WO2017094521A1 - ウェアラブル装置とその姿勢測定方法及びプログラム - Google Patents

ウェアラブル装置とその姿勢測定方法及びプログラム Download PDF

Info

Publication number
WO2017094521A1
WO2017094521A1 PCT/JP2016/084135 JP2016084135W WO2017094521A1 WO 2017094521 A1 WO2017094521 A1 WO 2017094521A1 JP 2016084135 W JP2016084135 W JP 2016084135W WO 2017094521 A1 WO2017094521 A1 WO 2017094521A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
acceleration data
wearable device
acceleration
reference information
Prior art date
Application number
PCT/JP2016/084135
Other languages
English (en)
French (fr)
Inventor
山田 幸光
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2017553769A priority Critical patent/JP6467525B2/ja
Publication of WO2017094521A1 publication Critical patent/WO2017094521A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to a wearable device that can be worn on the body or clothes, and more particularly to a wearable device including an acceleration sensor.
  • Wearable devices are relatively small electronic devices that can be worn on the body, clothes, etc.
  • various devices acceleration sensors, angular velocity sensors, etc.
  • communication functions for measuring the state of the body for health management and the like. What is provided is known (see Patent Document 1 below).
  • the body posture In the case of a wearable device equipped with an acceleration sensor, it is possible to measure the degree of body tilt relative to the direction of gravity as the body posture.
  • the acceleration detected by the acceleration sensor while the body is stationary represents the gravitational acceleration.
  • the direction of gravity when the body is in a certain reference posture for example, an upright posture
  • the reference direction it is possible to determine how much the gravity direction indicated by the detection result of the acceleration sensor is inclined with respect to the reference direction. For example, the inclination of the body with respect to the reference posture, that is, the posture of the body can be measured.
  • This reference direction is determined from the detection result of the acceleration sensor obtained when the body is in the reference posture.
  • the detection of acceleration for determining the reference direction may be executed, for example, by a user's manual operation (button operation or the like). However, in consideration of cases used by elderly people and children who are unfamiliar with machine operation, and cases that are worn on a daily basis, it is desirable that such acceleration detection be performed automatically. .
  • a method may be considered in which whether or not the body is in a stationary state is determined based on the fluctuation range of the detection result of the acceleration sensor, and the reference direction is determined based on the detection result of the acceleration sensor when it is determined that the body is stationary It is done.
  • this method does not take into account the user's posture, for example, even if the wearable device is worn and is in a lying posture, the reference direction is based on the detection result of acceleration in that posture if it is stationary. Is determined.
  • simply determining whether or not the vehicle is stationary may determine the reference direction based on the acceleration detected in an inappropriate posture. In this case, an erroneous measurement result indicating that the posture is greatly inclined from the reference posture is obtained although the posture is actually the reference posture.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a wearable device capable of accurately measuring the posture with respect to the direction of gravity using an acceleration sensor while reducing the burden on the user's operation, and its posture measurement. It is to provide a method and a program.
  • a wearable device includes an acceleration sensor, an acceleration data acquisition unit that repeatedly acquires acceleration data detected by the acceleration sensor, and acceleration data acquired by the acceleration data acquisition unit.
  • a posture calculation unit that calculates a posture with respect to the direction of gravity based on the direction of gravity shown and posture reference information related to a reference direction that is a direction of gravity as a reference for the posture, and the acceleration acquired by the acceleration data acquisition unit
  • a posture reference information acquisition unit that acquires the posture reference information corresponding to the direction of gravity indicated by the acceleration data, and a stationary state based on the acceleration data acquired by the acceleration data acquisition unit
  • a stationary state determination unit for determining whether or not the vehicle is in the acceleration state, and acceleration data acquired by the acceleration data acquisition unit.
  • the posture reference information acquisition unit is detected when the stationary state determination unit determines that the posture is not in a stationary state, or when the posture determination unit determines that the posture is not within the predetermined range. Acceleration data is excluded from data used to acquire the posture reference information.
  • the acceleration data is excluded from data used to acquire the posture reference information in the posture reference information acquisition unit.
  • the acceleration data detected when the user wearing the wearable device is exercising is excluded from the data used to acquire the posture reference information.
  • the acceleration data detected when the posture of the user wearing the wearable device is not normal, or when the posture of the user is normal and the wearing state of the wearable device is not normal is also the posture reference. Excluded from data used for information acquisition. This makes it possible to automatically acquire the posture reference information under an appropriate condition that is stationary and the posture is within a predetermined range. Therefore, the burden on the user's operation is reduced, and the posture calculation unit calculates an accurate posture with respect to the direction of gravity.
  • the posture determination unit may perform the posture determination based on acceleration data acquired by the acceleration data acquisition unit when the stationary state determination unit determines that the vehicle is in a stationary state.
  • the stationary state determination unit determines that the vehicle is in a stationary state.
  • the acceleration data acquisition unit determines that the posture is within the predetermined range when the posture determination unit determines that the posture is not within the predetermined range.
  • the repetition cycle for acquiring the acceleration data may be lengthened.
  • the repetition cycle of the acceleration data acquisition is lengthened, thereby reducing the power consumption.
  • the posture reference information acquisition unit uses the acceleration data detected when the stationary state determination unit determines that the stationary state has not continued for a certain period of time or more to acquire the posture reference information. May be excluded from the data.
  • the acceleration data detected in the case of a temporary posture in which the stationary state has not continued for a certain time or more is Excluded from data used to acquire posture reference information. That is, the posture reference information is acquired based on the acceleration data detected in a stable posture while maintaining a stationary state. Therefore, the posture calculation unit calculates a more accurate posture with respect to the direction of gravity.
  • the posture reference information acquisition unit is detected when the stationary state determination unit determines that the posture is in a stationary state and the posture determination unit determines that the posture is within the predetermined range.
  • a series of the acceleration data may be averaged, and the posture reference information corresponding to the direction of gravity indicated by the averaged acceleration data may be acquired.
  • the posture reference information with the direction of gravity in an average posture as the reference direction is acquired.
  • the wearable device is determined to be in a stationary state by an angular velocity sensor, an angular velocity data acquisition unit that repeatedly acquires angular velocity data detected by the angular velocity sensor, and the stationary state determination unit.
  • an angular velocity offset correction unit may be provided that corrects the offset of the angular velocity data based on the angular velocity data acquired by the angular velocity data acquisition unit. As a result, the offset added to the angular velocity data is accurately corrected.
  • the angular velocity data acquisition unit determines that the posture is within the predetermined range.
  • the repetition cycle of obtaining the angular velocity data may be lengthened.
  • the angular velocity data acquiring unit may stop acquiring the angular velocity data when the posture determining unit determines that the posture is not within the predetermined range. Thereby, when the posture is not in the predetermined range, the acquisition of the angular velocity is stopped, so that the power consumption is further reduced.
  • a second aspect of the present invention relates to a method in which a computer measures the attitude of the wearable device with respect to the direction of gravity based on acceleration data detected by an acceleration sensor mounted on the wearable device.
  • This posture measuring method is a reference for the direction of gravity indicated by the acceleration data acquired in the step of repeatedly acquiring the acceleration data detected by the acceleration sensor and the step of acquiring the acceleration data, and the posture reference.
  • the acceleration data acquired based on the acceleration data acquired in the step of calculating the posture with respect to the direction of gravity and the step of acquiring the acceleration data Determining whether or not the vehicle is in a stationary state based on the acceleration data acquired in the step of acquiring the posture reference information according to the direction of gravity indicated by the step of acquiring the acceleration data; Based on the acceleration data acquired in the step of acquiring the acceleration data, Orientation with respect to the direction of force and a determining whether within a predetermined range.
  • the step of obtaining the posture reference information if it is determined in the step of determining the stationary state that it is not in a stationary state, or the step of determining a posture with respect to the direction of gravity is not within the predetermined range.
  • the acceleration data detected when determined to be excluded from the data used to acquire the posture reference information if it is determined in the step of determining the stationary state that it is not in a stationary state, or the step of determining a posture with respect to the direction of gravity is not within the predetermined range.
  • the acceleration data detected in the step is excluded from data used for acquiring the posture reference information in the step of acquiring the posture reference information.
  • the acceleration data detected when the user wearing the wearable device is exercising is excluded from the data used to acquire the posture reference information.
  • the acceleration data detected when the posture of the user wearing the wearable device is not normal, or when the posture of the user is normal and the wearing state of the wearable device is not normal is also the posture reference. Excluded from data used for information acquisition.
  • a third aspect of the present invention is a program for causing a computer to execute the posture measurement method according to the second aspect.
  • the present invention it is possible to accurately measure the posture with respect to the direction of gravity using the acceleration sensor while reducing the burden on the user's operation.
  • FIG. 2A shows a case where the user is in an upright posture
  • FIG. 2B shows a case where the user is in a lying posture.
  • FIG. 1 is a diagram illustrating an example of the configuration of the wearable device 2 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the wearable device 2 attached to the user 1.
  • FIG. 2A shows a case where the user 1 is in an upright posture
  • FIG. 2B shows a case where the user 1 is in a lying posture.
  • the wearable device 2 is attached to a belt buckle or the like wound around the abdomen of the user 1.
  • the wearable device 2 may be mounted on a hat, a hands-free device, a headset, a hearing aid, glasses, or the like.
  • the wearable device 2 shown in the example of FIG. 1 includes an acceleration sensor 10, a processing unit 20, a storage unit 30, and a communication unit 40.
  • the acceleration sensor 10 is a sensor that detects acceleration applied to the wearable device 2, and detects accelerations in a plurality of axial directions (for example, three axial directions) orthogonal to each other.
  • the acceleration sensor 10 is a signal corresponding to acceleration by converting a distance by which a micro mechanism member formed on a semiconductor chip is displaced against a spring force into an electric signal by a MEMS (micro electro mechanical systems) technology. Is output.
  • the acceleration sensor 10 includes an acceleration detection element using MEMS or the like, an analog circuit such as an amplifier that processes an output signal of the detection element, and an AD converter that converts the output signal of the analog circuit into a digital signal. Consists of.
  • the acceleration sensor 10 repeatedly detects acceleration values in the respective directions at regular time intervals according to the control of the processing unit 20.
  • the communication unit 40 is a device that exchanges data with an external device (not shown) by a predetermined communication method. For example, the communication unit 40 receives a command for causing the processing unit 20 to execute a predetermined process, data used for executing the process, and the like from an external device. Further, the communication unit 40 transmits processing result data (acceleration data, calculated posture data, etc.) of the processing unit 20 to an external device.
  • the communication unit 40 includes a communication module such as Bluetooth (registered trademark) that performs relatively short-distance communication with a mobile device such as a smartphone.
  • the processing unit 20 is a device that controls the overall operation of the wearable device 2 and includes, for example, a computer that executes processing according to a program stored in the storage unit 30.
