WO2006022032A1 - 油圧式無段変速装置 - Google Patents

油圧式無段変速装置 Download PDF

Info

Publication number
WO2006022032A1
WO2006022032A1 PCT/JP2004/013371 JP2004013371W WO2006022032A1 WO 2006022032 A1 WO2006022032 A1 WO 2006022032A1 JP 2004013371 W JP2004013371 W JP 2004013371W WO 2006022032 A1 WO2006022032 A1 WO 2006022032A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
swash plate
spool
load control
control mechanism
Prior art date
Application number
PCT/JP2004/013371
Other languages
English (en)
French (fr)
Inventor
Kunihiko Sakamoto
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to EP04773044A priority Critical patent/EP1811208B1/en
Publication of WO2006022032A1 publication Critical patent/WO2006022032A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/427Motor capacity control by mechanical control means, e.g. by levers or pedals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/437Pump capacity control by mechanical control means, e.g. by levers or pedals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/472Automatic regulation in accordance with output requirements for achieving a target output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members

Definitions

  • the present invention relates to a hydraulic continuously variable transmission, and more specifically, to a technique for controlling a swash plate angle of a movable swash plate of a hydraulic pump and Z or a hydraulic motor constituting the hydraulic continuously variable transmission. Related.
  • a hydraulic continuously variable transmission (hereinafter abbreviated as “HST”) composed of a hydraulic pump and a hydraulic motor has been controlled by tilting a movable swash plate of the hydraulic pump or hydraulic motor by a hydraulic servo mechanism.
  • a configuration is known in which the capacity of a variable displacement hydraulic pump or hydraulic motor is adjusted.
  • the configuration of this hydraulic servo mechanism includes a mechanism that automatically tilts the movable swash plate in proportion to the increase in the number of rotations of the hydraulic pump (automotive control), a hydraulic pump, and a hydraulic pump.
  • a mechanism (manual servo control) for operating the movable swash plate with a shift operation lever mounted outside the HST is well known.
  • the HST is configured to reduce the traveling speed of the work vehicle when the engine load is equal to or higher than the set value, and to increase the traveling speed when the engine load is equal to or lower than the set value.
  • a device having a mechanism for controlling speed is known. Specifically, the movable swash plate of the HST (hydraulic pump) is shifted to the deceleration side so that the work load does not exceed a predetermined value, thereby preventing the engine stall.
  • the powerful HST is equipped with two variable displacement hydraulic pumps and two hydraulic motors that are operated by pressure oil from the hydraulic pump. At least one of these two hydraulic motors is a variable displacement hydraulic motor. And an output merging mechanism for combining the output rotations of these two hydraulic motors and extracting them as a single output rotation. With this configuration, the output rotation of the variable displacement hydraulic motor is adjusted. The output torque can be almost doubled to increase the maximum torque in HST.
  • the HST disclosed in Patent Document 1 includes a hydraulic servo mechanism that switches a shift cylinder linked to a movable swash plate with a shift valve and tilts the movable swash plate over a hydraulic pump.
  • the movable swash plate of the hydraulic motor is configured to be tiltable.
  • the movable swash plate of one hydraulic motor configured as a variable displacement type when the load torque to the engine increases during work in a muddy area of a work vehicle. Can be tilted to increase the low-speed torque to control the speed of the work vehicle.
  • Patent Document 1 JP 2004-11769 A
  • the load control mechanism described above can be arranged as a variable displacement hydraulic motor to compensate for the torque shortage of the other hydraulic motor.
  • the movable swash plate of the variable displacement hydraulic motor can only be switched between a tilted state and a swash plate angle of 0 degrees by the switching cylinder. Positioning at an intermediate angle where control accuracy is poor is not possible.
  • it is necessary to arrange at least two hydraulic motors in the main oil passage the structure is complicated, and the application range is limited.
  • cradle metal such as a hydraulic pump deteriorates as time passes and travel performance fluctuates, it is necessary to provide a setting structure with a margin in advance for each member constituting the load control mechanism. there were.
  • the force control mechanism that controls the movable swash plate on the hydraulic motor side cannot be applied to the control of the movable swash plate on the hydraulic pump side.
  • a problem to be solved is related to a hydraulic continuously variable transmission and an HS having a load control function.
  • the swash plate angle of the movable swash plate of the hydraulic pump and ⁇ or the hydraulic motor is accurately controlled.
  • the hydraulic continuously variable transmission of the present invention at least one of them is a variable displacement type hydraulic pump and ⁇ or hydraulic motor, and the swash plate angle of the movable swash plate of the hydraulic pump and ⁇ or hydraulic motor
  • a hydraulic servo mechanism that controls the hydraulic servo mechanism, and in a hydraulic continuously variable transmission that tilts the movable swash plate by operating the shift operation lever, the variable speed drive that tilts the movable swash plate of the hydraulic servo mechanism
  • a load control mechanism that integrally provides an actuator that slides the member toward the deceleration side, and guides and operates the pressure oil in the closed main oil passage connecting the hydraulic pump and the hydraulic motor to the actuator.
  • the load control mechanism configured on the hydraulic pump side includes a cylinder that supplies and discharges the pressure oil in the main oil passage, and slides on the cylinder.
  • the spool includes a spool that is freely inserted and engages with the speed change drive member, and an elastic member that biases the spool to one side.
  • the spool is connected to the main oil passage on the other side.
  • the shift drive member is moved against the biasing force of the elastic member and moved, and the swash plate angle of the movable swash plate is controlled independently of the tilt operation by the shift operation lever. Is.
  • the load control mechanism configured on the hydraulic motor side includes a cylinder to which pressure oil in the main oil passage is supplied and discharged, and a slide on the cylinder.
  • the spool includes a spool that is freely inserted and engages with the speed change drive member.
  • the spool is connected to the main oil passage on the other end side, and the hydraulic pressure of the main oil passage on the one end side.
  • the movable swash plate is provided independently of the tilting operation by the speed change operation lever so that an elastic member or an oil pressure is provided to press the spool substantially constant against the oil pressure so that the oil pressure in the main oil passage is substantially constant.
  • the swash plate angle is controlled.
  • the load control mechanism may be configured such that the increase and decrease of the swash plate angle of the movable swash plate is inversely proportional to the increase and decrease of the oil pressure of the main oil passage. It is something to control.
  • the load control mechanism is configured to restrict a sliding position of the spool by protruding a stagger portion on an inner wall of the cylinder.
  • the load control mechanism is configured so that the traction force of the hydraulic transmission during low-speed running is approximately half the traction force of the engine horsepower. It controls the swash plate angle of the plate.
  • the load control mechanism is configured such that the cylinder for the hydraulic pump and the spool for the hydraulic motor are integrally provided on the cylinder. is there.
  • the load control mechanism receives the pressure oil in the main oil passage on one end side of a cylinder hole in which the spool is inserted, and the spool In addition to providing a pin for pressing the pin, a charge pressure is introduced to the other end of the cylinder hole to counter the spool pressing by the pin.
  • the backward displacement of the hydraulic pump is limited so that the corner horsepower is slightly lower than the engine output.
  • Relief pressure curve force in the control area It is configured so as to substantially match without exceeding the engine horsepower line.
  • an actuator that slides the speed change drive member that tilts the movable swash plate of the hydraulic servo mechanism toward the speed reduction side is integrally provided, and the hydraulic pump Since the load control mechanism operates by guiding the pressure oil in the closed main oil passage connecting the motor and the hydraulic motor to the actuator, the movable swash plate can be controlled with high accuracy.
  • the actuator is activated according to the hydraulic pressure, and the movable swash plate is rotated to the deceleration side.
  • the running speed can be reduced to increase the traction force, and the engine stall can be prevented.
  • the movable swash plate when a load is applied, can be automatically tilted to prevent an entry, thereby simplifying the operation during driving.
  • the hydraulic servo mechanism, neutral position holding mechanism, and load control mechanism can be integrated into a compact structure.
  • the control mechanism can be configured, and assembly and the like can be easily performed.
  • the load control mechanism configured on the hydraulic pump side includes a cylinder to which pressure oil in the main oil passage is supplied and discharged, and a slide on the cylinder.
  • the spool includes a spool that is freely inserted and engages with the speed change drive member, and an elastic member that biases the spool to one side.
  • the spool is connected to the main oil passage on the other side.
  • the shift drive member is moved against the biasing force of the elastic member and moved, and the swash plate angle of the movable swash plate is controlled independently of the tilt operation by the shift operation lever. Since the spool is slid by the load control mechanism and the spool is engaged with the pin and the pin is moved against the urging force of the elastic member by the load control mechanism. The plate can be controlled with high accuracy.
  • the load control mechanism that provides the same force as the cylinder can be reduced in size, and the number of parts can be reduced.
  • the load control mechanism configured on the hydraulic motor side includes a cylinder to which pressure oil in the main oil passage is supplied and discharged, and a slide on the cylinder.
  • the spool includes a spool that is freely inserted and engages with the speed change drive member.
  • the spool is connected to the main oil passage on the other end side, and the hydraulic pressure of the main oil passage on the one end side.
  • the movable swash plate is provided independently of the tilting operation by the speed change operation lever so that an elastic member or an oil pressure is provided to press the spool substantially constant against the oil pressure so that the oil pressure in the main oil passage is substantially constant. Since the swash plate angle is controlled, the movable swash plate of the hydraulic motor can be tilted with high precision and the maximum output can be generated efficiently. In the hydraulic motor control area, it can be easily approximated to the engine horsepower line.
  • the load control mechanism may be configured such that the increase and decrease of the swash plate angle of the movable swash plate is inversely proportional to the increase and decrease of the oil pressure of the main oil passage. Since it is controlled, engine stall particularly at low speeds can be effectively prevented.
  • the load control mechanism restricts the sliding position of the spool by protruding a stagger portion on the inner wall of the cylinder. Therefore, ensure the minimum speed for working with the work machine, and efficient work Moreover, since the stagger portion can be formed integrally with the inner wall, it can be easily formed at low cost.
  • the load control mechanism is configured so that the traction force of the hydraulic transmission during low speed running is approximately half of the traction force of the engine horsepower. Since the swash plate angle of the plate is controlled, it is possible to reliably prevent engine stall even when performing an operation in which the load torque is increased by providing a margin for the traction force with respect to the engine horsepower in advance.
  • the load control mechanism is configured such that the cylinder for the hydraulic pump and the spool for the hydraulic motor are integrally provided on the cylinder. Therefore, since a plurality of load control mechanisms can be attached / detached at once by attaching / detaching the cylinder, workability at the time of attaching / detaching is improved and maintenance of the load control mechanism becomes easy.
  • the load control mechanism receives the pressure oil in the main oil passage on one end side of the cylinder hole in which the spool is inserted, and the spool.
  • the charge pressure required for the hydraulic continuously variable transmission is used. Therefore, automatic control is possible with a simple configuration, the elastic member can be made small, and an inexpensive biasing means can be obtained.
  • the accuracy of control of the movable swash plate by the load control mechanism is improved by sliding the spool with high accuracy.
  • the manufacturing process can be simplified by configuring each load control mechanism with substantially the same members.
  • the reverse displacement of the hydraulic pump is limited so that the corner horsepower is slightly lower than the engine output.
  • Relief pressure curve force in the hydraulic motor control area during driving Since it is configured so that it does not exceed the engine horsepower line, it is adopted at the reverse side with a small load, so that the driving performance is not reduced at low cost. Enst can be prevented.
  • FIG. 1 is a partial front view showing an overall configuration of a hydraulic continuously variable transmission according to the present invention.
  • FIG. 2 is a front sectional view showing a neutral position holding mechanism.
  • FIG. 3 is a plan sectional view of the same.
  • FIG. 4 is a side view of the same.
  • FIG. 5 is another side view of the same.
  • FIG. 6 is a front sectional view showing a load control mechanism for a hydraulic pump.
  • FIG. 7 is a hydraulic circuit diagram of the hydraulic continuously variable transmission.
  • FIG. 8 is a front sectional view showing a load control mechanism for a hydraulic motor.
  • FIG. 9 is a state diagram showing an example of a control mechanism using a load control mechanism.
  • FIG. 10 is an engine horsepower diagram.
  • FIG. 11 is a diagram showing the relationship of traction force with respect to vehicle speed.
  • FIG. 12 is a diagram showing the relationship between the relief pressure and the engine horsepower line. Explanation of symbols
  • the hydraulic continuously variable transmission (hereinafter abbreviated as “HST”) 1 can be used for a farm vehicle such as a tractor.
  • HST hydraulic continuously variable transmission
  • a farm vehicle such as a tractor.
  • it is used as a work machine. The case where it is mounted on a work vehicle equipped with a motor work machine will be described.
  • the hydraulic pump 10 and the hydraulic motor 11 both configured in a variable displacement type are contained in the housing 12, and the hydraulic pump 10 and the hydraulic motor 11 are also included in the housing 12.
  • the hydraulic servo mechanisms 2 and 2 and the neutral position holding mechanism 3 are mechanisms that control the output rotation of each hydraulic pump 10 and hydraulic motor 11 by adjusting the swash plate angle of the movable swash plate 10a '11a.
  • a plate position holding mechanism 103), a load control mechanism 4 ⁇ 104, and the like are provided.
  • a hydraulic servo mechanism 2.2, neutral position holding mechanism 3 (maximum swash plate position holding mechanism 103), load control mechanism 4 104, etc. are provided for each of the hydraulic pump 10 and the hydraulic motor 11! /
  • hydraulic servo mechanism 2 and the neutral position holding mechanism 3 on the hydraulic pump 10 side will be described below unless otherwise specified. That is, in the present embodiment, these components (hydraulic servo mechanisms 2 and 2, neutral position holding mechanism 3 (maximum swash plate position holding mechanism 103)) arranged in the hydraulic pump 10 and the hydraulic motor 11 may be different from each other. The configuration is almost the same.
  • both the hydraulic pump 10 and the hydraulic motor 11 are configured as variable displacement types, but at least one is configured as a variable displacement type and the other is fixed.
  • You may comprise a positive displacement type.
  • the hydraulic pump 10 may be configured as a variable displacement type and the hydraulic motor 11 may be configured as a fixed displacement type, or the hydraulic motor 11 may be configured as a variable volume type and the hydraulic pump 10 may be configured as a fixed displacement type.
  • the force explaining the case where the hydraulic pump 10 and the hydraulic motor 11 are configured to be variable displacement types. The present embodiment is not limited to this. Not too long.
  • the variable displacement hydraulic pump 10 includes a drive shaft 57, a cylinder opening And a movable swash plate 10a in contact with the plunger (not shown), a plunger (not shown), and the like.
  • the movable swash plate 10a is configured such that the amount of sliding of the hydraulic pump 10 can be adjusted by changing the sliding amount by contacting or engaging the head of the plunger.
  • the variable displacement hydraulic motor 11 includes a cylinder block (not shown), a plunger (not shown), and a movable swash plate 1 la in contact with the plunger.
  • the movable swash plate 11a is configured such that the amount of sliding of the hydraulic oil to the hydraulic motor 11 can be adjusted by changing the sliding amount by contacting or engaging the head of the plunger.
  • the hydraulic pump 10 and the hydraulic motor 11 are juxtaposed in parallel with the same surface of an oil passage plate (not shown), and pressure oil is supplied from the hydraulic pump 10 to the hydraulic motor 11 through the main oil passage 13.
  • the driving force from the engine 15 is input to the drive shaft 57 and the hydraulic pump 10 is driven.
  • the hydraulic pump 10 and the hydraulic motor 11 are supplied with the hydraulic oil discharged by the driving force of the hydraulic pump 10, and the hydraulic motor 11 is driven by the supply and discharge of the hydraulic oil.
  • the driving force is transmitted to the output shaft 59.
  • a hydraulic pump 10 and a hydraulic motor 11 are arranged in parallel vertically (which may be left or right), and a hydraulic servo machine for the hydraulic pump 10 is located on one side of the hydraulic pump 10.
  • a structure 2 is disposed, and a hydraulic servo mechanism 2 for the hydraulic motor 11 is disposed on one side of the hydraulic motor 11 and below the hydraulic servo mechanism 2.
  • the hydraulic servomechanism 2 is composed of a piston 21 and a manual swash plate angle control valve 23 having a spool 22 arranged inside the piston 21 and the like, and is housed in the housing 12 of the HST1. Each is configured integrally.
  • the hydraulic servo mechanism 2 includes a manual swash plate angle control valve 23. Specifically, a cylinder chamber 24 is formed in the side of the movable swash plate 10a of the hydraulic pump 10 in the housing 12. The piston 21 is housed in the cylinder chamber 24, and a pin shaft 25 protruding from the side of the movable swash plate 10a is fitted to the side surface of the piston 21. A through hole is opened at the axial center of the piston 21, and a spool 22 is slidably fitted into the through hole.
