散媒に用いて十分に混 練した。得られた混合物を、 100°Cで乾燥した後、所定の金型と油圧プレス機を用い て、ディスク状に圧縮成形し、正極を得た。
[0087] (ii)負極の作製 負極活物質には、リチウム金属を用い、非晶質炭素材料には、電気化学工業 (株) 製のアセチレンブラック (AB)を用いた。アセチレンブラックの一次粒子の平均粒径 は 0. 04 /z mであり、 BET比表面積は 60m2/gであった。アセチレンブラックは 120 °Cで減圧乾燥を行った後、所定の負極作製雰囲気に導入した。なお、他の実施例 および比較例においても、非晶質炭素材料は同様の減圧乾燥を行って力 負極作 製雰囲気に導入した。
[0088] 厚み 150 μ mのリチウム金属のシートを適当な長さに切断し、切断片をステンレス 鋼製のバット上に並べ、アルゴングローブボックス (負極作製雰囲気)内に導入した。 リチウム金属の切断片上に乾燥後のアセチレンブラックを散布した。その後、リチウム 金属の切断片を並べたバットをホットプレート上に載置し、 200°Cで 1時間加熱し、リ チウムを溶融させた。こうして、アセチレンブラックを 2重量0 /0含むリチウム金属とァセ チレンブラックとの複合物を得た。冷却後、アセチレンブラックと複合ィ匕した切断片を 3枚重ね、小型ローラプレス機で厚み 400 mに圧延した。圧延された複合物を金型 でディスク状に打ち抜き、全体がリチウム金属とアセチレンブラックとの複合物からな る負極を得た。負極は絶縁パッキングを装着した負極ケースの内面に圧着した。上 記工程は、全てアルゴングローブボックス内で行った。
[0089] (iii)有機電解液の調製
Ύ—プチ口ラタトン(y BL :非水溶媒)に、テトラフルォロ硼酸リチウム (LiBF:溶質
)を 1モル ZLの濃度で溶解させたものを電解液に用いた。
[0090] (iv)電池の組立
正極ケースの内底面上に正極を載置し、その上に円形に打ち抜いたポリプロピレン 製の不織布からなるセパレータ (厚み 100 μ m)を被せた。その後、電解液を正極ケ ース内に注液し、正極とセパレータに電解液を含浸させた。次に、負極が圧着された 負極ケースを、負極と正極とが対向するように正極ケースに装着した。正極ケースの 周縁端部を負極ケースに装着された絶縁パッキングにかしめ、密閉されたコイン形電 池を完成した。電池のサイズは、直径 20mm、高さ 2mmで、設計容量 lOOmAhとし た。上記組立工程は、露点— 50°C以下のドライエア中で行った。同様のコイン形電 池を 12個作製した。 [0091] 《実施例 2A》
負極作製雰囲気を、真空度 lOOPa以下の密閉容器内に変更したこと以外、実施例 1Aと同様にして負極を作製し、 10個のコイン形電池を作製した。
[0092] 《実施例 3A》
アセチレンブラックの代わりに、一次粒子の平均粒径 0. l ^ m, BET比表面積 20 m2Zgのファーネスブラック(FB)を用い、リチウム金属とファーネスブラックとの複合 物に含まれるファーネスブラックの含有量を 5重量%としたこと以外、実施例 1 Aと同 様にして負極を作製し、 12個のコイン形電池を作製した。
[0093] 《実施例 4A》
アセチレンブラックの代わりに、一次粒子の平均粒径 0. 03 ^ m, BET比表面積 80 Om2Zgのケッチェンブラック(KB)を用い、リチウム金属とケッチェンブラックとの複合 物に含まれるケッチェンブラックの含有量を 0. 02重量%としたこと以外、実施例 1Aと 同様にして負極を作製し、 12個のコイン形電池を作製した。
[0094] 《実施例 5A》
アセチレンブラックの代わりに、一次粒子の平均粒径 0. 2 /ζ πι、 BET比表面積 18 m2/gのカーボンブラック(CB)を用い、リチウム金属とカーボンブラックとの複合物に 含まれるカーボンブラックの含有量を 1重量%としたこと以外、実施例 1Aと同様にし て負極を作製し、 10個のコイン形電池を作製した。
[0095] 《実施例 6A》
アセチレンブラックの代わりに、平均粒径 5 μ m、 BET比表面積 1600m2Zgの活性 炭を用い、リチウム金属と活性炭との複合物に含まれる活性炭の含有量を 0. 5重量 %としたこと以外、実施例 1Aと同様にして負極を作製し、 10個のコイン形電池を作 製した。
[0096] 《実施例 7A》
負極作製雰囲気を、ドライ窒素雰囲気 (露点 50°C以下)に変更したこと以外、実 施例 1Aと同様にして負極を作製し、 10個のコイン形電池を作製した。
[0097] 《実施例 8A》
有機電解液に、プロピレンカーボネイト(PC)と 1, 2—ジメトキシェタン(DME)との 体積比 1 : 1の混合液 (非水溶媒)に、 LiCF SO (溶質)を ImolZLの濃度で溶解し
3 3
たものを用い、リチウム金属とアセチレンブラックとの複合物に含まれるアセチレンブ ラックの含有量を 0. 1重量%としたこと以外、実施例 1Aと同様にして、 10個のコイン 形電池を作製した。
[0098] 《実施例 9A》
リチウム金属とアセチレンブラックとの複合物に含まれるアセチレンブラックの含有 量を 10重量%としたこと以外、実施例 1Aと同様にして負極を作製し、 10個のコイン 形電池を作製した。
[0099] 《比較例 1A》
カーボンブラックと複合ィ匕させずに、リチウム金属のシートをディスク状に打ち抜 ヽ たものをそのまま負極に用いたこと以外、実施例 1Aと同様にして、 12個のコイン形電 池を作製した。
[0100] 《比較例 2A》
アセチレンブラックの代わりに、平均粒径 2 m、 BET比表面積 12m2/gの人造黒 鉛を用い、リチウム金属と人造黒鉛との複合物に含まれる人造黒鉛の含有量を 5重 量%とし、負極作製雰囲気をドライエア雰囲気に変更したこと以外、実施例 1Aと同様 にして負極を作製し、 10個のコイン形電池を作製した。
[0101] 《実施例 10A》
正極活物質に二酸化マンガン(MnO )を用い、 MnOと、ケッチェンブラック(導電
2 2
材)と、フッ素榭脂 (結着剤:ダイキン工業 (株)製のネオフロン FEPの固形分)とを、重 量比 100 : 3 : 6で配合したこと以外、実施例 1Aと同様にして、正極を得た。この正極 を用い、有機電解液に、プロピレンカーボネイト(PC)と 1, 2—ジメトキシェタン(DM E)との体積比 1: 1の混合液 (非水溶媒)に LiCF SO (溶質)を ImolZLの濃度で溶
3 3
解したものを用い、リチウム金属とアセチレンブラックとの複合物に含まれるァセチレ ンブラックの含有量を 0. 2重量%としたこと以外、実施例 1Aと同様にして、 10個のコ イン形電池を作製した。
[0102] 《実施例 11A》
リチウム金属とケッチェンブラックとの複合物に含まれるケッチェンブラックの含有量 を 0. 1重量%としたこと以外、実施例 4Aと同様にして負極を作製した。この負極を用 い、実施例 1 OAと同じ正極を用い、有機電解液に、プロピレンカーボネイト(PC)と 1 , 3 ジォキソランとの体積比 3 : 1の混合液 (非水溶媒)に LiPFを ImolZLの濃度
6
で溶解したものを用いたこと以外、実施例 1Aと同様にして、 10個のコイン形電池を 作製した。
[0103] 《比較例 3A》
カーボンブラックと複合ィ匕させずに、リチウム金属のシートをディスク状に打ち抜 ヽ たものをそのまま負極に用いたこと以外、実施例 10Aと同様にして、 10個のコイン形 電池を作製した。
[0104] [評価]
(i)初期特性
実施例 1A〜: L 1Aおよび比較例 1Α〜3Αの各電池を、 4mAの定電流で 30分間の 予備放電させた。次に、 60°Cで 1日のエージングを行い、電池の開回路電圧(OCV )を安定させた。その後、各電池について、室温で OCVと 1kHzでのインピーダンス を測定し、各電池とも異常が見られないことを確認した。
[0105] (放電容量)
エージングの後、実施例および比較例の電池を各々 2個ずつ 25°Cで 15kQの定 抵抗放電により 2Vまで放電し、初期放電容量 (C )を確認した。
0
[0106] (低温大電流放電特性)
エージングの後、実施例および比較例の電池を各々 3個ずつ用いて、 40°Cでパ ルス放電を行い、低温での大電流放電特性を評価した。具体的には、 3mAの定電 流放電を 1秒間行った後、 59秒間休止するパターンを 20サイクル繰り返し、各サイク ルにおけるパルス電圧値を測定した。 20サイクル中における最低のノ ルス電圧 (V )
0 を求めた。
[0107] (ii)高温保存後特性
エージングの後、実施例および比較例の電池を各々 5個ずつ用いて、高温保存時 の安定性を評価した。実施例 1A〜9Aならびに比較例 1Aおよび 2Aの電池は、エー ジング後の電池をそのまま 80°Cで 10日間保存した。実施例 10Aおよび 11Aならび に比較例 3Aの電池は、 0. 1mAの定電流で 500時間放電(50mAh)した後、 80°C で 10日間保存した。実施例 10Aおよび 11 Aならびに比較例 3Aの電池を部分放電 させた理由は、 MnOを正極活物質に用いた場合、部分放電後に高温保存を行うこ
2
とで、顕著な劣化が見られるからである。
[0108] (放電容量)
80°Cで 10日間保存後の電池のうち、実施例および比較例の電池を各々 2個ずつ 25°Cで 15kQの定抵抗放電により 2Vまで放電し、高温保存後の放電容量 (C )を確
1 した ο
[0109] (低温大電流放電特性)
80°Cで 10日間保存後の電池のうち、実施例および比較例の電池を各々 3個ずつ 用いて、 40°Cでパルス放電を行い、低温での大電流放電特性を評価した。具体 的には、 3mAの定電流放電を 1秒間行った後、 59秒間休止するパターンを 20サイ クル繰り返し、各サイクルにおけるノ ルス電圧値を測定した。 20サイクル中における 最低のパルス電圧 (V )を求めた。
1
[0110] 正極活物質がフッ化黒鉛である実施例 1A〜9Aならびに比較例 1 Aおよび 2Aにお ける C、 V、 Cおよび Vの平均値を表 1に示す。正極活物質が MnOである実施例
0 0 1 1 2
10Aおよび 11Aならびに比較例 3Aにおける C、 V、 Cおよび Vの平均値を表 2に
0 0 1 1
示す。
[0111] [表 1]
BET 炭素材料 L 初期 问温保? f後
Figure imgf000028_0001
非晶質 平均粒径
