WO2006051603A1 - 軸ずれ角推定方法及びその装置 - Google Patents

軸ずれ角推定方法及びその装置 Download PDF

Info

Publication number
WO2006051603A1
WO2006051603A1 PCT/JP2004/016871 JP2004016871W WO2006051603A1 WO 2006051603 A1 WO2006051603 A1 WO 2006051603A1 JP 2004016871 W JP2004016871 W JP 2004016871W WO 2006051603 A1 WO2006051603 A1 WO 2006051603A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis deviation
deviation angle
radar
reflection point
angle
Prior art date
Application number
PCT/JP2004/016871
Other languages
English (en)
French (fr)
Inventor
Atsushi Okamura
Rokuzou Hara
Toshio Wakayama
Toshiyuki Hirai
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/016871 priority Critical patent/WO2006051603A1/ja
Priority to JP2006544708A priority patent/JP4665903B2/ja
Priority to US11/632,926 priority patent/US7545313B2/en
Priority to CNA2004800437272A priority patent/CN101006359A/zh
Priority to EP04822400.0A priority patent/EP1770410B1/en
Publication of WO2006051603A1 publication Critical patent/WO2006051603A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9329Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles cooperating with reflectors or transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation

Definitions

  • the present invention relates to an error estimation technique for a deviation angle (axis deviation angle, alignment offset angle) in a reference direction of a radar using reflection of propagation waves such as radio waves, sound waves, and light waves.
  • the present invention relates to a technique for estimating a deviation between a radar reference axis and a front direction of a moving object, which is used to detect a radar reflector in the front direction of the moving object (traveling direction of the moving object).
  • a radar device is mounted on a moving body such as an automobile to detect radar reflectors such as obstacles in the traveling direction, and to develop functions for speed control and collision prevention.
  • radar reflectors such as obstacles in the traveling direction
  • functions for speed control and collision prevention have been made.
  • the reference axis of the radar deviates from the originally assumed direction, the azimuth angle of the radar reflector obtained as a result of processing the radar signal is correct.
  • problems can arise.
  • Such a deviation of the reference axis occurs because the accuracy of the initial work for installing the radar device on the moving body is poor.
  • the reference axis may be displaced through actual use.
  • a radar device with a misaligned reference axis does not contribute to improving safety because positive U and observation values cannot be obtained.
  • Patent Document 1 a technique for adjusting the reference axis of the radar apparatus mounted on the moving body in the traveling direction of the moving body.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-228749 “Automotive Millimeter Wave Radar Device”
  • the axis deviation angle estimation device or the radar device autonomously obtains the speed of the moving body by some method.
  • the axis deviation angle is often very small, and a speed sensor that is highly accurate and stable enough to be applicable to estimation of such a small axis deviation angle is expensive.
  • a force speed sensor is heavy and forceful. This makes it difficult to secure a space for installing the on-vehicle radar. This hinders the spread of radar devices having an axis deviation angle estimation function with a built-in self-velocity sensor, which in turn results in a hindrance to traffic safety.
  • the radar apparatus performs radar.
  • a reflection point where the relative speed and azimuth angle of the line-of-sight component are detected, and the relative speed and azimuth angle of the radar line-of-sight direction component of a plurality of reflection points having the same relative velocity of the moving direction component of the moving object Based on the above, the axis deviation angle was calculated.
  • the reflection point means a reflection point of the radar wave.
  • a plurality of reflection points having substantially the same relative speed means a plurality of reflection points at which the speed difference can be substantially ignored. More specifically, the speed difference between the relative speeds is a predetermined value. It means the following multiple reflection points.
  • the axis deviation angle estimation method according to the present invention, first, a plurality of reflection points are found so that the relative velocities of the moving direction components of the moving body are substantially equal based on the observation values of the radar apparatus. . Subsequently, only the relative velocity and the azimuth angle of the radar line-of-sight component of the plurality of reflection points found in this way were combined to determine the radar axis deviation angle. In this process, the moving speed and speed error magnification of the moving body equipped with the radar device are Do not use any data. Therefore, even when the moving speed of the moving body on which the radar apparatus is mounted cannot be obtained, it is possible to stably estimate the axis deviation angle.
  • FIG. 1 is a conceptual diagram for explaining an operation principle of a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a distribution of relative velocity and azimuth angle of a radar reflector according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an example of the positional relationship between the coverage area of a host vehicle, a preceding vehicle, and an in-vehicle radar in Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing an example of a distribution of relative velocity and azimuth angle of a radar reflector according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing an example of a distribution of relative speed and azimuth angle of a radar reflector according to Embodiment 3 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of the fourth embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of the fifth embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of the sixth embodiment of the present invention.
  • Fig. 1 is a conceptual diagram for explaining this principle of operation.
  • the radar equipment The device 1 is a radar device mounted on a moving body such as an automobile.
  • Reflection point 1 and reflection point 2 are the reflection points of the radar wave detected by radar device 1.
  • the radar apparatus 1 detects obstacles such as other vehicles and road installations existing in the traveling direction of the moving body.
  • the detection result is output to devices outside radar device 1, such as an inter-vehicle distance maintenance device or an automatic navigation device, for speed control and improved safety. Served for use.
  • the radar apparatus 1 has a function of calculating the relative speed and azimuth angle of the reflection points 1 and 2.
  • a radar apparatus is becoming widespread, for example, as a millimeter-wave in-vehicle radar, and its configuration and operation are widely known and will not be described in detail here.
  • the radar apparatus 1 has a predetermined radar reference direction.
  • the radar reference direction is a direction serving as a reference for the azimuth angle obtained by observing the reflection point.
  • the radar reference direction should preferably match the moving direction of the moving object, but there are often deviations due to installation errors.
  • the angle (axis deviation angle) between the radar reference direction and the moving direction of the moving object is defined as.
  • the method for estimating an axis deviation angle according to the present invention can be used not only for estimating an axis deviation angle in the azimuth direction but also for estimating an axis deviation angle in the elevation direction.
  • the misalignment angle ⁇ contains only the azimuth component.
  • both the reflection point 1 and the reflection point 2 are stationary.
  • both reflection point 1 and reflection point 2 are equivalent to moving at a velocity V.
  • the relative speed of the line-of-sight component of the radar at reflection point 1 detected by radar device 1 is q
  • the relative speed of the line-of-sight component at reflection point 2 is q
  • Equations (1) and (2) are obtained by transforming force equations (1) and (2), which are simultaneous equations including two unknowns V and ⁇ , to eliminate V. Equation (3) is obtained.
  • Equation (3) is an equation related to only one unknown, ⁇ , so ⁇ can be determined independently of velocity V by solving this equation for ⁇ ! In other words, even when the speed of a moving object equipped with a radar device cannot be obtained, by combining at least two observation values at reflection point 1 and reflection point 2, autonomously only from the observation values based on the radar wave The axis deviation angle can be calculated.
  • Equation (3) is derived in the same way. As a result, the axis deviation angle ⁇ of the radar apparatus 1 can be calculated.
  • V and V are expressed by the following equations (4) and (4). Given in (5).
  • Equation (3) it is first determined whether the radar reflector is stationary or not using the velocity information of the moving object, and the error factor of the speed sensor (true value V and sensor force gain) regardless of the moving object's speed.
  • the method of determining the axis deviation angle ⁇ was adopted by paying attention to the fact that the ratio of estimated values Vh (vZVh) is almost equal.
  • V / Vh v / Vh, where V and V are the true values of the relative velocities of the two reflection points, and Vh and Vh are the estimated values of these two reflection points. Therefore, divide both sides of equation (4) by Vh to obtain equation (6).
  • is calculated in the calculation method of the axis deviation angle.
  • the axis deviation angle estimation device solves the problem that can be noticed by paying attention to the nature of the distribution of reflection points.
  • this point will be clarified through a detailed description of the axis deviation angle estimating device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the axis deviation angle estimation device according to Embodiment 1 of the present invention.
  • the radar device 1 is functionally equivalent to that described in the above-mentioned operation principle.
  • the axis deviation angle estimation apparatus 2 is an apparatus that estimates the axis deviation angle of the radar apparatus 1 and stores the axis deviation angle. 3, a reflection point selection unit 4, an axis deviation angle calculation unit 5, and an axis deviation angle true value estimation unit 6.
  • the storage means 3 is a part for storing observation values such as the relative speed and azimuth angle of the reflection point calculated by the radar apparatus 1, and is a storage element having a suitable response speed, random access memory, etc. Or a circuit.
  • the reflection point selection unit 4 is a part that selects an observation value to be used for calculating the axis deviation angle from the observation values of the reflection point stored in the storage unit 3.
  • the axis deviation angle calculation unit 5 is a part that calculates the axis deviation angle using the observation value selected by the reflection point selection unit 4.
  • the axis deviation angle true value estimation unit 6 uses a plurality of axis deviation angle candidate values to determine the axis deviation angle. This is the part where the true value of is estimated.
  • the term "site” here means a dedicated circuit or element for realizing a predetermined function or action directly.
  • a general-purpose CPU Central Processing Unit
  • DSP Digital Signal Processor
  • control means such as a CPU and DSP are provided, and the control means is caused to execute processing corresponding to each part of the reflection point selection unit 4, the axis deviation angle calculation unit 5, and the axis deviation angle true value estimation unit 6.
  • an instruction code may be provided in a computer program. Therefore, the interpretation should not be limited to the configuration of dedicated circuits or elements.
  • the correction device 7 corrects the azimuth angle of the reflector based on the observation value calculated by the radar device 1 and the axis deviation angle calculated by the axis deviation angle estimation device 2, and outputs a correction result. It is a position. Eventually, the output result of the correction device 7 is used for speed control and safety improvement.
  • the observation value of the reflection point detected by the radar device 1 is stored in the storage unit 3.
  • the reflection point selection unit 4 selects a reflection point that is considered to have approximately the same relative speed of the moving body moving direction component from the reflection points whose observation values are stored in the storage unit 3 due to the nature of the reflection point. Select one or more.
  • the properties of the reflection point are as follows.
  • FIG. 3 is a diagram showing an example of the distribution of relative velocity and azimuth angle of the reflector detected when the radar apparatus 1 is mounted on an automobile moving along a road lane.
  • the radar reflector has a certain size or more, so that a plurality of reflection points are formed on the same radar reflector. May be observed.
  • a plurality of reflection points existing on the same radar reflector should have approximately the same relative velocity of the moving direction component of the moving object. The most prominent such reflector is the road surface. In many cases, since the road surface is the largest radar reflector, the reflection points existing on the road surface account for a large proportion of total reflection points.
  • the reflection point on the road surface has a median value in the relative velocity distribution. In many cases, the reflection point has a relative velocity. In addition, reflection points that are also present on the road surface should be distributed around this median value.
  • the reflection point selection unit 4 first determines the relative speed that is the median value as the reference speed in the distribution of the relative speeds of the reflection points stored in the storage unit 3. Next, a range with a certain width around this reference speed (called speed gate) is set. The reflection point selection unit 4 selects a reflection point whose relative velocity is included in this value range, assuming that the reflection point has a relative velocity of the moving body moving direction component substantially equal to the reference reflection point.
  • the axis deviation angle calculation unit 5 calculates the axis deviation angle of the radar apparatus 1 based on the azimuth angle of the reflection point selected by the reflection point selection unit 4. To calculate the off-axis angle, equation (3) can be solved for ⁇ . However, since Equation (3) is a nonlinear equation, it is more advantageous to solve it by a method that obtains an approximate solution rather than analytically. Various methods for calculating such approximate solutions are widely known! /, So do not elaborate here! ,.
  • the axis deviation angle estimation device 2 paying attention to the property of the radar mounted on the moving body that many reflection points exist on the road surface, the relative speed of the moving direction component of the moving body is approximately equal. A new reflection point was selected.
  • the axis deviation angle is calculated without using the velocity information of the moving body of the radar apparatus 1. It is now possible to calculate the off-axis angle without selecting the necessary reference reflection point and acquiring the speed of the moving object.
  • the reflection point selection unit 4 selects all such reflection points unconditionally, for example. You may make it do.
  • the axis deviation angle calculation unit 5 combines two reflection points selected by the reflection point selection unit 4 and calculates an axis deviation angle from the combined reflection points.
  • the reflection points selected by the reflection point selection unit 4 are, for example, the first reflection point, the second reflection point, and the third reflection point.
  • the axis deviation angle calculation unit 5 simply calculates the axis deviation angle from the first reflection point and the second reflection point, or the first reflection point and the third reflection point, or the second reflection point and the third reflection point.
  • the off-axis angle is also calculated for the reflection point force. 1st reflection point and 2nd reflection point force
  • the calculated axis deviation angle is the first axis deviation angle, and the first reflection point and the third reflection point, or the second reflection point and the third reflection point.
  • the calculated axis misalignment angle is the second calculated angle.
  • the true value of the axis deviation angle estimation unit 6 estimates the true value of the axis deviation angle from the first axis deviation angle and the second axis deviation angle calculated by the axis deviation angle calculation unit 5.
  • Examples of the true value estimation method of the axis offset angle include, for example, a method of calculating an average value of the first axis offset angle and the second axis offset angle, and the first axis offset angle and the second axis offset angle. It is recommended to use the method of calculating the axis misalignment angle that minimizes the square error (well known as the least square method) and the TLS (Total Least Squares) method. Also The same applies to the case where there are three or more axis deviation angles calculated by the axis deviation angle calculation unit 5.