  • the piston 21 is formed with an oil passage that communicates the upper and lower portions of the cylinder chamber 24, and the oil passage is communicated or blocked by sliding the spool 22, and pressure is applied to the upper and lower oil chambers of the piston 21. Oil is fed, and the piston 21 is configured to slide in the vertical direction.
  • a fitting groove 26 is provided on the outer periphery of the lower portion of the spool 22, and one end portion 27 a of a pin 27 as a speed change drive member of the spool 22 is fitted into the fitting groove 26.
  • the other end 27b of the pin 27 is clamped by a torsion panel 28 constituting a neutral position holding mechanism 3 and the like which will be described later.
  • One end portion 27a of the pin 27 is inserted into the housing 12 through the opening 12a and the opening 21a opened on the side surfaces of the housing 12 and the piston 21, and is fitted into the fitting groove 26 as described above.
  • the neutral position holding mechanism 3 is provided at the speed change operation lever 29 portion of the hydraulic servo mechanism 2 and is configured to hold the neutral position of the movable swash plate 10a of the hydraulic pump 10. Yes.
  • the neutral position holding mechanism 3 is provided in the casing 30 and is provided in a self-sliding direction in the longitudinal direction (vertical direction in FIG. 2) in the space 30a in the detent rod 31 force casing 30.
  • One end of the detent rod 31 is supported by a support recess 30b of the casing 30 and a cap 32 screwed into the casing 30.
  • An adjustment bolt 33 screwed to the cap 32 is formed in a body-like manner at the end of the detent rod 31 on the cap 32 side.
  • the detent rod 31 is configured to be slidable in the longitudinal direction by rotating the adjusting bolt 33 and is normally fixed in position by a lock nut 34.
  • a fixed portion 31a is formed at a substantially central portion of the detent rod 31, and the other end portion 27b of the pin 27 is inserted into the space 30a of the casing 30 so as to align with the fixed portion 31a.
  • the diameter of the other end portion 27b of the pin 27 and the width of the fixed portion 3 la are configured to be substantially the same.
  • panel receivers 35 and 35 are provided on both sides of the fixed portion 31 a of the detent rod 31 so as to be slidable in the axial direction of the detent rod 31.
  • Panel The receptacles 35 and 35 are urged toward the fixed portion 31a by the panel 36 interposed between the casing 30 and the panel receiver 35 and the panel 36 interposed between the cap 32 and the panel receiver 35. ing.
  • the panel receivers 35 and 35 are configured so that the fixing portion 31a of the detent rod 31 and the other end portion 27b of the pin 27 are sandwiched from both sides.
  • the speed change operation lever 29 is supported by the casing 30 so as to be rotatable about a rotation shaft 37.
  • a torsion panel 28 is rotatably attached to the outer periphery of the rotation shaft 37.
  • the other end 27b of the pin 27 is clamped by the torsional spring 28.
  • an interlocking arm 39 that rotates integrally with the rotating shaft 37 is fixed to the rotating shaft 37, and the interlocking arm 39 is clamped by the torsion panel 28.
  • the neutral position holding mechanism 3 moves the movable swash plate 10a of the hydraulic pump 10 of the HST1 through the pin 27 and the hydraulic servo mechanism 2 by the detent rod 31, the panel 36/36 and the panel receiver 35/35. Configured to hold in place.
  • the neutral position holding mechanism 3 is formed with a detent rod 31 having a fixing portion 31a having the same width as the pin 27 as a spool driving portion for driving the spool 22 of the hydraulic servo mechanism 2, and the fixing portion 31a And the pin 27 on both sides at the panel receivers 35 and 35 energized by the panel 36
  • the neutral position holding mechanism 3 can be simplified and downsized, and the neutral position of the movable swash plate 10a can be easily adjusted.
  • the neutral position holding mechanism 3 twists and supports a pin 27 linked to the movable swash plate 10a via the hydraulic servo mechanism 2 and twists and supports it by a panel 28 or the like. It is configured to maintain a neutral position. And then.
  • the rotation shaft 37 of the speed change operation lever 29 is engaged with the intermediate portion of the pin 27 for sliding the spool 22 via the interlocking arm 39 and the torsion panel 28, and the pin is operated by the rotation operation of the speed change operation lever 29.
  • 27 is configured to be physically operated, and the spool 22 is driven by one end portion 27a of the pin 27 extending to one side of the strong engaging portion and extended to the other side of the engaging portion.
  • the other end portion 27b of the pin 27 to be engaged is engaged with the dent rod 31 to position the neutral position.
  • the pin 27 is rotatably supported by the support arm 61 on the one end 27a side from the midway portion 27c. In this way, since the intermediate portion of the pin 27 that connects the spool 22 and the neutral position holding mechanism 3 in a straight line with the shortest distance is supported, the position accuracy of the neutral holding and the control accuracy of the spool 22 can be improved.
  • the control mechanism for the neutral position holding mechanism 3 and the spool 22 can be reduced in size.
  • the detent rod 31 is rotated by rotating an adjustment bolt 33 screwed on the cap 32. It can move in the axial direction. Then, when the pin 27 is held at the position of the fixed portion 31a and the movable swash plate 10a is also out of neutral position force, the adjustment bolt 33 is rotated to adjust the position of the fixed portion 31a of the detent rod 31.
  • the movable swash plate 10a can be adjusted to be in the neutral position while the pin 27 is held at the position of the fixed portion 31a.
  • the neutral position holding mechanism 3 includes the adjustment mechanism (neutral position adjustment mechanism) that finely adjusts the neutral position, and the adjustment mechanism includes an adjustment bolt 33 that protrudes to the outside. Since the neutral position adjustment of the movable swash plate 10a is performed by rotating, the neutral position holding mechanism 3 can be operated from the outside without disassembling the neutral position. Adjustment work becomes easy.
  • the detent rod 31 is configured as a both-end supported structure in which both ends thereof are supported by the support recess 30b of the casing 30 and the cap 32, thereby improving the support strength of the detent rod 31 and the neutral position holding mechanism. The accuracy of 3 etc. can be improved.
  • the detent rod 31 is configured in a cantilever structure that is supported only by the cap 32, for example, so that the processing of the support recess 30b of the casing 30 is unnecessary, and the thickness of the casing 30 can be reduced. Cost can be reduced.
  • the casing 30 is provided with a rotation limiting mechanism that regulates the maximum rotation angle of the movable swash plate 10a.
  • step portions 31b '31b are formed on both end sides of the fixed portion 31a of the detent rod 31, and the panel receivers 35 and 35 sliding in the axial direction of the detent rod 31 are provided with the step portions 31b and 31b. It is comprised so that it may latch on.
  • the panel receiver 35 in the direction in which the pin 27 is rotated moves the end of the detent rod 31 together with the pin 27 against the urging force of the panel 36. Slide sideways. If the panel receiver 35 slides a certain amount, it will eventually be locked to the step portion 31b, and the spring receiver 35 and the pin 27 will no longer be able to move toward the end side.
  • the neutral position holding mechanism 3 is configured to limit the rotation amount of the pin 27 by the step portion 31b formed in the detent rod 31, and thereby limit the maximum rotation angle of the movable swash plate 10a.
  • the maximum rotation angle of the neutral swash plate 10a can be set accurately and accurately, and durability can be improved and high accuracy can be maintained for a long time.
  • the adjustment of the stroke between the fixed portion 31a of the detent rod 31 and the stepped portion 31b'31b is determined by the mechanical processing accuracy when the detent rod 31 is processed, so that the detent rod 31 is attached to the casing 30. After installation, there is no need to adjust this rotation limiting mechanism, and for example, an adjustment process at the time of shipment can be omitted.
  • the overstroke mechanism in the neutral position holding mechanism 3 will be described below.
  • the shift operation lever 29 is rotated more than the rotation amount of the pin 27 limited by the rotation limiting mechanism, the shift operation lever 29 is rotated.
  • An overstroke mechanism that absorbs dynamic operation is configured.
  • the pin 27 is integrally rotated through the interlocking arm 39 and the torsion panel 28 by the rotation operation of the speed change operation lever 29.
  • the pin 27 is rotated by a certain amount and restricted by the rotation limiting mechanism and cannot be rotated any further, it is pinched by the torsion panel 28 and is rotated integrally with the speed change operation lever 29.
  • the moving interlocking arm 39 rotates while expanding it against the biasing force of the torsion panel 28.
  • the overstroke mechanism rotates only with the interlocking arm 39 while twisting the panel 28, and the speed change lever It is configured so that 29 rotation operating forces are not directly applied to the pins 27.
  • the shift control lever 29 is excessively rotated, an excessive force is applied to the pin 27, spring receiver 35, detent rod 31, etc., and these members are hydraulic servo mechanisms. It is possible to prevent 2 from being damaged and the neutral position holding mechanism 3 from being adjusted incorrectly.
  • the casing 30 that houses the neutral position holding mechanism 3 and the like configured as described above is attached to the housing 12 of the HST 1 via a cylinder 41 of the load control mechanism 4 described later. Therefore, the neutral position holding mechanism 3, the rotation limiting mechanism, and the overstroke mechanism arranged on the mounting surface side of the casing 30 on the housing 12 are installed in the casing 30.
  • the casing 30 is connected to the cylinder 41 of the load control mechanism 4.
  • the fixing portion 31a can be formed integrally with the casing 30 which is not only formed integrally with the detent rod 31, but also the cost can be reduced.
  • the detent rod 31 may be attached to the casing 30 by forming the fixing portion 31a separately.
  • the panel receivers 35 and 35 sandwiching the pin 27 and the fixing part 31a from both sides are guided by the casing 30 whose outer periphery is made of a strong block material. Positioning can be performed with high accuracy.
  • a maximum swash plate position holding mechanism 103 is configured on the hydraulic motor 11 side (see FIG. 1), and the movable swash plate 11a of the hydraulic motor 11 is always maximized by the maximum swash plate position holding mechanism 103. It is configured to be held at the swash plate position.
  • the maximum swash plate position holding mechanism 103 is configured in substantially the same manner as the neutral position holding mechanism 3.
  • the maximum swash plate position holding mechanism 103 includes a 0 degree position adjusting mechanism. When the movable swash plate 11a is deviated from the 0 degree position, the adjustment bolt 33 is rotated to move the movable swash plate 1 la to 0. It is possible to adjust it so that it is located at the degree position.
  • the cylinder 41 is formed in a long shape along the side wall surface, which is a substantially flat surface of the housing 12 of the HST1, and a cylinder hole 42 opened above the cylinder 41 is bored.
  • the cylinder hole 42 has a substantially circular shape.
  • a columnar spool 40 is slidably inserted.
  • a pipe joint 43 connected via the main oil passage 13 of the HST1 and the supply / discharge oil passage 14 is screwed, and via the supply / discharge oil passage 14 (the pipe joint 43).
  • Pressure oil in the main oil passage 13 is supplied and discharged into the cylinder 41.
  • An opening 41b that opens in the left-right direction is provided in the middle of the cylinder 41 in the vertical direction.
  • an oil pressure pump (charge pump) 50 that supplies hydraulic oil to the main oil passage 13 is driven from the engine 15 via the pump shaft 51, and Inhale oil from oil tank 52.
  • An oil passage 53 is connected to the discharge port of the hydraulic pump 50, and the oil passage 53 is connected to a main oil passage 13 provided in the HST 1 through a relief valve 54 ⁇ 54 with a check valve 54a '54a. Is done.
  • a regulating valve 55 is disposed in the middle of the oil passage 53.
  • the main oil passage 13 forms a closed circuit between the hydraulic pump 10 and the hydraulic motor 11, and the supply / discharge oil passage 14 is connected to an oil passage on a high pressure side when the hydraulic motor 11 is rotated forward.
  • the oil from the hydraulic pump 50 is supplied to the main oil passage 13 when the oil pressure in the low-pressure side oil passage becomes lower than the oil pressure specified by the regulating valve 55 via the oil passage 53, and if it is higher, the oil is adjusted.
  • the flow rate of the oil supplied to the main oil passage 13 is adjusted by draining into the oil sump 56 in the housing 12 of the HST 1 by the valve 55.
  • variable displacement hydraulic pump 10 the driving force of the engine 15 is transmitted from the hydraulic pump 50 via the drive shaft 57, and the cylinder block and the like are rotated by the driving force.
  • the hydraulic pump 10 is fluidly connected to the variable displacement hydraulic motor 11 through the main oil passage 13, and the pressure oil discharged from the hydraulic pump 10 is supplied to and discharged from the hydraulic motor 11.
  • the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 is controlled by the hydraulic servo mechanism 2, the neutral position holding mechanism 3, the load control mechanism 4, and the like as described above.
  • Pressure oil is supplied and discharged from the main oil passage 13 through the oil passage 58 to the oil pressure servo mechanism 2 and the like, and finally discharged to the oil reservoir 56 in the HST 1.
  • the load control mechanism 4 the pressure oil is supplied / discharged from the main oil passage 13 through the supply / discharge oil passage 14, and the spool 40 inserted in the cylinder 41 is slid by receiving the strong pressure oil.
  • the hydraulic servo mechanism 2, the load control mechanism 104, and the like are connected in the same manner as the hydraulic pump 10.
  • the hydraulic motor 11 is fluidly connected to the hydraulic pump 10 via the main oil passage 13, and the cylinder block and the like are driven to rotate by the pressure oil discharged from the hydraulic pump 10, and the output shaft 59 is driven to rotate. .
  • the rotational drive of the output shaft 59 is transmitted to a travel shaft for driving an axle (not shown), a drive shaft for driving a work machine, and the like.
  • the configuration of the hydraulic motor 11 will be described later.
  • the pipe joint portion 43 is screwed in close contact with the inner surface of the cylinder hole 42 in an oil-tight manner.
  • An oil supply / discharge port 43a is provided inside the pipe joint 43. Pressure oil is guided to the oil supply / discharge port 43a from the main oil passage 13 of the HST1 through the supply / discharge oil passage 14 to detect the oil pressure. I can do it.
  • a pin hole 43b opened on the inner surface side of the cylinder hole 42 is formed in the pipe joint portion 43, and the pin 44 is slidably inserted into the inner wall of the pin hole 43b so that the pin 44 One end is in contact with the side surface of the spool 40.
  • the pin hole 43b is connected to an oil supply / discharge port 43a provided in the pipe joint portion 43 through an orifice 43c.
  • the pressure oil in the oil supply / discharge port 43a is filled into the pin hole 43b through the orifice 43c, and the pin 44 is slid according to the oil pressure in the main oil passage 13. For example, when the oil pressure in the main oil passage 13 is increased, the pin 44 is pushed out from the pin hole 43b, and when the pin 44 is pushed out from the pin hole 43b, the spool 40 is pushed by the pin 44 and slid downward.
  • a long hole-like through hole 40b is formed in a substantially central portion in the longitudinal direction, and one end portion 27a of the pin 27 is passed through the through hole 4 Ob.
  • the through hole 40b communicates with the opening 41b of the cylinder 41 with the spool 40 inserted in the cylinder hole 42 of the cylinder 41. Since the cylinder 41 is interposed between the housing 12 and the casing 30 in this way, one of the cylinder 41 and the like communicates with the opening 12a ′ opening 21a opened on the side surface of the housing 12 and the piston 21, and the other is the casing 30. It is configured so as to communicate with the opening 30c opened on the side surface of the first side.
  • the pin 27 penetrates the load control mechanism 4 (the cylinder 41, the spool 40, etc.) in the short direction through the through hole 40b.
  • a notch 40a is formed at the opening edge of the through hole 40b, and the notch 40a is brought into contact with the midway portion 27c of the pin 27.
  • the midway portion 27 c is formed larger in the radial direction than the pin 27. Since the through hole 40b of the spool 40 is opened larger than the axial radius of the pin 27, even if the pin 27 moves substantially parallel along the longitudinal direction of the cylinder 41, the pin 27 remains on the side wall of the through hole 40b. However, the notch 40a is in contact with the midway portion 27c of the pin 27 so that the spool 40 and the pin 27 slide together.
  • the hydraulic servo mechanism 2 for the hydraulic motor 11, the maximum swash plate position holding mechanism 103, etc. are the hydraulic servo mechanism 2 for the hydraulic pump 10 and the maximum swash plate position holding mechanism 103. It is comprised substantially the same.
  • the hydraulic motor 11 in the present embodiment is configured as a variable displacement type, the swash plate angle of the movable swash plate 11a is controlled by the hydraulic servo mechanism 2, and the movable swash plate 11 is moved via the hydraulic servo mechanism 2.
  • the pin 27 interlocked with the plate 11a is twisted and supported by a panel 28 or the like so as to hold the maximum swash plate position of the movable swash plate 1 la ( Maximum swash plate position retention mechanism 103).
  • the load control mechanism 104 for the hydraulic motor 11 is disposed in the cylinder 41.
  • the cylinder 41 in this embodiment includes the hydraulic pump 10 and the hydraulic motor 11 disposed in parallel to the housing 12.
  • a load control mechanism 4 for the hydraulic pump 10 and a load control mechanism 104 for the hydraulic motor 11 corresponding to each of the above are physically installed. That is, the cylinder 41 is provided with a spool 40 and the like constituting the load control mechanism 4 for the hydraulic pump 10, and a spool 140 and the like constituting the load control mechanism 104 for the hydraulic motor 11 are integrally provided. It has been.
  • each load control mechanism 4 ⁇ 104 can be attached and detached at once by attaching and detaching the cylinder 41, and maintenance of the load control mechanism 4 ⁇ 104 is easy. Thus, workability is improved. Further, since the load control mechanisms 4 and 104 are configured in substantially the same manner, the number of parts can be reduced and the manufacturing process can be simplified. However, as the load control mechanism, only the load control mechanism 4 for the hydraulic pump 10 or only the load control mechanism 104 for the hydraulic motor 11 may be provided independently. Even when force is applied, it is preferable because each movable swash plate can be easily controlled as will be described later.
