WO2006057066A1 - ポリプロピレン及び該ポリプロピレンの電気材料への応用 - Google Patents

ポリプロピレン及び該ポリプロピレンの電気材料への応用 Download PDF

Info

Publication number
WO2006057066A1
WO2006057066A1 PCT/JP2004/017902 JP2004017902W WO2006057066A1 WO 2006057066 A1 WO2006057066 A1 WO 2006057066A1 JP 2004017902 W JP2004017902 W JP 2004017902W WO 2006057066 A1 WO2006057066 A1 WO 2006057066A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
less
weight
ppm
film
Prior art date
Application number
PCT/JP2004/017902
Other languages
English (en)
French (fr)
Inventor
Akihiro Inukai
Jyun Birukawa
Shuji Matsumura
Original Assignee
Prime Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co., Ltd. filed Critical Prime Polymer Co., Ltd.
Priority to DE602004028296T priority Critical patent/DE602004028296D1/de
Priority to US11/791,532 priority patent/US7691958B2/en
Priority to AT04822446T priority patent/ATE474862T1/de
Priority to PCT/JP2004/017902 priority patent/WO2006057066A1/ja
Priority to CN2004800444793A priority patent/CN101065411B/zh
Priority to EP04822446A priority patent/EP1826222B1/en
Publication of WO2006057066A1 publication Critical patent/WO2006057066A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst

Definitions

  • the present invention relates to an electrical material, in particular, polypropylene suitably used for applications requiring high electrical insulation, a polypropylene sheet obtained from the polypropylene, a stretched film formed by stretching the sheet, an unstretched film, and the above-mentioned
  • the present invention relates to an electronic material transfer device formed by injection-molding polypropylene.
  • polypropylene Due to its excellent electrical insulation properties, polypropylene has been used as a raw material for a wide range of electrical materials in a wide variety of states. For example, high-purity polypropylene with very few catalyst-derived impurities has been applied to high-performance capacitors as a thin film or film of 20 ⁇ m or less, recently 5 ⁇ or less. (For example, JP-A-6-236709)
  • the inventors have found that the electrical properties of the molded product obtained from polypropylene are different between product lots, or even within a lot. Sampling points (for example, when the electric material is a stretched film, are identical for measurement). The location of the film to be partly cut out) was examined to see if it could fluctuate, and measures to eliminate such fluctuation were traced back to polypropylene, the raw material.
  • the use of polypropylene for electrical materials that simultaneously satisfies the following requirements [1] to [3] solves the above-mentioned problems, and achieves a high level of electrical insulation characteristics with substantial fluctuation width between production lots or within lots.
  • the present inventors have found that polypropylene for electric materials can be obtained that is reduced to zero.
  • the firing residue is 50 ppm by weight or less with respect to polypropylene
  • the titanium content and iron content detected from the firing residue is 1 ppm by weight or less and 0.1 ppm by weight or less with respect to polypropylene, respectively
  • the chlorine content is 5 with respect to polypropylene. Weight ppm or less.
  • a preferred form of the polypropylene (R) of the present invention is a polypropylene that satisfies the following requirement [4] in addition to the above requirements [1], [2] and [3], and more preferred forms are requirements [1] to In addition to [4], this polypropylene also satisfies the following requirement [5].
  • the integrated elution amount measured up to 110 ° C is 30% by weight or less and the integrated elution amount measured up to 100 ° C is 7.0% by weight or less.
  • Mz / Mn determined by GPC is 15 or more and Mw / Mn is 5 or more.
  • the present invention is obtained by subjecting the polypropylene (R) to heat melting, extruding, and slow cooling. Relates to polypropylene sheet (S) above 0.15.
  • the present invention further relates to a stretched film (F) obtained by stretching the polypropylene sheet (S).
  • a preferred embodiment of the stretched film (F) is a capacitor film (F ′).
  • the present invention also relates to an unstretched film (F ”) obtained by heating and melting the polypropylene (R) and extruding it.
  • the present invention relates to an electronic material conveying device (A) formed by injection molding of the polypropylene (R).
  • A an electronic material conveying device formed by injection molding of the polypropylene (R).
  • the polypropylene (R) of the present invention is a polypropylene for electrical materials that simultaneously satisfies the following requirements [1] to [3].
  • the firing residue is 50 ppm by weight or less with respect to polypropylene
  • the titanium content and iron content detected from the firing residue are 1 ppm by weight or less and 0.1 ppm by weight or less with respect to polypropylene, respectively
  • the chlorine content is with respect to polypropylene. 5 ppm by weight or less.
  • the polypropylene (R) of the present invention is a crystalline polypropylene, and is a propylene homopolymer or a copolymer of propylene and ethylene or fluorene having 4 to 20 carbon atoms.
  • propylene, ethylene, and ⁇ -olefin having 4 to 20 carbon atoms may be collectively referred to as “monomer”.
  • the a-olefin having 4 to 20 carbon atoms may be 1 -Butene, 1-pentene, 1-hexene, 4-methyl_1_pentene, 1-octene, 1-decene, 1-.dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene Etc.
  • ⁇ -olefin having 4 to 10 carbon atoms is preferable.
  • These olefins may form a random copolymer with propylene or may form a block copolymer.
  • the total content of these structural units derived from ethylene or fluoroolefin is 5 mol% or less, preferably 2 mol% or less in polypropylene.
  • the MFR (ASTM D-1238, 230 ° C, load 2.16 kg) of the polypropylene (R) of the present invention is 0.:! To 30 g / 10 min.
  • the range of 0.5 to 10 g / 10 min, more preferably 1 to • 8 g / 10 min, and particularly preferably 1.5 to 5.0 g / 10 min is preferable for the use of a biaxially stretched film.
  • the MFR is in the range of 10 to 30 g / 10 minutes, it is preferable for injection molding of high-strength molded articles such as electronic material conveying instruments.
  • the value of polypropylene, "C-NMR P mmmm in the spectrum, the following formulas absorption intensity of P w (Eq- 1) by meso pentad fraction obtained in the present invention [M 5] is 0.90 to 0.99, preferably 0.920 -0.990, more preferably in the range of 0.932 to 0.990.
  • the firing residue of the polypropylene of the present invention is desirably 50 ppm by weight or less, preferably 30 ppm by weight or less, based on polypropylene.
  • the titanium content detected from the firing residue (sometimes referred to as “ash” in the following description) is 1 ppm by weight or less, preferably 0.5 ppm by weight or less based on polypropylene.
  • the iron content detected from the firing residue is 0.1 wt ppm or less with respect to polypropylene. Preferably it is 0.05 weight p.pm or less.
  • the chlorine content detected from the firing residue is characterized by 5 ppm by weight or less, preferably 3 ppm by weight or less, relative to polypropylene.
  • the polypropylene content of the polypropylene is maintained by maintaining the iron concentration at 0.1 wt ppm or less, preferably 0.05 wt ppm or less, despite the same firing residue, titanium, and chlorine content.
  • Such a polypropylene is suitably used as a raw material sheet for a capacitor film or a raw material resin for a capacitor film because it provides excellent electrical insulation properties with good reproducibility.
  • the moldability of polypropylene showing such a wide molecular weight distribution is 3 crystals when the extruded product is slowly cooled (the 3 crystal fraction using the polypropylene of the present invention is 0.15 or more as described later). Since a large amount is produced, a roughened fine frame can be obtained by stretching in a specific temperature range.
  • Mw / Mn can be 5 or more and Mz / Mn can be 15 or more. That is, the production method of the polypropylene (R) of the present invention is not limited at all as long as it satisfies the requirements described in the claims of the present application.
  • high-performance magnesium chloride-supported titanium-based catalysts or transitions of Group 4 metals such as zirconium and titanium Polymerization is preferably performed using a catalyst system in which a metal metallocene compound, an organometallic compound, and an organoaluminum compound are combined.
  • the polypropylene produced under the polymerization conditions as described above is usually subjected to post-treatment such as decomposition or removal of the catalyst remaining in the polypropylene, and can be made into the polypropylene of the present invention.
  • post-treatment such as decomposition or removal of the catalyst remaining in the polypropylene
  • the method described in Japanese Patent Application Laid-Open No. 6-236709 which has been filed by the applicant of the present application and already published, can be employed as it is. That is, it can be produced by a method in which the catalyst residue is dissolved with alcohol, glycol or the like, washed with a hydrocarbon compound or washed with water, and further heat treated with an epoxy compound.
  • the amount of iron in polypropylene can be reduced in proportion to the amount of fired residue up to a concentration of 1 ppm by weight by the above-mentioned post-treatment method, but in order to control the amount of iron remaining in a region below 1 ppm by weight. In this case, it is possible to achieve 0.1 ppm by weight or less by carrying out strict process control so that iron or a compound derived from iron does not enter the entire polymerization system of the catalyst preparation process or the polymerization process. For example, pay sufficient attention to contamination from polymer materials containing iron components, crushers and powders made of iron materials.
  • the crude polypropylene is heated to a melting point or higher in the presence of a solvent in the presence of a solvent, and then brought into a molten state. Needless to say, it may be less than ppm by weight, but it is not suitable for production of large-scale molded products.
  • the volatile matter for example, the amount of weight loss when a sample of about 1Og is kept at 110 ° C ⁇ 2 ° C and treated in a nitrogen stream of 1 NL / min for 60 minutes
  • Polypropylene suitable for applications such as transportation of electronic materials can be obtained by devising such that the content is 100 ppm by weight or less, particularly 10 ppm by weight or less.
  • the polypropylene (R) of the present invention has an integrated elution amount measured up to 110 ° C. by the CFC method of 30% or less, preferably 27% or less, more preferably 25% or less. Further, the integrated amount of elution measured up to 100 ° C. by the CFC method is 7.0% or less, preferably 6.0% or less, and more preferably 5.0% or less. Within this range, the anti-blocking property, slip property, dimensional stability, rigidity at high temperature, appearance of the film, especially when the film is stored for a long time, are improved. In addition, the electrical properties as a capacitor film, especially the breakdown voltage, are improved. In addition, the amount of oil-impregnated capacitor parts that dissolves into the oil may be reduced, making a significant contribution to the long-term stability of electrical characteristics. .
  • Polypropylene (R) having the above properties is extruded by heating and melting at 170 to 280 ° C, preferably 190 to 230 ° C, air-cooled or 60 ° C or more, preferably 70 ° C or more, more preferably 90 to nO °.
  • the resulting crystal has a tricrystal fraction of 0.15 or more, preferably 0.17 or more, and more preferably 0.18 to 0.50.
  • This i3 crystal fraction value is a value of polypropylene not containing a tricrystal nucleating agent.
  • the catalyst for producing the polypropylene of the present invention that is suitably used for electrical material film applications is not particularly limited, but in order to achieve efficient production, it is usually a multistage polymerization. Is often adopted. That is, the polymerization of propylene may be carried out in two or three stages, and if there are no restrictions on the equipment such as the number of polymerization vessels, polypropylene (R) may be produced by multistage polymerization of four or more stages. There are no restrictions.
  • an electrical material such as a film using the polypropylene of the present invention as a raw material
  • other resins or rubbers may be added to the polypropylene of the present invention as necessary within a range not impairing the object of the present invention. Also good.
  • other resins or rubbers include poly ⁇ -olefins such as polyethylene, polybutene-1, polyisobutene, polypentene-1, and polymethylpentene-1; ethylene propylene copolymer having a propylene content of less than 75% by weight.
  • Ethylene, butene-1 copolymer, ethylene or ⁇ -olefin / ⁇ -olefin copolymer such as propylene 'butene-1 copolymer having a propylene content of less than 75% by weight; propylene content of 75% by weight Less than ethylene 'propylene ⁇ 5-ethylidene-2-norbornene copolymer or other ethylene or ⁇ -olefins.
  • ⁇ -olefins. Genon monomer copolymers; styrene. Vinyl monomers such as butadiene random copolymers .Genon monomer random copolymer; Styrene.
  • Butadiene / Styrene block copolymer and other vinyl monomers Gen monomer 'Vinyl monomer block copolymer; Hydrogenation (Styrene' butadiene random copolymer) and other hydrogenation (Vinyl monomer 'Gen monomer random copolymer); Hydrogenation (Styrene) And hydrogen (vinyl monomer / gen monomer / vinyl monomer block copolymer) such as 'butadiene' styrene block copolymer).
  • the amount of the other polymer added varies depending on the type of resin to be added or the type of rubber, and may be within a range that does not impair the object of the present invention as described above, but is usually about 100 parts by weight of polypropylene. The amount is preferably 5 parts by weight or less.
  • the polypropylene of the present invention when forming a sheet or film using the polypropylene of the present invention as a raw material, includes, as necessary, an antioxidant, an ultraviolet absorber, Additives such as metal sarcophagus, stabilizers such as hydrochloric acid absorbers, lubricants, plasticizers, flame retardants, antistatic agents and the like may be added within a range that does not impair the object of the present invention.
  • the polypropylene sheet of the present invention is a sheet obtained by forming the polypropylene into a sheet by the above method, and is a sheet having a tricrystal fraction of 0.15 or more.
  • the forming method of the sheet may be a T die or a circular die.
  • the thickness of these sheets is not limited, but is usually 0.1 to 3 mm, preferably 0.2 to 1.5 mm.
  • the polypropylene sheet of the present invention can be further stretched as necessary to obtain a stretched film.
  • the raw sheet for capacitor film of the present invention is stretched and used as a capacitor film. Stretching can be performed by a known method such as stretching roll and Z or tenter stretching, or tubular stretching, usually by reheating the film to a temperature between 100 ° C. and the melting point. In the case of biaxial stretching, the draw ratio is about 3 to 7 times in length and 3 to 11 times in width. By this stretching treatment, a film having excellent mechanical strength and rigidity, a large number of surface irregularities, and a roughened
  • the sheet obtained from the polypropylene of the present invention has excellent electrical insulation properties, it is excellent as a raw sheet for capacitor films.
  • the anti-blocking effect is excellent because the number of surface irregularities is roughened.
  • a film having excellent electrical insulation characteristics, a large number of surface irregularities, and an excellent antiblocking effect can be suitably used as a capacitor film for capacitors.
  • the thickness of the capacitor film is not limited, but it is usually 2 to 100 m, preferably 4 to 50 / im.
  • an insulating film for a high-voltage cable is mentioned.
  • Insulating films are generally extrusion-laminated on insulating paper and correspond to unstretched films.
  • the unstretched film obtained from the polypropylene of the present invention is excellent in electrical insulation properties.
  • An electronic material conveying instrument can be used as an electrical material application other than the stretched film of the polypropylene of the present invention. Specifically, flat electronic materials used in electrical and electronic equipment, especially printed wiring boards, shadow masks, aperture grills, etc.
  • an electronic material particularly a printed wiring board or a shadow mask having a large number of small-diameter holes, is surely electrostatically adsorbed and desired to be detached. Moreover, it can be desorbed reliably at a good timing. Therefore, the use of the electrostatic adsorption unit of the present invention brings about an excellent effect that can be surely removed regardless of factors such as the ambient temperature and humidity, the material of the electrostatic adsorption plate and the adsorbed material, and the surface condition.
  • the / 3 crystal fraction was determined according to the method used. In other words, 200 polypropylene is used as the sample sheet. Heated and melted at C, extruded from a T-die, and slowly cooled under the conditions of a pulling speed of 1.0 m / min and a cooling time of 0.9 min using a cooling roll, maintained at a temperature of 95 ° C. A sheet having a thickness of 0.5 mm through the roll was used. This sheet was subjected to X-ray diffraction under the following conditions and calculated from the following formula (Eq-3).
  • Measuring device RINT2500 manufactured by Rigaku Corporation
  • ⁇ ⁇ 1 is the ⁇ crystal (110)
  • the peak height (intensity) corresponding to the scattering of the crystal part of, ⁇ 2 is the peak height (intensity) corresponding to the scattering of the crystal part of the ⁇ crystal (040), and ⁇ ⁇ 3 is the crystal
  • This is the height (intensity) of the peak corresponding to the scattering of the crystal part of (130), but all values are the peak height after subtracting the scattering of the amorphous part.
  • a 50 ⁇ film was formed with a 25 ⁇ ⁇ die molding machine, and FE was observed visually. Units with a FE diameter of 200 / zm or more are counted visually. It was calculated as the number of hits.
  • the pellets were placed in a crucible and completely burned, and the crucible was incinerated in an electric furnace at 800 ° C for 2 hours. The ash remaining in the crucible was measured to determine the ash content (wtppm).
  • BDV Dielectric breakdown voltage
