WO2006016671A1 - 加速度計測装置 - Google Patents

加速度計測装置 Download PDF

Info

Publication number
WO2006016671A1
WO2006016671A1 PCT/JP2005/014817 JP2005014817W WO2006016671A1 WO 2006016671 A1 WO2006016671 A1 WO 2006016671A1 JP 2005014817 W JP2005014817 W JP 2005014817W WO 2006016671 A1 WO2006016671 A1 WO 2006016671A1
Authority
WO
WIPO (PCT)
Prior art keywords
output data
axis
reference point
data
unit
Prior art date
Application number
PCT/JP2005/014817
Other languages
English (en)
French (fr)
Inventor
Rikita Yamada
Koichi Hikida
Hiroyuki Sasaki
Masaya Yamashita
Original Assignee
Asahi Kasei Emd Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Emd Corporation filed Critical Asahi Kasei Emd Corporation
Priority to CN2005800272382A priority Critical patent/CN101031803B/zh
Priority to EP05780257A priority patent/EP1788396B1/en
Priority to JP2006531756A priority patent/JP5137229B2/ja
Priority to US11/659,971 priority patent/US7653507B2/en
Publication of WO2006016671A1 publication Critical patent/WO2006016671A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the present invention relates to an acceleration measuring device that performs output correction of a biaxial or triaxial acceleration sensor. More specifically, the present invention relates to two or three axes without being conscious of directing the orientation of the acceleration measuring device in a specific direction. The present invention relates to an acceleration measuring device that can acquire both offset or sensitivity and offset necessary for output correction of a 2-axis or 3-axis acceleration sensor by repeatedly acquiring output data of the axis acceleration sensor.
  • piezoresistive three-axis acceleration sensors for semiconductor devices using MEMS (Micro Electro Mechanical Systems) technology have been developed as lightweight, small-sized three-axis acceleration sensors that can be incorporated into portable devices (for example, patents). Reference 1).
  • FIG. 36 is a perspective view showing a schematic configuration of a conventional piezoresistive three-axis acceleration sensor.
  • reference numeral 201 denotes a silicon substrate
  • 201a denotes a support portion
  • 201b denotes a weight portion
  • 201c denotes a displacement portion.
  • the In the silicon substrate 201, a displacement portion 201c, a support portion 201a for supporting the displacement portion 201c, and a weight portion 201b for deforming the displacement portion 201c are formed by etching.
  • the piezoresistors R1 to R12 are formed on the displacement portion 201c.
  • the weight part 201b deforms the displacement part 201c in accordance with the direction and magnitude of the acceleration. Then, stress is applied to the piezoresistors R1 to R12, and the resistance value changes.
  • FIG. 37A to FIG. 37C are circuit diagrams showing a connection configuration of piezoresistors in a conventional piezoresistive triaxial acceleration sensor.
  • a Wheatstone bridge circuit composed of piezoresistors Rl to R12 is formed for each axial direction in which acceleration is detected.
  • the output voltages Vx, Vy, and Vz are values proportional to the ⁇ , y, and z axis components of the acceleration, respectively.
  • V z ⁇ + V 0Z (3)
  • Ax, Ay, ⁇ is the ⁇ , y, z-axis direction component of the calorie velocity, ⁇ , ⁇ , ⁇ is Ax, Ay,
  • the conventional acceleration measuring apparatus employs the following solution (for example, see Patent Document 2).
  • sensitivity and offset are measured in different temperature atmospheres such as 0 ° C '25 ° C '60 ° C, and the acceleration measuring device is equipped with storage means such as EEPROM. These measurement data are stored.
  • an output correction circuit is mounted on the acceleration measuring device, and the sensitivity and offset included in the acceleration sensor output voltage are determined based on the current temperature data and the previously stored measurement data. The variation and temperature characteristics are calculated and corrected.
  • the conventional acceleration measuring apparatus further employs the following solution.
  • 3-axis acceleration as shown in Figures 38A to 38F Measure the output voltage of the 3-axis acceleration sensor 202 with each of the six orientations of the acceleration measuring device 203 so that the direction of the acceleration detection axis of the degree sensor 202 is parallel to the direction of the gravitational acceleration g. Get.
  • V V measurement value in the posture of Figure 38A
  • V V measurement value in the posture of Fig. 38B
  • Sensitivity and offset data required to correct the output of the 3-axis acceleration sensor are calculated using the following equations.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a two-axis or three-axis acceleration sensor without being aware of the orientation of the acceleration measuring device in a specific direction. It is an object of the present invention to provide an acceleration measuring device that can acquire both offset and sensitivity and offset necessary for output correction of a 2-axis or 3-axis acceleration sensor by repeatedly acquiring sensor output data.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-101033
  • Patent Document 2 JP-A-6-331647
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-93552
  • Non-Patent Document 1 ⁇ ⁇ . 1 "1 33, S.A.Teukolsky, W.T.Vetterling and B. P. Flannery, year um erical Recipies in C, Second Edition ⁇ Cambridge University Press, USA, 1992, pp.3 94-455
  • Non-Patent Document 2 W.H.Press, S.A.Teukolsky, W.T.Vetterling and B. P. Flannery, ume rical Recipies in C, Second Edition ⁇ Cambridge University Press, USA, 1992, pp.32 -104
  • the present invention has been made to achieve such an object, and includes an acceleration sensor that detects acceleration in two or three axes, and output data of two or three axes of the acceleration sensor.
  • the output data acquisition means to be acquired, the output data storage means for storing the output data acquired by the output data acquisition means, and the axis components of the constant output data stored by the output data storage means are coordinated.
  • a reference point estimating means for estimating a coordinate value of a reference point defined in the orthogonal coordinate space from a distribution in a two-dimensional or three-dimensional orthogonal coordinate space, and the reference estimated by the reference point estimating means
  • an offset correction unit that corrects an offset of output data of the acceleration sensor based on a coordinate value of the point.
  • the output data selection means for determining whether or not the output data acquired by the output data acquisition means is appropriate.
  • the output data storage means is selected by the output data selection means.
  • the output data is accumulated.
  • the output data selection unit calculates a difference from the output data acquired immediately before the output data acquisition unit acquires the output data by the output data acquisition unit, and the difference continuously exceeds a predetermined number of times. If it is within the range, the output data is judged to be appropriate and selected.
  • the output data selection means calculates a difference with reference output data every time output data is acquired by the output data acquisition means, and when the difference exceeds a predetermined value, the output data selection means It is characterized by selecting data as appropriate. [0022] Further, the output data selection means adds the number of times or time information that the difference was continuously within a predetermined value to the output data selected by the output data selection means. . (Corresponding to Fig. 29 to Fig. 32, Embodiment 6)
  • the output data storage means includes the output data selected by the output data selection means based on the number of times or time information added by the output data selection means, and the output already stored by the output data storage means. It is characterized by discarding any of the data.
  • the output data selection means is based on a distribution in a two-dimensional or three-dimensional orthogonal coordinate space when each axis component is a coordinate value of a predetermined number of output data acquired by the output data acquisition means. Then, a circle or a sphere is estimated, and output data within the circle or sphere force within a predetermined distance is judged to be appropriate and selected.
  • the output data selection means is characterized in that the circle or sphere is estimated using a radius of the circle or sphere as a predetermined value.
  • data change determination means for determining whether or not the output data selected by the output data selection means has changed by a predetermined value or more compared to the output data already accumulated by the output data accumulation means.
  • the output data storage means includes the output data selected by the output data selection means based on the determination result of the data change determination means, or the output data already stored by the output data storage means. Either one is discarded.
  • the output data storage means predetermines a linear axis that is linearly related to the measurement axis of the acceleration sensor, and the output data selected by the output data selection means is stored in the output data storage means. Among the output data, the output data that maximizes or minimizes the measurement axis or linear axis component of the acceleration sensor is selectively accumulated. (Corresponding to Fig. 33, Fig. 34, Embodiment 7)
  • the output data stored in the output data storage means stores output data that maximizes or minimizes the component of the measurement axis or the linear axis, and one or more other output data. To do.
  • the reference point estimation means is a predetermined value stored by the output data storage means.
  • a circle or sphere is defined on the Cartesian coordinate space from the distribution in the two-dimensional or three-dimensional Cartesian coordinate space when each axis component is the coordinate value of the output data of the number, and the center coordinate of the circle or the sphere is It is estimated as a reference point, and the offset correction means corrects an offset of output data of the acceleration sensor based on a center coordinate value of the circle or sphere estimated by the reference point estimation means.
  • the reference point estimation means uses a statistical method to calculate the coordinate value of the reference point so that each force of the predetermined number of output data has a minimum variation in distance to the reference point. It is characterized by estimating. (Corresponding to Fig. 20, embodiment 4)
  • the reference point estimating means is characterized in that the variation of the distance to the reference point of each force of the predetermined number of output data is a variation with respect to a predetermined representative value.
  • the reference point estimation means is based on a distribution in a two-dimensional or three-dimensional orthogonal coordinate space when each axis component is a coordinate value of a predetermined number of output data accumulated by the output data accumulation means.
  • An ellipse or an ellipsoid defined in the orthogonal coordinate space is defined, and the length and center coordinate value of each principal axis of the ellipse or ellipsoid are estimated.
  • the offset correction means is estimated by the reference point estimation means.
  • the sensitivity and offset of the output data of the acceleration sensor are corrected based on the length and center coordinate value of each principal axis of the ellipse or ellipsoid. (Corresponding to Fig. 11, Embodiment 2)
  • the reference point estimating means calculates the length and central coordinate value of each principal axis of the ellipse or ellipsoid by a statistical method so that each of the predetermined number of output data is closest to the ellipse or ellipse. It is characterized by estimating. (Corresponding to Figure 23, Embodiment 5)
  • the reference point estimation means may determine whether the reference point estimation means uses a spherical surface or an elliptical surface based on the number of 3-axis output data stored in the output data storage means and / or the distribution in the three-dimensional orthogonal coordinate space. It is characterized in that whether to estimate is estimated in advance, and either one is selected and estimated. (Corresponding to Fig. 35, Embodiment 8)
  • temperature detection means for detecting the temperature of the acceleration sensor, and temperature-dependent correction data for storing the coordinate value of the reference point or the length and center coordinate value of each principal axis of the ellipse or ellipsoid for each predetermined temperature section Storage means, wherein the output data storage means is output data selected by the output data selection means or the output data acquisition means For each of the predetermined temperature sections based on the temperature value detected by the temperature detecting means, and the reference point estimating means stores the temperature stored by the output data storage means for each of the predetermined temperature sections.
  • a coordinate value of the reference point or a length and a center coordinate value of each principal axis of the ellipse or the ellipsoid are estimated from a predetermined number of output data of the section, and the temperature-specific correction data storage means The length and center coordinate value of each principal axis of the ellipse or ellipsoidal surface are stored for each predetermined temperature category.
  • the output data storage means outputs the output data selected by the output data selection means or the output data acquisition means to the predetermined temperature classification corresponding to the temperature value detected by the temperature detection means. After correction based on the relationship, the data is accumulated for each predetermined temperature category.
  • a temperature detecting means for detecting the temperature of the acceleration sensor, and a temperature for storing the coordinate value of the reference point or the length and center coordinate value of each principal axis of the ellipse or ellipsoid for each predetermined temperature section
  • the output data storage means stores together the temperature value detected by the temperature detection means when storing the output data selected by the output data selection means or the output data acquisition means.
  • the reference point estimating means selects, for each of the predetermined temperature sections, a constant that has the temperature value corresponding to the output data force accumulated by the output data accumulating means in the temperature section.
  • the temperature-specific correction data storage means stores the coordinate value of the reference point or The length and the center coordinates of each principal axis of serial ellipse or ellipsoid and to store the predetermined temperature Ward fractionation.
  • the offset correction means includes the temperature value detected by the temperature detection means, and the coordinate value of the reference point or the ellipse stored by the predetermined temperature classification by the temperature-specific correction data storage means.
  • the offset or sensitivity and offset of the output data of the acceleration sensor are corrected based on the length and center coordinate value of each principal axis of the ellipsoid.
  • the reference point estimation means is a predetermined value stored by the output data storage means. Variation of the three-axis output data in the three-dimensional orthogonal coordinate space is calculated with respect to each coordinate axis, and when the minimum value of the variation with respect to each coordinate axis is less than or equal to a predetermined value, it is accumulated by the output data accumulation means. A predetermined number of 3-axis output data 2D orthogonal coordinate planes with the axis components as the coordinate values for the remaining 2-axis output data, excluding the coordinate axis output data where the variation is the minimum value From the distribution in FIG.
  • the coordinate value of the reference point determined on the two-dimensional orthogonal coordinate plane or the length and center coordinate value of each principal axis of the ellipse is estimated, and the offset correction means Based on the length and center coordinate value of each main axis of the ellipse, the offset or sensitivity and offset of the output data of the two axes of the acceleration sensor are corrected. .
  • the reference point estimating means obtains output data by the output data obtaining means in a state where the acceleration sensor holds a predetermined posture, and each axis of the output data It is expected that the acceleration sensor detects the position in the 2D or 3D Cartesian coordinate space when the component is the coordinate value and the predetermined posture!
  • the coordinate value of the reference point defined on the orthogonal coordinate space is estimated from the value of each axis component of the gravitational acceleration.
  • the apparatus includes temperature detection means for detecting the temperature of the acceleration sensor, and temperature-specific correction data storage means for storing the coordinate value of the reference point for each predetermined temperature section, and the temperature-specific correction data storage means Based on the temperature value detected by the detection means, the coordinate value of the reference point is stored for each predetermined temperature section, and the offset correction means is configured to detect the temperature value detected by the temperature detection means and the correction for each temperature. The offset of the output data of the acceleration sensor is corrected based on the coordinate value of the reference point stored for each of the predetermined temperature sections by the data storage means.
  • the reference point estimation means calculates a variation in the coordinate values of the nearest predetermined number of reference points or the center coordinate value of the ellipse or the ellipsoid estimated by the reference point estimation means, and the variation is predetermined.
  • the coordinate value of the reference point or the center coordinate value of the ellipse or the ellipsoid is discarded.
  • the reference point estimation means performs estimation in the two-dimensional or three-dimensional orthogonal coordinate space. If the distance to each of the predetermined number of output data or the length of each principal axis of the estimated ellipse or ellipsoid is outside the predetermined range, the coordinate value of the reference point or the ellipse or It is characterized by discarding the length and center coordinate value of each principal axis of the ellipsoid.
  • the output data of the 2-axis or 3-axis acceleration sensor is repeatedly acquired without being conscious of directing the orientation of the acceleration measuring device in a specific direction. It is possible to obtain the offset or both sensitivity and offset required for output correction of a 2-axis or 3-axis acceleration sensor.
  • the output data of the 2-axis or 3-axis acceleration sensor is acquired in a state where it is placed in a known posture, for example, in a state where it is set in a charger.
  • the offset required for the output correction of the 2-axis or 3-axis acceleration sensor can be acquired.
  • the output correction circuit eliminates the need to calculate sensitivity and offset temperature characteristics. It is no longer necessary to align the attitude of the acceleration measurement device in multiple specific directions each time it is used.
  • the present invention can be combined with an azimuth angle sensor having triaxial geomagnetism detection means to form a 5-axis or 6-axis sensor, and in this case, the same effect can be obtained.
  • FIG. 1 is a configuration diagram for explaining Embodiment 1 of the acceleration measuring device of the present invention.
  • FIG. 2 is a conceptual diagram of a reference point in the first embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of reference point estimation in Embodiment 1 of the present invention.
  • FIG. 4 is a conceptual diagram of a specific method (part 1) of triaxial output data selection according to the first embodiment of the present invention.
  • FIG. 5 shows a specific method of selecting 3-axis output data according to the first embodiment of the present invention.
  • FIG. 6 shows a specific method of selecting three-axis output data according to the first embodiment of the present invention It is a conceptual diagram of 2).
  • FIG. 7 is a specific configuration diagram of the data change determination unit in the first embodiment of the present invention.
  • FIG. 8 is a diagram (No. 1) illustrating a flowchart for describing a procedure for acquiring reference point coordinate data according to the first embodiment of the present invention.
  • FIG. 9 is a diagram (No. 2) illustrating a flowchart for describing a procedure for acquiring reference point coordinate data according to the first embodiment of the present invention.
  • FIG. 10 is a diagram (No. 3) illustrating a flowchart for describing a procedure for acquiring reference point coordinate data according to the first embodiment of the present invention.
  • FIG. 11 is a configuration diagram for explaining Embodiment 2 of the acceleration measuring device of the present invention.
  • FIG. 12 is a conceptual diagram of an ellipsoidal principal axis length ′ center coordinate in Embodiment 2 of the present invention.
  • FIG. 13 is a conceptual diagram of ellipsoidal principal axis length ′ center coordinate estimation in Embodiment 2 of the present invention.
  • FIG. 14 is a diagram (No. 1) illustrating a flowchart for describing a procedure for acquiring elliptical principal axis length ′ center coordinate data according to the second embodiment of the present invention.
  • FIG. 15 is a diagram (No. 2) illustrating a flowchart for describing a procedure for acquiring elliptical principal axis length ′ center coordinate data according to the second embodiment of the present invention.
  • FIG. 16 is a diagram (No. 3) illustrating the flowchart for describing the procedure for obtaining the ellipsoid principal axis length ′ center coordinate data according to the second embodiment of the present invention.
  • FIG. 17 is a block diagram for explaining Embodiment 3 of the acceleration measuring device of the present invention.
  • FIG. 18A is a conceptual diagram (part 1) for explaining Embodiment 3 of the present invention.
  • FIG. 18B is a conceptual diagram (part 2) for explaining the third embodiment of the present invention.
  • FIG. 19 is a conceptual diagram of reference point estimation in Embodiment 3 of the present invention.
  • FIG. 20 is a configuration diagram for explaining an embodiment 4 of the acceleration measuring device of the present invention.
  • FIG. 21 is a view (No. 1) showing a flowchart for describing a procedure for acquiring reference point coordinate data according to the fourth embodiment of the present invention.
  • FIG. 22 is a diagram (No. 2) illustrating a flowchart for describing a procedure for acquiring reference point coordinate data according to the fourth embodiment of the present invention.
  • FIG. 23 is a configuration diagram for explaining the fifth embodiment of the acceleration measuring device of the present invention.
  • FIG. 24 is a diagram (No. 1) illustrating a flowchart for describing a procedure for acquiring reference point coordinate data according to the fifth embodiment of the present invention.
  • FIG. 25 is a diagram (No. 2) illustrating a flowchart for describing a procedure for acquiring reference point coordinate data according to the fifth embodiment of the present invention.
  • FIG. 26 is a configuration diagram for explaining a first solution for dealing with temperature characteristics.
  • FIG. 27 is a configuration diagram for explaining a second means for solving the temperature characteristic.
  • FIG. 28 is a configuration diagram for explaining a third solution for dealing with temperature characteristics.
  • FIG. 29 is a conceptual diagram (part 1) of triaxial output data according to the sixth embodiment of the present invention.
  • FIG. 30 is a flowchart for explaining the procedure for selecting data in the sixth embodiment of the present invention.
  • FIG. 31 is a conceptual diagram (part 2) of the triaxial output data according to the sixth embodiment of the present invention.
  • FIG. 32 is a flowchart for explaining the procedure for replacing the measurement data in the data buffer according to the sixth embodiment of the present invention.
  • FIG. 33 is a specific block diagram of a data change determination unit in the seventh embodiment of the present invention.
  • FIG. 34 is a view illustrating a flowchart for explaining a procedure for replacing measurement data in the data buffer according to the seventh embodiment of the present invention.
  • FIG. 35 is a flowchart for explaining a specific method for switching between spherical fitting and ellipsoid fitting in Embodiment 8 of the present invention.
  • FIG. 36 is a perspective view showing a schematic configuration of a conventional piezoresistive triaxial acceleration sensor.
  • FIG. 37A is a circuit diagram (part 1) showing a wiring configuration of a piezoresistor in a conventional piezoresistive triaxial acceleration sensor.
  • FIG. 37B is a circuit diagram (part 2) showing the wiring configuration of the piezoresistor in the conventional piezoresistive triaxial acceleration sensor.
  • FIG. 37C is a circuit diagram (part 3) showing the wiring configuration of the piezoresistor in the conventional piezoresistive triaxial acceleration sensor.
  • FIG. 38A is a diagram (No. 1) for describing a method for obtaining sensitivity offset data for output correction in a conventional acceleration measuring device.
  • FIG. 38B is a diagram (No. 2) for describing a method of obtaining sensitivity offset data for output correction in the conventional acceleration measuring device.
  • FIG. 38C is a diagram (No. 3) for describing one method of obtaining sensitivity offset data for output correction in the conventional acceleration measuring device.
  • FIG. 38D is a diagram (No. 4) for describing a method of obtaining sensitivity offset data for output correction in the conventional acceleration measurement device.
  • FIG. 38E is a diagram (No. 5) for explaining a method of obtaining sensitivity offset data for output correction in the conventional acceleration measuring device.
  • FIG. 38F is a diagram (No. 6) for describing a method of obtaining sensitivity offset data for output correction in the conventional acceleration measurement device.
  • the first embodiment shown in FIG. 1 shows the basic configuration of the acceleration measuring device according to the present invention.
  • the data force acquired from the three-axis acceleration sensor is selected as appropriate data on the three-dimensional orthogonal coordinate space.
  • the offset correction is performed by estimating the coordinate value of the reference point defined in (1).
  • Embodiment 2 shown in FIG. 11 determines the length of the principal axis and the center coordinate value by defining an ellipsoid on the three-dimensional orthogonal coordinate space as the reference point estimation. Sensitivity and offset correction are performed.
  • the reference point is estimated on the three-dimensional Cartesian coordinate space from the value of each axis component of the gravitational acceleration that is expected to be detected by the three-axis acceleration sensor. Estimates the coordinate value of the reference point to be determined.
  • the reference point is estimated by determining the coordinate value of the reference point in the three-dimensional orthogonal coordinate space, and the distance to each force reference point of the predetermined number of three-axis output data. It is estimated by statistical methods so that the variation is minimized.
  • the length of each principal axis and the center coordinate value of an ellipsoidal surface that is defined on a three-dimensional orthogonal coordinate space are estimated by using a predetermined number of three-axis output data. Each is estimated by a statistical method so that it is closest to the ellipsoid.
  • Distribution forms a spherical or elliptical surface in a three-dimensional Cartesian coordinate system, so that the offset is estimated by determining the center value of this spherical or elliptical surface by making a static determination.
  • Embodiment 7 shown in FIGS. 33 and 34 prescribes measurement axes of acceleration sensors and axes that are linearly related to them, and gives priority to output data that is maximum or minimum on the axes. By accumulating, a data group is obtained in which the estimation error is reduced in the elliptical surface fitting calculation.
  • Embodiment 8 shown in FIG. 35 whether to estimate a spherical surface or an elliptical surface in advance from the number of output data stored in the output data storage means or the distribution in the three-dimensional orthogonal coordinate space. Judgment is made, and either one is selected and estimated.
  • FIG. 1 is a configuration diagram for explaining the first embodiment of the acceleration measuring device of the present invention.
  • Appropriate data is selected from the data acquired from the three-axis acceleration sensor and defined on the three-dimensional orthogonal coordinate space. Offset correction is performed by estimating the coordinate value of the reference point.
  • reference numeral 1 is a 3-axis acceleration sensor
  • 2 is a 3-axis acceleration sensor X-axis direction component detection circuit
  • 3 is a 3-axis acceleration sensor y-axis direction component detection circuit
  • 4 is a 3-axis acceleration sensor z-axis.
  • Direction component detection circuit 5A is a data acquisition unit (output data acquisition means), 5 is a multiplexer unit, 6 is an acceleration sensor drive power supply unit, 7 is an amplification unit, 8 is an AZD conversion unit, 9 is a temperature detection unit, 10 is Sensitivity correction information storage unit, 11 is a sensitivity correction calculation unit, 12 is a data storage unit, 13 is a data selection unit (output data selection unit), 14 is a data storage unit (output data storage unit), 15 is a reference point estimation unit ( Reference point estimation means), 16 an offset information storage section, 17 an offset correction calculation section (offset correction means), and 18 a data change determination section (data change determination means).
  • Reference point estimation means Reference point estimation means
  • 16 an offset information storage section
  • 17 offset correction calculation section
  • 18 a data change determination section (data change determination means).
  • the acceleration measuring device includes an acceleration sensor 1 that detects acceleration in three axes, a data acquisition unit 5A that acquires three-axis output data of the acceleration sensor 1, and a data acquisition unit 5A.