  • the program in the storage unit 30 may be stored in advance in a ROM or the like, or may be loaded from an external device by the communication unit 40. Alternatively, a program may be input from the outside through an interface device such as a USB or a recording medium reading device and written in the storage unit 30. All of the processing in the processing unit 20 may be executed by a computer, or at least a part thereof may be executed by a dedicated hardware circuit.
  • the processing unit 20 includes an acceleration data acquisition unit 21, an attitude calculation unit 22, an attitude reference information acquisition unit 23, a stationary state determination unit 24, and an attitude determination unit 25 as processing blocks related to acceleration measurement.
  • the acceleration data acquisition unit 21 repeatedly acquires the acceleration data detected by the acceleration sensor 10 at a constant period and stores it in the storage unit 30.
  • the stationary state determination unit 24 determines whether or not the wearable device 2 is in a stationary state based on the acceleration data acquired by the acceleration data acquisition unit 21. For example, the stationary state determination unit 24 calculates an evaluation value (such as a series of acceleration dispersion) indicating a temporal fluctuation range of a series of acceleration data acquired by the acceleration data acquisition unit 21, and the evaluation value is a stationary state. Is included in a predetermined range, it is determined that the wearable device 2 is in a stationary state.
  • an evaluation value such as a series of acceleration dispersion
  • the posture determination unit 25 determines whether or not the posture of the wearable device 2 with respect to the direction of gravity is included in a predetermined range based on the acceleration data acquired by the acceleration data acquisition unit 21. For example, when the acceleration in each axial direction detected by the acceleration sensor 10 is included in a predetermined range, the posture determination unit 25 determines that the posture of the wearable device 2 is included in the predetermined range.
  • the “predetermined range” that is the determination criterion of the posture determination unit 25 is that the wearable device 2 is correctly attached to the user 1 and the user 1 is in a reference posture (for example, the upright posture shown in FIG. 2A). Specifies the range of acceleration when the posture is relatively close. Therefore, when the acceleration data acquired by the acceleration data acquisition unit 21 is out of the “predetermined range”, the wearable device 2 is worn incorrectly or the user 1 is greatly inclined with respect to the reference posture. (For example, the recumbent posture shown in FIG. 2B) may be present.
  • the posture determination unit 25 performs posture determination based on acceleration data acquired by the acceleration data acquisition unit 21 when, for example, the stationary state determination unit 24 determines that the vehicle is in a stationary state. Since the influence of acceleration other than gravity is suppressed in the stationary state, the acceleration data acquired by the acceleration data acquisition unit 21 substantially indicates the direction of gravity. Therefore, by using the acceleration data when it is determined to be in a stationary state, the posture with respect to the direction of gravity can be accurately determined.
  • the posture calculation unit 22 is based on the direction of gravity indicated by the acceleration data acquired by the acceleration data acquisition unit 21 and the posture reference information regarding the reference direction, which is the direction of gravity serving as the reference for the posture. Calculate the posture.
  • a vector represented by a group of acceleration values detected in a plurality of axial directions of the acceleration sensor 10 is referred to as a coordinate system having coordinate axes parallel to the reference direction (hereinafter referred to as “reference coordinate system”). .)
  • the acceleration vector detected by the acceleration sensor 10 is a vector of a fixed coordinate system (hereinafter referred to as “sensor coordinate system”) defined by the detection axis of the acceleration sensor 10.
  • the posture reference information includes information of coordinate conversion (such as a rotation matrix) for converting the vector of the sensor coordinate system into the vector of the reference coordinate system.
  • the posture calculation unit 22 uses the posture reference information to coordinate-convert the acceleration vector in the sensor coordinate system detected by the acceleration sensor 10 into a vector in the reference coordinate system.
  • the coordinate axis of the reference coordinate system parallel to the reference direction is “Z axis”
  • the coordinate axes of the reference coordinate system orthogonal to the Z axis are “X axis” and “Y axis”.
  • the posture when the direction of gravity indicated by the acceleration data detected by the acceleration sensor 10 matches the reference direction is referred to as a “reference posture”.
  • the vector of the reference coordinate system obtained by the coordinate conversion of the posture calculation unit 22 is parallel to the Z axis when the wearable device 2 is the “reference posture”, but the wearable device 2 is inclined with respect to the “reference posture”. In the case of a different posture, this vector has an inclination with respect to the Z axis.
  • the posture calculation unit 22 uses, for example, an angle around the X-axis of an image obtained by projecting the vector onto the YZ plane, or an image obtained by projecting the vector onto the XZ plane. Is calculated around the Y axis.
  • the posture reference information acquisition unit 23 acquires posture reference information corresponding to the direction of gravity indicated by the acceleration data based on the acceleration data acquired by the acceleration data acquisition unit 21. However, the posture reference information acquisition unit 23 detects the acceleration detected when the stationary state determination unit 24 determines that the posture is not in the stationary state or when the posture determination unit 25 determines that the posture is not within the predetermined range. Is excluded from the data used for obtaining the posture reference information.
  • the posture reference information acquisition unit 23 may acquire the posture reference information at a periodic timing, or at a timing when a specific operation state occurs (for example, when a transition to the standby operation mode occurs). May be. Even if it is the timing which acquires attitude
  • the storage unit 30 is a computer program in the processing unit 20, constant data used for processing of the processing unit 20, variable data temporarily stored in the course of processing, processing result data (acceleration data, calculated (Attitude data, etc.) are stored.
  • the storage unit 30 includes, for example, a ROM, a RAM, a nonvolatile memory, and the like.
  • FIG. 3 is a flowchart for explaining an operation related to periodic acceleration detection in the wearable device 2 according to the first embodiment.
  • the acceleration data acquisition unit 21 acquires data of acceleration detected by the acceleration sensor 10 and stores it in the storage unit 30 when a preset periodic acceleration detection timing is notified by a timer or the like (ST100). (ST105).
  • the stationary state determination unit 24 determines whether or not the wearable device 2 is in a stationary state based on the acceleration data acquired in step ST105. For example, the stationary state determination unit 24 calculates the variance of acceleration from a series of data including the data acquired in step ST105. If the variance is smaller than a predetermined threshold value, the stationary state and the variance are threshold values. If it exceeds, it is determined as a non-stationary state.
  • the posture determination unit 25 determines whether the posture of the wearable device 2 with respect to the direction of gravity is within a predetermined range based on the acceleration data acquired in step ST105. For example, the posture determination unit 25 determines whether or not a plurality of axial acceleration values are included in the normal range determined for each axis, and if all the axial acceleration values are included in the normal range, the wearable is determined. It is determined that the posture of the device 2 is included in the predetermined range. When there is an acceleration value that is not included in the normal range, the posture determination unit 25 determines that the posture of the wearable device 2 is not included in the predetermined range.
  • the posture calculation unit 22 is based on the direction of gravity indicated by the acceleration data acquired in step ST105 and the latest posture reference information acquired by the posture reference information acquisition unit 23. The posture is calculated, and the calculation result is stored in the storage unit 30.
  • the determination result of the stationary state in step ST110 or the determination result of the posture in step ST115 is used as information related to the reliability of the calculation result. May be stored in the storage unit 30 together. Thereby, it can be confirmed that the reliability of the calculation result of the posture is low when it is determined that it is in the non-still state or when the posture is determined not to be within the predetermined range.
  • step ST140 When a predetermined end condition is not satisfied, such as when a command instructing the end of the measurement operation is input from the communication unit 40 or the like, the processing unit 20 returns to step ST100 and repeats the above processing.
  • FIG. 4 is a flowchart for explaining operations related to acquisition of posture reference information in the wearable device 2 according to the first embodiment.
  • the posture reference information acquisition unit 23 is a timer or other notification that notifies the timing of acquiring predetermined periodic posture reference information, and other processing blocks that notify that a specific operation state for which posture reference information should be acquired has occurred. If a notification is received from step ST205, the process proceeds to steps ST205 and ST210. If there is no such notification, the process proceeds to step ST220.
  • the posture reference information acquisition unit 23 acquires posture reference information corresponding to the direction of gravity indicated by the acceleration data, based on the latest acceleration data acquired in step ST105. For example, the posture reference information acquisition unit 23 converts a gravitational acceleration vector indicated by the latest acceleration data acquired in step ST105 into a vector parallel to a predetermined coordinate axis (Z axis) of the reference coordinate system, or the like. Get information.
  • step ST220 When a predetermined end condition is not satisfied, such as when a command instructing the end of the measurement operation is input from the communication unit 40 or the like, the processing unit 20 returns to step ST200 and repeats the above processing.
  • the wearable device 2 when the wearable device 2 is determined not to be in the stationary state by the stationary state determination unit 24 or when the posture determination unit 25 determines the wearable device for the direction of gravity.
  • the acceleration data detected by the acceleration sensor 10 when it is determined that the second posture is not within the predetermined range is not used by the posture reference information acquisition unit 23 to acquire the posture reference information. For example, acceleration data detected when a user wearing the wearable device 2 is exercising is not used to acquire posture reference information.
  • the acceleration data detected in the case is not used for obtaining the posture reference information.
  • the posture reference information it is possible to automatically acquire the posture reference information under an appropriate condition in which the wearable device 2 is stationary and its posture is within a predetermined range. Therefore, the burden on the user's operation can be reduced compared to the case where a manual operation for obtaining posture reference information is required, and the gravity is compared with the case where only the stationary state is determined to obtain posture reference information. It is possible to calculate an accurate posture with respect to the direction.
  • the wearable device 2 according to the second embodiment is obtained by changing the operation of acquiring the posture reference information in the wearable device 2 according to the first embodiment described above, and the other configuration according to the first embodiment. The same as the wearable device 2.
  • FIG. 5 is a flowchart for explaining operations related to acquisition of posture reference information in the wearable device 2 according to the second embodiment.
  • the flowchart shown in FIG. 5 is obtained by replacing step ST205 in the flowchart shown in FIG. 4 with step ST205A, and the other steps are the same as the flowchart shown in FIG.
  • the posture reference information acquisition unit 23 determines that the stationary state continues for a predetermined time or more in the stationary state determination unit 24 (ST205A), and the posture determination unit 25 determines that the posture is within a predetermined range.
  • the posture reference information is acquired (ST215).
  • the posture reference information acquisition unit 23 accelerates when the posture determination unit 25 determines that the stationary state has not continued for a predetermined time or more even when the posture determination unit 25 determines that the posture is within a predetermined range.
  • the acceleration data detected by the sensor 10 is not used to acquire posture reference information. That is, the posture reference information acquisition unit 23 acquires posture reference information based on acceleration data detected in a stable posture in which the stationary state is maintained for a certain time or more. Thereby, since the posture reference information is acquired in a stable posture that tends to be close to the reference posture, a more accurate posture with respect to the direction of gravity can be calculated.
  • the wearable device 2 according to the third embodiment is also obtained by changing the operation of acquiring the posture reference information in the wearable device 2 according to the first embodiment described above, and the other configuration according to the first embodiment. The same as the wearable device 2.
  • FIG. 6 is a flowchart for explaining operations related to acquisition of posture reference information in the wearable device 2 according to the third embodiment.
  • the posture reference information acquisition unit 23 checks whether or not new acceleration data has been acquired by the acceleration data acquisition unit 21, and moves to steps ST255 and ST260 if new acceleration data is acquired, and otherwise. The process proceeds to step ST270.