  • the true value of the axis deviation angle calculated in this way is finally output to the correction device 7 as the output value of the axis deviation angle estimation device 2.
  • the correction device 7 calculates a value obtained by adding or subtracting the true value of the off-axis angle from the observation value ⁇ of the radar device 1 and outputs it to an external speed control device or the like.
  • the relative speeds of the moving direction components of the moving body are equal based on the nature of the distribution of the reflection points. Therefore, it is possible to estimate the off-axis angle of the radar apparatus without separately acquiring the speed of the moving object.
  • the output of the axis deviation angle true value estimation unit 6 is fed back to the axis deviation angle calculation unit 5, for example, a Kalman filter. Try to narrow down the reflection points to be selected by the tracking process.
  • the reflection point is selected using the median relative speed as the reference speed. Instead of this method, the reflection point having the largest relative speed is used as the reference speed. May be. In other words, the reflection point with the highest relative speed is assumed to be the reflection point on the road surface, and the speed gate (value range where the difference from the relative speed is within a predetermined value) is set based on the relative speed of the reflection point. Then, the reflection point selection unit 4 selects a plurality of reflection points included in the speed gate.
  • the speed difference with the road surface is much larger than the speed difference with other vehicles such as an automobile traveling on a highway.
  • the reflection point with the highest relative velocity is the reflection point on the road surface, so it is possible to adopt such an assumption.
  • the reflection point distribution is as shown in FIG. 5, and there is a high possibility that the reflection point having the median relative speed is not a reflection point having the road surface as a radar reflector.
  • a speed gate is set based on the median value, and an appropriate reflection point is selected from among them to calculate the off-axis angle. If you can't, there are cases.
  • the relative speed of one of the reflection points is used as a reference speed, and the reflection point including the relative speed within a range having a certain width around the reference speed is used.
  • the configuration was selected.
  • a value range in which the frequency is greater than or equal to a predetermined value in the relative velocity distribution is found, this value range is defined as a speed gate, and the reflection point selection unit 4 is made to select a reflection point belonging to this value range. It may be.
  • Equation (3) is established between two reflection points where the relative speeds of the moving direction components of the moving body are substantially equal. Therefore, not only the reflection points on the road surface, but also a plurality of reflection points on the same radar reflector exceeding a predetermined size may be selected. For such a radar reflector, the radar apparatus 1 will observe a plurality of reflection points.
  • a reflection point on the same radar reflector by detecting a value range where the frequency is greater than or equal to a predetermined value in the distribution of relative velocities and selecting a reflection point belonging to the detected value range. .
  • the size of the radar reflector is the road There is also the property that it is not as large as the surface.
  • the reflection points included in the speed gate shown in Fig. 6 are reflection points on such other vehicles. Therefore, the azimuth angle distribution may be used together. In other words, if a plurality of reflection points having close azimuth values along with the relative velocity are employed, the possibility that the same radar reflector force will be reflected increases, and the accuracy of axis deviation angle estimation is improved.
  • the axis deviation angle can be estimated.
  • the axis deviation angle can be estimated even when a large truck is traveling in front of the host vehicle and the vehicle is covered with a considerable area on the radar observation surface.
  • the axis deviation angle estimation method defines a range in which a plurality of reflection points where the relative speeds of the moving direction components of the moving body are considered to be substantially equal exist, and a reflection range including the relative speed in this range. A point is selected, and the axis deviation angle is estimated based on the selected reflection point. However, it is not necessary to limit the number of value ranges for selecting the reflection points used for estimating the off-axis angle to one.
  • a plurality of reference velocities are provided in the distribution of relative velocities at the reflection points. These reference speeds are called the first reference speed and the second reference speed. Then, a plurality of value ranges having a certain width are set around the first and second reference velocities, and a plurality of reflection points belonging to these value ranges are respectively selected.
  • the first axis deviation angle is calculated based on the azimuth angle of the reflection point selected from the value range centered on the first reference speed, and further within the value range centered on the second reference speed.
  • the second axis deviation angle is calculated based on the azimuth angle of the reflection point selected from the above, and the true value of the axis deviation angle of the radar apparatus is calculated based on the calculated first and second axis deviation angles. Is estimated.
  • the axis deviation angle estimation method according to the fourth embodiment of the present invention has a powerful feature.
  • FIG. 7 is a block diagram showing the configuration of the axis deviation angle estimation device according to Embodiment 4 of the present invention.
  • a reflection point selection unit 41 is a part for selecting a reflection point included in a speed gate with a predetermined relative speed as a reference, and a plurality of selected reflection points are set as reflection points 11.
  • the reflection point with the selected force is output as the reflection point 12.
  • the reflection point selection unit 42 is a part for selecting a reflection point included in a velocity gate based on a predetermined relative velocity from the reflection points 12 output by the reflection point selection unit 41.
  • the axis deviation angle calculation unit 51 is a part that calculates the axis deviation angle ⁇ based on the azimuth angle of the reflection point 11.
  • the axis deviation angle calculation unit 52 is a part that calculates the axis deviation angle ⁇ based on the azimuth angle of the reflection point 13.
  • the reflection point selection unit 41 sets the relative speed as the median value among the relative speeds of the reflection points stored in the storage unit 3 as the reference speed (first reference speed).
  • Set the speed gate with a fixed range. Then, a plurality of reflection points whose relative speeds are included in this speed gate are selected and output as the reflection point 11, while the reflection points stored in the storage unit 3 are not selected as the reflection point 11. Is output as reflection point 12.
  • the reflection point 11 is a reflection point whose radar surface is the road surface.
  • the reflection point to be used as the radar reflector will be selected as the reflection point 11.
  • the reflection point selection unit 42 sets the speed gate again with a constant range of values up and down with the relative speed that is the median value among the relative speeds of the reflection points 12 as the reference speed (second reference speed). Then, a plurality of reflection points whose relative speeds are included in this speed gate are selected and output as reflection points 13.
  • the axis deviation angle calculation unit 51 calculates the axis deviation angle ⁇ (first axis deviation angle) based on the azimuth angles of the plurality of reflection points selected as the reflection point 11 in the same manner as in the first embodiment. To do. Similarly, the axis deviation angle calculation unit 52 calculates the axis deviation angle ⁇ (second axis deviation angle) based on the azimuth angles of the plurality of reflection points selected as the reflection point 13.
  • the true value of the axis deviation angle estimation unit 6 obtains an average of the axis deviation angle ⁇ and the axis deviation angle ⁇ ,
  • each speed gate Different types of statistical values may be used for each speed gate. For example, when it is assumed that there is a high possibility that the reflection point selection unit 41 selects a reflection point whose road surface is a radar reflector, the maximum value of the relative speed is used as a reference, and the reflection point selection unit 42 is a median value. The relative speed is the standard. Yes, is the reverse combination! /
  • a different range width may be adopted for each speed gate.
  • the orientation angle distribution may also be used as a reference.
  • the axis deviation angle estimation methods shown in the first to fourth embodiments are characterized in that it is not necessary to acquire the moving speed of the moving body in estimating the axis deviation angle. However, it is assumed that the relative velocities between the reflection points used to calculate the off-axis angle are almost equal. Therefore, it is desirable that the moving speed of the moving body is almost constant during the collection of observation values at these reflection points.
  • FIG. 8 is a block diagram showing the configuration of the axis deviation angle estimating device according to the fifth embodiment of the present invention.
  • the reflection point selection unit 43 is a part for selecting a plurality of predetermined reflection points in each of time zone 1 and time zone L.
  • the axis deviation angle calculation unit 53 calculates the axis deviation angle ⁇ in the time zone n using the azimuth angle of the reflection point selected in the time zone n (n is a natural number of 1 L). This is the part to be calculated.
  • the axis deviation angle ⁇ in each time slot of time zone 1 L is stored in the axis deviation angle storage unit 54 for each time zone.
  • the true value of the axis deviation angle estimation unit 61 also calculates the true axis deviation angle ⁇ — ⁇ force for each time zone.
  • Embodiment 5 of the present invention will be described.
  • the rate of change in the moving speed (acceleration) of the moving object and the curvature of the moving object are sufficiently short in each time zone of time zone 1 hour 1 L.
  • the moving speed of the moving body is almost constant within each time zone, and that the moving body is moving straight ahead.
  • the storage unit 3 stores the relative speed and the azimuth angle of the reflection point observed in each of time zone 1 and time zone L.
  • the reflection point selection unit 43 compares the reflection points in the time zone n (n is a natural number of 1 to 1) stored in the storage unit 3. Among the speeds, the median or maximum relative speed is set as the reference speed, a range with a certain width around this reference speed is set as the speed gate, and multiple reflection points included in this speed gate are selected. Is output to the axis deviation angle calculation unit 53.
  • a first time zone nl and a second time zone n2 are considered.
  • both nl and n2 are 1 or any natural number of L.
  • the axis deviation angle calculation unit 53 calculates the first axis deviation angle ⁇ based on the plurality of reflection points selected by the reflection point selection unit 43 in the time zone nl in the same manner as in the first embodiment. It is stored in the deviation angle storage unit 54.
  • the time zone identifier nl is output to the axis deviation angle true value estimation unit 61.
  • the axis deviation angle calculation unit 53 includes a plurality of points selected by the reflection point selection unit 43 in the time zone n2.
  • the second axis deviation angle ⁇ is calculated based on the azimuth angle of the reflection point, and the time axis axis deviation angle n2
  • the time zone identifier n2 is output to the axis deviation angle true value estimation unit 61.
  • the axis deviation angle true value estimation unit 61 stores the axis deviation angle true value estimation unit 61 in the time axis axis deviation angle storage unit 54 at that time.
  • the axis deviation angle ⁇ is calculated as the average value of the axis deviation angle ⁇ — ⁇ .
  • the moving direction component of the moving object can be determined by dividing the observation time into sufficiently short intervals. It is possible to narrow down the reflection points so that the relative velocities are substantially equal. As a result, it is possible to calculate the relative velocity of the narrowed reflection point in the radar line-of-sight direction and the azimuth angle force axis deviation angle.
  • V is an estimated value that differs for each time zone. It can be.
  • a plurality of reflection points are selected in advance so that the relative velocities of the moving direction components of the moving body are substantially equal, and the relative speed of the selected reflection point in the radar line-of-sight direction component is selected.
  • the axis deviation angle is calculated based on the azimuth angle. However, in addition to such a configuration, the axis deviation angle is calculated by combining two reflection points first, and a set of reflection points is set so that the calculated axis deviation angle converges within a certain range. A configuration that is selected later may be employed.
  • the axis deviation angle estimation apparatus according to Embodiment 6 has such a feature.
  • FIG. 9 is a block diagram showing a configuration of the axis deviation angle estimating device according to the sixth embodiment.
  • the axis deviation angle calculation unit 54 is a part that calculates a plurality of axis deviation angles by combining two reflection points from the reflection points detected by the radar apparatus 1.
  • the reflection point selection unit 44 is a part that selects a reflection point that can be used to calculate the true value of the axis deviation angle based on the distribution of the plurality of axis deviation angles calculated by the axis deviation angle calculation unit 54.
  • Other components having the same reference numerals as those in FIG. 1 are the same as those in the first embodiment.
  • the axis deviation angle calculation unit 54 selects two reflection points from the reflection points stored in the storage unit 3, and assumes that the relative speeds of the moving direction components of the moving body at these reflection points are approximately equal.
  • the relational force in (3) also calculates the axis deviation angle ⁇ .
  • a method of selecting two reflection points all combinations of two reflection points are selected from the reflection points stored in the storage unit 3.
  • the number of reflection points may be enormous.
  • the number of reflection points may be previously reduced by some method.
  • two reflection points may be combined by focusing only on the reflection points detected in a predetermined time zone. Also, set a value range with a certain width using the relative speed of one of the reflection points in the radar line-of-sight direction as a reference speed, and combine the two reflection points only for the reflection points that fall within that value range.
  • the reflection point selection unit 44 selects a reflection point based on the degree of convergence of the axis deviation angle calculated by the axis deviation angle calculation unit 54. That is, an angle range in which a large number of misalignment angles calculated by the misalignment angle calculation unit 54 is obtained from the distribution of misalignment angles, and belongs to this angle range. Select the reflection point.
  • two or more reflection points are present on the same radar reflector having a certain size, with the relative speed of the moving direction component of the moving object at the reflection point being approximately equal. If the off-axis angle is calculated by combining reflection points on different radar reflectors that have different relative velocities of the moving direction components of the moving object, a force that results in a difference from the true value. The number of times the deviation angle is calculated is expected to be lower than the number of times the axis deviation angle around the true value is calculated.
  • the axis deviation angle true value estimation unit 6 calculates the true value from the axis deviation angle corresponding to the reflection point selected by the reflection point selection unit 44 among the axis deviation angles calculated by the axis deviation angle calculation unit 54. presume.
  • the method of true value estimation is the same as the method described in the first to fifth embodiments.
  • the axis deviation angle estimation method according to the present invention is particularly useful for a radar apparatus mounted on a moving body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 レーダ装置を搭載した移動体の移動速度を用いずに、レーダ装置のレーダ基準方向と移動体の進行方向とのずれ角である軸ずれ角を推定する。  所定の移動方向を有する移動体に搭載されたレーダ装置1の軸ずれ角φを推定する軸ずれ角推定方法において、  レーダ装置1によりレーダの視線方向成分の相対速度qと方位角度θが検出された反射点の中から移動体の移動方向成分の相対速度がほぼ等しくなる複数個の反射点を、移動体の移動速度を用いずに選択して、選択された反射点のレーダ視線方向成分の相対速度および方位角度に基づいてレーダ波に基づく観測値のみから自律的に軸ずれ角φを算出することとした。

