WO2005124994A1 - 高効率増幅器 - Google Patents

高効率増幅器 Download PDF

Info

Publication number
WO2005124994A1
WO2005124994A1 PCT/JP2004/008615 JP2004008615W WO2005124994A1 WO 2005124994 A1 WO2005124994 A1 WO 2005124994A1 JP 2004008615 W JP2004008615 W JP 2004008615W WO 2005124994 A1 WO2005124994 A1 WO 2005124994A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
signal
circuit
input signal
output
Prior art date
Application number
PCT/JP2004/008615
Other languages
English (en)
French (fr)
Inventor
Kenichi Horiguchi
Masatoshi Nakayama
Tadashi Takagi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP04746117A priority Critical patent/EP1758242A4/en
Priority to JP2006514632A priority patent/JPWO2005124994A1/ja
Priority to EP08010077A priority patent/EP1959565A1/en
Priority to US10/591,644 priority patent/US20070164818A1/en
Priority to PCT/JP2004/008615 priority patent/WO2005124994A1/ja
Priority to CNB2004800427586A priority patent/CN100511972C/zh
Publication of WO2005124994A1 publication Critical patent/WO2005124994A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3276Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using the nonlinearity inherent to components, e.g. a diode

Definitions

  • the present invention relates to, for example, a high-efficiency amplifier that linearly amplifies an RF (Radio Frequency) signal with high efficiency.
  • RF Radio Frequency
  • An RF amplifier for broadcasting and communication is desired to linearly amplify an RF signal as an input signal with high efficiency.
  • the efficiency of the amplifier increases as the power level of the input signal increases, with maximum efficiency being achieved around saturation of the amplifier. In the region where the power of the input signal is further increased and the output signal is completely saturated, the efficiency is conversely reduced.
  • Patent Document 1 discloses a Doherty amplifier (high-efficiency amplifier) that increases the efficiency at an operation level with a large back-off from saturation.
  • an RF signal input from an input terminal is split by an input-side branch circuit and output to two paths.
  • the carrier amplifier amplifies one RF signal branched by the input side branch circuit, and the output signal of the carrier amplifier passes through the quarter wavelength line and is output to the output side synthesis circuit.
  • the peak amplifier amplifies the RF signal, and the output signal of the peak amplifier is output to the output-side combining circuit.
  • the class B or class C biased peak amplifier is turned off (a state in which the RF signal is not amplified), and the output from the carrier amplifier is output. Only the signal is output from the output-side combining circuit.
  • the load impedance when the output terminal is viewed from the output side synthesis circuit is RZ2
  • the output impedance of the peak amplifier is ideally infinite (open).
  • the load impedance when viewing the output-side synthesis circuit from the quarter-wave line is 3 ⁇ 4Z2
  • the load impedance when viewing the subsequent quarter-wave line from the carrier amplifier is 3 ⁇ 4R.
  • the class B or class C biased peak amplifier is turned on (amplifying the signal). Combine and output the output signal of the carrier amplifier and the output signal of the peak amplifier.
  • the load impedance when the output side is viewed from the carrier amplifier and the peak amplifier is both R.
  • the efficiency is designed to be high even if the saturation power of the carrier amplifier is small, and when the load impedance is ⁇ , the saturation power of the carrier amplifier and the peak amplifier is reduced.
  • the carrier amplifier operates with high efficiency when the instantaneous signal level of the RF signal is low, while the carrier amplifier and peak power are used when the instantaneous signal level of the RF signal is high.
  • the amplifier can operate to increase the saturation power.
  • the output signal of the peak amplifier is combined with the output signal of the carrier amplifier in accordance with the instantaneous signal level of the RF signal, and the carrier amplifier and the carrier amplifier are adjusted in accordance with the instantaneous signal level of the RF signal.
  • the effect is obtained that the load impedance changes when the peak amplifier power output side is viewed. As a result, it is possible to realize highly efficient operation at an operation level in which the back-off from saturation is large.
  • Patent Document 1 Patent No. 2945833 (paragraph numbers [0018] to [0021], FIG. 2) [0011] Since the conventional high-efficiency amplifier is configured as described above, an amplifier biased to class B or class C is used as a peak amplifier. Therefore, there was a problem that the linearity of the peak amplifier deteriorated. In addition, since the carrier amplifier is designed to operate near the maximum efficiency point near saturation, there is a problem that the linearity is deteriorated. In addition, when the instantaneous signal level of the RF signal is higher than a predetermined level, the efficiency of the carrier amplifier exceeds the maximum efficiency and conversely decreases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-efficiency amplifier capable of improving linearity and efficiency at an operation level in which a large backoff from saturation is obtained. Aim.
  • a distortion compensation circuit for compensating for nonlinear distortion of the second amplifier is provided in a stage preceding the second amplifier.