  • the posture reference information acquisition unit 23 calculates the average value of acceleration using the latest acceleration data acquired by the acceleration data acquisition unit 21. For example, the posture reference information acquisition unit 23 calculates a new average value of acceleration by a weighted moving average that adds a predetermined weight to the current average value and the latest acceleration value.
  • the posture reference information acquisition unit 23 is a timer or other notification that notifies the timing of acquiring predetermined periodic posture reference information, and other processing blocks that notify that a specific operation state for which posture reference information should be acquired has occurred. If a notification is received from step ST275, the process proceeds to step ST275, and if there is no such notification, the process proceeds to step ST280.
  • the posture reference information acquisition unit 23 acquires posture reference information corresponding to the direction of gravity indicated by the average value of acceleration based on the average value of acceleration calculated in step ST265. For example, the posture reference information acquisition unit 23 converts information such as a rotation matrix that converts the gravitational acceleration vector indicated by the average acceleration acquired in step ST265 into a vector parallel to a predetermined coordinate axis (Z axis) of the reference coordinate system. To get.
  • step ST280 If a predetermined end condition is not satisfied, such as when a command instructing the end of the measurement operation is input from the communication unit 40 or the like, the processing unit 20 returns to step ST250 and repeats the above processing.
  • the wearable device 2 when the wearable device 2 is determined not to be in the stationary state by the stationary state determination unit 24 or when the posture determination unit 25 determines the wearable device for the direction of gravity.
  • the acceleration data detected by the acceleration sensor 10 when it is determined that the posture 2 is not within the predetermined range is excluded from the data used for the posture reference information acquisition by the posture reference information acquisition unit 23. This makes it possible to automatically acquire posture reference information under an appropriate condition in which the wearable device 2 is stationary and its posture is within a predetermined range, thereby reducing the burden on the user's operation. At the same time, an accurate posture with respect to the direction of gravity can be calculated.
  • the wearable device 2 it is detected when the stationary state determination unit 24 determines that the vehicle is in the stationary state and the posture determination unit 25 determines that the posture is within a predetermined range.
  • the series of acceleration data is averaged in the attitude reference information acquisition unit 23, and attitude reference information corresponding to the direction of gravity indicated by the averaged acceleration data is acquired in the attitude reference information acquisition unit 23.
  • attitude reference information with the direction of gravity in the average posture as the reference direction is acquired. Therefore, it is possible to suppress a change in the reference direction of the posture reference information due to the influence of the temporary posture change. Therefore, accurate and stable posture calculation can be performed.
  • the wearable device 2 according to the fourth embodiment is obtained by changing the operation of the acceleration data acquisition unit 21 in the wearable device 2 according to the first embodiment described above, and the other configuration according to the first embodiment. The same as the wearable device 2.
  • FIG. 7 is a flowchart for explaining an operation related to detection of periodic acceleration in the wearable device 2 according to the fourth embodiment.
  • the flowchart shown in FIG. 7 is obtained by adding steps ST125, ST130, and ST135 to the flowchart shown in FIG. 3, and the other steps are the same as the flowchart shown in FIG.
  • the acceleration data acquisition unit 21 changes the acceleration detection period according to the determination result when the posture determination unit 25 determines the posture in step ST115. That is, when the posture determination unit 25 determines that the posture of the wearable device 2 is within a predetermined range (ST125), the acceleration data acquisition unit 21 sets the data acquisition cycle from the acceleration sensor 10 to a normal value ( ST130). On the other hand, when the posture determination unit 25 determines that the posture of the wearable device 2 is not within the predetermined range (ST125), the acceleration data acquisition unit 21 makes the period of data acquisition from the acceleration sensor 10 longer than the normal value. To do.
  • the posture reference information acquisition unit 23 cannot obtain acceleration data that should be used for acquisition of the posture reference information. Becomes lower. In this case, since it is not necessary to frequently calculate the posture in the posture calculation unit 22, the acceleration data acquisition unit 21 can increase the acceleration data acquisition cycle. Therefore, the power consumption can be reduced by extending the acceleration data acquisition cycle as in this embodiment.
  • the wearable device includes an angular velocity sensor.
  • FIG. 8 is a diagram illustrating an example of the configuration of the wearable device 2A according to the fifth embodiment.
  • the wearable device 2A shown in FIG. 8 is obtained by replacing the processing unit 20 in the wearable device 2 shown in FIG. 1 with a processing unit 20A and adding an angular velocity sensor 50.
  • Other configurations are the same as the wearable device 2 shown in FIG. The same.
  • the angular velocity sensor 50 is a sensor that detects an angular velocity when the wearable device 2 moves, and detects angular velocities around a plurality of axial directions (for example, three axial directions) orthogonal to each other.
  • the angular velocity sensor 50 moves a minute mechanism member (moving body) formed on the semiconductor chip by MEMS technology, and outputs an angular velocity detection signal corresponding to the Coriolis force generated in the mechanism member by the rotational motion.
  • the angular velocity sensor 50 includes an angular velocity detection element such as a MEMS, an analog circuit such as an amplifier that processes an output signal of the detection element, and an AD converter that converts the output signal of the analog circuit into a digital signal. Consists of.
  • the angular velocity sensor 50 repeatedly detects angular velocity values in the respective directions at regular time intervals according to the control of the processing unit 20A.
  • the processing unit 20A includes an angular velocity data acquisition unit 26, an offset information acquisition unit 27, and an angular velocity offset correction unit 28 in addition to the processing blocks similar to those of the processing unit 20 already described.
  • the angular velocity data acquisition unit 26 repeatedly acquires the angular velocity data detected by the angular velocity sensor 50 at a constant period and stores it in the storage unit 30.
  • the offset information acquisition unit 27 acquires, as offset information, the angular velocity data acquired by the angular velocity data acquisition unit 26 when the stationary state determination unit 24 determines that the vehicle is in a stationary state.
  • the angular velocity offset correction unit 28 corrects the offset of the angular velocity data based on the offset information acquired by the offset information acquisition unit 27. Since the angular velocity is zero in the stationary state, the angular velocity data acquired as offset information by the offset information acquisition unit 27 indicates an offset that is a fixed error from the original angular velocity (zero) in the stationary state. The angular velocity offset correction unit 28 subtracts the offset indicated by the offset information from the angular velocity value indicated by the angular velocity data.
  • FIG. 9 is a flowchart for explaining an operation related to detection of a periodic angular velocity in the wearable device 2A according to the fifth embodiment.
  • step ST300 When the angular velocity data acquisition unit 26 is notified of the preset detection timing of the periodic angular velocity by a timer or the like, the angular velocity data acquisition unit 26 proceeds to step ST310.
  • the angular velocity data acquisition unit 26 acquires angular velocity data detected by the angular velocity sensor 50 and stores it in the storage unit 30.
  • ST315 The angular velocity offset correction unit 28 corrects the offset of the angular velocity data acquired by the angular velocity data acquisition unit 26 in step ST310 based on the offset information acquired by the offset information acquisition unit 27.
  • ST320 When a predetermined end condition is not satisfied, such as when a command instructing the end of the measurement operation is input from the communication unit 40 or the like, the processing unit 20A returns to step ST300 and repeats the above processing.
  • FIG. 10 is a flowchart for explaining an operation related to acquisition of angular velocity offset information in the wearable device 2A according to the fifth embodiment.
  • the offset information acquisition unit 27 receives a notification from a timer or the like that informs the timing for obtaining periodic offset information that has been set in advance, or from another processing block that informs that a specific operation state for which offset information should be obtained has occurred. If a notification is received, the process proceeds to steps ST405 and ST410. If there is no such notification, the process proceeds to step ST415.
  • the offset information acquisition unit 27 acquires the latest acceleration data acquired by the angular velocity data acquisition unit 26 as offset information. And stored in the storage unit 30 (ST410).
  • the stationary state determination unit 24 determines that the state is a non-stationary state
  • the offset information acquisition unit 27 defers the acquisition of offset information.
  • step ST415 When a predetermined end condition is not satisfied, such as when a command instructing the end of the measurement operation is input from the communication unit 40 or the like, the processing unit 20 returns to step ST400 and repeats the above processing.
  • the wearable device 2A it is possible to detect angular velocity and acquire offset information in parallel with detection of acceleration and acquisition of posture reference information. Further, since the angular velocity data in the stationary state is acquired as the offset information, the offset of the acceleration data can be accurately corrected.
  • the wearable device 2A according to the sixth embodiment is obtained by changing the operations of the acceleration data acquisition unit 21 and the angular velocity data acquisition unit 26 in the wearable device 2A according to the fifth embodiment described above. This is the same as the wearable device 2A according to the fifth embodiment.
  • FIG. 11 is a flowchart for explaining an operation related to detection of periodic acceleration in the wearable device 2A according to the sixth embodiment.
  • the flowchart shown in FIG. 11 is obtained by adding steps ST125, ST130A, and ST135A to the flowchart shown in FIG. 3, and the other steps are the same as the flowchart shown in FIG.
  • the acceleration data acquisition unit 21 and the angular velocity data acquisition unit 26 change the acceleration detection cycle and the angular velocity detection cycle according to the determination result when the posture determination unit 25 determines the posture in step ST115. That is, when the posture determination unit 25 determines that the posture of the wearable device 2 is within a predetermined range (ST125), the acceleration data acquisition unit 21 and the angular velocity data acquisition unit 26 acquire the data from the acceleration sensor 10 and the angular velocity sensor.
  • the period of data acquisition from 50 is set to a normal value (ST130A).
  • the acceleration data acquisition unit 21 and the angular velocity data acquisition unit 26 acquire the cycle of data acquisition from the acceleration sensor 10 and The period of data acquisition from the angular velocity sensor 50 is set longer than the normal value (ST135A).
  • the acceleration data acquisition cycle is lengthened, so that the wearable device 2 according to the fourth embodiment is similar to the wearable device 2 in the fourth embodiment.
  • the power consumption can be reduced.
  • the angular velocity is not frequently measured because it is not a normal use state. There are cases where it is good. In such a case, power consumption can be reduced by increasing the angular velocity data acquisition period in the angular velocity data acquisition unit 26.
  • the wearable device 2A according to the seventh embodiment is obtained by changing the operations of the angular velocity data acquisition unit 26 and the angular velocity offset correction unit 28 in the wearable device 2A according to the fifth embodiment described above. This is the same as the wearable device 2A according to the fifth embodiment.
  • FIG. 12 is a flowchart for explaining an operation related to detection of a periodic angular velocity in the wearable device 2A according to the seventh embodiment.
  • the flowchart shown in FIG. 12 is obtained by adding step ST305 to the flowchart shown in FIG. 9, and other steps are the same as the flowchart shown in FIG.
  • the posture determination unit 25 determines that the posture of the wearable device 2A is not within the predetermined range ( ST305)
  • the angular velocity data acquisition by the angular velocity data acquisition unit 26 ST310
  • the angular velocity data offset correction ST315
  • the angular velocity measurement may not be frequently performed because the wearable device 2A is not in a normal use state. There is a case. In such a case, power consumption can be further reduced by stopping the angular velocity data acquisition by the angular velocity data acquisition unit 26.
  • constituent elements in the above-described embodiments may be replaced with constituent elements of another embodiment.
  • constituent elements in the above-described embodiments may be replaced with constituent elements of another embodiment.
  • a wearable device worn (weared) on the human body is given, but the present invention is not limited to this example.
  • the present invention is widely applicable to various electronic devices that are worn (weared) on animals other than humans, robots, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

