WO2006043609A1 - 溶融成形用ポリフッ化ビニリデン樹脂粉末及び該樹脂粉末を用いた成形体の製造方法 - Google Patents

溶融成形用ポリフッ化ビニリデン樹脂粉末及び該樹脂粉末を用いた成形体の製造方法 Download PDF

Info

Publication number
WO2006043609A1
WO2006043609A1 PCT/JP2005/019244 JP2005019244W WO2006043609A1 WO 2006043609 A1 WO2006043609 A1 WO 2006043609A1 JP 2005019244 W JP2005019244 W JP 2005019244W WO 2006043609 A1 WO2006043609 A1 WO 2006043609A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin powder
particle size
melt
resin
less
Prior art date
Application number
PCT/JP2005/019244
Other languages
English (en)
French (fr)
Inventor
Tsukasa Ikeda
Yasuhiro Suzuki
Kenichi Iwabuchi
Takumi Katsurao
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36203024&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006043609(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to AT05795766T priority Critical patent/ATE508146T1/de
Priority to US11/665,639 priority patent/US7807088B2/en
Priority to JP2006543047A priority patent/JP5111855B2/ja
Priority to DE602005027875T priority patent/DE602005027875D1/de
Priority to EP05795766A priority patent/EP1803749B1/en
Publication of WO2006043609A1 publication Critical patent/WO2006043609A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/08Vinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a melt-formed polyvinylidene fluoride resin powder and a method for producing a molded body using the resin powder.
  • the present invention relates to a polyvinylidene fluoride resin powder for melt molding. More specifically, the present invention relates to a polyvinyl fluoride resin that can be molded by injection molding or extrusion molding without changing the shape of the resin powder. It relates to berylene resin powder. The present invention also provides a molded article in which the polyvinylidene fluoride resin for melt molding is supplied in the form of resin powder to an injection molding machine or an extrusion molding machine, and the molten resin melt is press-fitted into a mold. It relates to a manufacturing method. Background art
  • Polyvinylidene fluoride resin (hereinafter abbreviated as “P VDF F resin”) is a crystalline resin with a low glass transition temperature, and has heat resistance, chemical resistance, and mechanical properties (eg, tensile strength, flexural modulus). , Bending strength, compressive strength, impact resistance), abrasion resistance, flame resistance, and weather resistance.
  • PVDF F resin develops extremely specific electrical properties, coupled with the feature of high dipole efficiency of CF bonds in the molecular structure.
  • PVDF resin Another basic property of PVDF resin is good melt processability.
  • PVDF resin has a wide range of temperatures that can be processed from the melting point to the decomposition point, and exhibits strong and good melt flow characteristics.
  • PVDF resin combines balanced physical properties with good processability, and its application field covers a wide range of materials such as corrosion resistant materials, weather resistant materials, electrical / electronic materials, and regenerator materials. Yes.
  • P VDF F resin is excellent in secondary workability such as machining, bending and welding after primary processing.
  • materials for machining such as round bars and planks with large thickness are made by extrusion molding using PVDF resin.
  • the material for machining is machined into a desired shape by cutting, drilling, cutting, and a matching.
  • the PVDF resin has a drawback that the molten resin is colored when the molding temperature is high in melt molding such as injection molding or extrusion molding. In order to avoid coloring of the molten resin, in injection molding and extrusion molding, the molding temperature is generally adjusted so that the temperature of the molten resin is 2880 ° C or lower.
  • PVDF resin pellets are generally used.
  • a screw type injection molding machine is usually used.
  • the pellets are supplied by rotating the screw into the cylinder of the heated injection molding machine.
  • the pellets are fed by screws and melted and homogenized.
  • the molten resin is pressed into the mold from an injection molding machine.
  • pellets are supplied by rotating a screw into the cylinder of a heated extruder, and the molten resin is extruded into a shape such as a bar, plate, or pipe from a forming die attached to the tip of the extruder. .
  • P VDF F resin receives a thermal history during pelletization, and also receives a thermal history during melt molding, so simply by keeping the molding temperature low during melt molding. It is difficult to prevent coloring of the molded body.
  • extruded molded bodies used as machining materials are required to have a beautiful color and little coloring.
  • new technological developments are required to suppress coloring during melt molding.
  • PVDF resin can be synthesized by various polymerization methods, but in industrial production, it is synthesized by emulsion polymerization method and suspension polymerization method.
  • the synthesized PVDF resin is recovered in the form of resin powder.
  • the type and amount of polymerization initiator, the type and amount of suspending agent or emulsifier, the type of reaction medium, the polymerization temperature, and how they are combined the average particle size, particle size distribution, uniformity of particle shape, etc.
  • the powder characteristics change.
  • a latex having a small particle size of about 0.2 to 0.5 ⁇ m is generated, but after polymerization, a granulation treatment using a flocculant is performed.
  • PVDF resin powder has not been supplied to injection molding and extrusion molding in the state of resin powder, but has been supplied after being melt processed into pellets (for example, US6, 846, 436B1). )
  • a pelletizing step was necessary to uniformly knead PVDF resin powder and various additives.
  • PVDF resin powder Pelletizing PVDF resin powder is time consuming and expensive, and PVDF resin undergoes a high-temperature thermal history during the pelletization process. For this reason, when the obtained pellets are melt-molded, they receive a heat history of high temperature again, so that even if the molding temperature is controlled to be low, the resulting molded product is colored.
  • PVDF resin for melt molding is commercially available in the form of pellets.
  • P V DF resins that are commercially available in the form of resin powder.
  • a single-screw or twin-screw extruder is usually used for pelletizing PVDF resin, but unlike melt molding of general molded products, it is suitable to be melt extruded from a mold nozzle into thin strands.
  • the processing conditions do not have to be strict because the resin is simply squeezed to a large size or the resin discharged at the tip of the extruder is cut.
  • PVDF resin injection molding and extrusion molding uses a molding machine suitable for them, supplies resin material to the molding machine stably, and further adjusts the amount of extrusion and molding conditions. It is necessary to form a molded product having a certain quality with strict control. Disclosure of the invention
  • the object of the present invention is that it can be stably supplied to an injection molding machine or an extrusion molding machine in the form of a resin powder, and is excellent in various properties as in the case of using pellets. It is an object of the present invention to provide a polyvinylidene fluoride resin powder for melt molding that can give a molded product in which coloring is suppressed as compared with the case of using a polymer.
  • Another object of the present invention is to form a polyvinylidene fluoride resin powder having specific powder characteristics obtained by polymerization by injection molding or extrusion molding in a resin powder state without pelletization.
  • An object of the present invention is to provide a method for producing a molded product, which is capable of producing a molded product having excellent characteristics and coloration suppressed stably and inexpensively.
  • the PVDF resin powder of the present invention has specific powder characteristics, so it has excellent fluidity and can be stably supplied to the molding machine, as in the case of pelletization. Measure and mold accurately and stably.
  • the molded product formed by melt press-fitting into the mold using the PVDF resin powder of the present invention is less colored by heating than the molded product melt-molded after being pelletized, and is inferior in mechanical properties. There is no.
  • the pelletizing step can be omitted, and thus the cost can be reduced.
  • the average particle size represented by the 50% cumulative value (D 50 ) in the particle size cumulative distribution is 80 to 250 ⁇ m
  • the bulk density is 0.30 to 0.8 O g / cm 3 .
  • the average particle size represented by 50% cumulative value (D 50 ) in the particle size cumulative distribution is 80-25 ( ⁇ ⁇ ,
  • the bulk density is 0.30 to 0.80 g / cm 3 .
  • PVDF resin Polyvinylidene fluoride resin
  • VDF resin is a homopolymer of vinylidene fluoride or a copolymer of vinylidene fluoride and a monomer copolymerizable with vinylidene fluoride as a main structural unit.
  • vinylidene fluoride copolymer examples include: vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-monochlorotrifluoroethylene copolymer , Vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene terpolymer, fluoride-vinylidene-chlorotrifluoroethylene-hexafluoropropylene Examples include terpolymers.
  • These vinylidene fluoride copolymer to Kisafuruo port propylene such copolymerization ratio of Como Nomar 1 5 Mo / Les 0/0 or less, preferably 1 0 mol% or less, more rather preferably 5 mol% or less It is a thermoplastic resin having crystallinity.
  • the lower limit of the comonomer ratio is preferably 1 mol%.
  • Polyvinylidene fluoride homopolymer (P VD F) is a crystalline resin, and in order to break down its crystallinity by co-polymerization and make it an elastomer, a comonomer such as hexafluoropropylene is used. It is necessary to increase the copolymerization ratio. Actually, in the commercially available elastomer, the copolymerization ratio of the comonomer is 20 mol% or more.
  • the PVDF resin used in the present invention is a polymer having various unique crystal structures such as ⁇ -type, ⁇ -type, y-type, and ap-type.
  • P VD F resins polyvinylidene fluoride homopolymer (P VD F), and to the hexa full O b 1 propylene units 5 mole 0/0 fluoride Biniri den one containing the following proportions Kisafuruoro Propylene copolymers are preferred from the standpoints of melt moldability, mechanical properties, stain resistance, solvent resistance, and secondary processability.
  • the PVDF resin powder of the present invention can be produced by suspension polymerization or emulsion polymerization.
  • emulsion polymerization a chemically stable fluorine emulsifier is used, and polymerization is performed using an inorganic peroxide, an organic peroxide, or an organic percarbonate compound as a polymerization initiator.
  • latex with a fine particle size of sub-micron units is precipitated by a flocculant and aggregated to recover resin particles of an appropriate size.
  • PVDF resin powder is preferably produced by suspension polymerization.
  • a vinylidene fluoride monomer or vinylidene fluoride monomer and a comonomer such as hexafluoropropylene are mixed in an aqueous medium using a suspending agent such as methyl cellulose. Disperse and perform polymerization.
  • an organic percarbonate eg, di-n-propyl peroxydicarbonate
  • a temperature below the critical temperature 30.1 ° C, preferably 1
  • the polymerization reaction is started at 0 to 30 ° C, more preferably 20 to 28, and polymer particles (primary particles) are formed, and then the temperature is 30 to 90 ° C, preferably 40 to 80 °.
  • a method of increasing the temperature to C and continuing the polymerization reaction is preferable for obtaining polymer particles (resin powder) having a large bulk density and a small angle of repose.
  • a chain transfer agent can be used to control molecules 4 of PVDF resin.
  • the average particle size of the polymer produced It is possible to adjust the powder properties such as particle size distribution including diameter, bulk density, and angle of repose.
  • the particle size distribution characteristics can be adjusted to be within a desired range by classifying the resin powder obtained by polymerization.
  • the intrinsic viscosity of the PVDF resin is preferably 0.70 to 1. S O d l / g, more preferably 0.80 to L. 30 d lZg.
  • the intrinsic viscosity of PVDF resin is the logarithmic viscosity at 30 ° C of a solution of 4 g of resin dissolved in 1 liter of N, N-dimethylformamide and is measured with an Ubbelohde viscometer.
  • the melting point of PVDF resin is preferably 130 to 1777 ° C.
  • the melting point of PVDF resin is a value measured by a differential scanning calorimeter (DSC).
  • the PVDF resin powder for melt molding of the present invention has the following powder characteristics (a) to (c).
  • the bulk density is 0.30 to 0.80 g / cm 3 .
  • the angle of repose is 40 degrees or less.
  • the particle size distribution characteristic of the PVDF resin powder of the present invention is derived based on the particle size distribution measured by the dry sieving method according to JISK 0069-3. More specifically, it is the particle size distribution characteristic measured by the measurement method described in the examples described later.
  • the average particle diameter (D 50 ) of the PVDF resin powder for melt molding of the present invention is 80 to 250 ⁇ m, preferably 100 to 230 ⁇ , more preferably 130 to 210 ⁇ . If the average particle size of the PVDF resin powder is too small, the fluidity tends to decrease and the stability of supply to the molding machine tends to decrease. If the average particle size of PVDF resin powder is too small or too large, the amount of fine particles or coarse particles increases, and the particle size distribution becomes broad. When the particle size distribution of PVDF resin particles becomes broad, a difference occurs in the molten state between the resin powders in the cylinder of the molding machine, so that the molten state is likely to fluctuate. It becomes difficult to keep the shape and quality of the molded body constant.
  • the PVDF resin powder for melt molding of the present invention has a particle size width (D 80 — D 20 ) represented by the difference between the 80% cumulative value (D 80 ) and the 20% cumulative value (D 20 ) in the cumulative particle size distribution.
  • standard value of particle size distribution is preferably 0.8 or less, more preferably 0.6 or less.
  • PVDF resin powder has a small particle size distribution specification value and a sharp particle size distribution, so that it can be uniformly melted at the time of melt molding to give a molded product with high quality and constant shape.
  • the proportion of PVDF resin powder having a particle size of 45 ⁇ or less is 15.0 wt% or less, preferably 10.0 wt% or less, more preferably 3.0 wt% or less. In many cases, the proportion of PVDF resin powder having a particle size of 45 / X m or less can be reduced to 2.0% by weight or less, or even 1.0% by weight or less.
  • the lower limit of the proportion of PVDF resin powder with a particle size of 45 ⁇ or less is usually about 0.01% by weight, often about 0.1% by weight. is there.
  • the proportion of PVDF resin powder having a particle size of 355 ⁇ m or more is 10.0% by weight or less, preferably 7.0% by weight or less, more preferably 5.0% by weight or less. In many cases, the proportion of PVDF resin powder having a particle size of 355 ⁇ or more can be reduced to 4.0% by weight or less, and further to 3.0% by weight or less.
  • the lower limit of the proportion of PVDF resin particles having a particle size of 355 ⁇ or more is usually 0.05% by weight, and in many cases 0.1% by weight.
  • Resin powder with a particle size of 355 ⁇ m or more has a slow heat transfer rate to the center, so in the method of the present invention in which PVDF resin powder is supplied to the molding machine, the molten resin in the cylinder of the molding machine is used. May become unmelted. Extrusion molding or extrusion molding of a molten resin containing an unmelted product causes poor appearance and reduced physical properties of the resulting molded product.
  • the bulk density (bulk specific gravity) of the PVDF resin powder for melt molding of the present invention is 0.30 to 0.80 g / cm 3 , preferably 0.35 to 0.75 g Z cm 3 , more preferably 0.40. and 0. is 70 g / cm 3. If the bulk density of the P VD F resin powder is too small, the amount of air brought into the molding machine will increase, resulting in insufficient degassing, generating voids in the molded body, and during molding. Foaming may occur.
  • the bulk density is a value measured by a method described in Examples described later.
  • the angle of repose of the PVDF resin powder for melt molding of the present invention is 40 degrees or less, preferably 38 degrees or less, more preferably 35 degrees or less. If the angle of repose of the PVDF resin powder is too large, the fluidity of the resin powder will deteriorate and it will be difficult to provide a fixed amount with a feeder. If the angle of repose of PVDF resin powder is too large, bridging is likely to occur at the raw material inlet.