  • FIG. 1 is a configuration diagram showing a high efficiency amplifier according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing input / output characteristics of an amplifier.
  • FIG. 3 is a configuration diagram showing a high efficiency amplifier according to Embodiment 2 of the present invention.
  • FIG. 4 is a configuration diagram showing a high efficiency amplifier according to Embodiment 3 of the present invention.
  • FIG. 5 is a configuration diagram showing a high efficiency amplifier according to Embodiment 4 of the present invention.
  • FIG. 6 is a configuration diagram showing a high efficiency amplifier according to Embodiment 5 of the present invention.
  • FIG. 7 is a configuration diagram showing a high efficiency amplifier according to Embodiment 6 of the present invention.
  • FIG. 8 is a configuration diagram showing a high efficiency amplifier according to Embodiment 7 of the present invention.
  • FIG. 9 is a configuration diagram showing a high efficiency amplifier according to Embodiment 8 of the present invention.
  • FIG. 1 is a configuration diagram showing a high efficiency amplifier according to Embodiment 1 of the present invention.
  • an input-side branch circuit 2 branches the RF signal and outputs the RF signal to two paths.
  • the input side branch circuit 2 constitutes an input signal branching means.
  • the carrier amplifier 3 which is the first amplifier, amplifies one of the RF signals branched by the input side branch circuit 2, and outputs the amplified RF signal to the quarter wavelength line 4.
  • the analog predistortion circuit 5 is connected between the input-side branch circuit 2 and the quarter-wavelength line 6 and is a distortion compensation circuit that compensates for nonlinear distortion of the peak amplifier 7.
  • the peak amplifier 7 as the second amplifier amplifies the RF signal.
  • the output-side combining circuit 8 combines the RF signal that has passed through the 1Z4 wavelength line 4 and the RF signal that is the output signal of the peak amplifier 7, and outputs the combined signal to the output terminal 9.
  • the input-side branch circuit 2 splits the RF signal and outputs it to two paths.
  • the carrier amplifier 3 amplifies one of the RF signals branched by the input-side branch circuit 2.
  • the RF signal which is the output signal of the carrier amplifier 3, passes through the ⁇ wavelength line 4 and is output to the output-side combining circuit 8.
  • the peak amplifier 7 amplifies the RF signal.
  • the RF signal that is the output signal of the peak amplifier 7 is output to the output-side combining circuit 8.
  • the analog pre-distortion circuit 5 is connected before the 1Z4 wavelength line 6, so that when the RF signal passing through the 1Z4 wavelength line 6 is input to the peak amplifier 7, The nonlinear distortion of the peak amplifier 7 is compensated.
  • the output-side combining circuit 8 outputs the RF signal, which is the output signal of the carrier amplifier 3, to the output terminal 9.
  • the load impedance when the output terminal 9 is viewed from the output-side combining circuit 8 is R / 2
  • the output impedance of the peak amplifier 7 is theoretically infinite (open). Therefore, the load impedance when viewing the output-side combining circuit 8 from the quarter-wave line 4 is RZ2, and the load impedance when viewing the quarter-wave line 4 from the carrier amplifier 3 is 2R.
  • the class B or class C biased peak amplifier 7 is turned on (amplifying the signal).
  • the circuit 8 combines the output signal of the carrier amplifier 3 (the RF signal passed through the 1Z4 wavelength line 4) and the output signal of the peak amplifier 7, and outputs the combined signal to the output terminal 9.
  • the load impedance as viewed from the output side from the carrier amplifier 3 and the peak amplifier 7 is both R.
  • the load impedance is 2R
  • the efficiency is designed to be high even if the saturation power of the carrier amplifier 3 is small
  • the load impedance is 3 ⁇ 4
  • the carrier amplifier 3 and the peak amplifier 7 are designed.
  • the carrier amplifier 3 operates with high efficiency, while the instantaneous signal level of the RF signal is large.
  • the carrier amplifier 3 and the peak amplifier 7 can operate so as to increase the saturation power (see FIG. 2).
  • the output signal of the peak amplifier 7 is combined with the output signal of the carrier amplifier 3 in accordance with the instantaneous signal level of the RF signal, and the carrier amplifier is adjusted in accordance with the instantaneous signal level of the RF signal.
  • the effect is obtained that the load impedance as seen from the output side from 3 and the peak amplifier 7 changes. As a result, it is possible to realize highly efficient operation at an operation level in which the back-off from saturation is large.
  • the analog predistortion circuit 5 is connected between the input side branch circuit 2 and the 1Z4 wavelength line 6, the nonlinear distortion of the peak amplifier 7 is compensated. Thus, there is an effect that the linearity of the whole amplifier can be improved.
  • FIG. 3 is a configuration diagram showing a high efficiency amplifier according to Embodiment 2 of the present invention. In the figure therefore, the same reference numerals as those in FIG.