  • a data selection unit 13 for selecting and selecting whether or not the repeatedly acquired 3-axis output data is appropriate, and a data storage unit 14 for storing the 3-axis output data selected by the data selection unit 13 From the distribution in the three-dimensional orthogonal coordinate space when each axis component is the coordinate value of the predetermined number of three-axis output data stored in the data storage unit 14, the reference points defined in the three-dimensional orthogonal coordinate space
  • a reference point estimator 15 for estimating the coordinate value, and an offset correction calculator for correcting the offset of the 3-axis output data of the acceleration sensor 1 based on the coordinate value of the reference point estimated by the reference point estimator 15 With 17
  • the data acquisition unit 5A includes a multiplexer unit 5, an acceleration sensor drive power supply unit 6, an amplification unit 7, and an AZD conversion unit 8.
  • the triaxial acceleration sensor 1 includes an X axis direction detection circuit 2, a y axis direction detection circuit 3, and a z axis direction detection circuit 4.
  • the X-axis direction detection circuit 2, the y-axis direction detection circuit 3, and the z-axis direction detection circuit 4 detect the X-axis direction, the y-axis direction, and the z-axis direction component of acceleration, respectively.
  • the multiplexer unit 5 is connected to the X-axis direction detection circuit 2, the y-axis direction detection circuit 3, and the z-axis direction detection circuit 4 by time-sharing the acceleration sensor drive power source unit 6 and the amplification unit 7.
  • the acceleration sensor drive power supply unit 6 supplies power to the X-axis direction detection circuit 2, the y-axis direction detection circuit 3, and the z-axis direction detection circuit 4 through the multiplexer unit 5 in a time division manner.
  • Amplifying unit 7 Through the multiplexer unit 5, the output voltages of the X-axis direction detection circuit 2, the y-axis direction detection circuit 3, and the z-axis direction detection circuit 4 are amplified in a time division manner.
  • the AZD conversion unit 8 AZD converts the output voltages of the X-axis direction detection circuit 2, the y-axis direction detection circuit 3, and the z-axis direction detection circuit 4 amplified by the amplification unit 7, and outputs the result as 3-axis output data.
  • the temperature detector 9 detects the temperature of the triaxial acceleration sensor 1.
  • the sensitivity correction information storage unit 10 stores predetermined sensitivity correction information.
  • the sensitivity correction calculation unit 11 corrects the sensitivity of the 3-axis output data output from the AZD conversion unit 8 based on the temperature data acquired from the temperature detection unit 9 and the sensitivity correction information stored in the sensitivity correction information storage unit 10. I do.
  • the data storage unit 12 is a FIFO-type data buffer that holds a predetermined number of 3-axis output data that is sequentially output from the sensitivity correction calculation unit 11.
  • the data selection unit 13 selects data suitable for reference point coordinate estimation performed by the reference point estimation unit 15 from the three-axis output data held in the data storage unit 12.
  • the data storage unit 14 is a data buffer that stores a predetermined number of 3-axis output data selected by the data selection unit 13.
  • the reference point estimation unit 15 estimates reference point coordinates based on a predetermined number of three-axis output data stored in the data storage unit 14 and outputs reference point coordinate data.
  • the offset information storage unit 16 stores the reference point coordinate data output from the reference point estimation unit 15.
  • the offset correction calculation unit 17 performs offset correction of the three-axis output data output from the sensitivity correction calculation unit 11 based on the reference point coordinate data stored in the offset information storage unit 16.
  • the sensitivity-corrected three-axis output data Sx, Sy, Sz output from the sensitivity correction calculation unit 11 is expressed by the following equation: It is expressed as
  • the point C1' is expected to correspond to the reference point C1
  • the offset values Cx, Cy, Cz of each axis component can be estimated using the coordinate values of 1,, Cy, Cz.
  • the reference point estimation unit 15 estimates the coordinate value of the reference point by a statistical method so that the variation in the distance from each of the predetermined number of three-axis output data to the reference point is minimized.
  • Cx'Cy ', Cz' may be calculated directly using the optimization method (for example, see Non-Patent Document 1) for the above equation (23), but iteratively calculated until the solution converges Therefore, using the following method is advantageous in terms of calculation time.
  • the reference point estimation unit 15 estimates the coordinate value of the reference point by a statistical method so that the distance from each of the predetermined number of three-axis output data to the reference point is closest to the predetermined representative value.
  • This method has an advantage that, for example, when the corrected sensitivity a is clearly determined, estimation of erroneous reference point coordinates due to noise can be prevented more reliably.
  • the 3-axis acceleration sensor 1 receives the motion acceleration in addition to the gravitational acceleration g. That is,
  • Kx, Ky, and Kz indicate the ⁇ , y, and z-axis direction components of motion acceleration.
  • the data selection unit 13 calculates a difference from the 3-axis output data acquired immediately before, and the difference continues within a predetermined value for a predetermined number of times or more. If there is, select the 3-axis output data as appropriate.
  • FIG. 4 is a conceptual diagram of a specific method (part 1) for selecting the three-axis output data in the first embodiment, and here, it is shown in one dimension for the sake of simplicity.
  • Curve 20 represents the time change of the acceleration received by triaxial acceleration sensor 1
  • black point 21 represents the timing of triaxial output data acquisition. Since the acceleration in section 22 is almost constant, the accelerometer can be considered to be stationary, so select the output data acquired in this section!
  • FIG. 5 is a block diagram showing a specific method (part 1) for selecting the three-axis output data in the first embodiment, and shows details of the data storage unit 12 and the data selection unit 13.
  • reference numeral 23 denotes a two-stage FIFO data buffer
  • 24 denotes a comparison unit
  • 25 denotes a counter
  • 26 denotes an output unit.
  • the two-stage FIFO type data buffer 23 corresponds to the data storage unit 12, and stores the 3-axis output data in which the sensitivity correction calculation unit 11 is also sequentially output.
  • the comparison unit 24 calculates the difference between the three-axis output data stored in each stage of the two-stage FIFO type data buffer 23, clears the counter 25 if it is greater than or equal to a predetermined value, and sets the value of the counter 25 if it is less than the predetermined value. Increase one.
  • the output unit 26 When the value of the counter 25 reaches a predetermined value, for example, 3 or more, the output unit 26 is activated, and the 3-axis output data stored in the first stage of the 2-stage FIF O-type data buffer 23 is selected. Output as output data.
  • the data selection unit 13 estimates a spherical surface based on a distribution in a three-dimensional orthogonal coordinate space when each axis component is a coordinate value of a predetermined number of three-axis output data repeatedly acquired by the data acquisition unit 5A. This spherical force is selected by selecting the 3 axis output data within the specified distance as appropriate.
  • the 3-axis output data acquired while the accelerometer is subjected to motion acceleration is the axis of the 3-axis output data in the 3D Cartesian coordinate space (X, y, z).
  • X, y, z 3D Cartesian coordinate space
  • the 3-axis output data in which the distance from the reference point CI (Cx, Cy, Cz) to the point P (Sx, Sy, Sz) deviates significantly from ag. If is included, the estimation error increases.
  • FIG. 6 is a conceptual diagram of specific method 2 for selecting triaxial output data in Embodiment 1, and is for explaining a specific method for selecting triaxial output data based on the above-described tendency.
  • it is expressed in two dimensions.
  • the latest predetermined number for example, 8 pieces of 3-axis output data stored in the data storage unit 12 are respectively converted into each axis component of the 3-axis output data in the three-dimensional orthogonal coordinate space (X, y, z).
  • the spherical surface Ql may be estimated with the radius r of the spherical surface Q1 as a predetermined value.
  • a data change determination unit 18 for determining whether the triaxial output data selected by the data selection unit 13 has changed by a predetermined value or more compared to the triaxial output data already accumulated by the data storage unit 14.
  • the data storage unit 14 discards the 3-axis output data selected by the data selection unit 13 based on the determination result of the data change determination unit 18 without storing it.
  • the three-axis acceleration data stored in the data storage unit 14 is converted into points P (S, S,) with the coordinate components of the three-axis output data in the three-dimensional orthogonal coordinate space (X, y, z). S), P (S, S, S
  • the reference point estimator 15 has a problem that the estimation error of the reference point coordinates becomes very large.
  • the 3-axis output data already stored in the data storage unit 14 is stored before the 3-axis output data selected in the data selection unit 13 is stored in the data storage unit 14. Compared to the above, if it does not change more than the predetermined value, either one should be discarded without accumulating.
  • FIG. 7 is a specific configuration diagram of the data change determination unit in the first embodiment, and shows the data storage unit 14.
  • reference numeral 27 denotes an input unit
  • 28 denotes a comparison unit
  • 29 denotes a data buffer
  • 30 denotes an output unit.
  • the 3-axis output data selected in the data selection unit 13 is temporarily stored in the input unit 27.
  • the comparison unit 28 compares the 3-axis output data temporarily stored in the input unit 27 with the 3-axis output data stored in the data notifier 29 to determine whether the difference between the two is greater than or equal to a predetermined value. To do. Note that the 3-axis output data stored in the data buffer 29 to be compared may be only the 3-axis output data stored last, or all 3-axis output data will be compared depending on the situation. May be.
  • the 3-axis output data temporarily stored in the input unit 27 is accumulated in the data buffer 29, and the If the difference is less than the specified value, the 3-axis output data temporarily stored in the input unit 27 is broken. Abandoned.
  • the 3-axis output data stored in the data buffer 29 to be compared may be deleted, and the 3-axis output data temporarily stored in the input unit 27 may be stored in the data buffer 29.
  • the output unit 30 outputs the triaxial output data stored in the data buffer 29 to the reference point estimation unit 15.
  • FIGS. 8 to 10 are flowcharts for explaining the procedure for acquiring the reference point coordinate data in the first embodiment of the present invention.
  • the data change determination unit 18 compares the 3-axis output data selected by the data selection unit 13 with the 3-axis output data stored last in the data storage unit 14, and the difference between them is determined. If the value is less than the specified value, the former will be discarded.
  • Sx, Sy, Sz are acquired from the sensitivity correction calculation unit 17 (S102).
  • the 3-axis output data stored in S, S, S of the data storage unit 12 is converted into the second stage S xl yl zi x of the data storage unit 12.
  • step S102 if the difference between the 3-axis output data stored in the first and second stages in the data storage unit 12 is equal to or greater than the predetermined value el, kl is cleared and the process proceeds to step S102. Return (S10 4, S105). Next, the value of kl is incremented by 1 (S106), and when the value of kl is less than the predetermined value ml, the process returns to S102 (S107).
  • the index i is set to the value of k2 (S113).
  • the index j is set to i-l, and the 3-axis output data stored in the j-th stage S, S, S of the data storage unit 14 is sent to the i-th stage S, S, S (S 114).
  • the value of i is decremented by 1 (SI 15), and if the value of i exceeds 1, the process returns to S114 (S116) [0163]
  • S, S, S are stored in S, S, S (S 117). If the value of k2 is less than N
  • FIG. 11 is a configuration diagram for explaining the second embodiment of the acceleration measuring device of the present invention.
  • an ellipsoid is defined on the three-dimensional orthogonal coordinate space, and the length of the main axis and The sensitivity and offset are corrected by estimating the center coordinate value.
  • 31 is a 3-axis acceleration sensor
  • 32 is a 3-axis acceleration sensor X-axis direction component detection circuit
  • 33 is a 3-axis acceleration sensor y-axis direction component detection circuit
  • 34 is a 3-axis acceleration sensor z
  • 35A is a data acquisition unit
  • 35 is a multiplexer unit
  • 36 is an acceleration sensor drive power supply unit
  • 37 is an amplification unit
  • 38 is an AZD conversion unit
  • 39 is a data storage unit
  • 40 is a data selection unit
  • Reference numeral 41 denotes a data storage unit
  • 41a denotes a data change determination unit
  • 41b denotes a temperature detection unit
  • 42 denotes a reference point estimation unit
  • 43 denotes a sensitivity / offset information storage unit
  • 44 denotes a sensitivity / offset correction calculation unit.
  • the acceleration measuring apparatus of the second embodiment includes an acceleration sensor 31 that detects acceleration in three axes, a data acquisition unit 35A that acquires three-axis output data of the acceleration sensor 31, and the data acquisition.
  • a data selection unit 40 that determines whether or not the 3-axis output data repeatedly acquired by the unit 35A is appropriate, and a data storage unit 41 that stores the 3-axis output data selected by the data selection unit 40.
  • the reference point estimation unit 42 for estimating the length and center coordinate value of each principal axis of the ellipsoid, and the length and center coordinate value of each principal axis of the ellipse estimated by the reference point estimation unit 42 , 3-axis output of acceleration sensor 31 Sensitivity 'offset correction calculation unit 44 for correcting data sensitivity and offset is provided.
  • the data acquisition unit 35A includes a multiplexer unit 35 and an acceleration sensor driving power source.
  • the unit 36, the amplification unit 37, and the AZD conversion unit 38 are configured.
  • 3-axis acceleration sensor 31, X-axis direction detection circuit 32, y-axis direction detection circuit 33, z-axis direction detection circuit 34, multiplexer unit 35, acceleration sensor drive power supply unit 36, amplification unit 37, and AZD conversion unit 38 Is the same as that of the first embodiment described above.
  • the data storage unit 39 is a FIFO type data buffer that holds a predetermined number of three-axis output data sequentially output from the AZD conversion unit 38.
  • the data selection unit 40 and the data storage unit 41 are the same as those in the first embodiment.
  • the reference point estimation unit 42 estimates the length and center coordinate value of each principal axis of the ellipsoid based on a predetermined number of three-axis output data accumulated in the data accumulation unit 41, and calculates the ellipse principal axis length. ⁇ Output the center coordinate data.
  • the sensitivity / offset information storage unit 43 stores the ellipse principal axis length / center coordinate data output from the reference point estimation unit 42.
  • Sensitivity 'offset correction calculation unit 44 outputs the 3-axis output from AZD conversion unit 38 based on the ellipsoidal principal axis length' central coordinate data stored in sensitivity 'offset information storage unit 43. Performs data sensitivity and offset correction.
  • the three-axis output data Srx, Sry, Srz output from the AZD conversion unit 38 is expressed by the following equation.
  • a, a, a are the sensitivities in each axis direction, Crx, Cry, Crz are present in Srx, Sry, Srz x y z
  • E1 ' is expected to be equivalent to E1
  • the length of each spindle of E1' is a ', a', a
  • the reference point estimation unit 42 estimates the length and central coordinate value of each principal axis of the ellipsoid by a statistical method so that each of a predetermined number of three-axis output data is closest to the ellipsoid.
  • N 6 can be estimated.
  • the sensitivity of a piezoresistive 3-axis acceleration sensor is only several hundreds / z VZGZV, the output voltage is very weak, and considerable noise is superimposed on the acquired 3-axis output data.
  • is defined by the following equation as a value similar to the square sum of ⁇ .
  • the data selection unit 40 is updated each time the 3-axis output data is acquired by the data acquisition unit 35A.
  • the difference from the previously acquired 3-axis output data is calculated, and when the difference is within a predetermined value for a predetermined number of consecutive times, the 3-axis output data is determined to be appropriate and selected.
  • the data selection unit 40 estimates a spherical surface based on the distribution in the three-dimensional orthogonal coordinate space when the axis components of the predetermined number of three-axis output data repeatedly acquired by the data acquisition unit 35A are used as coordinate values. Spherical force Select 3-axis output data within a specified distance based on appropriate judgment. Further, the data selection unit 40 estimates the spherical surface using the spherical radius as a predetermined value.
  • the data change determination unit 41a for determining whether the data has changed by a predetermined value or more compared to the 3-axis output data already stored by the data storage unit 41
  • the data accumulation unit 41 discards the 3-axis output data selected by the data selection unit 40 without accumulating based on the determination result of the data change determination unit 41a.
  • FIGS. 14 to 16 are flowcharts for explaining a procedure for acquiring the ellipsoidal principal axis length ′ center coordinate data in the second embodiment of the present invention.
  • the 3-axis output data selected by the data selection unit 40 is compared with the 3-axis output data stored last in the data storage unit 41, and both of them are compared. If the difference is less than a predetermined value, the former is discarded.
  • Srx, Sry, Srz are acquired from the AZD conversion unit 38 (S202).
  • the 3-axis output data stored in S, S, S of the data storage unit 39 is used as the second stage of the data storage unit 39.
  • step S202 is performed.
  • step S202 is performed.
  • the value of k3 is incremented by 1 (S206). If the value of k3 is less than the predetermined value m2, the process returns to S202 (S207). squeeze k3 and select S, S, S as data selection ⁇ 40 output S
  • the index i is set to the value of k4 (S213).
  • FIG. 17 is a configuration diagram for explaining the third embodiment of the acceleration measuring device of the present invention.
  • the estimation of the reference point is detected by the triaxial acceleration sensor, and the gravitational acceleration expected to be estimated is shown. Estimates the coordinate value of the reference point defined on the 3D Cartesian coordinate space from the value of each axis component.
  • 45 is a 3-axis acceleration sensor
  • 46 is a 3-axis acceleration sensor X-axis direction component detection circuit
  • 47 is a 3-axis acceleration sensor y-axis direction component detection circuit
  • 48 is a 3-axis acceleration sensor z Axis direction component detection circuit
  • 49A is a data acquisition unit
  • 49 is a multiplexer unit
  • 50 is an acceleration sensor drive power supply unit
  • 51 is an amplification unit
  • 52 is an AZD conversion unit
  • 53 is a temperature detection unit
  • 54 is sensitivity correction information storage
  • 55 is a sensitivity correction calculation unit
  • 56 is a reference point estimation unit
  • 57 is an offset information storage unit
  • 58 is an offset correction calculation unit. Note that a description of the same parts as those in the first embodiment is omitted.
  • the acceleration measuring apparatus includes an acceleration sensor 4 that detects acceleration in three axial directions. 5 and a data acquisition unit 49A that acquires the 3-axis output data of the acceleration sensor 45, and the data acquisition unit 49A receives the 3-axis output data while the acceleration sensor 45 holds a predetermined posture. It is expected that the acceleration sensor 45 will detect and detect the position in the 3D Cartesian coordinate space and the predetermined posture when each axis component of the 3 axis output data is used as the coordinate value.
  • the reference point estimation unit 56 for estimating the coordinate value of the reference point determined in the three-dimensional orthogonal coordinate space from the value of each axis component of the gravitational acceleration, and the reference point coordinate value estimated by the reference point estimation unit 56 Based on this, an offset correction calculation unit 58 that corrects the offset of the three-axis output data of the acceleration sensor 45 is provided.
  • the data acquisition unit 49A includes a multiplexer unit 49, an acceleration sensor drive power supply unit 50, an amplification unit 51, and an AZD conversion unit 52.
  • 3-axis acceleration sensor 45 X-axis direction detection circuit 46, y-axis direction detection circuit 47, z-axis direction detection circuit 48, multiplexer unit 49, acceleration sensor drive power supply unit 50, amplification unit 51, and AZD conversion unit 52
  • the temperature detection unit 53, the sensitivity correction information storage unit 54, the sensitivity correction calculation unit 55, the offset information storage unit 57, and the offset correction calculation unit 58 are the same as those in the first embodiment.
  • the reference point estimation unit 56 estimates reference point coordinates based on the three-axis output data output from the sensitivity correction information storage unit 55 and outputs reference point coordinate data.
  • each direction component of the acceleration received by the triaxial acceleration sensor 45 is uniquely determined. For example, as shown in Figure 18A and Figure 18B
  • the X-axis detection direction of the three-axis acceleration sensor 45 is in the direction of the gravitational acceleration g. If the vertical and y-axis detection direction is at an angle ⁇ with respect to the direction opposite to the gravitational acceleration g, the X, y, and z-axis direction components Gx, Gy, and Gz of the gravitational acceleration g are as follows: .
  • u is expressed as follows.
  • (u ⁇ ⁇ ,,, ⁇ .
  • is also determined.
  • the coordinate values Cx, Cy, Cz of the reference point C1 can be calculated as follows.
  • the following means are omitted from the first embodiment.
  • the selection of the 3-axis output data in the data selection unit 13 and the data change determination unit 18 in the data storage unit 14 are omitted.
  • the following cases may be considered, and the above-described means can be omitted, so Embodiment 4 is provided.
  • the gravitational acceleration is mainly detected like the tilt sensor, and the acceleration measuring device does not move much during measurement, and the motion acceleration received by the 3-axis acceleration sensor is very small compared to the gravitational acceleration.
  • a means for detecting motion acceleration is separately provided, and when motion acceleration is detected, the triaxial acceleration data is not acquired.
  • the user issues an instruction to acquire 3-axis acceleration data while the acceleration measuring device is stationary each time each 3-axis acceleration data is acquired. Is supposed to do the operation.
  • Fig. 20 is a block diagram for explaining Embodiment 4 of the acceleration measuring device of the present invention.
  • Reference point estimation is performed by setting a predetermined number of reference point coordinate values defined on a three-dimensional orthogonal coordinate space.
  • Each force of the 3-axis output data is estimated by a statistical method so that the variation in the distance to the reference point is minimized, and the reference point is estimated based on the reference point defined in the three-dimensional orthogonal coordinate space.
  • the coordinate values are estimated by statistical methods so that the distance to each force reference point of the specified number of 3-axis output data is closest to the specified representative value.
  • 61 is a 3-axis acceleration sensor
  • 62 is a 3-axis acceleration sensor X-axis direction component detection circuit
  • 63 is a 3-axis acceleration sensor y-axis direction component detection circuit
  • 64 is a 3-axis acceleration sensor z
  • 65A for data acquisition unit
  • 66 for acceleration sensor drive power supply unit
  • 67 for amplification unit
  • 68 for AZD conversion unit
  • 69 for temperature detection unit
  • 71 is a sensitivity correction calculation unit
  • 72 is a data storage unit
  • 73 is a reference point estimation unit
  • 74 is an offset information storage unit
  • 75 is an offset correction calculation unit.
  • the acceleration measuring apparatus includes an acceleration sensor 61 that detects acceleration in the three-axis direction, a data acquisition unit 65A that acquires three-axis output data of the acceleration sensor 61, and the data acquisition.
  • the coordinate value of the reference point defined on the 3D Cartesian coordinate space is determined from the distribution in the 3D Cartesian coordinate space when each axis component is the coordinate value of the predetermined number of 3 axis output data repeatedly acquired by the unit 65A.
  • the data acquisition unit 65A includes a multiplexer unit 65, an acceleration sensor drive power source unit 66, and an amplification unit. 67 and an AZD conversion unit 68.
  • 3-axis acceleration sensor 61 X-axis direction detection circuit 62, y-axis direction detection circuit 63, z-axis direction detection circuit 64, multiplexer unit 65, acceleration sensor drive power supply unit 66, amplification unit 67, and AZD conversion unit 68
  • the temperature detection unit 69, the sensitivity correction information storage unit 70, the sensitivity correction calculation unit 71, the offset information storage unit 74, and the offset correction calculation unit 75 are the same as those in the first embodiment.
  • the data accumulation unit 72 is a data buffer that accumulates a predetermined number of three-axis output data sequentially output from the sensitivity correction information storage unit 71.
  • the reference point estimation unit 73 estimates reference point coordinates based on a predetermined number of three-axis output data stored in the data storage unit 72 and outputs reference point coordinate data.
  • the specific method (part 1) of estimating CI ′ (Cx ′, Cy ′, Cz ′) is the same as that in the first embodiment described above.
  • the reference point estimation unit 73 uses a statistical method to minimize the variation in the distance to the force reference point of each of the predetermined number of three-axis output data from the coordinate value of the reference point determined in the three-dimensional orthogonal coordinate space. To be estimated.
  • the specific method (part 2) for estimating CI '(Cx', Cy ', Cz') is the same as that in the first embodiment described above. That is, the reference point estimation unit 73 sets the coordinate value of the reference point determined in the three-dimensional orthogonal coordinate space so that the variation of the distance to each force reference point of the predetermined number of three-axis output data with respect to the predetermined representative value is minimized. It is estimated by statistical methods.
  • FIGS. 21 and 22 are flowcharts for explaining the procedure for acquiring the reference point coordinate data according to the fourth embodiment of the present invention.
  • the 3-axis output data Sx, Sy, Sz is acquired from the sensitivity correction calculation unit 71 and stored in the first stage S 1, S 2, S of the data storage unit 72.
  • the number k5 of 3-axis output data stored in the data storage unit 72 is set to 1.
  • Sx, Sy, Sz are obtained from the sensitivity correction calculation unit 71 (S302). If the value of k5 is less than the predetermined value N, increase the value of k5 by one (S303, S304).
  • the index i is set to the value of k5 (S305).
  • the index j is set to i-1 and stored in the j-th stage S, S, S of the data storage unit 72.
  • the three-axis output data is sent to the i-th stage S, S, S (S306).
  • the value of i is decremented by 1 (S307). If the value of i exceeds 1, the process returns to S306 (S308).
  • the following means are omitted from the above-described second embodiment.
  • the selection of the three-axis output data in the data selection unit 40 and the data change determination unit 41a in the data storage unit 41 are omitted.
  • the above-described means may be omitted depending on the field of use of the acceleration measuring device, so the fifth embodiment is provided.
  • FIG. 23 is a block diagram for explaining the fifth embodiment of the acceleration measuring device of the present invention.
  • the reference point is estimated based on the length of each principal axis of the elliptical surface defined on the three-dimensional orthogonal coordinate space, and
  • the center coordinate value is estimated by a statistical method so that each of a predetermined number of 3-axis output data is closest to the ellipsoid.
  • reference numeral 76 is a 3-axis acceleration sensor
  • 77 is a 3-axis acceleration sensor X-axis direction component detection circuit
  • 78 is a 3-axis acceleration sensor y-axis direction component detection circuit
  • 79 is a 3-axis acceleration sensor z
  • 80A is a data acquisition unit
  • 80 is a multiplexer unit
  • 81 is an acceleration sensor drive power supply unit
  • 82 is an amplification unit
  • 83 is an AZD conversion unit
  • 84 is a data storage unit
  • 85 is a reference point estimation unit
  • 86 is a sensitivity 'offset information storage unit
  • 87 is a sensitivity / offset correction calculation unit.
  • the acceleration measuring apparatus of the fifth embodiment includes an acceleration sensor 76 that detects acceleration in three axes, a data acquisition unit 80A that acquires three-axis output data of the acceleration sensor 76, and this data acquisition.