  • a cylinder hole 142 opened below the cylinder 41 is formed in the up-down direction, and a pipe joint 143 is fitted into the open end, and the pipe joint 143 includes a joint 148, a pipe It is connected to the discharge side of the hydraulic pump 50 via (oil passage 18).
  • a substantially cylindrical spool 140 is slidably inserted. With the spool 40 inserted into the cylinder hole 142, the inner cylinder 145 is fixed to the inner part of the cylinder hole 142 so that the relative position cannot be changed.
  • the pin hole 144a is drilled in the inner cylinder 145, and the pin hole 144a is pinned. 144 is inserted in close contact with the inner wall of the pin hole 144 a, and one end of the pin 144 is in contact with the lower surface of the spool 140.
  • An oil reservoir 146 is formed between the pin hole 144a and the other end of the pin 144, and the main oil passage 13 communicates with the oil reservoir 146. However, since the cylinder 41 is shared in this embodiment, the oil reservoir 146 is communicated with the main oil passage 13 via the load control mechanism 4 for the hydraulic pump 10 (see FIG. 7). That is, in the load control mechanism 4, the outer periphery of the pipe joint 43 An oil reservoir 46 is formed between the surface and the inner peripheral surface of the cylinder hole 42, and is connected to the oil supply / discharge port 43a via the supply / discharge pipe 17 and the oil hole 43d connected to the oil reservoir 146.
  • the spool 140 has a long hole-like through-hole 140b extending substantially in the center in the longitudinal direction.
  • the through-hole 40b is inserted into the cylinder hole 142 with the spool 140 inserted in the left side of the cylinder 41. It communicates with the opening 41b penetrating in the right direction.
  • the pin 27 interlockingly connected to the movable swash plate 1 la of the hydraulic motor 11 via the hydraulic servo mechanism 2 is provided.
  • the load control mechanism 104 (cylinder 41, spool 140, etc.) is penetrated in the short direction through the through hole 140b.
  • the spool 140 is formed with a notch 140a at the opening edge of the through hole 140b, and the notch 140a is configured to come into contact with a midway part 27c provided in the pin 27.
  • the load control mechanism 104 for the hydraulic motor 11 is in the normal position with the midway portion 27c abutting the notch 140a with the swash plate angle of the movable swash plate 11a tilted to the maximum. With this configuration, the load control mechanism 104 controls the tilt of the movable swash plate 1 la of the hydraulic motor 11 in a direction in which the swash plate angle decreases, and controls the torque by controlling the swash plate angle. it can. Details will be described later.
  • the HST 1 configured as described above changes the swash plate angle of the movable swash plate 10a′11a of the HTS hydraulic pump 10 and the hydraulic motor 11 when a load torque is generated in the engine 15. In addition to the control by the lever 29, it is controlled by the load control mechanism 4 ⁇ 104 to prevent the engine 15 from stalling.
  • the load control mechanism 4 for the hydraulic pump 10 includes the cylinder 41 to which pressure oil in the main oil passage 13 is supplied and discharged, and the cylinder 41 is slidably inserted into the cylinder 41 and is engaged with the pin 27. Consists of a spool 40 to be combined. Then, when the pressure oil in the cylinder 41 (oil supply / discharge port 43a) rises due to the load of the spool 40 and is pressed through the pin 44, the pin 27 resists the urging force of the torsion panel 28.
  • the swash plate angle of the movable swash plate 10a is controlled independently of the tilting operation by the hydraulic servo mechanism 2 and the like described above.
  • the pin 44 is positioned by being pushed into the pin hole 43b through the spool 40 by the biasing force of the panel 45 (see FIG. 9 (a)).
  • Work with HST1 When the shift operation lever 29 is rotated through a link mechanism (not shown) when the industrial vehicle is driven, the pin 27 is moved together with the shift operation lever 29 and the pin 27 is opened to the cylinder 41.
  • the part 41b and the through hole 40b of the spool 40 are moved substantially in parallel, and the spool 22 of the hydraulic servo mechanism 2 is slid in conjunction with the pin 27, and the oil passage is switched by the sliding of the spool 22 and the piston 21 is moved.
  • the movable swash plate 10a of the hydraulic pump 10 that slides and engages with the piston 21 is tilted (see FIG. 9B).
  • the pin 27 is moved upward, and the movable swash plate 10a gradually tilts in conjunction with this.
  • the swash plate angle is controlled to be large.
  • the tilting operation of the movable swash plate 10a is controlled by the hydraulic servo mechanism 2, the neutral position holding mechanism 3, and the like.
  • the pin 27 is set by the shift operation lever 29 by the urging force of the torsion panel 28.
  • the pin 44 is controlled so that the swash plate angle of the movable swash plate 10a is increased by sliding the spool 40 upward so that the pin 44 is pushed into the pin hole 43b by the panel 45 and the charge pressure. It is done. Then, the movable swash plate 10a of the hydraulic pump 10 is positioned again at a predetermined position by the shift operation lever 29 or the like.
  • the output rotation speed of HST 1 is increased or decreased by the rotation operation of the shift operation lever 29.
  • load torque is applied to the output shaft 59 (axle) because a large traction force is required, and the heavy load is applied to the engine 15 and exceeds the engine horsepower. It will end. Therefore, in order to prevent excessive engine stall, the oil pressure in the main oil passage 13 is increased so that the spool in the cylinder 41 is slid by receiving the pressure oil in the main oil passage 13 so that the oil pressure is increased.
  • the swash plate angle of the movable swash plate 10a of the pump 10 is controlled to be small. That is The engine 15 is prevented from stalling by reducing the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 and reducing the discharge rate of the hydraulic oil from the hydraulic pump 10 to reduce the vehicle speed. It is structured as follows.
  • the relationship between the traction force (kg′f) and the vehicle speed (kmZh) of the engine 15 is represented by an engine horsepower line A.
  • a work vehicle requires a driving force to drive the work machine in addition to the driving force of the axle.
  • M is configured to generate a medium speed torque in order to generate a traction force for causing the loader work machine disposed on the work vehicle to enter the ground.
  • a traction force is required to drive the loader work machine, so that it is possible to generate a larger low-speed torque.
  • the load control mechanism 4 configured as described above controls the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 to automatically tilt, thereby effectively reducing the engine stall. It can be prevented.
  • the load control mechanism 4 includes a cylinder 41 and a spool 40, and the spool 40 is slid according to the hydraulic pressure of the main oil passage 13, and the spool 40 is connected to the pin 27. And the pin is moved against the urging force of the torsion panel 28, so that the movable swash plate 10a can be accurately controlled.
  • the load control mechanism 104 of the hydraulic motor 11 is configured to automatically tilt the movable swash plate 1 la of the hydraulic motor 11 and control the swash plate angle. ing. However, the hydraulic motor 11 is adjusted so that the swash plate angle of the movable swash plate 11a is maximized when the swash plate 11a is stopped (maximum swash plate position holding mechanism 103). The angle is controlled to be small.
  • the pin 27 moved integrally therewith is positioned in a predetermined state by the torsion panel 28.
  • the hydraulic pressure of the main oil passage 13 in the HST 1 rises, and the hydraulic pressure of the oil sump 1 46 increases through the supply / discharge pipe 17, the pressure oil is received and pinned.
  • 144 pushes the spool 140 downward, and the notch 140a of the spool 140 comes into contact with the midway portion 27c and slides it downward against the biasing force and charge pressure of the torsion panel 28.
  • the load control mechanism 104 for the hydraulic motor 11 can move the hydraulic motor 11 to reduce the vehicle speed when the hydraulic pressure in the main oil passage 13 increases.
  • the swash plate 11a is configured to control to increase the swash plate angle.
  • the HST 1 As shown in FIG. 11, the HST 1 according to the present embodiment is provided with such a load control mechanism 4 ⁇ 104 and is shown by a curve B force broken line representing the relationship of the traction force with respect to the vehicle speed of the HST 1.
  • the swash plate angle of each hydraulic pump 10 and the movable swash plate 10a'11a of the hydraulic motor 11 is controlled, that is, the load is controlled so that the engine horsepower line A of the engine 15 is not exceeded.
  • the load control mechanism 4 ⁇ 104 mainly controls the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 in the vehicle speed range a in FIG. In the high speed region, the swash plate angle of the movable swash plate 11a of the hydraulic motor 11 is controlled. In the vehicle speed range a, the movable swash plate 10a of the hydraulic pump 10 is configured to be tiltable, while the movable swash plate 11a of the hydraulic motor 11 is fixed at a position where the swash plate angle is maximized.
  • the position of the movable swash plate 10a of the hydraulic pump 10 is fixed substantially at the same time as the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 becomes maximum
  • the movable swash plate 11a of the hydraulic motor 11 is tilted in the direction in which the swash plate angle becomes smaller.
  • the control by the hydraulic pump 10 and the hydraulic motor is switched in the vehicle speed range a′b.
  • the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 is mainly controlled by the load control mechanism 4. Since the loader working machine is used in the working vehicle of this embodiment, the load speed control mechanism 4 is used for the vehicle speed range a in order to efficiently control the swash plate angle of the movable swash plate 10a of the hydraulic pump 10.
  • One end side of the spool 40 is urged by an elastic member inserted in the cylinder 41 so that the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 is increased or decreased with respect to the increase or decrease of the hydraulic pressure of the main oil passage 13.
  • the increase / decrease is inversely proportional.
  • the spool 40 is inserted between the cylinder hole 42 and the end of the spool 40 between the end of the spool 40 and the cylinder hole 42.
  • a space 42a is provided, and a panel 45 is provided as an elastic member in the space 42a.
  • the panel 45 abuts against the lower surface of the spool 40 and urges the spool 40 in a direction opposite to the direction in which the pin 44 presses. Therefore, when the movable swash plate 10a of the hydraulic pump 10 is held in the neutral position, the spool 40 is attached in the direction in which the pin 44 is pushed into the pin hole 43b by the biasing force of the panel 45 (upward in FIG. 6). It is energized. Further, the space 42a is connected to the oil passage 53 on the discharge side of the hydraulic pump 50 through the oil passage 18 so that the HST charge pressure acts as a back pressure.
  • the spool 40 that receives the pressure oil in the main oil passage 13 and slides is urged by the elastic member (panel 45) and the charge pressure, so that the oil pressure in the main oil passage 13 is increased or decreased.
  • the swash plate angle of the movable swash plate 10a of the hydraulic pump 10 is controlled to be inversely proportional. For example, when the pressure oil in the main oil passage 13 increases, the vehicle speed is controlled to decrease in proportion thereto.
  • the swash plate angle can be controlled accurately and effectively by the load control mechanism 4 when traction force is required, such as when using a loader working machine during low speed traveling.
  • the engine stall can be effectively prevented by increasing the low-speed torque.
  • the panel 45 can be made small as an elastic member to urge the spool 40, and the load control mechanism 4 having the same force as the cylinder 41 can be downsized. In addition, the number of parts can be reduced.
  • the minimum speed in the vehicle speed range a is controlled so as not to be lower than the constant speed (minimum speed c).
  • a stopper 47 is formed on the inner wall of the cylinder hole 42 so as to protrude in the axial direction of the cylinder hole 42 formed in a substantially cylindrical shape.
  • the stagger portion 47 is formed at one end of the space 42a so that the disposition portion of the panel 45 is smaller than the radial direction of the cylinder hole 42 to form a stepped portion.
  • the lower surface of the spool 40 comes into contact with the upper surface of the stopper portion 47, and the downward sliding position of the spool 40 is restricted.
  • the configuration of the stagger portion 47 is not limited to the step portion, and a pin is inserted in a direction perpendicular to the shaft center, or a cylindrical screw is screwed in the opposite direction to the spool 40 to adjust the position of the stopper portion 47. It can also be configured.
  • the load control mechanism 4 engages the pin 27 and moves it so that the movable swash plate 10a of the hydraulic pump 10 is inclined. Control to reduce the plate angle.
  • the movable swash plate 10a is not further tilted, in other words, the swash plate angle is not further reduced.
  • the output torque from 10 is constant and constant at the minimum speed c.
  • This minimum speed c is in a region below the engine horsepower line A in FIG. 11 and is in a range where no engine stall occurs.
  • the load control mechanism 4 is controlled so as to be constant at the minimum speed c, so that the vehicle speed cannot be reduced more than necessary. Therefore, it is possible to secure the traction force to perform the work with the work implement, and to perform the hard work efficiently.
  • the load control mechanism 4 controls the traction force of the HST 1 when traveling at low speed in the vehicle speed range a to be approximately half of the traction force of the engine horsepower (see the engine horsepower line A in Fig. 11). .
  • loader work is mainly performed, so the traveling load is large and the load on the engine 15 is also large. Therefore, by controlling the traction force at low speeds to be approximately half of the traction force of the engine 15 (engine horsepower), the engine horsepower is given a margin in advance and used for running. In addition to this, engine stalls can be reliably prevented even when working with increased load torque.
  • the swash plate angle of the movable swash plate 11a of the hydraulic motor 11 is mainly controlled by the load control mechanism 104.
  • the load control mechanism 104 applies charge pressure to the cylinder 41 on one end side of the spool 140, and in the main oil passage 13 when overloaded.
  • the spool 140 is slid by the hydraulic pressure so that the movable swash plate 1 la of the hydraulic motor 11 is controlled to rotate to the deceleration side.
  • work machines are not used when the work vehicle is traveling on the road at a high speed, so that a large load is not applied to the engine 15 and the curve B approximates the engine horsepower line A. It can be controlled and the drive of the engine 15 can be output efficiently.
  • a space 142a is formed between the spool 140 and the pipe joint 143, and the discharge side of the hydraulic pump 50 is formed in the space 142a.
  • Charge pressure pressure oil
  • the spool 140 presses the spool 140 in the direction opposite to the direction in which the pin 144 presses the spool 140 (X direction).
  • the spool 140 is pressed in the direction in which the pin 144 is pushed into the pin hole 144a by this charge pressure.
  • the pin 144 presses the spool 140 and the force exceeds the charge pressure the pin 144 slides the spool 40 downward.
  • the load is reduced and the charge pressure exceeds the force of pressing the spool 140 of the pin 144, the spool 140 is pressed and slid upward, and the pin 144 is pushed into the pin hole 144a.
  • the load control mechanism 104 in the vehicle speed range b stakes the spool 140 through the pin 144 and slides it in the Y direction. Move. That is, the midway portion 27c is rotated to the low speed side to increase the capacity of the hydraulic motor to lower the hydraulic pressure of the main oil passage 13 and to increase the traction force. At this time, since the panel pressure of the panel 45 is added to the charge pressure in the space 42a on the hydraulic pressure pump side, the spool 40 is held on the high speed side without sliding.
  • the hydraulic pressure in the main oil passage 13 decreases, the spool 140 is pushed by the charge pressure, and the midway portion 27c is returned to the position set by the shift pedal.
  • the load control mechanism 4 ⁇ 104 described above can be provided only in the hydraulic pump 10, received only by the hydraulic motor 11, or can be provided in both the hydraulic pump 10 and the hydraulic motor 11. It can be selectively provided in consideration of the type of work, the type of vehicle, and the load.
  • the spool 40 ⁇ 140 of the load control mechanism 4 ⁇ 104 is pressed by the pins 44 ⁇ 144 that slide under the pressure oil from the main oil passage 13 and the other end of the spool 40 ⁇ 140.
  • the precision of control of the movable swash plate 10a ⁇ 1 la by the load control mechanism 4 ⁇ 104 is improved by sliding the spools 40 ⁇ 140 with high accuracy, and a compact configuration can be achieved.
  • Fig. 12 shows the relationship between the relief pressure curve C of the transmission and the engine horsepower line A.
  • HST1 limits the reverse capacity of the hydraulic pump 10 so that the corner horsepower d is slightly below the engine output, and the relief pressure curve C in the hydraulic motor control area during reverse travel C force without exceeding the engine horsepower line A It is comprised so that it may correspond substantially.
  • the point at which the speed control by the hydraulic pump 10 is switched to the speed control by the hydraulic motor 11 is If the horsepower is d, the load control mechanism 4 • 104 is not operated by the pressure oil from the main oil passage 13 during reverse travel, and if the hydraulic pressure in the main oil passage 13 exceeds the set pressure, the relief is performed. It is controlled to let you.
  • the movable swash plate 10a'11a is tilted by the load control mechanism 4 ⁇ 104 to automatically increase the vehicle speed.
  • the traction force is controlled so that the traction force is reduced to a low level. It is configured to prevent engine stalls without dropping. For the operator, when the vehicle is traveling backward, it is not necessary to perform an appropriate shifting operation in order to prevent engine stall. Further, even if the travel has stopped, it is possible to save the trouble of re-starting the engine 15 just by pushing the travel pedal (not shown) or the like again to start the travel.
  • HMT hydraulic / mechanical continuously variable transmission
  • the movable swash plate can be accurately controlled. Therefore, when a load is applied to the vehicle in a wide range of work vehicles, the movable swash plate is automatically tilted. Thus, the engine stall can be prevented and the operation during driving can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 油圧ポンプ及び/又は油圧モータの可動斜板の斜板角度を精度よく制御することを目的とする。少なくともいずれか一方を可変容積型とした油圧ポンプ10及び/又は油圧モータ11と、該油圧ポンプ10及び/又は油圧モータ11の可動斜板10a・11aの斜板角度を制御する油圧サーボ機構2とを一体的に構成し、変速操作レバー29の操作により可動斜板10a・11aを傾動させる油圧式無段変速装置1において、前記油圧サーボ機構2の可動斜板10a・11aを傾動させる変速駆動部材(ピン27)を減速側に摺動させるシリンダ41とスプール40等とからなるアクチュエーターと一体的に設け、該アクチュエーターに前記油圧ポンプ10と油圧モータ11とを接続する閉回路のメイン油路13の圧油を導き作動させる負荷制御機構4・104とした。