比表面積 の含有重 雰囲気 c , v , 炭素材料 (μηι) Co V0
(m2/g) ( t¾) (mAh) (V) (mAh) (V) 実施例 1A A B 0. 04 60 2 A r 1 08 2. 293 1 06 2. 24 7 実施例 2A A B 0. 04 60 2 lOOPa以下 1 08 2. 302 1 06 2. 26 6 実施例 3A F B 0. 1 20 5 A r 1 06 2. 287 1 04 2. 238 実施例 4A K B 0. 03 800 0. 02 A r 1 09 2. 295 1 06 2. 245 実施例 5A C B 0. 2 1 8 1 A r 1 07 2. 26 1 1 05 2. 2 1 0 実施例 6A 活性炭 5 1 600 0. 5 A r 1 08 2. 27 2 1 05 2. 1 85 実施例 7A A B 0. 04 60 2 N 2 1 0 1 2. 259 99 2. 1 9 2 実施例 8A A B 0. 04 60 0. 1 A r 1 1 0 2. 3 1 3 98 2. 204 実施例 9A A B 0. 04 60 1 0 A r 98 2. 2 1 3 96 2.0 1 8 比較例 1A なし ― ― ― 1 06 2. 1 88 1 00 1. 92 1 比較例 2A 人造黒鉛 2 1 2 5 ト'ライエア 1 00 2. 1 90 95 2.049
BET 炭素材料 初期 高温保存後※ 非晶質 平均粒径
比表面積 の含有量 雰囲気
灰素材料 (Atm) C0 Vo V】
(m2/g) (wt¾) (mAh) (V) (mAh) (V) 実施例 10A A B 0. 04 60 0. 2 A r 1 05 2. 3 1 2 46 2. 1 85 実施例 11A K B 0. 03 800 0. 1 A r 1 03 2. 337 43 2. 204 比較例 3A なし ― ― ― ― 1 04 2. 250 28 1. 852
※設計容置の 50%放負 ί後に 8 (TCで保存
[0113] [考察]
(i)初期特性について
表 1より明らかなように、実施例 1A〜8Aでは、いずれも 40°Cのパルス放電の最 低電圧が、比較例 1Aの 2. 188Vを大きく上回った。よって、低温での大電流放電に おける初期特性を改良できたことがわかる。また、実施例 1A〜8Aの室温での放電 容量も、設計容量(lOOmAh)を上回ったことから、他の放電特性への悪影響はなか つた o
一方、実施例 1Aと、結晶性炭素材料である人造黒鉛を用いた比較例 2Aとの比較か ら、—40°Cのパルス放電特性の改良効果は、非晶質炭素材料の使用により顕著とな ることがゎカゝる。これは結晶性炭素材料と電解液との界面における電解液の還元分 解反応が、非晶質炭素材料と電解液との界面におけるそれよりも大きいためであり、 分解生成物により形成される界面の反応抵抗が増大したことによると考えられる。
[0114] 負極におけるアセチレンブラックの含有率が 10重量%と大きい実施例 9Aでは、初 期放電容量が設計容量以下となり、電池のエネルギー密度が低下したが、 -40°C のパルス放電特性には改良効果が見られた。初期放電容量が低下したのは、ァセチ レンブラック量が多いためと考えられる。すなわち、アセチレンブラックと電解液との界 面における電解液の還元分解反応が大きくなり、分解生成物により形成される界面 の反応抵抗が増大したものと考えられる。従って、低温放電特性を改良するには、非 晶質炭素材料の含有量を 5重量%以下とすることが好ましい。
[0115] リチウム金属とカーボンブラックとの複合ィ匕を乾燥窒素雰囲気中で行った実施例 7 Aでは、初期容量が lOlmAhと、比較例 1Aよりも小さくなつた。また、実施例 7のー4 0°Cのパスル放電特性は 2. 259Vであり、アルゴン雰囲気下または lOOPa以下の真 空下で複合ィ匕を行った実施例 1A〜6Aおよび 8Aよりも改良効果が小さ力つた。これ は、複合ィ匕の工程において、溶融したリチウムと窒素とが反応し、窒化リチウム (Li N
3
)が形成されたためと考えられる。 Li Nは、電池組立時にドライエア中の微量水分や
3
電解液中の微量水分と反応し、水酸化リチウムを生成する反応や電解液分解反応を 引き起こす。これにより、電解液や放電可能なリチウム量が減少したものと考えられる 。従って、アルゴン雰囲気中でカーボンブラックとリチウム金属との複合ィ匕を行うことが 好ましい。また、 lOOPa以下の減圧雰囲気下でカーボンブラックとリチウム金属との 複合化を行う場合、嵩密度が小さく多孔質なカーボンブラック粒子内への溶融リチウ ムの含浸が促進される。よって、リチウムとカーボンブラックとの複合ィ匕は、より容易に なると考免られる。
[0116] 非晶質炭素材料の一次粒子の平均粒径が 0. 1 μ m以下であり、 BET比表面積が 20m2/g以上である実施例 1A〜4Aでは、初期放電容量の低下も見られず、—40 °Cのパルス放電の最低電圧が 2. 3V程度となった。すなわち実施例 1A〜4Aでは、 40°Cのパルス放電の最低電圧力 比較例 1Aよりも 0. IV以上向上しており、放電 初期の電圧降下を改良する効果が大き力つたことがわ力る。
[0117] MnOを正極活物質に用いた場合、表 2に示すように、実施例 10Aおよび 11Aの
2
初期放電容量は、比較例 3Aとほぼ同等であった。一方、実施例 10Aおよび 11 Aの —40°Cのパルス放電電圧は 2. 3V以上となり、比較例 3Aの 2. 25Vより約 0. 05Vも 向上した。正極活物質を MnOとした場合には、電解液も異なるため、負極と電解液
2
との界面反応や、低温放電での正負極の分極寄与度は変化すると考えられる。しか し、表 2の結果は、 MnOを正極活物質に用いた場合も、フッ化黒鉛を正極活物質に
2
用いた場合と、同様の改良効果が得られることを示して 、る。
[0118] 実施例 1A、 3Aおよび 4Aならびに比較例 1 Aの予備放電後の電池をドライ雰囲気 下で分解し、負極を取り出した。取り出した負極を DME (1, 2—ジメトキシェタン)で 洗浄した後、 XPS (X線光電子分光分析)を行った。分析装置には Physical Electron! cs, Inc.製 Model 5600を用い、 X線源には A1— Κ α (14kVZ400W)を用いた。エツ チングは加速電圧 3kVのアルゴンイオンスパッタリングにより行った。この条件でエツ チングレートは SiO換算で 7. 4nmZ分である。測定元素と測定範囲は Lils (65〜4
2
5eV)、Bls (200〜180eV)、Cls (294〜274eV)、Ols (542〜522eV)、Fls (6 95〜675eV)とした。各エッチング後において XPS分析を行い、各測定元素のピー ク面積力 その元素の存在量を求めた。負極の正極との対向表面からの深さと、検 出されたフッ素原子のリチウム原子に対するモル比: FZLiとの関係を図 2に示す。ま た、負極の正極との対向表面力 の深さと、検出されたフッ素原子の酸素原子に対 するモル比: FZOとの関係を図 3に示す。 [0119] 図 2より、比較例 1A (Com. Ex. 1)の負極表面近傍には、フッ素原子が多く存在し ており、負極内部に向力つてフッ素原子の存在量が減少することがわかる。リチウム 金属のみ力もなる比較例 1Aの負極表面には、比較的多くのフッ化リチウム (LiF)が 生成したと考えられる。 LiFは、溶質 (LiBF )の分解反応や、正極活物質であるフッ
4
化黒鉛から遊離したフッ素イオンと Liとの反応により生成すると考えられる。一方、実 施例 1Α (Εχ. 1)、実施例 3A(Ex. 3)および実施例 4A (Ex. 4)の負極表面近傍に 存在するフッ素原子の量は、比較例 1Aよりも少ないことがわかる。また、特に表面か ら深さ 5〜15nmにおけるモル比: FZLiは 0. 7以下であり、 LiFの生成量が少ないこ とがわかる。
[0120] 負極表面近傍の酸素原子は、主に、酸化リチウム (Li O)や溶媒の分解生成物であ
2
る炭酸リチウム (Li CO )として存在している。酸素原子の存在量は、負極内部に向
2 3
力つて減少する。図 3より、比較例 1A (Com. Ex. 1)の負極表面近傍には、フッ素原 子 (LiF)が酸素原子の 2〜3倍多く存在することがわかる。一方、実施例 1Α(Εχ. 1) 、実施例 3A(Ex. 3)および実施例 4A (Ex. 4)の負極表面近傍に存在するフッ素原 子の量は、酸素原子の 1〜1. 5倍である。特に表面から深さ 5〜15nmにおけるモル 比: FZOは 1. 3以下である。このことは、負極表面力も深さ 5〜15nmに酸化リチウ ムゃ炭酸リチウムが多く存在し、 LiFが少量しか生成して 、な 、ことを示して 、る。
[0121] 以上のように、本発明の効果は、負極表面近傍 (特に表面から 5〜15nm)の酸素原 子の存在量を高くし、フッ素原子の存在量を低減することと関連している。酸素原子 の存在量を高くし、フッ素原子の存在量を低減することにより、高温保存時において 安定なリチウムと電解液との界面を形成することができ、高温保存後の大電流放電特 性あるいは低温大電流放電特性が改良されると考えられる。
[0122] 本発明の効果は、負極と電解液との界面反応を制御することにより、負極の反応抵 抗を低減し、低温放電での放電電圧を改良するものである。よって、固体の正極活 物質を用いる限り、本発明の効果には大きな差異は生じず、各種酸化物やフッ化物 を用いても同様の効果が得られると考えられる。
[0123] (ii)高温保存後特性について
高温保存後の放電容量において、本発明の実施例 1A〜7Aでは、いずれも比較 例 1Aの lOOmAhと同等力、それ以上の容量が残存したことから、高温保存による容 量劣化が少な力つたことがわかる。しかし、結晶性炭素材料である人造黒鉛を用いた 比較例 2Aでは、 95mAhの容量となり、高温保存による劣化が大きカゝつた。
[0124] また、—40°Cの低温パルス特性では、比較例 1Aが 1. 92Vまで低下したのに対し て、実施例 1A〜9Aおよび比較例 2Aでは、いずれも 2V以上となっており、高温保存 後の低温放電特性を改良する効果が得られた。特に実施例 1A〜8Aでは、 2. IV以 上の高 、放電電圧が得られた。なかでもカーボンブラックの一次粒子の平均粒径を 0 .: m以下、 BET比表面積を 20m2/g以上とした実施例 1A〜4Aでは、 2. 25V程 度の放電電圧となり、放電特性の改良効果が顕著に得られた。