  • Measurement conditions Pulse repetition time is 5 seconds. The number of integration is 20000 times. Measurement temperature is 125 ° C.
  • the homogeneous solution thus obtained was cooled to 23 ° C. and allowed to stand for 10 hours, and 750 ml of the supernatant was extracted from this homogeneous solution at a position of 10 cm from the liquid surface at 50 ml / min.
  • the magnesium chloride solution was added dropwise over 1 hour to 2000 ml of titanium tetrachloride at -20 ° C in another 10 liter container. After the dropwise addition, the temperature of the resulting mixture was raised to 110 ° C over 4 hours. When the temperature reached 110 ° C, 52.2 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred for 2 hours. the solid portion was collected by holding the t then hot filtered at the same temperature, titanium tetrachloride 2750ml the solid portion And then re-heated at 110 ° C. for 2 hours.
  • DIBP diisobutyl phthalate
  • the solid titanium catalyst component (a) prepared as described above was stored as a hexane slurry, and a portion of this was dried to examine the catalyst composition.
  • the solid titanium catalyst component (a) contained 3% by weight of titanium, 58% by weight of chlorine, 18% by weight of magnesium and 21% by weight of DIBP.
  • a polymerization tank 1 with an internal volume of 140 liters was charged with 20 liters of liquefied propylene. Methyldimethoxysilane was continuously fed at 9 mmol / hr and polymerized at a temperature of 73 ° C. Hydrogen was not supplied to the polymerization tank 1.
  • Table 1 shows the ratio of the amount of polymer produced in Polymerization Tank 1 (ratio of the production quantity of Polymerization Tank 1 in the entire polymer).
  • the obtained polymer was fed in the form of a slurry into a polymerization tank 2 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 6.0 dl / g.
  • polymerization tank 2 While maintaining the liquid level at 300 liters, 70 kg / hr of liquefied propylene was continuously supplied and polymerization was conducted at a temperature of 71 ° C. Hydrogen is also used in polymerization tank 2. The gas phase portion was continuously fed so as to keep the concentration at 0.4 mol%.
  • Table 1 shows the ratio of the amount of polymer produced in polymerization tank 2 (ratio of the production quantity of polymerization tank 2 in the entire polymer).
  • the obtained polymer was fed in a slurry state to a polymerization tank 3 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 1.9 dl / g. From this result, the intrinsic viscosity of the polymer produced in the polymerization tank 2 was determined to be 1.8 dl / g by calculation.
  • polymerization tank 3 While maintaining a liquid level of 300 liters, 56 kg / hr of liquefied propylene was continuously supplied and polymerization was carried out at a temperature of 70 ° C. Similarly to the polymerization tank 2, hydrogen was continuously fed so as to keep the concentration in the gas phase part at 0.4 mol%.
  • the obtained slurry was inactivated by adding 10 ml of methanol, and after sending it to a liquid propylene washing tank, stirring “resting” and “removing the supernatant” adding liquid propylene (100 liters per operation) The polypropylene powder was washed repeatedly.
  • Table 1 shows the ratio of the amount of polymer produced in Polymerization Tank 3 (ratio of the production quantity of Polymerization Tank 3 in the entire polymer). Thereafter, propylene was evaporated to obtain a polypropylene powder. The intrinsic viscosity of this sample was measured and found to be 1.8 dl / g. From this result, it was judged that the intrinsic viscosity of the polypropylene produced in the polymerization tank 3 was 1.8 dl / g by calculation.
  • the total elution amount up to 110 ° C, that is, the integrated amount was 21.3%
  • the total elution amount up to 100 ° C, that is, the integrated amount was 3.5%. It was.
  • the polypropylene pellets obtained above were melted at 200 ° C with a 50 ⁇ extruder, extruded from a T-die, and with a single cooling roll maintained at a temperature of 95 ° C, a tensile speed of 1.0 m / min, The sheet was slowly cooled with a chill roll cooling time of 0.94 minutes to obtain a sheet having a thickness of 0.5 mm. Details of the sheet forming conditions are as follows. The sheet passed through the chill roll was cut, and the / 3 crystal fraction was determined by the above method using an X-ray diffraction apparatus. The results are shown in Table 2.
  • Molding equipment VSK type 50 manufactured by Nakatani Machinery Co., Ltd.
  • Preheating time 60 seconds
  • a polymerization tank 1 with an internal volume of 140 'liters was charged with 100 liters of liquefied propylene, and while maintaining this liquid level, 105 kg / hr of liquefied propylene, 18 g / hr of the prepolymerized catalyst obtained in Example 1 , Triethylaluminum 47mmol / hr, Cyclohexa Polymerization was carried out at a temperature of 73 ° C by continuously feeding 9 mmol / hr of silmethyldimethoxysilane. Hydrogen was also continuously supplied so as to keep the concentration in the gas phase part of the polymerization tank 1 at 0.01 mol%. Table 1 shows the ratio of the amount of polymer produced in this polymerization tank 1.
  • the obtained polymer was fed into the polymerization tank 2 with a stirrer having an internal volume of 500 liters in a slurry state. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 3.9 dl / g.
  • polymerization tank 2 While maintaining a liquid level of 300 liters, 140 kg / hr of liquefied propylene was continuously supplied and polymerization was carried out at a temperature of 71 ° C. Hydrogen was also continuously supplied so as to keep the concentration in the gas phase part of the polymerization tank 2 at 0.57 mol%.
  • Table 1 shows the ratio of the amount of polymer produced in polymerization tank 2.
  • the obtained polymer was fed in the form of a slurry to a polymerization tank 3 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled and the intrinsic viscosity was measured and found to be 2.0 dl / g. From this result, the intrinsic viscosity of the polymer produced in the polymerization tank 2 was determined to be 1.5 dl / g by calculation.
  • polymerization tank 3 While maintaining the liquid level at 300 liters, 55 kg / hr of liquefied propylene was continuously supplied and polymerization was performed at a temperature of 70 ° C. Similarly to the polymerization tank 2, hydrogen was continuously supplied so as to keep the gas phase concentration at 0.57 mol%. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. The production ratio of the polymer produced in the polymerization tank 3 is shown in Table 1. Thereafter, propylene was evaporated to obtain polypropylene powder. The intrinsic viscosity of this sample was measured and found to be 1.8 dl / g. From this result, it was judged that the intrinsic viscosity of the polypropylene produced in the polymerization tank 3 was 1.5 dl / g by calculation.
  • polypropylene pellets were obtained in the same manner as in Example 1.
  • the physical properties measured for the obtained pellets are summarized in Tables 1 and 2.
  • the integrated amount of cross fractionation of the obtained pellet was analyzed, the total amount of elution up to 110 ° C, that is, the integrated amount was 20.7%, and the total amount of elution amount up to 100 ° C, that is, the integrated amount was 3.4%. It was.
  • Example 3 shows the [3] crystal fraction of the resulting sheet and the film properties after biaxial stretching.
  • a polymerization tank 1 with an internal volume of 140 liters was charged with 100 liters of liquefied propylene, and while maintaining this liquid level, 83 kg / hr of liquefied propylene, 18 g / hr of the prepolymerized catalyst obtained in Example 1, Polymerization was carried out at a temperature of 73 ° C. by continuously feeding 47 mmol / hr of tilaluminum and 9 mmol / hr of cyclohexylmethyldimethoxysilane. Hydrogen was also continuously supplied so as to keep the concentration in the gas phase part of the polymerization tank 1 at 0.30 mol%. Table 1 shows the ratio of the amount of polymer produced in this polymerization tank 1.
  • the obtained polymer was fed as a slurry into a polymerization tank 2 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 2.1 dl / g .
  • polymerization tank 2 While maintaining the liquid level at 300 liters, 217 kg / hr of liquefied propylene was continuously supplied and polymerized at a temperature of 71 ° C. Hydrogen was also continuously supplied so as to keep the concentration of the gas phase part of the polymerization tank 2 at 0.30 mol%.
  • Table 1 shows the ratio of the amount of polymer produced in polymerization tank 2.
  • the obtained polymer was fed in the form of a slurry to a polymerization tank 3 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 2.1 dl / g. From this result, it was judged that the intrinsic viscosity of the polymer produced in the polymerization tank 2 was 2.1 dl / g by calculation.
  • polymerization tank 3 While maintaining the liquid level at 300 liters, 75 kg / hr of liquefied propylene was continuously supplied and polymerization was carried out at a temperature of 70 ° C. Similarly to the polymerization tank 2, hydrogen was continuously supplied so as to keep the gas phase concentration at 0.30 mol%. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Table 1 shows the ratio of the amount of polymer produced in polymerization tank 3. Thereafter, propylene was evaporated to obtain polypropylene powder. The ultimate viscosity of this sample was measured and found to be 2.1 dl / g. From this result, it was judged that the intrinsic viscosity of the polypropylene produced in the polymerization tank 3 was 2.1 dl / g by calculation. [Pelletization]
  • a polypropylene pellet was obtained in the same manner as in Example 1.
  • the physical properties measured for the obtained pellets are summarized in Tables 1 and 2.
  • the integral amount of the cross-fractionation of the obtained pellet was analyzed, the total amount of elution up to 110 ° C, that is, the integral amount was 22.5%, and the total amount of elution amount up to 100 ° C, that is, the integral amount was 3.6%. It was.
  • Table 3 shows the 0 crystal fraction of the sheet obtained from the polypropylene pellets obtained above by the same method as in Example 1 and the film properties after biaxial stretching.
  • Example 1 The same procedure as in Example 1 was performed except that the polymerization was changed as follows. The results are shown in Tables 1 to 3.
  • a polymerization tank 1 with an internal volume of 140 liters equipped with a stirrer was charged with 100 liters of liquefied propylene, and while maintaining this liquid level, 64 kg / hr of liquefied propylene, 18 g / hr of the prepolymerized catalyst obtained in Example 1, triethylaluminum Polymerization was carried out at a temperature of 73 ° C. by continuously feeding 47 mmol / hr and cyclohexylmethyldimethoxysilane 9 mmol / hr. Hydrogen was not supplied to the polymerization tank 1. Table 1 shows the ratio of the amount of polymer produced in this polymerization tank 1.
  • the obtained polymer was fed in the form of a slurry into a polymerization tank 2 equipped with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 6.0 dl / g.
  • polymerization tank 2 While maintaining a liquid level of 300 liters, 86 kg / hr of liquefied propylene was continuously supplied and polymerized at a temperature of 71 ° C. Hydrogen was also continuously supplied so as to keep the concentration in the gas phase part of the polymerization tank 2 at 0.55 mol%.
  • Table 1 shows the ratio of the amount of polymer produced in polymerization tank 2.
  • the obtained polymer was fed in the form of a slurry to a polymerization tank 3 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled, and the intrinsic viscosity was measured and found to be 2.0 dl / g. From this result, it was judged that the intrinsic viscosity of the polymer produced in the polymerization tank 2 was 1.6 dl / g by calculation.
  • polymerization tank 3 While maintaining a liquid level of 300 liters, newly liquefied propylene Polymerization was carried out at a temperature of 70 ° C. by continuously feeding 56 kg / hr. Similarly to the polymerization tank 2, hydrogen was continuously supplied so as to keep the gas phase concentration at 0.55 mol%. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Table 1 shows the ratio of the amount of polymer produced in polymerization tank 3. Thereafter, propylene was evaporated to obtain polypropylene powder. The intrinsic viscosity of this sample was measured and found to be 1.9 dl / g.
  • the intrinsic viscosity of the polypropylene produced in the polymerization tank 3 was 1.6 dl / g by calculation.
  • the integrated amount of cross fractionation of the obtained pellets was analyzed, the total amount of elution up to 110 ° C, that is, the integrated amount was 21.0%, the total amount of elution up to 100 ° C, and the integrated amount of residue was 3.5. %Met.
  • a polymerization tank 1 with an internal volume of 140 liters was charged with 100 liters of liquefied propylene, and while maintaining this liquid level, 105 kg / hr of liquefied propylene, 18 g / hr of the prepolymerized catalyst obtained in Example 1, Triethyl aluminum (47 mmol / hr) and dicyclobenzyl dimethoxysilane (55 mmol / hr) were continuously fed to polymerize at a temperature of 73 ° C. Hydrogen was also continuously supplied so as to keep the concentration in the gas phase part of the polymerization tank 1 at 0.01 mol%. The ratio of the amount of polymer produced in this polymerization tank 1 is shown in Table 1.
  • the obtained polymer was fed in a slurry state to a polymerization tank 2 with a stirrer having an internal volume of 500 'liter. A part of the obtained polymer was sampled and the intrinsic viscosity was measured and found to be 3.9 dl / g.
  • polymerization tank 2 While maintaining a liquid level of 300 liters, 140 kg / hr of liquefied propylene was continuously supplied and polymerization was carried out at a temperature of 71 ° C. Hydrogen was also continuously supplied so as to keep the concentration in the gas phase part of the polymerization tank 2 at 0.57 mol%.
  • Table 1 shows the ratio of the amount of polymer produced in polymerization tank 2.
  • the obtained polymer was fed in the form of a slurry to a polymerization tank 3 with a stirrer having an internal volume of 500 liters. A part of the obtained polymer was sampled and the intrinsic viscosity was measured and found to be 2.0 dl / g. From this result, the intrinsic viscosity of the polymer produced in the polymerization tank 2 is calculated to be 1.5 dl / g. Judged that there was.
  • polymerization tank 3 While maintaining the liquid level at 300 liters, 55 kg / hr of liquefied propylene was continuously supplied and polymerization was performed at a temperature of 70 ° C. Similarly to the polymerization tank 2, hydrogen was continuously supplied so as to keep the gas phase concentration at 0.35 moI%. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. The production ratio of the polymer produced in the polymerization tank 3 is shown in Table 1. Thereafter, propylene was evaporated to obtain polypropylene powder. The intrinsic viscosity of this sample was measured and found to be 1.8 dl / g. From this result, it was judged that the intrinsic viscosity of the polypropylene produced in the polymerization tank 3 was 1.5 dl / g by calculation.
  • polypropylene pellets were obtained in the same manner as in Example 1.
  • the physical properties measured for the obtained pellets are summarized in Tables 1 and 2.
  • the integral amount of cross fractionation of the obtained pellet was analyzed, the total amount of elution up to 110 ° C, that is, the integral amount was 17.1%, and the total amount of elution amount up to 100 ° C, that is, the integral amount was 2.3%. It was.
  • the mesopentad fraction determined by NMR was 0.981.
  • Table 3 shows the tricrystal fraction and the film physical properties after biaxial stretching of the sheet obtained from the polypropylene pellets obtained above by the same method as in Example 1.
  • Tables 1 to 3 show the results obtained in the same manner as in Example 1 except that the solid titanium catalyst component was polymerized and produced under the following conditions.
  • the homogeneous solution thus obtained was cooled to 23 ° C. and allowed to stand for 10 hours, and then 750 ml was extracted from the homogeneous solution through a nozzle provided at the bottom of the glass container.
  • Magnesium chloride in another 10 liter container-2000 ° C titanium tetrachloride 2000ml was added dropwise over 1 hour.
  • the temperature of the resulting mixture was raised to 110 ° C over 4 hours, and when it reached 110 ° C, 52.2 g of diisobutyl phthalate (DIBP) was added and stirred for 2 hours. The same temperature was maintained.
  • DIBP diisobutyl phthalate
  • the solid titanium catalyst component (a ′) prepared as described above was stored as a hexane slurry, and a portion of this was dried to examine the catalyst composition.
  • the solid titanium catalyst component (a) contained 3% by weight of titanium, 58% by weight of chlorine, 18% by weight of magnesium and 21% by weight of DIBP.
  • Example 2 3.9 1.5 1.5 10 50 40
  • the polypropylene of the present invention has an extremely small amount of impurities and can be gradually cooled under specific conditions) to increase the crystal content of 3). A high quality sheet can be easily obtained.
  • Such a polypropylene of the present invention is suitably used for a capacitor film or an unstretched film excellent in electrical insulation and anti-blocking properties, or an electronic material transport device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Insulating Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