  • a reference point estimation unit 85 for estimating the height and center coordinate value by a statistical method so that each of a predetermined number of 3-axis output data is closest to the ellipsoid, Sensitivity to correct the sensitivity and offset of the 3-axis output data of the acceleration sensor based on the length and center coordinate value of each principal axis of the ellipsoid estimated by the quasi-point estimation unit 85.
  • the offset correction calculation unit 87 is provided. ing.
  • the data acquisition unit 80A includes a multiple
  • 3-axis acceleration sensor 76, X-axis direction detection circuit 77, y-axis direction detection circuit 78, z-axis direction detection circuit 79, multiplexer unit 80, acceleration sensor drive power supply unit 81, amplification unit 82, and AZD conversion unit 83 Is the same as that of the first embodiment described above.
  • the data accumulation unit 84 is a data buffer that accumulates a predetermined number of three-axis output data sequentially output from the AZD conversion unit 83.
  • the reference point estimation unit 85 estimates the length and center coordinate value of each principal axis of the ellipsoid based on the predetermined number of three-axis output data accumulated in the data accumulation unit 84, and the elliptical principal axis length 'center' Output coordinate data.
  • the sensitivity 'offset information storage unit 86 and the sensitivity' offset correction calculation unit 87 are the same as those in the second embodiment described above.
  • FIG. 24 and FIG. 25 are flowcharts for explaining the procedure for acquiring the reference point coordinate data in the fifth embodiment of the present invention.
  • the three-axis output data Srx, Sry, Srz is acquired from the AZD conversion unit 83 and stored in the first stage S 1, S 2, S of the data storage unit 84.
  • the number k6 of 3-axis output data stored in the data storage unit 84 is set to 1.
  • Srx, Sry, Srz are acquired from the AZD conversion unit 83 (S402).
  • the value of k6 is less than the predetermined value N
  • the value of k6 is increased by 1 (S403, S404).
  • the index i is set to the value of k6 (S405).
  • the index j is set to i ⁇ 1, and the 3-axis output data stored in the j-th stage S, S, S of the data storage unit 84 is sent to the i-th stage S, S, S (S406). Decrease i by 1 (S40
  • step S406 If the value of i exceeds 1, return to step S406 (S408).
  • Srx, Srv, Srz are stored in S, S, S (S409).
  • k6 is less than N If YES, return to S402 (S410). (S, S, S), ..., (S, S, S) to a,
  • sensitivity and offset have remarkable temperature characteristics compared to a piezoresistive acceleration sensor. Therefore, if the temperature change in the environment where the acceleration measuring device is located is large, the temperature when the 3-axis acceleration data used to estimate the reference point coordinate data stored in the offset information storage unit is acquired. Or sensitivity / offset information Ellipsoidal principal axis length stored in the storage unit 'Temperature when the 3-axis acceleration data used to estimate the center coordinate data was acquired and the offset correction calculation unit or sensitivity / offset correction The temperature at which the 3-axis acceleration data to be corrected is acquired by the calculation unit may vary greatly, and errors in offset correction or sensitivity / offset correction may increase.
  • the solution 1 can be applied in the above-described first, second, fourth, and fifth embodiments. Hereinafter, the case of applying to Embodiment 1 will be described.
  • FIG. 26 is a block diagram showing Solution 1 for dealing with temperature characteristics, in which reference numeral 88 is an input unit, 89 is a comparison unit, 90 is a first data buffer, and 91 is second data. Buffer, 92 Data buffer L, 93 Selection unit, 94 Reference point estimation unit, 95 Distribution unit, 96 First reference point coordinate storage, 97 Second reference point coordinate storage, 98 Reference point coordinate Memory L is shown. That is, FIG. 26 shows an example of a detailed configuration corresponding to the data storage unit 14, the reference point estimation unit 15, and the offset information storage unit 16 when the present solution is applied.
  • the data storage unit 14 the reference point estimation unit 15, and the offset information storage unit 16 when the present solution is applied.
  • the operating temperature range of the acceleration measuring device is divided into L pieces in advance, and they shall be referred to as temperature division 1, temperature division 2, ..., temperature division L, respectively.
  • the 3-axis output data selected by the data selection unit 13 is temporarily stored in the input unit 88. Based on the temperature data acquired from the temperature detection unit 9, the input unit 88 determines which temperature category the triaxial output data force S temporarily stored belongs to.
  • the first data buffer 90 and the second data buffer 91, ..., the data buffer L92 are three-axis outputs belonging to temperature division 1, temperature division 2, ..., temperature division L, respectively. Accumulate data
  • the comparison unit 89 includes the temperature classification to which the three-axis output data temporarily stored in the input unit 88 from the first data buffer 90 and the second data buffer 1, ..., data buffer L92 belongs. Select the same one. Thereafter, similarly to the description of the first embodiment described above, the force for accumulating the 3-axis output data temporarily stored in the input unit 88 in the selected data buffer is discarded.
  • the selection unit 93 determines the number of data accumulated in the selected data buffer to be a predetermined value. If the number is reached, the three-axis output data and the temperature classification information accumulated in the selected data buffer are output to the reference point estimation unit 94.
  • the reference point estimation unit 94 estimates the coordinate value of the reference point based on the three-axis output data output from the selection unit 93. Based on the temperature classification information output from the selection unit 93, the distribution unit 95 uses the first reference point coordinate storage 96 and the second reference point coordinate storage corresponding to the reference point coordinate data output from the reference point estimation unit 94. 97, ..., Reference point coordinate storage Stored in any of L98.
  • the temperature data acquired from the temperature detection unit 9 is The 3-axis output data may be corrected depending on where it is located. This is effective when the temperature dependence of sensitivity and offset is generally understood, and the temperature change of sensitivity and offset within the temperature category is relatively large.
  • the offset correction calculation unit 17 outputs the 3-axis output from the sensitivity correction calculation unit 11. Based on the temperature data acquired from the temperature detector 9, it is determined to which temperature category the data belongs, and the corresponding first reference point coordinate storage 96 and second reference point coordinate storage 97,. , Reference point coordinate memory L98 is stored in the wrong position !, and offset correction is performed using the reference point coordinate data.
  • FIG. 27 is a block diagram showing Solution 2 for dealing with temperature characteristics.
  • data storage units 14, 40, reference point estimation units 15, 42, and offset information storage unit 16 2 shows an example of a detailed configuration corresponding to the sensitivity 'offset information storage unit 43.
  • reference numeral 99 is an input unit
  • 100 is a comparison unit
  • 101 is a data buffer A
  • 102 is a data buffer B
  • 103 is a selection unit
  • 104 is a reference point estimation unit
  • 105 is a distribution unit
  • 106 is a first reference point coordinate.
  • Reference numeral 107 denotes a second reference point coordinate storage
  • reference numeral 108 denotes a reference point coordinate storage L.
  • the operating temperature range of the acceleration measuring device is divided into L pieces in advance, and are referred to as temperature division 1, temperature division 2, ..., temperature division L, respectively.
  • the 3-axis output data selected by the data selection unit 13 is temporarily stored in the input unit 99. Based on the temperature data acquired from the temperature detection unit 9, the input unit 99 determines to which temperature category the temporarily stored 3-axis output data belongs.
  • Data buffer A101 accumulates triaxial output data
  • data buffer B102 obtains from temperature detector 9 when triaxial output data accumulated in data buffer A101 is temporarily stored in input unit 99. Temperature data is stored in the same order. As a result, each of the three-axis output data stored in the data buffer A101 can be identified to which temperature category by referring to the temperature data stored in the data buffer B102.
  • the comparison unit 100 compares the three-axis output data stored in the data buffer A101 with the same temperature category for the 3-axis output data temporarily stored in the input unit 99. In the same manner as described in the first embodiment, the power stored in the data buffer A101 is broken. Abandon.
  • the selection unit 103 is stored in the 3-axis output data stored in the data buffer A101 this time.
  • the number of the same three-axis output data and temperature classification has reached a predetermined number, the corresponding three-axis output data and temperature classification information are output to the reference point estimation unit 104.
  • the reference point estimation unit 104 estimates the coordinate value of the reference point based on the three-axis output data output from the selection unit 103. Based on the temperature classification information output from the selection unit 103, the distribution unit 105 corresponds to the reference point coordinate data output from the reference point estimation unit 104 and the corresponding first reference point coordinate storage 106 and second reference point coordinates. Memory 107, ..., Reference point coordinate memory L108 B
  • the offset correction calculation unit 17 determines which temperature category the triaxial output data output from the sensitivity correction calculation unit 11 belongs to based on the temperature data acquired from the temperature detection unit 9.
  • the corresponding first reference point coordinate memory 106 and second reference point coordinate memory 107,..., Reference point coordinate memory L108 are stored in a misalignment! Make corrections.
  • the present solving means 3 can be applied to the above-described third embodiment.
  • FIG. 28 is a block diagram showing Solution 3 for dealing with temperature characteristics, and shows an example of a detailed configuration corresponding to the offset information storage unit 57 when the present solution is applied.
  • reference numeral 109 denotes a distribution unit
  • 110 denotes a first reference point coordinate storage
  • 111 denotes a second reference point coordinate storage
  • 112 denotes a reference point coordinate storage L.
  • the operating temperature range of the acceleration measuring device is divided into L pieces in advance, and they shall be referred to as temperature division 1, temperature division 2, ..., temperature division L, respectively.
  • the distribution unit 109 Based on the temperature data acquired from the temperature detection unit 53, the distribution unit 109 converts the reference point coordinate data output from the reference point estimation unit 56 to the corresponding first reference point coordinate storage 110 and second reference point coordinate.
  • Memory 111,..., Reference point coordinate memory LI 12 is stored in a misalignment.
  • the offset correction calculation unit 58 determines which temperature category the three-axis output data output from the sensitivity correction calculation unit 55 belongs to based on the temperature data acquired from the temperature detection unit 53.
  • the corresponding first reference point coordinate storage 110 and second reference point coordinate storage 111,..., Reference point coordinate storage LI 12 are stored in a misalignment! Perform offset correction.
  • the solving means 1 can be applied in the above-described Embodiment 1, Embodiment 2, Embodiment 4, and Embodiment 5.
  • the reference point coordinates are estimated for the 2-axis output data that also has the remaining 2-axis component force, excluding the axis component with the smallest value change among the 3-axis output data. Offset correction can be performed for these two axes.
  • the following procedure is performed. First, calculate the variation for each N-axis output data for the obtained N 3-axis output data.
  • the z-axis component variation v (z) is the X-axis component variation v (x), y-axis component. It is assumed that the variation of V (y) is smaller.
  • ⁇ , 2-axis output data is composed of S.
  • the solving means 2 can be applied in the first to fifth embodiments described above. Hereinafter, the case of applying to Embodiment 1 will be described.
  • the distribution force of the points in the three-dimensional orthogonal coordinate space (X, y, z) of the acquired N three-axis output data The coordinate value of the estimated reference point corresponds to the offset of the three-axis output data. I win.
  • a piezoresistive type acceleration sensor has an extremely large temperature characteristic, so if the temperature change in the environment where the acceleration measuring device is placed is large, the offset also varies with time. However, it is difficult to consider that the offset fluctuates with time in a short time because of the characteristics of the piezoresistive type calo speed sensor.
  • the present solving means 3 can be applied in the first to fifth embodiments described above. Hereinafter, the case where it applies to Embodiment 1 mentioned above is demonstrated.
  • the point P (Sx, Sy, Sz) force with each axis component of the 3-axis output data as the coordinate value in the three-dimensional orthogonal coordinate space (X, y, z) is also the reference point Cl (Cx, Cy , Cz) is the product of the corrected sensitivity a and gravitational acceleration g.
  • Piezoresistive accelerometers have extremely high sensitivity and temperature characteristics, so if the accelerometer is placed and the temperature of the environment changes greatly, the sensitivity also varies with time. Due to the characteristics of the piezoresistive acceleration sensor, it is difficult to imagine that the sensitivity fluctuates with time in a short time. In the first embodiment, the sensitivity is also corrected by the sensitivity correction calculation unit 11, and the corrected sensitivity a is almost constant.
  • ag is a value that can be predicted in advance, and the distance from the reference point estimated in the three-dimensional orthogonal coordinate space (X, y, z) to the point indicating each 3-axis output data also converges to the predicted value. It should be.
  • an acceleration measuring device including an acceleration sensor that detects acceleration in two axes instead of an acceleration sensor that detects acceleration in three axes is used. It is also applicable.
  • a two-dimensional orthogonal cross is obtained when the axis components of the predetermined number of two-axis output data accumulated by the output data accumulation means are used as coordinate values. From the distribution in space, the coordinates of the reference point defined in the two-dimensional orthogonal space are estimated.
  • the biaxial output data for estimating the coordinates of the reference point or the length and central coordinate value of each principal axis of the ellipse are acquired.
  • the attitude of the acceleration measuring device is controlled so that the angle formed between the direction of the axis perpendicular to either of the two axis directions for detecting the calo speed and the direction of gravitational acceleration is constant.
  • the measurement data In order to perform the spherical or elliptical surface fitting calculation of the acceleration sensor, for example, a method of accumulating measurement data in a finite-length buffer and estimating the center of the accumulated measurement value force sphere can be used. In this case, in order to estimate the center of the sphere with high accuracy, the measurement data must be distributed with high reliability on the spherical surface or the ellipsoid surface. In other words, the measurement data must be data when it is surely stationary.
  • the threshold value of this set time is small, there is a possibility that the value at the moment when the uniform acceleration motion was accidentally taken in. Increasing the threshold for periods of inactivity Although the possibility can be reduced, it takes time to acquire the measurement data at rest, and the efficiency of data acquisition decreases. Therefore, it is better to add stationary time information indicating how many seconds it has been stationary to measurement data when stationary.
  • This stationary time information can be used as one index indicating how much the accumulated measurement data is reliable as stationary data.
  • a short time of stationary means that the probability that the acceleration sensor is stationary at the time of data acquisition is low, and conversely, a long time means that the probability of being stationary and high is high.
  • the following can be considered as a method of using this stationary time information.
  • the stationary time information is added to the measurement data.
  • the measurement is performed at a constant interval, it is determined that the measurement is stationary and the force is also stationary next. It is possible to add the number of times the measurement has been performed until it is determined as information.
  • the data selection units 13 and 40 calculate the difference from the reference output data every time the output data is acquired by the data acquisition units 5A and 35A, and the difference is predetermined.
  • the reference output data, the output data acquired immediately before exceeding the specified value, or the output data acquired as the reference and acquired before the force difference exceeds the specified value are acquired. Any one of the output data or the average value thereof is selected, and the data accumulating units 14, 41 acquire the reference output data and acquire the data immediately before the force exceeds the predetermined value. Is added to the output data selected by the data selectors 13 and 40.
  • FIG. 29 is a conceptual diagram (part 1) of triaxial output data according to the sixth embodiment of the present invention.
  • a curve 211 shows the time change of acceleration received by the acceleration sensor
  • a black dot 212 shows the timing of output data acquisition of the triaxial calorie velocity sensor.
  • Section 213 indicates that the output value of the acceleration sensor is constant for m seconds
  • section 214 indicates that the output value of the acceleration sensor is constant for n seconds. In this case, m ⁇ n. Since the output value is constant in these sections, the acceleration sensor can be considered to be stationary. Therefore, both data can be used as measurement data at rest.
  • the measurement time is compared, and the measurement data in section 214 with a longer rest time is more likely to be measured. Should be adopted.
  • the threshold value for determining whether or not the output value is constant can be arbitrarily set.
  • FIG. 30 is a flowchart for explaining a procedure for selecting data according to the sixth embodiment of the present invention, and is a flowchart for obtaining offset information.
  • Scur, Sbase, and Sstat represent triaxial acceleration measurement data, and these are structures having X, Y, Z, and t as components.
  • Scur is the latest measurement data
  • Sbase is the reference point for determining the stationary state
  • Sstat is the measured data determined to be stationary.
  • Scur (x), Scur (y), Scur (z), and Scur (t) represent the X, Y, and ⁇ components of the measurement data Scur, respectively.
  • Scur (t) indicates the time (duration information) that has elapsed from the time when a certain reference point Sbase was measured to the time when Scur was measured.
  • Sbuf until Scur is measured represents an array of triaxial acceleration measurement data
  • Sbuf [i] represents the i-th element in the array.
  • the 3-axis acceleration measurement data is acquired and stored in Sbase as the initial setting, and at the same time, the current time is acquired and stored in Tbase. Only at the time of this initial setting, the value of Sbase is substituted for Sstat, and 0 is substituted for Sstat (t) (S421). Next, the 3-axis acceleration measurement data and the current time are acquired again and stored in Scur and Tcur, respectively (S422
  • FIG. 31 is a diagram showing the concept of measurement data accumulated in each variable at the time when the process of S425 in FIG. 30 is executed. Here, in order to simplify the explanation, it is shown in one dimension.
  • Section 215 indicates that the accelerometer was stationary, and the time was P seconds. If Scur 218 is the latest measurement data, Sbase 216 indicates the measurement data at the start of the interval, and Sstat holds the measurement data immediately before Scur is measured. In addition, Sstat (t) holds the stationary time P seconds.
  • Sstat (t) If the value of Sstat (t) is less than or equal to the predetermined value (tth), Sbase and Sstat are overwritten with Scur, Tbase with Tcur, and Sstat (t) with 0 (S426).
  • Sstat (t) If the value of Sstat (t) is larger than the predetermined value, an attempt is made to replace the measurement data in the data buffer Sbuf with Sstat (S427). Finally, it is determined whether the data buffer has been updated (S428), and the spherical center coordinates that minimize the variation in distance from the individual measurement data in the data buffer are obtained, and the offset is estimated ( S429). It is determined whether the data measurement is completed (S430). If not completed, the above-described processing is repeated.
  • FIG. 32 is a flowchart illustrating a procedure for replacing the measurement data in the data buffer according to the sixth embodiment of the present invention, and is a flowchart illustrating in detail the process of S427 in FIG. .
  • the distance between the measurement data Sbuf [i] in the data buffer Sbuf and Sstat in the three-dimensional space is calculated (S431). If the spatial distance between the measurement data Sstat and all the measurement data in the data buffer Sbuf is larger than the specified value (S432), one appropriate data in the data buffer Sbuf is replaced with Sstat (S433 to S435).
  • the measurement data with the smallest time among the measurement data in the data buffer may be deleted.
  • the measurement data with the closest spatial distance to Sstat, the measurement data acquired the oldest, or the measurement data with the longest distance of the estimated spherical or ellipsoidal force may be deleted.
  • the output data is an ellipse in which each measurement direction component, that is, one of the measurement axes is the major or minor axis. Since it is distributed over the body, it is possible to increase the accuracy of the elliptical surface fitting calculation by using data having components that are the maximum and minimum values on the measurement axis of the acceleration sensor.
  • the measurement axis of the acceleration sensor and the axis that is linearly related to the acceleration sensor are defined, and the output data that becomes the maximum or minimum on the axis is preferentially accumulated, so that the elliptical surface fitting calculation is performed.
  • An object of the present invention is to obtain a data group in which the estimation error is small in the above.
  • the major and minor axes of the estimated ellipsoid coincide with the X, Y, and ⁇ axes of the 3D Cartesian coordinate system.
  • the measurement data is the maximum and minimum values of each axis and accumulate them.
  • the data buffer is made redundant so that measurement data other than the maximum and minimum values on the axis can be accumulated, and the measurement data determined to be the maximum or minimum of any axis is stored in this redundant part. What is necessary is just to accumulate.
  • This redundant data buffer stores measurement data using the FIFO method. As a result, the entire data buffer is updated each time measurement data at rest is obtained, and measurement data groups that are not always the same can be obtained. In other words, each time the data group is updated, a sphere or ellipsoid fitting calculation is performed, and the result can be evaluated to determine whether the calculation result is reliable.
  • FIG. 33 is a specific configuration diagram of the data change determination unit in the seventh embodiment of the present invention, and shows a specific method of measurement data selection. The details of the data storage unit 12 and the data selection unit 13 in FIG. 1 are shown.
  • reference numeral 220 is a data input unit
  • 221 is an axis comparison unit
  • 222 is a maximum / minimum value data buffer
  • 223 is a FIFO type data buffer
  • 224 is an output unit.
  • Axis comparison unit 221 includes measurement data and maximum / minimum data stored in input unit 220.
  • the measurement data stored in the nota 222 is compared and it is determined that the data of the input unit 220 is maximum or minimum on any axis, the measurement data is stored in the corresponding maximum / minimum data buffer 222. Replace with the data.
  • the measurement data accumulated in the maximum / minimum data buffer 222 is newly stored in the input unit 220.
  • the input unit 220 stores data that does not become the maximum or minimum on any axis.
  • the maximum or minimum measurement data stored in the input unit 220 is stored in the first stage of the FIFO data buffer 223, and the measurement data accumulated in the last stage is discarded.
  • the output unit 224 outputs the measurement data accumulated in the maximum / minimum data notch 222 and the FIFO type data buffer 223 to the reference point estimation unit 15.
  • FIG. 34 shows the data in which the measurement data in the data buffer is the maximum or the minimum with respect to any one of the axes X, ⁇ , and ⁇ of the 3-axis acceleration sensor in the seventh embodiment.
  • FIG. 31 is a flowchart for explaining a preferential storage procedure, and is a flowchart illustrating in detail the processing of S427 shown in FIG. 30.
  • the maximum and minimum measurement data for the measurement axes X, ⁇ , and ⁇ of the 3-axis accelerometer are stored in the data buffer one by one, and one redundant data buffer is used. As a result, the data buffer length is 7.
  • Sbuf [0] (X) and Sstat (X) are compared, and if Sstat (x) is larger, the values of Sbuf [0] and Sstat are switched (S445). Therefore, the maximum measurement data for the X axis is always stored in Sbuf [0].
  • the correspondence between the condition and the counter shown here is merely an example, and the correspondence order may be any. Because these steps are repeated each time new measurement data is obtained, even if measurement data meets the conditions of a certain axis, the new maximum or minimum data will be input to another axis. Therefore, one measurement data is also a force determined under all conditions until it is deleted from the buffer.
  • the buffer length is set to 6 for simplicity of explanation, but a plurality of measurement data may be stored in the maximum direction and the minimum direction of each axis. When multiple measurement data are stored, the same effect as averaging the measurement data near the axis can be expected. Also, there may be two or more redundant data buffers that do not necessarily need to be one.
  • an axis represented by a linear combination of the measurement axes X, Y, and the saddle axis of the three-axis acceleration sensor may be newly defined, and then the maximum and minimum measurement data may be accumulated.
  • the measurement data in the noffer can be accumulated so as to be widely distributed on the spherical or elliptical surface.
  • the ellipsoid fitting calculation has a greater degree of freedom than the sphere fitting calculation, so the measurement data in the data buffer is sufficiently distributed and there is not enough number.
  • data can be acquired only when the acceleration sensor is stationary, so that a sufficient number of measurements to form an ellipsoid is possible due to limitations. It takes a long time to get data It will take. Therefore, when an acceleration sensor is installed in a mobile device, to obtain an estimate of the offset and sensitivity at an early stage, the mobile device is powered on and stopped, or powered in a different direction and stopped. Therefore, it is difficult to perform accurate offset estimation as early as possible, with strong intentional actions for the user.
  • the reference point estimation units 15 and 42 calculate the reference point from the number of output data stored in the data storage units 14 and 41 and / or the distribution in the three-dimensional orthogonal coordinate space.
  • the estimators 15 and 42 determine in advance the force for estimating a spherical surface or an ellipsoid, and select either one for estimation. It is also possible to calculate both spherical and elliptical surfaces and select either one based on the result.
  • FIG. 35 is a flowchart for explaining a specific method of switching between sphere fitting and ellipsoid fitting in the eighth embodiment, and is a flowchart explaining in detail the processing of S429 shown in FIG.
  • the estimation calculation is performed a plurality of times from different measurement data groups, and the respective calculation results are sufficiently close and values. May be determined. Alternatively, the solution range may be limited in consideration of manufacturing variations in the acceleration sensor. [0320] If the accuracy is determined to be, the offset and sensitivity values are updated (S454).
  • force estimation calculation is performed by first determining whether a spherical fitting force ellipsoid is applied in order to save unnecessary calculations. You can fit both the ellipsoid and ellipsoid, and you can select the result of the calculation from
  • the present invention repeatedly obtains output data of a 2-axis or 3-axis acceleration sensor without being aware of the orientation of the acceleration measuring device in a specific direction, thereby correcting the output of the 2-axis or 3-axis acceleration sensor.
  • This is related to an acceleration measurement device that can acquire both the offset or sensitivity and offset required for the sensor, and when using the acceleration measurement device, be aware of the orientation of the acceleration measurement device in a specific direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Navigation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 本発明は、3軸加速度センサの出力補正に必要なオフセット若しくは感度とオフセットの両方を取得することができる加速度計測装置に関する。3軸方向の加速度を検出する加速度センサ1と、3軸出力データを取得するデータ取得部5Aと、繰り返し取得された3軸出力データが適当であるか否かを判断して選択するデータ選択部13と、選択された3軸出力データを蓄積するデータ蓄積部14と、蓄積された所定数の3軸出力データの、各軸成分を座標値としたときの3次元直交座標空間における分布から、3次元直交座標空間上に定める基準点の座標値を推定する基準点推定部15と、基準点の座標値に基づいて、加速度センサ1の3軸出力データのオフセットを補正するオフセット補正計算部17とを備えている。