[0125] 電解液の影響につ!ヽては、 LiCF SOを PCと DMEとの混合溶媒に溶解した実施
3 3
例 8Aでは、初期の 40°Cのパルス放電電圧が 2. 313Vであり、 LiBFを y BLに溶
4
解した実施例 1 Aよりも 0. 02V高くなつた。 80°C保存後では、実施例 8Aの放電容量 および—40°Cのパルス放電電圧ともに実施例 1Aよりも低くなつた。実施例 8Aの保 存後の電池は、やや膨れていたことから、高温保存によるガス発生が大きくなつたた め、容量劣化と低温パルス特性の劣化が大きくなつたものと考えられる。よって、 LiB Fを y BLに溶解した電解液を用いることが、高温での安定性および保存特性に優 れたリチウム一次電池を得る上で有利であることがわかる。
[0126] 80°C保存後の比較例 3Aの電池は、残存容量(50mAh)の半分程度の 28mAhし か放電できなかったのに対し、実施例 10Aおよび 11Aの電池では、それぞれ 46mA h、 43mAhの放電容量が得られた。さらに 80°C保存後の 40°Cのパルス放電でも 、比較例 3Aが 1. 85Vまで大きく低下したのに対して、実施例 10Aおよび 11 Aでは、 それぞれ 2. 185V、 2. 204Vとなり、大きく高温保存特性が改良された。従って、正 極活物質に酸化物を用いる場合でも、本発明に係る非晶質炭素材料と複合化され た負極を用いることにより、負極と電解液との界面反応が制御され、負極の反応抵抗 の増大を抑制する効果が得られ、高温保存特性を大きく改良できることがわかる。
[0127] 各電池の交流インピーダンス測定を行った結果、炭素材料と複合ィ匕した負極を用 V、た実施例および比較例の電池は、 V、ずれもリチウム単体力 なる負極を用いた比 較例 1Aおよび 3Aの電池よりも円弧部が小さくなつていた。これは、負極と電解液と の界面での反応抵抗が小さくなつたためと考えられる。し力し、コールコールプロット で得られた反応円弧の直径から見積もられる反応抵抗値と、 40°Cのパルス放電に おける最低電圧との相関性は悪ぐ交流インピーダンス測定結果力 放電特性の改 良効果を見積もることはできな力つた。 80°C保存後の電池での交流インピーダンスの 結果と放電特性の相関性も同様の傾向であった。
[0128] 《実施例 12A》
アセチレンブラック (AB)の含有量を 0. 2重量%としたこと以外、実施例 1Aと同様 にして、厚み 150 mのリチウム金属のシートの切断片から、リチウム金属とァセチレ ンブラックとの複合物を得た。冷却後、アセチレンブラックと複合ィ匕した切断片と、厚 み 250 μ mのリチウム金属のシートとを重ね、ローラ圧延機で厚み 350 μ mに圧延し た。圧延物を金型でディスク状に打ち抜き、複合物の表層部とリチウム金属の下層部 からなる負極を得た。得られた負極を液体窒素で冷却した後、厚み方向に切断し、 断面を観察した。その結果、表層部の厚さは約110〜120 111でぁった。得られた負 極を用いたこと以外、実施例 1Aと同様にして、 10個のコイン形電池を作製した。
[0129] 図 4に、得られた負極 5の断面概念図を示す。負極 5は、アセチレンブラックとリチウ ム金属との複合物力もなる表層部 13と、リチウム金属の単体力もなる下層部 12を具 備する。
[0130] 《実施例 13A》
負極作製雰囲気を、真空度 lOOPa以下の減圧雰囲気に変更し、リチウム金属のシ 一トの切断片の厚みを 360 mに変更し、アセチレンブラックの代わりに、一次粒子 の平均粒径 0. 1 m、 BET比表面積 20m2Zgのファーネスブラック(FB)を用い、フ アーネスブラックを表面に散布した切断片の加熱温度を 150°Cとしたこと以外、実施 例 1Aと同様にして、リチウム金属とファーネスブラックとの複合物を得た。冷却後、フ アーネスブラックと複合化した切断片をローラ圧延機で厚み 350 mに圧延し、金型 でディスク状に打ち抜き、負極を得た。得られた負極の断面を観察したところ、ファー ネスブラックが存在する表層部の厚みは約 10〜 15 mであった。厚みを 15 mと仮 定した場合の表層部におけるファーネスブラックの含有量は 5重量%であった。この 負極を用いたこと以外、実施例 1Aと同様にして、 10個のコイン形電池を作製した。 [0131] 《実施例 14A》
負極作製雰囲気を、真空度 lOOPa以下の減圧雰囲気に変更し、リチウム金属のシ ートの厚みを 100 /z mに変更し、アセチレンブラックの代わりに、一次粒子の平均粒 径 0. 2 m、 BET比表面積 18m2/gのカーボンブラック(CB)を用い、カーボンブラ ックの含有量を 1重量%としたこと以外、実施例 1Aと同様にして、リチウム金属とカー ボンブラックとの複合物を得た。冷却後、カーボンブラックと複合ィ匕した切断片をロー ラ圧延機で厚み 70 mに圧延し、厚み 280 mのリチウム金属とを重ね、金型でデ イスク状に打ち抜き、複合物の表層部とリチウム金属の下層部力もなる負極を得た。 得られた負極を用いたこと以外、実施例 1Aと同様にして、 10個のコイン形電池を作 製した。
[0132] 《実施例 15A》
負極作製雰囲気を、真空度 lOOPa以下の減圧雰囲気に変更し、リチウム金属のシ ートの厚みを 30 /z mに変更し、アセチレンブラックの代わりに、一次粒子の平均粒径 0. 04 ^ m, BET比表面積 50m2/gのカーボンブラック(CB)を用い、カーボンブラ ックの含有量を 0. 02重量%としたこと以外、実施例 1Aと同様にして、リチウム金属と カーボンブラックとの複合物を得た。冷却後、カーボンブラックと複合ィ匕した切断片を 、 A1を 1重量0 /0含む厚み 320 μ mのリチウム アルミニウム合金と重ね、金型でディ スク状に打ち抜き、複合物の表層部とリチウム合金の下層部力もなる負極を得た。得 られた負極を用いたこと以外、実施例 1Aと同様にして、 10個のコイン形電池を作製 した。
[0133] 《実施例 16A》
カーボンブラックの代わりに、平均粒径 5 μ m、 BET比表面積 1600m2/gの活性 炭を用い、リチウム金属と活性炭との複合物に含まれる活性炭の含有量を 2重量%と したこと以外、実施例 14Aと同様にして負極を作製し、 10個のコイン形電池を作製し た。
[0134] 《実施例 17A》
負極作製雰囲気を、ドライ窒素雰囲気 (露点 50°C以下)に変更したこと以外、実 施例 14Aと同様にして負極を作製し、 10個のコイン形電池を作製した。 [0135] 《実施例 18A》
表層部に含まれるアセチレンブラックの含有量を 10重量0 /0とし、表層部の厚みを約 200 μ m (負極全体の厚み 350 μ m)としたこと以外、実施例 12Aと同様にして負極 を作製し、 10個のコイン形電池を作製した。
[0136] 《比較例 4A》
アセチレンブラックの代わりに、平均粒径 2 /ζ πι、 BET比表面積 12m2/gの人造黒 鉛を用い、表層部に含まれる人造黒鉛の含有量を 1重量%とし、負極作製雰囲気を 、ドライエア雰囲気に変更したこと以外、実施例 12Aと同様にして負極を作製し、 10 個のコイン形電池を作製した。
[0137] 《実施例 19A》
実施例 10Aと同じ正極と、実施例 10Aと同じ有機電解液を用いたこと以外、実施例 12Aと同様にして、 10個のコイン形電池を作製した。
[0138] 《実施例 20A》
平均粒径 0. 2 /ζ πι、 BET比表面積 18m2Zgのカーボンブラックの代わりに、平均 粒径 0. 03 m、 BET比表面積 800m2/gのケッチェンブラックを用いたこと以外、 実施例 14Aと同様にして負極を作製した。この負極と、実施例 11Aと同じ有機電解 液を用いたこと以外、実施例 19Aと同様にして、 10個のコイン形電池を作製した。
[0139] 《比較例 5A》
カーボンブラックと複合ィ匕させずに、リチウム金属のシートをディスク状に打ち抜 ヽ たものをそのまま負極に用いたこと以外、実施例 19Aと同様にして、 10個のコイン形 電池を作製した。
[0140] [評価]
(i)初期特性
実施例 12Α〜20Αおよび比較例 4Α〜5Αの各電池を、 4mAの定電流で 30分間 予備放電させた。次に、 60°Cで 1日のエージングを行い、電池の開回路電圧(OCV )を安定させた。その後、各電池について、室温で OCVと 1kHzでのインピーダンス を測定し、各電池とも異常が見られないことを確認した。
[0141] (放電容量) エージングの後、実施例および比較例の電池を各々 2個ずつ 25°Cで 15kQの定 抵抗放電により 2Vまで放電し、初期放電容量 (C )を確認した。
0
[0142] (低温大電流放電特性)
エージングの後、実施例および比較例の電池を各々 3個ずつ用いて、 40°Cでパ ルス放電を行い、低温での大電流放電特性を評価した。具体的には、 3mAの定電 流放電を 1秒間行った後、 59秒間休止するパターンを 20サイクル繰り返し、各サイク ルにおけるパルス電圧値を測定した。 20サイクル中における最低のノ ルス電圧 (V )
0 を求めた。
[0143] (ii)高温保存後特性
エージングの後、実施例および比較例の電池を各々 5個ずつ用いて、高温保存時 の安定性を評価した。実施例 12A〜18Aおよび比較例 4Aの電池は、エージング後 の電池をそのまま 80°Cで 10日間保存した。実施例 19A、 20Aおよび比較例 5Aの 電池は、 0. 1mAの定電流で 500時間放電(50mAh)した後、 80°Cで 10日間保存 した。実施例 19A、 20Aおよび比較例 5Aの電池を部分放電させた理由は、 MnO
2 を正極活物質に用いた場合、部分放電後に高温保存を行うことで、顕著な劣化が見 られる力 である。
[0144] (放電容量)
80°Cで 10日間保存後の電池のうち、実施例および比較例の電池を各々 2個ずつ 25°Cで 15kQの定抵抗放電により 2Vまで放電し、高温保存後の放電容量 (C )を確
1 した ο
[0145] (低温大電流放電特性)
80°Cで 10日間保存後の電池のうち、実施例および比較例の電池を各々 3個ずつ 用いて、 40°Cでパルス放電を行い、低温での大電流放電特性を評価した。具体 的には、 3mAの定電流放電を 1秒間行った後、 59秒間休止するパターンを 20サイ クル繰り返し、各サイクルにおけるノ ルス電圧値を測定した。 20サイクル中における 最低のパルス電圧 (V )を求めた。