メルトフローレートが0.1~30g/10分、13C-NMRスペクトルより算出したメソペンタッド分率が0.90~0.99、焼成残分がポリプロピレンに対し50重量ppm以下、焼成残分から検出されるチタニウム分および鉄分がポリプロピレンに対し各々1重量ppm以下および0.1重量ppm以下であり、しかも塩素含量がポリプロピレンに対し5重量ppm以下である電気材料用ポリプロピレン。該ポリプロピレンはフィルムとした場合に、優れた電気絶縁性を発現し、且つ粗面化されるためβ晶核剤などの添加剤を併用することなくキャパシターフィルムに好適に用いられる。また、電線被覆用フィルムや電子材料搬送器具用の材料として有用である。

Description

明 細 書
ポリプロピレン及び該ポリプロピレンの電気材料への応用 技術分野
本発明は、電気材料、特に高度な電気絶縁性が要求される用途に好適に 使用されるポリプロピレン、このポリプロピレンから得られるポリプロピレンシート、 該シートを延伸成形してなる延伸フィルム、無延伸フィルム並びに前記ポリプ ロピレンを射出成形してなる電子材料搬送器具に関する。 背景技術
その優れた電気絶縁特性によって、ポリプロピレンは多種多様な状態で広 範囲な電気材料用原料として利用されてきた。例えば、触媒起因の不純物が 極めて少ない高純度ポリプロピレンは 20 / m以下、最近では 5 μ πι以下の薄 レ、フィルムとして高性能コンデンサーなどに応用されている。 (例えば、特開 ¥ 6-236709号公報)
しかし、現在使用されているポリプロピレンの電気絶縁特性は全ての用途に 万能であるとは言い難く、.更に高い絶縁特性を有するポリプロピレンを安定し て提供できれば産業上極めて有益であるといえる。この課題を克服する一つ の手段として、例えば、特開昭 62-113548号公報、特開平 2-150443号公報 等に開示されているように残留触媒残渣ゃ塩素分を出来るだけ少なくすると いった手法を用いることによってポリプロピレンの高純度化検討が盛んに行わ れてきた。これらの方法によってポリプロピレンの電気絶縁特性が著しく改良さ れていることを本願発明者も認知するところである力 このようなポリプロピレン が必ずしも一定レベルの電気絶縁特性を再現性よく与えない場合がある、す なわち電気絶縁特性がポリプロピレン製品のロット間で大きく変動したり、ある いは同一ロットを成型加工して電気材料を製造した場合であっても、電気材 料のサンプリング箇所によって電気絶縁特性が大きく変動する場合があること を同時に認めている。ポリプロピレンから電気材料用成形体を工業的規模で 連続的に製造する場合、その生産スピード、あるいは製造コストの視点からは、 原料ポリプロピレンの事前品質管理頻度に制限が加えられることは当然なこと である。可能な限り少ない事前品質チェックによって最大限の電気材料用ポリ プロピレンを安定的に取得するができれば、ポリプロピレン産業発展への貢献 は極めて甚大であるといえる。 発明の開示
本発明者らは、ポリプロピレンから得られる成形体の電気特性が何故製品 ロット間で、あるいはロット内においてさえもサンプリング箇所(サンプリング箇所 とは、例えば電気材料が延伸フィルムである場合、測定用に一部切り抜くフィ ルムの場所をいう。 )によって変動する場合があるのかを検討し、また、このよう な変動を解消するための方策を、原料であるポリプロピレンにさかのぼって鋭 意検討した。その結果、下記要件 [1]〜[3]を同時に満たす電気材料用ポリプ ロピレンを用いると前記の課題が解決され、高いレベルの電気絶縁特性を、 生産ロット間あるいはロット内での変動幅を実質的にゼロに抑えた電気材料用 ポリプロピレンが得られることを見出し本発明に到達したのである。
[1] メノレトフローレート力 S 0.:!〜 30g/10分である。
[2] "C-NMR スペクトルより算出したメソペンタッド分率が 0.90〜0.99 であ る。
[3] 焼成残分がポリプロピレンに対し 50重量 ppm以下、焼成残分から検 出されるチタニウム分および鉄分がポリプロピレンに対し各々 1重量 ppm 以下および 0.1重量 ppm以下であり、しかも塩素含量がポリプロピレンに 対し 5重量 ppm以下である。
本発明のポリプロピレン(R)の好ましい形態は、上記要件 [1]、 [2]および [3] に加えて下記要件 [4]を満たすポリプロピレンであり、更に好ましい形態は、要 件 [1 ]〜 [4]に加えて下記要件 [5]をも満たすポリプロピレンである。
[4] クロス分別クロマトグラフィー法 [以下、 "CFC法''と略記する場合がある] において、 110°Cまで測定した溶出積分量が 30 重量%以下、 100°Cまで 測定した溶出積分量が 7.0重量%以下である。 [5] GPCより求めた Mz/ Mnが 15以上、 Mw/ Mnが 5以上である 本発明は、前記ポリプロピレン(R)を加熱溶融して押出し、徐冷して得られ る /3晶分率が 0.15 上のポリプロピレンシート(S)に関する。
本発明は、更に前記ポリプロピレンシート(S)を延伸して得られる延伸フィル ム(F)に関する。延伸フィルム(F)の好ましい態様はキャパシターフィルム(F') である。
また、本発明は前記ポリプロピレン(R)を加熱溶融して押出して得られる無 延伸フィルム(F")に関する。 '
さらに、本発明は前記ポリプロピレン(R)を射出成形してなる電子材料搬送 器具(A)に関する。 発明を実施するための最良の形態
本.発明のポリプロピレン(R)は、下記要件 [1]〜[3]を同時に満たす電気材 料用ポリプロピレンである。
[1] メルトフローレートが 0.1〜30g/ 10分である。
[2] "C-NMR スペクトルより算出したメソペンタッド分率が 0.90〜0·99 であ る。
[3] 焼成残分がボリプロピレンに対し 50重量 ppm以下、焼成残分から検 出されるチタニウム分および鉄分がポリプロピレンに対し各々 1重量 ppm 以下および 0.1重量 ppm以下であり、しかも塩素含量がポリプロピレンに 対し 5重量 ppm以下である。
本発明のポリプロピレン(R)は結晶性のポ.リプロピレンであり、プロピレン単 独重合体、またはプロピレンと、エチレンもしくは炭素数が 4〜20のひ-ォレフィ ンとの共重合体である。 (以下の説明では、プロピレン、エチレン、炭素数が 4 〜20 の α -ォレフィンを総称して「モノマー」と呼称する場合がある。) 上記炭 素数が 4〜20の a -ォレフインとしては、 1-ブテン、 1-ペンテン、 1-へキセン、 4-メ チル _1_ペンテン、 1-オタテン、 1-デセン、 1-.ドデセン、 1-テトラデセン、 1-へキサ デセン、 1-ォクタデセン、 1-エイコセンなどが挙げられる。これらの中ではェチレ ンまたは炭素数が 4〜10の α -ォレフインが好ましい。これらのひ -ォレフインは、 プロピレンとランダム共重合体を形成してもよぐまたプロック共重合体を形成 してもよい。これらの、エチレン又はひ -ォレフィンから導かれる構成単位の総含 有量は、ポリプロピレン中に 5 mol %以下、好ましくは 2 mol%以下である。 本発明のポリプロピレン(R )の、 MFR ( ASTM D-1238、 230 °C、 荷量 2.16kg)は 0.:!〜 30g/ 10分である。特に 0.5〜10g/ 10分、更に好ましくは 1 ~ • 8g/10分、特に好ましくは 1.5〜5.0g/ 10分の範囲にあると二軸延伸フィルム の用途に好ましい。また MFRが 10〜30g/ 10分の範囲にあると電子材料搬送 器具等高強度成形体の射出成形用に好ましい。
本発明のポリプロピレンの、 "C-NMR スペクトルにおける Pmmmm、 Pwの吸 収強度から下記式(Eq- 1 )により求められるメソペンタッド分率 [M5]の値が、 0.90〜0.99、好ましくは 0.920-0.990,更に好ましくは 0.932〜0.990、の範囲 にある。
(上記式中、 [Pmmmm]はプロピレン単位が 5単位連続してイソタクチック結合し =——―—— (Eq-1)
L1 wJ
た部位における第 3単位目のメチル基に由来する吸収強度を示し、 [Pw]はプ ロピレン単位のメチル基に由来する吸収強度を示す。)
このようなメソペンタッド分率、 [M5]の値が 0.90〜0.99、特に 0.950以上の場 合の高剛性ポリプロピレンから得られるシートや延伸フィルムは、絶縁性能に 優れるという特徴に加えて、フィルムの機械物性や寸法安定性に優れるという 特徴を併せ持つ。
[M5]が 0.90未満では機械物性および電気絶縁性が十分でないことが多く、 0.99を超えると延伸成形が難しいという問題が発生することがある。
本発明のポリプロピレンの焼成残分は、ポリプロピレンに対し 50 重量 ppm 以下、好ましくは 30重量 ppm以下であることが望ましレ、。また、焼成残分(以 下の説明では「灰分」と呼ぶ場合がある。)から検出されるチタニウム分がポリ プロピレンに対し 1重量 ppm以下、好ましくは 0.5重量 ppm以下である。更 に焼成残分から検出される鉄分がポリプロピレンに対し、 0.1重量 ppm以下、 好ましくは 0.05重量 p.pm以下である。しかも焼成残分から検出される塩素分 はポリプロピレンに対し 5重量 ppm以下、好ましくは 3重量 ppm以下である という特徴を持つ。上記したポリプロピレン中の不純物の内、焼成残分、チタ ニゥム分および塩素分については、これら不純物量が少なければ少ないほど、 該ポリプロピレンから得られる電気材料の絶縁特性が向上することは、本願出 願人によって既に開示されている特開平 6-236709 号公報に記載した通りで ある。本発明において注目すべきは、上記不純物のうち鉄分がポリプロピレン の製造ロット間又は同一製造ロット内での電気絶縁特性が変動する原因物 質であることが本発明によって初めて明らかにされたことである。これまでも、 10 μ m 以下の薄肉フィルムにおいて広い面積のフィルムを調製しょうとする場合 に、同一ロット内の部分的欠陥が目立つことがあつたが、本発明のポリプロピレ. ンによって、このような部分的欠陥でさえも完全に克服できることが明らかにな つたのである。 (なお、本発明において「ポリプロピレンの製造ロット」とは、一定 の条件下で連続生産またはバッチ生産された生産単位としての同一製品の 集合体をいう。 )
後述する本願実施例および比較例から明らかなように、同一の焼成残分、 チタニウム、および塩素含有量にもかかわらず鉄分濃度を 0.1重量 ppm以下 好ましくは 0.05重量 ppm以下に維持することによってポリプロピレンの製造口 ット間またはロット内で電気絶縁性の大きな変動が完全に抑制されることは明 瞭であるが、何故このような微小量の変動が品質変動につながるかを解明す るためには鉄分の科学的な形態解析を含めて更なる解析が必要である。
このようなポリプロピレンは、優れた電気絶縁性を安定的に再現性よく提供 するため、キャパシターフィルム用原反シートあるいはキャパシターフィルム用の 原料樹脂として好適に用いられる。
本発明のポリプロピレンが好んで使用される延伸フィルム用途、特に粗面化 フィルムにおいては、 Mw/Mn 力 S 5 以上、好ましくは 6 以上、 Mz/Mn 力 S 15 以上、好ましくは 20以上のポリプロピレンが使用される。このような広分子量分 布を示すポリプロピレンの成形性は、押出成形体を徐冷した場合に 3晶(本 発明のポリプリピレンを用いた 3晶分率は後述するように 0.15以上である。 )を 多く生成することから、特定の温度範囲で延伸することによって粗面化フィノレ ムを得ることができる。このような粗面化フィルムは、フィルム表面に多数の凹 凸が生起するので、シリカのような無機物や ]3晶核剤を配合しなくても、フィル ムのブロッキングを防止することができ、操業性および取り扱いが極めて優れる。 なお、狭分子量分布を与えるメタ口セン触媒を使用して、例えば水素濃度を 制御したり、多段重合を採用したり、或いは広分子量分布ポリプロピレンをブ レンドする等の手法を併用することによって Mw/ Mnを 5以上、 Mz/ Mnを 15 以上としてもよレ、。すなわち、本発明のポリプロピレン(R)は、本願特許請求の 範囲に記載された要件を満たす限り、その製造法には全く制限を受けない。 しかしながら、ポリプロピレン中の焼成残分量を出来るだけ少なくし、しかも チタン分や塩素分も同時に低減するという視点から、高性能の塩化マグネシ ゥム担持チタン系触媒あるいは、ジルコニウム、チタンなどの第 4属遷移金属メ タロセン化合物と有機金属化合物、有機アルミニウム化合物と組み合わせた 触媒系を用いて重合を行うことが好ましい。