静止状態判定部24においてウェアラブル装置2が静止状態にないと判定された場合や、姿勢判定部25において重力の方向に対するウェアラブル装置2の姿勢が所定の範囲にないと判定された場合に加速度センサ10で検出された加速度のデータは、姿勢基準情報取得部23において姿勢基準情報の取得に使用されない。これにより、ウェアラブル装置2が静止状態かつその姿勢が所定の範囲内にある適切な条件の下で、姿勢基準情報を自動的に取得することが可能となる。

Description

ウェアラブル装置とその姿勢測定方法及びプログラム
 本発明は、身体や衣服等に着用可能なウェアラブル装置に係り、特に加速度センサを備えたウェアラブル装置に関するものである。
 ウェアラブル装置は、身体や衣服等に着用可能な比較的小型の電子機器であり、例えば、健康管理等のために身体の状態を計測する各種のセンサ(加速度センサ、角速度センサなど)や通信機能を備えたものが知られている(下記特許文献1を参照)。
特開2008-221434号公報
 加速度センサが搭載されたウェアラブル装置の場合、重力の方向に対する身体の傾き具合を身体の姿勢として測定することが可能である。身体を静止させた状態で加速度センサにより検出される加速度は、重力加速度を表す。身体がある基準の姿勢(例えば直立姿勢など)にある場合における重力の方向を「基準方向」とすると、加速度センサの検出結果が示す重力の方向が基準方向に対してどの程度傾いているかを調べれば、基準の姿勢に対する身体の傾き、すなわち身体の姿勢を測定することができる。
 身体の姿勢を測定するためには、身体が基準の姿勢にある場合における重力の方向(基準方向)に関する情報が必要である。この基準方向は、身体が基準の姿勢にあるときに得られた加速度センサの検出結果から決定される。基準方向を決定するための加速度の検出は、例えば、ユーザの手動の操作(ボタン操作等)によって実行してもよい。しかしながら、機械操作に不慣れな年配者,子供等が使用するケースや、日常的に身に付けて使用されるケースなどを考えると、このような加速度の検出は自動的に実行されることが望ましい。
 基準方向を決定するために加速度の検出を自動で実行するには、加速度の検出時に身体が静止していることを適当な手段で判定する必要がある。例えば、身体が静止状態にあるか否かを加速度センサの検出結果の変動幅などに基づいて判定し、静止状態と判定した場合の加速度センサの検出結果に基づいて基準方向を決定する方法が考えられる。しかしながら、この方法ではユーザの姿勢が考慮されていないため、例えばウェアラブル装置を身に付けたまま横臥姿勢になっていても、静止状態であればその姿勢での加速度の検出結果に基づいて基準方向が決定される。すなわち、単に静止状態か否かを判定しているだけでは、不適切な姿勢で検出された加速度に基づいて基準方向が決定される可能性がある。この場合、実際には基準の姿勢であるにも関わらず、基準の姿勢から大きく傾いた姿勢であるとの誤った測定結果が得られてしまう。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、ユーザの操作の負担を軽減しつつ、加速度センサを用いて重力の方向に対する姿勢を正確に測定可能なウェアラブル装置とその姿勢測定方法及びプログラムを提供することにある。
 本発明の第1の観点に係るウェアラブル装置は、加速度センサと、前記加速度センサにおいて検出された加速度のデータを繰り返し取得する加速度データ取得部と、前記加速度データ取得部において取得された加速度のデータが示す重力の方向と、姿勢の基準となる重力の方向である基準方向に関する姿勢基準情報とに基づいて、重力の方向に対する姿勢を算出する姿勢算出部と、前記加速度データ取得部において取得された加速度のデータに基づいて、当該加速度のデータが示す重力の方向に応じた前記姿勢基準情報を取得する姿勢基準情報取得部と、前記加速度データ取得部において取得された加速度のデータに基づいて、静止状態にあるか否かを判定する静止状態判定部と、前記加速度データ取得部において取得された加速度のデータに基づいて、重力の方向に対する姿勢が所定の範囲にあるか否かを判定する姿勢判定部とを備える。前記姿勢基準情報取得部は、前記静止状態判定部において静止状態にないと判定された場合、又は、前記姿勢判定部において前記姿勢が前記所定の範囲にないと判定された場合に検出された前記加速度のデータを、前記姿勢基準情報の取得に用いるデータから除外する。
 上記の構成によれば、前記静止状態判定部において静止状態にないと判定された場合や、前記姿勢判定部において重力の方向に対する姿勢が前記所定の範囲にないと判定された場合に検出された前記加速度のデータが、前記姿勢基準情報取得部において前記姿勢基準情報の取得に用いるデータから除外される。例えば上記ウェアラブル装置を身に付けたユーザが運動している場合に検出された前記加速度のデータは、前記姿勢基準情報の取得に用いるデータから除外される。また、上記ウェアラブル装置を身に付けたユーザの姿勢が正常でない場合や、ユーザの姿勢が正常であって上記ウェアラブル装置の装着態様が正常でない場合に検出された前記加速度のデータも、前記姿勢基準情報の取得に用いるデータから除外される。これにより、静止状態かつ姿勢が所定の範囲内にある適切な条件の下で、前記姿勢基準情報を自動的に取得することが可能となる。従って、ユーザの操作の負担が軽減されるとともに、前記姿勢算出部において重力の方向に対する正確な姿勢が算出される。
 好適に、前記姿勢判定部は、前記静止状態判定部において静止状態にあると判定された場合に前記加速度データ取得部において取得された加速度のデータに基づいて、前記姿勢の判定を行ってよい。
 これにより、重力以外の加速度の影響が抑制されるため、正確な姿勢の判定が可能となる。
 好適に、前記加速度データ取得部は、前記姿勢判定部において姿勢が前記所定の範囲にないと判定された場合には、前記姿勢判定部において姿勢が前記所定の範囲にあると判定された場合に比べて前記加速度のデータ取得の繰り返し周期を長くしてよい。
 これにより、姿勢が前記所定の範囲にない場合には、前記加速度のデータ取得の繰り返し周期が長くなることによって消費電力が低減する。
 好適に、前記姿勢基準情報取得部は、前記静止状態判定部において静止状態が一定時間以上継続していないと判定された場合に検出された前記加速度のデータを、前記姿勢基準情報の取得に用いるデータから除外してよい。
 これにより、前記姿勢判定部において姿勢が前記所定の範囲にあると判定されていても、静止状態が一定時間以上継続していない一時的な姿勢の場合に検出された前記加速度のデータは、前記姿勢基準情報の取得に用いるデータから除外される。すなわち、静止状態が保たれ安定した姿勢の場合に検出された前記加速度のデータに基づいて、前記姿勢基準情報が取得される。そのため、前記姿勢算出部において重力の方向に対するより正確な姿勢が算出される。
 好適に、前記姿勢基準情報取得部は、前記静止状態判定部において静止状態にあると判定され、かつ、前記姿勢判定部において前記姿勢が前記所定の範囲にあると判定された場合に検出された一連の前記加速度のデータを平均化し、当該平均化した加速度のデータが示す重力の方向に応じた前記姿勢基準情報を取得してよい。
 これにより、平均的な姿勢における重力の方向を前記基準方向とした前記姿勢基準情報が取得される。
 好適に、上記第1の観点に係るウェアラブル装置は、角速度センサと、前記角速度センサにおいて検出された角速度のデータを繰り返し取得する角速度データ取得部と、前記静止状態判定部において静止状態にあると判定された場合に前記角速度データ取得部において取得された角速度のデータに基づいて、前記角速度のデータのオフセットを補正する角速度オフセット補正部とを備えてよい。
 これにより、角速度のデータに加わるオフセットが精度よく補正される。
 好適に、前記角速度データ取得部は、前記姿勢判定部において姿勢が前記所定の範囲にないと判定された場合には、前記姿勢判定部において姿勢が前記所定の範囲にあると判定された場合に比べて前記角速度のデータ取得の繰り返し周期を長くしてよい。
 これにより、姿勢が前記所定の範囲にない場合には、前記角速度のデータ取得の繰り返し周期が長くなることによって消費電力が低減する。
 好適に、前記角速度データ取得部は、前記姿勢判定部において姿勢が前記所定の範囲にないと判定された場合には前記角速度のデータの取得を停止してもよい。
 これにより、姿勢が前記所定の範囲にない場合に前記角速度の取得が停止されるため、消費電力が一層低減する。
 本発明の第2の観点は、ウェアラブル装置に搭載された加速度センサにおいて検出される加速度のデータに基づいて、コンピュータが重力の方向に対する前記ウェアラブル装置の姿勢を測定する方法に関する。この姿勢測定方法は、前記加速度センサにおいて検出された加速度のデータを繰り返し取得するステップと、前記加速度のデータを取得するステップにおいて取得された加速度のデータが示す重力の方向と、姿勢の基準となる重力の方向である基準方向に関する姿勢基準情報とに基づいて、重力の方向に対する姿勢を算出するステップと、前記加速度のデータを取得するステップにおいて取得された加速度のデータに基づいて、当該加速度のデータが示す重力の方向に応じた前記姿勢基準情報を取得するステップと、前記加速度のデータを取得するステップにおいて取得された加速度のデータに基づいて、静止状態にあるか否かを判定するステップと、前記加速度のデータを取得するステップにおいて取得された加速度のデータに基づいて、重力の方向に対する姿勢が所定の範囲にあるか否かを判定するステップとを有する。前記姿勢基準情報を取得するステップでは、前記静止状態を判定するステップにおいて静止状態にないと判定された場合、又は、前記重力の方向に対する姿勢を判定するステップにおいて前記姿勢が前記所定の範囲にないと判定された場合に検出された前記加速度のデータを、前記姿勢基準情報の取得に用いるデータから除外する。
 上記の構成によれば、静止状態の判定を行うステップにおいて静止状態にないと判定された場合や、姿勢の判定を行うステップにおいて重力の方向に対する姿勢が前記所定の範囲にないと判定された場合に検出された前記加速度のデータが、前記姿勢基準情報を取得するステップにおいて前記姿勢基準情報の取得に用いるデータから除外される。例えば上記ウェアラブル装置を身に付けたユーザが運動している場合に検出された前記加速度のデータは、前記姿勢基準情報の取得に用いるデータから除外される。また、上記ウェアラブル装置を身に付けたユーザの姿勢が正常でない場合や、ユーザの姿勢が正常であって上記ウェアラブル装置の装着態様が正常でない場合に検出された前記加速度のデータも、前記姿勢基準情報の取得に用いるデータから除外される。これにより、静止状態かつ姿勢が所定の範囲内にある適切な条件の下で、前記姿勢基準情報を自動的に取得することが可能となる。従って、ユーザの操作の負担が軽減されるとともに、前記姿勢を算出するステップにおいて重力の方向に対する正確な姿勢が算出される。
 本発明の第3の観点は、上記第2の観点に係る姿勢測定方法をコンピュータに実行させるためのプログラムである。
 本発明によれば、ユーザの操作の負担を軽減しつつ、加速度センサを用いて重力の方向に対する姿勢を正確に測定できる。
第1の実施形態に係るウェアラブル装置の構成の一例を示す図である。 ユーザに装着されたウェアラブル装置の一例を示す図である。図2Aはユーザが直立姿勢にある場合を示し、図2Bはユーザが横臥姿勢にある場合を示す。 第1の実施形態に係るウェアラブル装置における周期的な加速度の検出に関わる動作を説明するためのフローチャートである。 第1の実施形態に係るウェアラブル装置における姿勢基準情報の取得に関わる動作を説明するためのフローチャートである。 第2の実施形態に係るウェアラブル装置における姿勢基準情報の取得に関わる動作を説明するためのフローチャートである。 第3の実施形態に係るウェアラブル装置における姿勢基準情報の取得に関わる動作を説明するためのフローチャートである。 第4の実施形態に係るウェアラブル装置における周期的な加速度の検出に関わる動作を説明するためのフローチャートである。 第5の実施形態に係るウェアラブル装置の構成の一例を示す図である。 第5の実施形態に係るウェアラブル装置における周期的な角速度の検出に関わる動作を説明するためのフローチャートである。 第5の実施形態に係るウェアラブル装置における角速度のオフセット情報の取得に関わる動作を説明するためのフローチャートである。 第6の実施形態に係るウェアラブル装置における周期的な加速度の検出に関わる動作を説明するためのフローチャートである。 第7の実施形態に係るウェアラブル装置における周期的な角速度の検出に関わる動作を説明するためのフローチャートである。
<第1の実施形態>
 以下、図面を参照して、本発明の第1の実施形態に係るウェアラブル装置について説明する。図1は、第1の実施形態に係るウェアラブル装置2の構成の一例を示す図である。また図2は、ユーザ1に装着されたウェアラブル装置2の一例を示す図である。図2Aはユーザ1が直立姿勢にある場合を示し、図2Bはユーザ1が横臥姿勢にある場合を示す。図2の例において、ウェアラブル装置2は、ユーザ1の腹部に巻き付けられたベルトのバックル等に取り付けられている。重力の方向に対するユーザ1の姿勢が図2A,図2Bに示すように変化すると、これに応じて重力の方向に対するウェアラブル装置2の姿勢も変化する。
 なお、ウェアラブル装置2を身に付ける態様は図2の例に限定されない。例えば帽子やハンズフリー器具、ヘッドセット、補聴器、眼鏡などにウェアラブル装置2を搭載させてもよい。
 図1の例に示すウェアラブル装置2は、加速度センサ10と、処理部20と、記憶部30と、通信部40を有する。
 加速度センサ10は、ウェアラブル装置2に加わる加速度を検出するセンサであり、互いに直交する複数の軸方向(例えば3軸方向)の加速度をそれぞれ検出する。例えば加速度センサ10は、MEMS(micro electro mechanical systems)技術によって半導体チップ上に形成された微小な機構部材がバネ力に抗して変位する距離を電気信号へ変換することにより、加速度に応じた信号を出力する。具体的には、加速度センサ10は、MEMSなどによる加速度の検出素子と、検出素子の出力信号を処理するアンプ等のアナログ回路と、アナログ回路の出力信号をデジタル信号に変換するAD変換器を含んで構成される。加速度センサ10は、処理部20の制御に従って、それぞれの方向の加速度値を一定の時間間隔で繰り返し検出する。
 通信部40は、不図示の外部機器との間で所定の通信方式によりデータをやり取りする装置である。例えば、通信部40は、処理部20において所定の処理を実行させるためのコマンドや、処理の実行に用いられるデータなどを外部機器から受信する。また、通信部40は、処理部20の処理結果のデータ(加速度のデータ、算出した姿勢のデータなど)を外部機器へ送信する。例えば通信部40は、スマートフォン等の携帯機器との間で比較的短距離の通信を行うBluetooth(登録商標)などの通信モジュールを含んで構成される。
 処理部20は、ウェアラブル装置2の全体的な動作の制御を行う装置であり、例えば記憶部30に格納されるプログラムに従って処理を実行するコンピュータを含んで構成される。記憶部30のプログラムは、ROMなどに予め記憶させてもよいし、通信部40によって外部機器からロードしてもよい。或いは、USB等のインターフェース装置や記録媒体読み取り装置などを通じて外部からプログラムを入力し、記憶部30に書き込んでもよい。処理部20における処理は、全てをコンピュータによって実行してもよいし、少なくとも一部を専用のハードウェア回路で実行してもよい。
 処理部20は、加速度の測定に関する処理ブロックとして、加速度データ取得部21と、姿勢算出部22と、姿勢基準情報取得部23と、静止状態判定部24と、姿勢判定部25を有する。
 加速度データ取得部21は、加速度センサ10において検出された加速度のデータを一定の周期で繰り返し取得し、記憶部30に格納する。
 静止状態判定部24は、加速度データ取得部21において取得された加速度のデータに基づいて、ウェアラブル装置2が静止状態にあるか否かを判定する。例えば、静止状態判定部24は、加速度データ取得部21において取得される一連の加速度データの時間的な変動幅を示す評価値(一連の加速度の分散など)を算出し、この評価値が静止状態を示す所定の範囲に含まれる場合、ウェアラブル装置2が静止状態にあると判定する。
 姿勢判定部25は、加速度データ取得部21において取得された加速度のデータに基づいて、重力の方向に対するウェアラブル装置2の姿勢が所定の範囲に含まれるか否かを判定する。例えば姿勢判定部25は、加速度センサ10で検出された各軸方向の加速度がそれぞれ所定の範囲に含まれる場合、ウェアラブル装置2の姿勢が所定の範囲に含まれると判定する。
 姿勢判定部25の判定の基準である「所定の範囲」は、ユーザ1に対してウェアラブル装置2が正しく装着されており、かつ、ユーザ1が基準の姿勢(例えば図2Aに示す直立姿勢)に比較的近い姿勢である場合の加速度の範囲を規定する。従って、加速度データ取得部21において取得された加速度のデータが「所定の範囲」から外れる場合、ウェアラブル装置2が誤って装着されているか、或いは、ユーザ1が基準の姿勢に対して大きく傾いた姿勢(例えば図2Bに示す横臥姿勢)になっている可能性がある。
 姿勢判定部25は、例えば、静止状態判定部24において静止状態にあると判定された場合に加速度データ取得部21において取得された加速度のデータに基づいて、姿勢の判定を行う。静止状態の場合、重力以外の加速度の影響が抑制されるため、加速度データ取得部21において取得される加速度のデータは、ほぼ重力の方向を示す。そのため、静止状態と判定された場合の加速度のデータを用いることで、重力の方向に対する姿勢を正確に判定できる。
 姿勢算出部22は、加速度データ取得部21において取得された加速度のデータが示す重力の方向と、姿勢の基準となる重力の方向である基準方向に関する姿勢基準情報とに基づいて、重力の方向に対する姿勢を算出する。
 例えば、姿勢基準情報は、加速度センサ10の複数の軸方向において検出される一群の加速度値が表すベクトルを、基準方向に対して平行な座標軸を持つ座標系(以下、「基準座標系」と記す。)のベクトルへ変換するための情報を含む。
 加速度センサ10により検出される加速度のベクトルは、加速度センサ10の検出軸によって規定される固定の座標系(以下、「センサ座標系」と記す。)のベクトルである。例えば、姿勢基準情報は、このセンサ座標系のベクトルを基準座標系のベクトルへ変換するための座標変換(回転行列など)の情報を含む。姿勢算出部22は、この姿勢基準情報を用いて、加速度センサ10により検出されたセンサ座標系の加速度のベクトルを基準座標系のベクトルに座標変換する。
 ここで、基準方向と平行な基準座標系の座標軸を「Z軸」とし、Z軸に直交する基準座標系の座標軸を「X軸」及び「Y軸」とする。また、加速度センサ10において検出された加速度のデータが示す重力の方向が基準方向と一致する場合の姿勢を「基準の姿勢」とする。姿勢算出部22の座標変換により得られる基準座標系のベクトルは、ウェアラブル装置2が「基準の姿勢」の場合にZ軸と平行になるが、「基準の姿勢」に対してウェアラブル装置2が傾いた姿勢の場合、このベクトルはZ軸に対して傾きを持つ。従って、センサ座標系から基準座標系へ座標変換した後の加速度のベクトルがZ軸に対して持つ傾きは、「基準の姿勢」に対する姿勢の傾きを表す。姿勢算出部22は、このZ軸に対するベクトルの傾きを表すデータとして、例えば、当該ベクトルをY-Z平面に射影した像のX軸周りにおける角度や、当該ベクトルをX-Z平面に射影した像のY軸周りにおける角度を算出する。
 姿勢基準情報取得部23は、加速度データ取得部21において取得された加速度のデータに基づいて、当該加速度のデータが示す重力の方向に応じた姿勢基準情報を取得する。ただし、姿勢基準情報取得部23は、静止状態判定部24において静止状態にないと判定された場合、又は、姿勢判定部25において姿勢が所定の範囲にないと判定された場合に検出された加速度のデータは、姿勢基準情報の取得に用いるデータから除外する。
 例えば姿勢基準情報取得部23は、姿勢基準情報の取得を周期的なタイミングで行ってもよいし、特定の動作状態が生じたタイミング(例えば待機動作モードへの移行が生じたタイミングなど)に行ってもよい。姿勢基準情報取得部23は、姿勢基準情報を取得するタイミングであっても、静止状態にないと判定された場合や姿勢が所定の範囲にないと判定された場合は、当該タイミングで検出された加速度のデータを姿勢基準情報の取得に使用せず、姿勢基準情報の取得を見送る。
 記憶部30は、処理部20におけるコンピュータのプログラムや、処理部20の処理に使用される定数データ、処理の過程で一時的に保持される変数データ、処理結果のデータ(加速度のデータ、算出した姿勢のデータなど)を記憶する。記憶部30は、例えばROMやRAM、不揮発性メモリなどを含んで構成される。
 ここで、上述した構成を有する本実施形態に係るウェアラブル装置2の動作を説明する。
 図3は、第1の実施形態に係るウェアラブル装置2における周期的な加速度の検出に関わる動作を説明するためのフローチャートである。
ST100,ST105:
 加速度データ取得部21は、予め設定された周期的な加速度の検出タイミングがタイマ等によって通知されると(ST100)、加速度センサ10において検出された加速度のデータを取得して記憶部30に格納する(ST105)。
ST110:
 静止状態判定部24は、ステップST105において取得された加速度のデータに基づいて、ウェアラブル装置2が静止状態にあるか否かを判定する。例えば、静止状態判定部24は、ステップST105で取得されたデータを含む一連の複数のデータから加速度の分散を計算し、分散が所定のしきい値より小さい場合は静止状態、分散がしきい値を超える場合は非静止状態と判定する。
ST115:
 姿勢判定部25は、ステップST105において取得された加速度のデータに基づいて、重力の方向に対するウェアラブル装置2の姿勢が所定の範囲にあるか否かを判定する。例えば姿勢判定部25は、複数の軸方向の加速度値が軸ごとに決められた正常範囲に含まれるか否かをそれぞれ判定し、全ての軸方向の加速度値が正常範囲に含まれる場合、ウェアラブル装置2の姿勢が所定の範囲に含まれると判定する。正常範囲に含まれない加速度値がある場合、姿勢判定部25は、ウェアラブル装置2の姿勢が所定の範囲に含まれないと判定する。
ST120:
 姿勢算出部22は、ステップST105において取得された加速度のデータが示す重力の方向と、姿勢基準情報取得部23において取得された最新の姿勢基準情報とに基づいて、重力の方向に対するウェアラブル装置2の姿勢を算出し、算出結果を記憶部30に格納する。
 なお、姿勢算出部22は、姿勢の算出結果を記憶部30に格納する際、この算出結果の信頼性に関連する情報として、ステップST110の静止状態の判定結果や、ステップST115の姿勢の判定結果も合わせて記憶部30に格納してよい。これにより、非静止状態と判定された場合や、姿勢が所定の範囲内にないと判定された場合において、姿勢の算出結果の信頼性が低くなっていることを確認できる。
ST140:
 処理部20は、測定動作の終了を指示するコマンドが通信部40などから入力された場合などの所定の終了条件が成立していない場合は、ステップST100に戻って上述の処理を繰り返す。
 図4は、第1の実施形態に係るウェアラブル装置2における姿勢基準情報の取得に関わる動作を説明するためのフローチャートである。
ST200:
 姿勢基準情報取得部23は、予め設定された周期的な姿勢基準情報の取得タイミングを知らせるタイマ等の通知や、姿勢基準情報を取得すべき特定の動作状態が発生したことを知らせる他の処理ブロック等からの通知を受けた場合、ステップST205,ST210に移行し、これらの通知がない場合はステップST220に移行する。
ST205,ST210:
 静止状態判定部24において静止状態と判定され、かつ、姿勢判定部25において姿勢が所定の範囲にあると判定された場合、姿勢基準情報取得部23はステップST215に移行し、それ以外の場合はステップST220に移行する。
ST215:
 姿勢基準情報取得部23は、ステップST105において取得された最新の加速度のデータに基づいて、当該加速度のデータが示す重力の方向に応じた姿勢基準情報を取得する。例えば、姿勢基準情報取得部23は、ステップST105において取得された最新の加速度のデータが示す重力加速度のベクトルを基準座標系の所定の座標軸(Z軸)に平行なベクトルへ変換する回転行列等の情報を取得する。
ST220:
 処理部20は、測定動作の終了を指示するコマンドが通信部40などから入力された場合などの所定の終了条件が成立していない場合は、ステップST200に戻って上述の処理を繰り返す。
 以上説明したように、本実施形態に係るウェアラブル装置2によれば、静止状態判定部24においてウェアラブル装置2が静止状態にないと判定された場合や、姿勢判定部25において重力の方向に対するウェアラブル装置2の姿勢が所定の範囲にないと判定された場合に加速度センサ10で検出された加速度のデータが、姿勢基準情報取得部23において姿勢基準情報の取得に使用されない。例えばウェアラブル装置2を身に付けたユーザが運動している場合に検出された加速度のデータは、姿勢基準情報の取得に使用されない。ウェアラブル装置2を身に付けたユーザの姿勢が正常でない場合(横臥姿勢の場合など)や、ユーザの姿勢が正常であってウェアラブル装置2の装着態様が正常でない場合(上下を逆さまにして装着した場合など)に検出された加速度のデータも、姿勢基準情報の取得に使用されない。これにより、ウェアラブル装置2が静止状態かつその姿勢が所定の範囲内にある適切な条件の下で、姿勢基準情報を自動的に取得することが可能となる。従って、姿勢基準情報を取得するための手動の操作が必要となる場合に比べてユーザの操作の負担を軽減できるとともに、静止状態のみを判定して姿勢基準情報の取得を行う場合に比べて重力の方向に対する正確な姿勢を算出できる。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
 第2の実施形態に係るウェアラブル装置2は、上述した第1の実施形態に係るウェアラブル装置2における姿勢基準情報の取得の動作を変更したものであり、他の構成は第1の実施形態に係るウェアラブル装置2と同様である。
 図5は、第2の実施形態に係るウェアラブル装置2における姿勢基準情報の取得に関わる動作を説明するためのフローチャートである。図5に示すフローチャートは、図4に示すフローチャートにおけるステップST205をステップST205Aに置き換えたものであり、他のステップは図4に示すフローチャートと同じである。
 本実施形態における姿勢基準情報取得部23は、静止状態判定部24において静止状態が一定時間以上継続していると判定され(ST205A)、かつ、姿勢判定部25において姿勢が所定の範囲にあると判定された場合に(ST210)、姿勢基準情報の取得を行う(ST215)。姿勢基準情報取得部23は、姿勢判定部25において姿勢が所定の範囲にあると判定されていても、静止状態判定部24において静止状態が一定時間以上継続していないと判定された場合に加速度センサ10で検出された加速度のデータは、姿勢基準情報の取得に使用しない。すなわち、姿勢基準情報取得部23は、静止状態が一定時間以上保たれている安定した姿勢の場合に検出された加速度のデータに基づいて、姿勢基準情報を取得する。これにより、基準の姿勢に近くなり易い安定した姿勢において姿勢基準情報が取得されるため、重力の方向に対するより正確な姿勢を算出できる。
<第3の実施形態>
 次に、本発明の第3の実施形態について説明する。
 第3の実施形態に係るウェアラブル装置2も、上述した第1の実施形態に係るウェアラブル装置2における姿勢基準情報の取得の動作を変更したものであり、他の構成は第1の実施形態に係るウェアラブル装置2と同様である。
 図6は、第3の実施形態に係るウェアラブル装置2における姿勢基準情報の取得に関わる動作を説明するためのフローチャートである。
ST250:
 姿勢基準情報取得部23は、加速度データ取得部21において新しい加速度のデータが取得されたか否かを調べ、新しい加速度のデータが取得された場合はステップST255,ST260に移行し、それ以外の場合はステップST270に移行する。
ST255,ST260:
 静止状態判定部24において静止状態と判定され、かつ、姿勢判定部25において姿勢が所定の範囲にあると判定された場合、姿勢基準情報取得部23はステップST265に移行し、それ以外の場合はステップST270に移行する。
ST265:
 姿勢基準情報取得部23は、加速度データ取得部21において取得された最新の加速度のデータを用いて、加速度の平均値を算出する。例えば姿勢基準情報取得部23は、現在の平均値と最新の加速度値にそれぞれ所定の重みを付けて加算する加重移動平均によって新たな加速度の平均値を算出する。
ST270:
 姿勢基準情報取得部23は、予め設定された周期的な姿勢基準情報の取得タイミングを知らせるタイマ等の通知や、姿勢基準情報を取得すべき特定の動作状態が発生したことを知らせる他の処理ブロック等からの通知を受けた場合、ステップST275に移行し、これらの通知がない場合はステップST280に移行する。
ST275:
 姿勢基準情報取得部23は、ステップST265において算出された加速度の平均値に基づいて、当該加速度の平均値が示す重力の方向に応じた姿勢基準情報を取得する。例えば、姿勢基準情報取得部23は、ステップST265において取得された加速度の平均値が示す重力加速度のベクトルを基準座標系の所定の座標軸(Z軸)に平行なベクトルへ変換する回転行列等の情報を取得する。
ST280:
 処理部20は、測定動作の終了を指示するコマンドが通信部40などから入力された場合などの所定の終了条件が成立していない場合は、ステップST250に戻って上述の処理を繰り返す。
 以上説明したように、本実施形態に係るウェアラブル装置2によれば、静止状態判定部24においてウェアラブル装置2が静止状態にないと判定された場合や、姿勢判定部25において重力の方向に対するウェアラブル装置2の姿勢が所定の範囲にないと判定された場合に加速度センサ10で検出された加速度のデータは、姿勢基準情報取得部23において姿勢基準情報の取得に用いるデータから除外される。これにより、ウェアラブル装置2が静止状態かつその姿勢が所定の範囲内にある適切な条件の下で、姿勢基準情報を自動的に取得することが可能となるため、ユーザの操作の負担を軽減できるとともに、重力の方向に対する正確な姿勢を算出できる。
 また、本実施形態に係るウェアラブル装置2によれば、静止状態判定部24において静止状態にあると判定され、かつ、姿勢判定部25において姿勢が所定の範囲にあると判定された場合に検出された一連の加速度のデータが姿勢基準情報取得部23において平均化され、当該平均化された加速度のデータが示す重力の方向に応じた姿勢基準情報が姿勢基準情報取得部23において取得される。これにより、平均的な姿勢における重力の方向を基準方向とした姿勢基準情報が取得される。そのため、一時的な姿勢の変化の影響を受けて姿勢基準情報の基準方向が変化することを抑制できる。従って、正確で安定した姿勢の算出を行うことができる。
<第4の実施形態>
 次に、本発明の第4の実施形態について説明する。
 第4の実施形態に係るウェアラブル装置2は、上述した第1の実施形態に係るウェアラブル装置2における加速度データ取得部21の動作を変更したものであり、他の構成は第1の実施形態に係るウェアラブル装置2と同様である。
 図7は、第4の実施形態に係るウェアラブル装置2における周期的な加速度の検出に関わる動作を説明するためのフローチャートである。図7に示すフローチャートは、図3に示すフローチャートにステップST125,ST130及びST135を追加したものであり、他のステップは図3に示すフローチャートと同じである。