1
[0146] 正極活物質がフッ化黒鉛である実施例 12A〜18Aおよび比較例 4Aにおける C、
0
V、 Cおよび Vの平均値を表 3に示す。正極活物質が MnOである実施例 19A、 20
Figure imgf000038_0001
Figure imgf000038_0003
Figure imgf000038_0002
Figure imgf000039_0001
表 3より明らかなように、本発明の実施例 12A〜17Aでは、いずれも— 40°Cのパル ス放電の最低電圧が、比較例 1Aの 2. 188Vを大きく上回っており、低温での大電流 放電における初期特性を改良できたことがわかる。また、各実施例の室温での放電 容量も、設計容量(lOOmAh)を上回っていることから、他の放電特性への悪影響は なかった。
一方、実施例 12Aと、結晶性炭素材料である人造黒鉛を用いた比較例 4Aとの比較 から、 40°Cのパルス放電特性の改良効果は非晶質炭素材料の使用により顕著と なることがわカゝつた。これは結晶性炭素材料と電解液との界面における電解液の還 元分解反応が、非晶質炭素材料と電解液との界面におけるそれよりも大きいためで あり、分解生成物による界面の反応抵抗が増大したことによると考えられる。
[0150] 表層部におけるアセチレンブラックの含有率が 10重量%と大きぐ表層部の厚みが 負極全体の 1Z2を超える実施例 18Aでは、初期放電容量が設計容量以下となり、 電池のエネルギー密度が低下した力 40°Cのパルス放電特性には改良効果が見 られた。初期放電容量は低下したのは、アセチレンブラック量が多いためと考えられ る。すなわち、アセチレンブラックと電解液との界面における電解液の還元分解反応 が大きくなり、界面の反応抵抗が増大したものと考えられる。従って、低温放電特性を 改良するには、表層部における非晶質炭素材料の含有量を 5重量%以下とし、表層 部の厚みを負極全体の 1Z3以下とすることが好ましい。
[0151] リチウム金属とカーボンブラックとの複合ィ匕を乾燥窒素雰囲気中で行った実施例 17 Aでは、初期容量が lOlmAhと、比較例 1Aよりも小さくなつた。また、実施例 17Aの 40°Cのパスル放電特性は 2. 245Vであり、アルゴン雰囲気下または lOOPa以下 の真空下で複合ィ匕を行った実施例 12A〜15Aよりも改良効果が小さくなつた。これ は、複合ィ匕の工程において、溶融したリチウムと窒素とが反応し、窒化リチウム (Li N
3
)が形成されたためと考えられる。 Li Nは、電池組立時にドライエア中の微量水分や
3
電解液中の微量水分と反応し、水酸化リチウムを生成する反応や電解液分解反応を 引き起こす。これにより、電解液や放電可能なリチウム量が減少したものと考えられる 。従って、アルゴン雰囲気中でカーボンブラックとリチウム金属との複合ィ匕を行うことが 好ましい。また、 lOOPa以下の減圧雰囲気下でカーボンブラックとリチウム金属との 複合化を行う場合、嵩密度が小さく多孔質なカーボンブラック粒子内への溶融リチウ ムの含浸が促進される。よって、リチウムとカーボンブラックとの複合ィ匕より容易になる と考えられる。
[0152] 非晶質炭素材料の一次粒子の平均粒径が 0. 1 μ m以下であり、 BET比表面積が 20m2/g以上である実施例 12A、 13Aおよび 15Aでは、初期放電容量の低下も見 られず、 40°Cのパルス放電の最低電圧が 2. 3V程度となった。すなわち実施例 1 2A、 13Aおよび 15Aでは、—40°Cのパルス放電の最低電圧が 2. 3V程度となり、 放電初期の電圧降下を改良する効果が大き力つた。
[0153] MnOを正極活物質に用いた場合、表 4に示すように、実施例 19Aおよび 20Aの
2
初期放電容量は、比較例 5Aとほぼ同等であった力 40°Cのパルス放電電圧は 2 . 34V以上となり、比較例 5Aの 2. 25Vより約 0. IVも向上した。正極活物質を MnO とした場合には、電解液も異なるため、負極と電解液との界面反応や、低温放電で
2
の正負極の分極の寄与は変化すると考えられる。し力し、表 4の結果は、 MnOを正
2 極活物質に用いた場合も、フッ化黒鉛を正極活物質に用いた場合と、同様の改良効 果が得られることを示して 、る。
[0154] 本発明の効果は、負極と電解液との界面反応を制御することにより、負極の反応抵 抗を低減し、低温放電での放電電圧を改良するものである。よって、固体の正極活 物質を用いる限り、本発明の効果には大きな差異は生じず、各種酸化物やフッ化物 を用いても同様の効果が得られると考えられる。
[0155] 高温保存後の放電容量において、本発明の実施例では、いずれも比較例 1Aと同 等力 それ以上の容量が残存しており、高温保存による容量劣化が少な力つた。しか し、結晶性炭素材料である人造黒鉛を用いた比較例 4Aでは、 10%程度の容量減少 が見られ、高温保存による劣化が大きくなつた。
[0156] また、 40°Cの低温パルス特性では、比較例 1Aが 1. 92Vまで低下したのに対し て、実施例 12A〜18Aおよび比較例 4Aでは、いずれも 2V以上となっており、高温 保存後の低温放電特性を改良する効果が得られた。特に実施例 12A〜 17Aでは、 2. IV以上の高い放電電圧が得られた。なかでもカーボンブラックの一次粒子の平 均粒径を 0. l /z m以下、 BET比表面積を 20m2/g以上とした実施例 12A、 13Aお よび 15Aでは、 2. 25V程度の放電電圧となり、放電特性の改良効果が顕著に得ら [0157] 80°C保存後の比較例 5の電池は、残存容量(50mAh)の半分程度の 28mAhしか 放電できなかったのに対し、実施例 19Aおよび 20Aの電池では、それぞれ 45mAh 、 43mAhの放電容量が得られた。さらに 80°C保存後の 40°Cのパルス放電でも、 比較例 5Aが 1. 85Vまで大きく低下したのに対して、実施例 19Aおよび 20Aでは、 それぞれ 2. 238V、 2. 201Vとなり、大きく高温保存特性が改良された。従って、正 極活物質に酸化物を用いる場合でも、本発明に係る非晶質炭素材料と複合化され た負極を用いることにより、負極と電解液との界面反応が制御され、負極の反応抵抗 の増大を抑制する効果が得られ、高温保存特性を大きく改良できることがわかる。
[0158] 以上の結果から、非晶質炭素材料を含む負極を用いることにより、高温保存後にお いても低温での大電流放電特性を大きく改良することできることがわかる。ただし、結 晶性炭素材料を用いた場合、非晶質炭素材料の使用量が多い場合、もしくは表層 部が厚い場合には、改良効果が小さくなつた。これらの場合には、負極と電解液との 界面で電解液の分解反応が進み、界面に分解生成物が堆積し、新たな反応抵抗を 形成していると考えられた。
[0159] 各電池の交流インピーダンス測定を行った結果、炭素材料と複合ィ匕した負極を用 V、た実施例および比較例の電池は、 V、ずれもリチウム単体力 なる負極を用いた比 較例 4Aおよび 5Aの電池よりも円弧部が小さくなつていた。これは、負極と電解液と の界面での反応抵抗が小さくなつたためと考えられる。し力し、コールコールプロット で得られた反応円弧の直径から見積もられる反応抵抗値と、 40°Cのパルス放電に おける最低電圧との相関性は悪ぐ交流インピーダンス測定結果力 放電特性の改 良効果を見積もることはできな力つた。 80°C保存後の電池での交流インピーダンスの 結果と放電特性の相関性も同様の傾向であった。
[0160] 《実施例 1B》
(i)正極の作製
正極活物質には、石油コータスをフッ素化したフッ化黒鉛 (CF :x= l. 02)を用い た。フッ化黒鉛と、アセチレンブラック (導電材)と、スチレンブタジエンゴム(SBR) (結 着剤)とを、重量比 100 : 15 : 6で配合し、水とエタノールの混合液を分散媒に用いて 十分に混練した。得られた混合物を、 100°Cで乾燥した後、所定の金型と油圧プレス 機を用いて、ディスク状に圧縮成形し、正極を得た。
[0161] (ii)負極の作製
負極活物質には、リチウム金属を用い、微粒子には、住友ィ匕学 (株)製の Al O (品
2 3 番 AA07)を用いた。 Al Oの一次粒子の平均粒径は 0. 7 μ mであり、 BET比表面
2 3
積は 10m2/gであった。 Al Oは 120°Cで減圧乾燥を行った後、負極作製雰囲気(
2 3
アルゴンガス雰囲気)に導入した。
[0162] 厚み 200 μ mのリチウム金属のシートを負極作製雰囲気に導入し、その表面に、減 圧乾燥後の Al Oを、 9gZm2の割合で均一に散布した。その後、厚み 40 mのポリ
2 3
エチレンフィルムを介して、ローラプレス機を用いて、リチウム金属のシートの圧延を 行った。圧延後のシートを、金型でディスク状に打ち抜き、表層部に微粒子が埋め込 まれた負極を得た。負極は、図 1に示すように、絶縁パッキング 3を装着した負極ケー ス 2の内面に圧着した。
[0163] 図 5に、得られた負極 5の断面模式図を示す。負極 5は、リチウム 12からなり、その 表層部には Al O微粒子 11が埋め込まれた状態で点在している。二次粒子を形成し
2 3
ている一部の一次粒子は、表層部に埋め込まれずに、表面付近に固定された状態 である。
[0164] (iii)有機電解液の調製
Ύ—プチ口ラタトン(y BL :非水溶媒)に、テトラフルォロ硼酸リチウム (LiBF:溶質
)を 1モル ZLの濃度で溶解させたものを電解液に用いた。
[0165] (iv)電池の組立
正極ケース 1の内底面上に正極 4を載置し、その上に円形に打ち抜 、たポリプロピ レン製の不織布カゝらなるセパレータ 6 (厚み 100 m)を被せた。その後、電解液を正 極ケース 1内に注液し、正極 4とセパレータ 6に電解液を含浸させた。次に、負極 5が 圧着された負極ケース 2を、負極 5と正極 4とが対向するように正極ケース 1に装着し た。正極ケース 1の周縁端部を負極ケース 2に装着された絶縁パッキング 3にかしめ、 密閉されたコイン形電池 10を完成した。電池のサイズは、直径 23mm、高さ 2mmで 、設計容量 l lOmAhとした。上記組立工程は、露点— 50°C以下のドライエア中で行 つた。同様のコイン形電池を 10個作製した。 [0166] 《比較例 1B》