以上述べたような重合条件下で製造されたポリプロピレンは、通常はポリプ ロピレン中に残存する触媒を分解、あるいは除去する等の後処理が加えられ. て本発明のポリプロピレンにすることができる。後処理方法としては、本願出願 人によって特許出願され既に公開されている特開平 6-236709号公報に記載 した方法をそのまま採用できる。すなわち、アルコール、グリコールなどで触媒 残渣を溶解し炭化水素化合物で洗浄あるいは水で洗浄した後、さらにェポキ. シ化合物と熱処理するなどの方法によって製造することができるのである。
本発明のポリプロピレン(R)とするためには、焼成残分、チタニウム分おょぴ 塩素分以外に鉄分量も同時に低減する必要がある。ポリプロピレン中の鉄分 量は、前記後処理方法によって、ポリプロピレン当たり 1重量 ppmの濃度まで は焼成残分量に比例して低減化できるが、 1 重量 ppm に満たない領域の濃 残存鉄分量を制御するためには、触媒調製工程ないし重合工程の全重合系 内に鉄または鉄から誘導される化合物が混入しないような厳密な工程管理を 行うことによって 0.1重量 ppm以下とすることができる。例えば、鉄成分を含む 重合器材質からの混入に十分な注意を払うこと、鉄材質からなる粉砕機や粉 砕具の使用を可能な限り控えること、鉄成分を含む可能性の高い樹脂溶液 や重合触媒成分溶液においては最下層部の溶液部分の使用を控えること等 である。もちろん粗ポリプロピレンを、必要に応じて溶媒共存下で融点以上に 加熱後溶融状態とし、金属焼結フィルターやセラミックフィルターを用いた精 密ろ過等の物理的分離精製方法を使用して鉄分濃度を 0.1重量 ppm以下 としてもよいが大量の成形体の生産には不向きであることは言うまでもない。 なお、本発明のポリプロピレンを乾燥処理することによって、揮発分(例えば 約 lOgの試料を 110°C ± 2°Cに保持し 1NL/分の窒素気流下で 60分間処理 した時の重量減少量)を 100重量 ppm以下、特に 10重量 ppm以下とする ような工夫を加えることによって電子材料の搬送用の用途などにも好適なポリ プロピレンとすることができる。
本発明のポリプロピレン(R)は、 CFC 法で 110°Cまで測定した溶出積分量 30 %以下、好ましくは 27%以下、さらに好ましくは 25 %以下である。また、 CFC法で 100°Cまで測定した溶出積分量が 7.0%以下、好ましくは 6.0%以下、 さらに好ましくは 5.0 %以下である。この範囲にあると、フィルムのアンチブロッキ ング性、スリップ性、寸法安定性、高温下の剛性、外観、特にフィルムを長期 に保管した場合のこれら特性が改善される。さらに、キャパシターフィルムとして の電気特性、特に破壊耐電圧が改善される。また、オイル含浸タイプのコンデ ンサ一部品のオイルへの溶け出し量が減少し、電気特性の長期安定性に多 大な寄与をすることが考えられる。 .
上記特性を有するポリプロピレン(R)は 170〜280°C、好ましく 190〜230°C で加熱溶融して押出し、空冷または、 60°C以上、好ましくは 70°C以上、さらに 好ましくは 90〜nO°Cの温度に保持された冷却ロールで徐冷した場合に、得ら れたシートの 3晶分率が 0.15 以上、好ましくは 0.17 以上、さらに好ましくは 0.18〜0.50 となる。なお、この i3晶分率値は ]3晶核剤を含まないポリプロピレ ンの値である。徐冷は、引張り速度 0.2〜3m/分、冷却ロールによる冷却時間 0.3〜4.5分で行い、冷却ロールを通したシートの厚さが 0.:!〜 3mmとなるように 行うのが望ましい。このような i3晶分率が 0.15 以上のポリプロピレンであると、 延伸した場合のフィルム表面に凹凸が生起するためアンチブロッキング性にも 優れ、実用的なキャパシターフィルムとして十分に使用可能である。
前記したように、電気材料用フィルム用途に好適に用いられる本発明のポリ プロピレンを製造するための触媒は特に限定される訳ではないが、効率的な 生産を達成するために、通常は多段重合が採用される場合が多い。すなわち プロピレンの重合を 2段または 3段で行ってもよく、また重合器数など装置上 の制約がないのであれば 4段以上の多段重合でポリプロピレン(R)を製造して もよく、段数を何ら制限するものではない。
本発明のポリプロピレンを原料として、フィルムなどの電気材料を成形する 場合、本発明のポリプロピレンに、必要に応じて、その他の樹脂またはゴムなど を、本発明の目的を損なわない範囲内で添加してもよい。このようなその他の 樹脂またはゴムとしては、たとえばポリエチレン、ポリブテン- 1、ポリイソブテン、 ポリペンテン- 1、ポリメチルペンテン- 1 等のポリ α -ォレフィン;プロピレン含有量 が 75重量%未満のエチレン 'プロピレン共重合体、エチレン .ブテン- 1共重合 体、プロピレン含有量が 75 重量%未満のプロピレン'ブテン- 1 共重合体等の エチレンまたは α -ォレフィン · α -ォレフィン共重合体;プロピレン含有量が 75 重量%未満のエチレン 'プロピレン · 5-ェチリデン -2-ノルボルネン共重合体など のエチレンまたは α -ォレフイン. α -ォレフィン.ジェン単量体共重合体;スチレ ン.ブタジエンランダム共重合体などのビニル単量体.ジェン単量体ランダム共 重合体;スチレン.ブタジエン'スチレンブロック共重合体などのビニル単量体 . ジェン単量体'ビニル単量体ブロック共重合体;水素化(スチレン 'ブタジエン ランダム共重合体)などの水素化(ビニル単量体'ジェン単量体ランダム共重 合体);水素化(スチレン 'ブタジエン 'スチレンブロック共重合体)などの水素 ィ匕(ビニル単量体 ·ジェン単量体 ·ビニル単量体ブロック共重合体)等があげら れる。
他の重合体の添加量は、添加する樹脂の種類またはゴムの種類により異な り、前記のように本発明の目的を損なわない範囲であればよいが、通常ポリプ ロピレン 100重量部に対して約 5重量部以下であることが好ましい。
また本発明のポリプロピレンを原料としてシートやフィルムを成形する場合、 本発明のポリプロピレンには、必要に応じて、酸化防止剤、紫外線吸収剤、 金属石婊、塩酸吸収剤などの安定剤、滑剤、可塑剤、難燃剤、帯電防止剤 などの添加剤を本発明の目的を損なわない範囲内で添加してもよい。
本発明のポリプロピレンシートは前記ポリプロピレンを上記方法でシート状に 成形したシートであり、 3晶分率が 0.15 以上のシートである。シートの成形法 は Tダイまたはサーキユラ一ダイであってもよい。これらのシートの厚さは限定さ れないが、通常 0.1〜3mm、好ましくは 0.2〜1.5mmであるのが望ましい。本発 明のポリプロピレンシー、トは必要に応じて更に延伸処理を行レ、、延伸フィルム を得ることができる。本発明のキャパシタ一フィルム用原反シートは延伸してキ ャパシターフィルムとして用いられる。延伸は、通常 100°C〜融点の間の温度 にフィルムを再加熱して、延伸ロールおよび Zまたはテンター式延伸、またチュ 一ブラ一式延伸等の公知の方法で延伸することができる。延伸倍率はニ軸延 伸の場合は縦 3〜7倍、横 3〜11倍程度である。この延伸処理により、機械的 強度、剛性が優れ、表面の凹凸の数が多く、粗面化されたフィルムを製造す ることができる。
本発明のポリプロピレンから得られるシートは電気的絶縁特性が優れている ので、キャパシターフィルム用の原反シートとして優れている。それを延伸、好 ましくは二軸延伸した場合、表面凹凸の数が多 粗面化されているためアン チブロッキング効果が優れている。このように電気的絶縁特性に優れ、表面凹 凸が多くアンチブロッキング効果に優れているフィルムはコンデンサー用のキヤ パシターフィルムとして好適に利用することができる。キャパシターフィルムの厚 さは限定されないが、通常 2〜100 m、好ましくは 4〜50 /i mであるのが望ま しい。
本発明のポリプロピレンの、延伸フィルム以外の電気材料用途として例えば 高圧電線ケ一ブル用の絶縁フィルムが挙げられる。絶縁フィルムは絶縁紙に 押出ラミネートするタイプが一般的であり、無延伸フィルムに相当する。本発明 のポリプロピレンから得られる無延伸フィルムは電気的絶縁特性に優れる。 本発明のポリプロピレンの、延伸フィルム以外の電気材料用途として、電子 材料搬送器具が挙げられる。具体的には、電気 ·電子機器に用いられる平板 状の電子材料 、特にプリント配線板やシャドウマスク、アパーチャグリル等の 小径孔を多数有する電子材料 を、吸着して搬送するための吸着搬送手段 の一つである、静電吸着方式における静電吸着板である。本発明のポリプロ ピレンからなる静電吸着ユニットによれば、電子材料' 、特に小径孔を多数有 するプリント配線板やシャドウマスクが確実に静電吸着され、また脱離させたい 時に、任意に、また確実にタイミング良く脱離させることが出来る。従って本発 明の静電吸着ユニットを用いれば、雰囲気温湿度、また静電吸着板や吸着 搬送物の材質や表面状態等の要因によらず確実に脱離が出来る秀逸な効 果をもたらす。
次に本発明を実施例に基づき詳細に説明するが、本発明はかかる実施例 に限定されるものではない。なお、実施例に記載した物性の測定方法は次の 通りである。
• [ml] メルトフローレート(MFR)
ASTM D-1238の方法により 230°C、荷重 2.16kgで測定した。シリンダー には特に窒素は導入せず、直接ペレットをシリンダーに投入し溶融させた。
[m2] Mw、 Mnおよび Mz
GPC (ゲルパーミエーシヨンクロマトグラフィー)を使用して以下の条件で測 定した。 - 測定装置: Waters社製 150CVtype
サンプル濃度: 7.5mg/4ml
カラム:昭和電工(株)製 Shodex AD-806ms
測定温度: 135°C
溶媒: 0-ジクロロベンゼン
ポリスチレン換算
『m31多段重合における二段目以降の重合槽で生成した樹脂の極限粘度 下記計算式(Eq-2)により求めた。
£ [重合槽 iの生成量比 X重合槽 iの 〔η〕]=最終生成物の 〔η〕
i=' ― (Eq-2) [m4] ί3晶分率
A. Turner Jones et al, Macromol. Chem., 75, 134(1964) に記載され ている方法に従って /3晶分率を求めた。すなわち、サンプルシートとしては ポリプロピレンを 200。Cで加熱溶融して Tダイから押出し、 95°Cの温度に保 持された 1個の冷却ロールにより、引張り速度 1.0m/分、冷却ロールによる 冷却時間 0.9 分の条件で徐冷し、冷却ロールを通したシートの厚さが 0.5mmのシートを用いた。このシートについて次の条件で X線回折を行い 下記式(Eq-3)から算出した。
(X線回折)
測定装置:理学電機(株)製 RINT2500
X線: Cu、 K、 50kV、 300mA
Cuターゲット '
ポイントフォーカス
透過法
試料回転法
散乱スリット: 1 deg
受光スリット: 0.3mm
走査モード:連続
スキャンスピード: 2° /min
走査幅: 2 0 晶分率 =: ^
Ηβ1 + Ηα1 + Ηα2 + Ηα3 (Eq-3)
[上式(Eq-3)中、 H は /3晶(2 0 =16° のピーク)の結晶部の散乱に対 応するピークの高さ(強度)、 Ηα 1は α晶(110)の結晶部の散乱に対応す るピークの高さ(強度)、 Ηα 2は α晶(040)の結晶部の散乱に対応するピ ークの高さ(強度)、 Ηα 3 は "晶(130)の結晶部の散乱に対応するピーク の高さ(強度)である。ただし、いずれの値も非晶部の散乱を差し引いた 後のピーク高さである。 ]
[m5] フィッシュアイ (FE)分析
25ππη Φの Τダイ成形機で 50 μ πιのフィルムを製膜し、 目視により FEを 観察した。 FE の直径が 200 /z m 以上のものを目視でカウントし、単位面積 当たりの個数として算出した。
[m6] 極限粘度 i n 1
135°Cのテトラリン中で測定した。