  • the lower limit of the angle of repose of PVDF resin powder is usually 20 degrees, and in many cases 23 degrees. The angle of repose is measured by the method described in the examples below. Value.
  • the PVD F resin powder for melt molding of the present invention has powder characteristics such as particle size distribution, bulk density, and angle of repose that enable stable supply to injection molding machines and extrusion molding machines. Therefore, it can be supplied to a molding machine as it is in the form of a powder resin, and melt molding such as injection molding or extrusion molding can be performed.
  • the PVDF resin powder having the specific powder characteristics is supplied to a melt molding machine in the form of a resin powder, and the molten resin melt is pressed into a mold. It is the manufacturing method of the molded object to shape
  • the method for producing a PVDF resin molded body of the present invention includes the following steps 1 to 3.
  • the average particle size represented by the 50% cumulative value (D 50 ) in the particle size cumulative distribution is 80 to 250 ⁇ ,
  • the bulk density is 0.30 to 0.8 O g / cm 3 .
  • the resin melt melted by a melt molding machine is preferably pressed into the mold at a pressure of 50 to 500 MPa.
  • melt molding machine there is an injection molding machine, in which case an injection mold is used.
  • melt molding machine there is an extrusion molding machine.
  • a mold is filled with a resin melt discharged from a nozzle at the tip of the extrusion molding machine. It is a ming die.
  • PVDF resin powder is supplied to the heated cylinder inlet of a screw type injection molding machine.
  • the PVDF resin powder supplied to the hopper by the loader is supplied to the cylinder inlet directly from the hopper or via the feeder.
  • supply a resin powder to the extent that the screw at the inlet of the cylinder can be seen through the feeder. It is particularly desirable to use starved feeding.
  • the maximum temperature in the cylinder is usually adjusted to 190 to 280 ° C, preferably 200 to 250 ° C.
  • PVDF resin powder melted by heating and shearing force in the cylinder is extruded from the cylinder as a resin melt, and the injection pressure in the cylinder is preferably 50 to 500 MPa, more preferably 150 to 30 OMPa. Is injected into the mold.
  • the temperature of the nozzle at the tip of the cylinder for injecting the resin melt is preferably adjusted to 200 to 250 ° C.
  • the mold temperature is usually 80 to 150, preferably 90 to 130 ° C.
  • the polyvinylidene fluoride resin powder for melt molding is supplied in a state of the resin powder to a cylinder inlet provided with a screw of the injection molding machine, and in the step 2, a temperature of 190 to 280 ° C is supplied.
  • the resin powder is heated and melted to form a resin melt, and
  • step 3 the resin melt is injection-molded into the mold, adjusted to a temperature of 80 to 150 ° C., from the nozzle at the tip of the cylinder at an injection pressure of 50 to 50 OMPa in the cylinder.
  • the PVDF resin powder for melt molding is starvedly supplied in a state of the resin powder from the feeder to the cylinder inlet at a supply speed at which the cylinder inlet cylinder is visible. It is preferable to adopt. Solidification extrusion molding using forming die using PVDF resin powder of the present invention To do so, supply PVDF resin powder into the cylinder of the heated extruder.
  • the PVDF resin powder supplied to the hopper by the nozzle is supplied to the cylinder inlet directly from the hopper or through the feeder.
  • supply a resin powder through the feeder so that the screw at the inlet of the cylinder can be seen. ; Starved feeding) is particularly desirable.
  • the temperature in the cylinder is usually adjusted to 50 to 280, preferably 50 to 250 ° C, more preferably 50 to 220 ° C. Resin powder melted by heating and shearing force in the cylinder is extruded from the die nozzle at the tip of the extruder.
  • the mold nozzle temperature is usually adjusted to 190 to 280 ° C, preferably 200 to 250 ° C.
  • an extrusion molding machine in which a die nozzle at the tip of the extruder is connected to a forming die is used.
  • the forming die is a die having a structure having a cooling device on the outside and a passage communicating with the passage of the mold nozzle inside.
  • the molten extruded product extruded from the mold nozzle is guided to a forming die, where it is cooled and solidified. Therefore, the extruded product extruded from the forming die disposed at the tip of the extruder is extruded to the outside in a solidified state.
  • the pressure of the forming die (measured as the die external pressure) force S, preferably 50-50 OMPa, more preferably 150-400 MPa To do.
  • the die external pressure preferably 50-50 OMPa, more preferably 150-400 MPa
  • a specific example of such an extruder suitable for solidified extrusion is disclosed, for example, in JP-A-61-185428.
  • PVDF resin powder having specific powder characteristics is solidified and extrusion molded, and is suitable for machining such as cutting, drilling, cutting, etc. It was found that an extruded product excellent in the color tone of the surface and cut surface of the molded product was obtained.
  • the production method of the present invention uses the PVDF resin powder having the specific powder characteristics as a raw material, and the following steps I to III:
  • PV is applied to an extrusion molding machine that connects a mold device consisting of a mold nozzle and a forming die having a cooling device on the outside and a passage communicating with the passage of the mold nozzle inside.
  • Step III of extruding and press-fitting the resin melt from a mold nozzle into a forming die having a desired shape, and cooling and solidifying the molten extruded product inside the forming die;
  • a method of producing a molded body by solidification extrusion molding is a method of producing a molded body by solidification extrusion molding.
  • the shape of the molded body examples include a round bar, a plate, and a pipe. Therefore, in order to solidify and extrude these long shaped bodies, the above steps ⁇ to ⁇ are carried out continuously.
  • the resin melt is continuously extruded and pressed into the forming die from the mold nozzle while the resin powder is melted by an extruder to form a resin melt.
  • the main body of the extrusion molding machine is a cylinder with a built-in screw.
  • the PVD F resin powder for melt molding is starvedly supplied in a state of the resin powder from a feeder to the cylinder inlet at a supply speed at which a cylinder at the cylinder inlet can be seen. It is preferable to adopt the method.
  • the P VD F resin powder is starved and the excess resin powder is eliminated, so that the resin powder can be absorbed into the screw. It is desirable to stabilize, prevent surging, and stabilize the injection amount or extrusion amount.
  • screw a commercially available screw for injection molding or extrusion molding can be used.
  • L / D 20 ⁇
  • the injection-molded article and the extrusion-molded article obtained by the production method of the present invention are obtained by converting the molded article into 10
  • a temperature between 0 ° C. and a temperature at which the solidified state can be maintained preferably a temperature near the softening point of the PVDF resin.
  • This heat treatment time is usually 30 minutes or more, preferably 1 hour or more and 24 hours or less.
  • the compact is cooled.
  • This heating and cooling process is called annealing (or annealing).
  • the heat treatment can be performed, for example, by leaving the molded body in a heating furnace.
  • the PVDF resin powder for melt molding according to the present invention can be stably supplied to an injection molding machine or an extrusion molding machine in the form of a resin powder, and has excellent characteristics as in the case of using a pellet. Compared with the case where it was, the molded object in which coloring was suppressed can be given.
  • the measuring method of characteristics and physical properties in the present invention is as follows.
  • the particle size distribution of the PVDF resin powder was measured by a dry sieving method in accordance with JISK 0069-3. 1 using a low-tap vertical sieve shaker D type manufactured by Hiei Seisakusho Co., Ltd.
  • the average particle size was calculated by the log-normal distribution method based on the measurement result of the particle size distribution.
  • the average particle size is in the cumulative particle size distribution, and the particle size showing 50% cumulative value (D 5.).
  • the bulk density of the P VDF resin powder was measured according to the measurement method of J I S K 6 72 1-3.3 “Bulk specific gravity”. Specifically, about 120 ml of a sufficiently stirred powder sample is put into a funnel into which a damper of a bulk specific gravity measuring device is inserted, and then the damper is quickly pulled out and the sample is dropped into a receiver. The sample swelled from the receiver was rubbed off with a glass rod, and the mass of the receiver containing the sample was accurately weighed to 0.1 g, and the bulk density was calculated by the following formula.
  • the measurement was performed three times and the average value was calculated.
  • the test result was rounded by rounding off the value measured to 3 digits after the decimal point.
  • the angle of repose of the PVDF resin powder was determined by placing 10 Om l of sufficiently agitated resin powder into the funnel into which the damper of the bulk specific gravity measurement device specified in JISK 6 721 was inserted, and quickly pulling out the damper to measure the diameter of the sample. 8 The sample was dropped from a height of 100 mm onto a ⁇ ⁇ sample stage, and the angle of repose of the resin powder deposited on the sample stage was measured. The measurement temperature was 22 ° C.
  • the bending test was performed using a Shimadzu 2 T Autograph AG 2000 system, according to ASTM D-7990, at a measurement temperature of 23 ° C, a fulcrum distance of 50 mm, and a cross head speed of 1.5 mmZ. .
  • the specimen was annealed by heating at 150 ° C for 5 hours and then gradually cooling to room temperature.
  • Tensile test is performed using Shimadzu 2 T Autograph AG 2 00 system, according to AS TM D- 6 3 8, measuring temperature 23 ° C, distance between gauge points 50 mm, crosshead speed 5 mm Carried out at / min.
  • the tensile strength (tensile yield strength; MPa) was measured by this tensile test.
  • Annealing of the test piece was performed by a method of heating and holding at 150 ° C. for 5 hours and then gradually cooling to room temperature.
  • the color tone was measured using a color difference meter (ZE 20 00, manufactured by Nippon Denshoku Industries Co., Ltd.) and the L value and the Y I value were measured according to AS TM D — 1 9 2 5. Annealing of the test piece was carried out by heating at 170 ° C. for 5 hours and then gradually cooling to room temperature. The measured values indicate that the smaller the Y I value and the larger the L value, the less coloring. During the measurement, a white plate was placed on the back of the test piece. 'Example 1
  • the obtained polyvinylidene fluoride resin powder (A) had an intrinsic viscosity of 1.0 1 dl / g and a melting point of 1 75 ° C.
  • the particle size distribution of this resin powder (A) is as follows. The average particle size is 1 72 ⁇ m, the proportion of powder with a particle size of 45 ⁇ m or less is 0.7 weight 0 , and the particle size is 3 5 5 ⁇ or more. The ratio was 1.0% by weight.
  • the bulk density of the resin powder ( ⁇ ) was 0.45 gZcm 3 and the angle of repose was 32 degrees.
  • the polyvinylidene fluoride resin powder (A) has a particle size width (D 80 — D 20 ) expressed by the difference between 80 % cumulative value (D 80 ) and 20% cumulative value (D 20 ). Value divided by 0% cumulative value (D 50 ) [(D 8. One D 2. ) ZD 5 . ] Was 0.5 2. 2. Injection molding
  • the polyvinylidene fluoride resin powder (A) synthesized above is screwed into the inlet of the heating cylinder through the quantitative feeder installed in the injection molding machine (IS 2 5 EP-1 YV manufactured by Toshiba Machine Co., Ltd.). Was supplied to the extent that it appears faint (ie, hunger supply).
  • the injection mold is a mold that can simultaneously mold test specimens suitable for ASTM D-790, D-639, and D_19 25. Table 1 shows the measurement results. Comparative Example 1
  • the standard value of the average particle diameter [(D 8 .- D 20) / D 50 ] was 1.08.
  • the resin powder had a bulk density of 0.22 g / cm 3 and an angle of repose of 45 degrees. In other words, this commercially available polyvinylidene fluoride resin powder had a low bulk density and a large angle of repose.
  • Example 2 Using the above-mentioned polyvinylidene fluoride resin powder (Kynar741), we tried injection molding under the same conditions as in Example 1. It did not flow into the heated cylinder. Furthermore, the powder resin was supplied directly from the hopper into the heated cylinder without going through the quantitative feeder. However, the resin powder was not squeezed by the extrusion screw and could not be supplied smoothly. Although the rotational speed of the extrusion screw was changed from 96 r / min in various ways, it was still impossible to supply smoothly and normal injection molding could not be performed. Table 1 shows the measurement results. Comparative Example 2
  • the polyvinylidene fluoride resin powder (A) synthesized in Example 1 was melt extruded at 230 ° C using LS-20 made by Toyo Seiki, and cut into a size of about 3 mm in diameter and 3 mm in length. Thus, a pellet was prepared.
  • Example 2 Each test piece was produced by injection molding under the same conditions as in Example 1 except that the above pellets were used. Table 1 shows the measurement results. Example 2
  • ion-exchanged water 1 0730 g, methyl senorelose 1.26 g, ethinole acetate 28. lg, di-n-propinoreperoxy dicarbonate 25.1 g, vinylidene fluoride 408 5 g , And hexafluoropropylene (105 g) were added, reacted at 26 ° C for 17.5 hours, then heated to 40 ° C and reacted for 4 hours. During the suspension polymerization reaction, 13 2 g of ethyl acetate was further added at 5 hours after the start of the polymerization.
  • polyvinylidene fluoride resin powder (B) had an intrinsic viscosity of 1.05 dl / g and a melting point of 172 ° C.
  • the particle size distribution of the resin powder (B) has an average particle diameter of 1 9 5 mu m, the proportion of particles less than the particle size 45 mu m is at 0.3 wt 0/0, the particle size 3 5 5 / xm or more in proportion 3.0% by weight of the particles, the standard value of the average particle diameter [(D 8 .- D 2.) / ⁇ 5. ] was 0.52.
  • the resin powder ( ⁇ ) had a bulk density of 0.42 g / cm 3 and an angle of repose of 28 °.
  • the obtained round bar had a good color tone.
  • this round bar was cut in the longitudinal direction at intervals of 50 cm and cross sections were examined, no voids (nests) or microvoids were observed in any cross section, and it was confirmed that they were homogeneous.
  • Example 1 When comparing the results of Example 1 and Comparative Example 1 (commercially available product), when using polyvinylidene fluoride resin powder having a specific particle size distribution, sharp particle size distribution, high bulk density, and low angle of repose (Example 1) has a wide particle size distribution, a low bulk density, and an angle of repose. It can be seen that the injection moldability is superior compared to the case of using a conventional polyvinylidene fluoride resin powder having a large size (Comparative Example 1).
  • Example 1 Comparing the results of Example 1 and Comparative Example 2 (pellet), the polyvinylidene fluoride resin powder having a specific particle size distribution, sharp particle size distribution, high bulk density and small angle of repose is used as it is.
  • the resin powder is supplied to the injection molding machine and injection molded (Example 1), the same resin powder is pelletized and then supplied to the injection molding machine (Comparative Example 2). It can be seen that there is no substantial difference in the mechanical properties of the obtained molded product and that the L value and YI value are small, and that a molded product with excellent color tone can be obtained. Even when the polyvinylidene fluoride resin powder obtained in Example 2 is used, it is possible to obtain an injection-molded product that exhibits excellent melt processability, good color tone, and excellent mechanical properties (test sample) Is made by injection molding.)
  • the PVDF resin powder of the present invention can be molded into various molded products by melt molding such as injection molding or extrusion molding. Since the molded product obtained by the production method of the present invention has a good color tone and excellent mechanical properties, it can be used for electrical and electronic parts, machining materials, and other various uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