負極の表層部への Al O微粒子の埋め込みを行わずに、リチウム金属のシートをデ
2 3
イスク状に打ち抜いたものをそのまま負極に用いたこと以外、実施例 1Bと同様にして 、 10個のコイン形電池を作製した。
[0167] 《実施例 2B》
Al O微粒子の代わりに、人造黒鉛(日本黒鉛工業 (株)製、一次粒子の平均粒径
2 3
2 /ζ πι、 BET比表面積 15m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個 のコイン形電池を作製した。
[0168] 《実施例 3B》
Al O微粒子の代わりに、 a -Fe O ( (株)高純度化学研究所製、一次粒子の平
2 3 2 3
均粒径: m、 BET比表面積 25m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作製した。
[0169] 《実施例 4B》
Al O微粒子の代わりに、 Li PO (関東化学 (株)製、一次粒子の平均粒径 2 m、
2 3 3 4
BET比表面積 2. 6m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコィ ン形電池を作製した。
[0170] 《実施例 5B》
Al O微粒子の代わりに、 SiO ( (株)高純度化学研究所製、一次粒子の平均粒径
2 3 2
0. 5 /ζ πι、 BET比表面積 50m2/g)を用いたこと以外、実施例 1Bと同様にして、 10 個のコイン形電池を作製した。
[0171] 《実施例 6B》
Al O微粒子の代わりに、アセチレンブラック(電気化学工業 (株)製、一次粒子の
2 3
平均粒径 0. 04 ^ m, BET比表面積 60m2Zg)を用いたこと以外、実施例 1Bと同様 にして、 10個のコイン形電池を作製した。
[0172] 《実施例 7B》
有機電解液に、プロピレンカーボネイト(PC)と 1 , 2—ジメトキシェタン(DME)との 体積比 3 : 1の混合溶媒 (非水溶媒)に、 LiCF SO (溶質)を ImolZLの濃度で溶解
3 3
したものを用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作製した [0173] 《実施例 8B》
Al O微粒子の代わりに、カーボンブラック(一次粒子の平均粒径 0. l ^ m, BET
2 3
比表面積 50m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電 池を作製した。
[0174] 《実施例 9B》
Al O微粒子の代わりに、ケッチェンブラック(一次粒子の平均粒径 0. 03 μ m、 BE
2 3
T比表面積 800m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形 電池を作製した。
[0175] 《実施例 10B》
Al O微粒子の代わりに、石油コータス(一次粒子の平均粒径 1 μ m、 BET比表面
2 3
積 20m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作 製した。
[0176] 《実施例 11B》
Al O微粒子の代わりに、 SiC微粒子(一次粒子の平均粒径 2 m、 BET比表面積
2 3
8m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作製し た。
[0177] 《実施例 12B》
Al O微粒子の代わりに、 ZrO微粒子(一次粒子の平均粒径 1 μ m、 BET比表面
2 3 2
積 5m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作製 した。
[0178] 《実施例 13B》
Al O微粒子の代わりに、 Li SO微粒子(一次粒子の平均粒径 2 μ m、 BET比表
2 3 2 4
面積 1. 8m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を 作製した。
[0179] 《実施例 14B》
Al O微粒子の代わりに、活性炭微粒子(一次粒子の平均粒径 2 m、 BET比表
2 3
面積 1500m2/g)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池 を作製した。
[0180] 《比較例 2B》
Al O微粒子の代わりに、 SiO (一次粒子の平均粒径 15 μ m、 BET比表面積 2m2
2 3 2
Zg)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作製した。
[0181] 《比較例 3B》
Al O微粒子の代わりに、 SiO (一次粒子の平均粒径 5 μ m、 BET比表面積 7m2
2 3 2
Zg)を用いたこと以外、実施例 1Bと同様にして、 10個のコイン形電池を作製した。
[0182] [評価 1]
実施例 1B〜14Bおよび比較例 1B〜3Bの各電池を、 5mAの定電流で 30分間予 備放電させた。次に、 60°Cで 1日のエージングを行い、電池の開回路電圧(OCV)を 安定させた。その後、各電池について、室温で OCVと 1kHzでのインピーダンスを測 定し、各電池とも異常が見られないことを確認した。
[0183] (放電容量)
エージングの後、実施例および比較例の電池を各々 3個ずつ、 25°Cで 15kQの定 抵抗放電により 2Vまで放電し、初期放電容量 (C )を確認した。 3個の電池の平均値
0
を表 5に示す。
[0184] (低温大電流放電特性)
エージングの後、実施例および比較例の電池を各々 3個ずつ用いて、 40°Cでパ ルス放電を行い、低温での大電流放電特性を評価した。具体的には、 10mAの定電 流放電を 1秒間行った後、 59秒間休止するパターンを 30サイクル繰り返し、各サイク ルにおけるパルス電圧値を測定した。 30サイクル中における最低の初期低温パルス 電圧 (V )を求めた。 3個の電池の平均値を表 5に示す。
0
[0185] [表 5] BET 初期 初期
平均粒径
微粒子 比表面 Co V0
(Mm)
(m2/g) (mAh) (V)
実施例 IB A 1 2 ° 3 0. 7 1 0 1 1 2 2. 353 実施例 2B 人造黒鉛 2 1 5 1 1 0 2. 340 実施例 3B 1 25 1 1 3 2. 305 実施例 B L i 3 Ρ04 2 2. 6 1 1 2 2. 288 実施例 5B S i 0 0. 5 50 1 1 5 2. 34 1 実施例 6B アセチレンフ'ラック 0. 04 60 1 1 4 2. 3 95 実施例 7B A 1 203 0. 7 1 0 1 1 8 2. 356 実施例 8B カー木'ンフ'ラック 0. 1 20 1 1 2 2. 398 実施例 9B ケツチ Iンフ フック 0. 03 800 1 1 3 2. 4 1 1 実施例 10B 石油: 1-クス 1 20 1 1 2 2. 387 実施例 ΠΒ S i C 2 8 1 1 1 2. 275 実施例 12B Z r 02 1 5 1 1 2 2. 307 実施例 ΠΒ L i S04 2 1. 8 1 1 1 2. 283 実施例 14B 活性炭 2 1 500 1 1 2 2. 3 1 6 比較例 IB なし ― 1 1 2 2. 1 25 比較例 2B S i 0 1 5 2 1 08 2. 1 7 3 比較例 3B S i 0 5 7 1 1 0 2. 1 7 5
[0186] 表 5より明らかなように、実施例の電池は、いずれも 40°Cでのパルス放電におけ る最低電圧が、比較例 1Bの 2.125Vを大きく上回っており、低温での初期の大電流 放電特性が向上したことがわかる。また、実施例の電池は、いずれも比較例と同等以 上の初期放電容量 (設計容量 llOmAh以上)が得られた。よって、低温での初期の 大電流放電特性が向上する代わりに、他の放電特性が劣化することがないことがわ かる。
[0187] 特に平均粒径 0.1 μ m以下の炭素粒子を用いた実施例 6Β、 8Βおよび 9Β、ならび に BET比表面積が 20m2Zg以上の炭素粒子を用いた実施例 6Β、 8Β、 9Βおよび 1 OBでは、 40°Cでのパルス放電電圧が 2.38V以上となり、比較例 1Bに対して 0.2 5V以上の改良効果が得られた。
[0188] 一般的に、炭素材料の平均粒径と比表面積との間には、ある程度の相関性がある と考えられる。しかし、平均粒径が 0.04 μ m以下の実施例 6Βおよび 9Βと、平均粒 径が 1 μ mで比表面積が 20m2Zgの実施例 10Βとの間では、パルス放電電圧に、あ まり大きな差が見られなカゝつた。このことから、微粒子の粒径サイズだけでなぐ微粒 子の比表面積も、放電特性の改良にとって、大きな要因となることがわかる。このこと は、特性改良の作用が、電解液の分解反応と、反応生成物が負極表面に形成する 保護層に依存するとの考えに一致して 、る。
[0189] さらに、平均粒径が 0. 1 μ m以下であり、 BET比表面積が 20m2Zgであるカーボ ンブラックを微粒子として用いた実施例 6B、 8Bおよび 9Bでは、 40°Cでのパルス 放電電圧が 3. 4V程度となっており、大きく放電特性が改良されたことわ力る。
[0190] 平均粒径 15 μ mの大きな粒子を用いた比較例 2Βや平均粒径 5 μ mの粒子を用い た比較例 3Bでも、—40°Cでのパルス放電電圧は、約 0. 05V程度までなら改良でき た。しかし、本発明の各実施例と比較すると、改良効果は極めて小さくなつた。さらに 、比較例 2Bの放電容量は 108mAhであり、僅かであるが比較例 1Bよりも減少した。 よって、大きな粒子を用いた場合には、放電特性への悪影響が予測される。
[0191] 《実施例 15B》
正極活物質に二酸化マンガン(MnO )を用い、 MnOと、ケッチェンブラック(導電
2 2
材)と、フッ素榭脂 (結着剤:ダイキン工業 (株)製のネオフロン FEPの固形分)とを、重 量比 100 : 3 : 6で配合したこと以外、実施例 1Bと同様にして、正極を得た。この正極 を用い、有機電解液に、プロピレンカーボネイト(PC)と 1, 2—ジメトキシェタン(DM E)との体積比 1: 1の混合溶媒 (非水溶媒)に LiCF SO (溶質)を ImolZLの濃度で