  • the analog predistortion circuit 11 is connected between the input-side branch circuit 2 and the carrier amplifier 3 and is a distortion compensation circuit that compensates for nonlinear distortion of the carrier amplifier 3.
  • an analog pre-distortion circuit 5 is connected between the input side branch circuit 2 and the 1Z4 wavelength line 6 to compensate for the nonlinear distortion of the peak amplifier 7.
  • an analog pre-distortion circuit 11 may be further connected between the input-side branch circuit 2 and the carrier amplifier 3 to compensate for the nonlinear distortion of the carrier amplifier 3.
  • FIG. 4 is a configuration diagram showing a high efficiency amplifier according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. 1 are identical to FIG. 1 and the same reference numerals as those in FIG. 1;
  • the limiter circuit 12 which is a level limiting circuit, limits the amplitude of the RF signal to a predetermined level or less and outputs the RF signal to the carrier amplifier 3. .
  • the phase adjustment circuit 13 adjusts the RF signal so that the pass phase until the RF signal passes through the carrier amplifier 3 and is output therethrough matches the pass phase until the RF signal passes through the peak amplifier 7 and is output. To adjust.
  • the limiter circuit 12 as a level limiting circuit has a saturation characteristic, and the amplitude level of the RF signal is limited to a desired level by the saturation characteristic.
  • the limiter circuit 12 outputs the RF signal to the carrier amplifier 3 as it is. If it is higher than the level, the amplitude of the RF signal is reduced to a predetermined level and output to the carrier amplifier 3.
  • the upper limit of the amplitude of the RF signal limited by the limiter circuit 12 the area (maximum efficiency the efficiency of the carrier amplifier device 3 is maximized, present near the saturation point of the carrier amplifier 3 In this case, it is possible to prevent a decrease in efficiency in a region where the carrier amplifier 3 is completely saturated, and to improve the efficiency and linearity of the entire amplifier.
  • FIG. 5 is a configuration diagram showing a high efficiency amplifier according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 1 are identical to FIG. 1 and the same reference numerals as those in FIG. 1;
  • the driver amplifier 14 which is a level limiting circuit, is an amplifier for driving the carrier amplifier 3.When the amplitude of the RF signal exceeds a predetermined level due to its own saturation characteristic, the driver amplifier 14 reduces the amplitude of the RF signal. The output is limited to a predetermined level or less and output to the carrier amplifier 3.
  • the driver amplifier 15 is an amplifier for driving the peak amplifier 7.
  • the driver amplifier 14 which is a level limiting circuit, has a saturation characteristic, and the amplitude level of the RF signal is limited to a desired level by the saturation characteristic.
  • the driver amplifier 14 outputs the RF signal as it is to the carrier amplifier 3, but the amplitude of the RF signal is Is larger than the predetermined level, the amplitude of the RF signal is reduced to the predetermined level and output to the carrier amplifier 3.
  • the upper limit of the amplitude of the RF signal limited by the driver amplifier 14 is set to a region where the efficiency of the carrier amplifier 3 is maximized (the maximum efficiency is near the saturation point of the carrier amplifier 3). If it is designed around (), it is possible to prevent the efficiency from decreasing in the region where the carrier amplifier 3 is completely saturated, and it is possible to improve the efficiency and linearity of the entire amplifier.
  • FIG. 6 is a configuration diagram showing a high efficiency amplifier according to Embodiment 5 of the present invention.
  • the same reference numerals as those in FIG. 1 are identical to FIG. 1 and the same reference numerals as those in FIG. 1;
  • the waveform shaping circuit 21 which is a level limiting circuit, outputs one BB (Base Band) signal branched by the input-side branch circuit 2 to the DA converter 22.
  • BB Base Band
  • the amplitude of the BB signal is limited to the threshold value A or less and output to the DA converter 22.
  • the DA converter 22 converts a digital BB signal output from the waveform shaping circuit 21 into an analog signal.
  • the frequency converter 23 converts the frequency of the analog signal, which is the output signal of the DA converter 22, into an RF frequency, and outputs the RF signal to the carrier amplifier 3.
  • the waveform shaping circuit 24 outputs the other BB signal branched by the input-side branch circuit 2 to the DA converter 25. If the amplitude of the BB signal falls below the threshold B (predetermined level), Does not output BB signal to converter 25.
  • the DA converter 25 converts the digital BB signal output from the waveform shaping circuit 24 into an analog signal.
  • the frequency converter 26 up-converts the frequency of the analog signal, which is the output signal of the DA converter 25, to an RF frequency and outputs the RF signal to the peak amplifier 7.
  • the input-side branch circuit 2 branches the digital BB signal and outputs it to two paths.
  • the waveform shaping circuit 21 outputs one BB signal branched by the input-side branch circuit 2 to the DA converter 22. If the amplitude of the BB signal exceeds the threshold A, the BB signal is output. The signal amplitude is limited to the threshold value A or less and output to the DA converter 22.
  • the waveform shaping circuit 21 performs the waveform shaping that limits the amplitude of the input signal to the threshold A or less. Even if the amplitude of the input signal is equal to or less than the threshold A, the amplitude of the input signal is reduced. If it becomes larger and approaches the threshold A, the amplitude of the input signal may be reduced (the smaller the amplitude of the input signal is closer to the threshold A, the greater the decrease is).
  • the threshold value A is set around a region where the efficiency of the carrier amplifier 3 is maximized.
  • the DA converter 22 converts a digital BB signal, which is an output signal of the waveform shaping circuit 21, into an analog signal.
  • the frequency converter 23 converts the frequency of the analog signal, which is the output signal of the DA converter 22, to RF
  • the frequency is up-converted and output to the carrier amplifier 3.
  • the carrier amplifier 3 amplifies an analog signal which is an output signal of the frequency converter 23.
  • the waveform shaping circuit 24 outputs the other BB signal branched by the input-side branch circuit 2 to the DA converter 25. If the amplitude of the BB signal falls below the threshold B, the DA conversion BB signal is not output to the detector 25.
  • the threshold value B is set around a region where the efficiency of the peak amplifier 7 is maximized.
  • the DA converter 25 converts a digital BB signal, which is an output signal of the waveform shaping circuit 24, into an analog signal.
  • the frequency converter 26 up-converts the frequency of the analog signal, which is the output signal of the DA converter 25, to an RF frequency and outputs the RF signal to the peak amplifier 7.
  • the peak amplifier 7 amplifies an analog signal which is an output signal of the frequency converter 26.
  • the peak amplifier 7 that is biased in class B or class C is turned off (state in which the input signal is not amplified). That is, the output signal of the peak amplifier 7 is not output to the output-side combining circuit 8.
  • the output-side combining circuit 8 outputs the RF signal, which is the output signal of the carrier amplifier 3, to the output terminal 9.
  • the class B or class C biased peak amplifier 7 is turned on (amplifying the signal).
  • the circuit 8 combines the output signal of the carrier amplifier 3 and the output signal of the peak amplifier 7 and outputs the result to the output terminal 9.
  • waveform shaping circuit 21 when the amplitude of one BB signal branched by input-side branch circuit 2 exceeds threshold value A, waveform shaping circuit 21 outputs the BB signal. Since the amplitude is limited to the threshold value A or less and output to the DA converter 22, it is possible to prevent the efficiency from decreasing in the region where the carrier amplifier 3 is completely saturated, and to reduce the entire amplifier. There is an effect that the efficiency and the linearity can be improved.
  • FIG. 7 is a configuration diagram showing a high efficiency amplifier according to Embodiment 6 of the present invention.
  • the digital predistortion circuit 27 is connected between the waveform shaping circuit 21 and the DA converter 22, and is a first distortion compensation circuit for compensating for nonlinear distortion of the carrier amplifier 3.
  • the digital predistortion circuit 28 is connected between the waveform shaping circuit 24 and the DA converter 25 and is a second distortion compensating circuit for compensating for nonlinear distortion of the peak amplifier 7.
  • the digital predistortion circuits 27 and 28 are not mounted, but the digital predistortion circuits 27 and 28 may be mounted as shown in FIG.
  • the digital predistortion circuit 27 compensates for the nonlinear distortion of the carrier amplifier 3, and the digital predistortion circuit 28 compensates for the nonlinear distortion of the peak amplifier 7, so that the linearity of the whole amplifier can be further improved. it can.
  • FIG. 8 is a configuration diagram showing a high efficiency amplifier according to Embodiment 7 of the present invention.
  • the same reference numerals as those in FIG. 8 are identical to FIG. 8 and the same reference numerals as those in FIG.
  • the directional coupler 31 extracts a part of the RF signal, which is the output signal of the carrier amplifier 3, and outputs the RF signal to the attenuator 32.
  • the attenuator 32 attenuates the RF signal output from the directional coupler 31.
  • the frequency converter 33 down-compensates the frequency of the RF signal attenuated by the attenuator 32 and outputs it to the AD converter 34.
  • the AD converter 34 converts an analog signal which is an output signal of the frequency converter 33 into a digital signal.
  • the adaptive control circuit 35 (first adaptive control circuit) adaptively changes the parameters (operating conditions) of the digital predistortion circuit 27 according to the digital signal output from the AD converter 34.
  • the directional coupler 36 extracts a part of the RF signal, which is the output signal of the peak amplifier 7, and outputs the RF signal to the attenuator 37.
  • the attenuator 37 attenuates the RF signal output from the directional coupler 36.
  • the frequency converter 38 down-compensates the frequency of the RF signal attenuated by the attenuator 37 and outputs it to the AD converter 39.
  • the AD converter 39 converts an analog signal which is an output signal of the frequency converter 38 into a digital signal.
  • the adaptive control circuit 40 (second adaptive control circuit) adaptively changes the parameters (operating conditions) of the digital predistortion circuit 28 in accordance with the digital signal output from the AD converter 39.
  • the directional coupler 31 extracts a part of the RF signal and outputs the RF signal to the attenuator 32, as in the sixth embodiment.
  • the attenuator 32 Upon receiving the RF signal from the directional coupler 31, the attenuator 32 attenuates the RF signal to a level suitable for the subsequent adaptive control circuit 35 to handle.
  • frequency converter 33 When receiving the attenuated RF signal from attenuator 32, frequency converter 33 down-converts the frequency of the RF signal and outputs the result to AD converter 34.
  • the AD converter 34 converts an analog signal which is an output signal of the frequency converter 33 into a digital signal.
  • the adaptive control circuit 35 When receiving the digital signal from the AD converter 34, the adaptive control circuit 35 adaptively changes the parameters of the digital pre-distortion circuit 27 according to the digital signal. That is, the adaptive control circuit 35 prevents the RF signal output from the carrier amplifier 3 from fluctuating due to factors such as temperature change and device deterioration. Therefore, the parameters of the digital predistortion circuit 27 are adaptively changed so that the linearity of the RF signal output from the carrier amplifier 3 is maintained.
  • the directional coupler 36 extracts a part of the RF signal and outputs the RF signal to the attenuator 37 in the same manner as in the sixth embodiment.
  • the attenuator 37 Upon receiving the RF signal from the directional coupler 36, the attenuator 37 attenuates the RF signal to a level suitable for the subsequent frequency converter 38 to handle.
  • frequency converter 38 Upon receiving the attenuated RF signal from attenuator 37, frequency converter 38 down-converts the frequency of the RF signal and outputs the result to AD converter 39.
  • the AD converter 39 converts an analog signal, which is an output signal of the frequency converter 38, into a digital signal.
  • the adaptive control circuit 40 When receiving the digital signal from the AD converter 39, the adaptive control circuit 40 adaptively changes the parameters of the digital predistortion circuit 28 according to the digital signal. That is, since the RF signal output from the peak amplifier 7 may fluctuate due to factors such as a temperature change and device deterioration, the adaptive control circuit 40 may prevent the RF signal from fluctuating due to those factors.
  • the parameters of the digital predistortion circuit 28 are adaptively changed so that the linearity of the RF signal output from the peak amplifier 7 is maintained.
  • the parameters of digital predistortion circuits 27 and 28 are adaptively adjusted according to the RF signals output from carrier amplifier 3 and peak amplifier 7. Therefore, even if the characteristics of the carrier amplifier 3 and the peak amplifier 7 fluctuate, there is an effect that a stable low distortion characteristic can be realized as the whole amplifier.
  • FIG. 9 is a configuration diagram showing a high efficiency amplifier according to Embodiment 8 of the present invention.
  • the same reference numerals as those in FIG. 8 are identical to FIG. 9 and the same reference numerals as those in FIG.
  • the digital predistortion circuit 41 is connected between the input terminal 1 and the input-side branch circuit 2, and is a distortion compensation circuit that compensates for nonlinear distortion of the entire high-efficiency amplifier.
  • the directional coupler 42 extracts a part of the RF signal, which is the output signal of the output-side combining circuit 8, and outputs the RF signal to the attenuator 43.
  • the attenuator 43 attenuates the RF signal output from the directional coupler 42.
  • the frequency converter 44 down-compensates the frequency of the RF signal attenuated by the attenuator 43 and outputs the down-converted signal to the AD converter 45.
  • the AD converter 45 converts an analog signal which is an output signal of the frequency converter 44 into a digital signal.
  • the adaptive control circuit 46 adaptively changes parameters (operating conditions) of the digital pre-distortion circuit 41 according to the digital signal output from the AD converter 45.
  • the distortion circuit 41 may be connected.
  • the digital predistortion circuit 41 acts so as to compensate for the nonlinear distortion of the whole high efficiency amplifier.
  • the class B or class C biased peak amplifier is used. 7 is turned off (a state in which the input signal is not amplified), and the output signal of the peak amplifier 7 is not output to the output-side combining circuit 8.
  • the output-side combining circuit 8 outputs the RF signal, which is the output signal of the carrier amplifier 3, to the output terminal 9.
  • the class B or class C biased peak amplifier 7 is turned on (amplifying the signal).
  • the output signal of the carrier amplifier 3 and the output signal of the peak amplifier 7 are combined and output to the output terminal 9.
  • the directional coupler 42 extracts a part of the RF signal and outputs the RF signal to the attenuator 43.
  • the attenuator 43 Upon receiving the RF signal from the directional coupler 42, the attenuator 43 attenuates the RF signal to a level suitable for the subsequent frequency converter 44 to handle.
  • frequency converter 44 Upon receiving the attenuated RF signal from attenuator 43, frequency converter 44 downconverts the frequency of the RF signal and outputs the result to AD converter 45.
  • the AD converter 45 converts an analog signal that is an output signal of the frequency converter 44 into a digital signal.
  • the adaptive control circuit 46 When receiving the digital signal from the AD converter 45, the adaptive control circuit 46 adaptively changes the parameters of the digital predistortion circuit 41 in accordance with the digital signal. That is, the adaptive control circuit 46 prevents the RF signal output from the output-side combining circuit 8 from fluctuating due to factors such as temperature change and device deterioration. Therefore, the parameters of the digital predistortion circuit 41 are adaptively changed so that the linearity of the RF signal output from the output-side combining circuit 8 is maintained.
  • the configuration is such that the parameters of the digital predistortion circuit 41 are adaptively changed according to the digital signal output from the AD converter 45. Therefore, even if the characteristics of the high-efficiency amplifier fluctuate, there is an effect that stable low distortion characteristics of the whole amplifier can be realized.
  • the high-efficiency amplifier according to the present invention is suitable for use in a broadcast or communication RF amplifier that needs to linearly amplify an RF signal with high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

 入力側分岐回路2と1/4波長線路6の間にアナログプレディストーション回路5を接続する。これにより、ピーク増幅器7の非線形歪みが補償されるため、増幅器全体の線形性を改善することができる効果を奏する。

Description

明 細 書
高効率増幅器
技術分野
[0001] この発明は、例えば、 RF (Radio Frequency)信号を高い効率で線形に増幅する 高効率増幅器に関するものである。
背景技術
[0002] 放送及び通信用の RF増幅器は、入力信号である RF信号を高い効率で線形に増 幅することが望まれている。
し力しながら、一般に増幅器では、効率を高くすることと、線形性を高くすることは両 立しない。
増幅器の効率は、入力信号の電力レベルの増加に伴って高くなり、増幅器が飽和 を迎えた辺りで最大効率が実現する。また、入力信号の電力が更に増加して完全に 飽和した領域では、逆に効率が低下する特性を有する。
[0003] 近年、放送及び移動体通信などで使用される PAPR (Peak to Average Powe r Ratio)の大きい変調波を増幅器が入力する場合、飽和点近くの動作点では、増 幅器の飽和に伴う信号波形のクリッピングが発生するため線形性が大きく劣化する。 このため、一般に放送及び通信用の RF増幅器では、飽和からのバックオフを大き くとつた動作レベルにおいて使用されている。したがって、飽和からのバックオフを大 きくとつた動作レベルでの高効率化が重要となる。
飽和からのバックオフを大きくとった動作レベルでの効率を高めているドハティ増幅 器 (高効率増幅器)が以下の特許文献 1に開示されている。
[0004] 従来のドハティ増幅器では、入力端子から入力された RF信号が、入力側分岐回路 によって分岐されて、 2つの経路に出力される。
一方の経路では、キャリア増幅器が入力側分岐回路により分岐された一方の RF信 号を増幅し、キャリア増幅器の出力信号が 1/4波長線路を通過して出力側合成回 路に出力される。
他方の経路では、入力側分岐回路により分岐された他方の RF信号が 1/4波長線 路を通過したのち、ピーク増幅器が当該 RF信号を増幅し、ピーク増幅器の出力信号 が出力側合成回路に出力される。
[0005] ただし、 RF信号の瞬時の信号レベルが所定レベルより小さい場合には、 B級又は C級バイアスされているピーク増幅器がオフ状態 (RF信号を増幅しない状態)となり、 キャリア増幅器からの出力信号のみが出力側合成回路力も出力される。
[0006] このとき、出力側合成回路から出力端子を見た負荷インピーダンスを RZ2とすると 、ピーク増幅器の出力インピーダンスは、理想的には無限大(open)となるため、キヤ リア増幅器の後段の 1/4波長線路から出力側合成回路を見た負荷インピーダンス 力 ¾Z2となり、キャリア増幅器から後段の 1/4波長線路を見た負荷インピーダンス 力 ¾Rとなる。
[0007] 一方、 RF信号の瞬時の信号レベルが所定レベルより大きい場合には、 B級又は C 級バイアスされているピーク増幅器がオン状態 (信号を増幅する状態)になるため、 出力側合成回路がキャリア増幅器の出力信号とピーク増幅器の出力信号とを合成し て出力する。
このとき、キャリア増幅器及びピーク増幅器から出力側を見た負荷インピーダンスは ともに Rとなる。
[0008] ここで、負荷インピーダンスが 2Rのときに、キャリア増幅器の飽和電力が小さくても 、効率が高くなるように設計し、負荷インピーダンス力 ¾のときに、キャリア増幅器及び ピーク増幅器の飽和電力が大きくなるように設計されている場合、 RF信号の瞬時の 信号レベルが小さい場合には、キャリア増幅器が高効率に動作する一方、 RF信号の 瞬時の信号レベルが大きい場合には、キャリア増幅器及びピーク増幅器が、飽和電 力が大きくなるように動作することが可能となる。
[0009] これにより、 RF信号の瞬時の信号レベルに応じてピーク増幅器の出力信号がキヤ リア増幅器の出力信号に合成されるという効果と、 RF信号の瞬時の信号レベルに応 じてキャリア増幅器及びピーク増幅器力 出力側を見た負荷インピーダンスが変化す るという効果とが得られる。この結果、飽和からのバックオフを大きくとった動作レベル におレ、て、高効率な動作を実現することが可能となる。
[0010] 特許文献 1 :特許第 2945833号 (段落番号 [0018]から [0021]、図 2) [0011] 従来の高効率増幅器は以上のように構成されているので、ピーク増幅器として B級 又は C級にバイアスされている増幅器が使用される。そのためピーク増幅器の線形性 が悪くなる課題があった。また、キャリア増幅器が飽和近くの最大効率点の近傍で動 作するように設計されるため線形性が悪くなる課題があった。また、 RF信号の瞬時の 信号レベルが所定レベルより大きレ、場合、キャリア増幅器の効率が最大効率を超え て逆に低下する課題があった。
[0012] この発明は上記のような課題を解決するためになされたもので、飽和からのバックォ フを大きくとった動作レベルにおける線形性及び効率を改善することができる高効率 増幅器を得ることを目的とする。
発明の開示
[0013] この発明に係る高効率増幅器は、第 2の増幅器の非線形歪みを補償する歪み補償 回路を第 2の増幅器の前段に設置するようにしたものである。
[0014] このことによって、飽和からのバックオフを大きくとった動作レベルにおける線形性 及び効率を改善することができるなどの効果がある。
図面の簡単な説明
[0015] [図 1]この発明の実施の形態 1による高効率増幅器を示す構成図である。
[図 2]増幅器の入出力特性を示す説明図である。
[図 3]この発明の実施の形態 2による高効率増幅器を示す構成図である。
[図 4]この発明の実施の形態 3による高効率増幅器を示す構成図である。
[図 5]この発明の実施の形態 4による高効率増幅器を示す構成図である。
[図 6]この発明の実施の形態 5による高効率増幅器を示す構成図である。
[図 7]この発明の実施の形態 6による高効率増幅器を示す構成図である。
[図 8]この発明の実施の形態 7による高効率増幅器を示す構成図である。
[図 9]この発明の実施の形態 8による高効率増幅器を示す構成図である。
発明を実施するための最良の形態
[0016] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
実施の形態 1. 図 1はこの発明の実施の形態 1による高効率増幅器を示す構成図である。
[0017] 図において、入力側分岐回路 2は入力端子 1から例えば RF信号 (入力信号)が入 力されると、その RF信号を分岐して 2つの経路に出力する。なお、入力側分岐回路 2 は入力信号分岐手段を構成してレ、る。
第 1の増幅器であるキャリア増幅器 3は入力側分岐回路 2により分岐された一方の R F信号を増幅し、増幅後の RF信号を 1/4波長線路 4に出力する。
[0018] アナログプレディストーシヨン回路 5は入力側分岐回路 2と 1/4波長線路 6の間に 接続され、ピーク増幅器 7の非線形歪みを補償する歪み補償回路である。
第 2の増幅器であるピーク増幅器 7は 1/4波長線路 6を通過した RF信号の信号レ ベル (電力)が所定の信号レベルより大きい場合、その RF信号を増幅する。