 加速度データ取得部21は、ステップST115において姿勢判定部25により姿勢の判定が行われた場合、その判定結果に応じて加速度の検出周期を変更する。すなわち、姿勢判定部25においてウェアラブル装置2の姿勢が所定の範囲にあると判定された場合(ST125)、加速度データ取得部21は、加速度センサ10からのデータ取得の周期を通常値に設定する(ST130)。一方、姿勢判定部25においてウェアラブル装置2の姿勢が所定の範囲にないと判定された場合(ST125)、加速度データ取得部21は、加速度センサ10からのデータ取得の周期を通常値に比べて長くする。
 ウェアラブル装置2の姿勢が所定の範囲にない場合、姿勢基準情報取得部23において姿勢基準情報の取得に用いられるべき加速度のデータが得られなくなるため、姿勢算出部22における姿勢の算出結果の信頼性が低くなる。この場合、姿勢算出部22において姿勢を頻繁に算出しなくてもよくなるため、加速度データ取得部21において加速度のデータ取得の周期を長くすることが可能となる。従って、本実施形態のように加速度のデータ取得の周期を長くすることで、消費電力の低減を図ることができる。
<第5の実施形態>
 次に、本発明の第5の実施形態について説明する。
 第5の実施形態に係るウェアラブル装置は、角速度センサを備える。
 図8は、第5の実施形態に係るウェアラブル装置2Aの構成の一例を示す図である。図8に示すウェアラブル装置2Aは、図1に示すウェアラブル装置2における処理部20を処理部20Aに置き換えて、角速度センサ50を追加したものであり、他の構成は図1に示すウェアラブル装置2と同じである。
 角速度センサ50は、ウェアラブル装置2が運動する際の角速度を検出するセンサであり、互いに直交する複数の軸方向(例えば3軸方向)の周りにおける角速度をそれぞれ検出する。例えば角速度センサ50は、MEMS技術によって半導体チップ上に形成された微小な機構部材(運動体)を運動させ、回転運動によって機構部材に生じるコリオリ力に応じた角速度の検出信号を出力する。具体的には、角速度センサ50は、MEMSなどによる角速度の検出素子と、検出素子の出力信号を処理するアンプ等のアナログ回路と、アナログ回路の出力信号をデジタル信号に変換するAD変換器を含んで構成される。角速度センサ50は、処理部20Aの制御に従って、それぞれの方向の角速度値を一定の時間間隔で繰り返し検出する。
 処理部20Aは、既に説明した処理部20と同様の処理ブロックに加えて、角速度データ取得部26と、オフセット情報取得部27と、角速度オフセット補正部28を有する。
 角速度データ取得部26は、角速度センサ50において検出された角速度のデータを一定の周期で繰り返し取得し、記憶部30に格納する。
 オフセット情報取得部27は、静止状態判定部24において静止状態にあると判定された場合に角速度データ取得部26で取得された角速度のデータを、オフセット情報として取得する。
 角速度オフセット補正部28は、オフセット情報取得部27において取得されたオフセット情報に基づいて、角速度のデータのオフセットを補正する。静止状態において角速度はゼロになるため、オフセット情報取得部27においてオフセット情報として取得された角速度のデータは、静止状態における本来の角速度(ゼロ)からの固定的な誤差であるオフセットを示す。角速度オフセット補正部28は、角速度のデータが示す角速度値から、オフセット情報が示すオフセットを減算する。
 図9は、第5の実施形態に係るウェアラブル装置2Aにおける周期的な角速度の検出に関わる動作を説明するためのフローチャートである。
ST300:
 角速度データ取得部26は、予め設定された周期的な角速度の検出タイミングがタイマ等によって通知されると、ステップST310に移行する。
ST310:
 角速度データ取得部26は、角速度センサ50において検出された角速度のデータを取得して記憶部30に格納する。
ST315:
 角速度オフセット補正部28は、ステップST310において角速度データ取得部26が取得した角速度のデータのオフセットを、オフセット情報取得部27により取得されたオフセット情報に基づいて補正する。
ST320:
 処理部20Aは、測定動作の終了を指示するコマンドが通信部40などから入力された場合などの所定の終了条件が成立していない場合は、ステップST300に戻って上述の処理を繰り返す。
 図10は、第5の実施形態に係るウェアラブル装置2Aにおける角速度のオフセット情報の取得に関わる動作を説明するためのフローチャートである。
ST400:
 オフセット情報取得部27は、予め設定された周期的なオフセット情報の取得タイミングを知らせるタイマ等の通知や、オフセット情報を取得すべき特定の動作状態が発生したことを知らせる他の処理ブロック等からの通知を受けた場合、ステップST405,ST410に移行し、これらの通知がない場合はステップST415に移行する。
ST405,ST410:
 オフセット情報取得部27は、静止状態判定部24においてウェアラブル装置2Aが静止状態にあると判定されている場合(ST405)、角速度データ取得部26によって取得された最新の加速度のデータをオフセット情報として取得し、記憶部30に格納する(ST410)。静止状態判定部24において非静止状態と判定されている場合、オフセット情報取得部27は、オフセット情報の取得を見送る。
ST415:
 処理部20は、測定動作の終了を指示するコマンドが通信部40などから入力された場合などの所定の終了条件が成立していない場合は、ステップST400に戻って上述の処理を繰り返す。
 以上説明したように、本実施形態に係るウェアラブル装置2Aによれば、加速度の検出及び姿勢基準情報の取得と平行して、角速度の検出及びオフセット情報の取得を行うことができる。また、静止状態における角速度のデータをオフセット情報として取得するため、加速度のデータのオフセットを精度よく補正できる。
<第6の実施形態>
 次に、本発明の第6の実施形態について説明する。
 第6の実施形態に係るウェアラブル装置2Aは、上述した第5の実施形態に係るウェアラブル装置2Aにおける加速度データ取得部21及び角速度データ取得部26の動作を変更したものであり、他の構成は第5の実施形態に係るウェアラブル装置2Aと同様である。
 図11は、第6の実施形態に係るウェアラブル装置2Aにおける周期的な加速度の検出に関わる動作を説明するためのフローチャートである。図11に示すフローチャートは、図3に示すフローチャートにステップST125,ST130A及びST135Aを追加したものであり、他のステップは図3に示すフローチャートと同じである。
 加速度データ取得部21及び角速度データ取得部26は、ステップST115において姿勢判定部25により姿勢の判定が行われた場合、その判定結果に応じて加速度の検出周期及び角速度の検出周期を変更する。すなわち、姿勢判定部25においてウェアラブル装置2の姿勢が所定の範囲にあると判定された場合(ST125)、加速度データ取得部21及び角速度データ取得部26は、加速度センサ10からのデータ取得及び角速度センサ50からのデータ取得の周期をそれぞれ通常値に設定する(ST130A)。一方、姿勢判定部25においてウェアラブル装置2の姿勢が所定の範囲にないと判定された場合(ST125)、加速度データ取得部21及び角速度データ取得部26は、加速度センサ10からのデータ取得の周期及び角速度センサ50からのデータ取得の周期をそれぞれ通常値に比べて長くする(ST135A)。
 本実施形態に係るウェアラブル装置2Aによれば、ウェアラブル装置2Aの姿勢が所定の範囲にない場合に加速度のデータ取得の周期を長くすることで、第4の実施形態におけるウェアラブル装置2と同様に、消費電力の低減を図ることができる。
 また、ウェアラブル装置2Aの姿勢が所定の範囲にない場合、すなわち姿勢が異常な場合やウェアラブル装置2Aの装着態様が誤っている場合は、通常の使用状態でないため角速度の測定を頻繁に行わなくてもよい場合がある。そのような場合には、角速度データ取得部26において角速度のデータ取得の周期を長くすることによって、消費電力の低減を図ることができる。
<第7の実施形態>
 次に、本発明の第7の実施形態について説明する。
 第7の実施形態に係るウェアラブル装置2Aは、上述した第5の実施形態に係るウェアラブル装置2Aにおける角速度データ取得部26及び角速度オフセット補正部28の動作を変更したものであり、他の構成は第5の実施形態に係るウェアラブル装置2Aと同様である。
 図12は、第7の実施形態に係るウェアラブル装置2Aにおける周期的な角速度の検出に関わる動作を説明するためのフローチャートである。図12に示すフローチャートは、図9に示すフローチャートにステップST305を追加したものであり、他のステップは図9に示すフローチャートと同じである。
 本実施形態に係るウェアラブル装置2Aにおいては、予め設定された角速度の検出タイミングであっても(ST300)、姿勢判定部25においてウェアラブル装置2Aの姿勢が所定の範囲にないと判定された場合は(ST305)、角速度データ取得部26による角速度のデータの取得(ST310)及び角速度オフセット補正部28による角速度のデータのオフセット補正(ST315)が停止される。
 ウェアラブル装置2Aの姿勢が所定の範囲にない場合、すなわち姿勢が異常な場合やウェアラブル装置2Aの装着態様が誤っている場合は、通常の使用状態でないため角速度の測定を頻繁に行わなくてもよい場合がある。そのような場合には、角速度データ取得部26において角速度のデータ取得を停止することによって、更に消費電力の低減を図ることができる。
 以上、本発明の幾つかの実施形態について説明したが、本発明は上述した実施形態に限定されない。すなわち、当業者は、本発明の技術的範囲又はその均等の範囲内において、上述した実施形態の構成に関し、様々な変更、コンビネーション、並びに代替を行ってもよい。
 例えば、上述した各実施形態における構成要素は、別の実施形態の構成要素と置換してもよい。また、上述した各実施形態に別の実施形態の構成要素を付加してもよい。
 上述した実施形態では人体に装着(着用)されるウェアラブル装置の例を挙げているが、本発明はこの例に限定されない。本発明は人間以外の動物やロボット等に装着(着用)される様々な電子機器に広く適用可能である。
1…ユーザ、2,2A…ウェアラブル装置、10…加速度センサ、20,20A…処理部、21…加速度データ取得部、22…姿勢算出部、23…姿勢基準情報取得部、24…静止状態判定部、25…姿勢判定部、26…角速度データ取得部、27…オフセット情報取得部、28…角速度オフセット補正部、30…記憶部、40…通信部、50…角速度センサ

Claims (10)

  1.  加速度センサと、
     前記加速度センサにおいて検出された加速度のデータを繰り返し取得する加速度データ取得部と、
     前記加速度データ取得部において取得された加速度のデータが示す重力の方向と、姿勢の基準となる重力の方向である基準方向に関する姿勢基準情報とに基づいて、重力の方向に対する姿勢を算出する姿勢算出部と、
     前記加速度データ取得部において取得された加速度のデータに基づいて、当該加速度のデータが示す重力の方向に応じた前記姿勢基準情報を取得する姿勢基準情報取得部と、
     前記加速度データ取得部において取得された加速度のデータに基づいて、静止状態にあるか否かを判定する静止状態判定部と、
     前記加速度データ取得部において取得された加速度のデータに基づいて、重力の方向に対する姿勢が所定の範囲にあるか否かを判定する姿勢判定部とを備え、
     前記姿勢基準情報取得部は、前記静止状態判定部において静止状態にないと判定された場合、又は、前記姿勢判定部において前記姿勢が前記所定の範囲にないと判定された場合に検出された前記加速度のデータを、前記姿勢基準情報の取得に用いるデータから除外する
     ことを特徴とするウェアラブル装置。
  2.  前記姿勢判定部は、前記静止状態判定部において静止状態にあると判定された場合に前記加速度データ取得部において取得された加速度のデータに基づいて、前記姿勢の判定を行う
     ことを特徴とする請求項1に記載のウェアラブル装置。
  3.  前記加速度データ取得部は、前記姿勢判定部において姿勢が前記所定の範囲にないと判定された場合には、前記姿勢判定部において姿勢が前記所定の範囲にあると判定された場合に比べて前記加速度のデータ取得の繰り返し周期を長くする
     ことを特徴とする請求項2に記載のウェアラブル装置。
  4.  前記姿勢基準情報取得部は、前記静止状態判定部において静止状態が一定時間以上継続していないと判定された場合に検出された前記加速度のデータを、前記姿勢基準情報の取得に用いるデータから除外する
     ことを特徴とする請求項1乃至3の何れか一項に記載のウェアラブル装置。
  5.  前記姿勢基準情報取得部は、前記静止状態判定部において静止状態にあると判定され、かつ、前記姿勢判定部において前記姿勢が前記所定の範囲にあると判定された場合に検出された一連の前記加速度のデータを平均化し、当該平均化した加速度のデータが示す重力の方向に応じた前記姿勢基準情報を取得する
     ことを特徴とする請求項1乃至4の何れか一項に記載のウェアラブル装置。
  6.  角速度センサと、
     前記角速度センサにおいて検出された角速度のデータを繰り返し取得する角速度データ取得部と、
     前記静止状態判定部において静止状態にあると判定された場合に前記角速度データ取得部において取得された角速度のデータに基づいて、前記角速度のデータのオフセットを補正する角速度オフセット補正部とを備える
     ことを特徴とする請求項1乃至5の何れか一項に記載のウェアラブル装置。
  7.  前記角速度データ取得部は、前記姿勢判定部において姿勢が前記所定の範囲にないと判定された場合には、前記姿勢判定部において姿勢が前記所定の範囲にあると判定された場合に比べて前記角速度のデータ取得の繰り返し周期を長くする
     ことを特徴とする請求項6に記載のウェアラブル装置。
  8.  前記角速度データ取得部は、前記姿勢判定部において姿勢が前記所定の範囲にないと判定された場合には前記角速度のデータの取得を停止する
     ことを特徴とする請求項6に記載のウェアラブル装置。
  9.  ウェアラブル装置に搭載された加速度センサにおいて検出される加速度のデータに基づいて、コンピュータが重力の方向に対する前記ウェアラブル装置の姿勢を測定する方法であって、
     前記加速度センサにおいて検出された加速度のデータを繰り返し取得するステップと、
     前記加速度のデータを取得するステップにおいて取得された加速度のデータが示す重力の方向と、姿勢の基準となる重力の方向である基準方向に関する姿勢基準情報とに基づいて、重力の方向に対する姿勢を算出するステップと、
     前記加速度のデータを取得するステップにおいて取得された加速度のデータに基づいて、当該加速度のデータが示す重力の方向に応じた前記姿勢基準情報を取得するステップと、
     前記加速度のデータを取得するステップにおいて取得された加速度のデータに基づいて、静止状態にあるか否かを判定するステップと、
     前記加速度のデータを取得するステップにおいて取得された加速度のデータに基づいて、重力の方向に対する姿勢が所定の範囲にあるか否かを判定するステップとを有し、
     前記姿勢基準情報を取得するステップでは、前記静止状態を判定するステップにおいて静止状態にないと判定された場合、又は、前記重力の方向に対する姿勢を判定するステップにおいて前記姿勢が前記所定の範囲にないと判定された場合に検出された前記加速度のデータを、前記姿勢基準情報の取得に用いるデータから除外する
     ことを特徴とする姿勢測定方法。
  10.  請求項9に記載される姿勢測定方法をコンピュータに実行させるためのプログラム。
PCT/JP2016/084135 2015-11-30 2016-11-17 ウェアラブル装置とその姿勢測定方法及びプログラム WO2017094521A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017553769A JP6467525B2 (ja) 2015-11-30 2016-11-17 ウェアラブル装置とその姿勢測定方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015233390 2015-11-30
JP2015-233390 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094521A1 true WO2017094521A1 (ja) 2017-06-08

Family

ID=58797223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084135 WO2017094521A1 (ja) 2015-11-30 2016-11-17 ウェアラブル装置とその姿勢測定方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6467525B2 (ja)
WO (1) WO2017094521A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132840A (zh) * 2019-12-31 2021-07-16 罗伯特·博世有限公司 用于检测耳机的佩戴状态的方法和装置、以及无线耳机
WO2021157116A1 (ja) * 2020-02-07 2021-08-12 パナソニックIpマネジメント株式会社 位置測定装置
CN114903466A (zh) * 2021-02-09 2022-08-16 Oppo广东移动通信有限公司 测量肢体长度的方法及装置、可穿戴设备、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040763A (ja) * 2005-08-01 2007-02-15 Toyota Motor Corp 加速度センサの補正装置
US20100039381A1 (en) * 2008-08-12 2010-02-18 Apple Inc. Rotatable input device
JP2013030122A (ja) * 2011-07-29 2013-02-07 Canon Inc 表示制御装置及びその制御方法
JP2013181900A (ja) * 2012-03-02 2013-09-12 Seiko Epson Corp 姿勢算出方法、位置算出方法及び姿勢算出装置
JP2013205164A (ja) * 2012-03-28 2013-10-07 Seiko Epson Corp 加速度バイアス推定方法及び計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040763A (ja) * 2005-08-01 2007-02-15 Toyota Motor Corp 加速度センサの補正装置
US20100039381A1 (en) * 2008-08-12 2010-02-18 Apple Inc. Rotatable input device
JP2013030122A (ja) * 2011-07-29 2013-02-07 Canon Inc 表示制御装置及びその制御方法
JP2013181900A (ja) * 2012-03-02 2013-09-12 Seiko Epson Corp 姿勢算出方法、位置算出方法及び姿勢算出装置
JP2013205164A (ja) * 2012-03-28 2013-10-07 Seiko Epson Corp 加速度バイアス推定方法及び計測装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132840A (zh) * 2019-12-31 2021-07-16 罗伯特·博世有限公司 用于检测耳机的佩戴状态的方法和装置、以及无线耳机
WO2021157116A1 (ja) * 2020-02-07 2021-08-12 パナソニックIpマネジメント株式会社 位置測定装置
JP7570038B2 (ja) 2020-02-07 2024-10-21 パナソニックIpマネジメント株式会社 位置測定装置
CN114903466A (zh) * 2021-02-09 2022-08-16 Oppo广东移动通信有限公司 测量肢体长度的方法及装置、可穿戴设备、存储介质

Also Published As

Publication number Publication date
JP6467525B2 (ja) 2019-02-13
JPWO2017094521A1 (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
US10760904B2 (en) Wearable device, posture measurement method, and non-transitory recording medium
JP6467525B2 (ja) ウェアラブル装置とその姿勢測定方法及びプログラム
JP5137229B2 (ja) 加速度計測装置
JP2019512366A (ja) 自動姿勢較正のためのシステムおよび方法
KR102311051B1 (ko) 웨어러블 워치 및 그것의 디스플레이 방법
KR20100112764A (ko) 동작교정장치 및 그 제어방법과 이를 이용한 동작교정 서비스시스템
US20140156214A1 (en) Motion analysis system and motion analysis method
KR20120121595A (ko) 가속도 센서를 이용한 자세 추정 장치 및 방법
JP5331999B2 (ja) 加速度検出デバイスおよびそれを備えた携帯機器
JP2012141930A (ja) 情報処理装置、情報処理システム及び情報処理方法
JP5233000B2 (ja) 動き測定装置
JP5937137B2 (ja) 地磁気検出装置
US20200237292A1 (en) Posture Monitor
US10794723B2 (en) Walking measurement device, walking measurement method, and program
JP6848571B2 (ja) 姿勢算出装置、姿勢計測システム、及び姿勢算出方法
EP2708185B1 (en) Alarm method and system for detecting incorrect postures
JP2016125988A (ja) 携帯端末装置及びキャリブレーション方法
JPWO2015170585A1 (ja) 電子機器
CN106931992B (zh) 用于检测物体翻滚的方法和装置
CN111433562A (zh) 磁力计的校准方法及相关设备
US11009334B2 (en) Information processing apparatus, non-transitory computer-readable storage medium having stored therein information processing program, information processing system, and information processing method
JP2021063655A (ja) 制御装置、計測装置、球体、計測システム、制御方法、およびプログラム
EP3832435A1 (en) Motion tracking system and method
JP2019029835A (ja) 撮像装置
JP2021143881A (ja) 進行方向判定装置、携帯端末装置、および進行方向判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553769

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870459

Country of ref document: EP

Kind code of ref document: A1