3 3
溶解したものを用いたこと以外、実施例 1Bと同様にして、設計容量 lOOmAhの 10個 のコイン形電池を作製した。
[0192] 《実施例 16B》
Al O微粒子の代わりに、人造黒鉛(日本黒鉛工業 (株)製、一次粒子の平均粒径
2 3
2 /ζ πι、 BET比表面積 15m2/g)を用いたこと以外、実施例 15Bと同様にして、 10個 のコイン形電池を作製した。
[0193] 《実施例 17B》
Al O微粒子の代わりに、ケッチェンブラック(平均粒径 0. m、 BET比表面積
2 3
800m2/g)を用いたこと以外、実施例 15Bと同様にして、 10個のコイン形電池を作 製した。
[0194] 《実施例 18B》
Al O微粒子の代わりに、カーボンブラック(一次粒子の平均粒径 0. l ^ m, BET
2 3
比表面積 50m2/g)を用いたこと以外、実施例 15Bと同様にして、 10個のコイン形電 池を作製した。
[0195] 《比較例 4B》
負極の表層部への微粒子の埋め込みを行わずに、リチウム金属のシートをディスク 状に打ち抜いたものをそのまま負極に用いたこと以外、実施例 15Bと同様にして、 10 個のコイン形電池を作製した。
[0196] [評価 2]
実施例 15B〜 18Bおよび比較例 4Bの各電池を、 5mAの定電流で 30分間予備放 電させた。次に、 60°Cで 1日のエージングを行い、電池の開回路電圧(OCV)を安定 させた。その後、各電池について、室温で OCVと 1kHzでのインピーダンスを測定し 、各電池とも異常が見られないことを確認した。
[0197] (放電容量)
エージングの後、実施例および比較例の電池を各々 3個ずつ、 25°Cで 15kQの定 抵抗放電により 2Vまで放電し、初期放電容量 (C )を確認した。 3個の電池の平均値
0
を表 6に示す。
[0198] (低温大電流放電特性)
エージングの後、実施例および比較例の電池を各々 3個ずつ用いて、 40°Cでパ ルス放電を行い、低温での大電流放電特性を評価した。具体的には、 12mAの定電 流放電を 1秒間行った後、 59秒間休止するパターンを 20サイクル繰り返し、各サイク ルにおけるパルス電圧値を測定した。 20サイクル中における最低の初期低温パルス 電圧 (V )を求めた。 3個の電池の平均値を表 6に示す。
0
[0199] [表 6] BET 初期 初期
平均粒径
微粒子 比表面稹 C o V o
( m)
(m 2/g) (inA ) (V)
実施例 15B A 1 2 ° 3 0 . 7 1 0 1 0 2 2 . 3 2 8
実施例 16B 人造黒鉛 2 1 5 1 0 1 2 . 3 4 3
実施例 17B ケツチ Iンフラック 0 . 0 3 8 0 0 1 0 3 2 . 3 6 5
実施例 18B カー本'ンフ'ラック 0 . 1 2 0 1 0 5 2 . 3 8 0
比較例 4B なし ― 1 0 0 2 . 2 5 5
[0200] 表 6より明らかなように、実施例の電池は、いずれも 40°Cでのパルス放電におけ る最低電圧が、比較例 4Bの 2. 255Vを大きく上回っており、低温での初期の大電流 放電特性が向上したことがわかる。また、実施例の電池は、いずれも比較例と同等以 上の初期放電容量 (設計容量 lOOmAh)が得られた。よって、低温での初期の大電 流放電特性が向上する代わりに、他の放電特性が劣化することがないことがわかる。
[0201] 特に平均粒径 0. 1 μ m以下の炭素粒子を用いた実施例 17Bおよび 18Bでは、—4 0°Cでのパルス放電電圧が 2. 36V以上となり、比較例 4Bに対して 0. 11V以上の改 良効果が得られた。
[0202] 以上のように、正極活物質が酸ィヒ物の場合においても、微粒子を負極の表層部に 埋め込むことにより、低温大電流放電特性を改良する効果が得られた。特に平均粒 径 0. 1 μ m以下の炭素粒子や BET比表面積 20m2Zg以上の炭素粒子を用いた場 合に、顕著な効果が得られた。
[0203] [評価 3]
エージングの後、実施例 1B、 2B、 6B、 7Bおよび 8B、ならびに比較例 IBおよび 2 Bの電池を各々 4個ずつ用いて、高温保存時の安定性を評価した。各エージング後 の電池は、 100°Cで 5日間保存した。
[0204] (放電容量)
100°Cで 5日間保存後の電池のうち、実施例および比較例の電池を各々 2個ずつ 25°Cで 15kQの定抵抗放電により 2Vまで放電し、高温保存後の放電容量 (C )を確
1 認した。 2個の電池の平均値を表 7に示す。
[0205] (低温大電流放電特性) 100°Cで 5日間保存後の電池のうち、実施例および比較例の電池を各々 2個ずつ 用いて、 40°Cでパルス放電を行い、低温での大電流放電特性を評価した。具体 的には、 12mAの定電流放電を 1秒間行った後、 59秒間休止するパターンを 20サイ クル繰り返し、各サイクルにおけるノ ルス電圧値を測定した。 20サイクル中における 最低の初期低温パルス電圧 (V )を求めた。 2個の電池の平均値を表 7に示す。
1
[0206] [表 7]
Figure imgf000051_0001
[0207] 電解液に LiBF Z Ύ BLを用いた実施例 IBは、高温保存後においても、放電容量
4
力 Sl01mAh、低温パルス電圧が 2. 115Vとなり、比較例 1Bよりも優れていた。一方、 電解液を LiCF SO
3 3 Z (PC + DME)とした実施例 7Bでは、保存後の放電容量が 97 mAhとなり、低温パルス電圧も 2. 084Vに低下しており、保存による劣化が実施例 1 B、 2Bおよび 6Bよりも大きくなつた。実施例 7Bの保存後の電池は、やや膨れていた ことから、高温保存により、電解液の分解反応が進行して比較的多くのガスが発生し 、上記のように劣化が大きくなつたものと考えられる。従って、高温での安定性を向上 させる観点からは、電解液に LiBF
4 /γ BLを用いた方が優れている。
[0208] 比較例 2Βでは、高温保存後の容量が 94mAhにまで低下しており、高温保存によ る容量劣化が比較例 1Bより大きくなつた。保存前の放電容量も 108mAhとやや少な 力つたことから、大きな粒子が正負極間に存在することにより、放電反応が不均一に なり、容量が低下したものと考えられる。
[0209] 微粒子に人造黒鉛を用いた実施例 2Bの場合、高温保存後の容量が 105mAh、 低温パルス電圧が 2. 129Vとなり、優れた結果が得られた。また、平均粒径 0. l ^ m 以下あるいは BET比表面積 20m2Zg以上のカーボンブラックを用いた実施例 6Bお よび 8Bでは、低温パルス電圧が約 2. 2Vとなっており、さらに優れた結果が得られた 産業上の利用可能性
本発明のリチウム一次電池は、優れた低温大電流放電特性や高温保存特性を有 するから、安全性と信頼性に優れており、携帯電子機器等の電源として有用である。

Claims

請求の範囲
[1] 正極と、負極と、有機電解液と、前記正極と負極との間に介在するセパレータとを具 備し、
前記負極は、負極活物質を含み、前記負極活物質は、リチウム金属およびリチウム 合金よりなる群力 選ばれる少なくとも 1種力 なり、
前記負極の少なくとも表層部は、非晶質炭素材料と前記負極活物質との複合物か らなり、前記表層部は、前記セパレータを介して、前記正極と対面している、リチウム 一次電池。
[2] 前記負極が、前記複合物からなる表層部と、前記活物質力 なる下層部とを含む、 請求項 1記載のリチウム一次電池。
[3] 前記負極活物質と前記非晶質炭素材料との合計に占める前記非晶質炭素材料の 含有量が 5重量%以下である、請求項 1記載のリチウム一次電池。
[4] 前記複合物力もなる表層部の厚さ力 前記負極の厚みの 1Z3以下である、請求項
1記載のリチウム一次電池。
[5] 前記正極が、正極活物質と、導電材と、結着材とを含み、前記正極活物質が、金属 酸ィ匕物またはフッ化黒鉛力もなる、請求項 1記載のリチウム一次電池。
[6] 前記非晶質炭素材料が、一次粒子の平均粒径が 0. 1 μ m以下の微粒子である、 請求項 1記載のリチウム一次電池。
[7] 前記非晶質炭素材料が、 BET比表面積が 20m2/g以上の微粒子である、請求項 1 記載のリチウム一次電池。
[8] 前記非晶質炭素材料が、アセチレンブラック、ケッチェンブラック、コンタクトブラック
、ファーネスブラックおよびランプブラックよりなる群力も選ばれる少なくとも 1種のカー ボンブラックである、請求項 1記載のリチウム一次電池。
[9] 前記有機電解液が、溶質を溶解する非水溶媒からなり、前記溶質が、テトラフルォ 口硼酸リチウムを含み、前記非水溶媒が、 γ —プチ口ラタトンを含む、請求項 1記載の リチウム一次電池。
[10] 負極活物質と非晶質炭素材料との複合物を少なくとも表層部に含み、前記負極活 物質がリチウム金属およびリチウム合金よりなる群力 選ばれる少なくとも 1種力 なる 負極を調製する工程と、
前記複合物からなる表層部を、セパレータを介して、正極と対面させる工程と、を含 むリチウム一次電池の製造法。
[11] 前記複合物を少なくとも表層部に含む負極を調製する工程を、アルゴンガス雰囲 気下または lOOPa以下の減圧雰囲気下で行う、請求項 10記載のリチウム一次電池 の製造法。
[12] 前記非晶質炭素材料が、一次粒子の平均粒径が 0. 1 μ m以下の微粒子である、 請求項 10記載のリチウム一次電池の製造法。
[13] 前記非晶質炭素材料が、 BET比表面積が 20m2/g以上の微粒子である、請求項 1
0記載のリチウム一次電池の製造法。
[14] 前記非晶質炭素材料が、アセチレンブラック、ケッチェンブラック、コンタクトブラック
、ファーネスブラックおよびランプブラックよりなる群力も選ばれる少なくとも 1種のカー ボンブラックである、請求項 10記載のリチウム一次電池の製造法。
[15] 正極と、負極と、有機電解液と、前記正極と負極との間に介在するセパレータとを具 備し、
前記負極は、負極活物質を含み、前記負極活物質は、リチウム金属およびリチウム 合金よりなる群力 選ばれる少なくとも 1種力 なり、
前記負極の前記正極との対向表面から 5〜 15nmの所定の深さにお!/、て、ハロゲ ン原子、リチウム原子および酸素原子が存在し、ハロゲン原子のリチウム原子に対す るモル比: XZLi力 0. 7以下であり、ハロゲン原子の酸素原子に対するモル比: XZ Oが、 1. 3以下である、リチウム一次電池。