Description

明 細 書
加速度計測装置
技術分野
[0001] 本発明は、 2軸又は 3軸加速度センサの出力補正を行う加速度計測装置に関し、よ り詳細には、加速度計測装置の姿勢を特定の方向に向けるよう意識することなく 2軸 又は 3軸加速度センサの出力データを繰り返し取得することで、 2軸又は 3軸加速度 センサの出力補正に必要なオフセット若しくは感度とオフセットの両方を取得すること ができるようにした加速度計測装置に関する。
背景技術
[0002] 近年、携帯機器に組込み可能な軽量小型の 3軸加速度センサとして MEMS (Mic ro Electro Mechanical Systems)技術を用いた半導体デバイスのピエゾ抵抗 型 3軸加速度センサが開発されている(例えば、特許文献 1参照)。
[0003] 図 36は、従来のピエゾ抵抗型 3軸加速度センサの概略構成を示す斜視図で、図中 符号 201はシリコン基板、 201aは支持部、 201bは錘部、 201cは変位部を示してい る。シリコン基板 201には、変位部 201cと、この変位部 201cを支持するための支持 部 201aと、変位部 201cを変形させるための錘部 201bがエッチングによって形成さ れている。
[0004] また、ピエゾ抵抗 R1〜R12は、変位部 201c上に形成されている。シリコン基板 20 1に加速度が加わると、加速度の方向及び大きさに応じて錘部 201bが変位部 201c を変形させる。すると、ピエゾ抵抗 R1〜R12に応力が加わり、抵抗値が変化する。
[0005] 図 37A乃至図 37Cは、従来のピエゾ抵抗型 3軸加速度センサにおけるピエゾ抵抗 の結線構成を示す回路図である。加速度を検出する軸方向別に、ピエゾ抵抗 Rl〜 R12から構成されるホイーストンブリッジ回路をそれぞれ構成する。出力電圧 Vx, Vy , Vzがそれぞれ加速度の χ, y, z軸方向成分に比例した値となる。
[0006] 図 37A乃至図 37Cに示した回路図における実際の Vx, Vy, Vzは、次式のように 表される。 [0007] νχ = βχΑχ Wox (1)
vy = βΑ + · '(2)
Vz = βΛ +V0Z (3) ここで、 Ax, Ay, Αζは、カロ速度の χ, y, z軸方向成分、 β , β , β は、 Ax, Ay,
x y z
Azに対する感度、 V , V , V は、 Vx, Vy, Vzに存在するオフセットを示している。
ox oy oz
[0008] 一般に感度及びオフセットにはばらつきがあり、特にオフセットのばらつきは無視で きない場合が多い。さらにピエゾ抵抗型の加速度センサの場合、感度及びオフセット は著 、温度特性を有する。加えてオフセットの温度特性はばらつきが大き 、こと力 S 多い。
[0009] このような問題を解決するために、従来の加速度計測装置においては、次のような 解決手段を採っている (例えば、特許文献 2参照)。
つまり、工場出荷時において、例えば、 0°C ' 25°C ' 60°Cといった異なる複数の温 度雰囲気の中で感度 ·オフセットを計測し、加速度計測装置に EEPROM等の記憶 手段を搭載してこれらの測定データを記憶する。
[0010] また、加速度計測装置使用時において、加速度計測装置に出力補正回路を搭載 し、現在の温度データと先に記憶された測定データを基に、加速度センサ出力電圧 に含まれる感度及びオフセットのばらつきと温度特性を演算して補正する。
[0011] し力しながら、従来のこの種の加速度計測装置は、以下のような欠点を有して 、る。
1)異なる複数の温度雰囲気での測定、及び感度の測定は工程数'測定時間'設備 コストを非常にアップさせる。
[0012] 2)出力補正回路における感度とオフセットの温度特性の演算は回路構成を複雑に させコストアップになる。
3)感度とオフセットの温度特性の計算精度を高めるためには測定温度を増やし、 かつ出力補正回路における温度特性演算部分をさらに複雑にする必要があり、現実 は困難である。
[0013] また、従来の加速度計測装置においては、さらに次のような解決手段を採っている
(例えば、特許文献 3参照)。
加速度計測装置使用の都度、例えば、図 38A乃至図 38Fに示すように、 3軸加速 度センサ 202の加速度検出軸方向が重力加速度 gの方向と平行になるよう、加速度 計測装置 203の姿勢を 6通りに合わせてそれぞれ 3軸加速度センサ 202の出力電圧 を測定し、次の出力電圧データを得る。
[0014] V : 図 38Aの姿勢における V測定値
xl X
V : 図 38Bの姿勢における V測定値
x2
V 図 38Cの姿勢における V測定値
yi y
V 図 38Dの姿勢における V測定値
y2 y
V 図 38Eの姿勢における V測定値
zl z
V 図 38Fの姿勢における V測定値
z2 z
3軸加速度センサの出力補正に必要な感度とオフセットのデータは、次式により算 出される。
[0015]
Figure imgf000005_0001
y 2
( 5; = 十 ( 8 )
Figure imgf000005_0002
し力しながら、従来のこの種の加速度計測装置は、以下のような欠点を有している。
1)使用の都度、加速度計測装置の姿勢を複数の特定の方向にそれぞれ合わせる 必要があることは使用者にとって非常に煩わしく不便である。
[0016] 2)さらに、使用者が手で加速度計測装置を支持しながら方向を正確に合わせるこ とは困難であり、上式によって算出される感度及びオフセットは誤差が大きくなりやす い。
[0017] 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、加速 度計測装置の姿勢を特定の方向に向けるよう意識することなく 2軸又は 3軸加速度セ ンサの出力データを繰り返し取得することで、 2軸又は 3軸加速度センサの出力補正 に必要なオフセット若しくは感度とオフセットの両方を取得することができるようにした 加速度計測装置を提供することにある。
[0018] 特許文献 1 :特開 2003— 101033号公報 特許文献 2:特開平 6— 331647号公報
特許文献 3:特開 2004— 93552号公報
非特許文献1 :\^.1"1 33, S.A.Teukolsky, W.T.Vetterling and B. P. Flannery,年 um erical Recipies in C, Second Edition · Cambridge University Press, USA, 1992, pp.3 94-455
非特許文献 2 : W.H. Press, S.A.Teukolsky, W.T.Vetterling and B. P. Flannery,年 ume rical Recipies in C, Second Edition · Cambridge University Press, USA, 1992, pp.32 -104
発明の開示
[0019] 本発明は、このような目的を達成するためになされたもので、 2軸又は 3軸方向の加 速度を検出する加速度センサと、該加速度センサの 2軸又は 3軸の出力データを取 得する出力データ取得手段と、該出力データ取得手段によって取得された出力デー タを蓄積する出力データ蓄積手段と、該出力データ蓄積手段によって蓄積された所 定数の出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標空 間における分布から、該直交座標空間上に定める基準点の座標値を推定する基準 点推定手段と、該基準点推定手段により推定された前記基準点の座標値に基づい て、前記加速度センサの出力データのオフセットを補正するオフセット補正手段とを 備えることを特徴とする。(図 1、実施形態 1に対応)
また、前記出力データ取得手段によって取得された出力データが適当である力否 かを判断して選択する出力データ選択手段を備え、前記出力データ蓄積手段は、前 記出力データ選択手段によって選択された出力データを蓄積することを特徴とする。
[0020] また、前記出力データ選択手段は、前記出力データ取得手段によって出力データ を取得する毎に直前に取得された出力データとの差分を計算し、該差分が所定回数 以上連続して所定値以内であった場合に、前記出力データを適当と判断して選択す ることを特徴とする。
[0021] また、前記出力データ選択手段は、前記出力データ取得手段によって出力データ を取得する毎に基準となる出力データとの差分を計算し、該差分が所定値を超えた 場合に、前記出力データを適当と判断して選択することを特徴とする。 [0022] また、前記出力データ選択手段は、前記差分が連続して所定値以内であった回数 又は時間情報を、前記出力データ選択手段によって選択された出力データに付カロ することを特徴とする。(図 29乃至図 32、実施形態 6に対応)
また、前記出力データ蓄積手段は、前記出力データ選択手段によって付加された 回数又は時間情報に基づいて、前記出力データ選択手段によって選択された出力 データと、前記出力データ蓄積手段によって既に蓄積された出力データのうちのい ずれかを廃棄することを特徴とする。
[0023] また、前記出力データ選択手段は、前記出力データ取得手段によって取得された 所定数の出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標 空間における分布に基づいて円又は球面を推定し、該円又は球面力 所定距離以 内にある出力データを適当と判断して選択することを特徴とする。
[0024] また、前記出力データ選択手段は、前記円又は球面の半径を所定値として該円又 は球面を推定することを特徴とする。
[0025] また、前記出力データ選択手段によって選択された出力データが、前記出力デー タ蓄積手段によって既に蓄積された出力データと比較して所定値以上変化した力否 かを判定するデータ変化判定手段を備え、前記出力データ蓄積手段は、前記デー タ変化判定手段の判定結果に基づいて、前記出力データ選択手段によって選択さ れた出力データか、前記出力データ蓄積手段によって既に蓄積された出力データの どちらか一方を廃棄することを特徴とする。
[0026] また、前記出力データ蓄積手段は、前記加速度センサの測定軸と線形関係となる 線形軸をあらかじめ定め、前記出力データ選択手段が選択した出力データと、前記 出力データ蓄積手段に蓄積されている出力データの中で、前記加速度センサの測 定軸又は線形軸の成分が、最大又は最小となる出力データを選択的に蓄積すること を特徴とする。(図 33,図 34、実施形態 7に対応)
また、前記出力データ蓄積手段に蓄積される出力データは、前記測定軸又は前記 線形軸の成分が最大又は最小となる出力データと、その他の一つ以上の出力デー タを蓄積することを特徴とする。
[0027] また、前記基準点推定手段は、前記出力データ蓄積手段によって蓄積された所定 数の出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標空間 における分布から、該直交座標空間上に円または球面を定め、該円または球面の中 心座標を前記基準点として推定するもので、前記オフセット補正手段は、前記基準 点推定手段により推定された前記円又は球面の中心座標値に基づいて、前記加速 度センサの出力データのオフセットを補正することを特徴とする。
[0028] また、前記基準点推定手段は、前記基準点の座標値を、前記所定数の出力データ の各々力 前記基準点までの距離のばらつきが最小になるように統計的手法によつ て推定することを特徴とする。(図 20、実施形態 4に対応)
また、前記基準点推定手段は、前記所定数の出力データの各々力 前記基準点ま での距離のばらつきを、所定の代表値に対するばらつきとすることを特徴とする。
[0029] また、前記基準点推定手段は、前記出力データ蓄積手段によって蓄積された所定 数の出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標空間 における分布から、該直交座標空間上に定める楕円または楕円面を定め、該楕円ま たは楕円面の各主軸の長さ及び中心座標値を推定するもので、前記オフセット補正 手段は、前記基準点推定手段により推定された前記楕円または楕円面の各主軸の 長さ及び中心座標値に基づいて、前記加速度センサの出力データの感度及びオフ セットを補正することを特徴とする。(図 11、実施形態 2に対応)
また、前記基準点推定手段は、前記楕円又は楕円面の各主軸の長さ及び中心座 標値を、前記所定数の出力データの各々が前記楕円又は楕円面に最も近づくよう統 計的手法によって推定することを特徴とする。(図 23、実施形態 5に対応)
また、前記基準点推定手段は、前記出力データ蓄積手段に蓄積されている 3軸の 出力データの個数又は 3次元直交座標空間における分布およびその両方から、前 記基準点推定手段において球面又は楕円面を推定するかを予め判定し、どちらか 一方を選択して推定することを特徴とする。(図 35、実施形態 8に対応)
また、前記加速度センサの温度を検出する温度検出手段と、前記基準点の座標値 若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を所定の温度区分毎 に記憶する温度別補正データ記憶手段を備え、前記出力データ蓄積手段は、前記 出力データ選択手段又は前記出力データ取得手段によって選択された出力データ を、前記温度検出手段によって検出された温度値に基づいて前記所定の温度区分 別に蓄積し、前記基準点推定手段は、前記所定の温度区分毎に、前記出力データ 蓄積手段によって蓄積された当該温度区分の所定数の出力データから前記基準点 の座標値若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を推定し、 前記温度別補正データ記憶手段は、前記基準点の座標値若しくは前記楕円又は楕 円面の各主軸の長さ及び中心座標値を前記所定の温度区分別に記憶することを特 徴とする。
[0030] また、前記出力データ蓄積手段は、前記出力データ選択手段又は前記出力デー タ取得手段によって選択された出力データを、前記温度検出手段によって検出され た温度値と該当する前記所定の温度区分との関係に基づ 、て補正した後に、前記 所定の温度区分別に蓄積することを特徴とする。
[0031] また、前記加速度センサの温度を検出する温度検出手段と、前記基準点の座標値 若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を所定の温度区分毎 に記憶する温度別補正データ記憶手段を備え、前記出力データ蓄積手段は、前記 出力データ選択手段又は前記出力データ取得手段によって選択された出力データ を蓄積する時に前記温度検出手段によって検出された温度値を一緒に蓄積し、前 記基準点推定手段は、前記所定の温度区分毎に、前記出力データ蓄積手段によつ て蓄積された出力データ力 対応する前記温度値が当該温度区分にあるものを所 定数選択して前記基準点の座標値若しくは前記楕円又は楕円面の各主軸の長さ及 び中心座標値を推定し、前記温度別補正データ記憶手段は、前記基準点の座標値 若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を前記所定の温度区 分別に記憶することを特徴とする。
[0032] また、前記オフセット補正手段は、前記温度検出手段によって検出された温度値、 及び前記温度別補正データ記憶手段によって前記所定の温度区分別に記憶された 前記基準点の座標値若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値 に基づ!/、て、前記加速度センサの出力データのオフセット若しくは感度及びオフセッ トを補正することを特徴とする。
[0033] また、前記基準点推定手段は、前記出力データ蓄積手段によって蓄積された所定 数の 3軸の出力データの前記 3次元直交座標空間における分布について各座標軸 に対するばらつきを計算し、前記各座標軸に対するばらつきの最小値が所定値以下 であるときは、前記出力データ蓄積手段によって蓄積された所定数の 3軸の出力デ 一タカ 前記ばらつきが最小値となる座標軸の出力データを除いた残りの 2軸の出 力データについて、各軸成分を座標値としたときの 2次元直交座標平面における分 布から、前記 2次元直交座標平面上に定める基準点の座標値若しくは楕円の各主 軸の長さ及び中心座標値を推定し、前記オフセット補正手段は、前記基準点の座標 値若しくは前記楕円の各主軸の長さ及び中心座標値に基づいて、前記加速度セン サの 2軸の出力データのオフセット若しくは感度とオフセットを補正することを特徴と する。
[0034] また、前記基準点推定手段は、前記加速度センサが所定の一姿勢を保持して!/、る 状態において前記出力データ取得手段によって出力データを取得し、前記出力デ 一タの各軸成分を座標値としたときの 2次元又は 3次元直交座標空間における位置、 及び前記所定の一姿勢を保持して!/、る状態にお!、て前記加速度センサが検知して いると予想される重力加速度の各軸成分の値から、前記直交座標空間上に定める基 準点の座標値を推定することを特徴とする。(図 17、実施形態 3に対応)
また、前記加速度センサの温度を検出する温度検出手段と、前記基準点の座標値 を所定の温度区分毎に記憶する温度別補正データ記憶手段を備え、該温度別補正 データ記憶手段は、前記温度検出手段によって検出された温度値に基づいて前記 基準点の座標値を前記所定の温度区分別に記憶し、前記オフセット補正手段は、前 記温度検出手段によって検出された温度値、及び前記温度別補正データ記憶手段 によって前記所定の温度区分別に記憶された前記基準点の座標値に基づいて、前 記加速度センサの出力データのオフセットを補正することを特徴とする。
[0035] また、前記基準点推定手段は、該基準点推定手段によって推定された直近の所定 数の基準点の座標値若しくは楕円又は楕円面の中心座標値のばらつきを算出し、 前記ばらつきが所定値よりも大きい場合は、前記基準点の座標値若しくは前記楕円 又は楕円面の中心座標値を破棄することを特徴とする。
[0036] また、前記基準点推定手段は、前記 2次元又は 3次元直交座標空間において推定 された前記基準点力 前記所定数の出力データの各々までの距離若しくは推定され た楕円又は楕円面の各主軸の長さが所定範囲外であった場合、前記基準点の座標 値若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を破棄することを 特徴とする。
[0037] 本発明によれば、加速度計測装置の使用時において、加速度計測装置の姿勢を 特定の方向に向けるよう意識することなく 2軸又は 3軸加速度センサの出力データを 繰り返し取得することで、 2軸又は 3軸加速度センサの出力補正に必要なオフセット 若しくは感度とオフセットの両方を取得することができる。
[0038] また、加速度計測装置の使用時において、既知の一姿勢に置かれている状態、例 えば充電器にセットしている状態で 2軸又は 3軸加速度センサの出力データを取得 することで、 2軸又は 3軸加速度センサの出力補正に必要なオフセットを取得すること ができる。
[0039] さらに、工場出荷時において異なる複数の温度雰囲気の中で感度 ·オフセットを計 測し記憶する必要が無くなる。出力補正回路にぉ 、て感度及びオフセットの温度特 性を演算する必要が無くなる。使用の都度、加速度計測装置の姿勢を複数の特定の 方向にそれぞれ合わせる必要も無くなる。
[0040] なお、本発明は、 3軸地磁気検出手段を持つ方位角センサと組み合わせて 5軸又 は 6軸センサとすることができ、この場合も同様の効果を得ることができる。
図面の簡単な説明
[0041] [図 1]図 1は、本発明の加速度計測装置の実施形態 1を説明するための構成図であ る。
[0042] [図 2]図 2は、本発明の実施形態 1における基準点の概念図である。
[0043] [図 3]図 3は、本発明の実施形態 1における基準点推定の概念図である。
[0044] [図 4]図 4は、本発明の実施形態 1における 3軸出力データ選択の具体的方法 (その 1)の概念図である。
[0045] [図 5]図 5は、本発明の実施形態 1における 3軸出力データ選択の具体的方法 (その
1)を示す構成図である。
[0046] [図 6]図 6は、本発明の実施形態 1における 3軸出力データ選択の具体的方法 (その 2)の概念図である。
[0047] [図 7]図 7は、本発明の実施形態 1におけるデータ変化判定部の具体的な構成図で ある。
[0048] [図 8]図 8は、本発明の実施形態 1における基準点座標データを取得する手順を説明 するためのフローチャートを示す図(その 1)である。
[0049] [図 9]図 9は、本発明の実施形態 1における基準点座標データを取得する手順を説明 するためのフローチャートを示す図(その 2)である。
[0050] [図 10]図 10は、本発明の実施形態 1における基準点座標データを取得する手順を 説明するためのフローチャートを示す図(その 3)である。
[0051] [図 11]図 11は、本発明の加速度計測装置の実施形態 2を説明するための構成図で ある。
[0052] [図 12]図 12は、本発明の実施形態 2における楕円面主軸長さ'中心座標の概念図で ある。
[0053] [図 13]図 13は、本発明の実施形態 2における楕円面主軸長さ'中心座標推定の概 念図である。
[0054] [図 14]図 14は、本発明の実施形態 2における楕円面主軸長さ'中心座標データを取 得する手順を説明するためのフローチャートを示す図(その 1)である。
[0055] [図 15]図 15は、本発明の実施形態 2における楕円面主軸長さ'中心座標データを取 得する手順を説明するためのフローチャートを示す図(その 2)である。
[0056] [図 16]図 16は、本発明の実施形態 2における楕円面主軸長さ'中心座標データを取 得する手順を説明するためのフローチャートを示す図(その 3)である。
[0057] [図 17]図 17は、本発明の加速度計測装置の実施形態 3を説明するための構成図で ある。
[0058] [図 18A]図 18Aは、本発明の実施形態 3を説明するための概念図(その 1)である。
[0059] [図 18B]図 18Bは、本発明の実施形態 3を説明するための概念図(その 2)である。
[0060] [図 19]図 19は、本発明の実施形態 3における基準点推定の概念図である。
[0061] [図 20]図 20は、本発明の加速度計測装置の実施形態 4を説明するための構成図で ある。 [0062] [図 21]図 21は、本発明の実施形態 4における基準点座標データを取得する手順を 説明するためのフローチャートを示す図(その 1)である。
[0063] [図 22]図 22は、本発明の実施形態 4における基準点座標データを取得する手順を 説明するためのフローチャートを示す図(その 2)である。
[0064] [図 23]図 23は、本発明の加速度計測装置の実施形態 5を説明するための構成図で ある。
[0065] [図 24]図 24は、本発明の実施形態 5における基準点座標データを取得する手順を 説明するためのフローチャートを示す図(その 1)である。
[0066] [図 25]図 25は、本発明の実施形態 5における基準点座標データを取得する手順を 説明するためのフローチャートを示す図(その 2)である。
[0067] [図 26]図 26は、温度特性への対応についての第 1の解決手段を説明するための構 成図である。
[0068] [図 27]図 27は、温度特性への対応についての第 2の解決手段を説明するための構 成図である。
[0069] [図 28]図 28は、温度特性への対応についての第 3の解決手段を説明するための構 成図である。
[0070] [図 29]図 29は、本発明の実施形態 6における 3軸出力データの概念図(その 1)であ る。
[0071] [図 30]図 30は、本発明の実施形態 6におけるデータを選択する手順を説明するため のフローチャートを示す図である。
[0072] [図 31]図 31は、本発明の実施形態 6における 3軸出力データの概念図(その 2)であ る。
[0073] [図 32]図 32は、本発明の実施形態 6におけるデータバッファ内の測定データを入れ 替える手順を説明するためのフローチャートを示す図である。
[0074] [図 33]図 33は、本発明の実施形態 7におけるデータ変化判定部の具体的な構成図 である。
[0075] [図 34]図 34は、本発明の実施形態 7におけるデータバッファ内の測定データを入れ 替える手順を説明するためのフローチャートを示す図である。 [0076] [図 35]図 35は、本発明の実施形態 8における球体当てはめと楕円体当てはめの切り 替えの具体的方法を説明するためのフローチャートを示す図である。
[0077] [図 36]図 36は、従来のピエゾ抵抗型 3軸加速度センサの概略構成を示す斜視図で ある。
[0078] [図 37A]図 37Aは、従来のピエゾ抵抗型 3軸加速度センサにおけるピエゾ抵抗の結 線構成を示す回路図(その 1)である。
[0079] [図 37B]図 37Bは、従来のピエゾ抵抗型 3軸加速度センサにおけるピエゾ抵抗の結 線構成を示す回路図(その 2)である。
[0080] [図 37C]図 37Cは、従来のピエゾ抵抗型 3軸加速度センサにおけるピエゾ抵抗の結 線構成を示す回路図(その 3)である。
[0081] [図 38A]図 38Aは、従来の加速度計測装置において出力補正を行うための感度'ォ フセットデータを得る一方法を説明するための図(その 1)である。
[0082] [図 38B]図 38Bは、従来の加速度計測装置において出力補正を行うための感度'ォ フセットデータを得る一方法を説明するための図(その 2)である。
[0083] [図 38C]図 38Cは、従来の加速度計測装置において出力補正を行うための感度'ォ フセットデータを得る一方法を説明するための図(その 3)である。
[0084] [図 38D]図 38Dは、従来の加速度計測装置において出力補正を行うための感度'ォ フセットデータを得る一方法を説明するための図(その 4)である。
[0085] [図 38E]図 38Eは、従来の加速度計測装置において出力補正を行うための感度'ォ フセットデータを得る一方法を説明するための図(その 5)である。
[0086] [図 38F]図 38Fは、従来の加速度計測装置において出力補正を行うための感度'ォ フセットデータを得る一方法を説明するための図(その 6)である。
発明を実施するための最良の形態
[0087] 以下、図面を参照して本発明の各実施形態について説明する。
なお、図 1に示す実施形態 1は、本発明に係る加速度計測装置の基本的な構成を 示したのもので、 3軸加速度センサから取得したデータ力も適正なデータを選択し、 3 次元直交座標空間上に定める基準点の座標値を推定することによってオフセットの 補正を行うものである。 [0088] これに対して、図 11に示す実施形態 2は、基準点の推定として、 3次元直交座標空 間上に楕円面を定めて主軸の長さ及び中心座標値の推定を行なうことによって感度 とオフセットの補正を行うものである。
[0089] また、図 17に示す実施形態 3は、基準点の推定を、 3軸加速度センサが検知してい ると予想される重力加速度の各軸成分の値から、 3次元直交座標空間上に定める基 準点の座標値を推定するものである。
[0090] また、図 20に示す実施形態 4は、基準点の推定を、 3次元直交座標空間上に定め る基準点の座標値を所定数の 3軸出力データの各々力 基準点までの距離のばら つきが最小になるように統計的手法によって推定するものである。
[0091] また、図 23に示す実施形態 5は、基準点の推定を、 3次元直交座標空間上に定め る楕円面の各主軸の長さ及び中心座標値を所定数の 3軸出力データの各々が楕円 面に最も近づくよう統計的手法によって推定するものである。
[0092] また、図 29乃至図 32に示す実施形態 6は、 3軸加速度センサにおいて、加速度セ ンサが重力加速度のみを受ける場合、すなわち、静止している場合の加速度センサ の出力データ (測定データ)の分布が、 3次元直交座標系において球面又は楕円面 を形成するため、静止判定を行なって、この球面又は楕円面の中心値を求めること でオフセットを推定するようにしたものである。
[0093] また、図 33及び図 34に示す実施形態 7は、加速度センサの測定軸及びそれらと線 形関係にある軸を規定し、その軸上で最大又は最小となる出力データを優先的に蓄 積することで、楕円面当てはめ計算において推定誤差が小さくなるようなデータ群を 得るものである。
[0094] さらに、図 35に示す実施形態 8は、出力データ蓄積手段に蓄積されている出力デ ータの個数又は 3次元直交座標空間における分布から、球面又は楕円面を推定す るかを予め判定し、どちらか一方を選択して推定するものである。
(実施形態 1)
[0095] 図 1は、本発明の加速度計測装置の実施形態 1を説明するための構成図で、 3軸 加速度センサから取得したデータから適正なデータを選択し、 3次元直交座標空間 上に定める基準点の座標値を推定することによってオフセットの補正を行うものであ る。
[0096] 図中符号 1は 3軸加速度センサ、 2は 3軸加速度センサの X軸方向成分検出回路、 3は 3軸加速度センサの y軸方向成分検出回路、 4は 3軸加速度センサの z軸方向成 分検出回路、 5Aはデータ取得部(出力データ取得手段)、 5はマルチプレクサ部、 6 は加速度センサ駆動電源部、 7は増幅部、 8は AZD変換部、 9は温度検出部、 10 は感度補正情報記憶部、 11は感度補正計算部、 12はデータ記憶部、 13はデータ 選択部(出力データ選択手段)、 14はデータ蓄積部(出力データ蓄積手段)、 15は 基準点推定部 (基準点推定手段)、 16はオフセット情報記憶部、 17はオフセット補正 計算部 (オフセット補正手段)、 18はデータ変化判定部 (データ変化判定手段)を示 している。