Description

軸ずれ角推定方法及びその装置
技術分野
[0001] この発明は、電波や音波や光波などの伝搬波の反射を用いたレーダの基準方向 のずれ角(軸ずれ角、ァライメントオフセット角)の誤差推定技術に係るものであり、特 に移動体の正面方向(移動体の進行方向)におけるレーダ反射体の検出を用途とす るレーダの基準軸と移動体の正面方向とのずれを推定する技術に関する。
背景技術
[0002] 昨今、自動車などの移動体にレーダ装置を搭載して、進行方向にある障害物など のレーダ反射体を検出し、速度制御や衝突防止のための機能を実現しょうとする開 発がなされている。このようなレーダ装置では、レーダの基準軸が、本来想定してい た方向とずれてしまうために、レーダの信号を処理した結果として得られるレーダ反 射体の方位角度が正し 、ものとならな 、と 、う問題が生じうる。
[0003] このような基準軸のずれは、レーダ装置を移動体に据え付ける初期作業の精度が 悪いために生じる。また、初期段階においてレーダ装置を移動体に精度よく据え付 けた場合でも実使用を通じて基準軸がずれてしまう場合もある。基準軸がずれてしま つた状態のレーダ装置では正 U、観測値が得られな 、ため、安全性の向上に寄与 することとはならない。
[0004] そこで、移動体に搭載されたレーダ装置の基準軸を移動体の進行方向に調整する 技術が提案されている(例えば、特許文献 1)。これらはレーダを搭載する移動体の 速度情報と、主として静止物である反射点の観測値とを用いて基準軸の方向を推定 するものである。
[0005] 特許文献 1 :日本国特開 2002— 228749 「車載用ミリ波レーダ装置」 公報
発明の開示
発明が解決しょうとする課題
[0006] 従来の軸ずれ角推定技術では、軸ずれ角を推定するためにレーダ装置を搭載す る移動体の移動速度を取得する必要がある。そのため、移動体の自速度センサから 得られる速度情報を何らかの方法で軸ずれ角推定装置内に取り込まなければならず 、速度データを取得するための結線作業をレーダ装置の据え付け時に必要として 、 た。またレーダ装置用に速度情報を供給するインターフェースを持たな 、移動体で は、かかる軸ずれ角推定技術をそもそも適用することすらできな力つた。
[0007] このような場合に、軸ずれ角推定装置やレーダ装置が何らかの方法で自律的に移 動体の速度を求めるようにする構成も考えられる。しかしながら、軸ずれ角は微小で あることが多ぐこのような微小な軸ずれ角の推定にも適用可能な程度に高精度かつ 安定性の高い速度センサは高価である。また、力 うな速度センサは重量も力さみ容 積も大きい。そのせいで車載レーダを設置するスペースの確保が困難となる。このこ とは、自速度センサを内蔵した軸ずれ角推定機能を有するレーダ装置の普及の障害 となり、ひいては交通の安全性を阻害する結果を招く。
課題を解決するための手段
[0008] 力かる課題を解決するために、この発明に係る軸ずれ角推定方法では、移動体に 搭載されたレーダ装置の軸ずれ角を推定する軸ずれ角推定方法において、 上記レーダ装置によりレーダ視線方向成分の相対速度と方位角度が検出された反 射点であって、上記移動体の移動方向成分の相対速度がほぼ等しい複数個の反射 点のレーダ視線方向成分の相対速度と方位角度とに基づいて上記軸ずれ角を算出 することとした。
[0009] なお、上記において、反射点とはレーダ波の反射点を意味する。また、相対速度が ほぼ等しい複数の反射点、とは速度差を実質的に無視しうる複数の反射点を意味す るものであって、より具体的には、相対速度の速度差が所定値以下となる複数の反 射点を意味する。
発明の効果
[0010] このように、この発明に係る軸ずれ角推定方法では、まずレーダ装置の観測値に基 づいて移動体の移動方向成分の相対速度がほぼ等しくなるように複数個の反射点を 見出す。続いて、このようにして見出された複数個の反射点のレーダ視線方向成分 の相対速度と方位角度のみを組み合わせてレーダの軸ずれ角を求めるようにした。 この過程にお!、ては、レーダ装置を搭載する移動体の移動速度や速度誤差倍率な どのデータを使用しない。したがって、レーダ装置を搭載する移動体の移動速度が 得られない場合であっても、軸ずれ角の推定を安定して行うことが可能となるのであ る。
図面の簡単な説明
[0011] [図 1]この発明の実施の形態 1の作用原理を説明するための概念図である。
[図 2]この発明の実施の形態 1の構成を示すブロック図である。
[図 3]この発明の実施の形態 1におけるレーダ反射体の相対速度と方位角度の分布 の例を示す図である。
[図 4]この発明の実施の形態 2における自車両と先行車両、車載レーダの覆域の位 置関係の例を示す図である。
[図 5]この発明の実施の形態 2におけるレーダ反射体の相対速度と方位角度の分布 の例を示す図である。
[図 6]この発明の実施の形態 3におけるレーダ反射体の相対速度と方位角度の分布 の例を示す図である。
[図 7]この発明の実施の形態 4の構成を示すブロック図である。
[図 8]この発明の実施の形態 5の構成を示すブロック図である。
[図 9]この発明の実施の形態 6の構成を示すブロック図である。
符号の説明
[0012] 1 レーダ装置 1、
2 軸ずれ角推定装置、
4、 41、 42、 43、 44 反射点選択部、
5、 51、 52、 53、 54 軸ずれ角算出部、
6、 61 軸ずれ角真値推定部。
発明を実施するための最良の形態
[0013] 以下、この発明の実施の形態を図を用いて説明する。
実施の形態 1.
[0014] 初めに、この発明の実施の形態 1による軸ずれ角推定方法の作用原理について説 明する。図 1はこの作用原理を説明するための概念図である。図において、レーダ装 置 1は例えば自動車などの移動体に搭載されたレーダ装置である。また反射点 1と反 射点 2は、レーダ装置 1によって検出されたレーダ波の反射点である。
[0015] レーダ装置 1は、移動体の進行方向に存在する他の車両や道路設置物などの障 害物を検出するものである。レーダ装置 1が障害物や他の車両を検出すると、その検 出結果はレーダ装置 1の外部にある装置、例えば車間距離維持装置や自動航行装 置などに出力されて、速度制御や安全性向上などの用に供される。
[0016] このような目的を遂げるために、レーダ装置 1は反射点 1や反射点 2の相対速度や 方位角度を算出する機能を有している。かかるレーダ装置は、例えばミリ波車載レー ダなどとして普及しつつあり、その構成や動作については広く知られているので、ここ では詳述しない。
[0017] ここで、レーダ装置 1を搭載する移動体は未知の速度 Vで進行方向に移動している ものとする。またレーダ装置 1は所定のレーダ基準方向を有している。レーダ基準方 向とは、反射点を観測して得られる方位角度の基準となる方向である。レーダ基準方 向は、移動体の進行方向と一致していることが望ましいが、設置誤差によりずれが生 じることが多い。ここでは、レーダ基準方向と移動体の移動方向とのなす角(軸ずれ 角)を とする。
[0018] なお、この発明による軸ずれ角の推定方法はアジマス方向の軸ずれ角の推定だけ でなぐエレベーション方向の軸ずれ角の推定にも用いることができるものであるが、 ここでは説明を分力りやすくするために、軸ずれ角 φにはアジマス成分だけが含まれ るちのとする。
[0019] 説明を簡単にするために、反射点 1と反射点 2はともに静止しているものとする。こ の場合、移動体を基準に考えれば反射点 1と反射点 2はともに速度 Vで移動している ことと等価となる。レーダ装置 1によって検出された反射点 1のレーダの視線方向成 分の相対速度(レーダ装置 1に対する相対速度)を q、反射点 2の視線方向成分の 相対速度を q
2とし、さらにレーダ装置 1によって検出された反射点 1の方位角度を 0
1
、反射点 2の方位角度を 0 とすると、図 1から分かるように ν、 φ、 Θ 、q、 0 、qの
2 1 1 2 2 間には式(1)、(2)に示す関係が成立する。
[0020] [数 1] ql = vcos( - φ) ( i )
Figure imgf000007_0001
なお、以降の説明において、特に断らない限り、単に相対速度といった場合には、レ ーダの視線方向成分の相対速度を指すものとする。
[0021] 式(1)と式(2)は 2個の未知数 Vと φを含む連立方程式である力 式(1)と式(2)と を、 Vを消去するように式変形することで、式(3)が得られる。
[0022] [数 2] q / q2 = cos( - φ) I cos(02 - φ) ( 3 )
[0023] 式(3)は 1つの未知数 φのみに関する方程式なので、この式を φにつ!/、て解くこと で、速度 Vとは独立に φを決定できる。すなわちレーダ装置を搭載する移動体の速度 を求めることができない場合であっても、反射点 1と反射点 2の少なくとも 2つの観測 値を組み合わせることで、レーダ波に基づく観測値のみから自律的に軸ずれ角が算 出できるのである。
[0024] し力しながら、以上の議論は反射点 1と反射点 2とが、ともに静止点であるという前提 の上に成り立つていることに注意すべきである。その結果として、式(1)と式(2)にお いて速度 Vを消去することが可能となり、式 (3)を導出できたのである。ただし、反射 点 1と反射点 2とが静止点でなくても、反射点の移動体の移動方向成分の相対速度 が等しければ、同じように式(3)を導出される。この結果、レーダ装置 1の軸ずれ角 φ を算出することが可能となる。
[0025] さらには、反射点 1の移動体移動方向成分の相対速度と反射点 2の移動体移動方 向成分の相対速度とが完全に等しくなくても、その差が十分に無視できる程度に微 小であれば、式(3)に基づいて軸ずれ角を算出することができるのである。