平均粒径(D50)が80~250μm、粒径45μm以下の樹脂粉末の割合が15.0重量%以下、及び粒径355μm以上の樹脂粉末の割合が10.0重量%以下の粒度分布特性を示し、嵩密度が0.30~0.80g/cm3で、かつ、安息角が40度以下である溶融成形用ポリフッ化ビニリデン樹脂粉末、及び該樹脂粉末を射出成形機または押出成形機に供給して、該樹脂粉末を溶融させ、樹脂溶融物を金型内に圧入する成形体の製造方法。

Description

明細書 溶融成形用ポリフッ化ビ-リデン樹脂粉末及び該樹脂粉末を用いた成形体の製造 方法 技術分野
本発明は、溶融成形用ポリフッ化ビニリデン樹脂粉末に関し、さらに詳しくは、 ペレツト化することなく、 樹脂粉末の形状のままで射出成形及ぴ押出成形などの 圧入成形により成形することが可能なポリフッ化ビ-リデン樹脂粉末に関する。 また、 本発明は、 該溶融成形用ポリフッ化ビ二リデン樹脂を樹脂粉末の形状で 射出成形機または押出成形機に供給し、 溶融させた樹脂溶融物を金型内に圧入す る成形体の製造方法に関する。 背景技術
ポリフッ化ビニリデン樹脂 (以下、 「P VD F樹脂」 と略記) は、 ガラス転移 温度が低い結晶性の樹脂であり、 耐熱性、 耐薬品性、 力学的特性 (例えば、 引張 強さ、 曲げ弾性率、 曲げ強さ、 圧縮強さ、 耐衝撃性) 、 耐摩耗性、 難燃性、 耐候 性に優れている。 また、 P VD F樹脂は、 分子構造中の C— F結合の双極子能率 が大きいという特徴と相俟って、 極めて特異的な電気物性を発現する。
P VD F樹脂の他の基本的特性として、 良好な溶融加工性が挙げられる。 すな わち、 P VD F樹脂は、 融点から分解点までの加工可能温度領域が広く、 力つ良 好な溶融流動特性を示す。
このように、 P VD F樹脂は、 バランスのとれた物性と良好な加工性とを合わ せもつており、 その応用分野は、 耐食材料、 耐候材料、 電気 ·電子材料、 レジャ 一材料など広範囲にわたっている。
P VD F樹脂は、 一次加工後の機械加工や曲げ加工、 溶接加工などの二次加工 性に優れている。 例えば、 P VD F樹脂を用いた押出成形により、 肉厚の大きい 丸棒や厚板など機械加工用素材が作製されている。 機械加工用素材は、 切削、 穴 あけ、 切断、 これらの aみ合わせなどにより、 所望の形状に機械加工される。 ところが、 P VD F樹脂は、 射出成形や押出成形などの溶融成形において、 成 形温度が高くなると溶融した樹脂が着色するという欠点を有している。 溶融樹脂 の着色を避けるために、 射出成形や押出成形では、 一般に、 溶融した樹脂温度が 2 8 0 °C以下となるように成形温度を調整している。
射出成形や押出成形においては、 一般に、 P VD F樹脂のペレットが用いられ ている。 例えば、 ウェハキャリア、 継手、 バルブなどの成形体を射出成形により 成形する場合、 通常、 スクリュー式射出成形機が用いられる。 加熱した射出成形 機のシリンダー内に、スクリユーの回転によりペレツトを供給する。ペレツトは、 スクリューによって送られるとともに、 溶融して均一化する。 溶融樹脂は、 射出 成形機から金型内に圧入する。
押出成形では、 加熱した押出成形機のシリンダー内にスクリユーの回転により ペレットを供給し、溶融した樹脂を押出機先端に装着したフォーミングダイから、 例えば、 棒状、 板状、 パイプ状などの形状に押し出す。
このような従来の溶融成形法では、 P VD F樹脂は、 ペレット化の際に熱履歴 を受け、 さらに、 溶融成形時にも熱履歴を受けるため、 溶融成形時の成形温度を 低く抑えただけでは、 成形体の着色を防ぐことが困難である。 射出成形体はもと より、 機械加工用素材として用いられる押出成形体には、 色調が美麗で、 着色の 少ないことが要求されている。 近年、 高性能かつ高品質の P VD F樹脂成形体に 対する要求が高まっており、 溶融成形時の着色を抑制するための新たな技術開発 が必要となっている。
より具体的に説明すると、 P VD F樹脂は、 様々な重合法により合成すること ができるが、 工業的生産では、 乳化重合法と懸濁重合法により合成されている。 合成された P VD F樹脂は、 樹脂粉末の形状で回収される。 重合開始剤の種類と 量、 懸濁剤または乳化剤の種類と量、 反応媒体の種類、 重合温度、 及びこれらの 組み合わせ方によって、 平均粒径、 粒度分布、 粒子形状の均一性などの樹脂粉末 の粉体特性が変化する。 乳化重合法では、 0 . 2〜0 . 5 x m程度の小粒径のラ テックスが生成するが、 重合後、 凝集剤を用いた造粒処理が施されている。
P V D F樹脂粉末を用いて、 射出成形や押出成形などの溶融成形により成形体 を作製しょうとすると、成形機のシリンダー内に安定した供給ができなかったり、 押出量が不安定になったりして、 形状及ぴ品質が一定の成形体を得ることができ ないか、 極めて困難であった。
そのため、 従来、 PVDF樹脂粉末は、 樹脂粉末の状態のままで射出成形や押 出成形に供給されるのではなく、 予めペレツトに溶融加工してから供給されてい た (例えば、 US6, 846, 436B1) 。 また、 PVDF樹脂粉末と各種添 加剤とを均一に混練するためにも、 ペレツト化の工程が必要であると考えられて いた。
PVDF樹脂粉末をペレット化すると、 手間がかかり、 コスト高になることに 加えて、 PVDF樹脂がペレット化工程で高温の熱履歴を受ける。 そのため、 得 られたペレットを用いて溶融成形すると、 再ぴ高温の熱履歴を受けるため、 成形 温度を低く制御しても、 得られた成形体に着色が生じるという問題があつた。 しかし、 従来、 安定に溶融成形することができる PVDF樹脂粉末は提案され ていなかった。 溶融成形用の PVDF樹脂は、 ペレットの形で市販されている。 樹脂粉末の形で市販されている P V D F樹脂もあるが、 射出成形や押出成形する 場合には、 該樹脂粉末をペレット化してから成形機に供給するのが一般的であつ た。
ペレットは、 最終成形体ではないので、 形状のパラツキを厳密に制御する必要 がない。 したがって、 PVDF樹脂のペレット化には、 通常、 単軸または 2軸の 押出機が用いられているが、 一般の成形体の溶融成形とは異なり、 金型ノズルか ら細いストランドに溶融押出して適当な大きさに力ットしたり、 押出機先端で吐 出した樹脂をカットしたりするだけであるため、 その加工条件は厳密でなくても よい。
これに対して、 PVDF樹脂の射出成形や押出成形には、 それらに適した成形 機を使用し、 かつ、 樹脂材料を安定して成形機に供給し、 さらには、 押出量や成 形条件を厳密に制御して、 一定の品質を有する成形体に成形する必要がある。 発明の開示
本発明の目的は、 樹脂粉末の形状で射出成形機や押出成形機に安定して供給す ることができ、 ペレットを用いた場合と同様、 諸特性に優れるとともに、 ペレツ トを用いた場合に比べて着色が抑制された成形体を与えることができる溶融成形 用ポリフッ化ビ二リデン樹脂粉末を提供することにある。
本発明の他の目的は、 重合により得られた特定の粉体特性を有するポリフッ化 ビニリデン樹脂粉末を、 ペレット化することなく、 樹脂粉末の状態で射出成形ま たは押出成形することにより、 諸特性に優れるとともに、 着色が抑制された成形 体を安定的かつ安価に製造することができる成形体の製造方法を提供することに あ 。
本発明者らは、 前記目的を達成するために鋭意研究した結果、 特定の粒度分布 特性を有し、 嵩密度 (かさ比重) が大きく、 かつ、 安息角が小さな P VD F樹脂 粉末が、 流動性に優れ、 射出成形機や押出成形機のシリンダー内に装着したスク リユーとの嚙み込みが良好であることを見出した。
現在市販されている P VD F樹脂粉末の多くは、 嵩密度が小さくかつ安息角が 大きいものであるか、 平均粒径が小さいものである力、 粒度分布が広いものであ るカ、 あるいは平均粒径力小さく、 嵩密度も小さく、 かつ、 安息角が大きいもの である。 このような従来の P VD F樹脂粉末を射出成形機や押出成形機に供給す ると、 シリンダー内のスクリユーに対する樹脂粉末の嚙み込みが悪く、 安定して 供給すること自体が困難であり、 ましてや、 一定量を射出成形したり、 連続的に 押出成形したりすることができない。
これに対して、 本発明の P VD F樹脂粉末は、 特定の粉体特性を有するため、 流動性に優れ、 成形機への供給を安定して行うことができ、 ペレツト化した場合 と同様に、 精密かつ安定して計量と成形を行うことができる。 本発明の P V D F 樹脂粉末を用いて金型内へ溶融圧入成形した成形体は、 ペレツト化してから溶融 成形した成形体に比べて、 加熱による着色が抑制されており、 力学的物性におい ても遜色がないものである。
本発明の製造方法によれば、 特定の粉体特性の P V D F樹脂粉末を用いること により、 ペレッ ト化工程を省略することができるため、 コストを低減することが できる。
本発明は、 これらの知見に基づいて、 完成するに至ったものである。 本発明によれば、 (a) J I S K 0069に従って、 乾式ふるい分け法に より測定したとき、
i) 粒度累積分布における 50%累積値 (D50) で表わされる平均粒径が 80 〜 250 μ m、
ii) 粒径 45 μηι以下の樹脂粉末の割合が 15. 0重量%以下、 及ぴ iii) 粒径 355 μ m以上の樹脂粉末の割合が 10. 0重量%以下、 の粒度分布特性を示し、
(b) 嵩密度が 0. 30〜0. 8 O g/ cm3であり、 かつ、
(c) 安息角が 40度以下である、
との粉体特性 (a) 〜 (c) を有する溶融成形用ポリフッ化ビニリデン樹脂粉末 が提供される。 また、 本発明によれば、 下記工程 1〜3 :
1) (a) J I S K 0069に従って、 乾式ふるい分け法により測定したと き、
i) 粒度累積分布における 50%累積値 (D50) で表わされる平均粒径が 80〜25 (^ιη、
ii) 粒径 45 m以下の樹脂粉末の割合が 15. 0重量%以下、 及び iii) 粒径 355 m以上の樹脂粉末の割合が 10. 0重量%以下、 の粒度分布特性を示し、
(b) 嵩密度が 0. 30〜0. 80 g/cm3であり、 かつ、
( c ) 安息角が 40度以下である、
との粉体特性 (a) 〜 (c) を有する溶融成形用ポリフッ化ビニリデン樹脂 粉末を、 該樹脂粉末の状態で、 溶融成形機に供給する工程 1 ;
2) 該溶融成形機内で該樹脂粉末を加熱溶融させて樹脂溶融物とする工程 2 ;及 ぴ
3) 該樹脂溶融物を金型内へ圧入成形する工程 3 ;
を含むポリフッ化ビ二リデン樹脂成形体の製造方法が提供される。 発明を実施するための最良の形態
ポリフッ化ビニリデン樹脂 (P VD F樹脂) は、 フッ化ビニリデンの単独重合 体またはフッ化ビニリデンを主構成単位とするフッ化ビエリデンと共重合可能な モノマーとの共重合体である。
フッ化ビ二リデン共重合体としては、 フッ化ビ-リデン一へキサフルォロプロ ピレン共重合体、 フッ化ビニリデンーテトラフルォロエチレン共重合体、 フッ化 ビニリデン一クロ口 トリフルォロエチレン共重合体、 フッ化ビニリデンートリフ ノレォロエチレン共重合体、 フッ化ビニリデン一テトラフルォロエチレン一へキサ フルォロプロピレン三元共重合体、 フッ化ビ-リデン一クロ口トリフルォロェチ レン一へキサフルォロプロピレン三元共重合体などが挙げられる。
これらのフッ化ビニリデン共重合体は、 へキサフルォ口プロピレンなどのコモ ノマーの共重合比率が 1 5モ /レ0 /0以下、 好ましくは 1 0モル%以下、 より好まし くは 5モル%以下で、 結晶性を有する熱可塑性樹脂である。 コモノマーの割合の 下限値は、 好ましくは 1モル%である。
ポリフッ化ビニリデンの単独重合体 (P VD F) は、 結晶性樹脂であり、 共重 合によりその結晶性を破壌してエラストマ一とするには、 へキサフルォロプロピ レンなどのコモノマーの共重合比率を大きくする必要があり、 実際に、 市販のェ ラストマーでは、 コモノマーの共重合比率を 2 0モル%以上としている。 本発明 で使用する P VD F樹脂は、 α型、 β型、 y型、 a p型などの様々な特異な結晶 構造をとる高分子である。
P VD F樹脂の中でも、 ポリフッ化ビニリデン単独重合体 (P VD F) 、 及び へキサフルォロプロピレン単位を 1 5モル0 /0以下の比率で含有するフッ化ビニリ デン一へキサフルォロプロピレン共重合体が、 溶融成形性や力学的特性、 耐汚染 性、 耐溶剤性、 二次加工性などの観点から好ましい。
本発明の P VD F樹脂粉末は、 懸濁重合法または乳化重合法により製造するこ とができる。 乳化重合では、 化学的に安定なフッ素乳化剤を使用し、 重合開始剤 として無機過酸化物や有機過酸化物、 有機パーカーポネート化合物を用いて重合 を行う。 乳化重合後、 サブミクロン単位の微小な粒径のラテックスを凝集剤によ り析出し、 凝集させることにより、 適当な大きさの樹脂粒子として回収する。 嵩密度や安息角などの粉体特性の観点からは、 PVDF樹脂粉末は、 懸濁重合 法により製造することが好ましい。 PVDF樹脂の懸濁重合では、 メチルセル口 ースなどの懸濁剤を用いて、 フッ化ビ二リデンモノマーまたはフッ化ビ二リデン モノマーとへキサフルォロプロピレンなどのコモノマーとを水系媒体中に分散し て、 重合を行う。
懸濁重合における重合開始剤として、 低温で活性のある有機パーカーボネート (例えば、 ジ n—プロピルパーォキシジカーボネート) を用いて、 3 0. 1°Cの 臨界温度以下の温度、 好ましくは 1 0〜 3 0 °C、 より好ましくは 20〜 28でで 重合反応を開始し、 重合体粒子 (一次粒子) を生成させてから、 温度を 30〜9 0°C、 好ましくは 40〜 8 0°Cに上昇して重合反応を継続する方法が、 嵩密度が 大きく、 安息角が小さな重合体粒子 (樹脂粉末) を得る上で好ましい。 PVDF 樹脂の分子 4を制御するために、 連鎖移動剤を用いることがで'きる。
モノマーに対する懸濁剤の使用割合、 水系媒体に対するモノマーの仕込み量、 水系媒体中でのモノマー液滴の粒径、 重合温度、 重合時間などの重合条件を制御 することにより、 生成するポリマーの平均粒径を含む粒度分布や嵩密度、 安息角 などの粉体特性を調整することができる。 粒度分布特性は、 重合により得られた 樹脂粉末を分級することにより、所望の範囲となるように調整することもできる。
PVDF樹脂の固有粘度は、 好ましくは 0. 70〜1. S O d l /g、 より好 ましくは 0. 80〜: L . 30 d lZgである。 PVDF樹脂の固有粘度は、 樹脂 4 gを 1リツトルの N, N—ジメチルホルムアミドに溶解させた溶液の 3 0°Cに おける対数粘度であり、 ウベローデ粘度計により測定される。 PVDF樹脂の融 点は、 好ましくは 1 3 0〜1 7 7°Cである。 PVDF樹脂の融点は、 示差走查熱 量計 (D S C) により測定される値である。
本発明の溶融成形用 PVDF樹脂粉末は、 下記の粉体特性 (a) 〜 (c) を有 するものである。
(a) J I S K 00 6 9に従って、 乾式ふるい分け法により測定したとき、 i ) 粒度累積分布における 5 0%累積値 (D50) で表わされる平均粒径が 8 0 〜 2 5 0 m、
ii) 粒径 4 5 /i m以下の樹脂粉末の割合が 1 5. 0重量%以下、 及び iii) 粒径 355 μ m以上の樹脂粉末の割合が 10. 0重量%以下、
の粒度分布特性を示し、
(b) 嵩密度が 0. 30〜0. 80 g/cm3であり、 かつ、
(c) 安息角が 40度以下である。
本発明の PVDF樹脂粉末の粒度分布特性は、 J I S K 0069-3. 1 に従って、 乾式ふるい分け法により測定した粒度分布に基づいて誘導される。 よ り具体的には、 後記の実施例に記載されている測定法により測定された粒度分布 特性である。
本発明の溶融成形用 PVDF樹脂粉末の平均粒径 (D50) は、 80〜250 μ m、好ましくは 100〜230μπι、より好ましくは 130〜210 μπιである。 PVDF樹脂粉末の平均粒径が小さすぎると、 流動性が低下したり、 成形機への 供給の安定性が低下したりし易くなる。 PVDF樹脂粉末の平均粒径が小さすぎ たり、 大きすぎたりすると、 微小粒子または粗大粒子の生成量が増大して、 粒度 分布がブロードになる。 PVDF樹脂粒子の粒度分布がブロードになると、 成形 機のシリンダー内での樹脂粉末間の溶融状態に差異が発生するために、 溶融状態 が変動し易くなり、 その結果、 押出量が変動して、 成形体の形状や品質を一定と することが難しくなる。
本発明の溶融成形用 PVDF樹脂粉末は、 粒度累積分布において、 80%累積 値 (D80) と 20%累積値 (D20) との差で表わされる粒径幅 (D80— D20) を 50%累積値 (D5。;平均粒径) で割った値〔 (D80-D20) /D5。〕 (以下、 「粒度分布の規格値」 と呼ぶ) が好ましくは 0. 8以下、. より好ましくは 0. 6 以下のシヤープな粒度分布を示すものであることが望ましい。 PVDF樹脂粉末 は、 粒度分布の規格値が小さく、 粒度分布がシャープであることによって、 溶融 成形時に均一に溶融し、 高品質で形状が一定の成形体を与えることができる。 粒径 45 μπι以下の PVDF樹脂粉末の割合は、 15. 0重量%以下、 好まし くは 10. 0重量%以下、 より好ましくは 3. 0重量%以下である。 粒径 45 /X m以下の PVDF樹脂粉末の割合は、 多くの場合、 2. 0重量%以下、 さらには 1. 0重量%以下にまで低減することができる。 粒径 45 μπι以下の PVDF樹 脂粉末の割合の下限値は、 通常 0. 01重量%、 多くの場合 0. 1重量%程度で ある。
粒径 45 μ m以下の樹脂粉末の割合が大きくなりすぎると、 フィ一ダーゃ投入 口 (ホッパーなど) で静電気付着が起こり易くなり、 不安定供給の要因となる。 粒径 45 μ m以下の樹脂粉末の割合が大きくなりすぎると、 微粉末がシリンダー の供給口の近傍で溶融し易いために、 押出量が不安定となるサージング現象の要 因になる。
粒径 355 μ m以上の P VD F樹脂粉末の割合は、 10. 0重量%以下、 好ま しくは 7. 0重量%以下、 より好ましくは 5. 0重量%以下である。 粒径 355 μπι以上の PVDF樹脂粉末の割合は、 多くの場合、 4. 0重量%以下、 さらに は 3. 0重量%以下にまで低減することができる。 粒径 355 μπι以上の PVD F樹脂粒子の割合の下限値は、 通常 0. 05重量%、 多くの場合 0. 1重量%で ある。
粒径 355 μ m以上の樹脂粉末は、 その中心部までの伝熱速度が遅いため、 P VDF樹脂粉末を成形機に供給する本発明の方法では、 成形機のシリンダー内に おける溶融樹脂中で未溶融物となる可能性がある。 未溶融物を含む溶融樹脂を射 出成形または押出成形すると、 得られる成形体の外観不良や物性低下の要因とな る。
本発明の溶融成形用 PVDF樹脂粉末の嵩密度 (かさ比重) は、 0. 30〜0. 80 g/cm3、 好ましくは 0. 35〜0. 75 g Z c m3、 より好ましくは 0. 40〜0. 70 g/cm3である。 P VD F樹脂粉末の嵩密度が小さすぎると、 成形機内への空気の持ち込み量が多くなり、 その結果、 脱気が不十分となって、 成形体中にボイドを発生させたり、 成形中に発泡が発生したりする。 嵩密度は、 後記の実施例に記载された方法により測定した値である。
本発明の溶融成形用 PVDF樹脂粉末の安息角は、 40度以下、 好ましくは 3 8度以下、 より好ましくは 35度以下である。 PVDF樹脂粉末の安息角が大き すぎると、 樹脂粉末の流動性が悪くなり、 フィーダ一による定量供給が難しくな る。 また、 PVDF樹脂粉末の安息角が大きすぎると、 原料投入口でブリッジン グが起こり易くなる。 PVDF樹脂粉末の安息角の下限値は、 通常 20度、 多く の場合 23度である。 安息角は、 後記の実施例に記載された方法により測定され た値である。
本発明の溶融成形用 P VD F樹脂粉末は、 射出成形機や押出成形機への安定供 給を可能とする粒度分布、 嵩密度、 安息角等の粉体特性を有しており、 ペレット 化することなく、 粉末樹脂の形状のままで成形機に供給し、 射出成形や押出成形 などの溶融成形を行うことができる。
本発明の成形体の製造方法は、 前記特定の粉体特性を有する P VD F樹脂粉末 を、 樹脂粉末の形状で溶融成形機に供給し、 溶融させた樹脂溶融物を金型内へ圧 入成形する成形体の製造方法である。
すなわち、 本発明の PVDF樹脂成形体の製造方法は、 下記工程 1〜 3を含ん でいる。
1) (a) J I S K 0069に従って、 乾式ふるい分け法により測定したと さ、 '
i ) 粒度累積分布における 50%累積値 (D50) で表わされる平均粒径が 80〜250 πι、
ii) 粒径 45 μπι以下の樹脂粉末の割合が 15. 0重量%以下、 及び iii) 粒径 355 μ m以上の樹脂粉末の割合が 10. 0重量%以下、 の粒度分布特性を示し、
(b) 嵩密度が 0. 30〜0. 8 O g/ cm3であり、 かつ、
(c) 安息角が 40度以下である、
との粉体特性 (a) 〜 (c) を有する溶融成形用ポリフッ化ビニリデン樹脂 粉末を、 該樹脂粉末の状態で、 溶融成形機に供給する工程 1 ;
2) 該溶融成形機内で該樹脂粉末を加熱溶融させて樹脂溶融物とする工程 2 ;及 ぴ
3) 該樹脂溶融物を金型内へ圧入成形する工程 3。
溶融成形機で溶融させた樹脂溶融物は、 金型内へ 50〜500MP aの圧力で 圧入することが好ましい。
溶融成形機としては、 射出成形機があり、 その場合、 金型として射出成形用金 型を使用する。 また、 溶融成形機としては、 押出成形機があり、 その場合、 金型 は、 押出成形機先端のノズルょり吐出された樹脂溶融物により充填されるフォー ミングダイである。
本発明の PVDF樹脂粉末を用いて射出成形を行うには、 スクリュー式射出成 形機の加熱したシリンダー入口に、 PVDF樹脂粉末を供給する。 ローダでホッ パーに供給された P VD F樹脂粉末は、 ホッパーから直接またはフィーダ一を介 してシリンダー入口に供給される。 押出量が安定しており、 成形体の形状や品質 が一定の成形体を得るには、 フィーダ一を介してシリンダ一入口のスクリユーが 見える程度の樹脂粉末の供給、 即ち、 飢餓供給 (スタープフィード; starved feeding) とすることが特に望ましい。
シリンダー内の最高温度は、 通常 190〜280°C、 好ましくは 200〜 25 0°Cに調節する。 シリンダー内で加熱と剪断力を受けて溶融した PVDF樹脂粉 末は、 樹脂溶融物としてシリンダーから押出され、 シリンダー内の射出圧力が好 ましくは 50〜 500 MP a、 より好ましくは 150~30 OMPaで金型内に 射出される。 樹脂溶融物を射出するシリンダー先端のノズルの温度は、 好ましく は 200〜250°Cに調節する。 金型温度は、 通常80〜150で、 好ましくは 90〜130°Cに調節する。
したがって、 本発明の溶融成形用 PVDF樹脂粉末を用いて射出成形により成 形体を製造する場合、
前記工程 1において、 該溶融成形用ポリフッ化ビニリデン樹脂粉末を、 該樹脂 粉末の状態で、 該射出成形機のスクリユーを備えたシリンダー入り口に供給し、 前記工程 2において、 190〜280°Cの温度に調節した該シリンダー内で、 該樹脂粉末を加熱溶融させて樹脂溶融物とし、 そして、
前記工程 3において、 シリンダー内の射出圧力 50〜50 OMP aで、 該シリ ンダ一先端のノズルから、 該樹脂溶融物を、 80〜150°Cの温度に調節した前 記金型内に射出成形する、
方法を採用することが好ましい。
また、 前記工程 1において、 該溶融成形用 PVDF樹脂粉末を、 該樹脂粉末の 状態で、 フィーダ一から前記シリンダー入り口に、 該シリンダー入り口のシリン ダ一が見える程度の供給速度で飢餓供給する方法を採用することが好ましい。 本発明の PVDF樹脂粉末を用いて、 フォーミングダィを用いた固化押出成形 を行うには、 加熱した押出機のシリンダー内に、 PVDF樹脂粉末を供給する。 口一ダでホッパーに供給された P V D F樹脂粉末は、 ホッパーから直接またはフ ィーダ一を介してシリンダー入口に供給される。 押出量が安定しており、 成形体 の形状や品質が一定の成形体を得るには、 フィーダ一を介してシリンダ一入口の スクリユーが見える程度の樹脂粉末の供給、即ち、飢餓供給(スターブフィード; starved feeding) とすることが特に望ましい。
シリンダー内の温度は、 通常50〜280 、 好ましくは 50〜250°C、 よ り好ましくは 50〜220°Cに調節する。 シリンダー内で加熱と剪断力を受けて 溶融した樹脂粉末は、押出機先端の金型ノズルから押し出す。金型ノズル温度は、 通常 190〜280°C、 好ましくは 200〜250°Cに調節する。
固化押出成形法では、 押出機先端の金型ノズルとフォーミングダィとが連結し た押出成形機を使用する。 フォーミングダィは、 外部に冷却装置を備え、 内部に 金型ノズルの通路と連通する通路を備えた構造を有するダイである。 金型ノズル から押出された溶融状態の押出成形体は、 フォーミングダイに導かれ、 その内部 で冷却 ·固化される。 したがって、 押出成形機の先端に配置したフォーミングダ ィから押出された押出成形体は、 固化した状態で外部に押出される。
金型ノズルから樹脂溶融物をフォーミングダイに圧入する場合、 フォーミング ダイの圧力 (ダイ外圧として測定される) 力 S、 好ましくは 50〜50 OMP a、 より好ましくは 150〜 400 MP aになるよう調節する。 このような固化押出 成形に適した押出成形機の具体例としては、 例えば、 特開昭 61-185428 号公報に開示されているものがある。
本発明者らの検討結果によれば、 特定の粉体特性を有する PVDF樹脂粉末を 固化押出成形することにより、 切削、 穴あけ、 切断などの機械加工に適した、 肉 厚で空孔がなく、 成形体の表面及び切断面の色調に優れた押出成形体の得られる ことが見出された。
すなわち、 本発明の製造方法は、 前記特定の粉体特性を有する PVDF樹脂粉 末を原料として使用し、 下記工程 I〜III:
(I) 金型ノズルと、 外部に冷却装置を備え内部に金型ノズルの通路と連通する 通路を備えたフォーミングダイとからなる金型装置を連結した押出成形機に PV D F樹脂粉末を供給する工程 I ;
(II) 押出成形機により樹脂粉末を溶融して樹脂溶融物とする工程 Π;
(III) 該樹脂溶融物を金型ノズルから所望の形状にしたフォーミングダイに押 出 ·圧入し、 溶融状態の押出成形体をフォーミングダイの内部で冷却して固化す る工程 III;
により固化押出成形して成形体を製造する方法を含んでいる。
成形体の形状としては、 例えば、 丸棒、 板、 パイプなどがある。 したがって、 これらの長尺の成形体を固化押出成形するには、 前記工程 Ι 〜ΙΠ を連続的に実 施する。特に、前記工程 II及び IIIでは、押出成形機により樹脂粉末を溶融して 樹脂溶融物としながら、 該樹脂溶融物を金型ノズルからフォーミングダィに連続 的に押出 ·圧入する。 押出成形機の本体は、 スクリユーを内蔵するシリンダ一で ある。 前記工程 Iにおいては、 該溶融成形用 P VD F樹脂粉末を、 該樹脂粉末の 状態で、 フィーダ一から前記シリンダ一入り口に、 該シリンダー入り口のシリン ダ一が見える程度の供給速度で飢餓供給する方法を採用することが好ましい。
P VD F樹脂粉末を用いた射出成形及ぴ固化押出成形においては、 P VD F樹 脂粉末を飢餓供給し、 過剰な樹脂粉末の供給を無くすことによって、 樹脂粉末の スクリューへの嚙み込みを安定させ、 サージングを防止し、 射出量または押出量 を安定ィ匕することが望ましい。
スクリユーとしては、 一般に市販されている射出成形または押出成形用のスク リューが使用可能である。 スクリューデザインの一例としては、 L/D = 2 0〜
2 4、 圧縮比 = 2〜 3、 供給部 = 1 0〜 1 4 D、 圧縮部 = 3〜 4 D、 及び計量部
== 6〜 7 Dが挙げられるが、 これに限定されない。
本発明の製造方法により得られた射出成形体及ぴ押出成形体は、 成形体を 1 0
0 °Cから固化状態を保持し得る温度までの間の温度、 好ましくは P VD F樹脂の 軟化点近くの温度まで加熱して残留応力を除くことが好ましい。 この加熱処理時 間は、 通常 3 0分以上、 好ましくは 1時間以上 2 4時間以内である。 加熱処理後 に、 成形体を冷却する。 この加熱 Z冷却処理をァニール (またはアニーリング) と呼ぶ。 熱処理は、 例えば、 成形体を加熱炉内に放置することにより行うことが できる。 本発明の PVDF樹脂粉末を用いた溶融成形法によれば、 ペレツト化してから 溶融成形した場合に比べて、 イェローインデックス (YI) が改善され、 色調が 良好な成形体を得ることができる。 他方、 PVDF樹脂粉末を用いて溶融成形し た成形体は、 ペレツ ト化してから溶融成形した成形体と同等の力学的特性を有し ており、 寸法安定性に優れ、 空孔がない。 発明の効果
本発明の溶融成形用 PVDF樹脂粉末は、 樹脂粉末の形状で射出成形機や押出 成形機に安定して供給することができ、 ペレツトを用いた場合と同様に諸特性に 優れるとともに、 ペレツトを用いた場合に比べて着色が抑制された成形体を与え ることができる。
本発明の製 i 方法によれば、 重合により得られた特定の粉体特性を持つ PVD F樹脂粉末を用いることにより、 ペレッ ト化することなく、 樹脂粉末の形状で射 出成形または押出成形することができる。 本発明の製造方法によれば、 諸特性に 優れるとともに着色が抑制された成形体を安定的かつ安価に製造することができ る。 実施例
以下に実施例及ぴ比較例を挙げて、 本発明についてより具体的に説明する。 本発明における特性及び物性の測定法は、 次のとおりである。
1. 樹脂粉末の特性
(a) 粒度分布
PVDF樹脂粉末の粒度分布は、 (株)平ェ製作所製ロータップ式 Π型ふるい 振とう機 D型を用い、 J I S K 0069-3. 1に従って、 乾式ふるい分け 法により測定した。 平均粒径の算出は、 粒度分布の測定結果を元に、 対数正規分 布法にて求めた。 平均粒径は、 粒度累積分布において、 50%累積値 (D5。) を 示す粒径とした。
粒度分布の広がりを示す指標として、 80 %累積値(D 8。) と 20 %累積値 (D 20) との差で表わされる粒径幅 (D80— D20) を、 50%累積値 (D50) で割 つた値 〔 (D80— D20) ZD 5。〕 を用いた。
(b) 嵩密度
P VDF樹脂粉末の嵩密度は、 J I S K 6 72 1 - 3. 3 「かさ比重」 の 測定法に従って測定した。 具体的には、 十分にかき混ぜた粉末試料約 1 20m l を嵩比重測定装置のダンパーを差し込んだ漏斗に入れた後、 速やかにダンパーを 引抜き、 試料を受器に落とす。 受器から盛り上がった試料は、 ガラス棒ですり落 とした後、 試料の入った受器の質量を 0. l gまで正確に量り、 次の式によって 嵩密度を求めた。
S= (C一 A) /
S :嵩密度 (gZcm3)
A:受器の質量 (g)
B:受器の内容積 (cm3) ' C:試料の入った受器の質量 (g)
測定は 3回行い、 平均値を算出した。 試験結果は、 小数点以下 3桁まで測定し た数値を、 3桁目を四捨五入することにより丸めて表示した。
(c) 安息角
PVDF樹脂粉末の安息角は、 十分にかき混ぜた樹脂粉末 1 0 Om lを J I S K 6 721に規定する嵩比重測定装置のダンパーを差し込んだ漏斗に入れ、 速 やかにダンパーを引抜いて、 試料を直径 8 Οπιιηφの試料台上に 100 mmの高 さから落下させ、 試料台上に堆積した樹脂粉末の安息角を測定する方法により求 めた。 測定温度は、 22 °Cであった。
2. 力学的特性
(1) 曲げ試験
曲げ試験は、 島津製作所製 2 Tオートグラフ AG 2000システムを使用し、 ASTM D— 7 90に従って、 測定温度 23 °C、 支点間距離 50 mm、 クロス へッド速度 1. 5 mmZ分で実施した。 この曲げ試験により、 曲げ弾性率 (たわ み 1. 2mm) (単位 =MP a) 及ぴ曲げ強さ (最大応力;単位 =MP a) を 測定した。 試験片のァニールは、 1 50°Cで 5時間加熱保持後、 徐々に室温にま で冷却する方法により行つた。 (2) 引張試験
引張試験は、 島津製作所製 2 Tオートグラフ AG 2 0 00システムを使用し、 AS TM D- 6 3 8に従つて、 測定温度 23 °C、 標点間距離 5 0 mm, クロス ヘッド速度 5 mm/分で実施した。 この引張試験により、 引張強さ (引張降伏強 さ; MP a) を測定した。 試験片のァニールは、 1 5 0°Cで 5時間加熱保持後、 徐々に室温にまで冷却する方法により行った。
3. 色調の測定
色調の測定は、 色差計 (日本電色工業社製 Z E 20 00) を使用し、 AS TM D— 1 9 2 5に従って、 L値及ぴ Y I値を測定した。 試験片のァニールは、 1 7 0°Cで 5時間加熱保持後、 徐々に室温にまで冷却する方法により行った。 測定値 は、 Y I値が小さく、 L値が大きいほど、着色が少ないことを示す。測定に際し、 試験片のバックに白板を配置した。 ' 実施例 1
1. ポリフッ化ビニリデン樹脂粉末 (A) の合成
内容量 20リットルのオートクレープに、 イオン交換水 1 0 7 30 g、 メチル セノレロース 2. 1 0 g、 酢酸ェチル 9 2. 2 g、 ジ n—プロピノレパーォキシジ力 ーボネート 2 5. 1 g、及びフッ化ビ二リデン 4 1 9 0 gを仕込み、 2 6でで 5. 5時間反応させ、 次いで、 4 0°Cに昇温して 7時間反応させた。 懸濁重合反応が 完了後、 生成重合体を含有するスラリーを脱水し、 水洗及び脱水後、 8 0°Cで 2 0時間乾燥して、 収率 9 0%でポリフッ化ビニリデン樹脂粉末 (A) を得た。 得られたポリフッ化ビニリデン樹脂粉末 (A) の固有粘度は 1. 0 1 d l /g で、 融点は 1 7 5°Cであった。 この樹脂粉末 (A) の粒度分布は、 平均粒径が 1 7 2 μ m、 粒径 4 5 μ m以下の粉末の割合が 0. 7重量0 、 及ぴ粒径 3 5 5 μτχι 以上の粉末の割合が 1. 0重量%であった。 樹脂粉末 (Α) の嵩密度は 0. 4 5 gZcm3で、 安息角は 3 2度であった。
該ポリフッ化ビ二リデン樹脂粉末 (A) は、 8 0%累積値 (D80) と 20%累 積値 (D20) との差で表わされる粒径幅 (D80— D20) を 5 0%累積値 (D50) で割った値 〔 (D8。一 D2。) ZD5。〕 が 0. 5 2であった。 2. 射出成形
上記で合成レたポリフッ化ビニリデン樹脂粉末 (A) を、 射出成型機 (東芝機 械社製 I S 2 5 E P— 1 YV) に設置された定量フィーダ一を介して、 加熱シリ ンダ一入口のスクリューが微かに見える程度に供給 (即ち、 飢餓供給) した。 加熱シリンダー内の押出スクリユーの回転数 9 6 r /m i n及びシリンダー温 度 200〜 23 0 °Cの条件で樹脂粉末を溶融し、そして、樹脂溶融物を、 23 0 °C で温調されたノズルを通して、 射出圧力 246 MP aで、 金型温度約 1 00 °C、 充填 6. 4秒、 射出 20秒、 及び冷却 30秒の条件で金型内に射出成形して、 曲 げ試験片、 引張試験片、 及び色調試験片を作製した。 射出成形用金型は、 AST M D— 7 90、 D— 6 3 8、 及ぴ D _ 1 9 2 5のそれぞれに適した試験片を同 時に成形することが可能な金型である。 測定結果を表 1に示す。 比較例 1
1. 市販のポリフッ化ビニリデン樹脂粉末
市販のポリフッ化ビユリデン樹脂粉末 (ATOFINA CHEMICALS INC. 製、 商品名 「Kynar741」 ) の粒度分布を測定したところ、 平均粒径が 1 6 7 μ m、粒径 4 5 μ m以下の粒子の割合が 3. 5重量%で、粒径 3 5 5 μ m以上の粒子の割合が 1.
9重量%で、 平均粒径の規格値 〔 (D8。— D20) /D50〕 が 1. 08であった。 この樹脂粉末の嵩密度は 0. 2 2 g/c m3で、 安息角は 4 5度であった。 すな わち、 この市販のポリフッ化ビニリデン樹脂粉末は、 嵩密度が小さく、 安息角が 大きいものであった。
2. 射出成形
上記ポリフッ化ビニリデン樹脂粉末 (Kynar741) を用いて、 実施例 1と同じ条 件で射出成形を試みたところ、 定量フィーダ一のスクリユー回転数を種々変更し ても、 該樹脂粉末が定量フィーダ一から加熱シリンダー内に流れなかった。 さら に、 定量フィーダ一を介することなく、 粉末樹脂をホッパーから直接加熱シリン ダー内に供給したが、 押出スクリューによる樹脂粉末の嚙み込みが悪く、 円滑な 供給ができなかった。 押出スクリューの回転数を 9 6 r/m i nから種々変更し たが、 やはり円滑な供給ができず、 正常な射出成形を行うことができなかった。 測定結果を表 1に示す。 比較例 2
1. ペレツト化
実施例 1で合成したポリフッ化ビ二リデン樹脂粉末 (A) を、 東洋精機製 L S 一 20を用いて、 230°Cで溶融押出し、 直径約 3 mm及ぴ長さ 3 mmの大きさ に裁断してペレツトを作製した。
2. 射出成形
上記ペレットを用いたこと以外は、 実施例 1と同じ条件で射出成形し、 各試験 片を作製した。 測定結果を表 1に示す。 実施例 2
1. ポリフッ化ビニリデン樹脂粉末 (B) の合成
内容量 20リ ツトルのォートクレーブに、 イオン交換水 1 0730 g、 メチル セノレロース 1. 26 g、 酢酸ェチノレ 28. l g、 ジ n—プロピノレパーォキシジカ ーポネート 25. 1 g、 フッ化ビニリデン 408 5 g、 及びへキサフルォロプロ ピレン 1 05 gを仕込み、 26°Cで 1 7. 5時間反応させ、 次いで、 40°Cに昇 温して 4時間反応させた。 懸濁重合反応の途中、 重合開始から 5時間の時点で、 酢酸ェチル 1 3 2 gを追加投入した。
懸濁重合反応が完了後、 生成重合体を含有するスラリーを脱水し、 水洗及び脱 水後、 80 °Cで 20時間乾燥して、 収率 8 8 %でポリフッ化ビニリデン樹脂粉末 (B) を得た。 ポリフッ化ビ-リデン樹脂粉末 (B) の固有粘度は 1. 0 5 d l /gで、 融点は 1 72°Cであった。 該樹脂粉末 (B) の粒度分布は、 平均粒径が 1 9 5 μ m、 粒径 45 μ m以下の粒子の割合が 0. 3重量0 /0で、 粒径 3 5 5 /x m 以上の粒子の割合が 3. 0重量%で、 平均粒径の規格値 〔 (D8。— D2。) /Ό5 。〕 が 0. 52であった。 該樹脂粉末 (Β) の嵩密度は 0. 42 g/cm3で、 安 息角は 2 8度であった。
2. 固化押出成形
上記で合成したポリフッ化ビニリデン系樹脂粉末 (B) を、 単軸押出機 (30 πικιφ、 L/D=l 0) の加熱シリンダ一^ ·、 定量フィーダ一を介して、 加熱シ リンダ一入口のスクリューが微かに見える程度に供給 (即ち、 飢餓供給) した。 スクリユー回転数 47 r/m i n及ぴシリンダー温度 50〜220°Cで樹脂を溶 融し、 そして、 210°Cに温調されかつダイ外圧 36 OMP aに調節したフォー ミングダイ内へ樹脂溶融物を押し出し、 毎時 100 mmの成形スピードで直径 1 50 mm φの丸棒を成形した。
得られた丸棒は、 色調が良好であった。 この丸棒を長手方向に 50 cm間隔で 切断して断面を調べたところ、 いずれの断面にも空孔 (巣) やミクロボイドが観 察されず、 均質であることが確認された。
3. 色調及び力学的特性
上記と同じ方法で合成したポリフッ化ビユリデン樹脂粉末 (B) を用いて、 実 施例 1と同じ条件下での射出成形により、 曲げ試験片、 引張試験片、 及び色調用 試験片を作製した。 結果を表 1に示す。
表 1
Figure imgf000021_0001
実施例 1と比較例 1 (市販品) の結果を対比すると、 特定の粒度分布を有し、 粒度分布がシャープで、 嵩密度が高く、 安息角が小さいポリフッ化ビユリデン樹 脂粉末を用いた場合 (実施例 1 ) には、 粒度分布が広く、 嵩密度が低く、 安息角 が大きい従来のポリフッ化ビニリデン樹脂粉末を用いた場合 (比較例 1 ) に比べ て、 射出成形性に優れていることが分かる。
実施例 1と比較例 2 (ペレツト) の結果を対比すると、特定の粒度分布を有し、 粒度分布がシャープで、 嵩密度が高く、 安息角が小さいポリフッ化ビ-リデン樹 脂粉末を、そのまま樹脂粉末の形状で射出成形機に供給して射出成形した場合 (実 施例 1 )には、同じ樹脂粉末をペレツト化してから射出成形機に供給した場合(比 較例 2 ) に比べて、 得られた成形体の力学的特性に実質的に差異がなく、 しかも L値及び Y I値が小さいことから、色調に優れた成形体の得られることが分かる。 実施例 2で得られたポリフッ化ビニリデン樹脂粉末を用いた場合も、 優れた溶 融加工性を示し、 色調が良好で、 力学的特性に優れた射出成形体を得ることがで きる (試験試料は、 射出成形により作製している。 ) 。
また、 実施伊! 1 2で得られたポリフッ化ビニリデン樹脂粉末を用いて、 固化押出 成形することにより、色調が良好で、空孔のない押出成形体を得ることができる。 産業上の利用可能性
本発明の P VD F樹脂粉末は、 射出成形や押出成形などの溶融成形により、 各 種成形体に成形することができる。 本発明の製造方法により得られた成形体は、 色調が良好で、力学的特性に優れているため、電気 ·電子部品、機械加工用素材、 その他の広範な用途に利用することができる。

Claims

請求の範囲
1. (a) J I S K 0069に従って、 乾式ふるい分け法により測定した とさ、
i) 粒度累積分布における 50%累積値 (D50) で表わされる平均粒径が 80 〜 2 50 μ m、
ii) 粒径 45 m以下の樹脂粉末の割合が 1 5. 0重量%以下、 及び iii) 粒径 35 5 μ m以上の樹脂粉末の割合が 1 0. 0重量0 /0以下、
の粒度分布特性を示し、
(b) 嵩密度が 0. 30〜0. 80 g/cm3であり、 かつ、
(c) 安息角が 40度以下である、
との粉体特性(a) 〜 (c) を有する溶融成形用ポリフッ化ビニリデン樹脂粉末。
2. 前記 50%累積値 (D50) で表わされる平均粒径が、 1 30〜2 1 0 //πι である請求項 1記載の溶融成形用ポリフッ化ビ二リデン樹脂粉末。
3. 前記粒径 4 5 μ m以下の樹脂粉末の割合が、 3. 0重量%以下である請求 項 1記載の溶融成形用ポリフッ化ビ二リデン樹脂粉末。
4. 前記粒径 3 5 5 μπι以上の樹脂粉末の割合が、 5. 0重量%以下である請 求項 1記載の溶融成形用ポリフッ化ビ二リデン樹脂粉末。
5. iv) 粒度累積分布における 80%累積値 (D80) と 20%累積値 (D20) との差で表わされる粒径幅 (D80— D20) を、前記 50%累積値(D50) で割つ た値 〔 (D8。一 D2。) ZD5。〕 が 0. 8以下、
の粒度分布特性をさらに示す請求項 1記載の溶融成形用ポリフッ化ビ二リデン樹 脂粉末。
6. 前記嵩密度が、 0. 40〜0. 70 g/ cm3である請求項 1記載の溶融 成形用ポリフッ化ビ二リデン樹脂粉末。
7. 前記安息角が、 23〜 35度である請求項 1記載の溶融成形用ポリフッ化 ビニリデン樹脂粉末。
8. 下記工程 1〜3 :
1) (a) J I S K 0069に従って、 乾式ふるい分け法により測定したと さ、
i) 粒度累積分布における 50%累積値 (D50) で表わされる平均粒径が
80~2 5 0 ίί Πΐ、
ii) 粒径 45 m以下の樹脂粉末の割合が 15. 0重量%以下、 及び iii) 粒径 355 μ m以上の樹脂粉末の割合が 10. 0重量%以下、 の粒度分布特性を示し、
(b) 嵩密度が 0. 30〜0. 80 gZcm3であり、 かつ、
(c) 安息角が 40度以下である、
との粉体特性 (a) 〜 (c) を有する溶融成形用ポリフッ化ビニリデン樹脂 粉末を、 該樹脂粉末の状態で、 溶融成形機に供給する工程 1 ;
2) 該溶融成形機内で該樹脂粉末を加熱溶融させて樹脂溶融物とする工程 2 ;及 ぴ
3) 該樹脂溶融物を金型内へ圧入成形する工程 3 ;
を含むポリフッ化ビ二リデン榭脂成形体の製造方法。
9. 前記 50%累積値 (D 50) で表わされる平均粒径が、 130〜210 μπι である請求項 8記載の製造方法。
10. 前記粒径 45 /zm以下の樹脂粉末の割合が、 3. 0重量%以下である請 求項 8記載の製造方法。
11. 前記粒径 355 μπι以上の樹脂粉末の割合が、 5. 0重量。 /0以下である 請求項 8記載の製造方法。
12. 該溶融成形用ポリフッ化ビ-リデン樹脂粉末が、
iv) 粒度累積分布における 80%累積値 (D80) と 20%累積値 (D20) との 差で表わされる粒径幅(D80— D20) を、前記 50%累積値 (D50) で割った値 〔 (D8。一 D2。) /D5。〕 が 0. 8以下、
の粒度分布特性をさらに示すものである請求項 8記載の製造方法。
13. 前記嵩密度が、 0. 40〜0. 70 gZ cm3である請求項 8記載の製 造方法。
14. '前記安息角が、 23〜35度である請求項 8記載の製造方法。
15. 前記工程 3において、 該樹脂溶融物を金型内へ 50〜500MP aの圧 力で圧入する請求項 8記載の製造方法。
16. 前記溶融成形機が射出成形機であって、 前記金型が射出成形用金型であ る請求項 8記載の製造方法。
17. 前記工程 1において、 該溶融成形用ポリフッ化ビユリデン樹脂粉末を、 該樹脂粉末の状態で、 該射出成形機のスクリユーを備えたシリンダ一入り口に供
¾3し、
前記工程 2において、 190〜280°Cの温度に調節した該シリンダー内で、 該樹脂粉末を加熱溶融させて樹脂溶融物とし、 そして、
前記工程 3において、 シリンダー内の射出圧力 50〜50 OMP aで、 該シリ ンダ一先端のノズルから、 該樹脂溶融物を、 80〜150°Cの温度に調節した前 記金型内に射出成形する
請求項 16記載の製造方法。
1 8 . 前記溶融成形機が押出成形機であって、 前記金型が押出成形機先端の金 型ノズルょり吐出された樹脂溶融物により充填されるフォーミングダイである請 求項 8記載の製造方法。
1 9 . 前記工程 1〜 3が、 下記工程 I〜ΠΙ:
( I ) 金型ノズルと、 外部に冷却装置を備え内部に金型ノズルの通路と連通する 通路を備えたフォーミングダイとからなる金型装置を連結した押出成形機に溶融 成形用ポリフッ化ビ二リデン樹脂粉末を供給する工程 I ;
(II) 該押出成形機により該樹脂粉末を溶融して樹脂溶融物とする工程 II; (III) 該樹脂溶融物を金型ノズルから所望の形状にしたフォーミングダイに押 出 '圧入し、 溶融状態の押出成形体をフォーミングダイの内部で冷却して固化す る工程 III; '
からなる請求項 8記載の製造方法。
2 0 . 前記工程 Iにおいて、 該溶融成形用ポリフッ化ビニリデン樹脂粉末を、 該樹脂粉末の状態で、 該押出成形機のスクリユーを備えたシリンダー入り口に供 nし、
前記工程 IIにおいて、 5 0〜2 8 0 °Cの温度に調節した該シリンダー内で、該 樹脂粉末を加熱溶融させて樹脂溶融物とし、 そして、
前記工程 IIIにおいて、 該樹脂溶融物を、 1 9 0〜 2 8 0 °Cに調節した該金型 ノズルからフォーミングダィ内に、 5 0〜5 0 O M P aの圧力で押出 *圧入して、 固化押出成形する
請求項 1 9記載の製造方法。
PCT/JP2005/019244 2004-10-20 2005-10-13 溶融成形用ポリフッ化ビニリデン樹脂粉末及び該樹脂粉末を用いた成形体の製造方法 WO2006043609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT05795766T ATE508146T1 (de) 2004-10-20 2005-10-13 Polyvinylidenfluoridharzpulver zur schmelzeformgebung und verfahren zur herstellung eines formkörpers aus dem harzpulver
US11/665,639 US7807088B2 (en) 2004-10-20 2005-10-13 Polyvinylidene fluoride resin powder for melt molding and process for producing molding from the resin powder
JP2006543047A JP5111855B2 (ja) 2004-10-20 2005-10-13 溶融成形用ポリフッ化ビニリデン樹脂粉末及び該樹脂粉末を用いた成形体の製造方法
DE602005027875T DE602005027875D1 (de) 2004-10-20 2005-10-13 Polyvinylidenfluoridharzpulver zur schmelzeformgebung und verfahren zur herstellung eines formkörpers aus dem harzpulver
EP05795766A EP1803749B1 (en) 2004-10-20 2005-10-13 Polyvinylidene fluoride resin powder for melt molding and process for producing molding from the resin powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004305747 2004-10-20
JP2004-305747 2004-10-20

Publications (1)

Publication Number Publication Date
WO2006043609A1 true WO2006043609A1 (ja) 2006-04-27

Family

ID=36203024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019244 WO2006043609A1 (ja) 2004-10-20 2005-10-13 溶融成形用ポリフッ化ビニリデン樹脂粉末及び該樹脂粉末を用いた成形体の製造方法

Country Status (7)

Country Link
US (1) US7807088B2 (ja)
EP (1) EP1803749B1 (ja)
JP (1) JP5111855B2 (ja)
CN (1) CN100575371C (ja)
AT (1) ATE508146T1 (ja)
DE (1) DE602005027875D1 (ja)
WO (1) WO2006043609A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201866A (ja) * 2011-03-28 2012-10-22 Kureha Corp フッ化ビニリデン系重合体の製造方法
JP2013056870A (ja) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp ビスフェノールaの製造方法
WO2015079936A1 (ja) * 2013-11-27 2015-06-04 株式会社クレハ フッ化ビニリデン系重合体水系組成物およびその用途
WO2019112017A1 (ja) * 2017-12-07 2019-06-13 Agc株式会社 粉体、粉体塗料および積層体の製造方法
WO2019207833A1 (ja) * 2018-04-26 2019-10-31 株式会社クレハ 粒子
KR20210024157A (ko) * 2018-07-20 2021-03-04 가부시끼가이샤 구레하 입자상의 불화비닐리덴계 중합체 및 입자상의 불화비닐리덴계 중합체의 제조방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285143B1 (ko) 2008-03-31 2013-07-12 테크노 폴리머 가부시키가이샤 열가소성 수지 성형품의 제조방법 및 열가소성 수지 입자 조성물
WO2011052666A1 (ja) 2009-10-30 2011-05-05 株式会社クレハ フッ化ビニリデン系重合体粉末およびフッ化ビニリデン系重合体溶液
WO2014034581A1 (ja) 2012-08-30 2014-03-06 東レ株式会社 フッ化ビニリデン樹脂微粒子の製造方法、およびフッ化ビニリデン樹脂微粒子
CN105690648A (zh) * 2014-11-27 2016-06-22 中国石油天然气股份有限公司 一种桥塞组合工具部件锥形套的制备方法
CN117447634A (zh) 2018-09-28 2024-01-26 东曹株式会社 氟树脂、氟树脂粒子及它们的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515386A (ja) * 1974-07-03 1976-01-17 Kureha Chemical Ind Co Ltd Futsukabiniridenkeijushino jugoho
JPH0229402A (ja) * 1988-07-18 1990-01-31 Shin Etsu Chem Co Ltd フッ化ビニリデン系重合体の製造方法
JPH03185007A (ja) * 1989-10-09 1991-08-13 Solvay & Cie 水性懸濁媒質中での弗化ビニリデン重合中の反応器内におけるビルドアップ形成の減少方法
JPH1180216A (ja) * 1997-07-22 1999-03-26 Solvay & Cie ハロゲン化ポリマーの製造法及び得られたハロゲン化ポリマー

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2277102A1 (fr) 1974-07-03 1976-01-30 Kureha Chemical Ind Co Ltd Procede de polymerisation de resines de fluorure de vinylidene
JPS61185428A (ja) 1985-02-13 1986-08-19 Mitsuboshi Belting Ltd 高分子材料の固化押出成形方法及びその金型装置
DE69207105T2 (de) * 1991-08-01 1996-05-15 Kureha Chemical Industry Co., Ltd., Tokio/Tokyo Verfahren zur Herstellung von Vinylidene-Fluoride-Polymer
JP3967039B2 (ja) * 1999-05-12 2007-08-29 株式会社クレハ 半導電性ポリフッ化ビニリデン系樹脂組成物
JP4683735B2 (ja) 2001-01-26 2011-05-18 株式会社クレハ フッ化ビニリデン重合体及びその製造方法
JPWO2003042256A1 (ja) 2001-11-14 2005-03-10 株式会社カネカ 硬化性組成物
FR2842203A1 (fr) * 2002-07-12 2004-01-16 Atofina Procede de fabrication du polymere du fluorure de vinylidene
CA2522227A1 (en) 2003-04-16 2004-10-28 Kureha Corporation Porous film of vinylidene fluoride resin and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515386A (ja) * 1974-07-03 1976-01-17 Kureha Chemical Ind Co Ltd Futsukabiniridenkeijushino jugoho
JPH0229402A (ja) * 1988-07-18 1990-01-31 Shin Etsu Chem Co Ltd フッ化ビニリデン系重合体の製造方法
JPH03185007A (ja) * 1989-10-09 1991-08-13 Solvay & Cie 水性懸濁媒質中での弗化ビニリデン重合中の反応器内におけるビルドアップ形成の減少方法
JPH1180216A (ja) * 1997-07-22 1999-03-26 Solvay & Cie ハロゲン化ポリマーの製造法及び得られたハロゲン化ポリマー

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201866A (ja) * 2011-03-28 2012-10-22 Kureha Corp フッ化ビニリデン系重合体の製造方法
JP2013056870A (ja) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp ビスフェノールaの製造方法
WO2015079936A1 (ja) * 2013-11-27 2015-06-04 株式会社クレハ フッ化ビニリデン系重合体水系組成物およびその用途
JP2015103464A (ja) * 2013-11-27 2015-06-04 株式会社クレハ フッ化ビニリデン系重合体水系組成物およびその用途
CN105723549A (zh) * 2013-11-27 2016-06-29 株式会社吴羽 偏二氟乙烯系聚合物水系组合物及其用途
CN105723549B (zh) * 2013-11-27 2017-05-03 株式会社吴羽 偏二氟乙烯系聚合物水系组合物及其用途
WO2019112017A1 (ja) * 2017-12-07 2019-06-13 Agc株式会社 粉体、粉体塗料および積層体の製造方法
WO2019207833A1 (ja) * 2018-04-26 2019-10-31 株式会社クレハ 粒子
JP2019189781A (ja) * 2018-04-26 2019-10-31 株式会社クレハ 粒子
JP7083690B2 (ja) 2018-04-26 2022-06-13 株式会社クレハ 粒子
KR20210024157A (ko) * 2018-07-20 2021-03-04 가부시끼가이샤 구레하 입자상의 불화비닐리덴계 중합체 및 입자상의 불화비닐리덴계 중합체의 제조방법
JPWO2020017561A1 (ja) * 2018-07-20 2021-06-24 株式会社クレハ 粒子状のフッ化ビニリデン系重合体、および粒子状のフッ化ビニリデン系重合体の製造方法
JP7137623B2 (ja) 2018-07-20 2022-09-14 株式会社クレハ 粒子状のフッ化ビニリデン系重合体、および粒子状のフッ化ビニリデン系重合体の製造方法
KR102577379B1 (ko) 2018-07-20 2023-09-11 가부시끼가이샤 구레하 입자상의 불화비닐리덴계 중합체 및 입자상의 불화비닐리덴계 중합체의 제조방법

Also Published As

Publication number Publication date
EP1803749A4 (en) 2009-06-03
US20070290407A1 (en) 2007-12-20
DE602005027875D1 (de) 2011-06-16
ATE508146T1 (de) 2011-05-15
US7807088B2 (en) 2010-10-05
EP1803749A1 (en) 2007-07-04
EP1803749B1 (en) 2011-05-04
CN101044173A (zh) 2007-09-26
JP5111855B2 (ja) 2013-01-09
CN100575371C (zh) 2009-12-30
JPWO2006043609A1 (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5111855B2 (ja) 溶融成形用ポリフッ化ビニリデン樹脂粉末及び該樹脂粉末を用いた成形体の製造方法
JP5232653B2 (ja) コア/シェルポリマー
EP1053284B1 (en) Mixtures of thermoplastic fluoropolymers
JP5066096B2 (ja) フルオロポリマー組成物
KR950001283B1 (ko) 플루오르화 비닐리덴계 중합체의 제조방법
WO2003044093A1 (fr) Composition de resine et procede de fabrication de moules
JP2009516068A (ja) フルオロポリマーブレンド方法
JP7335685B2 (ja) 熱溶融性フッ素樹脂組成物及びこれから成る射出成形品
CN112277187A (zh) 一种pvc管件热流道注射用pvc粒子的制备方法
CA1211243A (fr) Compositions a base de resines thermoplastiques permettant d'obtenir des materiaux bi-orientes
CN112679645A (zh) 高流动性改性聚三氟氯乙烯树脂的制备方法
CN112625332A (zh) 一种乙烯-乙烯醇共聚物树脂组合物及其膜和多层结构
JP5736710B2 (ja) ポリアミド樹脂組成物
JP2020535262A (ja) 押出しポリアミド発泡体を製造するための方法
JP3371001B2 (ja) フッ化ビニリデン系重合体およびその製造方法
KR102294373B1 (ko) 폴리락트산 입자 및 이의 제조방법
CN114106506A (zh) 一种pp/pa6多孔复合材料及其制备方法
CN106749793A (zh) 一种聚氯乙烯树脂的制备方法
CN85106980A (zh) 玻璃纤维增强的氯乙烯聚合物产品及其制备工艺
JP3724257B2 (ja) 重合体組成物およびその成形体
JP3458601B2 (ja) テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体組成物
CN107353403B (zh) 一种镁盐晶须/尼龙纳米复合材料及其反应挤出制备方法
CN117844239A (zh) 一种改性增韧尼龙材料的增塑母粒、其制备方法及其应用
KR20240105907A (ko) Pvdf 기반의 항균 조성물 및 그 제조방법
CN117645762A (zh) 一种抗静电复合材料及其制备方法和应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543047

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11665639

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580036060.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795766

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005795766

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11665639

Country of ref document: US