[0097] 本実施形態 1の加速度計測装置は、 3軸方向の加速度を検出する加速度センサ 1 と、この加速度センサ 1の 3軸出力データを取得するデータ取得部 5Aと、このデータ 取得部 5Aによって繰り返し取得された 3軸出力データが適当である力否かを判断し て選択するデータ選択部 13と、このデータ選択部 13によって選択された 3軸出力デ ータを蓄積するデータ蓄積部 14と、このデータ蓄積部 14によって蓄積された所定数 の 3軸出力データの、各軸成分を座標値としたときの 3次元直交座標空間における分 布から、 3次元直交座標空間上に定める基準点の座標値を推定する基準点推定部 1 5と、この基準点推定部 15により推定された基準点の座標値に基づいて、加速度セ ンサ 1の 3軸出力データのオフセットを補正するオフセット補正計算部 17とを備えて いる。また、データ取得部 5Aは、マルチプレクサ部 5と加速度センサ駆動電源部 6と 増幅部 7と AZD変換部 8から構成されて 、る。
[0098] 3軸加速度センサ 1は、 X軸方向検出回路 2と y軸方向検出回路 3と z軸方向検出回 路 4を備えている。 X軸方向検出回路 2と y軸方向検出回路 3と z軸方向検出回路 4は 、それぞれ加速度の X軸方向と y軸方向及び z軸方向成分を検出する。マルチプレク サ部 5は、加速度センサ駆動電源部 6と増幅部 7を時分割で、 X軸方向検出回路 2と y 軸方向検出回路 3と z軸方向検出回路 4に接続されている。
[0099] 加速度センサ駆動電源部 6は、マルチプレクサ部 5を通して、時分割で X軸方向検 出回路 2と y軸方向検出回路 3と z軸方向検出回路 4に電源を供給する。増幅部 7は、 マルチプレクサ部 5を通して、時分割で X軸方向検出回路 2と y軸方向検出回路 3と z 軸方向検出回路 4の出力電圧を増幅する。
[0100] AZD変換部 8は、増幅部 7によって増幅された X軸方向検出回路 2と y軸方向検出 回路 3と z軸方向検出回路 4の出力電圧を AZD変換し、 3軸出力データとして出力 する。温度検出部 9は、 3軸加速度センサ 1の温度を検出する。感度補正情報記憶部 10は、所定の感度補正情報を記憶する。感度補正計算部 11は、温度検出部 9より 取得した温度データ及び感度補正情報記憶部 10に記憶されている感度補正情報 に基づいて、 AZD変換部 8から出力された 3軸出力データの感度補正を行う。
[0101] データ記憶部 12は、感度補正計算部 11から逐次出力される 3軸出力データを所 定数保持する FIFO型データバッファである。データ選択部 13は、データ記憶部 12 に保持されている 3軸出力データから、基準点推定部 15において実施する基準点座 標の推定に適したデータを選択する。
[0102] データ蓄積部 14は、データ選択部 13において選択された 3軸出力データを所定 数蓄積するデータバッファである。基準点推定部 15は、データ蓄積部 14に蓄積され た所定数の 3軸出力データに基づいて基準点の座標を推定して基準点座標データ を出力する。
[0103] オフセット情報記憶部 16は、基準点推定部 15から出力された基準点座標データを 記憶する。オフセット補正計算部 17は、オフセット情報記憶部 16において記憶され ている基準点座標データに基づいて、感度補正計算部 11から出力された 3軸出力 データのオフセット補正を行う。
[0104] 次に、基準点推定部 15における基準点の座標を推定する方法について説明する 感度補正計算部 11から出力される、感度補正された 3軸出力データ Sx, Sy, Szは 、次式のように表される。
[0105] sx = aAx + Cx (10 )
Sy = aAy +Cy ' ' · (11)
S_ = aAz +C (12) ここで、 aは、補正された感度、 Cx, Cy, Czは、 Sx, Sy, Szに存在するオフセットで ある。加速度計測装置が静止している力、等速運動を行っている場合、 3軸加速度セ ンサ 1が受けている加速度は重力加速度 gのみである。したがって、重力加速度 gの X , y, z軸方向成分を Gx, Gy, Gzとすれば、以下のようになる。
Figure imgf000018_0001
Sx = aGx + C (16)
Sy = aG y + C (17)
S, = aG, + C (18)
Figure imgf000018_0002
従って、
[0108]
s.. -c..Y + is,.- C + {S -C )2 =a2g2 (20) 上式(20)によれば、図 2に示すように、 3次元直交座標空間(X, y, z)において 3軸 出力データの各軸成分を座標値とする点 P(Sx, Sy, Sz)は、 3軸出力データの各軸 成分のオフセット値を座標値とする基準点 Cl(Cx, Cy, Cz)力 必ず一定の距離 ag を置 、て位置することになる。
[0109] 今度は、 N個の異なる 3軸加速度センサ 1の姿勢においてそれぞれ感度補正計算 部 11から出力される 3軸出力データを取得し、各軸成分のデータをそれぞれ lx , s 2x , · ··, s Nx
, s , ·
ly 2y ··, s Ny
lz , s 2z , · ··, s Nz
と表記する。次に、 3次元直交座標空間(x, y, z)において、取得した 3軸出力デー タを
P (S , S , S ), P (S , S , S ), ···, P (S , S , S )
1 lx ly lz 2 2x 2y 2z N Nx Ny Nz
なる N個の点として表すものとする。
[0110] すると図 3に示すように、 P , P , ···, P のいずれからも距離が一定となる点 CI' (C
1 2 N
χ', Cy', Cz')を推定すれば、点 C1'は基準点 C1に相当することが期待され、点じ 1,の座標値じ ,, Cy,, Cz,を以つて各軸成分のオフセット値 Cx, Cy, Czを推定す ることがでさる。
<C1' (Cx', Cy', Cz')を推定する具体的方法 (その 1)>
基準点推定部 15は、基準点の座標値を、所定数の 3軸出力データの各々から基 準点までの距離のばらつきが最小になるように統計的手法によって推定する。
[0111] P , P , ···, Pから Cl, (Cx', Cy', Cz')を推定するには種々の方法があり、最低
1 2 N
N= 4で推定可能である。
[0112] しカゝしながら、ピエゾ抵抗型 3軸加速度センサの感度は数百/ z VZGZV程度しか ないため、出力電圧は非常に微弱であり、取得された 3軸出力データには相当のノィ ズが重畳する。
[0113] 3次元直交座標空間(X, y, z)において、 i番目の 3軸出力データの点 P (S , S ,
S )力 Cl,(Cx,, Cy', Cz,)までの距離 は次の通りとなる。
[0114]
d; = -C;)2+(Sy-C;)2+ (Si∑― Cz' · · - (21) 上式(21)と上式(20)を比較することにより、理想的には P , P , ···, Pの全てにつ
1 2 N いて d =agの一定値となる答である。
[0115] しかしながら、取得された 3軸出力データには相当のノイズが重畳しているので d = agとはならない。
[0116] そこで Nを増やし、 dのばらつきが最小になるよう統計的手法を用いて CI' (Cx'Cy
' , Cz ' )を推定すれば、相当のノイズが重畳して 、ても精度の良 、推定が可能となる
[0117] dのばらつきを示す値として、次式に示すような Zを定義する。
Figure imgf000019_0001
:で、 r2は d 2の平均値であり次式で表される c
[0119]
= ∑ kx -axf + (s,y -ayy + (sz-az f J (23)
N' の Zが最小になるように Cx', Cy', Cz'を決めてやればよい [0120] 上式(23)に対して最適化手法 (例えば、非特許文献 1参照)を用いて直接 Cx'Cy ', Cz'を計算してもよいが、解が収束するまで反復計算することになるので、以下の 方法を用いれば計算時間等の点で有利である。
[0121] 上式(23)を Cx', Cy', Cz'で偏微分し、いずれの偏微分値も零となった場合、す なわち
[0122] 3
=0 24)
=0 (25)
=0 26) が成立した時に Sが最小になると見做す。
[0123] 上式(24)乃至(26)を展開すると、 Cx', Cy', Cz'に関して次式に示すような連立 1次方程式が導出される。したがって、コレスキー分解等の良く知られた連立 1次方 程式の解法 (例えば、非特許文献 2参照)を用いて Cx', Cy', Cz'を計算することが できる。
s„2)
Figure imgf000020_0001
• · · (27) ただし、
s =—Ts (28) (29)
Figure imgf000020_0002
く CI' (Cx', Cy', Cz')を推定する具体的方法 (その 2) >
基準点推定部 15は、基準点の座標値を、所定数の 3軸出力データの各々から基 準点までの距離が所定の代表値に最も近づくよう統計的手法によって推定する。
[0126] 前述のように、 3次元直交座標空間(X, y, z)において P , P , ···, P力ら Cl, (Cx Cy', Cz')までの距離は理想的には一定値 agとなる。
[0127] そこで、上式(22)において rを所定の値 agに置き換え、 agに対する diのばらつきを 示す値として次式により Zを定義し、この値が最小になるように Cx', Cy', Cz'を決
2
めてもよい。
[0128] z2„― a f . . . (31)
= v{(SK-C;)2 +(S, -C;)2 +(S,7-C;)2-aV}2
または次式により Zを定義し、この値が最小になるように Cx', Cy', Cz'を決めても
3
よい。
[0129]
Z3-∑id, -agf ... (32)
=∑i/(s -C- )2 +(S, - C;)2 + ( -Cz'f -ag) ' 上式 (31)及び (32)に対しては最適化手法 (例えば、非特許文献 1参照)を用いて
Cx', Cy', Cz'を計算することができる。
[0130] この方法は、例えば、補正された感度 aが明確に定まる場合において、ノイズによる 誤った基準点座標の推定をより確実に防ぐことができるメリットを有する。
[0131] 次に、データ選択部 13における 3軸出力データの選択を行う方法について説明す る。
[0132] 3軸出力データ取得中に加速度計測装置が動いている場合、 3軸加速度センサ 1 は重力加速度 gの他に運動加速度も受ける。すなわち、
Figure imgf000021_0001
ここで、 Kx, Ky, Kzは、運動加速度の χ, y, z軸方向成分を示している。
[0134] この場合、上式(20)は成立しない。したがって、基準点推定部 15における基準点 座標の推定はできない。
[0135] したがって、加速度計測装置が動いている状態でも 3軸出力データが取得される可 能性がある場合は、取得された 3軸出力データの中から、加速度計測装置が静止し ているか等速運動状態にある時に取得されたと推定される 3軸出力データを選択す る必要がある。 <具体的方法 (その 1) >
データ選択部 13は、データ取得部 5Aによって 3軸出力データを取得する毎に直 前に取得された 3軸出力データとの差分を計算し、その差分が所定回数以上連続し て所定値以内であった場合に、 3軸出力データを適当と判断して選択する。
[0136] 加速度計測装置が普通に携帯されるような場合力 若しくはそのような機器に組み 込まれる場合、加速度計測装置が動 、て 、る時の運動加速度が一定になることは起 こりにくい。
[0137] したがって、 3軸加速度センサ 1が受ける加速度がほぼ一定になるような期間があ れば、その期間中は、加速度計測装置は静止していて 3軸加速度センサ 1は重力加 速度のみを受けて 、ると見做すことができる。
[0138] 図 4は、実施形態 1における 3軸出力データ選択の具体的方法 (その 1)の概念図で 、ここでは説明を簡単にするために 1次元で表している。
[0139] 曲線 20は、 3軸加速度センサ 1が受ける加速度の時間変化を示し、黒点 21は、 3軸 出力データ取得のタイミングを示している。区間 22では加速度ほぼ一定であるので 加速度計測装置は静止していると見做すことができるので、この区間において取得さ れた出力データを選択すればよ!、。
[0140] 図 5は、実施形態 1における 3軸出力データ選択の具体的方法 (その 1)を示すプロ ック図で、データ記憶部 12とデータ選択部 13の詳細を表したものである。図中符号 2 3は 2段 FIFO型データバッファ、 24は比較部、 25はカウンタ、 26は出力部を示して いる。
[0141] 2段 FIFO型データバッファ 23は、データ記憶部 12に相当し、感度補正計算部 11 力も逐次出力される 3軸出力データを記憶する。比較部 24は、 2段 FIFO型データバ ッファ 23の各段に記憶されている 3軸出力データ同士の差分を計算し、所定値以上 ならばカウンタ 25をクリア、所定値未満ならカウンタ 25の値を 1つ増やす。
[0142] カウンタ 25の値が所定値、例えば、 3以上になったら出力部 26が起動し、 2段 FIF O型データバッファ 23の初段に格納されている 3軸出力データを選択された 3軸出 力データとして出力する。
<具体的方法 (その 2) > データ選択部 13は、データ取得部 5Aによって繰り返し取得された所定数の 3軸出 力データの、各軸成分を座標値としたときの 3次元直交座標空間における分布に基 づいて球面を推定し、この球面力 所定距離以内にある 3軸出力データを適当と判 断して選択する。
[0143] 加速度計測装置が運動加速度を受けている間に取得された 3軸出力データは、図 2のように、 3次元直交座標空間(X, y, z)において 3軸出力データの各軸成分を座 標値とする点 P (Sx, Sy, Sz)として表した場合、運動加速度が大きくなるほど基準点 Cl (Cx, Cy, Cz)からの距離が ag力も外れる可能性が高くなる。
[0144] 基準点推定部 15における基準点座標の推定では、基準点 CI (Cx, Cy, Cz)から 点 P (Sx, Sy, Sz)までの距離が agから大きく外れるような 3軸出力データが含まれる と推定誤差が大きくなる。
[0145] 図 6は、実施形態 1における 3軸出力データ選択の具体的方法 2の概念図で、上述 の傾向に基づく 3軸出力データの具体的選択方法を説明するためのものである。ここ では説明を簡単にするために 2次元で表して 、る。
[0146] データ記憶部 12に保持されている最新の所定数、例えば、 8個の 3軸出力データ を、 3次元直交座標空間(X, y, z)においてそれぞれ 3軸出力データの各軸成分を 座標値とする点 P (S , S , S ) , P (S , S , S ) , · ··, P (S , S , S )として
1 lx l lz 2 2x 2y 2z 8 8x 8y 8z 表した時、これらの点の分布に当てはまる球面 Qlを推定する。
[0147] 球面 Q1から、所定距離 Ar以内に存在する PI, P2, P3, P5, P7, P8に対応する
3軸出力データを、選択された 3軸出力データとして出力する。
[0148] 球面 Q1を推定する具体的方法については、例えば、後述の方法を適用することが できる。また、例えば、補正された感度 aが明確に定まる場合には、球面 Q1の半径 r を所定値として球面 Qlを推定してもよい。
[0149] 次に、データ蓄積部 14とデータ変化判定部 18について説明する。
データ選択部 13によって選択された 3軸出力データが、データ蓄積部 14によって 既に蓄積された 3軸出力データと比較して所定値以上変化したカゝ否かを判定するデ ータ変化判定部 18を備え、データ蓄積部 14は、データ変化判定部 18の判定結果 に基づいて、データ選択部 13によって選択された 3軸出力データを蓄積せず廃棄す る。
[0150] データ蓄積部 14に蓄積された 3軸加速度データを、 3次元直交座標空間(X, y, z) において 3軸出力データの各軸成分を座標値とする点 P (S , S , S ) , P (S , S
1 lx l lz 2 2x
, S ) , ···, P (s , s , s )として表した時に、各点が狭い領域に集中している
2y 2z N Nx Ny Nz
と、基準点推定部 15において基準点座標の推定誤差が非常に大きくなる問題が生 じる。
[0151] これは、 3軸加速度センサ 1が同じような姿勢にあるときに取得された 3軸加速度デ ータだけがデータ蓄積部 14に蓄積されていることに相当する。
[0152] 上述した問題を避けるために、データ選択部 13において選択された 3軸出力デー タをデータ蓄積部 14に蓄積する前に、既にデータ蓄積部 14に蓄積されている 3軸出 力データと比較して、所定値以上変化していなければどちらか一方を蓄積せずに廃 棄するようにすればよい。
[0153] これは、データ選択部 13において選択された 3軸出力データが取得されたときの 3 軸加速度センサ 1の姿勢力 既にデータ蓄積部 14に蓄積されている 3軸出力データ が取得されたときの 3軸加速度センサ 1の姿勢と比べてあまり変化していなければ、ど ちらか一方の 3軸出力データを蓄積せず廃棄することに相当する。
[0154] 図 7は、実施形態 1におけるデータ変化判定部の具体的な構成図で、データ蓄積 部 14を表したものである。図中符号 27は入力部、 28は比較部、 29はデータバッファ 、 30は出力部を示している。
[0155] データ選択部 13において選択された 3軸出力データはー且入力部 27にて一時記 憶される。比較部 28は入力部 27にて一時記憶されている 3軸出力データと、データ ノ ッファ 29に蓄積されている 3軸出力データと比較して、両者の差分が所定値以上 であるかどうか判断する。なお比較対象となるデータバッファ 29に蓄積されている 3 軸出力データは、状況に応じて、最後に蓄積された 3軸出力データのみでもよいし、 全ての 3軸出力データとそれぞれ比較することにしてもよい。
[0156] 比較部 28での 3軸出力データの比較の結果、その差分が所定値以上であれば入 力部 27にて一時記憶されている 3軸出力データをデータバッファ 29に蓄積し、その 差分が所定値未満であれば入力部 27にて一時記憶されている 3軸出力データは破 棄される。あるいは、比較対象になったデータバッファ 29に蓄積されている 3軸出力 データを削除して、入力部 27にて一時記憶されている 3軸出力データをデータバッ ファ 29に蓄積してもよい。出力部 30は、データバッファ 29に蓄積されている 3軸出力 データを基準点推定部 15に向けて出力する。
[0157] 図 8乃至図 10は、本発明の実施形態 1における基準点座標データを取得する手順 を説明するためのフローチャートを示す図である。なお、ここでは、データ変化判定 部 18において、データ選択部 13において選択された 3軸出力データとデータ蓄積 部 14に最後に蓄積されている 3軸出力データとを比較して、両者の差分が所定値未 満であれば前者が破棄されることとして 、る。
[0158] まず、初期設定として以下の操作を行う(S101)。データ記憶部 12のカウンタ kl ( 図 5のカウンタ 25に相当)をクリアする。次に、データ蓄積部 14に蓄積されている 3軸 出力データの数 k2をクリアする。次に、感度補正計算部 17より 3軸出力データ Sx, S y, Szを取得し、データ記憶部 12の 1段目 S , S , S に記憶する。
xi yl zl
[0159] 次に、感度補正計算部 17より Sx, Sy, Szを取得する(S102)。次に、データ記憶 部 12の S , S , S に記憶されている 3軸出力データをデータ記憶部 12の 2段目 S xl yl zi x
, S , S 〖こ送り、 Sx, Sy, Szを S , S , S 〖こ記'隐する(S103) o
2 y2 z2 xl yl zl
[0160] 次に、データ記憶部 12内の 1段目と 2段目にそれぞれ記憶されている 3軸出力デ ータの差分が所定値 el以上である場合は klをクリアしてステップ S102に戻る(S10 4, S105)。次に、 klの値を 1つ増やし(S106)、 klの値が所定値 ml未満である場 合 ίま、 S102に戻る(S107)。
[0161] 次に、 klをクリアし、 S , S , S をデータ選択部 13の出力 S , S , S (図 5の出 xl yl zl xo yo zo 力部 26に送ることに相当)とする(S108)。次に、 S , S , S とデータ蓄積部 14の 1 xo yo zo
段目に記憶されている 3軸出力データ S , S , S の差分が所定値 e2未満である場 lx ly lz
合は S102に戻る(S109)。 k2の値が所定値 N以上である場合は、 S113に進む(S1 10)。 k2の値を 1つ増やし(S 111)、 k2の値力 S 1である場合 ίま、 S 117に進む(S 112
) ο
[0162] 次に、指標 iを k2の値に設定する(S 113)。指標 jを i—lに設定し、データ蓄積部 1 4の j段目 S , S , S に記憶されている 3軸出力データを i段目 S , S , S に送る(S 114)。 iの値を 1つ減らし(SI 15)、 iの値が 1を超える場合は、 S114に戻る(S116) [0163] 次に、 S , S , S を S , S , S に記憶する(S 117)。 k2の値が N未満である場
xo yo zo lx ly lz
合は、 S102に戻る(S118)。(S , S , S ) , · ··, (S , S , S )力ら Cx,,Cy,, lx ly lz Nx Ny Nz
Cz,を推定する(SI 19)。 Cx,, Cy' , Cz,の推定を繰り返す場合は、 S102〖こ戻る(S 120)。
(実施形態 2)
[0164] 図 11は、本発明の加速度計測装置の実施形態 2を説明するための構成図で、基 準点の推定として、 3次元直交座標空間上に楕円面を定めて主軸の長さ及び中心 座標値の推定を行なうことによって感度とオフセットの補正を行うものである。
[0165] 図中符号 31は 3軸加速度センサ、 32は 3軸加速度センサの X軸方向成分検出回 路、 33は 3軸加速度センサの y軸方向成分検出回路、 34は 3軸加速度センサの z軸 方向成分検出回路、 35Aはデータ取得部、 35はマルチプレクサ部、 36は加速度セ ンサ駆動電源部、 37は増幅部、 38は AZD変換部、 39はデータ記憶部、 40はデー タ選択部、 41はデータ蓄積部、 41aはデータ変化判定部、 41bは温度検出部、 42は 基準点推定部、 43は感度 'オフセット情報記憶部、 44は感度 ·オフセット補正計算部 を示している。
[0166] 本実施形態 2の加速度計測装置は、 3軸方向の加速度を検出する加速度センサ 3 1と、この加速度センサ 31の 3軸出力データを取得するデータ取得部 35Aと、このデ ータ取得部 35Aによって繰り返し取得された 3軸出力データが適当であるか否かを 判断して選択するデータ選択部 40と、このデータ選択部 40によって選択された 3軸 出力データを蓄積するデータ蓄積部 41と、このデータ蓄積部 41によって蓄積された 所定数の 3軸出力データの、各軸成分を座標値としたときの 3次元直交座標空間に おける分布から、この 3次元直交座標空間上に楕円面を定め、楕円面の各主軸の長 さ及び中心座標値を推定する基準点推定部 42と、この基準点推定部 42により推定 された楕円面の各主軸の長さ及び中心座標値に基づ 、て、加速度センサ 31の 3軸 出力データの感度及びオフセットを補正する感度 'オフセット補正計算部 44とを備え ている。また、データ取得部 35Aは、マルチプレクサ部 35と加速度センサ駆動電源 部 36と増幅部 37と AZD変換部 38とから構成されている。
[0167] 3軸加速度センサ 31と X軸方向検出回路 32と y軸方向検出回路 33と z軸方向検出 回路 34とマルチプレクサ部 35と加速度センサ駆動電源部 36と増幅部 37と AZD変 換部 38は、上述した実施形態 1と同様である。
[0168] データ記憶部 39は、 AZD変換部 38から逐次出力される 3軸出力データを所定数 保持する FIFO型のデータバッファである。データ選択部 40とデータ蓄積部 41は、 上述した実施形態 1と同様である。
[0169] 基準点推定部 42は、データ蓄積部 41に蓄積された所定数の 3軸出力データに基 づ ヽて楕円面の各主軸の長さ及び中心座標値を推定して楕円面主軸長さ ·中心座 標データを出力する。感度'オフセット情報記憶部 43は、基準点推定部 42から出力 された楕円面主軸長さ ·中心座標データを記憶する。
[0170] 感度 'オフセット補正計算部 44は、感度 'オフセット情報記憶部 43において記憶さ れている楕円面主軸長さ'中心座標データに基づいて、 AZD変換部 38から出力さ れた 3軸出力データの感度及びオフセット補正を行う。
[0171] 次に、基準点推定部 42における楕円面の各主軸の長さ及び中心座標値を推定す る方法について説明する。
AZD変換部 38から出力される 3軸出力データ Srx, Sry, Srzは、次式のように表 される。
[0172] Slx = axAx + Clx ( )
Sv = ay Ay + C^ · · - (37)
Sd4 + C (38)
ここで、 a , a , aは各軸方向の感度、 Crx, Cry, Crzは、 Srx, Sry, Srzに存在す x y z
るオフセットを示している。
[0173] 加速度計測装置が静止して 、る力 等速運動を行って 、る場合、 3軸加速度セン サ 1が受けている加速度は重力加速度 gのみである。したがって、
Figure imgf000027_0001
従って、上式(19)より [0175]
s c s —c
=9' (42)
a, 上式 (42)によれば、図 12に示すように、 3次元直交座標空間(X, y, z)において 3 軸出力データの各軸成分を座標値とする点 Q(Srx, Sry, Srz)は、 a , a , aを各主 軸の長さ、 Crx, Cry, Crzを中心 C2の座標値とし、各主軸の方向が 3次元直交座標 空間(X, y, z)の各軸に平行な楕円面 El上に位置することになる。
[0176] 今度は、 N個の異なる 3軸加速度センサ 31の姿勢においてそれぞれ AZD変換部 38から出力される 3軸出力データを取得し、各軸成分のデータをそれぞれ s , S , ·· ··, s
lrx 2rx Nrx
S , S , ·· '·, s
lry 2r Nr
s , S , ·· ·, s
lrz 2rz Nrz
と表記する。次に、 3次元直交座標空間(x, y, z)において、取得した 3軸出力デー タを
Q (S , S , S ), Q (S , S , S ), ···, Q (S , S , S )
1 lrx lry lrz 2 2rx 2r 2rz N Nrx Nry Nrz
なる N個の点として表すものとする。
[0177] すると、図 13に示すように、各主軸の方向が 3次元直交座標空間(X, y, z)の各軸 に平行で、 Q , Q , ···, Q のいずれも面上に位置するような楕円面 E1'を推定すれ
1 2 N
ば E1'は E1に相当することが期待され、 E1'の各主軸の長さ a ', a ', a,を以つて a
x y z
, a , aを、中心 C2,の座標値 Crx,, Cry', Crz,を以つて Crx, Cry, Crzを推定す x y z
ることがでさる。
<a ', a ', a '及び Crx', Cry', Crz'を推定する具体的方法 >
基準点推定部 42は、楕円面の各主軸の長さ及び中心座標値を、所定数の 3軸出 力データの各々が楕円面に最も近づくよう統計的手法によって推定する。
[0178] Q , Q , ···, Q力 楕円又は楕円面 E1'を推定するには種々の方法があり、最低
1 2 N
N = 6で推定可能である。しかしながら、ピエゾ抵抗型 3軸加速度センサの感度は数 百/ z VZGZV程度しかないため出力電圧は非常に微弱であり、取得された 3軸出 力データには相当のノイズが重畳する。 [0179] 3次元直交座標空間( y, z)において、 i番目の 3軸出力データの点 Q (S , S
, S )力 El,までの距離 ε は次の通りとなる。
[0180]
ε, = ― )2 + (Siry -0 ) 2 + (Sirz -0 )■
• · 理想的には Q , Q , ···, Q の全てについて ε =0となる答である。しかしながら、
1 2 N i
取得された 3軸出力データには相当のノイズが重畳しているので ε =0とはならない
[0181] そこで Νを増やし、 ε の 2乗総和値が最小になるよう統計的手法を用いて a ', a ', a '及び Crx', Cry', Crz'を推定すれば、相当のノイズが重畳していても精度の良 い推定が可能となる。 εの 2乗総和値 Ζは次式のようになる。
i 4
[0182]
Figure imgf000029_0001
あるいは、 εの 2乗総和値に類似な値として、次式により Ζを定義する。
[0183]
- , Γ ~ (S _c S _c S _c ~
- - · (45)
上式 (44)及び (45)に対しては最適化手法 (例えば、非特許文献 1参照)を用いて a ', a ', a '及び Crx', Cry', Crz'を計算することができる。なお、上述した実施形 態 1の説明における次の部分は、全て実施形態 2においても同様に適用可能である
[0184] 次に、データ選択部 40における 3軸出力データの選択を行う方法について説明す る。
<具体的方法 (その 1) >
データ選択部 40は、データ取得部 35Aによって 3軸出力データを取得する毎に直 前に取得された 3軸出力データとの差分を計算し、その差分が所定回数以上連続し て所定値以内であった場合に、 3軸出力データを適当と判断して選択する。
<具体的方法 (その 2) >
データ選択部 40は、データ取得部 35Aによって繰り返し取得された所定数の 3軸 出力データの、各軸成分を座標値としたときの 3次元直交座標空間における分布に 基づいて球面を推定し、この球面力 所定距離以内にある 3軸出力データを適当と 判断して選択する。また、データ選択部 40は、球面の半径を所定値として球面を推 定する。
[0185] 次に、データ蓄積部 41とデータ変化判定部 41aについて説明する。
データ選択部 40によって選択された 3軸出力データ力 データ蓄積部 41によって 既に蓄積された 3軸出力データと比較して所定値以上変化したカゝ否かを判定するデ ータ変化判定部 41aを備え、データ蓄積部 41は、データ変化判定部 41aの判定結 果に基づいて、データ選択部 40によって選択された 3軸出力データを蓄積せず廃棄 する。
[0186] 図 14乃至図 16は、本発明の実施形態 2において楕円面主軸長さ'中心座標デー タを取得する手順を説明するためのフローチャートを示す図である。なお、ここでは、 データ変化判定部 41aにおいて、データ選択部 40において選択された 3軸出力デ ータとデータ蓄積部 41に最後に蓄積されている 3軸出力データとを比較して、両者 の差分が所定値未満であれば前者が破棄されることとしている。
[0187] まず、初期設定として以下の操作を行う(S201)。データ記憶部 39のカウンタ k3 ( 図 5のカウンタ 25に相当)をクリアする。次に、データ蓄積部 41に蓄積されている 3軸 出力データの数 k4をクリアする。次に、 AZD変換部 38より 3軸出力データ Srx, Sry , Srzを取得し、データ記憶部 39の 1段目 S , S , S に記憶する。
rxl r l rzl
[0188] 次に、 AZD変換部 38より Srx, Sry, Srzを取得する(S202)。次に、データ記憶 部 39の S , S , S に記憶されている 3軸出力データをデータ記憶部 39の 2段目
rxl ryl rzl
S , S , S 〖こ送り、 Srx, Sry, Srzを S , S , S 〖こ記'隐する(S203) o
rx2 r 2 rz2 rxl ryl rzl
[0189] 次に、データ記憶部 39内の 1段目と 2段目にそれぞれ記憶されている 3軸出力デ ータの差分が所定値 e3以上である場合は、 k3をクリアしてステップ S202に戻る(S2 04, S205)。 k3の値を 1つ増やし(S206)、 k3の値が所定値 m2未満である場合は 、 S202に戻る(S207)。 k3をクジァし、 S , S , S をデータ選択咅40の出力 S
rxl r l rzl rxo
, S , S (図 5の出力部 26に送ることに相当)とする(S208)。
r o rzo
[0190] 次に、 S , S , S とデータ蓄積部 41の 1段目に記憶されている 3軸出力データ
rxo ryo rzo
S , S , S の差分が所定値 e4未満である場合は、 S202に戻る(S209)。 k4の lrx lr lrz
値が所定値 N以上である場合は、 S213に進む(S210)。 k4の値を 1つ増やし(S21 1)、 k4の値が 1である場合は、 S217に進む(S212)。
[0191] 次に、指標 iを k4の値に設定する(S213)。指標 jを i— 1に設定し、データ蓄積部 4 1の j段目 S に送る
Figure imgf000031_0001
(S214)。 iの値を 1つ減らし(S215)、 iの値が 1を超える場合は、 S214に戻る(S21 6)。
[0192] 次に、 S , S , S を S , S , S に記憶する(S 217)。 k4の値が N未満である
rxo ryo rzo lrx lry lrz
場合は、 S202に戻る(S218)。(S , S , S ) , · ··, (S , S , S )力ら a,, a
lrx lry lrz Nrx Nr Nrz x y
' , a '及び Crx' , Cry' , Crz,を推定する(S219)。 a ' , a ' , a '及び Cx' , Cy' , Cz z x y z
,の推定を繰り返す場合は、 S202に戻る(S220)。
(実施形態 3)
[0193] 図 17は、本発明の加速度計測装置の実施形態 3を説明するための構成図で、基 準点の推定を、 3軸加速度センサが検知して 、ると予想される重力加速度の各軸成 分の値から、 3次元直交座標空間上に定める基準点の座標値を推定するものである
[0194] 図中符号 45は 3軸加速度センサ、 46は 3軸加速度センサの X軸方向成分検出回 路、 47は 3軸加速度センサの y軸方向成分検出回路、 48は 3軸加速度センサの z軸 方向成分検出回路、 49Aはデータ取得部、 49はマルチプレクサ部、 50は加速度セ ンサ駆動電源部、 51は増幅部、 52は AZD変換部、 53は温度検出部、 54は感度補 正情報記憶部、 55は感度補正計算部、 56は基準点推定部、 57はオフセット情報記 憶部、 58はオフセット補正計算部を示している。なお、上述した実施形態 1と重複す る部分は説明を省略する。
[0195] 本実施形態 3の加速度計測装置は、 3軸方向の加速度を検出する加速度センサ 4 5と、この加速度センサ 45の 3軸出力データを取得するデータ取得部 49Aと、加速度 センサ 45が所定の一姿勢を保持して 、る状態にぉ 、てデータ取得部 49Aによって 3 軸出力データを取得し、 3軸出力データの各軸成分を座標値としたときの 3次元直交 座標空間における位置及び所定の一姿勢を保持している状態において加速度セン サ 45が検知して 、ると予想される重力加速度の各軸成分の値から、 3次元直交座標 空間上に定める基準点の座標値を推定する基準点推定部 56と、この基準点推定部 56により推定された基準点の座標値に基づいて、加速度センサ 45の 3軸出力デー タのオフセットを補正するオフセット補正計算部 58とを備えている。また、データ取得 部 49Aは、マルチプレクサ部 49と加速度センサ駆動電源部 50と増幅部 51と AZD 変換部 52とから構成されて 、る。
[0196] 3軸加速度センサ 45と X軸方向検出回路 46と y軸方向検出回路 47と z軸方向検出 回路 48とマルチプレクサ部 49と加速度センサ駆動電源部 50と増幅部 51と AZD変 換部 52と温度検出部 53と感度補正情報記憶部 54と感度補正計算部 55とオフセット 情報記憶部 57とオフセット補正計算部 58は、上述した実施形態 1と同様である。
[0197] 基準点推定部 56は、感度補正情報記憶部 55から出力される 3軸出力データに基 づいて基準点の座標を推定して基準点座標データを出力する。
[0198] 次に、基準点推定部 56における基準点の座標を推定する方法について説明する
3軸加速度センサ 45が既知の姿勢で静止して 、る場合、 3軸加速度センサ 45が受 ける加速度の各方向成分は一意に決まる。例えば、図 18A及び図 18Bに示すように
、充電器 60が水平に置かれ、加速度計測装置 59が所定の姿勢で充電器 60にセット されている状態において、 3軸加速度センサ 45の X軸検出方向が重力加速度 gの方 向に対して垂直、 y軸検出方向が重力加速度 gの反対の方向に対して角度 φ傾 、て いるとすれば、重力加速度 gの X, y, z軸方向成分 Gx, Gy, Gzは次の通りとなる。
[0199] = 0 (46)
Gy = -9∞5 φ . . · (47)
Gz = -g sin (48) また、図 19に示すように、 3次元直交座標空間(X, y, z)において 3軸出力データ の各軸成分のオフセット値を座標値とする基準点 CI (Cx, Cy, Cz)から 3軸出力デ 一タの各軸成分を座標値とする点 P(Sx, Sy, Sz)に至るベクトル
[0200] ΰ
を考える。
すると、上式(16), (17), (18)から、
[0201] u は次のように表される。
[0202] ΰ = (u ^υ,,,υ .
= (aG y:: 'aGj + + · (49) [0203] 上式 (46), (47), (48)より Gx, Gy, Gzは既知であり、感度補正計算部 55にて補 正された感度 aが計算されれば
[0204] ύ も決定される。
[0205] したがって、次の通り基準点 C1の座標値 Cx, Cy, Czを計算することができる。
[0206] CX = SX—ux
(50)
=SX -aGx
Cy = Sy ~Uy (51)
=Sy - aGy
Cz =Sz-uz
(52)
= S,-aG,
[0207] つまり、加速度計測装置が既知の姿勢で静止している状態があるのならば、その状 態において 3軸出力データを取得すれば簡単に 3軸加速度センサのオフセットデー タを得ることがでさる。
(実施形態 4)
[0208] 本実施形態 4は、上述した実施形態 1から次の手段を省いたものとなっている。つま り、データ選択部 13における 3軸出力データの選択とデータ蓄積部 14におけるデー タ変化判定部 18を省略したものである。加速度計測装置の利用分野によっては、例 えば、以下のケースも考えられ、上述した手段が省略可能となるので実施形態 4を設 けている。 [0209] 傾斜センサのように重力加速度の検出が主体であり、かつ計測中は加速度計測装 置があまり動かず 3軸加速度センサが受ける運動加速度が重力加速度に比べてごく 小さい。または、運動加速度を検出する手段が別途設けられており、運動加速度が 検出された場合は 3軸加速度データを取得しな 、ようになって 、る。基準点座標デー タを得るための 3軸加速度データ取得に際しては、個々の 3軸加速度データを取得 する度に使用者が加速度計測装置を静止させた状態で 3軸加速度データの取得指 示を出す操作を行うことになつている。
[0210] 図 20は、本発明の加速度計測装置の実施形態 4を説明するための構成図で、基 準点の推定を、 3次元直交座標空間上に定める基準点の座標値を所定数の 3軸出 力データの各々力 基準点までの距離のばらつきが最小になるように統計的手法に よって推定するもので、また、基準点の推定を、 3次元直交座標空間上に定める基準 点の座標値を所定数の 3軸出力データの各々力 基準点までの距離が所定の代表 値に最も近づくよう統計的手法によって推定するものである。
[0211] 図中符号 61は 3軸加速度センサ、 62は 3軸加速度センサの X軸方向成分検出回 路、 63は 3軸加速度センサの y軸方向成分検出回路、 64は 3軸加速度センサの z軸 方向成分検出回路、 65Aはデータ取得部、 65はマルチプレクサ部、 66は加速度セ ンサ駆動電源部、 67は増幅部、 68は AZD変換部、 69は温度検出部、 70は感度補 正情報記憶部、 71は感度補正計算部、 72はデータ蓄積部、 73は基準点推定部、 7 4はオフセット情報記憶部、 75はオフセット補正計算部を示して 、る。
[0212] 本実施形態 4の加速度計測装置は、 3軸方向の加速度を検出する加速度センサ 6 1と、この加速度センサ 61の 3軸出力データを取得するデータ取得部 65Aと、このデ ータ取得部 65Aによって繰り返し取得された所定数の 3軸出力データの、各軸成分 を座標値としたときの 3次元直交座標空間における分布から、 3次元直交座標空間上 に定める基準点の座標値を所定数の 3軸出力データの各々力 基準点までの距離 のばらつきが最小になるように統計的手法によって推定する基準点推定部 73と、こ の基準点推定部 73により推定された基準点の座標値に基づいて、加速度センサの 3 軸出力データのオフセットを補正するオフセット補正計算部 75とを備えている。また、 データ取得部 65Aは、マルチプレクサ部 65と加速度センサ駆動電源部 66と増幅部 67と AZD変換部 68とから構成されて 、る。
[0213] 3軸加速度センサ 61と X軸方向検出回路 62と y軸方向検出回路 63と z軸方向検出 回路 64とマルチプレクサ部 65と加速度センサ駆動電源部 66と増幅部 67と AZD変 換部 68と温度検出部 69と感度補正情報記憶部 70と感度補正計算部 71とオフセット 情報記憶部 74とオフセット補正計算部 75は、上述した実施形態 1と同様である。
[0214] データ蓄積部 72は、感度補正情報記憶部 71から逐次出力される 3軸出力データ を所定数蓄積するデータバッファである。基準点推定部 73は、データ蓄積部 72に蓄 積された所定数の 3軸出力データに基づいて基準点の座標を推定し基準点座標デ ータを出力する。
[0215] 基準点推定部 73における基準点の座標を推定する方法についは、上述した実施 形態 1の場合と同様である。
また、く CI ' (Cx', Cy' , Cz' )を推定する具体的方法 (その 1) >についても、上 述した実施形態 1の場合と同様である。つまり、基準点推定部 73は、 3次元直交座標 空間上に定める基準点の座標値を所定数の 3軸出力データの各々力 基準点まで の距離のばらつきが最小になるように統計的手法によって推定するものである。
[0216] また、く CI ' (Cx', Cy' , Cz' )を推定する具体的方法 (その 2) >についても、上 述した実施形態 1の場合と同様である。つまり、基準点推定部 73は、 3次元直交座標 空間上に定める基準点の座標値を所定数の 3軸出力データの各々力 基準点まで の距離の所定の代表値に対するばらつきが最小になるように統計的手法によって推 定するものである。
[0217] 図 21及び 22は、本発明の実施形態 4における基準点座標データを取得する手順 を説明するためのフローチャートを示す図である。
[0218] まず、初期設定として以下の操作を行う(S301)。感度補正計算部 71より 3軸出力 データ Sx, Sy, Szを取得し、データ蓄積部 72の 1段目 S , S , S に記憶する。次
lx ly lz
に、データ蓄積部 72に蓄積されて 、る 3軸出力データの数 k5を 1にする。
[0219] 次に、感度補正計算部 71より Sx, Sy, Szを取得する(S302)。 k5の値が所定値 N 未満である場合は k5の値を 1つ増やす (S303, S304)。指標 iを k5の値に設定する (S305)。指標 jを i— 1に設定し、データ蓄積部 72の j段目 S , S , S に記憶されて いる 3軸出力データを i段目 S , S , S に送る(S306)。iの値を 1つ減らし(S307)、i の値が 1を超える場合は、 S306に戻る(S308)。
[0220] 次に、 Sx, Sy, Szを S , S , S に記'隐する(S309) o k5の値力N未満である場 合は、 S302に戻る(S310)。(S , S , S ) , · ··, (S , S , S )力ら Cx,,Cy,, lx ly lz Nx Ny Nz
Cz,を推定する(S311)。 Cx,, Cy' , Cz,の推定を繰り返す場合は、 S302〖こ戻る(S
312)。
(実施形態 5)
[0221] 本実施形態 5は、上述した実施形態 2から次の手段を省いたものとなっている。つま り、データ選択部 40における 3軸出力データの選択とデータ蓄積部 41におけるデー タ変化判定部 41aを省略したものである。
[0222] 実施形態 4の説明で述べたように、加速度計測装置の利用分野によっては、上述し た手段が省略可能となることも考えられるので、実施形態 5を設けて 、る。
[0223] 図 23は、本発明の加速度計測装置の実施形態 5を説明するための構成図で、基 準点の推定を、 3次元直交座標空間上に定める楕円面の各主軸の長さ及び中心座 標値を所定数の 3軸出力データの各々が楕円面に最も近づくよう統計的手法によつ て推定するものである。
[0224] 図中符号 76は 3軸加速度センサ、 77は 3軸加速度センサの X軸方向成分検出回 路、 78は 3軸加速度センサの y軸方向成分検出回路、 79は 3軸加速度センサの z軸 方向成分検出回路、 80Aはデータ取得部、 80はマルチプレクサ部、 81は加速度セ ンサ駆動電源部、 82は増幅部、 83は AZD変換部、 84はデータ蓄積部、 85は基準 点推定部、 86は感度 'オフセット情報記憶部、 87は感度 ·オフセット補正計算部を示 している。
[0225] 本実施形態 5の加速度計測装置は、 3軸方向の加速度を検出する加速度センサ 7 6と、この加速度センサ 76の 3軸出力データを取得するデータ取得部 80Aと、このデ ータ取得部 80Aによって繰り返し取得された所定数の 3軸出力データの、各軸成分 を座標値としたときの 3次元直交座標空間における分布から、 3次元直交座標空間上 に定める楕円面の各主軸の長さ及び中心座標値を所定数の 3軸出力データの各々 が楕円面に最も近づくよう統計的手法によって推定する基準点推定部 85と、この基 準点推定部 85により推定された楕円面の各主軸の長さ及び中心座標値に基づいて 、加速度センサの 3軸出力データの感度及びオフセットを補正する感度.オフセット補 正計算部 87とを備えている。また、データ取得部 80Aは、マルチプレクサ部 80とカロ 速度センサ駆動電源部 81と増幅部 82と AZD変換部 83とから構成されている。
[0226] 3軸加速度センサ 76と X軸方向検出回路 77と y軸方向検出回路 78と z軸方向検出 回路 79とマルチプレクサ部 80と加速度センサ駆動電源部 81と増幅部 82と AZD変 換部 83は、上述した実施形態 1と同様である。
[0227] データ蓄積部 84は、 AZD変換部 83から逐次出力される 3軸出力データを所定数 蓄積するデータバッファである。基準点推定部 85は、データ蓄積部 84に蓄積された 所定数の 3軸出力データに基づ 、て楕円面の各主軸の長さ及び中心座標値を推定 して楕円面主軸長さ'中心座標データを出力する。感度'オフセット情報記憶部 86と 感度'オフセット補正計算部 87については、上述した実施形態 2の場合と同様である
[0228] また、基準点推定部 85における楕円面の各主軸の長さ及び中心座標値を推定す る方法についても、上述した実施形態 2の場合と同様である。
また、 < a ' , a ' , a '及び Crx' , Cry' , Crz,を推定する具体的方法 >についても
、上述した実施形態 2の場合と同様である。
[0229] 図 24及び図 25は、本発明の実施形態 5における基準点座標データを取得する手 順を説明するためのフローチャートを示す図である。
[0230] まず、初期設定として以下の操作を行う(S401)。 AZD変換部 83より 3軸出力デ ータ Srx, Sry, Srzを取得し、データ蓄積部 84の 1段目 S , S , S に記憶する。 次に、データ蓄積部 84に蓄積されて 、る 3軸出力データの数 k6を 1にする。
[0231] 次に、 AZD変換部 83より Srx, Sry, Srzを取得する(S402)。 k6の値が所定値 N 未満である場合は k6の値を 1つ増やす (S403, S404)。指標 iを k6の値に設定する (S405)。指標 jを i— 1に設定し、データ蓄積部 84の j段目 S , S , S に記憶され ている 3軸出力データを i段目 S , S , S に送る(S406)。iの値を 1つ減らし(S40
7)、 iの値が 1を超える場合はステップ S406に戻る(S408)。
[0232] 次に、 Srx, Srv, Srzを S , S , S に記憶する(S409)。 k6の値が N未満であ る場合は、 S402に戻る(S410)。(S , S , S ) , · ··, (S , S , S )から a,,
lrx lr lrz Nrx Nry Nrz x a ' , a '及び Crx' , Cry' , Crz,を推定する(S411)。 a ' , a ' , a '及び Cx', Cy,, y z x y z
Cz,の推定を繰り返す場合は、 S402〖こ戻る(S412)。
[0233] 次に、温度特性への対応について説明する。
上述したように、ピエゾ抵抗型の加速度センサにぉ ヽては感度及びオフセットは著 しい温度特性を有する。したがって、加速度計測装置の置かれている環境の温度変 化が大きい場合は、オフセット情報記憶部に記憶された基準点座標データの推定に 用いられた 3軸加速度データが取得された時の温度、若しくは感度 ·オフセット情報 記憶部に記憶された楕円面主軸長さ'中心座標データの推定に用いられた 3軸加速 度データが取得された時の温度と、オフセット補正計算部若しくは感度 ·オフセット補 正計算部にて補正の対象となる 3軸加速度データが取得された時の温度が大きく異 なり、オフセット補正若しくは感度 ·オフセット補正の誤差が大きくなる可能性がある。
[0234] また、基準点座標データの推定に用いられる所定数の 3軸加速度データがそれぞ れ取得された時の温度のばらつき、若しくは楕円面主軸長さ'中心座標データの推 定に用いられる所定数の 3軸加速度データがそれぞれ取得された時の温度のばらつ きが大きくなり、基準点座標データ若しくは楕円面主軸長さ'中心座標データの誤差 が大きくなる可能性もある。
[0235] 以下、上述した実施形態 1から実施形態 5において適用可能な、上述の温度特性 への対応に対する各解決手段について説明する。
<解決手段 1 >
本解決手段 1は、上述した実施形態 1, 2, 4及び 5において適用可能である。 以下、実施形態 1へ適用する場合について説明する。
[0236] 図 26は、温度特性への対応についての解決手段 1を示すブロック図で、図中符号 88は入力部、 89は比較部、 90は第 1のデータバッファ、 91は第 2のデータバッファ、 92はデータバッファ L、 93は選択部、 94は基準点推定部、 95は分配部、 96は第 1 の基準点座標記憶、 97は第 2の基準点座標記憶、 98は基準点座標記憶 Lを示して いる。つまり、図 26は、本解決手段を適用した場合の、データ蓄積部 14と基準点推 定部 15及びオフセット情報記憶部 16に相当する詳細構成の一例を表したものであ る。
[0237] 加速度計測装置の使用温度範囲は、あらかじめ L個に区分されており、それぞれ 温度区分 1,温度区分 2, ···,温度区分 Lと称するものとする。データ選択部 13にお いて選択された 3軸出力データは、ー且入力部 88にて一時記憶される。入力部 88 は、温度検出部 9より取得された温度データを基に、一時記憶された 3軸出力データ 力 Sどの温度区分に属するかを決定する。
[0238] 第 1のデータバッファ 90と第 2のデータバッファ 91, ···,データバッファ L92は、そ れぞれ温度区分 1,温度区分 2, ···,温度区分 Lに属する 3軸出力データを蓄積する
[0239] 比較部 89は、第 1のデータバッファ 90と第 2のデータバッファ 1, ···,データバッファ L92の中から、入力部 88にて一時記憶された 3軸出力データが属する温度区分と同 じものを選択する。その後、上述した実施形態 1の説明と同様に、入力部 88にて一 時記憶された 3軸出力データを選択されたデータバッファに蓄積する力破棄する。
[0240] 選択部 93は、入力部 88にて一時記憶された 3軸出力データが比較部 89によって 選択されたデータバッファに蓄積された時、選択されたデータバッファに蓄積された データ数が所定数に達して 、れば、選択されたデータバッファに蓄積されて 、る 3軸 出力データと温度区分情報を基準点推定部 94に向けて出力する。
[0241] 基準点推定部 94は、選択部 93から出力された 3軸出力データに基づき基準点の 座標値を推定する。分配部 95は、選択部 93から出力された温度区分情報に基づき 、基準点推定部 94から出力された基準点座標データを対応する第 1の基準点座標 記憶 96と第 2の基準点座標記憶 97, ···,基準点座標記憶 L98のいずれかに記憶す る。
[0242] なお、入力部 88にて一時記憶された 3軸出力データを比較部 89によって選択され たデータバッファに蓄積する際、温度検出部 9より取得された温度データが決定され た温度区分のどこに位置するかによって 3軸出力データを補正してもよい。これは、 感度及びオフセットの温度依存性が概ね把握されており、しかも、温度区分内での感 度及びオフセットの温度変化が比較的大きい場合に有効である。
[0243] その後、オフセット補正計算部 17は、感度補正計算部 11から出力される 3軸出力 データに対して、温度検出部 9より取得した温度データを基にどの温度区分に属する かを決定し、対応する第 1の基準点座標記憶 96と第 2の基準点座標記憶 97, ···,基 準点座標記憶 L98の 、ずれかに記憶されて!、る基準点座標データを用いてオフセ ッ卜補正を行 c
<解決手段 2>
本解決手段 2は、上述した実施形態 1, 2, 4及び 5において適用可能である。 以下、実施形態 1へ適用する場合について説明する。
図 27は、温度特性への対応についての解決手段 2を示すブロック図で、本解決手 段を適用した場合の、データ蓄積部 14, 40と基準点推定部 15, 42及びオフセット 情報記憶部 16、感度'オフセット情報記憶部 43に相当する詳細構成の一例を表した ものである。図中符号 99は入力部、 100は比較部、 101はデータバッファ A、 102は データバッファ B、 103は選択部、 104は基準点推定部、 105は分配部、 106は第 1 の基準点座標記憶、 107は第 2の基準点座標記憶、 108は基準点座標記憶 Lを示し ている。
[0244] 加速度計測装置の使用温度範囲は、あらかじめ L個に区分されており、それぞれ 温度区分 1,温度区分 2, ···,温度区分 Lと称するものとする。
[0245] データ選択部 13において選択された 3軸出力データは、ー且入力部 99にて一時 記憶される。入力部 99は、温度検出部 9より取得された温度データを基に、一時記 憶された 3軸出力データがどの温度区分に属するかを決定する。
[0246] データバッファ A101は、 3軸出力データを蓄積し、データバッファ B102は、データ バッファ A101に蓄積された 3軸出力データが入力部 99にて一時記憶された時に温 度検出部 9より取得された温度データを同じ順序で蓄積する。この結果、データバッ ファ A101に蓄積されたそれぞれの 3軸出力データは、データバッファ B102に蓄積 された温度データを参照することにより、どの温度区分に属するかが判るようになって いる。
[0247] 比較部 100は、入力部 99にて一時記憶された 3軸出力データに対して、データバ ッファ A101に蓄積された 3軸出力データの中力も温度区分が同じものと比較するこ とにより、上述した実施形態 1の説明と同様に、データバッファ A101に蓄積する力破 棄する。
[0248] 入力部 99にて一時記憶された 3軸出力データ力 データバッファ A101に蓄積され る場合、データバッファ A101に既に蓄積された 3軸出力データの中で、今回蓄積さ れようとする 3軸出力データと温度区分が同じものが所定数に達している場合、該当 する 3軸出力データの中で最も古いものとデータバッファ B102において対応する温 度データを破棄する。
[0249] 入力部 99にて一時記憶された 3軸出力データ力 データバッファ A101に蓄積され る場合、先に取得された温度データをデータバッファ B102に同時に蓄積する。
[0250] 選択部 103は、入力部 99にて一時記憶された 3軸出力データ力 データバッファ A 101に蓄積された時、データバッファ A101に蓄積された 3軸出力データの中で今回 蓄積された 3軸出力データと温度区分が同じものが所定数に達している場合、該当 する 3軸出力データと温度区分情報を基準点推定部 104に向けて出力する。
[0251] 基準点推定部 104は、選択部 103から出力された 3軸出力データに基づき基準点 の座標値を推定する。分配部 105は、選択部 103から出力された温度区分情報に基 づき、基準点推定部 104から出力された基準点座標データを対応する第 1の基準点 座標記憶 106と第 2の基準点座標記憶 107, ···,基準点座標記憶 L108のいずれか B己 ΐ す 0
[0252] その後、オフセット補正計算部 17は、感度補正計算部 11から出力される 3軸出力 データに対して、温度検出部 9より取得した温度データを基にどの温度区分に属する かを決定し、対応する第 1の基準点座標記憶 106と第 2の基準点座標記憶 107, · ··, 基準点座標記憶 L108の 、ずれかに記憶されて!、る基準点座標データを用いてォ フセット補正を行う。
<解決手段 3 >
本解決手段 3は、上述した実施形態 3にお 、て適用可能である。
図 28は、温度特性への対応についての解決手段 3を示すブロック図で、本解決手 段を適用した場合の、オフセット情報記憶部 57に相当する詳細構成の一例を表した ものである。図中符号 109は分配部、 110は第 1の基準点座標記憶、 111は第 2の基 準点座標記憶、 112は基準点座標記憶 Lを示して 、る。 [0253] 加速度計測装置の使用温度範囲は、あらかじめ L個に区分されており、それぞれ 温度区分 1,温度区分 2, ···,温度区分 Lと称するものとする。分配部 109は、温度検 出部 53より取得された温度データに基づき、基準点推定部 56から出力された基準 点座標データを対応する第 1の基準点座標記憶 110と第 2の基準点座標記憶 111, ···,基準点座標記憶 LI 12の 、ずれかに記憶する。
[0254] その後、オフセット補正計算部 58は、感度補正計算部 55から出力される 3軸出力 データに対して、温度検出部 53より取得した温度データを基にどの温度区分に属す るかを決定し、対応する第 1の基準点座標記憶 110と第 2の基準点座標記憶 111, ···,基準点座標記憶 LI 12の 、ずれかに記憶されて!、る基準点座標データを用いて オフセット補正を行う。
[0255] 次に、不良データへの対応に対する各解決手段について説明する。
<解決手段 1 >
本解決手段 1は、上述した実施形態 1、実施形態 2、実施形態 4、実施形態 5にお いて適用可能である。
以下、上述した実施形態 1へ適用する場合について説明する。
良好な基準点推定結果を得るためには、取得した N個の 3軸出力データの 3次元 直交座標空間(X, y, z)における点 P (S , S , S ) , P (S , S , S ) , · ··, P (S
1 lx l lz 2 2x 2y 2z N
, s , s )はなるべく様々な位置にまんべんなく分布しているのが望ましい。一方
Nx Ny Nz
、各点の位置は 3軸加速度センサ 1の姿勢によって決まるため、 N個の 3軸出力デー タの取得に際しては加速度計測装置の向きをなるベく様々な方向にまんべんなく向 けるのが望まし 、と 、うことになる。
[0256] ところが、使用者によっては加速度計測装置の向きの変化が限定的になる傾向が あり、この場合は点 P (S , S , S ) , P (S , S , S ) , · ··, P (S , S , S )の
1 lx ly lz 2 2x 2y 2z N Nx Ny Nz 分布も偏り良好な基準点推定結果が得られな ヽ。
[0257] この場合、 3軸出力データの各軸成分の中で最も値の変化の少ない軸の成分を除 き、残りの 2軸成分力も成る 2軸出力データについて基準点座標の推定を行い、この 2軸に対してオフセット補正を行うことが可能である。
[0258] 具体的には、以下の手順で行う。 まず、取得した N個の 3軸出力データについて、各軸成分別にばらつきを計算する ここでは計算の結果、 z軸成分のばらつき v (z)が X軸成分のばらつき v(x) , y軸成分 のばらつき V (y)のいずれからも小さくなつたと仮定する。
[0259] 次に、 v(z)が所定値を超えていたら通常通りの基準点座標の推定を行う。次に、 v ( z)が所定値以下の場合、 N個の 3軸出力データから z軸成分のデータ S , S , · ··, lz 2z
S を除き、残りの x軸成分データ S , S , · ··, S 及び y軸成分のデータ S , S ,
Nz lx 2x Nx ly 2y
· ··, S で 2軸出力データを構成する。
Ny
[0260] 次に、 2次元直交座標空間(X, y)において、上述の 2軸出力データを
P,(S , S ) , P,(S , S ) , · ··, P ,(S , S )
1 lx ly 2 2x 2y N Nx Ny
なる N個の点として表す。
[0261] 次に、 2次元直交座標空間(X, y)において、 P ' , · ··, P ,のいずれからも距離が
1 N
一定となる点 C1,, (Cx, ' , Cy" )を推定する。次に、点 C1,,の座標値 Cx, ' , Cy" を以つて 3軸出力データ中の x軸成分及び x軸成分に対してオフセット補正を行う。 <解決手段 2>
本解決手段 2は、上述した実施形態 1から実施形態 5において適用可能である。 以下、実施形態 1へ適用する場合について説明する。
上述したように、取得した N個の 3軸出力データの 3次元直交座標空間(X, y, z)に おける点の分布力 推定される基準点の座標値は 3軸出力データのオフセットに相 当する。
[0262] ピエゾ抵抗型の加速度センサにぉ 、ては、オフセットは著 、温度特性を持つので 、加速度計測装置の置かれて 、る環境の温度変化が大き ヽ場合はオフセットも時間 変動する。しかし、短時間で急激にオフセットが時間変動することはピエゾ抵抗型カロ 速度センサの特性上考えにくい。
[0263] このため、基準点座標の推定を逐次行っていて、推定された基準点座標が短時間 で大きな変動を起こした場合は、 3軸出力データに比較的大きなノイズが混入したか 、 3軸出力データ取得中の加速度計測装置の姿勢の変化が限定的になって基準点 座標の推定が良好に行われなくなった可能性が高い。 [0264] また、このような基準点座標を用いれば、誤ったオフセット補正をしてしまうことにな る。そこで、基準点座標の推定においては、直近の所定数の基準点座標値のばらつ きを計算し、このばらつきが所定値よりも大きくなつた場合は基準点座標の推定が良 好に行われなカゝつたと見做し、推定された基準点座標値を破棄すれば、誤ったオフ セット補正を防ぐことができる。
<解決手段 3 >
本解決手段 3は、上述した実施形態 1から実施形態 5において適用可能である。 以下、上述した実施形態 1へ適用する場合について説明する。
上式(20)より、 3次元直交座標空間(X, y, z)において 3軸出力データの各軸成分 を座標値とする点 P (Sx, Sy, Sz)力も基準点 Cl (Cx, Cy, Cz)までの距離は補正さ れた感度 aと重力加速度 gの積となる。
[0265] ピエゾ抵抗型の加速度センサにぉ 、ては、感度は著 、温度特性を持つので、加 速度計測装置の置かれて 、る環境の温度変化が大き ヽ場合は感度も時間変動する 力 短時間で急激に感度が時間変動することはピエゾ抵抗型加速度センサの特性 上考えにくい。し力も、実施形態 1においては感度補正計算部 11において感度補正 され、補正された感度 aは一定に近い。
[0266] 重力加速度 gは通常の利用分野にお!、て一定値と見做してょ 、。したがって、 agは あらかじめ予測できる値であり、 3次元直交座標空間(X, y, z)において推定された 基準点から各 3軸出力データを示す点までの距離もあらかじめ予測される値に収斂 するはずである。
[0267] そこで、基準点座標の推定においては、推定された基準点から各 3軸出力データを 示す点までの距離の平均値等を計算し、この値が所定範囲外であった場合は感度 補正計算部 11における感度補正か基準点座標の推定のどちらか若しくは両方が良 好に行われなカゝつたと見做し、推定された基準点座標値を破棄すれば、誤ったオフ セット補正を防ぐことができる。
[0268] 次に、 2軸加速度センサへの適用について説明する。
上述した実施形態 1から実施形態 5は、 3軸方向の加速度を検出する加速度センサ の代わりに 2軸方向の加速度を検出する加速度センサを備えた加速度計測装置に ついても適用可能である。
[0269] このとき、実施形態 1, 4における基準点推定手段では、出力データ蓄積手段によ つて蓄積された所定数の 2軸出力データの各軸成分を座標値としたときの 2次元直 交空間における分布から、当該 2次元直交空間上に定める基準点の座標を推定する ことになる。
[0270] また、実施形態 2, 5における基準点推定手段では、出力データ蓄積手段によって 蓄積された所定数の 2軸出力データの各軸成分を座標値としたときの 2次元直交空 間における分布から、当該 2次元直交空間上に定める楕円の各主軸の長さ及び中 心座標値を推定することになる。
[0271] また、実施形態 1, 2, 4, 5の適用においては、基準点の座標又は楕円の各主軸の 長さ及び中心座標値の推定を行なうための 2軸出力データを取得して 、る間は、カロ 速度を検出する 2軸方向のいずれかにも垂直な軸の方向と重力加速度の方向との間 になす角度が一定となるように加速度計測装置の姿勢を制御する。
(実施形態 6)
[0272] 3軸加速度センサにおいて、加速度センサが重力加速度のみを受ける場合、すな わち、静止している場合の加速度センサの出力データ(以下、測定データという)の 分布は、 3次元直交座標系において球面又は楕円面を形成する。そのため、この球 面又は楕円面の中心値を求めることでオフセットを推定することが可能である。
[0273] 加速度センサの球面又は楕円面当てはめ計算を行うには、例えば、測定データを 有限長のバッファに蓄積し、蓄積された測定値力 球体の中心を推定する方法を用 いることができる。この際に精度良く球体の中心を推定するためには、測定データが 球面上又は楕円面上に信頼度が高く分布されている必要がある。すなわち、測定デ ータは確実に静止した時のデータでなければならない。
[0274] 静止時の測定データを取得するためには、加速度センサが静止して 、るか否かの 判定を行うことが必要となる。静止判定を行うには、ある閾値で設定された時間の間、 測定データが変化して 、な 、ことを判定するのが簡単である。
[0275] この設定時間の閾値が小さい場合は、偶然にも等加速度運動となった瞬間の値を 取り込んだ可能性がある。動いていない期間の閾値を長くすると、このような偶然の 可能性を低くすることができるが、静止時の測定データを取得するまでに時間がかか つてしまい、データ取得の効率が落ちてしまう。そこで、静止していた時間が何秒間 であったかという静止時間情報を静止時の測定データに付加しておくのがよい。
[0276] この静止時間情報は、蓄積された測定データが静止時のデータとして、どの程度信 頼できるかを示す一つの指標として利用することができる。静止していた時間が短い ことは、データ取得時に加速度センサが静止していた確率が低いことを示し、逆に時 間が長 、ことは静止して 、た確率が高 、ことを示す。この静止時間情報の使 、方とし ては、例えば、以下のようなことが考えられる。
[0277] 有限長のバッファを用いた計算を行う場合、 3次元空間内で近 、距離にあるデータ を排除することで、ノ ッファ内のデータの冗長がなくなり、ノ ッファを効率よく使うこと ができる。近い距離にあるデータどうしを比較するときに、どちらのデータがより確から しいかを判定する基準が問題となる。ここで、付加された静止時間情報を比較するこ とで、統計的な計算等を行うことなぐ簡単にどちらが確力もしいかを判定することが でさるよう〖こなる。
[0278] 上述した例では、測定データに静止時間情報を付加したが、一定間隔で測定を行 つて 、る場合には、静止して 、ると判定されて力も次に静止して 、な 、と判定される までの間に何回測定を行ったかという回数を情報として付加しても良い。
[0279] つまり、本実施形態 6において、データ選択部 13, 40は、データ取得部 5A, 35A によって出力データを取得する毎に基準となる出力データとの差分を計算し、その差 分が所定値を超えた場合に、基準となる出力データ、所定値を超える直前に取得さ れた出力データ、又は基準となる出力データを取得して力 差分が所定値を超える 直前までの間に取得された出力データの内の任意の 1つの出力データ、又はその平 均値を選択し、データ蓄積部 14, 41は、基準となる出力データを取得して力 所定 値を越える直前にデータを取得するまでの時間を、データ選択部 13, 40によって選 択された出力データに付加するものである。
<具体的手法 >
図 29は、本発明の実施形態 6における 3軸出力データの概念図(その 1)である。こ こでは説明を簡単にするために 1次元で表している。 [0280] 曲線 211は、加速度センサが受ける加速度の時間変化を示し、黒点 212は、 3軸カロ 速度センサの出力データ取得のタイミングを示している。区間 213は m秒間、区間 21 4は n秒間だけ加速度センサの出力値が一定であることを示している。また、この場合 、 m<nである。これらの区間では出力値が一定であることより加速度センサは静止し ていると見做すことができる。したがって、両データとも静止時の測定データとして用 いることがでさる。
[0281] し力しながら、これらの測定データのうちどちらかを排除しなければならない場合、 測定時間を比較し、静止時間の長い区間 214の測定データの方が確からしいとして 区間 214の測定データを採用すればよい。出力値が一定であるかどうかを判定する 閾値は、任意に設定することができる。
[0282] 図 30は、本発明の実施形態 6におけるデータを選択する手順を説明するためのフ ローチャートを示す図で、オフセット情報を取得するためのフローチャートである。
[0283] 図 30において、 Scur、 Sbase、 Sstatは 3軸加速度測定データを表し、これらは X、 Y、 Z、 tを成分とする構造体である。ここで Scurは最新の測定データ、 Sbaseは静止 判定を行う基準点、 Sstatは静止していると判定された測定データを示す。 Scur(x) 、 Scur (y)、 Scur (z)、 Scur (t)はそれぞれ測定データ Scurの X、 Y、 Ζ成分を表す ものとする。また、 Scur (t)はある基準点 Sbaseを測定した時刻から Scurを測定した 時刻までに経過した時間 (継続時間情報)を示すものとする。 Scurが測定されるまで の Sbufは 3軸加速度測定データの配列を表し、 Sbuf[i]は配列内の i番目の要素を 表すものとする。
[0284] 図 30において、初期設定として 3軸加速度測定データを取得して Sbaseに蓄積し、 それと同時に現在の時刻を取得して Tbaseに蓄積する。この初期設定の時にかぎり S statに Sbaseの値を代入し、 Sstat (t)には 0を代入しておく(S421)。次に、再度 3軸 加速度測定データと現在の時刻を取得し、それぞれ Scurと Tcurに蓄積する(S422
) o
[0285] 次に、 Sbaseと Scurの 3次元空間内での距離を計算する。このことを簡単にするた めにマイナス演算子を用いて表記する(S423)。算出された距離が所定値 (dth)より 小さければ最新の測定値 Scurを Sstatに代入し、 Sstat (t)には時刻 Tbaseと時刻 T curの差分、すなわち、 Sbaseを測定してから Scurを測定するまでの時間を蓄積する (S424) 0一方、算出された距離が所定値以上であれば、加速度センサが動いたと 見做し Sstat (t)の値を調べる(S425)。
[0286] 図 31は、図 30における S425の処理を実行する時点における各変数に蓄積された 測定データの概念を表わす図である。ここでは説明を簡単にするために 1次元で表 している。
[0287] 区間 215は加速度センサが静止していたことを示し、その時間は P秒であったとす る。 Scur218を最新の測定データとすると、 Sbase216はその区間の開始時の測定 データを示し、 Sstatは Scurが測定される一つ前の測定データを保持することとなる 。さらに、 Sstat (t)には静止していた時間 P秒が保持されている。
[0288] Sstat (t)の値が所定値(tth)以下であれば Sbaseと Sstatを Scurで、 Tbaseを Tcu rで、 Sstat (t)を 0で上書きする(S426)。
[0289] Sstat (t)の値が所定値より大きい場合、データバッファ Sbuf内の測定データと Sst atの入れ替えを試みる(S427)。最後に、データバッファの更新が行われたかどうか を判定し(S428)、データバッファ内の個々の測定データからの距離のばらつきが最 小になるような球体中心座標を求め、オフセットを推定する(S429)。データの測定 が終了したかどうか判断し(S430)、終了していなければ上述した処理を繰り返す。
[0290] 図 32は、本発明の実施形態 6におけるデータバッファ内の測定データを入れ替え る手順を説明するためのフローチャートを示す図で、図 30における S427の処理を詳 細に説明したフローチャートである。
[0291] 最初に、データバッファ Sbuf内の測定データ Sbuf [i]と Sstatの 3次元空間内での 距離を計算する(S431)。測定データ Sstatとデータバッファ Sbuf内の全ての測定 データとの空間距離が所定値よりも大きい場合(S432)、データバッファ Sbuf内の適 当な 1個のデータを Sstatで置き換える(S433〜S435)。
[0292] 一方でデータ Sbuf [i]と Sstatの空間距離が所定値以下の場合(S432)、それらの 測定データの継続時間情報 Sbuf [i] (t)と、 Sstat (t)を比較する(S436)。 Sstat (t) の方が Sbuf [i] (t)以上の場合、 Sbuf [i]を Sstatで置き換える(S437)。 Sbuf [i] (t )が Sstat (t)より小さければ、データバッファ Sbufは更新せず、図 30における S427 の処理を終了する。
[0293] バッファ内から削除する測定データの選定方法の例として、継続時間情報を用いる ことも考えられる。データバッファ内の測定データのうち一番小さな時間を持つ測定 データを削除しても良い。または Sstatとの空間距離が最も近い測定データ、又は最 も古く取得された測定データ、または推定された球面又は楕円面力もの距離が最も 離れている測定データを削除しても良い。
(実施形態 7)
[0294] 球面又は楕円面当てはめ計算において、加速度センサの出力データ(測定データ )が、 3次元空間内で正確に球面上又は楕円面上にあるならば、各測定点が球面上 の狭 、範囲に分布して 、ても中心点を精度良く求めることは可能である。
[0295] この測定データは、ノイズや量子化誤差の影響を受けるため、たとえ加速度センサ が静止していてもその測定データが正確に球面上にあることは稀である。測定点の 分布が狭!、とこれらの誤差の影響を大きく受け、精度良 、推定計算が行えな 、と!、う 問題がある。
[0296] し力しながら、測定データが 3次元空間内で十分広い範囲に分布していれば、これ らの誤差の影響を小さくすることができる。すなわち、 3次元直交座標空間において、 任意の線形軸を設定し、その軸上において最大又は最小に近い点データが分布す るようにデータ蓄積を工夫すればよい。さらに、楕円面当てはめ計算においては、楕 円体の長軸、短軸それぞれの両端に近い位置に一つ以上の測定データがあると、 極めて精度の良 、推定計算が行える。互 、に直交した 3次元方向の加速度を検出 するような 3軸加速度センサの出力においては、その出力データはその各測定方向 成分すなわち測定軸のどれかを長軸又は短軸とするような楕円体上を分布するので 、加速度センサの測定軸上での最大値、最小値となる成分を持つデータを用いるこ とで、楕円面当てはめ計算の精度を高くすることができる。
[0297] 本実施形態 7では、加速度センサの測定軸及びそれらと線形関係にある軸を規定 し、その軸上で最大又は最小となる出力データを優先的に蓄積することで、楕円面 当てはめ計算において推定誤差が小さくなるようなデータ群を得ることを目的とする。
[0298] 例えば、推定する楕円体の長軸と短軸が 3次元直交座標系の X、 Y、 Ζ軸に一致す る場合、測定データが各軸の最大と最小であるかを判定し蓄積してやればよい。ここ で測定データを蓄積するバッファの数に注意する必要がある。
[0299] 軸上で最大と最小となる測定データを蓄積するだけならば軸の数の 2倍のデータバ ッファ長で足りる力 軸の数のちょうど 2倍だけのデータノッファ長し力持たない場合、 データバッファが一度最大と最小の測定データで満たされてしまうとデータバッファ 内の測定データは入れ替わることが無くなってしまう。
[0300] 球体当てはめ及び楕円体当てはめ演算を行うことでオフセットと感度を推定する手 法において、演算結果が信頼できるものであるかどうかを判断するには、同一でない 測定データ群を用いたそれぞれの演算結果が十分近 、値であるかどうかを判定す ればよい。
[0301] し力しながら、データバッファ内の測定データが入れ替わらなければ球体及び楕円 体当てはめ演算は常に同じ結果を返してしまうことになり、その演算結果が信頼でき るものであるかどうかを判断することが困難となってしまう。
[0302] そこで、軸上の最大と最小以外の測定データを蓄積できるようにデータバッファに 冗長性を持たせ、どの軸の最大でも最小でもな 、と判定された測定データをこの冗 長部に蓄積するようにすればよい。この冗長なデータバッファは、 FIFO方式で測定 データを蓄積する。この結果、データバッファ全体としては静止時の測定データを得 る毎に更新され、常に同一でない測定データ群を得ることができる。つまり、データ群 が更新されるたびに毎回球体又は楕円体当てはめ計算を行い、その結果を評価す ることで、演算結果が信頼できるものかどうかを判断することができる。
<具体的手法 >
図 33は、本発明の実施形態 7におけるデータ変化判定部の具体的な構成図で、 測定データ選択の具体的方法を示すものである。図 1におけるデータ記憶部 12とデ ータ選択部 13の詳細を表したものである。図中符号 220はデータ入力部、 221は軸 比較部、 222は最大最小値用データバッファ、 223は FIFO型データバッファ、 224 は出力部を示している。
[0303] 感度補正計算部 11から出力された測定データは入力部 220にいつたん蓄積され る。軸比較部 221は、入力部 220に記憶されている測定データと最大最小用データ ノ ッファ 222に蓄積されている測定データを比較し、入力部 220のデータがいずれ かの軸上で最大又は最小であると判定したならば、その測定データを該当する最大 最小用データバッファ 222内のデータと入れ替える。
[0304] この場合、入力部 220には最大最小データバッファ 222内に蓄積されていた測定 データが新たに記憶される。最大最小用データバッファ内の全ての測定データと比 較し終わると、結果として入力部 220にはどの軸上でも最大又は最小にならないデ ータが記憶されることとなる。入力部 220に記憶された最大又は最小でな 、測定デ ータは、 FIFOデータバッファ 223の初段に格納され、最後段に蓄積されていた測定 データは破棄される。
[0305] 以上の手順が終了すると、出力部 224は、最大最小用データノッファ 222と FIFO 型データバッファ 223に蓄積されて 、る測定データを基準点推定部 15に向けて出力 する。
[0306] 図 34は、本実施形態 7において、データバッファ内の各測定データが 3軸加速度セ ンサの各軸 X、 Υ、 Ζ軸のどれか一つに対して最大または最小となるデータを優先的 に格納する手順を説明するためのフローチャートを示す図で、図 30に示した S427 の処理を詳細に説明したフローチャートである。
[0307] ここでは 3軸加速度センサの測定軸 X、 Υ、 Ζ軸に対して最大と最小の測定データを 一つずつデータバッファ内に持ち、冗長なデータバッファを一つとする。その結果、 データバッファ長は 7となる。
[0308] 最初に、データバッファ Sbuf内の測定データ Sbuf [i]と Sstatの 3次元空間内での 距離を計算する(S442)。測定データ Sstatとデータバッファ Sbuf内の全ての測定 データとの空間距離が所定値よりも大きい場合 (S443)、カウンタの値に基づいて条 件判定を行う(S444)。
[0309] ここでカウンタの値に基づく条件とは i=0の場合は X軸の最大、 i= lの場合は X軸 の最小、以下 Y軸最大、 Y軸最小、 Z軸最大、 Z軸最小とする。例えば、 i=0の場合、 Sbuf [0] (X)と Sstat (X)を比較し、 Sstat (x)の方が大きいならば Sbuf [0]と Sstat の値を入れ替える(S445)。したがって、 Sbuf [0]には常に X軸最大の測定データが 蓄積される。 [0310] バッファ内の全てのデータを比較し終わると(S443〜S449)、 Sbuf [0]には X軸最 大の測定データが、 Sbuf[l]には X軸最小の測定データ力 以下 Y軸最大、 Y軸最 小、 Z軸最大、 Z軸最小の測定データがバッファに蓄積される。
[0311] ただし、ここで示した条件とカウンタの対応は一例であり、その対応の順序はどのよ うにしてもよい。なぜならば、新たな測定データを得るごとにこれらのステップは繰り返 されるため、ある軸の条件に当てはまった測定データでも、新たな最大又は最小のデ ータが入ってくることにより他の軸の条件で判定されるため、ある一つの測定データ はバッファから削除されるまでの間に全ての条件において判定される力もである。
[0312] 本実施例 7では説明を簡単ィ匕するためにバッファ長を 6としたが、各軸の最大方向 、最小方向に複数個の測定データを格納しても良い。複数個の測定データを格納し た場合、軸付近における測定データを平均化することと同様の効果が期待できる。ま た、冗長なデータバッファについても、必ずしもひとつである必要はなぐ 2つ以上を 持つようにしてもよい。
[0313] また、 3軸加速度センサの測定軸 X、 Y、 Ζ軸の線形結合で表される軸を新たに定 義し、その上で最大、最小となる測定データを蓄積しても良い。この場合、ノ ッファ内 の測定データを球面又は楕円面上に広く分布させるように蓄積できることが期待でき る。
(実施形態 8)
[0314] 球体又は楕円体当てはめ計算を行うことで 3軸加速度センサのオフセットと感度を 推定する手法において、 3軸加速度センサの各測定軸の感度にばらつきがある場合 、加速度センサが静止している時の測定データは 3次元空間内で楕円体を形成する ため、楕円体当てはめ計算の方が球体当てはめ計算よりも正確なオフセットと感度を 推定できることが期待される。
[0315] し力しながら、楕円体当てはめ計算は、球体当てはめ計算よりも自由度が大きいた め、データバッファ内の測定データが十分に分布していて、かつ十分な個数がないと 精度のょ 、推定計算が行えな 、。特に加速度センサの出力に対して楕円体の当て はめ計算を行う場合、加速度センサが静止した時にしかデータを取得できな 、と 、う 制約のため、楕円体を形成するのに十分な数の測定データを得るまでには長い時間 がかかってしまう。そのため、加速度センサが携帯機器に搭載されているような場合 に、早期にオフセットと感度の推定値を得るためには携帯機器を動力ゝしては止め、ま た別方向に動力しては止めると 、つた意図的動作をユーザーに強 、らな 、限り早期 に精度の良いオフセット推定を行うことは困難である。
[0316] そこで、データバッファ内の測定データ数が少ない場合や分布が楕円体当てはめ 計算を行うには不十分な場合には球体当てはめ計算を行い、測定データ群の個数- 分布共に楕円体当てはめ計算を行うのに十分と判断した場合に楕円体当てはめ計 算に切り替える。その結果、ユーザーは早期にオフセットと感度の概略の値を得るこ とが可能となり、楕円体当てはめ計算を行うのに十分な測定データが得られた時に は、さらに正確なオフセットと感度の値を得られることが期待できる。
[0317] つまり、本実施形態 8において、基準点推定部 15, 42は、データ蓄積部 14, 41に 蓄積されている出力データの個数又は 3次元直交座標空間における分布及びその 両方から、基準点推定部 15, 42において球面又は楕円面を推定する力を予め判定 し、どちらか一方を選択して推定するものである。なお、球面及び楕円面の両方を計 算し、その結果に基づ 、てどちらか一方を選択するようにしても良 、。
<具体的手法 >
図 35は、実施形態 8における球体当てはめと楕円体当てはめの切り替えの具体的 方法を説明するためのフローチャートを示す図で、図 30に示した S429の処理を詳 細に説明したフローチャートである。
[0318] 最初に、データバッファ内に蓄積されている測定データ数とその分布を調べる(S4 50)。その結果、楕円体当てはめ演算を行うのに十分な測定データがあり、かつ測定 データの分布が十分広いと判断したら楕円体当てはめ演算を行い(S451)、そうで なければ球体当てはめ演算を行う(S452)。どちらか一方の計算手法により推定され たオフセットと感度は確からしさを判定される (S453)。
[0319] 確力 しさを判定する手法としては、例えば、実施形態 7で述べたように、異なる測 定データ群から複数回推定計算を行 、、それぞれの演算結果が十分近 、値である ことを判定しても良い。または加速度センサの製造ばらつきを考慮して、解の範囲を 限定しても良い。 [0320] 確力も 、と判定した場合は、オフセットと感度の値を更新する(S454)。
[0321] 本実施形態 8では、無駄な計算を省くために最初に球体あてはめ力楕円体あては めかを判断して力 推定計算を実行しているが、もし演算能力に余裕があるならば球 体と楕円体の両方のあてはめ演算を行 、確から 、演算結果の方を選択してもよ 、
[0322] 演算結果の確からしさを求める手法は、推定された球面又は楕円面と実際のデー タ分布との距離を再計算し、その距離の総和又は最大最小値の差を用いるなど、様 々な方法が考えられる。
[0323] なお、上述した実施形態 6乃至 8における温度特性への対応については、上述した 実施形態 1乃至 5における温度特性への対応と同様に適用可能である。
産業上の利用可能性
[0324] 本発明は、加速度計測装置の姿勢を特定の方向に向けるよう意識することなく 2軸 又は 3軸加速度センサの出力データを繰り返し取得することで、 2軸又は 3軸加速度 センサの出力補正に必要なオフセット若しくは感度とオフセットの両方を取得すること ができるようにした加速度計測装置に関するもので、加速度計測装置の使用時にお いて、加速度計測装置の姿勢を特定の方向に向けるよう意識することなく 2軸又は 3 軸加速度センサの出力データを繰り返し取得することで、 2軸又は 3軸加速度センサ の出力補正に必要なオフセット若しくは感度とオフセットの両方を取得することができ る。