[m7] 灰分量
ペレットをるつぼに入れ完全に燃焼させて、そのるつぼを電気炉内で 800°Cで 2 時間、灰化させた。るつぼに残った灰を計測し灰分(wtppm)を 求めた。
[m8] 塩素含有量
ポリプロピレン 0.8gを三菱化成社製燃焼装置でアルゴン/酸素気流下で、 400〜 900°Cで燃焼した後、燃焼ガスを超純水で捕集し濃縮後の試料液を、 日本ダイォネック(株) DIONEX-DX300 型イオンクロマト測定装置を用いて、 陰イオンカラム AS4A-SC (ダイォネッス社製)を用いて測定した。
[m9] 鉄分含有量
ポリプロピレン 10gを精抨し、この試料を 300°Cで 4時間、さらに 800°Cで 4 時間処理し、灰化させた後、残留物を塩酸水溶液として ICP-MS 分析(プ ラズマ誘導結合質量分析)した。
[ml O] 溶出積分量
クロス分別クロマトグラフを用いて測定した。
機器:三菱油化(株) CFC T150A型
条件: GPCカラム Shodex AT-806MS
GPCカラム温度 135°C
溶離液 0-ジクロロベンゼン
1 ml/min
溶出区分 0から 135°Cで, 5°Cきざみ。 ' 100°Cまでの溶出量の総量、および 110°Cまでの溶出量の総量をそれぞ れの積分量として表した。
[mil] ヘイズ(HAZE)
延伸フィルムにっき、 JISK7105に準じて求めた。
[ml2] 絶縁破壊電圧(BDV) 80°Cにおいて JIS-2330に準拠して測定した。また、同一フィルムについて 任意の位置にある測定用試験片を 20枚採取し、これらについて BDV測定を 行レ、、 BDV値の偏差(σ )を次式(Eq-4)に従い算出した。 BDVのばらつきは σ を 100で割つた百分率で表示した。
σ = (最大 BDV-最小 BDV)/最大 BDV - (Eq-4)
[ml3] メソペンタッド分率(fM5l)
13C-NMRを用いて測定した。
機器:日本電子製 J.NM-LA400型
溶媒:重水素化ベンゼン /1,2,4-トリクロ口ベンゼン混合
測定条件:パルス繰り返し時間は 5秒。積算回数は 20000 回。測定温度 は 125°C。
計算方法はメチル炭素領域の全ピーク面積に対する Pmmmmのピークの面 積分率(前記 Eq-1参照)で行った。 【実施例 1】
(1) ポリプロピレンの製造
[固体状チタン触媒成分 (a)の調製] ·
内容積 10 リットルのガラス製容器に、無水塩化マグネシウム(フレーク状に したものをさらに粉砕したもの) 952g、デカン 4420mlおよび 2-ェチルへキシル アルコール 3906gを、 130°Cで 2時間加熱して均一溶液とした。この溶液中に 無水フタル酸 213gを添加し、 130°Cにてさらに 1時間攪拌混合を行って無水 フタル酸を溶解させた。
このようにして得られた均一溶液を 23°Cまで冷却し 10 時間放置した後、こ の均一溶液から液面から 10cmの位置から上澄みを 50ml/分で 750mlを抜 き出した。別の 10リットルの容器の- 20°Cの四塩化チタン 2000ml中に上記塩 化マグネシウムの溶液を 1時間にわたって滴下した。滴下後、得られた混合液 の温度を 4時間かけて 110°Cに昇温し、 110°Cに達したところでフタル酸ジイソ ブチル(DIBP) 52.2gを添加し、これより 2時間攪拌しながら同温度に保持した t 次いで熱時濾過にて固体部を採取し、この固体部を 2750mlの四塩化チタン に再懸濁させた後、再び 110°Cで 2時間加熱した。
加熱終了後、再ぴ熱濾過にて固体部を採取し、 110°Cのデカンおよびへキ サンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。上 記のように調製された固体状チタン触媒成分 (a)はへキサンスラリーとして保存 されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分 (a)は、チタンを 3重量%、塩素を 58重量%、マグネシウムを 18重量%ぉよび DIBPを 21重量%の量で含有していた。
[予備重合触媒の調製]
10リットルの攪拌機付きオートクレープ中に、窒素雰囲気下、精製ヘプタン 7 リットル、トルェチルアルミニウム 0.16mol、および上記で得られた固体状チタン 触媒成分(a)をチタン原子換算で 0.053mol装入した後、プロピレンを 900g導 入し、温度 5°C以下に保ちながら、 1時間反応させた。
重合終了後、反応器内を窒素で置換し、上澄液の除去および精製へプタ ンによる洗浄を 3 回行った。得られた予備重合触媒を精製ヘプタンに再懸濁 して触媒供給槽に移し、固体状チタン触媒成分 (a)濃度で lg/Lとなるよう、精 製ヘプタンにより調整を行った。この予備重合触媒は固体状チタン触媒成分 (a)lg当りポリプロピレンを 10g含んでいた。
[重合]
内容積 140リットルの攪拌機付き重合槽 1に液化プロピレンを 20リットル装 入し、 この液位を保ちながら、 液化プロピレン 80kg/ hr、 予備重合触媒 18g/ hr、 トリェチルアルミニウム 47mmol/ hr、 シクロへキシルメチルジメトキシ シラン 9mmol/ hrを連続的に供給し、温度 73°Cで重合した。また水素は重合 槽 1には供給しなかった。この重合槽 1で生成した重合体の生成量比(重合 体全体に占める重合槽 1の生成量の割合)は表 1 に示した。得 れた重合体 を内容積 500リットルの攪拌機付き重合槽 2にスラリー状のまま送液した。 なお得られたポリマーの一部をサンプリングし、極限粘度を測定したところ 6.0dl/ gであった。
重合槽 2では液位 300 リットルを保ちながら、 新たに液化プロピレン 70kg/ hr を連続的に供給し、温度 71°Cで重合した。また、水素も重合槽 2の 気相部の濃度を 0.4mol %に保つように連続的に供給した。重合槽 2で生成し た重合体の生成量比(重合体全体に占める重合槽 2の生成量の割合)は表 1 に示した。得られた重合体を内容積 500 リットルの攪拌機付き重合槽 3にス ラリー状のまま送液した。なお得られたポリマーの一部をサンプリングし、極限 粘度を測定したところ 1.9 dl/ g であった。この結果から、重合槽 2で生成して いる重合体の極限粘度は計算により 1.8 dl/ gであると判断した。
重合槽 3では液位 300 リットルを保ちながら、 新たに液化プロピレン 56kg/ hrを連続的に供給し、温度 70°Cで重合した。また水素も重合槽 2と同 様に、気相部の濃度を 0.4mol %に保つように連続的に供給した。得られたス ラリーは 10mlのメタノールを加え失活後、液体プロピレンによる洗浄槽に送液 後、攪拌 '静止'上澄の除去'液状プロピレンの追加(1 回当たり 100 リットル) と言う操作を 7回繰り返してポリプロピレンパウダーを洗浄した。
重合槽 3で生成した重合体の生成量比(重合体全体に占める重合槽 3の 生成量の割合)は表 1 に示した。その後、プロピレンを蒸発させてポリプロピレ ンパウダーを得た。このサンプルの極限粘度を測定したところ 1.8 dl/ gであつ た。この結果から、重合槽 3で生成しているポリプロピレンの極限粘度は計算 により 1.8 dl/ gであると判断した。
[ペレット化]
得られたポリプロピレン 100重量部に対して、.酸化防止剤として 3,5-ジ -tert- ブチル -4-ヒドロキシトルエンを 0.1 重量部、酸化防止剤としてテトラキス [メチレ ン -3(3, 5-ジ -tert-ブチル -4-ヒドロキシフエ二ノレ)プロピオネート]メタンを 0.2重量 部、 中和剤としてステアリン酸カルシウム 0.01 重量部を配合し、単軸押出機 を用いて、樹脂温度 230°Cで溶融混練してポリプロピレンのペレット化を行った < 造粒機は(株)ジーェムエンジニアリング製 GMZ50-32 (L/ D=32、単軸)を使 用した。得られたペレットのクロス分別の積分量を分析したところ、 110°Cまでの 溶出量の総量、つまり積分量は 21.3 %、 100°Cまでの溶出量の総量、つまり積 分量は 3.5%であった。
得られたペレットについて焼成残分中のチタニウム分を測定したところ、ポリ プロピレンに対しチタニウム分は 0.5重量 ppmであった。その他の物性測定値 を表 1および表 2にまとめた。
(2) シート成形
上記で得られたポリプロピレンのペレットを 50ιηιη Φ押出機で 200°Cに溶融 し、 T ダイから押出し、 95°Cの温度に保持された 1個の冷却ロールにより、引張 り速度 1.0m/分、チルロールによる冷却時間 0.94分の条件で徐冷し、厚さが 0.5mm のシートを得た。シート成形条件の詳細は下記の通りである。このチル ロールを通したシートをカットし、 X線回析装置を用いて前記方法で /3晶分率 を求めた。結果を表 2に示す。
成形装置:ナカタニ機械(株)製 VSK型 50
成形温度:シリンダー、ダイス温度 =200°C
ダイスリップ幅: 600mm
チルロール温度:95°C
エアーギャップ: 60mm
弓 I取速度: l .Om/ min
チノレローノレ径: 450mm
(3) フィルム成形
上記(2)で得られたシートを 85mm X 85mm にカットし、次の条件でニ軸延 伸し厚さ 14 /z mの二軸延伸フィルムを得 。フィルムの物性を表 3に示した。 延伸装置:ブルックナ一社製 KAROIV
予熱温度: 152°C
予熱時間: 60秒
延伸倍率:5 X 7倍(MD方向 5倍、 TD方向 7倍)の逐次二軸延伸 延伸速度: 10m/分
【実施例 2】
重合を次のように変更した以外は実施例 1と同様に行った。
[重合]
内容積 140' リットルの攪拌機付き重合槽 1に液化プロピレン 100 リットノレを 装入し、この液位を保ちながら、液化プロピレン 105 kg/ hr、実施例 1で得ら れた予備重合触媒 18 g/ hr、トリェチルアルミニウム 47mmol/ hr、シクロへキ シルメチルジメトキシシラン 9 mmol/hrを連続的に供給し、温度 73°Cで重合 した。また水素も重合槽 1の気相部の濃度を 0.01 mol %に保つように連続的 に供給した。この重合槽 1で生成した重合体の生成量比は表 1 に示した。得 られた重合体を内容積 500 リットルの攪拌機付き重合槽 2にスラリー状のまま 送液した。なお得られたポリマーの一部をサンプリングし、極限粘度を測定した ところ 3.9 dl/gであった。
重合槽 2では液位 300 リットルを保ちながら、 新たに液化プロピレン 140kg/hrを連続的に供給し、温度 71°Cで重合した。また、水素も重合槽 2の 気相部の濃度を 0.57 mol%に保つように連続的に供給した。重合槽 2で生成 した重合体の生成量比は表 1 に示した。得られた重合体を内容積 500 リット ルの攪拌機付き重合槽 3にスラリー状のまま送液した。なお得られたポリマー の一部をサンプリングし、極限粘度を測定したところ 2.0 dl/ gであった。この結 果から、重合槽 2で生成している重合体の極限粘度は計算により 1.5 dl/ gで あると判断した。
重合槽 3では液位 300リットルを保ちながら、新たに液化プロピレン 55 kg/hr を連続的に供給し、温度 70°Cで重合した。また水素も重合槽 2と同様に、気 相部の濃度を 0.57 mol%に保つように連続的に供給した。得られたスラリーは 失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗 浄した。重合槽 3で生成した重合体の生成量比は表 1に示した。その後、プロ ピレンを蒸発させてポリプロピレンパウダーを得た。このサンプルの極限粘度を 測定したところ 1.8 dl/ gであった。この結果から、重合槽 3で生成しているポリ プロピレンの極限粘度は計算により 1.5 dl/ gであると判断した。
[ペレット化〗
得られたポリプロピレンを用いて、実施例 1と同様にしてポリプロピレンペレット を得た。得られたペレットについて測定した物性を表 1および表 2にまとめる。 得られたペレットのクロス分別の積分量を分析したところ、 110°Cまでの溶出量 の総量、つまり積分量は 20.7%、 100°Cまでの溶出量の総量、つまり積分量は 3.4%であった。