[16] 正極と、負極と、有機電解液と、前記正極と負極との間に介在するセパレータとを具 備し、
前記負極は、負極活物質を含み、前記負極活物質は、リチウム金属およびリチウム 合金よりなる群力 選ばれる少なくとも 1種力 なり、
前記負極は、微粒子が埋め込まれた表層部を有し、前記微粒子の一次粒子の平 均粒径 (メディアン径)が 以下であり、前記表層部は、前記セパレータを介して 、前記正極と対面している、リチウム一次電池。
[17] 前記微粒子が、 Al O 、 Fe O 、 SiC、 SiOおよび ZrOよりなる群から選ばれた少な
2 3 2 3 2 2
くとも 1種を含む、請求項 16記載のリチウム一次電池。
[18] 前記微粒子が、 Li POおよび Li SOよりなる群カゝら選ばれた少なくとも 1種を含む
3 4 2 4
、請求項 16記載のリチウム一次電池。
[19] 前記微粒子が、黒鉛、石油コータスおよび活性炭よりなる群カゝら選ばれた少なくとも
1種を含む、請求項 16記載のリチウム一次電池。
PCT/JP2005/018604 2004-11-26 2005-10-07 リチウム一次電池およびその製造法 WO2006057110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/720,151 US8062793B2 (en) 2004-11-26 2005-10-07 Lithium primary battery and manufacturing method therefor
JP2006547671A JP5422100B2 (ja) 2004-11-26 2005-10-07 リチウム一次電池およびその製造法
EP05790618.2A EP1801901B1 (en) 2004-11-26 2005-10-07 Lithium primary battery and manufacturing method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-342202 2004-11-26
JP2004342202 2004-11-26
JP2005-125456 2005-04-22
JP2005125456 2005-04-22
JP2005-126139 2005-04-25
JP2005126139 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006057110A1 true WO2006057110A1 (ja) 2006-06-01

Family

ID=36497854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018604 WO2006057110A1 (ja) 2004-11-26 2005-10-07 リチウム一次電池およびその製造法

Country Status (5)

Country Link
US (1) US8062793B2 (ja)
EP (1) EP1801901B1 (ja)
JP (1) JP5422100B2 (ja)
KR (1) KR100917733B1 (ja)
WO (1) WO2006057110A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140648A (ja) * 2007-12-04 2009-06-25 Panasonic Corp リチウム電池
JP2009146801A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 扁平形非水電解液電池
JP2009277650A (ja) * 2008-04-18 2009-11-26 Panasonic Corp リチウム一次電池用負極およびリチウム一次電池
JP2010086736A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 非水電解液電池
JP2010257828A (ja) * 2009-04-27 2010-11-11 Panasonic Corp リチウム一次電池およびその製造方法
US20110070484A1 (en) * 2009-09-24 2011-03-24 Yoko Sano Lithium primary battery
JP2012014877A (ja) * 2010-06-29 2012-01-19 Panasonic Corp フッ化黒鉛リチウム電池
CN102623686A (zh) * 2007-06-22 2012-08-01 松下电器产业株式会社 全固体型聚合物电池
WO2015046329A1 (ja) * 2013-09-27 2015-04-02 Fdk株式会社 リチウム一次電池
JP2015094037A (ja) * 2013-11-11 2015-05-18 コニカミノルタ株式会社 衣料服飾品
US10008712B2 (en) 2010-11-26 2018-06-26 Toyota Jidosha Kabushiki Kaisha Negative electrode active material for lithium ion secondary battery
KR20200084209A (ko) * 2019-01-02 2020-07-10 주식회사 비츠로셀 열안정성이 우수한 무기물 코팅층을 갖는 리튬일차전지
WO2020250816A1 (ja) * 2019-06-10 2020-12-17 マクセルホールディングス株式会社 非水電解液電池およびその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064714A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 電極体およびそれを用いたリチウム二次電池
EP2337122A4 (en) * 2008-09-26 2012-05-09 Sanyo Electric Co NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2011109815A1 (en) * 2010-03-05 2011-09-09 A123 Systems, Inc. Design and fabrication of electrodes with gradients
KR101383054B1 (ko) * 2012-04-19 2014-04-10 한국세라믹기술원 리튬일차전지의 양극 제조방법
US10128675B2 (en) 2015-09-14 2018-11-13 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
KR20180116296A (ko) 2016-02-23 2018-10-24 맥스웰 테크놀러지스 인코포레이티드 에너지 저장 장치를 위한 원소상 금속 및 탄소 혼합물들
JP6741770B2 (ja) * 2016-02-26 2020-08-19 トヨタ・モーター・ヨーロッパToyota Motor Europe リチウムイオン電池の高温エージングプロセス
EP3258521B1 (de) * 2016-06-14 2020-11-04 VARTA Microbattery GmbH Lithium-primärzelle mit dme-freiem elektrolyten
EP4303964A3 (en) 2017-02-21 2024-03-20 Tesla, Inc. Prelithiated energy storage device
WO2019187128A1 (ja) * 2018-03-30 2019-10-03 株式会社 東芝 電池及び電池パック
EP3993107A4 (en) * 2019-06-28 2022-08-24 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCING POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES
TWI702753B (zh) * 2019-08-21 2020-08-21 國立臺灣科技大學 一次電池及其電極組
CN113611868B (zh) * 2021-08-03 2023-03-28 湖南立方新能源科技有限责任公司 一种金属锂复合电极材料及其制备方法及锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211856A (ja) * 1988-02-19 1989-08-25 Sanyo Electric Co Ltd リチウム電池及びその製造方法
JPH042050A (ja) * 1990-04-18 1992-01-07 Matsushita Electric Ind Co Ltd 有機電解質一次電池
JPH0594837A (ja) * 1991-09-30 1993-04-16 Fuji Elelctrochem Co Ltd リチウム電池
JPH05266883A (ja) * 1992-03-19 1993-10-15 Matsushita Electric Ind Co Ltd 非水電解液電池の負極およびその製造法
JPH06168737A (ja) 1992-11-30 1994-06-14 Canon Inc 二次電池
JPH10172540A (ja) 1996-12-05 1998-06-26 Sony Corp 非水電解液二次電池の製造方法
WO2001097304A1 (en) 2000-06-12 2001-12-20 Korea Institute Of Science And Technology Multi-layered lithium electrode, its preparation and lithium batteries comprising it
JP2002516643A (ja) * 1994-09-29 2002-06-04 三菱化学株式会社 電解質電池と電解プロセスのための微粒子境界面

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412610B2 (ja) * 1974-05-11 1979-05-24
US4960657A (en) * 1988-03-01 1990-10-02 Bridgestone Corporation Lithium cells
JPH0636800A (ja) 1992-07-17 1994-02-10 Mitsubishi Cable Ind Ltd リチウム二次電池
EP1339116A3 (en) * 1994-05-30 2005-03-23 Canon Kabushiki Kaisha Rechargeable lithium battery
JP3726163B2 (ja) * 1994-10-27 2005-12-14 宇部興産株式会社 非水二次電池とその製造方法
JP3620703B2 (ja) * 1998-09-18 2005-02-16 キヤノン株式会社 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
JP3403090B2 (ja) * 1998-09-18 2003-05-06 キヤノン株式会社 多孔質構造の金属酸化物、電極構造体、二次電池及びこれらの製造方法
KR20010105662A (ko) * 2000-05-17 2001-11-29 구자홍 개인정보 보안 장치 및 방법
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
US6632573B1 (en) * 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211856A (ja) * 1988-02-19 1989-08-25 Sanyo Electric Co Ltd リチウム電池及びその製造方法
JPH042050A (ja) * 1990-04-18 1992-01-07 Matsushita Electric Ind Co Ltd 有機電解質一次電池
JPH0594837A (ja) * 1991-09-30 1993-04-16 Fuji Elelctrochem Co Ltd リチウム電池
JPH05266883A (ja) * 1992-03-19 1993-10-15 Matsushita Electric Ind Co Ltd 非水電解液電池の負極およびその製造法
JPH06168737A (ja) 1992-11-30 1994-06-14 Canon Inc 二次電池
JP2002516643A (ja) * 1994-09-29 2002-06-04 三菱化学株式会社 電解質電池と電解プロセスのための微粒子境界面
JPH10172540A (ja) 1996-12-05 1998-06-26 Sony Corp 非水電解液二次電池の製造方法
WO2001097304A1 (en) 2000-06-12 2001-12-20 Korea Institute Of Science And Technology Multi-layered lithium electrode, its preparation and lithium batteries comprising it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1801901A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623686A (zh) * 2007-06-22 2012-08-01 松下电器产业株式会社 全固体型聚合物电池
JP2009140648A (ja) * 2007-12-04 2009-06-25 Panasonic Corp リチウム電池
JP2009146801A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 扁平形非水電解液電池
JP2009277650A (ja) * 2008-04-18 2009-11-26 Panasonic Corp リチウム一次電池用負極およびリチウム一次電池
JP2010086736A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 非水電解液電池
JP2010257828A (ja) * 2009-04-27 2010-11-11 Panasonic Corp リチウム一次電池およびその製造方法
US20110070484A1 (en) * 2009-09-24 2011-03-24 Yoko Sano Lithium primary battery
JP2012014877A (ja) * 2010-06-29 2012-01-19 Panasonic Corp フッ化黒鉛リチウム電池
US10008712B2 (en) 2010-11-26 2018-06-26 Toyota Jidosha Kabushiki Kaisha Negative electrode active material for lithium ion secondary battery
JP2015069789A (ja) * 2013-09-27 2015-04-13 Fdk株式会社 リチウム一次電池
US9711788B2 (en) 2013-09-27 2017-07-18 Fdk Corporation Primary lithium battery
WO2015046329A1 (ja) * 2013-09-27 2015-04-02 Fdk株式会社 リチウム一次電池
JP2015094037A (ja) * 2013-11-11 2015-05-18 コニカミノルタ株式会社 衣料服飾品
KR20200084209A (ko) * 2019-01-02 2020-07-10 주식회사 비츠로셀 열안정성이 우수한 무기물 코팅층을 갖는 리튬일차전지
KR102187204B1 (ko) 2019-01-02 2020-12-04 주식회사 비츠로셀 열안정성이 우수한 무기물 코팅층을 갖는 리튬일차전지
WO2020250816A1 (ja) * 2019-06-10 2020-12-17 マクセルホールディングス株式会社 非水電解液電池およびその製造方法

Also Published As

Publication number Publication date
KR100917733B1 (ko) 2009-09-15
EP1801901A1 (en) 2007-06-27
JPWO2006057110A1 (ja) 2008-06-05
US8062793B2 (en) 2011-11-22
EP1801901A4 (en) 2012-08-29
KR20070086111A (ko) 2007-08-27
EP1801901B1 (en) 2014-08-06
JP5422100B2 (ja) 2014-02-19
US20090123844A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2006057110A1 (ja) リチウム一次電池およびその製造法
US10461333B2 (en) Electrochemical cells comprising fibril materials
US9276259B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
EP2835844B1 (en) Separator for secondary cell
JP4884774B2 (ja) 電気化学電池用の電極の製造方法
JP4861120B2 (ja) 負極活物質、その製造方法、並びにそれを採用した負極及びリチウム電池
WO2006073104A1 (ja) リチウムイオン電池用正極とこれを用いたリチウムイオン電池
EP1711971A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP2006173049A (ja) 非水電解質電池および正極活物質
JP4873889B2 (ja) リチウム一次電池
JP2009277650A (ja) リチウム一次電池用負極およびリチウム一次電池
KR20220101302A (ko) 전극의 건식 제조 방법
JP2002319386A (ja) 非水電解質二次電池
JP6296278B2 (ja) 非水電解質二次電池
CN100514720C (zh) 锂一次电池及其制备方法
JP2008103129A (ja) 非水電解液電池の製造方法
WO2015141120A1 (ja) リチウム一次電池
WO2024143015A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143013A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143012A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143017A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143011A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143014A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143009A1 (ja) 非水電解質二次電池およびこれを用いる正極
WO2024143010A1 (ja) 非水電解質二次電池およびこれを用いる正極

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547671

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005790618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11720151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580040597.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077013281

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005790618

Country of ref document: EP