Claims

請求の範囲
[1] 2軸又は 3軸方向の加速度を検出する加速度センサと、
該加速度センサの 2軸又は 3軸の出力データを取得する出力データ取得手段と、 該出力データ取得手段によって取得された出力データを蓄積する出力データ蓄積 手段と、
該出力データ蓄積手段によって蓄積された所定数の出力データの、各軸成分を座 標値としたときの 2次元又は 3次元直交座標空間における分布から、該直交座標空 間上に定める基準点の座標値を推定する基準点推定手段と、
該基準点推定手段により推定された前記基準点の座標値に基づいて、前記加速 度センサの出力データのオフセットを補正するオフセット補正手段と
を備えることを特徴とする加速度計測装置。
[2] 前記出力データ取得手段によって取得された出力データが適当であるか否かを判 断して選択する出力データ選択手段を備え、前記出力データ蓄積手段は、前記出 力データ選択手段によって選択された出力データを蓄積することを特徴とする請求 項 1に記載の加速度計測装置。
[3] 前記出力データ選択手段は、前記出力データ取得手段によって出力データを取 得する毎に直前に取得された出力データとの差分を計算し、該差分が所定回数以 上連続して所定値以内であった場合に、前記出力データを適当と判断して選択する ことを特徴とする請求項 2に記載の加速度計測装置。
[4] 前記出力データ選択手段は、前記出力データ取得手段によって出力データを取 得する毎に基準となる出力データとの差分を計算し、該差分が所定値を超えた場合 に、前記出力データを適当と判断して選択することを特徴とする請求項 2に記載の加 速度計測装置。
[5] 前記出力データ選択手段は、前記差分が連続して所定値以内であった回数又は 時間情報を、前記出力データ選択手段によって選択された出力データに付加するこ とを特徴とする請求項 3又は 4に記載の加速度計測装置。
[6] 前記出力データ蓄積手段は、前記出力データ選択手段によって付加された回数 又は時間情報に基づいて、前記出力データ選択手段によって選択された出力デー タと、前記出力データ蓄積手段によって既に蓄積された出力データのうちのいずれ かを廃棄することを特徴とする請求項 5に記載の加速度計測装置。
[7] 前記出力データ選択手段は、前記出力データ取得手段によって取得された所定 数の出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標空間 における分布に基づいて円又は球面を推定し、該円又は球面力 所定距離以内に ある出力データを適当と判断して選択することを特徴とする請求項 2に記載の加速度 計測装置。
[8] 前記出力データ選択手段は、前記円又は球面の半径を所定値として該円又は球 面を推定することを特徴とする請求項 7に記載の加速度計測装置。
[9] 前記出力データ選択手段によって選択された出力データが、前記出力データ蓄積 手段によって既に蓄積された出力データと比較して所定値以上変化したか否かを判 定するデータ変化判定手段を備え、
前記出力データ蓄積手段は、前記データ変化判定手段の判定結果に基づいて、 前記出力データ選択手段によって選択された出力データか、前記出力データ蓄積 手段によって既に蓄積された出力データのどちらか一方を廃棄することを特徴とする 請求項 2に記載の加速度計測装置。
[10] 前記出力データ蓄積手段は、前記加速度センサの測定軸と線形関係となる線形軸 をあらかじめ定め、前記出力データ選択手段が選択した出力データと、前記出力デ ータ蓄積手段に蓄積されている出力データの中で、前記加速度センサの測定軸又 は線形軸の成分が、最大又は最小となる出力データを選択的に蓄積することを特徴 とする請求項 2に記載の加速度計測装置。
[11] 前記出力データ蓄積手段に蓄積される出力データは、前記測定軸又は前記線形 軸の成分が最大又は最小となる出力データと、その他の一つ以上の出力データを蓄 積することを特徴とする請求項 10に記載の加速度計測装置。
[12] 前記基準点推定手段は、前記出力データ蓄積手段によって蓄積された所定数の 出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標空間にお ける分布から、該直交座標空間上に円または球面を定め、該円または球面の中心座 標を前記基準点として推定するもので、前記オフセット補正手段は、前記基準点推 定手段により推定された前記円又は球面の中心座標値に基づいて、前記加速度セ ンサの出力データのオフセットを補正することを特徴とする請求項 1に記載の加速度 計測装置。
[13] 前記基準点推定手段は、前記基準点の座標値を、前記所定数の出力データの各 々力 前記基準点までの距離のばらつきが最小になるように統計的手法によって推 定することを特徴とする請求項 12に記載の加速度計測装置。
[14] 前記基準点推定手段は、前記所定数の出力データの各々から前記基準点までの 距離のばらつきを、所定の代表値に対するばらつきとすることを特徴とする請求項 13 に記載の加速度計測装置。
[15] 前記基準点推定手段は、前記出力データ蓄積手段によって蓄積された所定数の 出力データの、各軸成分を座標値としたときの 2次元又は 3次元直交座標空間にお ける分布から、該直交座標空間上に定める楕円または楕円面を定め、該楕円または 楕円面の各主軸の長さ及び中心座標値を推定するもので、
前記オフセット補正手段は、前記基準点推定手段により推定された前記楕円また は楕円面の各主軸の長さ及び中心座標値に基づいて、前記加速度センサの出力デ ータの感度及びオフセットを補正することを特徴とする請求項 1に記載の加速度計測 装置。
[16] 前記基準点推定手段は、前記楕円又は楕円面の各主軸の長さ及び中心座標値を 、前記所定数の出力データの各々が前記楕円又は楕円面に最も近づくよう統計的 手法によって推定することを特徴とする請求項 15に記載の加速度計測装置。
[17] 前記基準点推定手段は、前記出力データ蓄積手段に蓄積されている 3軸の出力 データの個数又は 3次元直交座標空間における分布およびその両方から、前記基 準点推定手段において球面又は楕円面を推定するかを予め判定し、どちらか一方を 選択して推定することを特徴とする請求項 1に記載の加速度計測装置。
[18] 前記加速度センサの温度を検出する温度検出手段と、
前記基準点の座標値若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標 値を所定の温度区分毎に記憶する温度別補正データ記憶手段を備え、
前記出力データ蓄積手段は、前記出力データ選択手段又は前記出力データ取得 手段によって選択された出力データを、前記温度検出手段によって検出された温度 値に基づいて前記所定の温度区分別に蓄積し、
前記基準点推定手段は、前記所定の温度区分毎に、前記出力データ蓄積手段に よって蓄積された当該温度区分の所定数の出力データ力 前記基準点の座標値若 しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を推定し、
前記温度別補正データ記憶手段は、前記基準点の座標値若しくは前記楕円又は 楕円面の各主軸の長さ及び中心座標値を前記所定の温度区分別に記憶することを 特徴とする請求項 1に記載の加速度計測装置。
[19] 前記出力データ蓄積手段は、前記出力データ選択手段又は前記出力データ取得 手段によって選択された出力データを、前記温度検出手段によって検出された温度 値と該当する前記所定の温度区分との関係に基づ!、て補正した後に、前記所定の 温度区分別に蓄積することを特徴とする 18に記載の加速度計測装置。
[20] 前記加速度センサの温度を検出する温度検出手段と、
前記基準点の座標値若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標 値を所定の温度区分毎に記憶する温度別補正データ記憶手段を備え、
前記出力データ蓄積手段は、前記出力データ選択手段又は前記出力データ取得 手段によって選択された出力データを蓄積する時に前記温度検出手段によって検 出された温度値を一緒に蓄積し、
前記基準点推定手段は、前記所定の温度区分毎に、前記出力データ蓄積手段に よって蓄積された出力データ力 対応する前記温度値が当該温度区分にあるものを 所定数選択して前記基準点の座標値若しくは前記楕円又は楕円面の各主軸の長さ 及び中心座標値を推定し、
前記温度別補正データ記憶手段は、前記基準点の座標値若しくは前記楕円又は 楕円面の各主軸の長さ及び中心座標値を前記所定の温度区分別に記憶することを 特徴とする請求項 1に記載の加速度計測装置。
[21] 前記オフセット補正手段は、前記温度検出手段によって検出された温度値、及び 前記温度別補正データ記憶手段によって前記所定の温度区分別に記憶された前記 基準点の座標値若しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値に基 づいて、前記加速度センサの出力データのオフセット若しくは感度及びオフセットを 補正することを特徴とする請求項 18, 19又は 20に記載に記載の加速度計測装置。
[22] 前記基準点推定手段は、前記出力データ蓄積手段によって蓄積された所定数の 3 軸の出力データの前記 3次元直交座標空間における分布について各座標軸に対す るばらつきを計算し、前記各座標軸に対するばらつきの最小値が所定値以下である ときは、前記出力データ蓄積手段によって蓄積された所定数の 3軸の出力データか ら前記ばらつきが最小値となる座標軸の出力データを除いた残りの 2軸の出力デー タについて、各軸成分を座標値としたときの 2次元直交座標平面における分布から、 前記 2次元直交座標平面上に定める基準点の座標値若しくは楕円の各主軸の長さ 及び中心座標値を推定し、
前記オフセット補正手段は、前記基準点の座標値若しくは前記楕円の各主軸の長 さ及び中心座標値に基づいて、前記加速度センサの 2軸の出力データのオフセット 若しくは感度とオフセットを補正することを特徴とする請求項 1に記載の加速度計測 装置。
[23] 前記基準点推定手段は、前記加速度センサが所定の一姿勢を保持して!/、る状態 において前記出力データ取得手段によって出力データを取得し、前記出力データの 各軸成分を座標値としたときの 2次元又は 3次元直交座標空間における位置、及び 前記所定の一姿勢を保持して 、る状態にぉ 、て前記加速度センサが検知して 、ると 予想される重力加速度の各軸成分の値から、前記直交座標空間上に定める基準点 の座標値を推定することを特徴とする請求項 1に記載の加速度計測装置。
[24] 前記加速度センサの温度を検出する温度検出手段と、
前記基準点の座標値を所定の温度区分毎に記憶する温度別補正データ記憶手段 を備え、
該温度別補正データ記憶手段は、前記温度検出手段によって検出された温度値 に基づいて前記基準点の座標値を前記所定の温度区分別に記憶し、
前記オフセット補正手段は、前記温度検出手段によって検出された温度値、及び 前記温度別補正データ記憶手段によって前記所定の温度区分別に記憶された前記 基準点の座標値に基づいて、前記加速度センサの出力データのオフセットを補正す ることを特徴とする請求項 23に記載の加速度計測装置。
[25] 前記基準点推定手段は、該基準点推定手段によって推定された直近の所定数の 基準点の座標値若しくは楕円又は楕円面の中心座標値のばらつきを算出し、前記 ばらつきが所定値よりも大きい場合は、前記基準点の座標値若しくは前記楕円又は 楕円面の中心座標値を破棄することを特徴とする請求項 1に記載の加速度計測装置
[26] 前記基準点推定手段は、前記 2次元又は 3次元直交座標空間において推定された 前記基準点から前記所定数の出力データの各々までの距離若しくは推定された楕 円又は楕円面の各主軸の長さが所定範囲外であった場合、前記基準点の座標値若 しくは前記楕円又は楕円面の各主軸の長さ及び中心座標値を破棄することを特徴と する請求項 1に記載の加速度計測装置。
PCT/JP2005/014817 2004-08-12 2005-08-12 加速度計測装置 WO2006016671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800272382A CN101031803B (zh) 2004-08-12 2005-08-12 加速度计测装置
EP05780257A EP1788396B1 (en) 2004-08-12 2005-08-12 Acceleration measuring device
JP2006531756A JP5137229B2 (ja) 2004-08-12 2005-08-12 加速度計測装置
US11/659,971 US7653507B2 (en) 2004-08-12 2005-08-12 Acceleration measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-235606 2004-08-12
JP2004235606 2004-08-12
JP2005-056597 2005-03-01
JP2005056597 2005-03-01

Publications (1)

Publication Number Publication Date
WO2006016671A1 true WO2006016671A1 (ja) 2006-02-16

Family

ID=35839428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014817 WO2006016671A1 (ja) 2004-08-12 2005-08-12 加速度計測装置

Country Status (6)

Country Link
US (1) US7653507B2 (ja)
EP (1) EP1788396B1 (ja)
JP (1) JP5137229B2 (ja)
KR (1) KR101215677B1 (ja)
CN (1) CN101031803B (ja)
WO (1) WO2006016671A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257198A (ja) * 2006-03-22 2007-10-04 Nintendo Co Ltd 傾き算出装置および傾き算出プログラムならびにゲーム装置およびゲームプログラム
JP2007292514A (ja) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd 加速度センサのデータ処理方法、及び呼吸運動検出方法、並びに呼吸運動検出装置。
JP2008003002A (ja) * 2006-06-23 2008-01-10 Asahi Kasei Electronics Co Ltd 角速度計測装置
JP2009133695A (ja) * 2007-11-29 2009-06-18 Kyocera Corp 電子機器
WO2010058594A1 (ja) 2008-11-20 2010-05-27 旭化成エレクトロニクス株式会社 物理量計測装置および物理量計測方法
EP1970713A4 (en) * 2006-01-05 2010-08-11 Asahi Kasei Emd Corp ACCELERATION MEASURING DEVICE
US7831846B2 (en) 2006-03-01 2010-11-09 Fujitsu Limited Information processing device with an acceleration sensor
JP2012110359A (ja) * 2010-11-19 2012-06-14 Seiko Epson Corp 運動解析装置
JP2012525864A (ja) * 2009-05-04 2012-10-25 ニンテンドウ・オブ・アメリカ・インコーポレーテッド リモートコントローラの加速度計センサの較正
JP2013053852A (ja) * 2011-08-31 2013-03-21 Jvc Kenwood Corp 加速度センサのゼロ点検出装置、ゼロ点検出方法、および、プログラム
JP2013076573A (ja) * 2011-09-29 2013-04-25 Ntn Corp センサ付車輪用軸受装置
JP2014524037A (ja) * 2011-07-27 2014-09-18 クアルコム,インコーポレイテッド モバイルデバイスにおける加速度計の自動校正
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor
WO2019155687A1 (ja) * 2018-02-06 2019-08-15 アルプスアルパイン株式会社 較正装置、計測装置、球体、較正方法、およびプログラム
WO2019155691A1 (ja) * 2018-02-07 2019-08-15 アルプスアルパイン株式会社 計測装置、球体、計測システム、制御方法、およびプログラム
WO2019155686A1 (ja) * 2018-02-09 2019-08-15 アルプスアルパイン株式会社 制御装置、計測装置、球体、計測システム、制御方法、およびプログラム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653315B1 (ko) * 2005-01-04 2006-12-01 주식회사 헬스피아 중력방향의 자동인식이 가능한 휴대형 단말기를 이용한운동량 측정방법
CN101680760A (zh) * 2007-05-24 2010-03-24 旭化成微电子株式会社 物理量测量装置以及物理量测量方法
EP2101180A1 (en) * 2008-03-10 2009-09-16 EM Microelectronic-Marin SA Multi-axial accelerometer
CN101685102B (zh) * 2009-04-17 2012-06-13 幻音科技(深圳)有限公司 三轴加速度计的精度调整装置与调整方法
DE102009029216B4 (de) * 2009-09-04 2022-10-20 Robert Bosch Gmbh Verfahren zum Selbstabgleich eines dreiachsigen Beschleunigungssensors im Betrieb und Sensoranordnung mit einem dreidimensionalen Beschleunigungssensor
WO2011037117A1 (ja) * 2009-09-26 2011-03-31 アルプス電気株式会社 地磁気検出装置
JP5448785B2 (ja) * 2009-12-18 2014-03-19 キヤノン株式会社 測定装置、移動制御方法及びプログラム
WO2012002494A1 (ja) * 2010-06-30 2012-01-05 北陸電気工業株式会社 姿勢特定装置
JP5790914B2 (ja) * 2011-01-11 2015-10-07 セイコーエプソン株式会社 変形量算出装置及び変形量算出方法
CN103782179A (zh) * 2011-09-08 2014-05-07 莱卡地球系统公开股份有限公司 再校准惯性传感器的方法
WO2013033754A1 (en) * 2011-09-08 2013-03-14 Leica Geosystems Ag A method and system of recalibrating an inertial sensor
US8892385B2 (en) * 2011-12-21 2014-11-18 Scope Technologies Holdings Limited System and method for use with an accelerometer to determine a frame of reference
US9824064B2 (en) 2011-12-21 2017-11-21 Scope Technologies Holdings Limited System and method for use of pattern recognition in assessing or monitoring vehicle status or operator driving behavior
FR2992735B1 (fr) 2012-06-29 2015-07-03 Movea Procede de calibration continue d'un capteur
US20140129176A1 (en) * 2012-11-02 2014-05-08 Qualcomm Incorporated Estimating the gravity vector in a world coordinate system using an accelerometer in a mobile device
US20150006023A1 (en) 2012-11-16 2015-01-01 Scope Technologies Holdings Ltd System and method for determination of vheicle accident information
US10657598B2 (en) 2012-12-20 2020-05-19 Scope Technologies Holdings Limited System and method for use of carbon emissions in characterizing driver performance
CN103598888B (zh) * 2013-10-16 2015-04-22 东北大学 一种穿戴式人体运动状态数据监测系统及方法
JP2015207996A (ja) * 2014-04-07 2015-11-19 パナソニックIpマネジメント株式会社 通信制御方法および通信制御装置
US10345329B2 (en) * 2015-07-07 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Inertial force sensor
CN105094439B (zh) * 2015-08-17 2019-01-08 上海联影医疗科技有限公司 触摸屏装置的加速度传感器校准、倾角计算方法及装置
JP6661937B2 (ja) * 2015-09-28 2020-03-11 富士電機株式会社 加速度補正データ算出装置及び加速度センサの製造方法
US9745843B1 (en) * 2016-06-09 2017-08-29 Noralis Limited Method for determining position with improved calibration
CN105842483A (zh) * 2016-06-16 2016-08-10 重庆建设工业(集团)有限责任公司 一种三轴加速度计灵敏度的测量方法
CN109917153B (zh) * 2017-12-12 2021-04-27 航天科工惯性技术有限公司 加速度计参数标定装置及使用其的参数标定方法
CN109781144B (zh) 2019-01-30 2021-03-19 京东方科技集团股份有限公司 数据校正方法、装置、电子设备及计算机可读存储介质
JP7406340B2 (ja) * 2019-10-18 2023-12-27 株式会社小松製作所 加速度検出装置、作業機械および加速度検出方法
CN110897595A (zh) * 2019-12-05 2020-03-24 重庆金山医疗技术研究院有限公司 运动检测方法、帧率调节方法、胶囊式内窥镜、记录仪及系统
KR102563390B1 (ko) * 2020-12-29 2023-08-04 한국전자기술연구원 지자기 센서의 자기장 측정 구간 및 범위 자동 조정 방법
CN112983523A (zh) * 2021-04-09 2021-06-18 郑州煤机液压电控有限公司 煤矿综采工作面推溜移架异常检测方法
CN117825749B (zh) * 2024-03-04 2024-05-24 四川芯音科技有限公司 一种三轴加速度传感器处理电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953305A (en) 1987-05-27 1990-09-04 Prince Corporation Vehicle compass with automatic continuous calibration
JPH06331647A (ja) 1993-05-25 1994-12-02 Nec Corp 半導体加速度センサおよび製造方法
JPH07242112A (ja) * 1994-03-07 1995-09-19 Nippondenso Co Ltd 車両制御装置
JPH0943269A (ja) * 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
JP2004093552A (ja) 2002-07-10 2004-03-25 Hitachi Metals Ltd 加速度検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728208A (en) * 1980-07-29 1982-02-15 Toyota Motor Corp Output correcting method and apparatus for compass direction detector
JP3119001B2 (ja) * 1992-11-30 2000-12-18 日本電気株式会社 加速度測定方法及び加速度測定装置
US6299102B2 (en) * 1995-05-12 2001-10-09 H. Koch & Sons, Inc. Aviation crash sensor
JP3114571B2 (ja) 1995-05-26 2000-12-04 株式会社村田製作所 加速度センサ
US6337688B1 (en) * 1999-01-29 2002-01-08 International Business Machines Corporation Method and system for constructing a virtual reality environment from spatially related recorded images
JP2000356647A (ja) 1999-06-14 2000-12-26 Denso Corp 加速度センサのオフセット誤差検出方法及び装置、車両用現在位置検出装置、ナビゲーション装置
JP3857499B2 (ja) * 2000-05-12 2006-12-13 セイコーインスツル株式会社 電子方位計の補正機構、これを備えた電子方位計及び電子方位計付電子時計
US6651003B2 (en) * 2001-07-30 2003-11-18 Innovative Design Solutions, Inc. Method of automatic continuous calibration for an electric compass
JP3985215B2 (ja) 2001-09-26 2007-10-03 日立金属株式会社 半導体加速度センサー
JP3821282B2 (ja) * 2002-02-01 2006-09-13 任天堂株式会社 ゲーム装置及びゲームプログラム
JP2003299757A (ja) * 2002-04-10 2003-10-21 Yamasa Tokei Keiki Kk トレーニング補助器具
JP4073715B2 (ja) * 2002-06-11 2008-04-09 旭化成エレクトロニクス株式会社 方位角計測装置、キャリブレーション方法およびキャリブレーションプログラム
CN100535593C (zh) * 2002-07-01 2009-09-02 旭化成电子材料元件株式会社 方位角测量装置和方位角测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953305A (en) 1987-05-27 1990-09-04 Prince Corporation Vehicle compass with automatic continuous calibration
JPH06331647A (ja) 1993-05-25 1994-12-02 Nec Corp 半導体加速度センサおよび製造方法
JPH07242112A (ja) * 1994-03-07 1995-09-19 Nippondenso Co Ltd 車両制御装置
JPH0943269A (ja) * 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
JP2004093552A (ja) 2002-07-10 2004-03-25 Hitachi Metals Ltd 加速度検出装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LAI A ET AL: "Semi-automatic callibration technique using six inertial frames of reference.", PROCEEDINGS OF SPIE., vol. 5274, 2003, pages 531 - 542, XP002993355 *
VELRINK P H ET AL.: "Sensor and Actiators A", vol. 68, 1963, ELSEVIER SEQUOIA S.A., article "Procedure for in-use calibration of trixaxial accelerometers in medical application", pages: 221 - 228
W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, B. P. FLANNERY: "Numerical Recipies in C", 1992, CAMBRIDGE UNIVERSITY PRESS, pages: 32 - 104
W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, B. P. FLANNERY: "Numerical Recipies in C", 1992, CAMBRIDGE UNIVERSITY PRESS, pages: 394 - 455

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881900B2 (en) 2006-01-05 2011-02-01 Asahi Kasei Emd Corporation Acceleration measuring device
EP1970713A4 (en) * 2006-01-05 2010-08-11 Asahi Kasei Emd Corp ACCELERATION MEASURING DEVICE
US7831846B2 (en) 2006-03-01 2010-11-09 Fujitsu Limited Information processing device with an acceleration sensor
JP2007257198A (ja) * 2006-03-22 2007-10-04 Nintendo Co Ltd 傾き算出装置および傾き算出プログラムならびにゲーム装置およびゲームプログラム
JP2007292514A (ja) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd 加速度センサのデータ処理方法、及び呼吸運動検出方法、並びに呼吸運動検出装置。
JP2008003002A (ja) * 2006-06-23 2008-01-10 Asahi Kasei Electronics Co Ltd 角速度計測装置
JP2009133695A (ja) * 2007-11-29 2009-06-18 Kyocera Corp 電子機器
WO2010058594A1 (ja) 2008-11-20 2010-05-27 旭化成エレクトロニクス株式会社 物理量計測装置および物理量計測方法
US8768649B2 (en) 2008-11-20 2014-07-01 Asahi Kasei Microdevices Corporation Physical amount measuring device and physical amount measuring method
JP2012525864A (ja) * 2009-05-04 2012-10-25 ニンテンドウ・オブ・アメリカ・インコーポレーテッド リモートコントローラの加速度計センサの較正
JP2012110359A (ja) * 2010-11-19 2012-06-14 Seiko Epson Corp 運動解析装置
US9020197B2 (en) 2010-11-19 2015-04-28 Seiko Epson Corporation Motion analyzing apparatus
US9429590B2 (en) 2011-07-27 2016-08-30 Qualcomm Incorporated Accelerometer autocalibration in a mobile device
JP2014524037A (ja) * 2011-07-27 2014-09-18 クアルコム,インコーポレイテッド モバイルデバイスにおける加速度計の自動校正
JP2013053852A (ja) * 2011-08-31 2013-03-21 Jvc Kenwood Corp 加速度センサのゼロ点検出装置、ゼロ点検出方法、および、プログラム
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor
JP2013076573A (ja) * 2011-09-29 2013-04-25 Ntn Corp センサ付車輪用軸受装置
WO2019155687A1 (ja) * 2018-02-06 2019-08-15 アルプスアルパイン株式会社 較正装置、計測装置、球体、較正方法、およびプログラム
WO2019155691A1 (ja) * 2018-02-07 2019-08-15 アルプスアルパイン株式会社 計測装置、球体、計測システム、制御方法、およびプログラム
WO2019155686A1 (ja) * 2018-02-09 2019-08-15 アルプスアルパイン株式会社 制御装置、計測装置、球体、計測システム、制御方法、およびプログラム

Also Published As

Publication number Publication date
EP1788396B1 (en) 2013-03-20
JPWO2006016671A1 (ja) 2008-07-31
KR20070044006A (ko) 2007-04-26
US20080033679A1 (en) 2008-02-07
JP5137229B2 (ja) 2013-02-06
CN101031803B (zh) 2012-09-05
US7653507B2 (en) 2010-01-26
EP1788396A1 (en) 2007-05-23
KR101215677B1 (ko) 2012-12-26
CN101031803A (zh) 2007-09-05
EP1788396A4 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2006016671A1 (ja) 加速度計測装置
JP5397915B2 (ja) 移動体の姿勢角処理装置
JP4663738B2 (ja) 加速度計速装置
KR101693898B1 (ko) 물체의 배향의 개선된 추정을 위한 방법 및 상기 방법을 구현하는 자세 제어 시스템
KR101956186B1 (ko) 가속도 센서를 이용한 자세 추정 장치 및 방법
JP2008003002A (ja) 角速度計測装置
JP4787359B2 (ja) 物理量計測装置および物理量計測方法
JPWO2010058594A1 (ja) 物理量計測装置および物理量計測方法
US20110320164A1 (en) Bias estimating method, posture estimating method, bias estimating device, and posture estimating device
JP2008122380A (ja) 加速度計から派生するジャイロ振動整流誤差の補償
US11898874B2 (en) Gyroscope bias estimation
CN117589163A (zh) 多传感器组合导航方法及装置
US7426878B2 (en) Sensing device for measuring movement along linear/arc path
US20160245842A1 (en) Measurement apparatus, measurement method, and measurement system
WO2017094521A1 (ja) ウェアラブル装置とその姿勢測定方法及びプログラム
JP2010271209A (ja) 加速度センサのオフセット誤差を補正する携帯型情報機器、方法及びプログラム
JP3783061B1 (ja) 傾斜角と並進加速度の検出方法および検出装置
Mumtaz et al. Development of a low cost wireless IMU using MEMS sensors for pedestrian navigation
CN211696377U (zh) 测量用平台装置
JP2012208069A (ja) 自律測位に用いる重力ベクトルを補正する携帯装置、プログラム及び方法
JP5815866B2 (ja) ヨーレートセンサユニットの出力信号の評価方法、及び、ヨーレートセンサユニット
US20220346688A1 (en) Grip strength measurement apparatus
JP2016109608A (ja) 姿勢推定装置及び姿勢推定装置の制御プログラム
JP2022062947A (ja) 磁気発生源推定装置、磁気発生源推定方法
JP2014115210A (ja) Mems素子、電子デバイス、高度計、電子機器および移動体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077003175

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11659971

Country of ref document: US

Ref document number: 200580027238.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006531756

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005780257

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005780257

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11659971

Country of ref document: US