[0026] ところで、反射点 1の移動体の移動方向成分の相対速度を Vとし、反射点 2の移動 体の移動方向成分の相対速度を Vとすると、 Vと Vは式 (4)、式(5)で与えられる。
2 1 2
[0027] [数 3] v】 =ql/cos(0l -φ) (4) v2 = q2 / cos(92 - φ) (5)
[0028] ここで、 0 、q、 0 、 qはレーダ装置 1によって算出されるため、既知の値として扱
1 1 2 2
うことができるが、 φは未知のままである。したがって異なる 2つの反射点の速度 Vと V とがほぼ等しいか否かを直接的に判断することは困難である。
2
[0029] このような理由から、従来の方法では式 (3)を直接解くことで軸ずれ角を算出するこ とができな力つた。その代替手段として、移動体の速度情報を用いて,まずレーダ反 射体が静止物力どうかを判断しておき、移動体の速度によらず速度センサの誤差倍 率 (真値 Vとセンサ力 得られる推定値 Vhの比 vZVh)がほぼ等しくなることに着目し て軸ずれ角 φを求める方法を採用していた。すなわち速度センサによる 2つの反射 点の相対速度の真値を V、 V、これら 2つの反射点の推定値を Vh、 Vhとすれば、 V /Vh =v /Vhとなる。そこで、式 (4)の両辺を Vhで割って、式(6)を求め、さら
1 1 2 2 1
に式(5)の両辺を Vhで割って、式(6)を求める。
2
画 ν,/Vh, =( 1/ ¾1)/cos ( — (6)
v2 / Vh2 =、q2 / Vh2、 / co 2 - φ、 (7)
[0030] v /Vh =v /Vhにより、式(6)の右辺と式(7)の右辺は等しくなる。従来の方法
1 1 2 2
の軸ずれ角算出方法は、このことに基づいて φを算出していた。
[0031] 一方、この発明の実施の形態 1による軸ずれ角推定装置では、反射点の分布の性 質に着目することで力かる問題を解決した。以下、この発明の実施の形態 1による軸 ずれ角推定装置の詳細な説明を通じて、この点について明らかにする。
[0032] 図 2は、この発明の実施の形態 1による軸ずれ角推定装置の構成を示すブロック図 である。図においてレーダ装置 1は上述の作用原理で説明したものと機能的に同等 である。
[0033] 軸ずれ角推定装置 2は、レーダ装置 1の軸ずれ角を推定する装置であって、記憶 部 3、反射点選択部 4、軸ずれ角算出部 5、軸ずれ角真値推定部 6とを備えている。 記憶手段 3はレーダ装置 1が算出した反射点の相対速度と方位角度を初めとする観 測値を記憶する部位であって、応答性能の速 、ランダムアクセスメモリなどを好適な 例とする記憶素子や回路である。
[0034] 反射点選択部 4は、記憶部 3に記憶される反射点の観測値の中から、軸ずれ角の 算出に用いる観測値を選択する部位である。軸ずれ角算出部 5は、反射点選択部 4 が選択した観測値を用いて軸ずれ角を算出する部位である。軸ずれ角真値推定部 6 は、軸ずれ角算出部位 5により算出された軸ずれ角(軸ずれ角の候補値)が複数ある 場合に、複数の軸ずれ角候補値を用いて軸ずれ角の真値を推定する部位である。
[0035] なおここでいう部位とは、直接的には所定の機能や作用を実現するための専用の 回路又は素子を意味している。し力しながら、今日の技術水準をもってすれば、汎用 的な CPU (Central Processing Unit)あるいは DSP (Digital Signal Processor)とソフト ウェアであるコンピュータプログラムとを組み合わせて同等の機能を実現することは容 易であることが理解されよう。その場合は、 CPUや DSPなどの制御手段を設けておき 、反射点選択部 4や軸ずれ角算出部 5、軸ずれ角真値推定部 6の各部位に相当する 処理を制御手段に実行させる命令コードをコンピュータプログラムに設けるように構 成すればよい。したがって、必ずしも専用の回路や素子の構成のみに限定解釈すベ きではない。
[0036] また補正装置 7は、レーダ装置 1が算出する観測値と軸ずれ角推定装置 2が算出 する軸ずれ角とに基づいて、反射体の方位角度を補正して補正結果を出力する装 置である。最終的には、補正装置 7の出力結果が速度制御や安全性向上などの用 に供されること〖こなる。
[0037] 続いて、軸ずれ角推定装置 2の動作について説明する。レーダ装置 1によって検出 された反射点の観測値は記憶部 3に記憶される。反射点選択部 4は記憶部 3に観測 値が記憶されている反射点の中から、反射点の性質上、その移動体移動方向成分 の相対速度がほぼ等し 、と考えられる反射点を 2つ以上選択する。ここで 、う反射点 の性質とは次の通りである。
[0038] 移動体が自動車のように路面を走行して 、る場合、他の車両や、標識やガードレー ルなどの道路設置物、路面そのものがレーダ反射体となるものと考えられる。図 3はレ ーダ装置 1が、道路を走行レーンに沿って移動する自動車に搭載された場合に検出 される反射体の相対速度と方位角度の分布の例を示す図である。
[0039] 路面にしても道路設置物にしても、あるいは他の車両にしても、レーダ反射体として は一定以上の大きさを有しているので、同一のレーダ反射体上に複数の反射点が観 測される場合がありうる。同一のレーダ反射体上に存在する複数の反射点は、その移 動体の移動方向成分の相対速度がほぼ等しくなるはずである。このような反射体とし て最も顕著なものは路面である。多くの場合において、路面はレーダ反射体として最 大のものとなるため、路面上に存在する反射点が全反射点に占める割合は大きいと 考えられる。
[0040] このように、観測された反射点の分布にお!、て、標本の大部分を路面上の反射点 が占めることになるので、路面上の反射点が相対速度の分布において中央値となる 相対速度を有する反射点となる場合が多い。またそれに加えて、この中央値の周囲 には、同じく路面上に存在する反射点が分布して ヽるはずである。
[0041] そこで反射点選択部 4は、まず記憶部 3に記憶される反射点の相対速度の分布に おいて、中央値となる相対速度を基準速度と定める。続いて、この基準速度を中心に 一定の幅を有する値域 (速度ゲートという)を設定する。反射点選択部 4は、この値域 に相対速度が含まれる反射点を、基準とした反射点にほぼ等しい移動体移動方向 成分の相対速度を有する反射点であると仮定して選択する。
[0042] 軸ずれ角算出部 5は、反射点選択部 4により選択された反射点の方位角度に基づ いて、レーダ装置 1の軸ずれ角を算出する。軸ずれ角を算出するには、式(3)を φに ついて解けばよい。ただし式(3)は非線形方程式なので、解析的に解くのではなぐ 近似解を求める方法で解いた方が有利である。このような近似解を算出する方法とし ては各種の方法が広く知られて!/、るので、ここでは詳述しな!、。
[0043] このように、軸ずれ角推定装置 2では、路面上などに反射点の多くが存在するという 移動体搭載レーダの性質に着目して、移動体の移動方向成分の相対速度がほぼ等 しい反射点を選択することとした。このように、この発明の実施の形態 1による軸ずれ 角推定方法では、レーダ装置 1の移動体の速度情報を用いずに、軸ずれ角算出に 必要な基準となる反射点を選択し、移動体の速度を取得しないでも、軸ずれ角を算 出することが可能となったのである。
[0044] 以上がこの発明の実施の形態 1による軸ずれ角推定装置 2の最も基本となる特徴 の説明である。ここまでの構成要素のみによっても、移動体の移動速度を得ることが できない場合であっても、軸ずれ角を算出することができることが理解されよう。
[0045] なお、式(3)によれば、 2つの反射点のレーダ視線方向の相対速度と方位角度が 得られれば、軸ずれ角の算出が可能である力 基準速度を中心とする一定の幅を有 する値域内に含まれる反射点の個数が 2つを超える場合が問題となる。このような場 合には、反射点の選択の仕方によって、異なる軸ずれ角 φが算出されることになるか らである。しカゝしながら、このような場合であっても軸ずれ角真値推定部 6を設けてい るので、算出結果に矛盾を生じさせることなぐ信頼性の高い軸ずれ角の推定を可能 としている。以下にこの点について説明する。
[0046] 基準速度を中心とする一定の幅を有する値域内に含まれる反射点の個数が 2つを 超える場合、反射点選択部 4はそのような反射点を、例えば無条件にすべて選択す るようにしてもよい。軸ずれ角算出部 5は、反射点選択部 4が選択した反射点を 2個ず つ組み合わせて、組み合わせた反射点から軸ずれ角をそれぞれ算出する。
[0047] 例えば、反射点選択部 4が選択した反射点を、例えば第 1の反射点、第 2の反射点 、第 3の反射点とする。そして軸ずれ角算出部 5は、第 1の反射点と第 2の反射点から 軸ずれ角を求めるだけでなぐ第 1の反射点と第 3の反射点、あるいは第 2の反射点 と第 3の反射点力 も軸ずれ角を算出する。第 1の反射点と第 2の反射点力 求めた 軸ずれ角を第 1の軸ずれ角とし、第 1の反射点と第 3の反射点、あるいは第 2の反射 点と第 3の反射点のいずれかの組み合わせ力 求めた軸ずれ角を第 2の算出角とす る。
[0048] 軸ずれ角真値推定部 6は、軸ずれ角算出部 5によって算出された第 1の軸ずれ角と 第 2の軸ずれ角から軸ずれ角の真値を推定する。軸ずれ角の真値推定方法としては 、例えば第 1の軸ずれ角と第 2の軸ずれ角の平均値を算出する方法や、第 1の軸ず れ角と第 2の軸ずれ角との二乗誤差を最小とするような軸ずれ角を算出する方法 (最 小二乗法としてよく知られている)、 TLS(Total Least Squares)法を用いるとよい。また 、軸ずれ角算出部 5が算出する軸ずれ角が 3つ以上ある場合であっても同様である。
[0049] このようにして算出された軸ずれ角の真値は、最終的に軸ずれ角推定装置 2の出 力値として補正装置 7に出力される。補正装置 7はレーダ装置 1の観測値 Θから軸ず れ角の真値を加減した値を算出し、外部の速度制御装置等に出力する。