また、上記で得られたポリプロピレンペレットから実施例 1 と同様の方法で得 られるシートの ]3晶分率、およぴニ軸延伸後のフィルム物性を表 3に示す。 【実施例 3】
重合を次のように変更した以外は実施例 1と同様に行った。
[重合]
内容積 140 リットルの攪拌機付き重合槽 1に液化プロピレン 100リットルを 装入し、この液位を保ちながら、液化プロピレン 83 kg/ hr、実施例 1で得られ た予備重合触媒 18 g/hr、トリェチルアルミニウム 47mmol/ hr、シクロへキシ ルメチルジメトキシシラン 9 mmol/ hrを連続的に供給し、温度 73°Cで重合し た。また水素も重合槽 1の気相部の濃度を 0.30 mol%に保つように連続的に 供給した。この重合槽 1で生成した重合体の生成量比は表 1 に示した。得ら れた重合体を内容積 500リットルの攪拌機付き重合槽 2にスラリー状のまま送 液した。なお得られたポリマーの一部をサンプリングし、極限粘度を測定したと ころ 2.1 dl/ gであった。
重合槽 2では液位 300 リットルを保ちながら、 新たに液化プロピレン 217kg/hrを連続的に供給し、温度 71°Cで重合した。また、水素も重合槽 2の 気相部の濃度を 0.30 mol%に保つように連続的に供給した。重合槽 2で生成 した重合体の生成量比は表 1 に示した。得られた重合体を内容積 500 リット ルの攪拌機付き重合槽 3にスラリー状のまま送液した。なお得られたポリマー の一部をサンプリングし、極限粘度を測定したところ 2.1 dl/ gであった。この結 果から、重合槽 2で生成している重合体の極限粘度は計算により 2.1 dl/ gで あると判断した。
重合槽 3では液位 300 リットルを保ちながら、新たに液化プロピレン 75 kg/ hrを連続的に供給し、温度 70°Cで重合した。また水素も重合槽 2と同様 に、気相部の濃度を 0.30 mol %に保つように連続的に供給した。得られたスラ リーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダー を洗浄した。重合槽 3で生成した重合体の生成量比は表 1 に示した。その後、 プロピレンを蒸発させてポリプロピレンパウダーを得た。このサンプルの極限粘 度を測定したところ 2.1 dl/ gであった。この結果から、重合槽 3で生成している ポリプロピレンの極限粘度は計算により 2.1 dl/ gであると判断した。 [ペレット化】
得られたポリプロピレンを用いて、実施例 1と同様にしてポリプロピレンペレツ トを得た。得られたペレットについて測定した物性を表 1および表 2にまとめる。 得られたペレットのクロス分別の積分量を分析したところ、 110°Cまでの溶出量 の総量、つまり積分量は 22.5 %、 100°Cまでの溶出量の総量、つまり積分量は 3.6%であった。
また、上記で得られたポリプロピレンペレットから実施例 1と同様の方法で得 られるシートの 0晶分率、および二軸延伸後のフィルム物性を表 3に示す。
[実施例 4】
重合を次のように変更した以外は実施例 1 と同様に行った。結果を表 1〜 表 3に示す。
[重合]
内容積 140リットルの攪拌機付き重合槽 1に液化プロピレン 100リットルを装 入し、この液位を保ちながら、液化プロピレン 64kg/ hr、実施例 1 で得られた 予備重合触媒 18g/ hr、トリェチルアルミニウム 47mmol/ hr、シクロへキシルメ チルジメトキシシラン 9mmol/ hrを連続的に供給し、温度 73°Cで重合した。ま た水素は重合槽 1には供給しなかった。この重合槽 1で生成した重合体の生 成量比は表 1 に示した。得られた重合体を内容積 500 リットルの攪拌機付き 重合槽 2にスラリー状のまま送液した。なお得られたポリマーの一部をサンプリ ングし、極限粘度を測定したところ 6.0dl/ gであった。
重合槽 2では液位 300 リットルを保ちながら、 新たに液化プロピレン 86kg/ hr を連続的に供給し、温度 71°Cで重合した。また、水素も重合槽 2の 気相部の濃度を 0.55mol %に保つように連続的に供給した。重合槽 2で生成 した重合体の生成量比は表 1 に示した。得られた重合体を内容積 500 リット ルの攪拌機付き重合槽 3にスラリー状のまま送液した。なお得られたポリマー の一部をサンプリングし、極限粘度を測定したところ 2.0dl/ gであった。この結 果から、重合槽 2で生成している重合体の極限粘度は計算により 1.6dl/ g で あると判断した。
重合槽 3では液位 300 リットルを保ちながら、 新たに液化プロピレン 56kg/ hr を連続的に供給し、温度 70°Cで重合した。また水素も重合槽 2と同 様に、気相部の濃度を 0.55mol %に保つように連続的に供給した。得られたス ラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダ 一を洗浄した。重合槽 3で生成した重合体の生成量比は表 1 に示した。その 後、プロピレンを蒸発させてポリプロピレンパウダーを得た。このサンプルの極 限粘度を測定したところ 1.9dl/ gであった。この結果から、重合槽 3で生成して レ、るポリプロピレンの極限粘度は計算により 1.6dl/ g であると判断した。なお、 得られたペレットのクロス分別の積分量を分析したところ、 110°Cまでの溶出量 の総量、つまり積分量は 21.0 %、 100°Cまでの溶出量の総量、りまり積分量は 3.5 %であった。
【実施例 5】
重合を次のように変更した以外は実施例 1と同様に行った。
[重合]
内容積 140 リットルの攪拌機付き重合槽 1に液化プロピレン 100リットルを 装入し、この液位を保ちながら、液化プロピレン 105 kg/ hr、実施例 1で得ら れた予備重合触媒 18 g/ hr、トリェチルアルミニウム 47mmol/ hr、ジシクロべ ンチルジメトキシシラン 55mmol/ hrを連続的に供給し、温度 73°Cで重合した。 また水素も重合槽 1の気相部の濃度を 0.01 mol %に保つように連続的に供給 した。この重合槽 1で生成した重合体の生成量比は表 1に示した。得られた重 合体を内容積 500 'リットルの攪拌機付き重合槽 2にスラリー状のまま送液した。 なお得られたポリマーの一部をサンプリングし、極限粘度を測定したところ 3.9 dl/ gであった。
重合槽 2では液位 300 リットルを保ちながら、 新たに液化プロピレン 140kg/ hrを連続的に供給し、温度 71°Cで重合した。また、水素も重合槽 2の 気相部の濃度を 0.57 mol %に保つように連続的に供給した。重合槽 2で生成 した重合体の生成量比は表 1 に示した。得られた重合体を内容積 500 リット ルの攪拌機付き重合槽 3にスラリー状のまま送液した。なお得られたポリマー の一部をサンプリングし、極限粘度を測定したところ 2.0 dl/ gであった。この結 果から、重合槽 2で生成している重合体の極限粘度は計算により 1.5 dl/ gで あると判断した。
重合槽 3では液位 300リットルを保ちながら、新たに液化プロピレン 55 kg/hr を連続的に供給し、温度 70°Cで重合した。また水素も重合槽 2と同様に、気 相部の濃度を 0.35 moI%に保つように連続的に供給した。得られたスラリーは 失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗 浄した。重合槽 3で生成した重合体の生成量比は表 1に示した。その後、プロ ピレンを蒸発させてポリプロピレンパウダーを得た。このサンプルの極限粘度を 測定したところ 1.8 dl/gであった。この結果から、重合槽 3で生成しているポリ プロピレンの極限粘度は計算により 1.5 dl/gであると判断した。
[ペレット化]
得られたポリプロピレンを用いて、'実施例 1と同様にしてポリプロピレンペレット を得た。得られたペレットについて測定した物性を表 1および表 2にまとめる。 得られたペレットのクロス分別の積分量を分析したところ、 110°Cまでの溶出量 の総量、つまり積分量は 17.1 %、 100°Cまでの溶出量の総量、つまり積分量は 2.3%であった。 NMRで求めたメソペンタッド分率は 0.981であった。
また、上記で得られたポリプロピレンペレットから実施例 1と同様の方法で得 られるシートの] 3晶分率、および二軸延伸後のフィルム物性を表 3に示す。
[比較例 1]
固体状チタン触媒成分を以下の条件で重合製造した以外は実施例 1と同 様に行った結果を表 1〜表 3に示す。
[固体状チタン触媒成分 (a')の調製]
内容積 10 リットルのガラス製容器に、無水塩化マグネシウム(フレーク状に したものをさらに粉砕したもの) 952g、デカン 4420mlおよび 2-ェチルへキシル アルコール 3906gを、 130°Cで 2時間加熱して均一溶液とした。この溶液中に 無水フタル酸 213g を添加し、 130°Cにてさらに 1時間攪拌混合を行って無水 フタル酸を溶解させた。
このようにして得られた均一溶液を 23°Cまで冷却し 10時間放置した後、この 均一溶液からガラス容器の底に設けられたノズルより 750ml抜き出した。別の 10リットルの容器の- 20°Cの四塩化チタン 2000ml 中に上記塩化マグネシウム の溶液を 1時間にわたって滴下した。滴下後、得られた混合液の温度を 4時 間かけて 110 °Cに昇温し、 110 °Cに達したところでフタル酸ジイソブチル (DIBP)52.2g を添加し、これより 2時間攪拌しながら同温度に保持した。次い で熱時濾過にて固体部を採取し、この固体部を 2750mlの四塩化チタンに再 懸濁させた後、再び 110°Cで 2時間加熱した。
加熱終了後、再び熱濾過にて固体部を採取し、 110°Cの n-デカンおよび n- へキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。 上記のように調製された固体状チタン触媒成分(a')はへキサンスラリーとして 保存されるが、このうち一部を乾燥して触媒組成を調べた。 固体状チタン触媒 成分(a)は、チタンを 3重量%、塩素を 58重量%、マグネシウムを 18重量%ぉ よび DIBPを 21重量%の量で含有していた。
得られたペレットについて焼成残分中のチタニウム分を測定したところ、ポリ プロピレンに対しチタニウム分は 0.7重量 ppmであった。その他の物性測定値 二 ¾
を表 1および表 2にまとめた。
r
〖比較例 2】
比較例 1 に記載した方法と全く同様に、ポリプロピレンの製造、シート成形 およびフィルム成形を行った。得られたポリプロピレンの性状値を表 1および表 2に、フィルム性状を表 3に示した。
[表 1]
極限粘度 [ 77 ]
(dl/g)
第 1段 第 2段 第 3段 第 1段 第 2段 第 3段
実施例 1 6.0 1.8 1.8 1 59 40
実施例 2 3.9 1.5 1.5 10 50 40
実施例 3 2.1 2.1 2.1 30 44 26
実施例 4 6.0 1.6 1.6 6 44 50
実施例 5 3.9 1.5 1.5 10 50 40
比較例 1 5.8 1.8 1.8 1 59 40
比較例 2 5.8 1.8 1.7 1 59 40 [表 2]
Figure imgf000024_0001
[表 3]
Figure imgf000024_0002
注 1 ) (Εα-1 ) で定義されるメソペンタッド分率
注 2) 50« m厚みの CPPフィルムでの F E (フィッシュアイ)個数
注 3) 延伸フィルムのヘイズ
注 4) 14wm厚みの CPPフィルム 20枚についての、 (最大 BDV-最小 BDV)/最大 BDV
産業上の利用可能性
本発明のポリプロピレンは、不純物量が極めて少なぐまた特定の条件下で 徐冷することにより )3晶分率を高くすることができ、これによりシートを成形した 際に /3晶の含有率の高い高品質なシートを容易に得ることができる。このよう な本発明のポリプロピレンは電気絶縁性及びアンチブロッキング性に優れたキ ャパシターフィルムや無延伸フィルム、または電子材料搬送器具に好適に使 用される。