Description

明 細 書
油圧式無段変速装置
技術分野
[0001] 本発明は、油圧式無段変速装置に関し、より詳細には、油圧式無段変速装置を構 成する油圧ポンプ及び Z又は油圧モータの可動斜板の斜板角度を制御する技術に 関する。
背景技術
[0002] 従来から、油圧ポンプ及び油圧モータから構成される油圧式無段変速装置 (以下、 「HST」と略記)は、油圧サーボ機構によって油圧ポンプや油圧モータの可動斜板を 傾動制御して、可変容積型の油圧ポンプや油圧モータの容量調整を行うようにした 構成が公知となっている。この油圧サーボ機構の構成としては、油圧ポンプや HST に取り付けられた電磁弁によって、油圧ポンプの回転数の増加に比例して自動的に 可動斜板を傾動させる機構 (オートモーティブ制御)や、油圧ポンプの可動斜板を H STの外部に装着された変速操作レバーによって操作する機構 (マニュアルサーボ制 御)等が公知である。
[0003] 一方、上記 HSTには、エンジンの負荷が設定値以上の場合に作業車両の走行速 度を減速し、一方、エンジンの負荷が設定値以下の場合に走行速度を増速するよう に速度制御する機構 (負荷制御機構)を備えたものが公知となっている。具体的には 、作業負荷が所定値を超えな 、ように HST (油圧ポンプ)の可動斜板を減速側ヘシ フト等させて、エンストを防止するように構成されている。
[0004] このような油圧サーボ機構や負荷制御機構を備えた HSTにつ 、ては、例えば、特 許文献 1に記載されるような HSTが開示されて 、る。
力かる HSTは、可変容積型の油圧ポンプと、この油圧ポンプによる圧油で操作す る油圧モータを 2個備えるもので、これら 2個の油圧モータのうち少なくとも一方を可 変容積型の油圧モータに構成するとともに、これら 2個の油圧モータの各出力回転を 合流させて、単一の出力回転として取り出すための出力合流機構を設けたものであ る。そして、このように構成することで、可変容積型の油圧モータの出力回転を調節し て出力トルクをほぼ 2倍にでき、 HSTにおける最大トルクの増大を図るものである。
[0005] 上記特許文献 1に開示される HSTは、油圧ポンプにぉ 、て、可動斜板に連動する 変速シリンダを変速バルブによって切換えて、この可動斜板を傾動させる油圧サー ボ機構を備えるとともに、油圧モータの可動斜板が傾動可能に構成されている。そし て、このように構成することで、作業車両の泥濘地等での作業中において、エンジン への負荷トルクが増大した場合に、可変容積型に構成された一方の油圧モータの可 動斜板を傾動させて低速トルクを増大させ、作業車両の速度制御をすることができる 特許文献 1:特開 2004-11769号公報
[0006] なるほど、特許文献 1に記載される HSTの構成によれば、作業車両の走行時に、 一方の油圧モータの出力回転では作業車両がトルク不足となった場合に、メイン油 路の油圧が切換シリンダに給排されて、他方の油圧モータの可動斜板を自動的に傾 動させることができる。そして、このような負荷制御機構によって、トルク不足を解消し て、エンスト等を防止することができる。
[0007] しかし、上記特許文献 1に開示される HSTでは、上述の負荷制御機構は、一方を 可変容積型の油圧モータとして配設することで、他方の油圧モータのトルク不足を補 うことができるものの、可変容積型の油圧モータの可動斜板は切換えシリンダによつ て傾斜した状態と斜板角度が 0度の状態とに切り換えられるのみであり、力かる可動 斜板の斜板角度の制御の精度が悪ぐ中間角度での位置決め等はできない。また、 油圧モータをメイン油路中に少なくとも 2っ配設する必要があり構造が複雑であるとと もに、適用範囲が限定されてしまっていた。また、時間の経過に伴って、油圧ポンプ 等のクレイドルメタルが劣化して走行性能が変動してしまうため、負荷制御機構を構 成する各部材において、予め余裕をもった設定構造とする必要があった。さらに、か 力る負荷制御機構では、油圧モータ側の可動斜板を制御するものである力 これを 油圧ポンプ側の可動斜板の制御には適用することができない。
発明の開示
発明が解決しょうとする課題
[0008] 解決しょうとする課題は、油圧式無段変速装置に関し、負荷制御機能を備えた HS τにおいて、油圧ポンプ及び Ζ又は油圧モータの可動斜板の斜板角度を精度よく制 御することである。
課題を解決するための手段
[0009] 本発明の油圧式無段変速装置においては、少なくともいずれか一方を可変容積型 とした油圧ポンプ及び Ζ又は油圧モータと、該油圧ポンプ及び Ζ又は油圧モータの 可動斜板の斜板角度を制御する油圧サーボ機構とを一体的に構成し、変速操作レ バーの操作により該可動斜板を傾動させる油圧式無段変速装置において、前記油 圧サーボ機構の可動斜板を傾動させる変速駆動部材を減速側に摺動させるァクチ ユエ一ターを一体的に設け、前記油圧ポンプと油圧モータとを接続する閉回路のメイ ン油路の圧油を該ァクチユエ一ターに導き作動させる負荷制御機構としたものである
[0010] また、本発明の油圧式無段変速装置においては、前記油圧ポンプ側に構成される 負荷制御機構は、前記メイン油路の圧油が給排されるシリンダと、該シリンダに摺動 自在に内挿され、かつ、前記変速駆動部材と係合するスプールと、該スプールを一 側に付勢する弾性部材とからなり、該スプールは、他側に前記メイン油路が連通され
、負荷制御時には、前記弾性部材の付勢力に抗して前記変速駆動部材を係合しな 力 移動し、前記変速操作レバーによる傾動操作とは独立に前記可動斜板の斜板 角度を制御するものである。
[0011] また、本発明の油圧式無段変速装置においては、前記油圧モータ側に構成される 負荷制御機構は、前記メイン油路の圧油が給排されるシリンダと、該シリンダに摺動 自在に内挿され、かつ、前記変速駆動部材と係合するスプールとからなり、前記スプ ールは、他端側に前記メイン油路が連通され、一端側に前記メイン油路の圧油力に 対抗して該スプールを略一定に押圧する弾性部材又は油圧力を設け、前記メイン油 路内の油圧が略一定となるように、前記変速操作レバーによる傾動操作とは独立に 前記可動斜板の斜板角度を制御するものである。
[0012] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記メイ ン油路の油圧の増減に対して前記可動斜板の斜板角度の増減が反比例するように 制御するものである。 [0013] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記シリ ンダの内側壁にストツバ部を突設して、前記スプールの摺動位置を規制するものであ る。
[0014] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、低速走 行時の油圧式変速装置の牽引力がエンジン馬力の牽引力の略半分となるように前 記可動斜板の斜板角度を制御するものである。
[0015] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記シリ ンダに、前記油圧ポンプ用のスプール及び前記油圧モータ用スプールをそれぞれ 一体的に設けてなるものである。
[0016] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記スプ ールが内挿されるシリンダ孔の一端側に、メイン油路内の圧油を受けて前記スプー ルを押圧するピンを設けるとともに、シリンダ孔の他端側にチャージ圧を導入して、ピ ンによるスプールの押圧に対抗させるものである。
[0017] また、本発明の油圧式無段変速装置においては、前記油圧ポンプの後進側容量 を制限し、コーナ馬力をエンジン出力より少し下になるようにする事により、後進走行 時の油圧モータ制御領域のリリーフ圧曲線力 エンジン馬力線を超えることなく略一 致するように構成するものである。
発明の効果
[0018] すなわち、本発明の油圧式無段変速装置においては、油圧サーボ機構の可動斜 板を傾動させる変速駆動部材を減速側に摺動させるァクチユエ一ターを一体的に設 け、前記油圧ポンプと油圧モータとを接続する閉回路のメイン油路の圧油を該ァクチ ユエ一ターに導き作動させる負荷制御機構としたので、可動斜板を精度よく制御する ことができ、その結果、走行装置を駆動する油圧式無段変速装置のメイン油路にお いて、負荷がかかって油圧が増加すると、その油圧に応じてァクチユエ一ターが作動 して、可動斜板を減速側に回動し、走行速度を減速して牽引力を高めることができて 、エンストを防止できる。また、負荷が力かると自動的に可動斜板を傾動させてエンス トを防止できるので、走行運転の際の操作が簡易となる。また、油圧サーボ機構と中 立位置保持機構と負荷制御機構とを一体的に構成することが可能となり、コンパクト に制御機構を構成でき、組み立て等も容易に行うことができる。
[0019] また、本発明の油圧式無段変速装置においては、前記油圧ポンプ側に構成される 負荷制御機構は、前記メイン油路の圧油が給排されるシリンダと、該シリンダに摺動 自在に内挿され、かつ、前記変速駆動部材と係合するスプールと、該スプールを一 側に付勢する弾性部材とからなり、該スプールは、他側に前記メイン油路が連通され
、負荷制御時には、前記弾性部材の付勢力に抗して前記変速駆動部材を係合しな 力 移動し、前記変速操作レバーによる傾動操作とは独立に前記可動斜板の斜板 角度を制御するものとしたので、負荷制御機構によって、スプールを摺動させるととも に、スプールをピンと係合させて弾性部材の付勢力に抗して該ピンを移動させるよう に構成しているため、可動斜板を精度よく制御することができる。また、弾性部材を内 挿することで、シリンダ等力もなる負荷制御機構を小型化でき、さらに部品点数を低 減できる。
[0020] また、本発明の油圧式無段変速装置においては、前記油圧モータ側に構成される 負荷制御機構は、前記メイン油路の圧油が給排されるシリンダと、該シリンダに摺動 自在に内挿され、かつ、前記変速駆動部材と係合するスプールとからなり、前記スプ ールは、他端側に前記メイン油路が連通され、一端側に前記メイン油路の圧油力に 対抗して該スプールを略一定に押圧する弾性部材又は油圧力を設け、前記メイン油 路内の油圧が略一定となるように、前記変速操作レバーによる傾動操作とは独立に 前記可動斜板の斜板角度を制御するものとしたので、油圧モータの可動斜板を精度 よく細力べ傾動させることができ、効率よく最大出力を生起できる。また、油圧モータ制 御領域で、容易にエンジン馬力線に近似させることができる。
[0021] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記メイ ン油路の油圧の増減に対して前記可動斜板の斜板角度の増減が反比例するように 制御するものとしたので、特に低速走行時のエンストを効果的に防止することができ る。
[0022] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記シリ ンダの内側壁にストツバ部を突設して、前記スプールの摺動位置を規制するものとし たので、作業機による作業を行うための最低速度を確保して、力かる作業を効率よく 行うことができ、また、ストツバ部は内側壁に一体的に構成できるため、安価に容易に 構成することができる。
[0023] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、低速走 行時の油圧式変速装置の牽引力がエンジン馬力の牽引力の略半分となるように前 記可動斜板の斜板角度を制御するものとしたので、予めエンジン馬力に対して牽引 力に余裕を持たせて、負荷トルクが大きくなる作業を行う際であってもエンストを確実 に防止できる。
[0024] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記シリ ンダに、前記油圧ポンプ用のスプール及び前記油圧モータ用スプールをそれぞれ 一体的に設けてなるものとしたので、シリンダを着脱することで複数の負荷制御機構 を一度に着脱できるため、着脱させる際の作業性が向上するとともに、負荷制御機構 のメンテナンスが容易となる。
[0025] また、本発明の油圧式無段変速装置においては、前記負荷制御機構は、前記スプ ールが内挿されるシリンダ孔の一端側に、メイン油路内の圧油を受けて前記スプー ルを押圧するピンを設けるとともに、シリンダ孔の他端側にチャージ圧を導入して、ピ ンによるスプールの押圧に対抗させるものとしたので、油圧式無段変速装置に必要 なチャージ圧を利用することができて、簡易な構成によって自動制御が可能となり、 弾性部材を小さく構成することができ、安価な付勢手段を得ることができる。また、ス プールを精度よく摺動させて、ひ 、ては負荷制御機構による可動斜板の制御の精度 が向上する。さらに、各負荷制御機構を略同じ部材で構成して製造工程を簡素化で きる。
[0026] また、本発明の油圧式無段変速装置にお!/、ては、前記油圧ポンプの後進側容量 を制限し、コーナ馬力をエンジン出力より少し下になるようにする事により、後進走行 時の油圧モータ制御領域のリリーフ圧曲線力 エンジン馬力線を超えることなく略一 致するように構成したので、負荷の小さな後進側に採用することにより、低コストで走 行性能を落とすことなぐエンストを防止できる。
図面の簡単な説明
[0027] [図 1]図 1は本発明に係る油圧式無段変速装置の全体的な構成を示した正面一部断 面図である。
[図 2]図 2は中立位置保持機構を示す正面断面図である。
[図 3]図 3は同じく平面断面図である。
[図 4]図 4は同じく一側面図である。
[図 5]図 5は同じく他側面図である。
[図 6]図 6は油圧ポンプ用の負荷制御機構を示す正面断面図である。
[図 7]図 7は油圧式無段変速装置の油圧回路図である。
[図 8]図 8は油圧モータ用の負荷制御機構を示す正面断面図である。
[図 9]図 9は負荷制御機構による制御機構の一例を表した状態図である。
[図 10]図 10はエンジン馬力線図である。
[図 11]図 11は車速に対する牽引力の関係を表した図である。
[図 12]図 12はリリーフ圧とエンジン馬力線との関係を表した図である。 符号の説明
1 油圧式無段変速装置 (HST)
2 油圧サーボ機構
3 中立位置保持機構
4、 104 負荷制御機構
10 油圧ポンプ
10a 可動斜板
11 油圧モータ
11a 可動斜板
12 ハウジング
13 メイン油路
27 ピン (変速駆動部材)
28 捩じりパネ (弾性部材)
29 変速操作レバー
40 スプーノレ
41 シリンダ 発明を実施するための最良の形態
[0029] 次に、発明の実施の形態を説明する。
本実施例に係る油圧式無段変速装置 (以下、「HST」と略記) 1は、トラクタ等の農 作業用の作業車両に用いることができ、以下、本実施例においては、作業機として口 ーダ作業機を備えた作業車両に搭載される場合について説明する。
[0030] まず、本発明に係る油圧式無段変速装置の全体構成について、以下に説明する。
図 1に示すように、 HST1においては、いずれも可変容積型に構成した油圧ポンプ 10及び油圧モータ 11をハウジング 12に内包するとともに、ハウジング 12には、その 他に、油圧ポンプ 10及び油圧モータ 11の可動斜板 10a' 11aの斜板角度を調整し て、各油圧ポンプ 10及び油圧モータ 11の出力回転を制御する機構としての油圧サ ーボ機構 2 · 2、中立位置保持機構 3 (最大斜板位置保持機構 103)及び負荷制御機 構 4· 104等が設けられている。そして、油圧サーボ機構 2· 2、中立位置保持機構 3 ( 最大斜板位置保持機構 103)及び負荷制御機構 4· 104等は、それぞれ油圧ポンプ 10及び油圧モータ 11に対して一対ずつ設けられて!/、る。
[0031] 以下、特に断りのない場合には、油圧ポンプ 10側の油圧サーボ機構 2及び中立位 置保持機構 3等について説明する。すなわち、本実施例においては、油圧ポンプ 10 及び油圧モータ 11に配置されるこれらの構成 (油圧サーボ機構 2 · 2、中立位置保持 機構 3 (最大斜板位置保持機構 103) )は互いに異なることがなぐ略同一の構成であ る。
[0032] 本実施例においては、後述する理由から、油圧ポンプ 10及び油圧モータ 11をい ずれも可変容積型に構成するのが好ましいが、少なくとも一方を可変容積型に構成 して、他方を固定容積型に構成してもよい。例えば、油圧ポンプ 10を可変容積型に 構成して油圧モータ 11を固定容積型に構成したり、油圧モータ 11を可変容積型に 構成して油圧ポンプ 10を固定容積型に構成したりしてもよい。本実施例においては 、特に断りがない場合には、油圧ポンプ 10及び油圧モータ 11を可変容積型に構成 した場合について説明する力 本実施例はこれに限定されないことは、以上のことか らいうまでもない。
[0033] ここで、図 7に示すように、可変容積型の油圧ポンプ 10は、駆動軸 57、シリンダブ口 ック(図略)、プランジャ(図略)及びプランジャに当接した可動斜板 10a等により構成 されて 、る。可動斜板 10aはプランジャの頭部が当接または係合されて摺動量が変 更され、油圧ポンプ 10の作動油の吐出量を調節可能に構成されている。可変容積 型の油圧モータ 11は、可変容積型の油圧ポンプ 10と同様に、シリンダブロック(図略 )、プランジャ(図略)及びプランジャに当接した可動斜板 1 laにより構成されて 、る。 可動斜板 11aはプランジャの頭部が当接または係合されて摺動量が変更され、油圧 モータ 11への圧油の吸入量を調節可能に構成されている。油圧ポンプ 10及び油圧 モータ 11は図示せぬ油路板の同一面に略平行に並設され、メイン油路 13を介して 油圧ポンプ 10より圧油が油圧モータ 11に供給される。
このような構成により、エンジン 15からの駆動力が駆動軸 57に入力されて、油圧ポ ンプ 10が駆動される。そして、油圧ポンプ 10及び油圧モータ 11は、油圧ポンプ 10の 駆動力により吐出された圧油が油圧モータ 11に供給されて、この圧油の給排により 油圧モータ 11が駆動され、油圧モータ 11の駆動力が出力軸 59に伝達される。
[0034] 次に、油圧サーボ機構 2について、以下に説明する。
図 1に示すように、 HST1は、油圧ポンプ 10と油圧モータ 11とが上下(左右であつ てもよい)に並設され、油圧ポンプ 10の一側方には油圧ポンプ 10用の油圧サーボ機 構 2が配設され、油圧モータ 11の一側方であって油圧サーボ機構 2の下方に同じく 油圧モータ 11用の油圧サーボ機構 2が配設されている。油圧サーボ機構 2は、ピスト ン 21と、該ピストン 21の内部に配置されるスプール 22を備えた手動斜板角度制御バ ルブ 23等と力も構成されるもので、 HST1のハウジング 12内部に収納されて、それ ぞれ一体的に構成されて 、る。
[0035] 油圧サーボ機構 2は、手動斜板角度制御バルブ 23を備えるもので、具体的には、 ハウジング 12内であって油圧ポンプ 10の可動斜板 10aの側部にシリンダ室 24が形 成され、シリンダ室 24内にピストン 21が収納され、ピストン 21の側面に可動斜板 10a の側部より突設したピン軸 25が嵌合されている。ピストン 21の軸心位置には貫通孔 が開口され、この貫通孔内にスプール 22が摺動自在に嵌装されて 、る。
[0036] ピストン 21は、シリンダ室 24の上部と下部を連通する油路が形成され、スプール 22 が摺動することによって、油路が連通又は遮断されてピストン 21の上下の油室に圧 油が送油され、ピストン 21が上下方向に摺動するように構成されている。スプール 22 の下部外周には嵌合溝 26が設けられ、嵌合溝 26にスプール 22の変速駆動部材と してのピン 27の一端部 27aが嵌合されている。ピン 27の他端部 27bは、後述する中 立位置保持機構 3等を構成する捩じりパネ 28により挟持されている。ピン 27の一端 部 27aは、ハウジング 12及びピストン 21側面に開口した開口 12a及び開口 21aから ハウジング 12内部に挿入して、上述したように嵌合溝 26に嵌合して 、る。
[0037] ピン 27と連動連結された油圧サーボ機構 2の変速操作レバー 29を回動操作するこ とにより、捩じりパネ 28の付勢力に抗してピン 27が上下方向(図 1において上下方向 )に移動し、これに伴ってスプール 22が上下方向に移動するように構成されている。 このように手動斜板角度制御バルブ 23のスプール 22を摺動操作して油路を変更し てピストン 21を摺動させることで、可動斜板 10aを傾動させて、 HST1を変速するよう にしている。
[0038] 次に、中立位置保持機構 3等について、以下に詳述する。
図 2乃至図 5に示すように、中立位置保持機構 3は、油圧サーボ機構 2の変速操作 レバー 29部分に設けられ、油圧ポンプ 10の可動斜板 10aの中立位置を保持するよ うに構成されている。中立位置保持機構 3は、ケーシング 30に内設され、デテントロッ ド 31力 ケーシング 30内の空間 30aに長手方向(図 2において上下方向)へ摺動自 在に設けられている。デテントロッド 31は、その一端をケーシング 30の支持凹部 30b 及びケーシング 30に螺装されるキャップ 32により支持されて!、る。
[0039] デテントロッド 31のキャップ 32側端部には、キャップ 32に螺装されたアジャストボル ト 33がー体的に形成されている。そして、デテントロッド 31は、アジャストボルト 33を 回転させることで長手方向へ摺動可能に構成されており、通常はロックナット 34によ り位置固定されている。デテントロッド 31の略中央部には、固定部 31aが形成され、 前記ピン 27の他端部 27bが、ケーシング 30の空間 30a内に固定部 31aと位置を合 わせて挿入されている。ピン 27の他端部 27bの径と、固定部 3 laの幅(デテントロッド 31の軸心方向の長さ)とは、略同一に構成されている。
[0040] ケーシング 30の空間 30a内においては、デテントロッド 31の固定部 31aの両側に、 パネ受け 35 · 35がデテントロッド 31の軸心方向へ摺動自在に設けられている。パネ 受け 35 · 35は、ケーシング 30とパネ受け 35との間に介装されるパネ 36、及びキヤッ プ 32とパネ受け 35との間に介装されるパネ 36により固定部 31a方向へ付勢されてい る。パネ受け 35 · 35により、デテントロッド 31の固定部 31a及びピン 27の他端部 27b 力 共に両側から挟みこまれる構成となっている。
[0041] 変速操作レバー 29は、ケーシング 30により回動軸 37を中心に回動自在に支持さ れており、回動軸 37の外周部には、捩じりパネ 28が回動自在に外嵌され、捩じりバ ネ 28によりピン 27の他端部 27bが挟持されている。また、回動軸 37には、この回動 軸 37と一体的に回動する連動アーム 39が固設されており、連動アーム 39は、捩じり パネ 28により挟持されている。
[0042] 変速操作レバー 29を回動操作すると、回動軸 37に固設される連動アーム 39及び 連動アーム 39を挟持する捩じりパネ 28がー体的に回動され、さらに、捩じりパネ 28 に挟持されるピン 27が、捩じりパネ 28と一体的に回動される。すなわち、変速操作レ バー 29を回動操作すると、ピン 27が連動アーム 39及び捩じりパネ 28を介して一体 的に回動されて、前記スプール 22を摺動操作するように構成されている。このように して、変速操作レバー 29、回動軸 37、連動アーム 39及び捩じりパネ 28等により変速 操作レバー部が構成されて 、る。
[0043] また、変速操作レバー 29が回動操作されて 、な 、状態では、ピン 27の他端部 27b がデテントロッド 31の固定部 31aと共にパネ受け 35 · 35により挟み込まれているので 、ピン 27は、固定部 3 laの位置でその回動位置を保持される。そして、本実施例に おける HST1においては、変速操作レバー 29に操作力が力かっておらず、ピン 27が 一端部 27aの位置でパネ受け 35 · 35により保持されている状態では、油圧ポンプ 10 の可動斜板 10aが中立位置に位置するように調節されている。このように、中立位置 保持機構 3は、デテントロッド 31、パネ 36 · 36及びパネ受け 35 · 35によって、ピン 27 及び油圧サーボ機構 2を通じて、 HST1の油圧ポンプ 10の可動斜板 10aを、中立位 置に保持するように構成されて 、る。
[0044] また、中立位置保持機構 3を、油圧サーボ機構 2のスプール 22を駆動するスプー ル駆動部としてのピン 27と同一幅を有した固定部 31aをデテントロッド 31に形成し、 固定部 31aとピン 27との両方を、パネ 36により付勢されるパネ受け 35 · 35にて両側 から挟み込んで中立位置を保持する構成としたので、中立位置保持機構 3の構成を 簡素化するとともに小型化することができ、可動斜板 10aの中立位置の調整も容易と なる。さらに、パネ 36 · 36の付勢力を止め輪等の付加部材により受けることが不要と なるだけでなぐ止め輪が外れる等の故障を防止でき、耐久性及び中立位置保持の 精度を向上できる。
[0045] 中立位置保持機構 3は、前記油圧サーボ機構 2を介して該可動斜板 10aと連動連 結するピン 27を捩じりパネ 28等により付勢支持して、該可動斜板 10aの中立位置を 保持するように構成されている。そして。スプール 22を摺動させるピン 27の中途部に 、連動アーム 39及び捩じりパネ 28を介して変速操作レバー 29の回動軸 37を係合し て、変速操作レバー 29の回動操作によりピン 27がー体的に操作されるように構成さ れ、力かる係合部の一側に延出するピン 27の一端部 27aにてスプール 22を駆動し、 係合部の他側に延出するピン 27の他端部 27bにてテデントロッド 31に係合して中立 位置を位置決めするように構成されて ヽる。
[0046] また、ピン 27は、中途部 27cより一端部 27a側を支持アーム 61によって回動自在に 支持されている。このように、スプール 22と中立位置保持機構 3との間を直線状に最 短距離で結ぶピン 27の途中部を支持するため、中立保持の位置精度やスプール 22 の制御の精度を向上でき、中立位置保持機構 3やスプール 22の制御機構を小型化 できる。
[0047] 次に、中立位置保持機構 3における中立位置調整機構について、以下に説明する 図 2に示すように、デテントロッド 31は、キャップ 32に螺装されるアジャストボルト 33 を回転させることにより、軸心方向へ移動することができる。そして、固定部 31aの位 置でピン 27が保持された状態で、可動斜板 10aが中立位置力もずれている場合に、 アジャストボルト 33を回転してデテントロッド 31の固定部 31aの位置を調節し、固定 部 31aの位置でピン 27が保持された状態で、可動斜板 10aが中立位置に位置する ように調整することが可能である。
[0048] このように、中立位置保持機構 3は、中立位置の微調整を行うアジャスト機構(中立 位置調整機構)を具備し、このアジャスト機構は、外部に突出するアジャストボルト 33 を回転操作することにより、可動斜板 10aの中立位置調整を行うように構成して 、る ので、中立位置保持機構 3を分解したりすることなぐ外部から操作可能となり、かか る中立位置の調整作業が容易となる。
[0049] なお、デテントロッド 31は、その両端をケーシング 30の支持凹部 30b及びキャップ 3 2により支持される両持ち構造として構成することで、デテントロッド 31の支持強度を 向上させ及び中立位置保持機構 3等の精度を向上することができる。また、デテント ロッド 31は、例えばキャップ 32のみにより支持する片持ち構造に構成することで、ケ 一シング 30の支持凹部 30bの加工が不用となり、ケーシング 30の肉厚を薄く形成で きるため、製造コストを低減することができる。
[0050] 次に、中立位置保持機構 3における回転制限機構について、以下に説明する。
図 2乃至図 5に示すように、ケーシング 30内には、可動斜板 10aの最大回動角を規 制する回転制限機構が構成されている。すなわち、デテントロッド 31における固定部 31aの両端部側には、段差部 31b ' 31bが形成されており、デテントロッド 31の軸心 方向に摺動するパネ受け 35 · 35が、段差部 31b · 31bに係止するように構成されて いる。変速操作レバー 29の回動操作によりピン 27が回動されると、ピン 27が回動さ れる方向のパネ受け 35が、パネ 36の付勢力に抗してピン 27と共にデテントロッド 31 の端部側方向へ摺動する。パネ受け 35がー定量摺動すると、やがて段差部 31bに 係止して、該バネ受け 35及びピン 27は、それ以上端部側方向へ移動できなくなる。
[0051] このように、中立位置保持機構 3は、デテントロッド 31に形成した段差部 31bにより ピン 27の回動量を制限し、これにより可動斜板 10aの最大回動角を規制するように 構成されているので、可動斜板 10aの中立位置力もの最大回動角を精度良く正確に 設定することができるとともに、耐久性が向上して長期間高精度を保つことができる。 さらに、デテントロッド 31の固定部 31aと段差部 31b ' 31bとの間のストロークの調整を 、デテントロッド 31を加工する際の機械的な加工精度により決定することで、デテント ロッド 31をケーシング 30に組み込んだ後は、この回転制限機構の調整を行う必要が なくなり、例えば、出荷時における調整工程を省くことができる。
[0052] 次に、中立位置保持機構 3におけるオーバーストローク機構について、以下に説明 する。 図 2乃至図 5に示すように、ケーシング 30内には、回転制限機構により制限される ピン 27の回動量以上に変速操作レバー 29が回動操作された場合に、変速操作レバ 一 29の回動操作を吸収するオーバーストローク機構が構成されて 、る。上述のよう に、ピン 27は、変速操作レバー 29の回動操作により連動アーム 39及び捩じりパネ 2 8を介して一体的に回動される。そして、このピン 27がー定量回動されて、前記回転 制限機構により回動を制限されてそれ以上回動できなくなると、捩じりパネ 28に挟持 されて変速操作レバー 29と一体的に回動する連動アーム 39が、捩じりパネ 28の付 勢力に抗してこれを広げながら回動する。
[0053] このように、オーバーストローク機構は、ピン 27が回転制限機構により回動を制限さ れた後は、連動アーム 39のみが捩じりパネ 28を広げながら回動して、変速操作レバ 一 29の回動操作力が、ピン 27に直接力からないように構成している。このように構成 することで、変速操作レバー 29が過剰に回動操作された場合でも、ピン 27 ·バネ受 け 35 ·デテントロッド 31等に無理な力が力かって、これらの部材ゃ油圧サーボ機構 2 が破損したり、中立位置保持機構 3の調整が狂ったりするのを防止できる。
[0054] 以上のように構成した中立位置保持機構 3等を内装するケーシング 30は、 HST1 のハウジング 12に、後述する負荷制御機構 4のシリンダ 41を介して装着されている。 そのため、ケーシング 30に内装される中立位置保持機構 3、回転制限機構及びケー シング 30のハウジング 12への装着面側に配置されるオーバーストローク機構は、ケ 一シング 30を負荷制御機構 4のシリンダ 41を介してハウジング 12に装着することで、 該ハウジング 12とケーシング 30とによって内包することができる。そのため、各機構 の構成部材に泥やごみ等の異物が付着することがなぐ動作不良が発生したり、外 部からの衝撃により各調節が狂ったりすることを防止することができる。また、各機構 を小型に構成することができるとともに、コスト低減を図ることが可能となる。
[0055] さらに、本実施例に係る HST1において、前記固定部 31aを、デテントロッド 31に一 体的に形成するだけでなぐケーシング 30に一体的に形成して、低コスト化を図るこ ともでき、固定部 31aを別体に形成して、デテントロッド 31ゃケーシング 30に取り付け てもよい。ピン 27及び固定部 31aを両側から挟み込むパネ受け 35 · 35は、外周部を 強固なブロック材にて構成されるケーシング 30によりガイドされているので、ピン 27を 精度よく位置決めすることができる。
[0056] なお、油圧モータ 11側には、最大斜板位置保持機構 103が構成され (図 1参照)、 この最大斜板位置保持機構 103によって、油圧モータ 11の可動斜板 11aを常時最 大斜板位置で保持するように構成される。最大斜板位置保持機構 103は、前記中立 位置保持機構 3と略同様に構成される。また、最大斜板位置保持機構 103には、 0度 位置調整機構が構成され、可動斜板 11aが 0度位置からずれている場合に、アジャ ストボルト 33を回転して可動斜板 1 laが 0度位置に位置するように調整することが可 能である。
[0057] 次に、負荷制御機構 4· 104の構成について、以下に説明する。
図 1及び図 6に示すように、本実施例における負荷制御機構 4は、スプール 40をシ リンダ 41に摺動自在に内挿し、 HST1のメイン油路 13からシリンダ 41に供給される 圧油によってスプール 40が押動され、油圧サーボ機構 2等による油圧ポンプ 10の可 動斜板 10aの制御とは独立に可動斜板 10aの斜板角度の制御を行うものである。こ の負荷制御機構 4は、シリンダ 41、スプール 40等力もなり、該シリンダ 41は、 HST1 のハウジング 12の一側に配設され、油圧サーボ機構 2と中立位置保持機構 3との間 に位置するように構成されて 、る。
[0058] シリンダ 41は、 HST1のハウジング 12の略平面である側壁面に沿って長状に形成 され、このシリンダ 41の上方に開口したシリンダ孔 42が穿設され、このシリンダ孔 42 に略円柱状のスプール 40が摺動自在に内挿されて 、る。シリンダ孔 42の開口端に は、 HST1のメイン油路 13と給排油路 14を介して接続される管継部 43が螺着され、 給排油路 14 (管継部 43)を介してメイン油路 13内の圧油がシリンダ 41内に給排され る。シリンダ 41の上下中途部には、左右方向に開口された開口部 41bが貫設されて いる。
[0059] ここで、図 7に示す油圧回路図を参照すると、メイン油路 13に作動油を供給する油 圧ポンプ(チャージポンプ) 50は、エンジン 15からポンプ軸 51を介して駆動されて、 オイルタンク 52から油を吸入する。この油圧ポンプ 50の吐出口には油路 53が接続さ れ、油路 53は逆止弁 54a' 54a付きのリリーフ弁 54· 54を介して HST1内部に施設さ れたメイン油路 13に接続される。なお、油路 53の中途部には調整弁 55が配設され る。このメイン油路 13は油圧ポンプ 10と油圧モータ 11の間で閉回路を構成し、前記 給排油路 14は油圧モータ 11を前進回転させるときに高圧となる側の油路に接続さ れる。このようにして油圧ポンプ 50からの油は、油路 53を介して低圧側の油路の油 圧が調整弁 55で規定する油圧よりも低くなるとメイン油路 13に供給され、高い場合 は調整弁 55によって HST1のハウジング 12内の油溜り 56にドレンされて、メイン油 路 13に供給される油の流量が調整される。
[0060] 可変容積型の油圧ポンプ 10は、油圧ポンプ 50から駆動軸 57を介してエンジン 15 力 の駆動が伝達され、力かる駆動力によって前記シリンダブロック等が回転駆動さ れる。この油圧ポンプ 10は、メイン油路 13を介して同じく可変容積型の油圧モータ 1 1と流体的に接続され、油圧ポンプ 10から吐出された圧油が油圧モータ 11に給排さ れる。この油圧ポンプ 10の可動斜板 10aは、上述のように油圧サーボ機構 2、中立位 置保持機構 3及び負荷制御機構 4等によって、その斜板角度が制御されている。油 圧サーボ機構 2等には、メイン油路 13から油路 58を介して圧油が給排されており、 最終的には HST1内の前記油溜り 56に排出される。負荷制御機構 4は、メイン油路 13から給排油路 14を介して圧油を給排され、力かる圧油を受けてシリンダ 41に内挿 されたスプール 40が摺動される。
[0061] また、油圧モータ 11の可動斜板 11aを傾動制御するための手段として、油圧ボン プ 10と同様に油圧サーボ機構 2や負荷制御機構 104等が接続されている。油圧モ ータ 11は、メイン油路 13を介して油圧ポンプ 10と流体的に接続され、油圧ポンプ 10 より吐出された圧油によってシリンダブロック等が回転駆動されて出力軸 59が回転駆 動する。この出力軸 59の回転駆動は、図示せぬ車軸駆動用の走行軸や作業機の駆 動用の駆動軸等に伝達される。この油圧モータ 11の構成等に関しては、後述する。
[0062] まず、油圧ポンプ 10用の負荷制御機構 4の構成について、以下に詳述する。
図 6に示すように、管継部 43は、シリンダ孔 42の内側面と油密的に密着して螺着さ れている。管継部 43の内部には油給排ポート 43aが設けられ、この油給排ポート 43a に、給排油路 14を介して HST1のメイン油路 13から圧油が導かれて、油圧を検知で きるようにしている。管継部 43には、シリンダ孔 42の内面側に開口したピン孔 43bが 穿設され、ピン孔 43bの内側壁にピン 44が密着して摺動自在に挿入され、ピン 44の 一端部がスプール 40の側面に当接している。また、ピン孔 43bは、オリフィス 43cを 介して管継部 43の内部に設けられた油給排ポート 43aに接続されている。油給排ポ ート 43a内の圧油は、オリフィス 43cを介してピン孔 43b内に充填され、メイン油路 13 内の油圧に応じてピン 44が摺動されるようにしている。例えば、メイン油路 13の油圧 が高くなるとピン孔 43bからピン 44が押し出され、該ピン 44がピン孔 43bから押し出さ れると、スプール 40はピン 44に押圧されて下方向に摺動される。
[0063] スプール 40は、長手方向の略中央部に長穴状の貫通孔 40bが貫設され、貫通孔 4 Obに前記ピン 27の一端部 27aが揷通される。この貫通孔 40bは、シリンダ 41のシリン ダ孔 42にスプール 40を内挿した状態で、前記シリンダ 41の開口部 41bに連通して いる。このようにシリンダ 41は、ハウジング 12及びケーシング 30の間に介設されるた め、シリンダ 41等の一方がハウジング 12及びピストン 21側面に開口した開口 12a' 開口 21aに連通し、他方がケーシング 30の側面に開口した開口部 30cと連通するよ うに構成されている。前記ピン 27は、この貫通孔 40b等を介して負荷制御機構 4 (シリ ンダ 41、スプール 40等)を短手方向に貫通している。
[0064] スプール 40は、貫通孔 40bの開口縁部に切り欠き部 40aが形成され、この切り欠き 部 40aがピン 27の中途部 27cに当接される。該中途部 27cはピン 27よりも半径方向 に大きく形成されている。スプール 40の貫通孔 40bは、ピン 27の軸半径よりも大きく 開口されているため、該ピン 27がシリンダ 41の長手方向に沿って略平行に移動して も、ピン 27が貫通孔 40bの側壁に当接することはないが、切り欠き部 40aがピン 27の 中途部 27cに当接して、スプール 40とピン 27とが一体的に摺動するように構成され ている。
[0065] 次に、油圧モータ 11用の負荷制御機構 104の構成について、以下に説明する。
図 1及び図 8に示すように、油圧モータ 11用の油圧サーボ機構 2、最大斜板位置保 持機構 103等は、油圧ポンプ 10用の油圧サーボ機構 2、最大斜板位置保持機構 10 3と略同一に構成されている。そして、本実施例における油圧モータ 11は、可変容積 型に構成され、油圧サーボ機構 2によって可動斜板 11aの斜板角度が制御されるとと もに、油圧サーボ機構 2を介して、可動斜板 11aと連動連結するピン 27を捩じりパネ 28等により支持して可動斜板 1 laの最大斜板位置を保持するように構成されて 、る ( 最大斜板位置保持機構 103)。
[0066] 油圧モータ 11用の負荷制御機構 104は、シリンダ 41に配設されており、特に、本 実施例におけるシリンダ 41には、前記ハウジング 12に並列に配置された油圧ポンプ 10及び油圧モータ 11のそれぞれに対応する油圧ポンプ 10用の負荷制御機構 4及 び油圧モータ 11用の負荷制御機構 104がー体的に内設されている。すなわち、シリ ンダ 41には、油圧ポンプ 10用の負荷制御機構 4を構成するスプール 40等が設けら れるとともに、油圧モータ 11用の負荷制御機構 104を構成するスプール 140等が一 体的に設けられている。
[0067] 負荷制御機構 4 · 104を HST1の側壁に一体として設けることで、シリンダ 41を着脱 すれば各負荷制御機構 4 · 104を一度に着脱でき、負荷制御機構 4 · 104のメンテナ ンスが容易となって、作業性が向上する。また、各負荷制御機構 4 · 104は略同じよう に構成されるため、部品の種類を減少して、製造工程を簡素化できる。ただし、負荷 制御機構としては、それぞれ油圧ポンプ 10用の負荷制御機構 4のみ、もしくは油圧 モータ 11用の負荷制御機構 104のみをそれぞれ単独で配設するようにしてもょ 、。 力かる場合であっても、後述するように各可動斜板の制御が容易となるため好ましい 力 である。
[0068] 負荷制御機構 104は、シリンダ 41の下方に開口したシリンダ孔 142が上下方向に 穿設され、開放端部に管継部 143が嵌設され、該管継部 143は継手 148、配管(油 路 18)を介して油圧ポンプ 50の吐出側と接続されている。このシリンダ孔 142には、 略円柱状のスプール 140が摺動自在に内挿される。スプール 40がシリンダ孔 142に 挿入された状態で、シリンダ孔 142の奥部に内シリンダ 145が相対位置変動不能に 固定され、該内シリンダ 145にピン孔 144aが穿設され、ピン孔 144aにピン 144がピ ン孔 144aの内側壁に密着して挿入され、ピン 144の一端部がスプール 140の下側 面に当接している。
[0069] ピン孔 144aには、ピン 144の他端部との間に油溜り 146が形成されており、油溜り 146にメイン油路 13が連通される。ただし、本実施例ではシリンダ 41を共用している ため、油溜り 146に前記油圧ポンプ 10用の負荷制御機構 4を介してメイン油路 13と 連通される(図 7参照)。すなわち、負荷制御機構 4において、前記管継部 43の外周 面とシリンダ孔 42の内周面との間に油溜り 46が形成され、油溜り 146に接続された 給排管 17と油孔 43dを介して油給排ポート 43aに接続される。
[0070] スプール 140は、長手方向の略中央部に長穴状の貫通孔 140bが貫設されており 、貫通孔 40bは、シリンダ孔 142にスプール 140を内挿した状態で、シリンダ 41の左 右方向に貫通された開口部 41bと連通されている。上述したように、シリンダ 41はハ ウジング 12及びケーシング 30の間に介設されていることから、油圧サーボ機構 2を介 して油圧モータ 11の可動斜板 1 laと連動連結するピン 27が、貫通孔 140b等を介し て負荷制御機構 104 (シリンダ 41、スプール 140等)を短手方向に貫通している。
[0071] スプール 140には、貫通孔 140bの開口縁部に切り欠き部 140aが形成され、切り 欠き部 140aは、ピン 27に設けられた中途部 27cと当接するように構成されている。な お、油圧モータ 11用の負荷制御機構 104は、可動斜板 11aの斜板角度が最大に傾 動された状態で切り欠き部 140aに中途部 27cが当接して通常位置とされている。こ のように構成することで、負荷制御機構 104によって油圧モータ 11の可動斜板 1 la の斜板角度が小さくなる方向に傾動制御するとともに、かかる斜板角度を制御してト ルクを制御ができる。詳細は、後述する。
[0072] 以上のように構成される HST1は、エンジン 15に負荷トルクが生じた場合には、 HS Tの油圧ポンプ 10及び油圧モータ 11の可動斜板 10a ' 11aの斜板角度を、変速操 作レバー 29による制御とは別に負荷制御機構 4 · 104によって制御して、エンジン 15 のエンストを防止するように構成されて 、る。
[0073] 次に、負荷制御機構 4 · 104による制御を、以下に説明する。
油圧ポンプ 10用の負荷制御機構 4は、上述のように、メイン油路 13内の圧油が給 排されるシリンダ 41と、このシリンダ 41に摺動自在に内挿され、かつピン 27と係合す るスプール 40とで構成される。そして、該スプール 40力 負荷によるシリンダ 41 (油 給排ポート 43a)内の圧油の上昇によってピン 44を介して押圧されることで、前記捩 じりパネ 28の付勢力に抗してピン 27を係合しながら移動させ、上述した油圧サーボ 機構 2等による傾動操作とは独立に、可動斜板 10aの斜板角度が制御される。
[0074] 図 9を参照して、通常、ピン 44はパネ 45の付勢力よりスプール 40を介してピン孔 4 3bに押し込まれた状態で位置決めされて 、る(図 9 (a)参照)。 HST1を載置した作 業車両を走行させる際に、変速操作レバー 29が図示せぬリンク機構を介して回動操 作されると、ピン 27が変速操作レバー 29と一体的に移動され、ピン 27がシリンダ 41 の開口部 41bおよびスプール 40の貫通孔 40bを略平行に移動し、油圧サーボ機構 2のスプール 22がピン 27と連動して摺動され、スプール 22の摺動により油路が切り 換えられてピストン 21が摺動され、該ピストン 21に係合する油圧ポンプ 10の可動斜 板 10aが傾動される(図 9 (b)参照)。本実施例では、停止した作業車両を前進走行 させるために変速操作レバー 29が回動された場合は、ピン 27は上方向に移動され、 これに連動して可動斜板 10aが徐々〖こ傾動されて、斜板角度が大きくなるように制御 される。この可動斜板 10aの傾動操作は、前記油圧サーボ機構 2や中立位置保持機 構 3等によって制御される。
[0075] このような状態で、走行部に負荷力 Sかかると、 HST1内のメイン油路 13の高圧 (前 進)側の油圧が上昇し、すなわち油給排ポート 43a内の油圧が高くなる。この圧油を 受けてピン 44がスプール 40を下方に押圧し、スプール 40の切り欠き部 40aが中途 部 27cに当接して、捩じりパネ 28がピン 27を挟持する付勢力、および、パネ 45とチヤ ージ圧に杭してスプール 40を下方に摺動する(図 9 (c)参照)。一方で、負荷が軽減 してメイン油路 13内の油圧が低減し、油給排ポート 43a内の油圧が低くなると、捩じり パネ 28の付勢力によってピン 27が変速操作レバー 29により設定された位置に戻そ うとして、ピン 44はパネ 45およびチャージ圧によりピン孔 43b内に押し込むようにスプ ール 40を上方に摺動して、可動斜板 10aの斜板角度が大きくなるように制御される のである。そして、油圧ポンプ 10の可動斜板 10aは、変速操作レバー 29等による所 定位置で再び位置決めされる。
[0076] すなわち、作業車両が通常走行している場合は、 HST1の出力回転数は変速操作 レバー 29の回動操作によって増減される。そして、低速で作業機によるローダ作業 を行う場合等は、大きな牽引力を必要とするために出力軸 59 (車軸)に負荷トルクが かかり、力かる負荷はエンジン 15にも力かりエンジン馬力を超えるとエンストしてしまう 。そこで、力かるエンストを防止するために、メイン油路 13内の油圧が増加するとメイ ン油路 13の圧油を受けてシリンダ 41内のスプールが摺動されるように構成して、油 圧ポンプ 10の可動斜板 10aの斜板角度が小さくなるように制御するのである。つまり 、油圧ポンプ 10の可動斜板 10aの斜板角度を小さくして、油圧ポンプ 10からの圧油 の吐出量を減少させて車速が低減するように制御することで、エンジン 15のエンスト を防止するように構成されて 、る。
[0077] 図 10に示すように、エンジン 15の車速 (kmZh)に対する牽引力(kg'f)の関係は 、エンジン馬力線 Aで表される。作業車両においては、車軸の駆動力にカ卩えて、作 業機を駆動させるための駆動力が必要であることから、走行時 Hには、牽引力は不 要であるため高速走行が可能であり、ローダ突込み時 Mには、作業車両に配設され たローダ作業機を地面に突っ込ませるための牽引力を生み出すために中速トルクを 生起するように構成されている。そして、ローダ作業時 Lには、ローダ作業機を駆動さ せて作業を行うための牽引力を要するため、さらに大きな低速トルクを生起することが 可能なように構成される。
[0078] このようなエンジン 15を搭載した作業車両においては、エンジン馬力線 Aに対応す る所定の牽引力を超える負荷力 Sかかるとエンストしてしまうため、従来は、変速装置等 によって車速を下げることで牽引力を大きくする(高トルクとなる)ように手動で操作し たり、作業車両に予め馬力の大きなエンジンを搭載したりして、エンストを防止するよ うに構成されていた。例えば、作業機の使用時や登坂走行時に、所定の車速に対応 する牽引力を超える負荷がエンジン 15にかかるとエンストしてしまうため、オペレータ 等が変速レバーやアクセルペダル等を操作して作業車両の車速を中速もしくは低速 に調整する必要があった。
[0079] 本実施例では、以上のように構成した負荷制御機構 4によって、油圧ポンプ 10の可 動斜板 10aの斜板角度を自動的に傾動するように制御して、エンストを効果的に防 止することがきるのである。特に、本実施例に係る HST1は、この負荷制御機構 4を、 シリンダ 41とスプール 40とで構成して、メイン油路 13の油圧に応じてスプール 40を 摺動させるとともに、スプール 40をピン 27と係合させて捩じりパネ 28の付勢力に抗し てピンを移動させるように構成しているため、可動斜板 10aを精度よく制御することが できる。また、変速操作レバー 29による傾動操作に拠らずに、負荷がかかると自動的 に可動斜板 10aを傾動させて、エンストを防止するように制御できるため、走行運転 の際の操作が簡易となる。 [0080] なお、油圧モータ 11の負荷制御機構 104も負荷制御機構 4と同様に、油圧モータ 11の可動斜板 1 laを自動的に傾動させて、その斜板角度を制御するように構成され ている。ただし、油圧モータ 11は、可動斜板 11aの斜板角度が停止時において最大 となるように調整されており(最大斜板位置保持機構 103)、作業車両が走行するに つれて、その斜板角度が小さくなるように制御されている。負荷制御機構 104におい ても、まず変速操作レバー 29が操作されると、これと一体的に移動されたピン 27が 捩じりパネ 28により所定の状態で位置決めされる。かかる状態で、エンジン 15に負 荷がかかり、 HST1内のメイン油路 13の油圧が上昇して、給排管 17を介して油溜り 1 46の油圧が高くなると、この圧油を受けてピン 144がスプール 140を下方に押圧し、 スプール 140の切り欠き部 140aが中途部 27cに当接して、捩じりパネ 28の付勢力お よびチャージ圧に抗してこれを下方に摺動させる。すなわち、油圧モータ 11用の負 荷制御機構 104は、油圧ポンプ 10用の負荷制御機構 4と同様に、メイン油路 13の油 圧が高くなると、車速を低減するように、油圧モータ 11の可動斜板 11aの斜板角度を 大きくするように制御するように構成されて 、る。
[0081] 図 11に示すように、本実施例に係る HST1は、このような負荷制御機構 4 · 104を 配設して、 HST1の車速に対する牽引力の関係を表した曲線 B力 破線で示したェ ンジン 15のエンジン馬力線 Aを超えないように、各油圧ポンプ 10および油圧モータ 1 1の可動斜板 10a ' 11aの斜板角度を制御、すなわち、負荷制御するように構成され ている。
[0082] 負荷制御機構 4 · 104は、図 11における車速範囲 a、すなわち低速領域では、主に 油圧ポンプ 10の可動斜板 10aの斜板角度を制御し、また、車速範囲 b、すなわち中' 高速領域では、油圧モータ 11の可動斜板 11aの斜板角度を制御する。車速範囲 a では、油圧ポンプ 10の可動斜板 10aは傾動自在に構成されおり、一方で油圧モータ 11の可動斜板 11aは斜板角度が最大となる位置で固定されている。そして、車速範 囲 aの最大値から車速範囲 bに入ると、油圧ポンプ 10の可動斜板 10aの斜板角度が 最大になると略同時に、油圧ポンプ 10の可動斜板 10aが位置固定されて、油圧モー タ 11の可動斜板 11aの斜板角度が小さくなる方向に傾動される。本実施例では、車 速範囲 a 'bで、油圧ポンプ 10と油圧モータとによる制御を切り換えるように構成するこ とで、広い速度範囲の領域での制御を効率よく行えるように構成されている。
[0083] 車速範囲 aでは、主に、負荷制御機構 4によって油圧ポンプ 10の可動斜板 10aの 斜板角度が制御される。車速範囲 aは、本実施例の作業車両においては、ローダ作 業機が使用されるため、油圧ポンプ 10の可動斜板 10aの斜板角度を効率よく制御す るために、負荷制御機構 4は、前記スプール 40の一端側を前記シリンダ 41に内挿し た弾性部材によって付勢するようにして、メイン油路 13の油圧の増減に対して、油圧 ポンプ 10の可動斜板 10aの斜板角度の増減が反比例するように構成されている。
[0084] 具体的には、図 6に示したように、シリンダ孔 42の他端において、シリンダ孔 42にス プール 40を内挿した状態で、スプール 40端部とシリンダ孔 42との間に空間 42aが設 けられ、空間 42aには弾性部材としてパネ 45が配設される。パネ 45は、スプール 40 の下側面に当接して前記ピン 44が押圧する方向とは逆の方向にスプール 40を付勢 している。そのため、油圧ポンプ 10の可動斜板 10aが中立位置に保持された状態で は、スプール 40は、パネ 45の付勢力によってピン孔 43bにピン 44が押し込まれる方 向(図 6において上方)に付勢されている。さらに、空間 42aには油路 18を介して前 記油圧ポンプ 50の吐出側の油路 53と連通されて、 HSTのチャージ圧が背圧として 作用するように構成している。
[0085] こうして、低速走行の作業時において、走行負荷が高くなり、メイン油路 13の圧力 が高くなり油給排ポート 43a内の圧油を受けてピン 44がスプール 40を押圧する力が パネ 45の付勢力と HSTのチャージ圧を上回ると、ようやくスプール 40が下方に摺動 されて、これと同時にピン 27が移動されて可動斜板 10aが低速側に傾動され、減速 することにより牽引力が高まる。このとき、変速ペダルまたは変速レバーを増速側に回 動しても、連動アーム 39が捩じりパネ 28を回動するだけで、可動斜板 10aが傾倒さ れることはなぐまた、過負荷力 Sかかりエンストを起こすこともない。そして、負荷が軽 減して、パネ 45の付勢力と HSTのチャージ圧をカ卩えた力がピン 44のスプール 40を 押圧する力を上回ると、スプール 40は、上方に摺動されてピン 44をピン孔 43b内に 押込み、変速ペダルで設定した位置 (設定速度)に戻る。
[0086] メイン油路 13の圧油を受けて摺動するスプール 40に対して、これを弾性部材 (パネ 45)とチャージ圧によって付勢することによって、メイン油路 13の油圧の増減に対し て油圧ポンプ 10の可動斜板 10aの斜板角度が反比例するように制御される。例えば 、メイン油路 13の圧油が増大するとこれに比例して車速が低減するように制御される 。このように制御することによって、低速走行時にローダ作業機の使用する場合等の ように牽引力を要する場合に、負荷制御機構 4による斜板角度の制御を精度よくかつ 効果的に行うようにして、低速トルクを増大させて上述したエンストを効果的に防止す ることができる。そして、チャージ圧を背圧として使用することにより、スプール 40を付 勢するために弾性部材としてパネ 45を小さくすることができ、シリンダ 41等力もなる負 荷制御機構 4の小型化を図ることができるとともに、部品点数の低減を図ることができ る。
[0087] また、負荷制御機構 4では、車速範囲 aでの最低速度が一定速度 (最低速度 c)以 下とならないように制御される。図 6に示すように、前記空間 42aにおいて、シリンダ孔 42の内側壁に、略円柱形に穿設された該シリンダ孔 42の軸心方向に向けてストッパ 部 47が突出して形成される。ストツバ部 47は、空間 42aの一端であって前記パネ 45 の配置部をシリンダ孔 42の半径方向よりも縮小するようにして形成されて段部を形成 している。ストッパ部 47の上面に前記スプール 40の下面が当接して、該スプール 40 の下方への摺動位置を規制される。メイン油路 13の圧油を受けてピン 44によって下 方に摺動されたスプール 40は、ストッパ部 47に当接すると下方への摺動が停止され る。ただし、ストツバ部 47の構成は段部に限定するものではなぐ軸心と直角方向に ピンを挿入したり、スプール 40と反対方向より円筒状のネジを螺装してストッパ部 47 の位置を調節きるように構成したりすることもできる。
[0088] 上述のように、負荷制御機構 4は、スプール 40が下方に摺動する際には、ピン 27を 係合してこれを移動させることで、油圧ポンプ 10の可動斜板 10aを斜板角度が小さく なるように制御する。ストッパ部 47によって、スプール 40の下方への摺動位置を規制 することで、可動斜板 10aはそれ以上傾動されることなぐ換言すればそれ以上斜板 角度が小さくなることはないため、油圧ポンプ 10からの出力トルクが一定となって、最 低速度 cで一定する。この最低速度 cは、図 11のエンジン馬力線 Aよりも下側の領域 にあり、エンストを生じることがない範囲にある。このように、負荷制御機構 4において 、最低速度 cで一定となるように制御することで、必要以上に車速を低減することがな ぐ作業機による作業を行うための牽引力を確保して、力かる作業を効率よく行うこと ができる。
[0089] さらに、負荷制御機構 4によって、車速範囲 aにおける低速走行時の HST1の牽引 力が、エンジン馬力(図 11のエンジン馬力線 A参照)の牽引力の略半分程度となるよ うに制御される。車速範囲 aでは、主にローダ作業が行われるため走行負荷が大きく 、エンジン 15にかかる負荷も大きい。そこで、低速走行時の牽引力が、エンジン 15 ( エンジン馬力)の牽引力と比べて略半分となるように制御することで、予めかかるェン ジン馬力に対して余裕を持たせて、走行に使用する以外に負荷トルクが大きくなる作 業を行う際であっても、エンストを確実に防止することができる。
[0090] また、図 11における車速範囲 bでは、主に、負荷制御機構 104によって油圧モータ 11の可動斜板 11aの斜板角度が制御される。具体的には、この車速範囲 bでは、負 荷制御機構 104は、スプール 140の一端側であってシリンダ 41内にチャージ圧をか けて、過負荷となったときに前記メイン油路 13内の油圧によりスプール 140を摺動さ せて油圧モータ 11の可動斜板 1 laを減速側に回動するように制御するように構成さ れる。このように構成することで、作業車両を路上等高速で走行する時は作業機等を 使用しないため、エンジン 15に大きな負荷が力からず、また曲線 Bがエンジン馬力線 Aに近似するように制御することができ、エンジン 15の駆動を効率よく出力できる。
[0091] 具体的には、図 8に示したように、負荷制御機構 104において、前記スプール 140 と管継部 143との間に空間 142aが形成され、空間 142aに、油圧ポンプ 50の吐出側 の油路 53から分岐した油路 18からチャージ圧 (圧油)が供給されている。かかるチヤ ージ圧によって、ピン 144がスプール 140を押圧する方向とは逆の方向(X方向)にス プール 140を押圧している。スプール 140は、このチャージ圧によってピン 144をピン 孔 144aに押し込む方向に押圧される。ピン 144がスプール 140を押圧して、その力 がチャージ圧を上回ると、ピン 144がスプール 40を下方に摺動させる。負荷が軽減さ れ、チャージ圧がピン 144のスプール 140を押圧する力を上回ると、スプール 140を 押圧して上方に摺動させ、ピン 144がピン孔 144a内に押込まれる。
[0092] このように、車速範囲 aでは、油圧ポンプ 10のみ操作され、油圧モータ 11は操作さ れず低速側に保持されている。車速範囲 bの高速側の範囲では、油圧ポンプ 10は 高速側に保持され、油圧モータ 11のみ操作され、速度を上げる場合には中途部 27 cが低速側から高速側、即ち、 X方向に回動される。車速範囲 bではメイン油路 13の 油圧が一定となるように油圧モータ 11の可動斜板 1 laの斜板角度を制御する。車速 範囲 bの範囲における負荷制御機構 104は、車速範囲 bにおいて負荷が大きくなり、 メイン油路 13の油圧が高くなると、チャージ圧に杭してピン 144を介してスプール 14 0を Y方向に摺動させる。すなわち、中途部 27cを低速側に回動させ、油圧モータの 容量を大きくしてメイン油路 13の油圧を下げるとともに、牽引力も高める。このとき、油 圧ポンプ側の空間 42a内ではチャージ圧にパネ 45のパネ圧が加わっているため、ス プール 40は摺動することがなぐ高速側に保持されている。そして、負荷が軽減され ると、メイン油路 13内の油圧が低下しチャージ圧によりスプール 140を押して、変速 ペダルで設定した位置まで中途部 27cは戻される。
[0093] なお、上述の負荷制御機構 4· 104は油圧ポンプ 10のみに設けることも、油圧モー タ 11のみに受けることも、油圧ポンプ 10と油圧モータ 11の両方に設けることも可能で あり、作業の種類や走行車輛の種類や負荷等を考慮して選択的に設けることが可能 である。
[0094] このように、負荷制御機構 4· 104のスプール 40· 140を、メイン油路 13からの圧油 を受けて摺動するピン 44· 144によって押圧するとともに、スプール 40· 140の他端 をチャージ圧によって対抗するように押圧することによって、 HST1に必要なチャージ 圧を利用することができて、簡易な構成によって油圧ポンプ 10等の自動制御が可能 となり、弾性部材を小さく構成することができ、安価な付勢手段を得ることができる。ス プール 40· 140を精度よく摺動させて、負荷制御機構 4· 104による可動斜板 10a · 1 laの制御の精度が向上し、コンパクトに構成することができる。
[0095] 次に、 HST1の後進走行時の制御機構について、以下に説明する。
図 12は、トランスミッションのリリーフ圧曲線 Cとエンジン馬力線 Aとの関係を示した ものである。 HST1は、コーナ馬力 dをエンジン出力より少し下になるように油圧ポン プ 10の後進側容量を制限し、後進走行時の油圧モータ制御領域のリリーフ圧曲線 C 力 エンジン馬力線 Aを超えることなく略一致するように構成される。すなわち、油圧 ポンプ 10による速度制御から油圧モータ 11による速度制御に切り替わる点をコーナ 馬力 dとすると、後進走行時は前述のメイン油路 13からの圧油により負荷制御機構 4 • 104を作動させる負荷制御は行わず、メイン油路 13の油圧が設定圧を超えるとリリ ーフさせるように制御している。そして、後進走行側に変速すると、油圧ポンプ 10の 可動斜板 10aがマイナス側(中立位置力も前進方向と反対側)に回動される。そして 、後進時の HST1の閉回路は、もう一方のメイン油路 13Rが高圧となるので、前記負 荷制御機構 4は作動することはない。そして、エンジン 15のコーナ馬力 dがエンジン 馬力線 Aを超えることがないようにリリーフ弁 54が作動して、油圧ポンプ 10からの圧 油は油圧モータ 11を駆動せずに走行を停止して、エンストは回避される。
[0096] このように、すなわち、 HST1は、上述したように前進走行時に負荷力かかった場合 には、前記負荷制御機構 4· 104によって可動斜板 10a ' 11aが傾動されて、車速が 自動的に減少して牽引力が高められるように制御されるものであるが、後進走行時は 、このような負荷制御機構 4· 104に拠らずに、圧油をリリーフさせて低コストで走行性 能を落とすことなくエンストを防止するように構成されて 、る。オペレータにお 、ては、 後進走行時は、エンストを防止するために適宜変速操作を行う必要がないため構成 が簡単となる。また、走行が停止してしまった場合であっても、再び走行ペダル(図略 )等を踏動し直して走行を開始すればよぐエンストしてエンジン 15を起動し直す手 間が省ける。
[0097] なお、本実施例では、作業車両のトランスミッション構造において、 HST1を用いた 主変速機構に加えて、変速時の操作性に優れ、さらにエネルギー効率に優れること 力も HST1と差動機構を組み合わせた油圧 ·機械式無段変速装置 (HMT)を用いて もよい。 HMTに関する詳細な構成は、すでに公知技術であり本明細書での詳細な 説明は省略する。
産業上の利用可能性
[0098] 本発明の油圧式無段変速装置においては、可動斜板を精度よく制御することがで きるので、広く作業車両において該車両に負荷が力かると自動的に可動斜板を傾動 させてエンストを防止でき、走行運転の際の操作を簡易とできる。

Claims

請求の範囲
[1] 少なくともいずれか一方を可変容積型とした油圧ポンプ及び Z又は油圧モータと、 該油圧ポンプ及び Z又は油圧モータの可動斜板の斜板角度を制御する油圧サーボ 機構とを一体的に構成し、変速操作レバーの操作により該可動斜板を傾動させる油 圧式無段変速装置において、
前記油圧サーボ機構の可動斜板を傾動させる変速駆動部材を減速側に摺動させ るァクチユエ一ターを一体的に設け、前記油圧ポンプと油圧モータとを接続する閉回 路のメイン油路の圧油を該ァクチユエ一ターに導き作動させる負荷制御機構とした、 ことを特徴とする油圧式無段変速装置。
[2] 前記油圧ポンプ側に構成される負荷制御機構は、前記メイン油路の圧油が給排さ れるシリンダと、該シリンダに摺動自在に内挿され、かつ、前記変速駆動部材と係合 するスプールと、該スプールを一側に付勢する弾性部材とからなり、
該スプールは、他側に前記メイン油路が連通され、負荷制御時には、前記弾性部 材の付勢力に抗して前記変速駆動部材を係合しながら移動し、前記変速操作レバ 一による傾動操作とは独立に前記可動斜板の斜板角度を制御する、
ことを特徴とする請求項 1に記載の油圧式無段変速装置。
[3] 前記油圧モータ側に構成される負荷制御機構は、前記メイン油路の圧油が給排さ れるシリンダと、該シリンダに摺動自在に内挿され、かつ、前記変速駆動部材と係合 するスプールとからなり、
前記スプールは、他端側に前記メイン油路が連通され、一端側に前記メイン油路の 圧油力に対抗して該スプールを略一定に押圧する弾性部材又は油圧力を設け、前 記メイン油路内の油圧が略一定となるように、前記変速操作レバーによる傾動操作と は独立に前記可動斜板の斜板角度を制御する、
ことを特徴とする請求項 1に記載の油圧式無段変速装置。
[4] 前記負荷制御機構は、前記メイン油路の油圧の増減に対して前記可動斜板の斜 板角度の増減が反比例するように制御する、
ことを特徴とする請求項 2又は請求項 3に記載の油圧式無段変速装置。
[5] 前記負荷制御機構は、前記シリンダの内側壁にストツバ部を突設して、前記スプー ルの摺動位置を規制する、
ことを特徴とする請求項 2乃至請求項 4のいずれか 1項に記載の油圧式無段変速 装置。
[6] 前記負荷制御機構は、低速走行時の油圧式変速装置の牽引力がエンジン馬力の 牽引力の略半分となるように前記可動斜板の斜板角度を制御する、
ことを特徴とする請求項 1又は請求項 2に記載の油圧式無段変速装置。
[7] 前記負荷制御機構は、前記シリンダに、前記油圧ポンプ用のスプール及び前記油 圧モータ用スプールをそれぞれ一体的に設けてなる、
ことを特徴とする請求項 2乃至請求項 6のいずれか 1項に記載の油圧式無段変速 装置。
[8] 前記負荷制御機構は、前記スプールが内挿されるシリンダ孔の一端側に、メイン油 路内の圧油を受けて前記スプールを押圧するピンを設けるとともに、シリンダ孔の他 端側にチャージ圧を導入して、ピンによるスプールの押圧に対抗させる、
ことを特徴とする請求項 2乃至請求項 7のいずれか 1項に記載の油圧式無段変速 装置。
[9] 前記請求項 1乃至請求項 8の油圧式無段変速装置の前記油圧ポンプの後進側容 量を制限し、コーナ馬力をエンジン出力より少し下になるようにする事により、後進走 行時の油圧モータ制御領域のリリーフ圧曲線力 エンジン馬力線を超えることなく略 一致するように構成する、
ことを特徴とする油圧式無段変速装置。
PCT/JP2004/013371 2004-08-24 2004-09-14 油圧式無段変速装置 WO2006022032A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04773044A EP1811208B1 (en) 2004-08-24 2004-09-14 Hydraulic stepless speed changing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-244292 2004-08-24
JP2004244292A JP4462543B2 (ja) 2004-08-24 2004-08-24 油圧式無段式変速装置

Publications (1)

Publication Number Publication Date
WO2006022032A1 true WO2006022032A1 (ja) 2006-03-02

Family

ID=35967255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013371 WO2006022032A1 (ja) 2004-08-24 2004-09-14 油圧式無段変速装置

Country Status (4)

Country Link
US (1) US7779630B2 (ja)
EP (1) EP1811208B1 (ja)
JP (1) JP4462543B2 (ja)
WO (1) WO2006022032A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755885B1 (ko) 2006-07-13 2007-09-06 주식회사 제일유압 사판식 정유압 트랜스미션
JP4989951B2 (ja) * 2006-10-25 2012-08-01 株式会社小松製作所 建設車両
US7975242B2 (en) 2007-01-07 2011-07-05 Apple Inc. Portable multifunction device, method, and graphical user interface for conference calling
TWI339093B (en) * 2007-08-24 2011-03-11 Asustek Comp Inc Cellular phone with shiftless motion function
KR101728381B1 (ko) * 2010-06-28 2017-04-19 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압펌프 유량 제어방법
JP5696212B2 (ja) 2010-07-19 2015-04-08 ボルボ コンストラクション イクイップメント アーベー 建設機械の油圧ポンプ制御システム
US9140356B2 (en) 2012-07-04 2015-09-22 Kanzaki Kokyukoki Mfg. Co., Ltd. Travel control unit of working vehicle
CN103697000B (zh) * 2013-12-03 2015-11-04 上海中联重科桩工机械有限公司 实现执行机构无级变速的液压控制系统
JP6466282B2 (ja) * 2015-08-12 2019-02-06 日立建機株式会社 可変容量型液圧回転機のレギュレータ
EP3553297B1 (en) * 2017-06-27 2021-08-25 Komatsu Ltd. Work vehicle and method for controlling work vehicle
CN109139588A (zh) * 2018-11-09 2019-01-04 徐工集团工程机械有限公司 液压动力系统及路轨两用作业车辆
JP7160130B2 (ja) * 2021-03-31 2022-10-25 井関農機株式会社 作業車両
CN115704458A (zh) * 2021-08-12 2023-02-17 株式会社神崎高级工机制作所 无级变速构造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020656B1 (ja) * 1970-12-05 1975-07-16
JPS5865364A (ja) * 1981-10-09 1983-04-19 Iseki & Co Ltd Hstの牽制装置
JPH0617928A (ja) * 1992-07-03 1994-01-25 Kubota Corp 走行用の静油圧式無段変速装置
US6351745B1 (en) * 1996-02-28 2002-02-26 Netzero, Inc. Communication system for distributing such message as advertisement to user of terminal equipment
JP2004011769A (ja) 2002-06-06 2004-01-15 Kubota Corp 静油圧式無段変速装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733659B2 (ja) 1973-06-22 1982-07-19
DE3143539A1 (de) * 1981-11-03 1983-05-11 Linde Ag, 6200 Wiesbaden Steuereinrichtung fuer ein stufenlos einstellbares, vorzugsweise hydrostatisches getriebe
DE4029548A1 (de) * 1990-09-18 1992-03-19 Hydromatik Gmbh Steuer- und regelvorrichtung fuer ein hydrostatisches getriebe
DE19850162C1 (de) * 1998-10-30 2000-09-07 Brueninghaus Hydromatik Gmbh Hydrostatisches Getriebe
US6684634B1 (en) * 1999-09-01 2004-02-03 Yanmar Diesel Engine Co., Ltd. Swash plate angle control mechanism of hydraulic continuously variable transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020656B1 (ja) * 1970-12-05 1975-07-16
JPS5865364A (ja) * 1981-10-09 1983-04-19 Iseki & Co Ltd Hstの牽制装置
JPH0617928A (ja) * 1992-07-03 1994-01-25 Kubota Corp 走行用の静油圧式無段変速装置
US6351745B1 (en) * 1996-02-28 2002-02-26 Netzero, Inc. Communication system for distributing such message as advertisement to user of terminal equipment
JP2004011769A (ja) 2002-06-06 2004-01-15 Kubota Corp 静油圧式無段変速装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811208A4

Also Published As

Publication number Publication date
US7779630B2 (en) 2010-08-24
EP1811208A4 (en) 2009-03-04
EP1811208A1 (en) 2007-07-25
US20080041049A1 (en) 2008-02-21
EP1811208B1 (en) 2011-08-17
JP4462543B2 (ja) 2010-05-12
JP2006064011A (ja) 2006-03-09

Similar Documents

Publication Publication Date Title
US7895834B2 (en) Hydraulic stepless transmission
WO2006022032A1 (ja) 油圧式無段変速装置
US4712377A (en) Control apparatus for hydraulic motor
JP2009293748A (ja) 作業機を装着した作業車両の車軸駆動システム
US6637294B2 (en) Transmission for vehicle
US20120097460A1 (en) Hydraulically-powered working vehicle
US11274682B2 (en) Hydraulic driving apparatus
EP2444556A1 (en) Pump Unit
US20150139824A1 (en) Pump control apparatus
US20060272495A1 (en) Hydraulic pump unit
EP1760313A1 (en) Variable displacement swash plate-type hydraulic rotating machine
JP5244325B2 (ja) 油圧式無断変速装置
JP5771119B2 (ja) 作業車
JP3954944B2 (ja) 油圧式無段変速装置の斜板角操作装置
WO2001016509A1 (fr) Mecanisme de commande d'angle de plateau incline de transmission hydraulique a variation continue
JP4605605B2 (ja) 油圧式無段変速装置
JP2013221458A (ja) 油圧回転機械
US6481333B1 (en) Positioning device, capacity controller using positioning device, and speed changing device
JP2007092809A (ja) 油圧式無段変速装置
JP4034909B2 (ja) 可変容量型油圧ポンプの斜板制御装置
JP3872910B2 (ja) ハイドロスタティックトランスミッション装置
JP2006258237A (ja) 液圧モータユニット
JP7307937B2 (ja) Hst及び変速装置
JP2007092803A (ja) 油圧式無段変速装置
JP2003028102A (ja) 切換弁

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2004773044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11574228

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004773044

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574228

Country of ref document: US