[0050] このように、軸ずれ角真値推定部 6を設けることで、軸ずれ角の算出に用いる反射 点の数が増えるにつれて、軸ずれ角の推定の信頼性を向上させることが可能となる。
[0051] 以上から明らかなように、この発明の実施の形態 1による軸ずれ角推定装置によれ ば、反射点の分布の性質に基づいて、移動体の移動方向成分の相対速度が等しい 反射点を選択することとしたので、移動体の速度を別途取得せずにレーダ装置の軸 ずれ角を推定することができるのである。
[0052] なお、レーダ装置 1が所定のサンプリング間隔で反射点の観測を行うのであれば、 軸ずれ角真値推定部 6の出力を軸ずれ角算出部 5にフィードバックして、例えばカル マンフィルタのような追尾処理によって選択する反射点を絞りこむようにしてもょ 、。
[0053] 実施の形態 2.
実施の形態 1の軸ずれ角推定装置では、相対速度の中央値を基準速度として反射 点を選択したが、このような方法に替えて、最も相対速度の大きい反射点を基準速度 とするようにしてもよい。すなわち、最も相対速度の大きい反射点を路面上の反射点 と仮定し、この反射点の相対速度を基準に速度ゲート (相対速度との差が所定値以 内となる値域)を設定する。そして、速度ゲートに含まれる複数の反射点を反射点選 択部 4に選択させるのである。
[0054] 例えば、高速道路を走行中の自動車など、他の車両との速度差に比べて路面との 速度差がはるかに大きい場合が生じる。このような場合は、最も相対速度の大きい反 射点は路面上の反射点となるから、このような仮定を採用することが可能となる。
[0055] 例えば、図 4に示すように、自車両 100の直前を大型車 102が走行している場合、 レーダ装置 1の覆域 102のうち、路面の占める割合が小さくなる。このような場合、反 射点の分布は図 5に示すような状態となり、相対速度の中央値となる反射点が路面を レーダ反射体とする反射点ではない可能性が高くなる。その結果、中央値を基準に 速度ゲートを設定し、その中から軸ずれ角を算出するのに適切な反射点を選択する ことができな 、場合も生ずる。
[0056] このような場合であっても、相対速度が最大の反射点を基準に設定された速度ゲー トに含まれる反射点はともに静止物であると考えられる。したがって、このような反射 点を複数選択できれば、この反射点の間には相対速度の差がほとんどない。したが つてこれらの反射点の間には式 (3)が成立する。このように得られた式(3)を解くこと で、軸ずれ角 φを算出することが可能となる。したがって相対速度の中央値を用いる と同様に、効果的な軸ずれ角推定処理を実現できる。
[0057] なお、この実施の形態 2では、中央値に替えて、最大値を基準速度として定める構 成につ 、て示したが、その他にも観測値の標本の集団の性質を表現する各種の統 計値を使用することも可能である。
[0058] 実際には,異常観測値を排除するために,最大値の代わりに例えば 10番目に大き な速度を基準速度に用いるような構成が,より確実な推定につながる場合がある.
[0059] 実施の形態 3.
実施の形態 1又は 2の軸ずれ角推定方法では、いずれかの反射点の相対速度を 基準速度とし、この基準速度を中心に一定の幅を有する値域内に相対速度が含まれ る反射点を選択する構成とした。このような方法に替えて、相対速度の分布において 度数が所定値以上となる値域を見出して、この値域を速度ゲートとして定め、この値 域に属する反射点を反射点選択部 4に選択させるようにしてもよい。
[0060] 式(3)は移動体の移動方向成分の相対速度がほぼ等しい 2つの反射点間で成立 する。したがって、路面上の反射点に限らず、所定の大きさを超える同一のレーダ反 射体上の複数の反射点を選択するようにしてもょ 、。このようなレーダ反射体に対し て、レーダ装置 1は複数の反射点を観測することになろう。
したがって、相対速度の分布において度数が所定以上となる値域を検出し、検出し た値域に属する反射点を選択することで、同一のレーダ反射体上の反射点を選択す ることが可能となる。つまり、移動体の移動方向成分の相対速度がほぼ等しい反射点 を複数選択することが可能となり、選択した反射点の観測値に基づいて軸ずれ角推 定処理を行うことができるのである。
[0061] さらに、他の車両上の複数の反射点を選択する場合、レーダ反射体の大きさは、路 面ほど大きくはならないという性質もある。図 6に示した速度ゲートに含まれる反射点 はこのような他の車両上の反射点である。したがって、方位角度の分布を合わせて利 用するようにしてもよい。すなわち、相対速度とともに方位角度の値が近い複数の反 射点を採用すれば、同一のレーダ反射体力 反射されたものとなる可能性が高くなり 、軸ずれ角推定の精度が向上する。
[0062] このように、相対速度の度数分布に基づ!/、て軸ずれ角推定に用いる反射体を選択 するようにすることで、路面上の反射点がほとんどな 、特殊な状況であっても軸ずれ 角を推定することができるようになる。例えば自車両の前に大きなトラックが走行して おり、レーダ観測面の相当の領域を遮られて ヽるような場合にも軸ずれ角を推定する ことができる。
[0063] 実施の形態 4.
実施の形態 1一 3による軸ずれ角推定方法は、移動体の移動方向成分の相対速度 がほぼ等しいと考えられる複数個の反射点が存在する値域を定め、この値域に相対 速度が含まれる反射点を選択し、選択された反射点に基づいて軸ずれ角を推定する 構成とした。しカゝしながら、軸ずれ角推定に用いる反射点を選択する値域の数を 1つ に限定する必要はない。
[0064] すなわち、反射点の相対速度の分布において基準速度を複数設けておく。仮にこ のような基準速度を第 1の基準速度、および第 2の基準速度と呼ぶ。そして第 1及び 第 2の基準速度を中心に一定の幅を有する複数の値域を設定し、これらの値域に属 する複数の反射点をそれぞれ選択するのである。
[0065] そして、第 1の基準速度を中心とする値域内から選択された反射点の方位角度に 基づいて第 1の軸ずれ角を算出し、さらに第 2の基準速度を中心とする値域内から選 択された反射点の方位角度に基づいて第 2の軸ずれ角を算出した上で、算出された 第 1及び第 2の軸ずれ角に基づいて、レーダ装置の軸ずれ角の真値を推定する。こ の発明の実施の形態 4による軸ずれ角推定方法は力かる特徴を有するものである。
[0066] 図 7は、この発明の実施の形態 4による軸ずれ角推定装置の構成を示すブロック図 である。図において、反射点選択部 41は所定の相対速度を基準とする速度ゲート内 に含まれる反射点を選択する部位であって、選択した複数の反射点を反射点 11とし て出力し、選択しな力つた反射点を反射点 12として出力するようになっている。反射 点選択部 42は反射点選択部 41が出力した反射点 12の中から所定の相対速度を基 準とする速度ゲート内に含まれる反射点を選択する部位である。
[0067] 軸ずれ角算出部 51は、反射点 11の方位角度に基づいて軸ずれ角 φ を算出する 部位である。また軸ずれ角算出部 52は、反射点 13の方位角度に基づいて軸ずれ角 Φ を算出する部位である。その他、図 2と同一の符号を付した構成要素については
2
実施の形態 1と同様であるので、説明を省略する。
[0068] 続いて、この発明の実施の形態 4の軸ずれ角推定装置の動作について説明する。
反射点選択部 41は実施の形態 1と同様に、記憶部 3によって記憶される反射点の相 対速度のうち、中央値となる相対速度を基準速度 (第 1の基準速度)として、上下一 定の値域幅で速度ゲートを設定する。そしてこの速度ゲートに相対速度が含まれる 複数の反射点を選択して、反射点 11として出力する一方で、記憶部 3に記憶される 反射点のうち、反射点 11として選択されなかった反射点を反射点 12として出力する 。多くの場合、反射点 11は路面をレーダ反射体とする反射点となる。しかし、実施の 形態 2で示したように、レーダ装置 1を搭載する移動体の直前に大型車両が先行して いて、レーダの覆域の多くをこの大型車両に遮られる場合は、大型車両をレーダ反 射体とする反射点を反射点 11として選択することになると考えられる。
[0069] 反射点選択部 42は、反射点 12の相対速度のうち、中央値となる相対速度を基準 速度 (第 2の基準速度)として上下一定の値域幅で再び速度ゲートを設定する。そし てこの速度ゲートに相対速度が含まれる複数の反射点を選択して、反射点 13として 出力する。
[0070] 軸ずれ角算出部 51は反射点 11として選択された複数の反射点の方位角度に基 づいて実施の形態 1と同様にして軸ずれ角 φ (第 1の軸ずれ角)を算出する。また同 様に、軸ずれ角算出部 52は反射点 13として選択された複数の反射点の方位角度に 基づいて軸ずれ角 φ (第 2の軸ずれ角)を算出する。
2
[0071] 続いて軸ずれ角真値推定部 6は、軸ずれ角 φ と軸ずれ角 φ との平均を求め、こ
1 2
の平均値を軸ずれ角推定装置 2の最終的な出力値として補正装置 7に出力する。
[0072] この方法によれば、速度ゲートを複数設定するので、それぞれの速度ゲートの速度 差を小さくすることが可能となり、その結果、速度ゲートに含まれる反射点間の速度差 力 、さくなる。このため、各速度ゲートから算出される軸ずれ角の推定精度が向上す る。さらに、そのようにして各速度ゲートから算出された軸ずれ角を用いて、軸ずれ角 を推定するので、軸ずれ角の推定精度が高くなる。
[0073] なお、この実施の形態 4では、各速度ゲートに含まれる反射点の中から、中央値と なる相対速度を選択して基準速度として採用する構成を示したが、実施の形態 2と同 じょうに最大値や各種の統計値を使用してもよ 、ことは 、うまでもな 、。
[0074] また速度ゲート毎に異なる種類の統計値を用いてもよい。例えば反射点選択部 41 は路面をレーダ反射体とする反射点を選択する可能性が高いと想定される場合には 、相対速度の最大値を基準とし、また反射点選択部 42は中央値となる相対速度を基 準とするのである。ある 、はその逆の組み合わせでもよ!/、。
[0075] さらに速度ゲート毎に異なる値域幅を採用してもよい。また速度ゲートによっては方 位角度の分布も合わせて基準として用いてもょ 、。
[0076] 実施の形態 5.
実施の形態 1乃至 4に示した軸ずれ角推定方法は、軸ずれ角を推定する上で移動 体の移動速度を取得する必要がないことを特徴としている。し力しながら、軸ずれ角 の算出に使用する複数の反射点間の相対速度はほぼ等しいことを前提としている。 したがって、これらの反射点の観測値を収集する間の移動体の移動速度はほぼ一定 であることが望ましい。
[0077] さらには、軸ずれ角の算出に用いる複数の反射点の方位角度が同じ基準の元に取 得されたものである必要があるので、これらの観測値を収集する間、直進運動を行う ことが望ましい。
[0078] ところが、レーダ装置 1を自動車に搭載する場合、道路事情や交通流の影響により 、長時間連続して直進運転を行えない場合も多ぐそのために十分な観測値を収集 できない場合も想定される。この結果、推定精度が劣化し、安全性に影響を及ぼすこ とも考免られる。
[0079] そこで、実施の形態 5では、異なる時間帯における反射点を組み合わせることで、 観測値の収集の間に速度が変化することを許容し、さらに進行方向が変化することも 許容する軸ずれ角推定装置について説明する。
[0080] 図 8は、この発明の実施の形態 5の軸ずれ角推定装置の構成を示すブロック図であ る。図において、反射点選択部 43は時間帯 1一時間帯 Lのそれぞれにおいて、所定 の反射点を複数個選択する部位である。また軸ずれ角算出部 53は、時間帯 n (nは 1 一 Lの 、ずれかの自然数)にお 、て選択された反射点の方位角度を用いて、時間帯 nにおける軸ずれ角 φ を算出する部位である。時間帯 1一 Lの各時間帯における軸 ずれ角 φ は時間帯別軸ずれ角記憶部 54に記憶されるようになっている。
[0081] また軸ずれ角真値推定部 61は、算出された時間帯別の軸ずれ角 φ — φ 力も真
1 し 値 Φを推定する部位である。その他、図 2と同一の符号を付した構成要素について は実施の形態 1と同様であるので、説明を省略する。
[0082] 続いて、この発明の実施の形態 5による軸ずれ角推定装置の動作について説明す る。ここで、時間帯 1一時間帯 Lで、移動体の移動速度ならびに移動体の進行方向 角度が変化している状況を考える。ただし、移動体の移動速度の変化率 (加速度)並 びに移動体の運動の曲率と比較して、時間帯 1一時間帯 Lの各時間帯内は十分短 いものとする。その結果、各時間帯内では移動体の移動速度はほぼ一定とみなしうる ものとし、さらに移動体は直進運動を行っているものとみなしうる。
[0083] 記憶部 3は、時間帯 1一時間帯 Lのそれぞれにお 、て観測された反射点の相対速 度と方位角度とを記憶している。反射点選択部 43は、実施の形態 1あるいは実施の 形態 2と同じように、記憶部 3に記憶されている時間帯 n (nは 1一 Lのいずれかの自然 数)における反射点の相対速度のうち、中央値や最大値となる相対速度を基準速度 として、この基準速度を中心として一定の幅を有する値域を速度ゲートとして設定し、 この速度ゲートに含まれる反射点を複数個選択して軸ずれ角算出部 53に出力する。
[0084] いま、このような時間帯として、第 1の時間帯 nlと第 2の時間帯 n2とを考える。ただ し nlと n2はともに 1一 Lのいずれかの自然数である。軸ずれ角算出部 53は、時間帯 nlにおいて反射点選択部 43が選択した複数の反射点に基づいて、実施の形態 1と 同様に第 1の軸ずれ角 φ を算出し、時間帯別軸ずれ角記憶部 54に記憶させる。ま
nl
た、時間帯の識別子である nlを軸ずれ角真値推定部 61に出力する。
[0085] また軸ずれ角算出部 53は、時間帯 n2において反射点選択部 43が選択した複数 の反射点の方位角度に基づいて、第 2の軸ずれ角 φ を算出し、時間帯別軸ずれ角 n2
記憶部 54に記憶させる一方で、時間帯の識別子である n2を軸ずれ角真値推定部 6 1に出力する。
[0086] 軸ずれ角真値推定部 61は、軸ずれ角算出部 53が出力する時間帯識別子 nが と 等しくなつた場合に、その時点で時間帯別軸ずれ角記憶部 54に記憶されて 、る軸 ずれ角 φ — φ の平均値として軸ずれ角 φを算出する。すなわち、具体的には [数 5]
Figure imgf000018_0001
とする。
[0087] このように、移動速度が変化している移動体あるいは移動方向が変化している移動 体であっても、観測時間を十分短い間隔に区切ることにより、移動体の移動方向成 分の相対速度がほぼ等しくなるように反射点に絞り込むことが可能となる。この結果、 絞り込んだ反射点のレーダ視線方向の相対速度と方位角度力 軸ずれ角を算出す ることが可能となる。
[0088] 特に、軸ずれ角算出部 5において、 3個以上の反射点に関する連立方程式カも最 小二乗法で未知数 Vと φを推定する場合には、 Vについては時間帯毎に異なる推定 値となりえる。しかし、軸ずれ角 φは時間帯に依らず一定となる( φ = φ )ことに本 nl n2 発明は着目したのである.
[0089] このように、この発明の実施の形態 5による軸ずれ角推定方法では、長時間連続し て定速運転または直進運転を行えな ヽ場合でも、所定の時間幅の時間帯内で観測 された反射点に基づいて軸ずれ角を算出することとした。さらに各時間帯力も算出さ れた複数の軸ずれ角を平均するので、十分な推定精度を確保できるようになつたの である.
[0090] なお、移動体の移動速度や移動方向の変動はな!/、場合でも、例えば自車両の直 前にあって、レーダ覆域の大部分を遮っている大型車両が加減速、あるいは左右に 向きを変えるような状況であっても、この構成を適用することが可能となる。 [0091] 実施の形態 6.
実施の形態 1から 5では、前もって移動体の移動方向成分の相対速度がほぼ等しく なるように複数個の反射点を選択しておき、選択された反射点のレーダ視線方向成 分の相対速度と方位角度とに基づ 、て上記軸ずれ角を算出する構成として 、る。し 力しながら、このような構成の他、先に反射点を 2つ組み合わせて軸ずれ角を算出し ておき、算出された軸ずれ角が一定の範囲に収束するような反射点の組を後から選 ぶような構成を採用してもよい。実施の形態 6による軸ずれ角推定装置はかかる特徴 を有するものである。
[0092] 図 9は、実施の形態 6による軸ずれ角推定装置の構成を示すブロック図である。図 において、軸ずれ角算出部 54はレーダ装置 1が検出した反射点から 2つの反射点を 組み合わせて複数の軸ずれ角を算出する部位である。反射点選択部 44は軸ずれ角 算出部 54が算出した複数の軸ずれ角の分布に基づいて、軸ずれ角の真値算出に 使用可能な反射点を選択する部位である。その他図 1と同一の符号を付した構成要 素については、実施の形態 1と同様である。
[0093] 続いて動作について説明する。軸ずれ角算出部 54は、記憶部 3によって記憶され る反射点の中から 2つの反射点を選択し、これらの反射点の移動体の移動方向成分 の相対速度がほぼ等しいと仮定して式(3)の関係力も軸ずれ角 φを算出する。ここで 、 2つの反射点の選択方法としては、記憶部 3によって記憶されている反射点の中か ら 2つの反射点の組み合わせをすベて選択するようにする。
[0094] ただし反射点の個数が膨大になる場合もある。このような場合は、何らかの方法で 反射点の個数を予め絞ってもよい。例えば、実施の形態 5で示したように、所定の時 間帯で検出された反射点のみに絞って 2つの反射点を組み合わせるようにしてもよい 。またいずれかの反射点のレーダ視線方向の相対速度を基準速度として一定の幅を 有する値域を設定し、その値域内に入る反射点のみについて 2つの反射点を組み合 わせるようにしてちょい。
[0095] 続いて反射点選択部 44は、軸ずれ角算出部 54によって算出された軸ずれ角の収 束度合いに基づいて反射点を選択する。すなわち、軸ずれ角算出部 54が算出した 軸ずれ角が多く分布する角度範囲を軸ずれ角の分布から求め、この角度範囲に属 する反射点を選択する。
[0096] 反射点の移動体の移動方向成分の相対速度がほぼ等 、2つ以上の反射点は一 定の大きさを有する同一のレーダ反射体上に存在することが多い。異なるレーダ反 射体上の反射点であって、移動体の移動方向成分の相対速度も異なる反射点を組 み合わせて軸ずれ角を算出すると、真値と異なる結果となる力 このような軸ずれ角 が算出される回数は真値の周辺の軸ずれ角が算出される回数に比べて低くなると予 想される。
[0097] したがって実際に軸ずれ角を算出してみて、その収束状況力 反射点を選択する ことで、式 (3)を満たさない反射点の組み合わせを選択することを抑制し、より信頼性 の高い軸ずれ角を算出することにつながるのである。
[0098] 最後に軸ずれ角真値推定部 6は、軸ずれ角算出部 54が算出した軸ずれ角のうち、 反射点選択部 44が選択した反射点に対応する軸ずれ角から真値を推定する。真値 推定の方法は実施の形態 1から 5までで述べた方法と同様である。
[0099] なお、この実施の形態 6では、軸ずれ角算出部 54において反射点を 2つ組み合わ せて軸ずれ角を算出する方法について説明した。しかしこの他にも、実施の形態 1一 5と同様に、反射点を 3つ以上組み合わせて最小二乗法などの方法を用いて軸ずれ 角を算出するようにしてもょ 、ことは 、うまでもな!/、。
産業上の利用可能性
[0100] このように、この発明に係る軸ずれ角推定方法は、特に移動体に搭載するレーダ装 置に有用である。

Claims

請求の範囲
[1] 移動体に搭載されたレーダ装置の軸ずれ角を推定する軸ずれ角推定方法において 上記レーダ装置によりレーダ視線方向成分の相対速度と方位角度が検出された反 射点であって、上記移動体の移動方向成分の相対速度がほぼ等しくなる複数個の 反射点のレーダ視線方向成分の相対速度と方位角度とに基づいて上記軸ずれ角を 算出する軸ずれ角推定方法。
[2] 請求の範囲第 1項に記載の軸ずれ角推定方法において、
上記レーダ装置によりレーダ視線方向成分の相対速度と方位角度が検出された反 射点の中から上記移動体の移動方向成分の相対速度がほぼ等しくなるように複数個 の反射点を選択し、選択された反射点のレーダ視線方向成分の相対速度と方位角 度とに基づ!/、て上記軸ずれ角を算出する軸ずれ角推定方法。
[3] 請求の範囲第 2項に記載の軸ずれ角推定方法において、
レーダ装置により検出されたいずれかの反射点のレーダ視線方向成分の相対速度 を基準速度と定め、この基準速度を中心に一定の幅を有する値域内にレーダ視線 方向成分の相対速度が含まれる複数の反射点を選択し、選択された反射点のレー ダ視線方向成分の相対速度と方位角度とに基づいて上記軸ずれ角を算出すること を特徴とする軸ずれ角推定方法。
[4] 請求の範囲第 3項に記載の軸ずれ角推定方法において、
レーダ装置により検出された反射点のレーダ視線方向成分の相対速度の分布の 中央値を基準速度と定めることを特徴とする軸ずれ角推定方法。
[5] 請求の範囲第 3項に記載の軸ずれ角推定方法において、
レーダ装置により検出された反射点のレーダ視線方向成分の相対速度の分布の 最大値を基準速度と定めることを特徴とする軸ずれ角推定方法。
[6] 請求の範囲第 3項に記載の軸ずれ角推定方法において、
レーダ装置により検出された反射点のレーダ視線方向成分の相対速度の分布に ぉ 、て反射点の度数が所定値以上となる相対速度の値域を求め、レーダ視線方向 成分の相対速度がこの値域に含まれる複数の反射点を選択することを特徴とする軸 ずれ角推定方法。
[7] 請求の範囲第 2項に記載の軸ずれ角推定方法において、
レーダ装置によって一定時間内に検出された反射点の中から移動体の移動方向 成分の相対速度がほぼ等しくなるように複数個の反射点を選択することを特徴とする 軸ずれ角推定方法。
[8] 請求の範囲第 2項に記載の軸ずれ角推定方法において、
レーダ装置により検出された反射点の移動体のレーダ視線方向の相対速度と方位 角度力 算出されるレーダ装置の軸ずれ角が所定の値域内に分布するように複数個 の反射点を選択することを特徴とする軸ずれ角推定方法。
[9] 移動体に搭載されたレーダ装置の軸ずれ角を推定する軸ずれ角推定装置において 上記レーダ装置によりレーダ視線方向成分の相対速度と方位角度が検出された反 射点であって、上記移動体の移動方向成分の相対速度がほぼ等しくなる複数個の 反射点のレーダ視線方向成分の相対速度と方位角度とに基づいて上記軸ずれ角を 算出する軸ずれ角算出手段を備えたことを特徴とする軸ずれ角推定装置。
[10] 請求の範囲第 1項に記載の軸ずれ角推定方法において、
レーダ装置により相対速度と方位角度が検出された反射点の中から移動体の移動 方向成分の相対速度がほぼ等しいなるように複数個の反射点を選択する反射点選 択手段を備え、
軸ずれ角算出手段は、上記反射点選択手段によって選択された反射点のレーダ 視線方向成分の相対速度と方位角度に基づいてレーダ装置の軸ずれ角を算出する ことを特徴とする軸ずれ角推定装置。
[11] 請求の範囲第 10項に記載の軸ずれ角推定装置において、
反射点選択手段は、レーダ装置により検出されたいずれかの反射点のレーダ視線 方向成分の相対速度を基準速度と定め、この基準速度を中心に一定の幅を有する 値域内にレーダ視線方向成分の相対速度が含まれる複数の反射点を選択すること を特徴とする軸ずれ角推定装置。
[12] 請求の範囲第 11項に記載の軸ずれ量推定装置において、 反射点選択手段は、レーダ装置により検出された反射点のレーダ視線方向成分の 相対速度の分布の中央値を基準速度と定めることを特徴とする軸ずれ角推定装置。
[13] 請求の範囲第 11項に記載の軸ずれ量推定装置において、
反射点選択手段は、レーダ装置により検出された反射点のレーダ視線方向成分の 相対速度の分布の最大値を基準速度と定めることを特徴とする軸ずれ角推定装置。
[14] 請求の範囲第 11項に記載の軸ずれ角推定装置において、
反射点選択手段は、レーダ装置により検出された反射点のレーダ視線方向成分の 相対速度の分布において反射点の度数が所定値以上となる相対速度の値域を求め 、レーダ視線方向成分の相対速度がこの値域に含まれる複数の反射点を選択するこ とを特徴とする軸ずれ角推定装置。
[15] 請求の範囲第 11項に記載の軸ずれ量推定装置において、
反射点選択手段は、レーダ装置によりレーダ視線方向成分の相対速度と方位角度 が検出された反射点の中から移動体の移動方向成分の相対速度がほぼ等しくなるよ うに第 1の反射点、第 2の反射点、第 3の反射点を選択し、
軸ずれ角算出手段は、第 1及び第 2の反射点のレーダ視線方向成分の相対速度と 方位角度とに基づいてレーダ装置の第 1の軸ずれ角を算出するとともに、第 1及び第 2の反射点の何れ力と第 3の反射点とのレーダ視線方向成分の相対速度と方位角度 とに基づ 、てレーダ装置の第 2の軸ずれ角を算出することに加え、
軸ずれ角算出手段によって算出された第 1及び第 2の軸ずれ角に基づいて、レー ダ装置の軸ずれ角の真値を推定する軸ずれ角真値推定手段を備えたことを特徴と する軸ずれ角推定装置。
[16] 請求の範囲第 11項に記載の軸ずれ量推定装置において、
反射点選択手段は、レーダ装置により検出された反射点のいずれかのレーダ視線 方向成分の相対速度力 相異なる第 1の基準速度と第 2の基準速度とを選択して、 第 1及び第 2の基準速度を中心に一定の幅を有する値域内に相対速度が含まれる 複数の反射点をそれぞれ選択し、
軸ずれ角算出手段は、第 1の基準速度を中心とする値域内から選択された反射点 のレーダ視線方向成分の相対速度と方位角度に基づいて第 1の軸ずれ角を算出し 、さらに第 2の基準速度を中心とする値域内から選択された反射点のレーダ視線方 向成分の相対速度と方位角度に基づいて第 2の軸ずれ角を算出することに加え、 軸ずれ角算出手段によって算出された第 1及び第 2の軸ずれ角に基づいて、レー ダ装置の軸ずれ角の真値を推定する軸ずれ角真値推定手段を備えたことを特徴と する軸ずれ角推定装置。
[17] 請求の範囲第 10項に記載の軸ずれ角推定装置において、
反射点選択手段は、レーダ装置によって一定時間内に検出された反射点の中から 移動体の移動方向成分の相対速度がほぼ等しくなるように複数個の反射点を選択 することを特徴とする軸ずれ角推定装置。
[18] 請求の範囲第 10項に記載の軸ずれ角推定装置において、
反射点選択手段は、ともに所定の時間幅を有する第 1の時間帯と第 2の時間帯に おいてレーダ装置により相対速度と方位角度が検出された反射点の中から移動体の 移動方向成分の相対速度がほぼ等しい複数個の反射点を選択し、
軸ずれ角算出手段は、反射点選択手段により選択された反射点のレーダ視線方 向成分の相対速度と方位角度に基づいて第 1の時間帯の軸ずれ角と第 2の時間帯 の軸ずれ角とを算出することに加え、
第 1の時間帯において算出された軸ずれ角と第 2の時間帯において算出された軸 ずれ角とに基づ!/ヽて軸ずれ角の真値を推定する軸ずれ角真値推定手段を備えたこ とを特徴とする軸ずれ角推定装置。
[19] 移動体に搭載されたレーダ装置の軸ずれ角を推定する軸ずれ角推定装置において 上記レーダ装置により検出された反射点のレーダ視線方向成分の相対速度と方位 角度に基づいてレーダ装置の軸ずれ角を算出する軸ずれ角算出手段と、
上記軸ずれ角算出手段により算出された軸ずれ角が所定の値域内に含まれる場 合にこの軸ずれ角を算出するのに用いた複数の反射点を選択する反射点選択手段 と、
上記反射点選択手段が選択した反射点を用いて算出された軸ずれ角から上記レ ーダ装置の軸ずれ角の真値を推定する軸ずれ角真値推定手段と、 を備えたことを特徴とする軸ずれ角推定装置。
PCT/JP2004/016871 2004-11-12 2004-11-12 軸ずれ角推定方法及びその装置 WO2006051603A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2004/016871 WO2006051603A1 (ja) 2004-11-12 2004-11-12 軸ずれ角推定方法及びその装置
JP2006544708A JP4665903B2 (ja) 2004-11-12 2004-11-12 軸ずれ角推定方法及びその装置
US11/632,926 US7545313B2 (en) 2004-11-12 2004-11-12 Off-axis angle estimation method and apparatus using the same
CNA2004800437272A CN101006359A (zh) 2004-11-12 2004-11-12 轴偏角推定方法及其装置
EP04822400.0A EP1770410B1 (en) 2004-11-12 2004-11-12 Axial deviation angle estimating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016871 WO2006051603A1 (ja) 2004-11-12 2004-11-12 軸ずれ角推定方法及びその装置

Publications (1)

Publication Number Publication Date
WO2006051603A1 true WO2006051603A1 (ja) 2006-05-18

Family

ID=36336289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016871 WO2006051603A1 (ja) 2004-11-12 2004-11-12 軸ずれ角推定方法及びその装置

Country Status (5)

Country Link
US (1) US7545313B2 (ja)
EP (1) EP1770410B1 (ja)
JP (1) JP4665903B2 (ja)
CN (1) CN101006359A (ja)
WO (1) WO2006051603A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003395A (ja) * 2005-06-24 2007-01-11 Mitsubishi Electric Corp 軸ずれ角推定装置および軸ずれ角推定方法
JP2008082974A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム
JP2009109219A (ja) * 2007-10-26 2009-05-21 Ihi Corp 移動体の障害物位置認識方法及び移動体
WO2014125981A1 (ja) * 2013-02-12 2014-08-21 株式会社デンソー レーダセンサ取付角度を認識可能な車載レーダ装置
DE102006019846B4 (de) * 2005-11-22 2014-09-18 Mitsubishi Denki K.K. Radarsystem
JP2015087352A (ja) * 2013-11-01 2015-05-07 株式会社東芝 移動速度推定装置、静止物体分類装置及び移動速度推定方法
JP2015525873A (ja) * 2012-06-28 2015-09-07 オートリブ ディベロップメント エービー 車両用レーダセンサのミスアライメント処理
JP2016211992A (ja) * 2015-05-11 2016-12-15 古河電気工業株式会社 レーダ装置およびレーダ装置の制御方法
JPWO2015037173A1 (ja) * 2013-09-12 2017-03-02 パナソニック株式会社 レーダ装置、車両及び移動体速度検出方法
JP2019510967A (ja) * 2016-02-26 2019-04-18 ウェイモ エルエルシー 非構造化データを使用したレーダ取り付け判定
JP2019513219A (ja) * 2015-12-01 2019-05-23 オートリブ ディベロップメント エービー 車両レーダーシステム
JP2020026955A (ja) * 2018-08-09 2020-02-20 ボッシュ株式会社 キャリブレーション装置、キャリブレーション方法
JP2020525771A (ja) * 2017-07-18 2020-08-27 ヴィオニア ユーエス インコーポレイティド 自動車用検出システムにおけるセンサの位置合わせ及びアンテナパターン応答値の較正のための装置及び方法
WO2020230755A1 (ja) * 2019-05-15 2020-11-19 株式会社デンソー 軸ずれ推定装置
JP2023066368A (ja) * 2021-10-28 2023-05-15 為昇科科技股▲分▼有限公司 レーダーのセルフキャリブレーション装置及びレーダーのセルフキャリブレーション方法
JP7564015B2 (ja) 2021-02-25 2024-10-08 株式会社Soken 軸ずれ推定装置
US12117570B2 (en) 2021-08-06 2024-10-15 Mercedes-Benz Group AG Method and device for detecting a decalibration of a sensor for capturing the surroundings of a vehicle

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015723B4 (de) 2010-04-21 2023-10-12 Volkswagen Ag Verfahren und Vorrichtung zum Erfassen einer Bewegung eines Straßenfahrzeugs
JP5760425B2 (ja) * 2010-12-17 2015-08-12 富士通株式会社 制御装置、レーダ検知システム、レーダ検知方法
JP5739701B2 (ja) * 2011-03-23 2015-06-24 富士通テン株式会社 レーダ装置用の演算装置、レーダ装置、レーダ装置用の演算方法およびプログラム
DE102011015935A1 (de) * 2011-04-02 2012-10-04 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen eines Korrekturwerts für die Messung eines Zielwinkels mit einem Radargerät, Fahrerassistenzsystem und Kraftfahrzeug
DE102013209494A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln einer Dejustage eines Radarsensors eines Fahrzeugs
US20150070207A1 (en) * 2013-09-06 2015-03-12 Valeo Radar Systems, Inc. Method and Apparatus For Self Calibration of A Vehicle Radar System
TWI470257B (zh) * 2013-10-07 2015-01-21 Univ Nat Chiao Tung 角度估計檢測方法及電子裝置
JP6365251B2 (ja) * 2014-02-28 2018-08-01 パナソニック株式会社 レーダ装置
WO2015139756A1 (de) * 2014-03-20 2015-09-24 Vega Grieshaber Kg Tragbare vorrichtung zum ausrichten eines füllstandmessgerätes an einem behälter
DE102014207523A1 (de) * 2014-04-22 2015-10-22 Robert Bosch Gmbh Verfahren zum kalibrieren eines radarsensors und radarsystem
JP6552167B2 (ja) * 2014-07-16 2019-07-31 株式会社デンソー 車載レーダ装置および報知システム
EP3249422B1 (en) * 2015-01-21 2021-12-29 Mitsubishi Electric Corporation Laser radar device
JP6520203B2 (ja) * 2015-02-25 2019-05-29 株式会社デンソー 搭載角度誤差検出方法および装置、車載レーダ装置
JP6475543B2 (ja) * 2015-03-31 2019-02-27 株式会社デンソー 車両制御装置、及び車両制御方法
JP6363549B2 (ja) * 2015-03-31 2018-07-25 株式会社デンソー 車両制御装置、及び車両制御方法
US9784829B2 (en) * 2015-04-06 2017-10-10 GM Global Technology Operations LLC Wheel detection and its application in object tracking and sensor registration
KR101649987B1 (ko) 2015-04-13 2016-08-23 주식회사 만도 장착 각도 판별 장치 및 그 판별 방법
US10578713B2 (en) * 2015-06-24 2020-03-03 Panasonic Corporation Radar axis displacement amount calculation device and radar axis displacement calculation method
US10247816B1 (en) 2015-07-06 2019-04-02 Apple Inc. Apparatus and method to measure slip and velocity
US10832426B2 (en) 2015-09-24 2020-11-10 Apple Inc. Systems and methods for surface monitoring
US11100673B2 (en) 2015-09-24 2021-08-24 Apple Inc. Systems and methods for localization using surface imaging
JP6493196B2 (ja) * 2015-12-17 2019-04-03 株式会社デンソー 制御装置、制御方法
JP6304777B2 (ja) * 2016-05-17 2018-04-04 本田技研工業株式会社 移動体
JP2017227529A (ja) * 2016-06-22 2017-12-28 パナソニックIpマネジメント株式会社 レーダ装置および追従対象決定方法
JP6778873B2 (ja) * 2016-08-10 2020-11-04 パナソニックIpマネジメント株式会社 レーダ設置角度算出装置、レーダ装置およびレーダ設置角度算出方法
US10442439B1 (en) 2016-08-18 2019-10-15 Apple Inc. System and method for road friction coefficient estimation
JP6622167B2 (ja) * 2016-09-26 2019-12-18 株式会社デンソー 軸ずれ推定装置
US10481243B2 (en) 2016-10-31 2019-11-19 Aptiv Technologies Limited Automated vehicle radar system with self-calibration
EP3588135B1 (en) * 2018-06-28 2021-05-05 Aptiv Technologies Limited Method of determining an alignment error of an antenna and vehicle with an antenna and a detection device
JP7477329B2 (ja) * 2020-03-18 2024-05-01 株式会社Soken 軸ずれ推定装置
CN111537967B (zh) * 2020-05-09 2022-05-31 森思泰克河北科技有限公司 一种雷达偏转角修正方法、装置及雷达终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334842A (en) * 1998-02-27 1999-09-01 Jaguar Cars Vehicular sensor
JP2000098026A (ja) * 1998-09-24 2000-04-07 Eaton Corp レ―ダ装置においてレ―ダ・アンテナの照準を較正する方法および装置
JP2002228749A (ja) * 2001-02-02 2002-08-14 Hitachi Ltd 車載用ミリ波レーダ装置
JP3331882B2 (ja) * 1995-12-27 2002-10-07 株式会社デンソー 車両用障害物検出装置の中心軸偏向量算出装置,中心軸偏向量補正装置,および車間制御装置
JP3414267B2 (ja) * 1997-07-22 2003-06-09 株式会社デンソー 車両用障害物検出装置の中心軸偏向量算出装置、中心軸偏向量補正装置および車間距離制御装置
JP2003519387A (ja) * 1999-12-30 2003-06-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両レーダシステムあるいは車両センサシステムにおける誤調整の認識方法及び装置。
JP2003531383A (ja) * 2000-04-17 2003-10-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両速度及び間隔制御センサの放射特性の誤整合を求める方法及び装置
JP2004198159A (ja) * 2002-12-17 2004-07-15 Nissan Motor Co Ltd 車載センサの軸ずれ計測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189711B2 (ja) 1996-11-01 2001-07-16 三菱自動車工業株式会社 車両の前方認識装置
JP3385304B2 (ja) * 1997-08-29 2003-03-10 三菱電機株式会社 車載用レーダ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331882B2 (ja) * 1995-12-27 2002-10-07 株式会社デンソー 車両用障害物検出装置の中心軸偏向量算出装置,中心軸偏向量補正装置,および車間制御装置
JP3414267B2 (ja) * 1997-07-22 2003-06-09 株式会社デンソー 車両用障害物検出装置の中心軸偏向量算出装置、中心軸偏向量補正装置および車間距離制御装置
GB2334842A (en) * 1998-02-27 1999-09-01 Jaguar Cars Vehicular sensor
JP2000098026A (ja) * 1998-09-24 2000-04-07 Eaton Corp レ―ダ装置においてレ―ダ・アンテナの照準を較正する方法および装置
JP2003519387A (ja) * 1999-12-30 2003-06-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両レーダシステムあるいは車両センサシステムにおける誤調整の認識方法及び装置。
JP2003531383A (ja) * 2000-04-17 2003-10-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両速度及び間隔制御センサの放射特性の誤整合を求める方法及び装置
JP2002228749A (ja) * 2001-02-02 2002-08-14 Hitachi Ltd 車載用ミリ波レーダ装置
JP2004198159A (ja) * 2002-12-17 2004-07-15 Nissan Motor Co Ltd 車載センサの軸ずれ計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1770410A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003395A (ja) * 2005-06-24 2007-01-11 Mitsubishi Electric Corp 軸ずれ角推定装置および軸ずれ角推定方法
DE102006019846B4 (de) * 2005-11-22 2014-09-18 Mitsubishi Denki K.K. Radarsystem
JP2008082974A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム
JP2009109219A (ja) * 2007-10-26 2009-05-21 Ihi Corp 移動体の障害物位置認識方法及び移動体
JP2015525873A (ja) * 2012-06-28 2015-09-07 オートリブ ディベロップメント エービー 車両用レーダセンサのミスアライメント処理
KR101676448B1 (ko) * 2012-06-28 2016-11-29 오토리브 디벨로프먼트 에이비 오정렬 처리를 위한 차량 레이더 시스템 및 방법
WO2014125981A1 (ja) * 2013-02-12 2014-08-21 株式会社デンソー レーダセンサ取付角度を認識可能な車載レーダ装置
JP2014153256A (ja) * 2013-02-12 2014-08-25 Denso Corp 車載レーダ装置
US10054671B2 (en) 2013-02-12 2018-08-21 Denso Corporation On-vehicle radar apparatus capable of recognizing radar sensor mounting angle
JPWO2015037173A1 (ja) * 2013-09-12 2017-03-02 パナソニック株式会社 レーダ装置、車両及び移動体速度検出方法
JP2015087352A (ja) * 2013-11-01 2015-05-07 株式会社東芝 移動速度推定装置、静止物体分類装置及び移動速度推定方法
JP2016211992A (ja) * 2015-05-11 2016-12-15 古河電気工業株式会社 レーダ装置およびレーダ装置の制御方法
US11307300B2 (en) 2015-12-01 2022-04-19 Veoneer Sweden Ab Vehicle radar system
JP2019513219A (ja) * 2015-12-01 2019-05-23 オートリブ ディベロップメント エービー 車両レーダーシステム
JP2019510967A (ja) * 2016-02-26 2019-04-18 ウェイモ エルエルシー 非構造化データを使用したレーダ取り付け判定
JP2020525771A (ja) * 2017-07-18 2020-08-27 ヴィオニア ユーエス インコーポレイティド 自動車用検出システムにおけるセンサの位置合わせ及びアンテナパターン応答値の較正のための装置及び方法
JP2020026955A (ja) * 2018-08-09 2020-02-20 ボッシュ株式会社 キャリブレーション装置、キャリブレーション方法
JP7184481B2 (ja) 2018-08-09 2022-12-06 ボッシュ株式会社 キャリブレーション装置、キャリブレーション方法
WO2020230755A1 (ja) * 2019-05-15 2020-11-19 株式会社デンソー 軸ずれ推定装置
JP2020187022A (ja) * 2019-05-15 2020-11-19 株式会社Soken 軸ずれ推定装置
JP7193414B2 (ja) 2019-05-15 2022-12-20 株式会社Soken 軸ずれ推定装置
JP7564015B2 (ja) 2021-02-25 2024-10-08 株式会社Soken 軸ずれ推定装置
US12117570B2 (en) 2021-08-06 2024-10-15 Mercedes-Benz Group AG Method and device for detecting a decalibration of a sensor for capturing the surroundings of a vehicle
JP2023066368A (ja) * 2021-10-28 2023-05-15 為昇科科技股▲分▼有限公司 レーダーのセルフキャリブレーション装置及びレーダーのセルフキャリブレーション方法

Also Published As

Publication number Publication date
US20080012752A1 (en) 2008-01-17
CN101006359A (zh) 2007-07-25
JPWO2006051603A1 (ja) 2008-05-29
EP1770410A4 (en) 2010-03-10
US7545313B2 (en) 2009-06-09
EP1770410B1 (en) 2017-05-24
EP1770410A1 (en) 2007-04-04
JP4665903B2 (ja) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2006051603A1 (ja) 軸ずれ角推定方法及びその装置
US11768286B2 (en) Method of determining the yaw rate of a target vehicle
US7443335B2 (en) Radar system
US11262442B2 (en) Ghost removal method and radar device
US7911374B2 (en) Radar device and target detection method
US9889798B1 (en) Detection of a target object utilizing automotive radar
US6567737B2 (en) Vehicle control method and vehicle warning method
US20190016339A1 (en) Vehicle control device, vehicle control method, and vehicle control program
US10371810B2 (en) Radar device
US8676486B2 (en) Vehicular information processing device
JP6714148B2 (ja) 自動車レーダを利用する標的対象物の改善された検出
US20190101621A1 (en) Vehicle-mounted radar device and method of detecting axial deviation in vehicle-mounted radar device
WO2007015288A1 (ja) 軸ずれ量推定方法及び軸ずれ量推定装置
JP2001216596A (ja) 路上検出装置及び自動車両
US20170350975A1 (en) Radar device and signal processing method
JP2009064329A (ja) 先頭車両判定装置
JP2000099875A (ja) 車両検出装置
JP2014211332A (ja) レーダ装置、レーダ装置の制御方法
KR20070065427A (ko) 축 편차각 추정 방법 및 그 장치
US20230251369A1 (en) Radar control apparatus and method
JP2000111644A (ja) 車両検出装置
US20230266455A1 (en) Radar control device and method
US12123942B2 (en) Target detection apparatus
KR102459349B1 (ko) 레이더를 이용한 타겟 추적 장치
US20220128682A1 (en) Target detection apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006544708

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004822400

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004822400

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632926

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200480043727.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004822400

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077010636

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11632926

Country of ref document: US