Claims

請求の範囲 下記要件 [:!]〜 [3]を同時に満たす電気材料用ポリプロピレン。
[1] メルトフローレートが 0.1〜30g/ 10分である。
[2] 13C-NMRスペクトルより算出したメソペンタッド分率が 0·90〜0.99 であ る。
[3] 焼成残分がポリプロピレンに対し 50重量 ppm以下、焼成残分から検 出されるチタニウム分および鉄分がポリプロピレンに対し各々 1重量 ppm 以下および 0.1重量 ppm以下であり、しかも塩素含量がポリプロピレンに 対し 5重量 ppm以下である。
2.
クロス分別クロマトグラフィー(CFC)法において、 110°Cまで測定した溶出積 分量が 30重量%以下、 100°Cまで測定した溶出積分量が 7.0重量%以下で あることを特徴とする請求の範囲第 1項に記載のポリプロピレン。
3.
GPCで求めた Mz/ Mnが 15以上かつ Mw/ Mnが 5以上であることを特 徴とする請求の範囲第 1項または第 2項に記載のポリプ ピレン。
4.
請求の範囲第 1〜3 項のいずれかに記載のポリプロピレンを加熱溶融して 押出し、狳冷して得られる ]3晶分率が 0.15以上のポリプロピレンシート。
5.
請求の範囲第 4 項に記載のポリプロピレンシートを延伸してなる延伸フィル ム。
6.
延伸フィルムが、コンデンサーの絶縁体として用いられるキャパシターフィル ムであることを特徴とする請求の範囲第 5項に記載の延伸フィルム。
7.
請求の範囲第 1〜3項のいずれかに記載のポリプロピレンを押出して得られ る無延伸フィルム。
8.
請求の範囲第 1〜3項のいずれかに記載のポリプロピレンを射出成形してな る電子材料搬送器具。
PCT/JP2004/017902 2004-11-25 2004-11-25 ポリプロピレン及び該ポリプロピレンの電気材料への応用 WO2006057066A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602004028296T DE602004028296D1 (de) 2004-11-25 2004-11-25 Polypropylen und aufbringen des polypropylens auf elektrisches material
US11/791,532 US7691958B2 (en) 2004-11-25 2004-11-25 Polypropylene and application of said polypropylene to electric material
AT04822446T ATE474862T1 (de) 2004-11-25 2004-11-25 Polypropylen und aufbringen des polypropylens auf elektrisches material
PCT/JP2004/017902 WO2006057066A1 (ja) 2004-11-25 2004-11-25 ポリプロピレン及び該ポリプロピレンの電気材料への応用
CN2004800444793A CN101065411B (zh) 2004-11-25 2004-11-25 聚丙烯和该聚丙烯在电气材料中的应用
EP04822446A EP1826222B1 (en) 2004-11-25 2004-11-25 Polypropylene and application of said polypropylene to electric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017902 WO2006057066A1 (ja) 2004-11-25 2004-11-25 ポリプロピレン及び該ポリプロピレンの電気材料への応用

Publications (1)

Publication Number Publication Date
WO2006057066A1 true WO2006057066A1 (ja) 2006-06-01

Family

ID=36497815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017902 WO2006057066A1 (ja) 2004-11-25 2004-11-25 ポリプロピレン及び該ポリプロピレンの電気材料への応用

Country Status (6)

Country Link
US (1) US7691958B2 (ja)
EP (1) EP1826222B1 (ja)
CN (1) CN101065411B (ja)
AT (1) ATE474862T1 (ja)
DE (1) DE602004028296D1 (ja)
WO (1) WO2006057066A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003489A1 (en) * 2006-08-31 2010-01-07 Treofan Germany Gmbh & Co. Kg Biaxially oriented electrical insulating film
US7872085B2 (en) 2006-11-01 2011-01-18 Oji Paper Co., Ltd. Biaxially oriented polyproplyene film
US20110100438A1 (en) * 2009-11-04 2011-05-05 Gaston Ryan S Building integrated photovoltaic having injection molded component
US9548160B2 (en) * 2005-11-17 2017-01-17 Oji Holdings Corporation Raw sheet for capacitor film and capacitor film
JPWO2016159069A1 (ja) * 2015-03-31 2018-01-25 株式会社プライムポリマー ポリプロピレン樹脂組成物及びその製造方法、二軸延伸フィルム及びその製造方法、並びにフィルムコンデンサ用キャパシタフィルム
JPWO2016167328A1 (ja) * 2015-04-15 2018-02-08 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272208B (zh) * 2009-01-07 2013-04-10 普瑞曼聚合物株式会社 多微孔膜形成用聚丙烯树脂组合物
JP5653760B2 (ja) * 2009-01-07 2015-01-14 三井化学株式会社 微多孔膜形成用ポリプロピレン樹脂組成物
SG173156A1 (en) * 2009-01-27 2011-08-29 Mitsui Chemicals Inc Propylene homopolymer for condensers
MX337954B (es) * 2010-05-12 2016-03-29 Borealis Ag Polipropileno con contenido especifico de estearato de calcio para capacitores especiales.
EP2565221B2 (en) 2011-08-30 2018-08-08 Borealis AG Process for the manufacture of a capacitor film
EP2970516B1 (en) 2013-03-15 2018-07-18 Braskem America, Inc. Propylene polymer resins
JP6260472B2 (ja) * 2014-06-30 2018-01-17 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム
JP7196074B2 (ja) 2016-08-30 2022-12-26 ダブリュー・アール・グレース・アンド・カンパニー-コーン ポリオレフィンの製造のための触媒系並びに同触媒系を作製及び使用する方法
CN106432820A (zh) * 2016-09-29 2017-02-22 铜陵市超越电子有限公司 一种电容器薄膜的材料配方
JP7318187B2 (ja) * 2017-08-29 2023-08-01 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
CN107739470A (zh) * 2017-10-17 2018-02-27 富通集团(天津)超导技术应用有限公司 超导电缆用聚丙烯复合绝缘薄膜材料、薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236709A (ja) * 1992-06-15 1994-08-23 Mitsui Toatsu Chem Inc 高分子絶縁材料およびそれを用いた成形体
JPH08507196A (ja) * 1994-01-31 1996-07-30 アプライド マテリアルズ インコーポレイテッド 共形な絶縁体フィルムを有する静電チャック
JPH0952917A (ja) * 1995-08-10 1997-02-25 Mitsui Toatsu Chem Inc ポリプロピレンおよびそれを用いた延伸フィルム
JPH09270364A (ja) * 1996-03-29 1997-10-14 Toray Ind Inc コンデンサ用ポリプロピレンフィルム
JP2003502468A (ja) * 1999-06-10 2003-01-21 アトフイナ・リサーチ・ソシエテ・アノニム 高い溶融強度と延伸性を示すポリプロピレン
JP2004002655A (ja) * 2002-03-27 2004-01-08 Mitsui Chemicals Inc ポリプロピレン樹脂、それから得られるシートおよびフィルム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540214A1 (de) * 1985-11-13 1987-05-14 Hoechst Ag Koextrudierte, biaxial orientierte mehrschichtfolie
US4851499A (en) * 1987-09-29 1989-07-25 Union Carbide Corporation Process for reducing odor in isotactic polypropylene
DE3831355A1 (de) * 1988-09-15 1990-03-29 Hoechst Ag Hochleistungsdielektrikumsfolie mit verbesserter thermostabilitaet
US5476709A (en) 1992-06-15 1995-12-19 Mitsui Toatsu Chemicals, Inc. Polymeric insulating material and formed article making use of the material
US5801915A (en) * 1994-01-31 1998-09-01 Applied Materials, Inc. Electrostatic chuck having a unidirectionally conducting coupler layer
US5729423A (en) * 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
CN1081652C (zh) * 1996-08-09 2002-03-27 东丽株式会社 聚丙烯膜及用其作电介质的电容器
DE60108364T2 (de) * 2001-06-27 2005-12-22 Borealis Technology Oy Propylenpolymerharz mit verbesserten Eigenschaften

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236709A (ja) * 1992-06-15 1994-08-23 Mitsui Toatsu Chem Inc 高分子絶縁材料およびそれを用いた成形体
JPH08507196A (ja) * 1994-01-31 1996-07-30 アプライド マテリアルズ インコーポレイテッド 共形な絶縁体フィルムを有する静電チャック
JPH0952917A (ja) * 1995-08-10 1997-02-25 Mitsui Toatsu Chem Inc ポリプロピレンおよびそれを用いた延伸フィルム
JPH09270364A (ja) * 1996-03-29 1997-10-14 Toray Ind Inc コンデンサ用ポリプロピレンフィルム
JP2003502468A (ja) * 1999-06-10 2003-01-21 アトフイナ・リサーチ・ソシエテ・アノニム 高い溶融強度と延伸性を示すポリプロピレン
JP2004002655A (ja) * 2002-03-27 2004-01-08 Mitsui Chemicals Inc ポリプロピレン樹脂、それから得られるシートおよびフィルム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548160B2 (en) * 2005-11-17 2017-01-17 Oji Holdings Corporation Raw sheet for capacitor film and capacitor film
US20100003489A1 (en) * 2006-08-31 2010-01-07 Treofan Germany Gmbh & Co. Kg Biaxially oriented electrical insulating film
US9431172B2 (en) * 2006-08-31 2016-08-30 Borealis Technology Oy Biaxially oriented electrical insulating film
US7872085B2 (en) 2006-11-01 2011-01-18 Oji Paper Co., Ltd. Biaxially oriented polyproplyene film
US20110100438A1 (en) * 2009-11-04 2011-05-05 Gaston Ryan S Building integrated photovoltaic having injection molded component
JPWO2016159069A1 (ja) * 2015-03-31 2018-01-25 株式会社プライムポリマー ポリプロピレン樹脂組成物及びその製造方法、二軸延伸フィルム及びその製造方法、並びにフィルムコンデンサ用キャパシタフィルム
JPWO2016167328A1 (ja) * 2015-04-15 2018-02-08 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム

Also Published As

Publication number Publication date
EP1826222B1 (en) 2010-07-21
DE602004028296D1 (de) 2010-09-02
CN101065411A (zh) 2007-10-31
CN101065411B (zh) 2010-09-01
US20080042323A1 (en) 2008-02-21
ATE474862T1 (de) 2010-08-15
EP1826222A1 (en) 2007-08-29
EP1826222A4 (en) 2008-08-27
US7691958B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
JP2006143975A (ja) ポリプロピレン及び該ポリプロピレンの電気材料への応用
WO2006057066A1 (ja) ポリプロピレン及び該ポリプロピレンの電気材料への応用
CN107325324B (zh) 阻燃剂、阻燃防静电组合物和阻燃防静电聚丙烯发泡珠粒
DE69329313T2 (de) Ethylencopolymerzusammensetzung
CN110036044B (zh) 用于bopp应用的聚丙烯
KR20230171432A (ko) 이축 배향 필름
US6656995B2 (en) Process for producing olefin polymer composites having improved melt strength
CN117098659B (zh) 双轴取向聚丙烯系多层膜
KR100295028B1 (ko) 폴리프로필렌블록공중합체및이의필름
JPH08198913A (ja) ポリプロピレンフイルム
JP6491792B2 (ja) プロピレン−エチレン−1−ブテンターポリマーを含む組成物
JP5924858B2 (ja) ポリプロピレン及び該ポリプロピレンの電気材料への応用
JP2011077531A (ja) ポリプロピレン及び該ポリプロピレンの電気材料への応用
JP2008133351A (ja) コンデンサーフィルム用プロピレン系重合体
KR100890972B1 (ko) 폴리프로필렌 및 그 폴리프로필렌의 전기 재료에의 응용
JP4759235B2 (ja) ポリプロピレン系積層フィルム
US6489426B1 (en) Propylene base polymer and a polypropylene film using the same
KR101962771B1 (ko) 열가소성 수지 블렌드 조성물
JP2010189473A (ja) エチレン系重合体からなる延伸フィルム
CN115989249B (zh) 树脂组合物和成型体
JP7345257B2 (ja) プロピレン重合体組成物からなる微多孔フィルム
JP2010208178A (ja) ポリプロピレン延伸多層フィルム
JP2018141099A (ja) エチレン系重合体組成物およびフィルム
CN107325393B (zh) 阻燃防静电聚丙烯组合物和由其制备的发泡珠粒
CN107325410B (zh) 阻燃防静电聚丙烯组合物和由其制备的发泡珠粒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11791532

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200480044479.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077013105

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004822446

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004822446

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11791532

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP