WO2006046573A1 - すべり軸受用グリス - Google Patents

すべり軸受用グリス Download PDF

Info

Publication number
WO2006046573A1
WO2006046573A1 PCT/JP2005/019623 JP2005019623W WO2006046573A1 WO 2006046573 A1 WO2006046573 A1 WO 2006046573A1 JP 2005019623 W JP2005019623 W JP 2005019623W WO 2006046573 A1 WO2006046573 A1 WO 2006046573A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
bearing
grease
slide
oil
Prior art date
Application number
PCT/JP2005/019623
Other languages
English (en)
French (fr)
Inventor
Hideki Akita
Osamu Gokita
Minoru Fujisaki
Hajime Maezawa
Nobuo Yanaka
Hiroshi Nishimura
Hideyuki Fujiya
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004316745A external-priority patent/JP4451276B2/ja
Priority claimed from JP2004316755A external-priority patent/JP4451277B2/ja
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP05805276A priority Critical patent/EP1806512B1/en
Priority to US11/587,487 priority patent/US20070242910A1/en
Publication of WO2006046573A1 publication Critical patent/WO2006046573A1/ja
Priority to US13/041,993 priority patent/US20110152139A1/en
Priority to US13/346,223 priority patent/US8376619B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/045Pivotal connections with at least a pair of arms pivoting relatively to at least one other arm, all arms being mounted on one pin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/102Construction relative to lubrication with grease as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • C10M2201/0613Carbides; Hydrides; Nitrides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/0653Sulfides; Selenides; Tellurides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • C10M2201/0663Molybdenum sulfide used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • C10M2205/0225Ethene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/1003Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • C10M2213/0623Polytetrafluoroethylene [PTFE] used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • C10M2217/0443Polyamides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/0405Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2350/00Machines or articles related to building
    • F16C2350/26Excavators

Definitions

  • the present invention relates to a grease for a sliding bearing comprising a porous sintered alloy bush in which pores are impregnated with lubricating oil.
  • a plain bearing assembly having a supported shaft may be used.
  • a excavator for a hydraulic excavator which is a typical example of a construction machine, has a boom connected to an upper swing body on a traveling body, an arm connected to the tip of the boom, and a packet connected to the tip of the arm.
  • a slide bearing assembly having a slide bearing that supports a shaft serving as a pivot is generally used at the joints of the boom, arm, and packet.
  • This type of plain bearing assembly includes an oil-containing sintered alloy bushing in which a porous bushing made of iron-based sintered alloy is impregnated with high-viscosity lubricating oil as a bearing.
  • This oil-impregnated sintered alloy bushing reduces the viscosity while expanding the lubricating oil impregnated by the frictional heat generated when the shaft slides on the bush, thereby causing the lubricating oil to ooze out on the sliding surface and forming a thin oil film. It is formed and exhibits an excellent self-lubricating function (see Patent Document 1, etc.).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-105444
  • An object of the present invention is to provide a grease for a sliding bearing that can suppress abnormal noise caused by sliding of a shaft and a bearing when the machine is stopped.
  • the present invention provides a sliding bearing having a porous sintered gold bush force in which pores are impregnated with a lubricant, and a circumferential direction passing through the sliding bearing. It is a grease for a sliding bearing that is supplied between the shaft and the shaft that is supported so as to be slidably rotated, and the kinematic viscosity at 40 ° C is 10 to 70 mm 2 Zs. A base oil that forms an oil film between the sliding bearing and the shaft is used.
  • the present invention also provides a sliding bearing having a porous sintered alloy bushing force in which pores are impregnated with a lubricant mixed with a solid lubricant, and the sliding bearing.
  • a base oil that oozes out and forms an oil film between the sliding bearing and the shaft is used.
  • the present invention also provides a sliding bearing having a porous sintered alloy bushing force in which pores are impregnated with a lubricant, and the sliding bearing is passed through the sliding bearing.
  • Grease for a sliding bearing to be supplied to a shaft supported so as to rotate and slide in the direction, and has a kinematic viscosity lower than that of the lubricating oil and oozes out due to the load of the shaft.
  • a base oil that forms an oil film between the bearing and the shaft is used.
  • the present invention also provides a sliding bearing having a porous sintered alloy bushing force in which pores are impregnated with lubricating oil, and a sliding bearing that is passed through the sliding bearing.
  • the sliding base oil is a base oil that forms an oil film between the bearing and the shaft, and at least a solid lubricant is added.
  • the present invention also provides a sliding bearing having a porous sintered alloy bushing force in which pores are impregnated with lubricating oil, and a sliding bearing that is passed through the sliding bearing.
  • Grease for a sliding bearing to be supplied to a shaft supported so as to rotate and slide in the direction, and has a kinematic viscosity lower than that of the lubricating oil and oozes out due to the load of the shaft.
  • a base oil that forms an oil film between the bearing and the shaft is used, and at least a solid lubricant is added.
  • the solid lubricant is organic molybdenum, molybdenum disulfide, tungsten disulfide, boron nitride, graphite, nylon , At least one of polyethylene, polyimide, polyacetal, polytetrafluoroethylene, and polyphenylene sulfide.
  • an oil film is formed between the slide bearing and the shaft by the low-viscosity base oil that exudes the grease force for the slide bearing. Therefore, this serves as a lubricating film to reduce the frictional force between the slide bearing and the shaft, thereby suppressing the generation of abnormal noise or reducing the generated abnormal noise.
  • FIG. 1 is a side view showing the overall structure of a hydraulic excavator that is an example of a machine to which the grease for a slide bearing of the present invention is applied.
  • FIG. 2 is a cross-sectional view showing the internal structure of a slide bearing assembly to which the slide bearing grease according to the first embodiment of the present invention is applied.
  • FIG. 3 shows a slide bearing to which the grease for a slide bearing according to the first embodiment of the present invention is applied.
  • FIG. 6 is a partial cross-sectional view showing an enlarged and schematic view of the vicinity of an interface with a shaft.
  • FIG. 4 is a sliding bearing and a cross-sectional view of the shaft schematically showing the state of the oil film oozing out of the grease force for the sliding bearing of the present invention.
  • FIG. 5 is a side view showing the overall structure of a hydraulic excavator that is an example of a machine to which the grease for a slide bearing of the present invention is applied, and is a view showing a state where a packet is also buoyant with ground force.
  • FIG. 6 is an enlarged partial schematic sectional view showing the vicinity of an interface between a slide bearing and a shaft to which a grease for a slide bearing according to a second embodiment of the present invention is applied.
  • FIG. 7 is a table showing the composition and performance test comparison results of the slide bearing grease of the present invention and a commercially available grease.
  • FIG. 8 is a graph showing the measurement results of the friction coefficient between the grease for the slide bearing of the present invention and the commercially available grease.
  • FIG. 1 is a side view showing the entire structure of a hydraulic excavator as an example of a machine to which the grease for a slide bearing of the present invention is applied.
  • the hydraulic excavator shown in FIG. 1 is provided on a lower traveling body 1, an upper revolving body 2 that is turnably mounted on the lower traveling body 1, and one side (left side in FIG. 1) on the upper revolving body 2.
  • the engine room 4 provided on the other side (right side in FIG. 1) on the upper swing body 2 and the excavator 5 provided on the driver room 3 side on the upper swing body 2 are provided.
  • the excavator 5 includes a boom 6 provided on the upper swing body 2 so as to be movable up and down, and the boom 6
  • a packet 10 provided so as to be movable and a hydraulic cylinder 11 for packet for rotating the packet 10 are provided.
  • each slide bearing assembly used in the working device 5 differs in size and shape depending on the installation location, but the configuration is almost the same.
  • FIG. 2 is a cross-sectional view showing an internal structure of a slide bearing assembly to which the slide bearing grease according to the first embodiment of the present invention is applied.
  • the sliding bearing assembly 12 shown in FIG. 2 includes a boss 15 and a sliding bearing 16 that also has a porous sintered alloy bushing force that is fitted and fixed inside the boss 15 by shrink fitting such as shrink fitting or cooling fitting.
  • the shaft 22 is inserted into the plain bearing 16 and supported so as to rotate and slide in the circumferential direction.
  • brackets 19 and 19 are arranged so that shims 20 and 20 are sandwiched between both end faces of the boss 15, respectively.
  • the clearance between the brackets 19 and 19 and the boss 15 is the O-rings 21 and 21 attached to the outer periphery.
  • the shaft 22 ⁇ , the bracket 19, the shim 20, the dust seal 18, and the slide bearing 16 are passed through, and are locked to the bracket 19 by a rotation locking bolt 23.
  • the shaft 22 is provided with a grease greasing hole 25 for supplying the slide bearing grease 24 to the substantially central portion of the slide bearing 16 also on the side opposite to the mounting side of the rotation locking bolt 23. .
  • a sealing plug 26 is screwed to one end of the grease greasing hole 25, and the sliding bearing grease 24 filled in the grease greasing hole 25 is sealed by the sealing plug 26. With such a configuration, the grease 24 for the sliding bearing filled in the grease supply hole 25 is supplied between the sliding bearing 16 and the shaft 22.
  • the above-described sliding bearing 16 is a porous composite sintered alloy composed of, for example, copper powder and iron powder. It has a large number of pores. These pores are impregnated with highly viscous lubricating oil, and when sliding bearing 16 slides relative to shaft 22, grease 24 for sliding bearing is not supplied by the self-lubricating function. Even with this, the lubrication effect between the shafts 22 is fully exhibited.
  • the porosity of the slide bearing 16 is preferably about 5 to 30 [vol%], for example. If the porosity is less than 5 [vol%], a sufficient amount of lubricating oil may not be impregnated, and the function as a non-greasy bearing may be insufficient. On the other hand, when the porosity is higher than 30 [vol%], the mechanical strength of the slide bearing 16 is lowered. Note that a composite sintered alloy made of other materials such as copper powder and iron powder can also be applied as the material of the sliding bearing 16.
  • the lubricating oil impregnated in the slide bearing 16 is a highly viscous oil having a relatively high kinematic viscosity. This lubricating oil expands due to the frictional heat generated when the shaft 22 slides on the slide bearing 16 and lowers its viscosity, thereby oozing out on the sliding surface between the shaft 22 and the slide bearing 16 to form a thin oil film. . After use, it shrinks with decreasing temperature and returns to the pores of the sliding bearing 16 again by capillary action. The plain bearing 16 exhibits an excellent self-lubricating function due to the behavior of the lubricating oil.
  • the kinematic viscosity of the lubricating oil to be impregnated is not necessarily limited.
  • the sliding bearing 16 Assuming that the sliding bearing 16 is impregnated, it can remain in the pores during normal operation after impregnation, and it can be used with the shaft 22 during use. It must be within a range where it can return to the sliding bearing 16 again as the temperature drops after it oozes out on the sliding surface due to frictional heat. For example, if the kinematic viscosity range of the lubricating oil is exemplified, it is confirmed that the above behavior can be exhibited if the kinematic viscosity value at 25.5 [° C] is about 56 to 1500 [mm 2 Zs]. It has been.
  • kinematic viscosity at 25.5 [° C] is 220 [mm 2 Zs] or less, it will be lower than 70 [Mpa], which is the standard surface pressure applied to bearings for construction machinery. Since there was a case where seizure of the plain bearing 16 was observed in the present invention, the lubricating oil having a kinematic viscosity value at about 25.5 [° C] of about 220 to 1500 [mm 2 Zs] was used in the practice of the present invention. It is more preferable to apply
  • the lubricating oil impregnated in the sliding bearing 16 most commercially available lubricating oils including mineral oils and synthetic oils can be used, and those having kinematic viscosity capable of exhibiting the above-described behavior. If so, the composition is not particularly limited. However, grease containing a fibrous thickener is excluded because it cannot be impregnated in the slide bearing 16.
  • the lubricant to be impregnated into the slide bearing 16 contains a solid lubricant.
  • the solid lubricant contained in the lubricant has a layered structure and exhibits an excellent lubricating effect by sliding in the layer direction.
  • solid lubricants examples include organic molybdenum, molybdenum disulfide, tungsten disulfide, boron nitride, graphite, nylon, polyethylene, polyimide, polyacetal, polytetrafluoroethylene, and polyphenylene sulfide. At least one of these.
  • the solid lubricant content of the lubricating oil is, for example, about 2.0 to 30 [mass%], and the particle size of the solid lubricating fine particles does not block the pores so that they can smoothly enter and exit the pores of the slide bearing 16 It should be small enough (for example, about 0.1 111 to 100 111).
  • the solid solid lubricant and the lubricating oil are sufficiently agitated to uniformly mix the solid lubricant in the lubricating oil.
  • the lubricating oil is heated to lower the viscosity and liquefy.
  • the plain bearing 16 is immersed in the liquefied lubricating oil and left in a vacuum atmosphere. As a result, air in the pores of the slide bearing 16 is sucked out, and instead, lubricating oil containing a solid lubricant is sucked into the pores.
  • the heating temperature of the lubricating oil when impregnating the plain bearing 16 is not particularly limited, and varies depending on the viscosity of the lubricating oil used. It is sufficient to raise the temperature. However, when using a resin material such as polyethylene, polyimide, polyacetal, PTFE (polytetrafluoroethylene) as the solid lubricant, the heating temperature must be lower than the heat resistance temperature of the resin. . Further, the immersion time and the degree of vacuum of the slide bearing 16 in the lubricating oil are not particularly limited, and depend on the viscosity of the lubricating oil used, and the pores of the sliding bearing 16 are saturated with the lubricating oil.
  • the shaft 22 is made of a steel material or the like.
  • the surface is subjected to treatment such as carburizing, induction hardening, laser hardening, nitriding, etc., and then chemical conversion (for example, zinc phosphate, phosphorus Surface modification treatment by acid manganese etc.) or sulfurization treatment.
  • treatment such as carburizing, induction hardening, laser hardening, nitriding, etc.
  • chemical conversion for example, zinc phosphate, phosphorus Surface modification treatment by acid manganese etc.
  • sulfurization treatment for example, zinc phosphate, phosphorus Surface modification treatment by acid manganese etc.
  • the sliding surface of the slide bearing 16 with respect to the shaft 22 is also subjected to surface modification treatment by carburizing, quenching, nitriding, sulfiding treatment methods, etc., as with the surface of the shaft 22. Is more preferable.
  • the thickness l [mn! ] To 3 [mm], preferably about 2 [mm] when the carburized hard layer is formed, the wear resistance of the plain bearing 16 is further improved.
  • FIG. 3 is an enlarged partial schematic sectional view showing the vicinity of the interface between the slide bearing and the shaft to which the slide bearing grease according to the first embodiment of the present invention is applied.
  • the lubricating oil 31 impregnated in the pores 30 has extremely low fluidity, even if the sliding bearing 16 and the shaft 22 are repeatedly slid relative to each other, they hardly flow out. As a result, the lubricating oil film 32 continues to be supplied stably for an extremely long time.
  • the so-called “galling phenomenon” that occurs between the pivoting shaft 22 and the plain bearing 16 is caused by microscopic metal contact between the two, which is a microscopic “oil pool” as shown in the figure. "Prevented by the presence of (oil film 32).
  • the sliding bearing grease 24 in the grease greasing hole 25 described above has a base oil having a kinematic viscosity lower than that of the lubricating oil 31, specifically a kinematic viscosity at 40 [° C.] of 10 Base oil that oozes out by the load of the shaft 22 at ⁇ 70 [mm 2 Zs] (preferably 30 to 70 [mm 2 Zs]) and forms an oil film (described later) between the slide bearing 16 and the shaft 22 Used.
  • This base oil is, for example, a hydrocarbon-based synthetic low-viscosity base oil and low-viscosity mineral oil.
  • this slide bearing grease 24 As a thickener, it is suitable for low viscosity base oils such as metal soap, polyurea resin, organic bentonite, silica, fluorinated resin, etc.
  • the slide bearing grease 24 having the above composition is obtained by using the base oil having a kinematic viscosity of 10 to 70 [mm 2 Zs] at 40 [° C] as the base bearing 16 and the shaft. It plays the role of ensuring lubricity between the two while the relative sliding with 22 is stopped for a certain time or more.
  • the basis for the kinematic viscosity range of the base oil of grease 24 for slide bearings will be described later.
  • FIG. 4 is a cross-sectional view of the sliding bearing 16 and the shaft 22 schematically showing the state of the oil film 35.
  • grease generally used for a sliding bearing of a construction machine has improved performance under high surface pressure.
  • the base oil viscosity is set to a relatively high value in order to increase the viscosity, so that the lubricating film is cut between the stopped shaft and the bearing.
  • the excavator 5 when the excavator is stopped for a certain period of time or longer, generally, the excavator 5 has a posture in which the packet 10 of the excavator 5 is grounded as shown in FIG. 1. However, as shown in FIG. Ground force When left standing in a buoyant state, the moment caused by the weight of the excavator 5 acts on the sliding bearing assembly 12. The drilling rig 5 tries to maintain the current posture by the holding force of the hydraulic oil in each hydraulic cylinder 7, 9, 11, but if the cylinder internal pressure decreases due to a minute leak of the hydraulic oil in the hydraulic drive circuit, the drilling equipment 5 The force against the descending moment of the drilling rig 5 decreases. As a result, a force acts to slide the slide bearing 16 and the shaft 22 relative to each other even though the vehicle is completely stopped.
  • FIG. 6 is an enlarged partial schematic sectional view showing the vicinity of the interface between the slide bearing and the shaft to which the slide bearing grease according to the second embodiment of the present invention is applied.
  • the same parts as those in the previous drawings are denoted by the same reference numerals as those already described, and the description thereof is omitted.
  • the plain bearing 16 in the present embodiment is also formed of a porous composite sintered alloy.
  • the pores contain a solid lubricant, and high viscosity lubricating oil is not contained. Impregnated.
  • the lubricating oil containing the solid lubricant of the previous embodiment is replaced with the lubricating oil not containing the solid lubricant in the present embodiment. What is necessary is just to carry out in the same way as a form.
  • the pores 30 of the sliding bearing 16 are impregnated by the frictional heat at that time.
  • the highly viscous lubricating oil 31 is exposed on the inner peripheral surface of the slide bearing 16 to form a thin oil film 32.
  • the oil film 32 serves as a sliding interface between the slide bearing 16 and the shaft 22 to exert a lubricating effect and to obtain excellent tribological characteristics. Since the lubricating oil 31 impregnated in the pores 30 is extremely low in fluidity, even if the sliding bearing 16 and the shaft 22 repeatedly slide relative to each other, they hardly flow out.
  • the lubricating oil film 32 continues to be stably supplied for an extremely long time.
  • the so-called "galling phenomenon” that occurs between the swinging shaft 22 and the plain bearing 16 is the force caused by the microscopic metal contact between them. 32) prevented by the presence.
  • the sliding bearing receiving grease 24 in the grease greasing hole 25 (see Fig. 2) described above is applied to the same base oil as in the first embodiment.
  • Solid lubricant similar to the form is added. That is, in the first embodiment, the lubricating oil 31 impregnated in the sliding bearing 16 is made to contain solid lubricating oil, whereas in this embodiment, the grease for the sliding bearing in the grease greasing hole 25 is used. 24 contains a solid lubricant.
  • the slide bearing grease 24 according to the present embodiment having the above composition is a slide bearing having a kinematic viscosity of 10 to 70 [mm 2 Zs] at a base oil pressure of 40 [° C]. While the relative sliding between the shaft 16 and the shaft 22 is stopped for a certain time or more, the lubricity between the two is ensured, and by adding a solid lubricant, the shaft 22 slightly swings against the slide bearing 16. It plays the role of ensuring the lubricity between the two when moving.
  • the lubricating oil 31 impregnated in the pores 30 of the slide bearing 16 appears on the inner peripheral surface of the slide bearing 16.
  • a thin oil film 32 is formed.
  • the grease 24 for the slide bearing from the grease greasing hole 25 is interposed between the slide bearing 16 and the shaft 22, and the particulate solid lubricant mixed in the grease 24 for the slide bearing is present. It enters between the plain bearing 16 and the shaft 22.
  • the solid lubricant enters the sliding surface between the slide bearing 16 and the shaft 22 together with the lubricant 31
  • a fine layer of the slide bearing grease 24 containing the lubricant 31 and the solid lubricant is formed. It is formed on the sliding surface between the sliding bearing 16 and the shaft 22, and exhibits an excellent lubricating effect between the sliding bearing 16 and the shaft 22 that slide relative to each other.
  • the present embodiment is the same as the first embodiment, and the same functions and effects as those of the first embodiment can be obtained.
  • the solid lubricant contained in the slide bearing grease 24 quickly enters between the slide bearing 16 and the shaft 22, so that the drive is performed at a relatively low speed. Even in such a case, a sufficient lubricating effect can be secured.
  • the excavator 5 is driven at a higher speed than that, sufficient frictional heat is obtained, so that a necessary and sufficient amount of lubricating oil 31 oozes out and the excellent lubricating effect inherent in the oil-impregnated sintered alloy bushing is exhibited. .
  • Fig. 7 shows the composition and performance test comparison results of the slide bearing grease of the present invention and a commercially available grease.
  • the inventors of the present invention have examined the relationship between the occurrence mechanism of fretting phenomenon and the relationship between this and the results of this test, and as a result, the kinematic viscosity range of the base oil of the slide bearing grease of the present invention is within the above range. RU
  • a base die was manufactured by a method similar to that of a generally manufactured lithium grease, an additive was mixed with the manufactured base grease, kneaded by a three-roll mill, and then the consistency was set to NLGI (National Lubricating Grease Institute) No. 2 grade (consistency: 265 to 295) was prepared, and samples 1 to 5 of grease for the slide bearing of the present invention were produced. And the performance of these samples 1-5 was compared with commercial products 1-3.
  • NLGI National Lubricating Grease Institute
  • samples 1 to 5 were all based on mineral oil, Li as the thickener, and extreme pressure agent-antifungal agent 'Organic Mo (solid lubricant)' oil agent as additive. Is. However, the base oils used for samples 1 to 5 have different kinematic viscosities, and the kinematic viscosity values [mm 2 Zs] of the base oils of samples 1 to 5 at 40 [° C] are 10, 22, 32, 46, 68.
  • the commercially available products 1 and 2 used for comparison are generally lubricated to the sliding bearing assembly of the excavator of the excavator as shown in FIG.
  • Commercial product 3 has higher base oil viscosity and higher extreme pressure performance. Consistency is NLGI No. 2 for both commercial products 1 to 3, but the kinematic viscosity values [mm 2 Zs] of the base oils (mineral oils) of the commercial products 1 to 3 are 143, 93 and 430, respectively. is there.
  • both samples 1 to 5 have the same wear resistance performance as that of commercial products 1 and 2.
  • the load bearing performance was the same or better.
  • the load bearing performance was as high as 3 090 [N].
  • the load-bearing performance test is a high-speed 4-ball test (1770 [rpm] X 10 [sec])
  • the wear resistance delivery test was conducted by a high-speed four-ball test (1220 [rpm] X 40 [kgf] X 75 [° C] X l [hr]).
  • the friction coefficient was evaluated using Samples 1 to 5 and commercial products 1 to 3.
  • the test conditions were: sliding speed: 180 [mmZmin], sliding width: 10 [mm], pressing load against the disk of the pin: 1 [kg], grease film thickness: 0.2 [mm], and sliding started After that, the friction coefficient was measured for a certain period of time (here, 5000 times of reciprocating sliding) from the lapse of a predetermined time. A graph showing the measurement results is shown in FIG.
  • each slide bearing assembly of the excavator of the hydraulic excavator is lubricated with samples 1 to 5 and commercially available products 1 to 3, respectively.
  • samples 1 to 5 and commercially available products 1 to 3, respectively are lubricated with samples 1 to 5 and commercially available products 1 to 3, respectively.
  • FIG. 10 is stopped while floating from the ground (for example, about 1 [m]), and the difference due to the sliding of the sliding bearing assembly 12 between the boom 6 and the arm 8 and between the arm 8 and the packet 10 is caused.
  • the kinematic viscosity of the base oil at 40 [° C] is about 70 [mm 2 Zs] or less. It was found that the use of this grease can suppress the generation of abnormal noise compared to commercially available grease. On the other hand, oils with a kinematic viscosity at 40 [° C] of less than 10 [mm 2 Zs] are special and uncommon. The lower limit of the base oil viscosity should be 10 [mm 2 Zs] because the point is low and unsuitable as a base oil for grease. As described above, it was found that the use of grease having a kinematic viscosity of 10 to 70 [mm 2 Zs] at 40 [° C.] can suppress the generation of abnormal noise.
  • the kinematic viscosity of the base oil at 40 [° C] is preferably 30 to 70.
  • the viscosity of the grease itself is not particularly limited, and the kinematic viscosity of the base oil that oozes out the grease force is limited. Therefore, it can be made into a paste-like composition and applied to the plain bearing assembly with a spatula or injected with a tube or the like, or diluted with a solvent and sprayed with a spray or the like. You may do it.
  • the oil-impregnated sintered alloy bushing in which the solid oil is included in the lubricating oil to be impregnated is described as an example of application of the grease for the slide bearing of the first embodiment.
  • the grease for the slide bearing of the first embodiment can also be applied to an oil-impregnated sintered alloy bush impregnated with a lubricating oil not containing a solid lubricant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 機械停止時に軸及び軸受のすべりに起因する異音を抑制することができるすべり軸受用グリスを提供する。  潤滑油31を気孔30に含浸させた多孔質焼結合金ブッシュからなるすべり軸受16と、このすべり軸受16に挿通されて周方向に回転摺動するように支持された軸22との間に供給するすべり軸受用グリス24であって、40°Cにおける動粘度が10~70mm2/sで、軸22の荷重によって滲み出てすべり軸受16と軸22との間に油膜35を形成する基油を用いていることを特徴とする。

Description

明 細 書
すべり軸受用グリス
技術分野
[0001] 本発明は、潤滑油を気孔に含浸させた多孔質焼結合金ブッシュからなるすべり軸 受用のグリスに関する。
背景技術
[0002] ここで、建設機械、土木機械、搬送機械、扛重機械、工作機械、自動車等に代表さ れる各種機械には、すべり軸受とこれに挿通されて周方向に回転摺動するように支 持された軸とを有するすべり軸受組立体が用いられる場合がある。例えば建設機械 の代表例である油圧ショベルの掘削装置は、走行体上の上部旋回体に連結された ブーム、このブームの先端に連結されたアーム、さらにこのアームの先端に連結され たパケットを有する。これらブーム、アーム、パケットの関節部分にも、回動支点となる 軸を支持するすべり軸受を有したすべり軸受組立体が一般に用いられる。
[0003] この種のすべり軸受組立体には、鉄系焼結合金力 なる多孔質ブッシュに高粘度 の潤滑油を含浸させた含油焼結合金ブッシュを軸受として用いたものがある。この含 油焼結合金ブッシュは、軸がブッシュに摺動する際に生じる摩擦熱によって含浸した 潤滑油を膨張させつつ低粘度化させ、これにより摺動面に潤滑油を滲出させて薄い 油膜を形成するものであり、優れた自己潤滑機能を発揮する (特許文献 1等参照)。
[0004] 特許文献 1 :特開平 8— 105444号公報
発明の開示
発明が解決しょうとする課題
[0005] 例えば、停止中の油圧ショベルの掘削装置をパケットが地面力 離れた状態で放 置しておくと、掘削装置の自重に起因してすべり軸受組立体の軸周りにモーメントが 作用する。掘削装置は各関節を駆動する油圧シリンダの保持力によって姿勢を維持 しょうとする力 圧油の微少なリークによりシリンダ内圧が低下し、時間の経過とともに 掘削装置の下がりモーメントに抗する力が減少してしま 、、軸及び軸受間にすべりが 生じることがある。 [0006] このとき、一般に含油焼結合金ブッシュの表面と相手材である軸の表面との接触面 は"なじみ状態"にあるため、軸及び軸受間の実際の接触面積は一般の鉄ブッシュを 用いた場合に比べて非常に大きい。ところが、互いの接触面積が増大すると二固体 間に作用する凝着力が大きくなるため、非潤滑時 (つまり静止時)においては含油焼 結合金ブッシュと軸との間の見かけ上の摩擦力が増加する傾向にある。その結果、 含油焼結合金ブッシュではすベり発生時に開放されるエネルギが増大するためにす ベり軸受^ a立体に発生する振動も増大し、上記の例で言えばその振動が例えば掘 削装置の他の部分に共振して発生する異音もそれだけ大きくなる恐れがある。この種 の異音は機械の信頼性に関わるものではないものの、周辺の作業者ゃ巿民に不要 な心理的影響ゃ不快感を与えかねな 、。
[0007] 本発明の目的は、機械停止時に軸及び軸受のすべりに起因する異音を抑制するこ とができるすべり軸受用グリスを提供することにある。
課題を解決するための手段
[0008] (1)上記目的を達成するために、本発明は、潤滑材を気孔に含浸させた多孔質焼 結合金ブッシュ力 なるすべり軸受と、このすベり軸受に揷通されて周方向に回転摺 動するように支持された軸との間に供給するすべり軸受用のグリスであって、 40°Cに おける動粘度が 10〜70mm2Zsで、前記軸の荷重によって滲み出て前記すベり軸 受と前記軸との間に油膜を形成する基油を用いている。
[0009] (2)上記目的を達成するために、また本発明は、固体潤滑剤を混入した潤滑材を 気孔に含浸させた多孔質焼結合金ブッシュ力 なるすべり軸受と、このすベり軸受に 挿通されて周方向に回転摺動するように支持された軸との間に供給するすべり軸受 用のグリスであって、 40°Cにおける動粘度が 10〜70mm2Zsで、前記軸の荷重によ つて滲み出て前記すベり軸受と前記軸との間に油膜を形成する基油を用いている。
[0010] (3)上記目的を達成するために、また本発明は、潤滑材を気孔に含浸させた多孔 質焼結合金ブッシュ力 なるすべり軸受と、このすベり軸受に揷通されて周方向に回 転摺動するように支持された軸との間に供給するすべり軸受用のグリスであって、前 記潤滑油よりも動粘度が低く前記軸の荷重によって滲み出て前記すベり軸受と前記 軸との間に油膜を形成する基油を用いている。 [0011] (4)上記目的を達成するために、また本発明は、潤滑油を気孔に含浸させた多孔 質焼結合金ブッシュ力 なるすべり軸受と、このすベり軸受に揷通されて周方向に回 転摺動するように支持された軸との間に供給するすべり軸受用のグリスであって、 40 °Cにおける動粘度が 10〜70mm2Zsで前記軸の荷重によって滲み出て前記すベり 軸受と前記軸との間に油膜を形成する基油を用い、少なくとも固体潤滑剤を添加し てなる。
[0012] (5)上記目的を達成するために、また本発明は、潤滑油を気孔に含浸させた多孔 質焼結合金ブッシュ力 なるすべり軸受と、このすベり軸受に揷通されて周方向に回 転摺動するように支持された軸との間に供給するすべり軸受用のグリスであって、前 記潤滑油よりも動粘度が低く前記軸の荷重によって滲み出て前記すベり軸受と前記 軸との間に油膜を形成する基油を用い、少なくとも固体潤滑剤を添加してなる。
[0013] (6)上記(2)、 (4)又は(5)において、好ましくは、前記固体潤滑剤は、有機モリブ デン、二硫ィ匕モリブデン、二硫化タングステン、窒化ホウ素、グラフアイト、ナイロン、ポ リエチレン、ポリイミド、ポリアセタール、ポリテトラフルォロエチレン、ポリフ 二レンサ ルファイトのうちの少なくとも 1種を含む。
[0014] (7)上記(1)〜(5)のいずれかにおいて、また好ましくは、極圧添加剤及び油性剤 を添加する。
発明の効果
[0015] 本発明によれば、すべり軸受と軸とが相対的に停止しているときでも、すべり軸受用 グリス力 滲み出る低粘度基油によってすベり軸受と軸との間に油膜が形成されるた め、これが潤滑膜となってすべり軸受と軸との摩擦力を低下させ、異音発生を抑制す る或いは発生する異音を小さくすることができる。
図面の簡単な説明
[0016] [図 1]本発明のすべり軸受用グリスを適用する機械の一例である油圧ショベルの全体 構造を表す側面図である。
[図 2]本発明の第 1の実施の形態に係るすべり軸受用グリスを適用するすべり軸受組 立体の内部構造を示す断面図である。
[図 3]本発明の第 1の実施の形態に係るすべり軸受用グリスを適用するすべり軸受と 軸との界面付近を拡大し模式ィ匕して表した部分断面図である。
[図 4]本発明のすべり軸受用グリス力 滲み出る油膜の状態を模式的に表すすベり軸 受と軸の断面図である。
[図 5]本発明のすべり軸受用グリスを適用する機械の一例である油圧ショベルの全体 構造を表す側面図であり、パケットを地面力も浮力せた状態を表した図である。
[図 6]本発明の第 2の実施の形態に係るすべり軸受用グリスを適用するすべり軸受と 軸との界面付近を拡大し模式ィ匕して表した部分断面図である。
[図 7]本発明のすべり軸受用グリスと市販のグリスの組成及び性能試験の比較結果を 表す表である。
[図 8]本発明のすべり軸受用グリスと市販のグリスの摩擦係数の測定結果を表すダラ フである。
符号の説明
[0017] 16 すべり軸受
22 軸
24 すべり軸受用グリス
30 気孔
31 潤滑油
33 固体潤滑剤
35 油膜
発明を実施するための最良の形態
[0018] 以下に図面を用いて本発明の実施の形態を説明する。
図 1は本発明のすべり軸受用グリスを適用する機械の一例である油圧ショベルの全 体構造を表す側面図である。
図 1に示した油圧ショベルは、下部走行体 1と、この下部走行体 1上に旋回可能に 搭載した上部旋回体 2と、この上部旋回体 2上の一方側(図 1中左側)に設けた運転 室 3と、上部旋回体 2上の他方側(図 1中右側)に設けたエンジン室 4と、上部旋回体 2上の運転室 3側に設けた掘削装置 5とを備えている。
[0019] 上記掘削装置 5は、上部旋回体 2に俯仰動可能に設けたブーム 6と、このブーム 6 を俯仰動させるためのブーム用油圧シリンダ 7と、ブーム 6の先端に回動可能に設け たアーム 8と、このアーム 8を回動させるためのアーム用油圧シリンダ 9と、アーム 8の 先端に回動可能に設けたパケット 10と、このパケット 10を回動させるためのパケット 用油圧シリンダ 11とを備えて ヽる。
[0020] これら作業装置 5の構成部材であるブーム 6、アーム 8、パケット 10、及び各油圧シ リンダ 7, 9, 11は、すべり軸受組立体 12によって相互に回動可能に連結されている 。実際には作業装置 5に使用される各すベり軸受組立体は設置場所に応じて大きさ や形状等が相違するが構成はそれぞれほぼ同様である。
[0021] 図 2は本発明の第 1の実施の形態に係るすべり軸受用グリスを適用するすべり軸受 組立体の内部構造を示す断面図である。
図 2に示したすべり軸受組立体 12は、ボス 15と、このボス 15の内部に焼き嵌めや 冷却嵌め等といった収縮嵌めによって嵌着固定した多孔質焼結合金ブッシュ力もな るすべり軸受 16と、このすベり軸受 16に挿通されて周方向に回転摺動するように支 持された軸 22とを備えて 、る。
[0022] すべり軸受 16の両側には、すべり軸受 16の両端面に対向するようにしてダストシ一 ル 18, 18が配置され、ボス 15に圧入されている。また、ボス 15の両側には、ボス 15 の両端面との間にそれぞれシム 20, 20を挟持するようにしてブラケット 19, 19が配 置されている。ブラケット 19, 19とボス 15との隙間は、その外周側に装着した Oリング 21, 21【こよってシーノレされて!ヽる。上記軸 22ίま、ブラケット 19、シム 20、ダストシ一 ル 18、すべり軸受 16を貫通し、回転係止ボルト 23によってブラケット 19に対して係 止されている。
[0023] 軸 22には、回転係止ボルト 23の装着側とは反対側力もすベり軸受 16のほぼ中央 部にすべり軸受用グリス 24を供給するグリス給脂孔 25が配設されている。グリス給脂 孔 25の一端には封止栓 26が螺着されており、グリス給脂孔 25内に充填されたすベ り軸受用グリス 24が封止栓 26によって封止されている。このような構成によって、ダリ ス給脂孔 25に充填されたすベり軸受用グリス 24がすべり軸受 16と軸 22との間に供 給される。
[0024] 上述したすべり軸受 16は、例えば銅粉と鉄粉とで構成された多孔質複合焼結合金 で形成されており、多数の気孔を有している。それら気孔には高粘性の潤滑油が含 浸させてあり、すべり軸受 16は、軸 22と相対摺動しているときは自己潤滑機能によつ てすベり軸受用グリス 24の供給がなくても十分に軸 22との間の潤滑効果を発揮する 。すべり軸受 16の気孔率は例えば 5〜30[vol%]程度であることが好ましい。気孔率 が 5 [vol%]未満であると十分量の潤滑油が含浸せず、無給脂軸受としての機能が 不十分となる恐れがある。一方、気孔率が 30[vol%]よりも大きいとすべり軸受 16の 機械的強度が低下する。なお、銅粉や鉄粉の他の素材からなる複合焼結合金もす ベり軸受 16の材質として適用可能である。
[0025] すべり軸受 16に含浸させる潤滑油には比較的動粘度の高い高粘性のものを用い る。この潤滑油は、軸 22がすべり軸受 16に摺動する際に生じる摩擦熱によって膨張 して低粘度化し、これにより軸 22とすべり軸受 16との摺動面に滲出して薄い油膜を 形成する。使用後は、温度低下に伴って収縮し毛細管現象によって再びすベり軸受 16の気孔内に戻る。すべり軸受 16は、こうした潤滑油の挙動によって優れた自己潤 滑機能を発揮する。含浸させる潤滑油の動粘度は必ずしも限定されるものではない 力 すべり軸受 16に含浸させられることを前提として、含浸後、通常時において気孔 内に留まらせることができ、かつ使用時に軸 22との摩擦熱によって摺動面に滲出し た後に温度低下に伴って再びすベり軸受 16に戻ることができる範囲である必要があ る。潤滑油の動粘度範囲を例示するなら、例えば 25. 5 [°C]における動粘度の値が 56〜 1500 [mm2Zs]程度のものであれば上記のような挙動を示し得ることが確認さ れている。但し、例えば 25. 5 [°C]における動粘度の値が 220 [mm2Zs]以下である と建設機械用軸受に力かる標準的な面圧である 70[Mpa]を下回る 40[Mpa]にてす ベり軸受 16の焼付きの認められた場合があつたため、本発明の実施には 25. 5 [°C] における動粘度の値が 220〜1500[mm2Zs]程度の潤滑油を適用することがより好 ましい。
[0026] なお、すべり軸受 16に含浸させる潤滑油には、鉱物油や合成油等を含めて一般に 市販されているほとんどの潤滑油が使用でき、上記のような挙動を示し得る動粘度の ものであればその組成は特に限定されない。但し、繊維質の増ちよう剤等を含有する グリスはすべり軸受 16に含浸させることができないため除外される。 [0027] また本実施の形態では、すべり軸受 16に含浸させる潤滑油に、固体潤滑剤を含有 させている。潤滑剤に含まれる固体潤滑剤は層状構造をなしており、それらが層方向 に滑ることにより優れた潤滑効果を発揮する。固体潤滑剤には、例えば、有機モリブ デン、二硫ィ匕モリブデン、二硫化タングステン、窒化ホウ素、グラフアイト、ナイロン、ポ リエチレン、ポリイミド、ポリアセタール、ポリテトラフルォロエチレン、ポリフ 二レンサ ルファイトのうちの少なくとも 1種が含まれる。潤滑油の固体潤滑剤含有量は例えば 2 . 0〜30 [質量%]程度であり、その固体潤滑性微粒子の粒径は、すべり軸受 16の気 孔に円滑に出入りできるように気孔を閉塞しない程度に十分小さいものとする(例え ば 0. 1 111〜100 111程度)。
[0028] 固体潤滑剤を含んだ潤滑油をすベり軸受 16に含浸させるには、まず微粒子状の 固体潤滑剤と潤滑油とを十分に攪拌して固体潤滑剤を潤滑油中に均一に分散させ た上で、潤滑油を加熱して粘度低化させ液状化させる。そして、液状化した潤滑油内 にすベり軸受 16を浸漬して真空雰囲気下で静置する。これにより、すべり軸受 16の 気孔内の空気が吸い出され、代わって固体潤滑剤入りの潤滑油が気孔内に吸引さ れる。このようにして気孔内に潤滑油を含浸させた上ですベり軸受 16を空気中に取り 出して室温になるまで放冷すると、潤滑油はすべり軸受 16の気孔内で再び元の粘度 に戻って流動性を失う。こうして固体潤滑剤を含んだ潤滑油をすベり軸受 16に含浸 させその気孔内に留める。
[0029] すべり軸受 16に含浸させる際の潤滑油の加熱温度は、特に限定されるものではな く使用する潤滑油の粘度に応じて変化するものであって、潤滑油が液状ィ匕する温度 まで昇温させれば良い。但し、固体潤滑剤に、ポリエチレン、ポリイミド、ポリアセター ル、 PTFE (ポリテトラフルォロエチレン)等の榭脂系素材を用いる場合には、加熱温 度はその樹脂の耐熱温度未満とする必要がある。また、潤滑油へのすべり軸受 16の 浸漬時間及び真空度についても、特別に限定されるものではなく使用する潤滑油の 粘度に応じるものであって、すべり軸受 16の気孔が潤滑油で飽和されるまで浸漬す る。動粘度が 460[mm2Zs]の潤滑油を 60〜80[°C]にまで加熱し、 2 X 10"2[mm Hg]の真空下で、すべり軸受 16をこの潤滑油に浸漬させる場合を例に挙げると、こ の場合、通常は 1時間程度ですベり軸受 16の気孔が潤滑油で飽和する。 [0030] 軸 22は鉄鋼材等から構成されており、好ましくは、浸炭、高周波焼入れ、レーザ焼 入れ、窒化等の処理を表面 (外周面)に施した後、化成 (例えばリン酸亜鉛、リン酸マ ンガン等)若しくは浸硫処理法により表面改質処理する。このように、 Zn (亜鉛)、 Mn
(マンガン)、 S (硫黄)等の極圧付与物質を用いて軸 22の表面改質処理を行うことに よってすベり軸受 16内に含浸されている潤滑油との"ぬれ性"を向上させると、潤滑 効果及びトライボロジ特性が向上する。なお、この限りにおいては、すべり軸受 16の 軸 22との摺動面 (すなわち内周面)についても、軸 22の表面と同様、浸炭、焼入れ、 窒化、浸硫処理法等により表面改質処理を施すと一層好ましい。例えば、すべり軸 受 16の軸 22との摺動面に厚さ l [mn!]〜 3 [mm]程度、好ましくは 2[mm]程度の浸 炭硬化層を形成すると、すべり軸受 16の耐摩耗性がより向上する。
[0031] 図 3は本発明の第 1の実施の形態に係るすべり軸受用グリスを適用するすべり軸受 と軸との界面付近を拡大し模式ィ匕して表した部分断面図である。
図 3に示したように、すべり軸受 16と軸 22とが相対摺動すると、その際の摩擦熱に よって、すべり軸受 16の気孔 30内に含浸されて!/、る高粘度の潤滑油 31が微粒子状 の固体潤滑剤 33とともにすべり軸受 16の内周面上に表出して薄い油膜 32を形成す る。この固体潤滑剤 33を含んだ潤滑油 31からなる油膜 32がすべり軸受 16と軸 22と の間の摺動界面となることにより、固体潤滑剤 33の微細な層が層方向に滑って優れ た潤滑効果が発揮され、優れたトライボロジ特性が得られる。気孔 30内に含浸された 潤滑油 31は流動性が極めて低いので、すべり軸受 16と軸 22が相対的な摺動を繰り 返しても流失することが殆どない。その結果、潤滑油膜 32は極めて長期に亘つて安 定的に供給され続ける。揺動駆動する軸 22とすべり軸受 16との間に発生するいわゆ る"かじり現象"は両者間のミクロ的な金属接触によって引き起こされるが、これが図 示したような微視的な"油だまり"(油膜 32)の存在によって防止される。
[0032] 図 2に戻り、前述したグリス給脂孔 25内のすべり軸受用グリス 24は、潤滑油 31より も動粘度が低い基油、具体的には 40[°C]における動粘度が 10〜70[mm2Zs] (好 ましくは 30〜70[mm2Zs])で軸 22の荷重によって滲み出てすべり軸受 16と軸 22と の間に油膜 (後述)を形成する基油を用いている。この基油は、例えば炭化水素系合 成油の低粘度基油及び低粘度鉱物油等である。また、このすベり軸受用グリス 24に は、その増ちよう剤として低粘度の基油に合ったもの、例えば金属石けん、ポリウレァ 榭脂、有機ベントナイト、シリカ、フッ素系榭脂等の少なくとも 1種が加えられ、その他
、通常の酸化防止剤や極圧剤、潤滑補助剤としての油性剤、また増粘剤等が必要に 応じて添加される。また、すべり軸受 16に含浸させた潤滑油に含まれる固体潤滑剤 を添加しても良い。
[0033] このように組成されたすベり軸受用グリス 24は、基油に 40 [°C]における動粘度が 1 0〜70[mm2Zs]のものを用いることによってすべり軸受 16と軸 22との相対摺動が 一定時間以上停止している間における両者間の潤滑性を確保する役割を果たす。 すべり軸受用グリス 24の基油の動粘度の範囲の根拠については後述する。
[0034] 次に、本発明の一実施の形態に係るグリスを適用したすべり軸受組立体の動作及 び作用を説明する。
先に図 3で説明したように、すべり軸受 16と軸 22とが相対的に摺動すると、すべり 軸受 16の気孔 30内に含浸されている潤滑油 31が固体潤滑剤 33とともにすべり軸受 16の内周面に表出し薄い油膜 32を形成する。このようにして潤滑油 31とともに固体 潤滑剤 33がすべり軸受 16と軸 22との摺動面に侵入することにより、潤滑油 31及び 固体潤滑剤 33からなる微細な油膜 32がすべり軸受 16と軸 22との摺動面に形成され 、その摺動速度に関わらず相対的に摺動するすべり軸受 16と軸 22との間で優れた 潤滑効果を発揮する。
[0035] 一方、機械の運転が停止する等してすべり軸受 16と軸 22との相対摺動が停止する と、摺動面で油膜 32を形成している潤滑油 31は温度低下に伴い毛細管現象によつ てすベり軸受 16が有する多数の気孔 30内に固体潤滑剤 33を伴って吸入される。こ のとき潤滑油 31はすべり軸受 16内に戻るのですベり軸受 16と軸 22との間にほとん ど滲出していない状態となるが、図 4に示したように、軸 22からの荷重によってすベり 軸受用グリス 24から滲出する低粘度基油がすべり軸受 16と軸受 22との間に油膜 35 を形成する。これはすべり軸受用グリス 24の基油粘度が 10〜70[mm2Zs]と低く" ぬれ性"に優れているためである。図 4は油膜 35の状態を模式的に表すすベり軸受 16と軸 22の断面図である。
[0036] なお、一般に建設機械のすべり軸受に用いられるグリスは、高面圧下での性能を向 上させるために基油粘度が比較的高い値に設定されるのが通常であるため、停止中 の軸及び軸受間では潤滑膜が切れた状態となる。
[0037] ここで、油圧ショベルを一定時間以上停止する場合、一般には図 1に示したように 掘削装置 5のパケット 10を接地させた姿勢をとるが、図 5に示したようにパケット 10を 地面力 浮力せた状態で放置した場合、掘削装置 5の自重に起因するモーメントが すべり軸受組立体 12に作用する。掘削装置 5は各油圧シリンダ 7, 9, 11における圧 油の保持力によって現状の姿勢を維持しょうとするが、油圧駆動回路の圧油の微小 なリークによってシリンダ内圧が低下すると、時間の経過とともに掘削装置 5の下がり モーメントに抗する力が減少する。その結果、完全に停止状態にあるにも関わらず、 すべり軸受 16と軸 22を相対的に摺動させようとする力が作用する。
[0038] このとき、仮にすベり軸受用グリス 24を供給しない場合、一定時間以上相対的に静 止した状態のすべり軸受 16と軸 22との間には油膜がほとんど存在しないことになる。 含油焼結合金ブッシュであるすベり軸受 16と軸 22との接触面は"なじみ状態"と呼ば れる互いに凹凸の少ない平滑な状態にあり、真実の接触面積が単なる鉄ブッシュを 用いた軸受組立体に比べて非常に大きくなる。一般には、このように 2固体間の実際 の接触面積が大きくなると、両者間に作用する凝着力が大きくなる。つまり、次に両者 が相対的に摺動する際に凝着部分をせん断するのに必要なエネルギが大きくなり、 見かけ上の摩擦力もそれだけ増大する。
[0039] したがって、すべり軸受組立体 12に作用するモーメントがすべり軸受 16と軸 22との 間に作用する最大静止摩擦力を超えるとそれまでに蓄えられたエネルギがー気に解 放され、両者が相対的に所定距離摺動する。そして、このようにして生じるフレツティ ング現象によってすベり軸受 16に発生する振動が掘削装置 5に共振すると、思いが けず大きな異音が発生する場合がある。このフレツティング現象に起因して発生する 異音は、パケット 10が地面に到達するまで繰り返し生じ得る。
[0040] それに対し、本実施の形態においては、すべり軸受 16と軸 22とが相対的に停止し ているときでも、図 4で説明したようにすベり軸受用グリス 24から滲み出る"ぬれ性"に 優れた低粘度基油によってすベり軸受 16と軸 22との間に油膜 35が形成されるため 、これが潤滑膜となってすべり軸受 16と軸 22との摩擦力を低下させ、異音発生を抑 制する或いは発生する異音を小さくすることができる。
[0041] 図 6は本発明の第 2の実施の形態に係るすべり軸受用グリスを適用するすべり軸受 と軸との界面付近を拡大し模式ィ匕して表した部分断面図である。この図において既 出図面と同様の部分には既出の部分と同符号を付して説明を省略する。
前の実施の形態と同様、本実施の形態におけるすべり軸受 16も多孔質複合焼結 合金で形成されて 、るが、その気孔には固体潤滑剤を含んで 、な 、高粘性の潤滑 油が含浸させてある。潤滑油をすベり軸受 16に含浸させるには、前の実施の形態の 固体潤滑剤を含んだ潤滑油を本実施の形態における固体潤滑剤を含まない潤滑油 に置換して前の実施の形態と同じ要領で行えば良い。
[0042] 図 6に示したように、本実施の形態においても、すべり軸受 16と軸 22とが相対摺動 すると、その際の摩擦熱によって、すべり軸受 16の気孔 30内に含浸されている高粘 度の潤滑油 31がすべり軸受 16の内周面上に表出して薄い油膜 32を形成する。この 油膜 32がすべり軸受 16と軸 22との間の摺動界面となって潤滑効果が発揮され、優 れたトライボロジ特性が得られる。気孔 30内に含浸された潤滑油 31は流動性が極め て低いので、すべり軸受 16と軸 22が相対的な摺動を繰り返しても流失することが殆 どない。その結果、潤滑油膜 32は極めて長期に亘つて安定的に供給され続ける。揺 動駆動する軸 22とすべり軸受 16との間に発生するいわゆる"かじり現象"は両者間の ミクロ的な金属接触によって引き起こされる力 これが図示したような微視的な"油だ まり"(油膜 32)の存在によって防止される。
[0043] ここで、本実施の形態において、前述したグリス給脂孔 25 (図 2参照)内のすべり軸 受用グリス 24は、第 1の実施の形態と同様の基油に第 1の実施の形態と同様の固体 潤滑剤を添加してなっている。つまり、第 1の実施の形態ではすべり軸受 16に含浸さ せた潤滑油 31に固体潤滑油を含有させて 、たのに対し、本実施の形態ではグリス 給脂孔 25内のすべり軸受用グリス 24に固体潤滑剤を含有させてある。
[0044] このように組成された本実施の形態におけるすべり軸受用グリス 24は、基油〖こ 40 [ °C]における動粘度が 10〜70[mm2Zs]のものを用いることによってすべり軸受 16と 軸 22との相対摺動が一定時間以上停止している間における両者間の潤滑性を確保 し、さらに固体潤滑剤を添加することによってすべり軸受 16に対して軸 22が微小揺 動するような場合の両者間の潤滑性を確保する役割を果たす。
[0045] 本実施の形態においても、すべり軸受 16と軸 22とが相対的に摺動すると、すべり 軸受 16の気孔 30内に含浸されている潤滑油 31がすべり軸受 16の内周面に表出し 薄い油膜 32を形成する。このとき、すべり軸受 16と軸 22との間には、グリス給脂孔 2 5からのすベり軸受用グリス 24が介在し、すべり軸受用グリス 24に混入された微粒子 状の固体潤滑剤がすべり軸受 16と軸 22との間に入り込む。このようにして潤滑油 31 とともに固体潤滑剤がすべり軸受 16と軸 22との摺動面に侵入することにより、潤滑油 31及び固体潤滑剤を含んだすべり軸受用グリス 24からなる微細な層がすべり軸受 1 6と軸 22との摺動面に形成され、相対的に摺動するすべり軸受 16と軸 22との間で優 れた潤滑効果を発揮する。
その他の構成及び作用について、本実施の形態は第 1の実施の形態と同様であり 、第 1の実施の形態と同様の作用効果を得ることができる。
[0046] また、すべり軸受 16と軸 22とが僅かにしか摺動しない微小揺動や極低速摺動をす るような運転の際には、停止時に比べて高い面圧が発生するので、すべり軸受用ダリ ス 24の基油による油膜 35ではこの摺動を潤滑するに十分な膜厚が得られな 、。しか も、この状況で発生する摩擦熱は微量であることから潤滑油 31も十分には滲出しな い場合がある。その結果、局所的な面圧が生じて軸 22の表面又はすベり軸受 16内 周面に"かじり"等の局所的な摩耗 ·損傷及びこれに伴う異音が生じる恐れがある。
[0047] それに対し、本実施の形態においては、迅速にすべり軸受 16と軸 22との間にすベ り軸受用グリス 24に含まれる固体潤滑剤が侵入するために、比較的低速で駆動する ような場合でも十分な潤滑効果を確保することができる。もちろん、それよりも高速で 掘削装置 5を駆動する場合は十分な摩擦熱が得られるために必要十分量の潤滑油 31が滲出し、含油焼結合金ブッシュ本来の優れた潤滑効果が発揮される。
[0048] なお、見かけ上はすべり軸受 16と軸 22とが互いに静止していてもエンジンが力か つているときには、その振動がすべり軸受組立体 12に伝達されることですベり軸受 1 6と軸 22との間に瞬間的に高い面圧が発生しており、かつ微視的には僅かながらに すべり軸受 16と軸 22との間にすべりが生じて 、る。このように掘削装置 5自体が動作 していなくても、エンジン駆動時にはすベり軸受 16と軸 22が相対的に静止状態にな V、ために前述した凝着力はほとんど生じず、この状態から掘削装置 5を微小揺動させ る場合にはフレツティング現象は生じ難い。またこの場合にはすべり軸受 16に含まれ る固体潤滑剤の作用も加わってすべり軸受組立体 12の摺動動作は潤滑される。仮 にフレツティング現象が生じたにしても、前述した凝着力が小さいために発生する異 音は小さくなり、エンジン音に紛れる程度のものとなる。
[0049] ここで、本発明のすべり軸受用グリスと市販のグリスの組成及び性能試験の比較結 果を図 7に示す。
本願発明者等は、フレツティング現象の発生機構とこれに対するグリスの関係につ いて検討し本試験を実施した結果、本発明のすべり軸受用グリスの基油の動粘度範 囲を上述の範囲として 、る。
[0050] 本試験では、一般に製造されるリチウムグリースと同様の方法によってベースダリー スを製造し、製造したベースグリースに添加剤を混合して 3本ロールミルによって混練 処理した後、ちょう度を NLGI (National Lubricating Grease Institute) No. 2グレード (ちょう度: 265〜295)に調製して本発明のすべり軸受用グリスの試料 1〜5を製造し た。そして、これら試料 1〜5の性能について市販品 1〜3と比較した。
[0051] まず、試料 1〜5はいずれも鉱物油を基油とし、増ちよう剤に Li、添加剤に極圧剤- 防鲭剤 '有機 Mo (固体潤滑剤) '油性剤を使用したものである。但し、試料 1〜5に用 いた基油はそれぞれ動粘度が異なり、 40 [°C]における試料 1〜5の基油の動粘度の 値 [mm2Zs]はそれぞれ、 10, 22, 32, 46, 68である。
[0052] 対して、比較に用いた市販品 1, 2は、図 1に示したような油圧ショベルの掘削装置 のすベり軸受組立体に極一般に給脂されるものである。また市販品 3は、基油粘度が さらに高く極圧性能の高いものである。ちょう度は巿販品 1〜3とも NLGI No. 2ダレ ードだが、市販品 1〜3それぞれの基油 (鉱物油)の動粘度の値 [mm2Zs]は、 143, 93, 430である。
[0053] 以上の試料 1〜5と市販品 1〜3とを用いて耐荷重性能及び耐摩耗性能を試験した 結果、試料 1〜5とも、耐摩耗性能については市販品 1, 2と同等、耐荷重性能につ いては同等かそれよりも良好な値を得た。特に試料 4, 5については耐荷重性能が 3 090 [N]と高い値が得られた。なお、耐荷重性能試験は高速 4球試験(1770 [rpm] X 10 [sec])により、耐摩耗性納試験は高速 4球試験(1220 [rpm] X 40[kgf] X 75 [°C] X l [hr] )により実施した。
[0054] また、試料 1〜5及び市販品 1〜3を用いて摩擦係数を評価した。摩擦係数の評価 方法は、試験片として、含油合金で形成された直径 60 [mm]の円盤、表面に高周波 焼入れを施した Φ 4 [mm] X 6 [mm] (円盤との接触面: R= 2 [mm])のピンを用意し 、円盤に対して各グリスを介してピンを往復摺動させた際に測定された摩擦係数の推 移力 判断したものである。試験条件は、摺動速度: 180[mmZmin]、摺動幅: 10 [ mm] ,ピンの円盤に対する押し付け荷重: 1 [kg]、グリス膜厚: 0. 2 [mm]であり、摺 動開始後所定時間経過時点から一定時間(ここでは 5000回往復摺動する間)の摩 擦係数を測定した。その測定結果を表すグラフを図 8に示した。
[0055] 本願発明者等は、この図 8のグラフを基に、終始低い値のまま安定しているものを「 〇」、始めは低いが途中力も高くなるものを「△」、終始高いものを「X」と評価した。そ の結果、基油粘度が著しく高い市販品 3は X、試料 1, 2及び市販品 1, 2は△、市販 品 5は△〜〇、市販品 3, 4は〇と評価された。
[0056] また、実機における効果確認方法については、油圧ショベルの掘削装置の各すベ り軸受組立体に試料 1〜5及び市販品 1〜3をそれぞれ給脂し、例えば図 5のように パケット 10を地面から (例えば 1 [m]程度)浮かせた状態で停止させ、ブーム 6とァー ム 8との間、アーム 8とパケット 10との間のすべり軸受組立体 12のすべりに起因する 異音が 30分間に何度発生するかを測定した。その際、すべり軸受組立体 12により大 きなモーメントが作用するようにパケット 10に約 Itの錘を取り付けた。
[0057] 本願発明者等は、上記のように実験を行った結果、異音発生回数が 30回以下 (平 均 1回 Z分以下)の場合を「◎」、 60回以下 (平均 2回 Z分以下)の場合を「〇」、 90 回以下 (平均 3回 Z分以下)の場合を「△」、 120回以下 (平均 4回 Z分以下)の場合 を「X」、 120回以上 (平均 4回 Z分以上)の場合を「X X」と評価した。その結果、巿 販品 1〜3はいずれも「 X」以下の評価であり、特に基油の動粘度が著しく高力つた巿 販品 3は市販品 1, 2に比べても好ましくない結果だったのに対し、試料 1〜5につい ては市販品 1〜3を用いた場合よりも明らかに異音発生回数が減少した。
[0058] 本性能試験の結果より、 40[°C]における基油の動粘度が 70 [mm2Zs]程度以下 のグリスを用いれば、市販のグリスよりも異音の発生を抑制することができることが分 かった。一方、 40 [°C]での動粘度が 10 [mm2Zs]未満の油は特殊で一般的でない ことから鉱物油では殆ど知られておらず合成油の一部には存在するものの、引火点 が低くグリスの基油としては不適切であるため、基油粘度の下限値は 10[mm2Zs]と すれば足りる。このように、 40[°C]における基油の動粘度が 10〜70 [mm2Zs]のグ リスを用いることにより、異音の発生を抑制することができることが分力つた。中でも試 料 3〜5で良好な異音抑制効果が確認されて 、ることから、特に異音抑制効果を得る 上で好ましいのは、 40 [°C]における基油の動粘度が 30〜70[mm2Zs]のグリスで めつに。
[0059] また、本性能試験では最初力もすベり軸受組立体に各種グリスを給脂したが、初期 段階では固体潤滑状態としておき、異音が発生した後に給脂した場合に異音が抑制 されるかどうかを試験した結果、市販のグリスを給脂しても効果がな力つたのに対し、 本発明に係るグリスを給脂した場合には即座に異音発生現象が改善されることも確 認できた。
[0060] なお、本発明においては、グリス自体の粘度は特に限定されるものではなぐあくま でグリス力 滲み出る基油の動粘度を限定するものである。したがって、糊状に組成 してすベり軸受組立体に対してヘラ等で塗布したりチューブ等によって注入したりす るようにしても良 ヽし、或いは溶剤で希釈してスプレー等によって噴き付けられるよう にしても良い。
[0061] また、第 1の実施の形態においては、含浸させる潤滑油に固体潤滑剤が含まれた 含油焼結合金ブッシュを第 1の実施の形態のすべり軸受用グリスの適用例に挙げて 説明したが、固体潤滑剤を含まない潤滑油を含浸させた含油焼結合金ブッシュにも 第 1の実施の形態のすべり軸受用グリスは適用可能である。
[0062] さらに、以上において、油圧ショベルの掘削装置の関節部分に設けたすべり軸受 に本発明のグリスを適用した場合を説明したが、その他にも、建設機械、土木機械、 搬送機械、扛重機械、工作機械、自動車等に代表される各種機械の各所に用いら れるすべり軸受に適用可能である。

Claims

請求の範囲
[1] 潤滑材 (31)を気孔 (30)に含浸させた多孔質焼結合金ブッシュからなるすべり軸受 (1
6)と、このすベり軸受 (16)に挿通されて周方向に回転摺動するように支持された軸 (22
)との間に供給するすべり軸受用のグリス (24)であって、
40°Cにおける動粘度が 10〜70mm2Zsで、前記軸 (22)の荷重によって滲み出て 前記すベり軸受 (16)と前記軸 (22)との間に油膜 (35)を形成する基油を用いていること を特徴とするすべり軸受用グリス (24)。
[2] 固体潤滑剤 (33)を混入した潤滑材 (31)を気孔 (30)に含浸させた多孔質焼結合金ブ ッシユカ なるすべり軸受 (16)と、このすベり軸受 (16)に挿通されて周方向に回転摺動 するように支持された軸 (22)との間に供給するすべり軸受用のグリス (24)であって、 40°Cにおける動粘度が 10〜70mm2Zsで、前記軸 (22)の荷重によって滲み出て 前記すベり軸受 (16)と前記軸 (22)との間に油膜 (35)を形成する基油を用いていること を特徴とするすべり軸受用グリス (24)。
[3] 潤滑材 (31)を気孔 (30)に含浸させた多孔質焼結合金ブッシュからなるすべり軸受 (1
6)と、このすベり軸受 (16)に挿通されて周方向に回転摺動するように支持された軸 (22
)との間に供給するすべり軸受用のグリス (24)であって、
前記潤滑油 (31)よりも動粘度が低く前記軸 (22)の荷重によって滲み出て前記すベり 軸受 (16)と前記軸 (22)との間に油膜 (35)を形成する基油を用いていることを特徴とす るすべり軸受用グリス (24)。
[4] 潤滑油 (31)を気孔 (30)に含浸させた多孔質焼結合金ブッシュ力 なるすべり軸受 (1
6)と、このすベり軸受 (16)に挿通されて周方向に回転摺動するように支持された軸 (22
)との間に供給するすべり軸受用のグリス (24)であって、
40°Cにおける動粘度が 10〜70mm2Zsで前記軸 (22)の荷重によって滲み出て前 記すベり軸受 (16)と前記軸 (22)との間に油膜 (35)を形成する基油を用い、少なくとも固 体潤滑剤を添加してなることを特徴とするすべり軸受用グリス (24)。
[5] 潤滑油 (31)を気孔 (30)に含浸させた多孔質焼結合金ブッシュ力 なるすべり軸受 (1
6)と、このすベり軸受 (16)に挿通されて周方向に回転摺動するように支持された軸 (22
)との間に供給するすべり軸受用のグリス (24)であって、 前記潤滑油 (31)よりも動粘度が低く前記軸 (22)の荷重によって滲み出て前記すベり 軸受 (16)と前記軸 (22)との間に油膜 (35)を形成する基油を用い、少なくとも固体潤滑 剤を添加してなることを特徴とするすべり軸受用グリス (24)。
[6] 請求項 2、 4又は 5に記載のすべり軸受用グリス (24)において、前記固体潤滑剤 (33) は、有機モリブデン、二硫ィ匕モリブデン、二硫化タングステン、窒化ホウ素、グラフアイ ト、ナイロン、ポリエチレン、ポリイミド、ポリアセタール、ポリテトラフルォロエチレン、ポ リフエ-レンサルファイトのうちの少なくとも 1種を含むことを特徴とするすべり軸受用 グリス (24)。
[7] 請求項 1〜5のいずれかに記載のすべり軸受用グリス (24)において、極圧添加剤及 び油性剤を添加したことを特徴とするすべり軸受用グリス (24)。
PCT/JP2005/019623 2004-10-29 2005-10-25 すべり軸受用グリス WO2006046573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05805276A EP1806512B1 (en) 2004-10-29 2005-10-25 Grease for sliding bearing
US11/587,487 US20070242910A1 (en) 2004-10-29 2005-10-25 Grease For Slide Bearing
US13/041,993 US20110152139A1 (en) 2004-10-29 2011-03-07 Grease for slide bearing
US13/346,223 US8376619B2 (en) 2004-10-29 2012-01-09 Grease for slide bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004316745A JP4451276B2 (ja) 2004-10-29 2004-10-29 すべり軸受用グリス
JP2004-316745 2004-10-29
JP2004316755A JP4451277B2 (ja) 2004-10-29 2004-10-29 すべり軸受用グリス
JP2004-316755 2004-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/587,487 A-371-Of-International US20070168453A1 (en) 2004-06-24 2005-06-21 Function managing apparatus
US13/041,993 Continuation US20110152139A1 (en) 2004-10-29 2011-03-07 Grease for slide bearing

Publications (1)

Publication Number Publication Date
WO2006046573A1 true WO2006046573A1 (ja) 2006-05-04

Family

ID=36227814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019623 WO2006046573A1 (ja) 2004-10-29 2005-10-25 すべり軸受用グリス

Country Status (4)

Country Link
US (3) US20070242910A1 (ja)
EP (2) EP2312174B1 (ja)
KR (1) KR101021995B1 (ja)
WO (1) WO2006046573A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097641A (ja) * 2007-10-17 2009-05-07 Mitsuba Corp 焼結含油軸受及び回転電機
JP2009543181A (ja) * 2006-06-28 2009-12-03 アノト アクティエボラーク 電子ペンにおける動作制御およびデータ処理
JP2019116949A (ja) * 2017-12-27 2019-07-18 株式会社アドヴィックス 動力変換装置及び車両の電動制動装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090202855A1 (en) * 2008-01-09 2009-08-13 Saxton David M Porous sliding bearing and method of construction thereof
US7784152B2 (en) * 2008-06-18 2010-08-31 Roger Svensson Integrated sealed and lube free pivot system
DE102010022039B3 (de) * 2010-05-25 2011-07-14 Siemens Aktiengesellschaft, 80333 Bauteil mit einer Gleitfläche für die Lagerung eines anderen Bauteils sowie Verfahren zum Erzeugen einer Gleitschicht
US8882011B2 (en) * 2011-06-28 2014-11-11 Fellowes, Inc. Cutting shaft oil manifold
JP6072408B2 (ja) 2011-09-22 2017-02-01 Ntn株式会社 滑り軸受および画像形成装置
JP6544953B2 (ja) 2014-05-29 2019-07-17 株式会社リコー 画像形成装置及びグリース組成物
JP6544952B2 (ja) 2014-05-29 2019-07-17 株式会社リコー 駆動装置及び画像形成装置
JP6527720B2 (ja) 2014-05-29 2019-06-05 株式会社リコー 駆動装置、画像形成装置及びグリース組成物
DE102015111788A1 (de) * 2015-07-21 2017-01-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gleitlagervorrichtung
FR3120914A1 (fr) * 2021-03-16 2022-09-23 Safran Aircraft Engines Module de soufflante equipe d’un dispositif de transfert d’huile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195416A (ja) * 1987-02-09 1988-08-12 Ntn Toyo Bearing Co Ltd 多孔質滑り軸受およびその製造方法
JPS6360247B2 (ja) * 1983-08-22 1988-11-24
JPH0914269A (ja) * 1995-07-04 1997-01-14 Tsubakimoto Chain Co グリースの喪失油分を補給する焼結合金軸受
JPH1082423A (ja) * 1993-10-22 1998-03-31 Hitachi Constr Mach Co Ltd すべり軸受
JPH11336761A (ja) * 1998-05-28 1999-12-07 Ntn Corp 動圧型焼結含グリース軸受

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1089426A (en) * 1964-07-03 1967-11-01 Continental Gummi Werke Ag Plain bearing with resiliently mounted bush
DE2533804C3 (de) * 1975-07-29 1978-10-19 Teldix Gmbh, 6900 Heidelberg Lager für den Rotor einer OE-Spinnmaschine
JPS6152414A (ja) * 1985-07-24 1986-03-15 Nippon Seiko Kk 動圧流体軸受ユニツト
JPH0762194B2 (ja) 1986-08-29 1995-07-05 オリンパス光学工業株式会社 成形用チタン材
DE3827741A1 (de) * 1987-11-23 1989-06-01 Hermsdorf Keramik Veb Axial-radial-gleitlager fuer sensorsysteme in zuendverteilern fuer ottomotoren
US4981602A (en) * 1988-06-13 1991-01-01 The Lubrizol Corporation Lubricating oil compositions and concentrates
JPH03233188A (ja) * 1990-02-07 1991-10-17 Matsushita Refrig Co Ltd 冷媒ポンプ
JP2832800B2 (ja) * 1993-10-22 1998-12-09 日立建機株式会社 すべり軸受組立体
JPH09177803A (ja) * 1995-12-27 1997-07-11 Hitachi Constr Mach Co Ltd すべり軸受
US6048826A (en) * 1997-06-04 2000-04-11 Idemitsu Kosan Co., Ltd. Lubricating oil composition
DE19728497A1 (de) * 1997-07-03 1999-01-28 Ks Gleitlager Gmbh Gerollte Gleitlagerbuchse
NL1010020C2 (nl) * 1997-09-08 1999-06-23 Ntn Toyo Bearing Co Ltd Spilmotor en inrichting voor het ondersteunen van de roterende as van een spilmotor.
JP4054923B2 (ja) * 1998-03-23 2008-03-05 日本精工株式会社 転がり軸受用グリース組成物及び転がり軸受
US6417143B1 (en) * 1998-10-30 2002-07-09 Ntn Corporation Rolling bearings and greases for the same
JP4523194B2 (ja) * 2001-04-13 2010-08-11 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP4204233B2 (ja) 2002-01-30 2009-01-07 日立粉末冶金株式会社 焼結含油滑り軸受および建設機械油圧ショベルまたはクレーン
JP2003239954A (ja) * 2002-02-13 2003-08-27 Minebea Co Ltd ピボットアッシー用軸受
JP2004100812A (ja) * 2002-09-09 2004-04-02 Hitachi Constr Mach Co Ltd 軸受装置
JP4181393B2 (ja) * 2002-12-04 2008-11-12 日本電産株式会社 潤滑油皮膜の形成方法
JP2005069365A (ja) * 2003-08-25 2005-03-17 Hitachi Constr Mach Co Ltd すべり軸受組立体及びすべり軸受
JP2005090620A (ja) * 2003-09-17 2005-04-07 Hitachi Constr Mach Co Ltd すべり軸受、すべり軸受装置、並びにこのすべり軸受装置を備えたすべり軸受組立体及び建設機械
JP4736867B2 (ja) * 2006-03-07 2011-07-27 オイレス工業株式会社 鍔付円筒軸受ブッシュ及びその製造方法並びに該鍔付円筒軸受ブッシュを用いたヒンジ構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360247B2 (ja) * 1983-08-22 1988-11-24
JPS63195416A (ja) * 1987-02-09 1988-08-12 Ntn Toyo Bearing Co Ltd 多孔質滑り軸受およびその製造方法
JPH1082423A (ja) * 1993-10-22 1998-03-31 Hitachi Constr Mach Co Ltd すべり軸受
JPH0914269A (ja) * 1995-07-04 1997-01-14 Tsubakimoto Chain Co グリースの喪失油分を補給する焼結合金軸受
JPH11336761A (ja) * 1998-05-28 1999-12-07 Ntn Corp 動圧型焼結含グリース軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1806512A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543181A (ja) * 2006-06-28 2009-12-03 アノト アクティエボラーク 電子ペンにおける動作制御およびデータ処理
JP2009097641A (ja) * 2007-10-17 2009-05-07 Mitsuba Corp 焼結含油軸受及び回転電機
JP2019116949A (ja) * 2017-12-27 2019-07-18 株式会社アドヴィックス 動力変換装置及び車両の電動制動装置

Also Published As

Publication number Publication date
EP2312174A1 (en) 2011-04-20
US8376619B2 (en) 2013-02-19
EP2312174B1 (en) 2012-05-23
KR20070085097A (ko) 2007-08-27
US20070242910A1 (en) 2007-10-18
KR101021995B1 (ko) 2011-03-16
EP1806512B1 (en) 2011-09-21
EP1806512A1 (en) 2007-07-11
US20110152139A1 (en) 2011-06-23
US20120106881A1 (en) 2012-05-03
EP1806512A4 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
WO2006046573A1 (ja) すべり軸受用グリス
EP1659303A1 (en) Sliding bearing assembly and sliding bearing
USRE36405E (en) Slide bearing assembly
CN100497977C (zh) 滑动轴承用润滑脂
EP2372179B1 (en) Sintered bush
JP3622938B2 (ja) 滑り軸受およびその使用方法
JP4451277B2 (ja) すべり軸受用グリス
JP4619302B2 (ja) すべり軸受及びその製造方法
JPH10246231A (ja) すべり軸受組立体
JPH11336763A (ja) ブッシュ、建設機械用すべり軸受装置及びブッシュの製造方法
JP4145504B2 (ja) フリクションヒンジ用摩擦部材
JP4079307B2 (ja) 軸受装置
JP2013113371A (ja) 滑り軸受
JP2008057626A (ja) 軸受装置用のブッシュ
JPH1082423A (ja) すべり軸受
CN101101023A (zh) 钨钼合金自润滑轴承
Midgley et al. Bearing Metals; Novel Bearing Materials; Glands and Seals; Solid Lubricants; Surface Treatments
JPH0642533A (ja) 摺動装置
JP2008281146A (ja) 摺動部材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 3057/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11587487

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067023345

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580017869.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005805276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005805276

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11587487

Country of ref document: US