出力側合成回路 8は 1Z4波長線路 4を通過した RF信号とピーク増幅器 7の出力信 号である RF信号とを合成し、その合成信号を出力端子 9に出力する。
[0019] 次に動作について説明する。
入力側分岐回路 2は、入力端子 1から RF信号が入力されると、その RF信号を分岐 して、 2つの経路に出力する。
[0020] 一方の経路では、キャリア増幅器 3が入力側分岐回路 2により分岐された一方の RF 信号を増幅する。
キャリア増幅器 3の出力信号である RF信号は、 1/4波長線路 4を通過して出力側 合成回路 8に出力される。
[0021] 他方の経路では、入力側分岐回路 2により分岐された他方の RF信号力 S1/4波長 線路 6を通過したのち、ピーク増幅器 7が当該 RF信号を増幅する。
ピーク増幅器 7の出力信号である RF信号は、出力側合成回路 8に出力される。 なお、他方の経路においては、 1Z4波長線路 6の前段にアナログプレディストーシ ヨン回路 5が接続されてレ、るので、 1Z4波長線路 6を通過した RF信号がピーク増幅 器 7に入力するに際して、ピーク増幅器 7の非線形歪みが補償される。
[0022] ただし、 RF信号の瞬時の信号レベルが所定レベルより小さい場合には、 B級又は C級バイアスされてレ、るピーク増幅器 7がオフ状態 (RF信号を増幅しなレ、状態)となり 、ピーク増幅器 7の出力信号は、出力側合成回路 8に出力されなくなる。 したがって、この場合、出力側合成回路 8は、キャリア増幅器 3の出力信号である R F信号を出力端子 9に出力する。
[0023] このとき、出力側合成回路 8から出力端子 9を見た負荷インピーダンスを R/2とす ると、ピーク増幅器 7の出力インピーダンスは、理 ¾|的には無限大(open)となるため 、 1/4波長線路 4から出力側合成回路 8を見た負荷インピーダンスが RZ2となり、キ ャリア増幅器 3から 1/4波長線路 4を見た負荷インピーダンスが 2Rとなる。
[0024] 一方、 RF信号の瞬時の信号レベルが所定レベルより大きい場合には、 B級又は C 級バイアスされているピーク増幅器 7がオン状態 (信号を増幅する状態)になるため、 出力側合成回路 8がキャリア増幅器 3の出力信号(1Z4波長線路 4を通過した RF信 号)とピーク増幅器 7の出力信号とを合成して出力端子 9に出力する。
このとき、キャリア増幅器 3及びピーク増幅器 7から出力側を見た負荷インピーダン スはともに Rとなる。
[0025] ここで、負荷インピーダンスが 2Rのときに、キャリア増幅器 3の飽和電力が小さくても 、効率が高くなるように設計し、負荷インピーダンス力 ¾のときに、キャリア増幅器 3及 びピーク増幅器 7の飽和電力が大きくなるように設計されている場合、 RF信号の瞬 時の信号レベルが小さい場合には、キャリア増幅器 3が高効率に動作する一方、 RF 信号の瞬時の信号レベルが大きレ、場合には、キャリア増幅器 3及びピーク増幅器 7が 、飽和電力が大きくなるように動作することが可能となる(図 2を参照)。
[0026] これにより、 RF信号の瞬時の信号レベルに応じてピーク増幅器 7の出力信号がキ ャリア増幅器 3の出力信号に合成されるという効果と、 RF信号の瞬時の信号レベル に応じてキャリア増幅器 3及びピーク増幅器 7から出力側を見た負荷インピーダンス が変化するという効果とが得られる。この結果、飽和からのバックオフを大きくとった動 作レベルにおいて、高効率な動作を実現することが可能となる。
[0027] 更に、この実施の形態 1によれば、入力側分岐回路 2と 1Z4波長線路 6の間にアナ ログプレディストーシヨン回路 5が接続されてレ、るので、ピーク増幅器 7の非線形歪み が補償され、増幅器全体の線形性を改善することができる効果を奏する。
[0028] 実施の形態 2.
図 3はこの発明の実施の形態 2による高効率増幅器を示す構成図である。図にお いて、図 1と同一符号は同一または相当部分を示すので説明を省略する。
アナログプレディストーシヨン回路 11は入力側分岐回路 2とキャリア増幅器 3の間に 接続され、キャリア増幅器 3の非線形歪みを補償する歪み補償回路である。
[0029] 上記実施の形態 1では、入力側分岐回路 2と 1Z4波長線路 6の間にアナログプレ ディストーション回路 5を接続して、ピーク増幅器 7の非線形歪みを補償するものにつ レ、て示したが、更に、入力側分岐回路 2とキャリア増幅器 3の間にアナログプレディス トーシヨン回路 11を接続して、キャリア増幅器 3の非線形歪みを補償するようにしても よい。
これにより、上記実施の形態 1よりも更に増幅器全体の線形性を改善することができ る効果を奏する。
[0030] 実施の形態 3.
図 4はこの発明の実施の形態 3による高効率増幅器を示す構成図である。図にお いて、図 1と同一符号は同一または相当部分を示すので説明を省略する。
レベル制限回路であるリミッタ回路 12は入力側分岐回路 2により分岐された一方の RF信号の振幅が所定レベルを上回る場合、その RF信号の振幅を所定レベル以下 に制限してキャリア増幅器 3に出力する。
位相調整回路 13は RF信号がキャリア増幅器 3を通過して出力されるまでの通過位 相と、ピーク増幅器 7を通過して出力されるまでの通過位相とがー致するように、その RF信号を調整する。
[0031] 次に動作について説明する。
レベル制限回路であるリミッタ回路 12は、飽和特性を有しており、その飽和特性に よって RF信号の振幅レベルが所望のレベルに制限される。
[0032] 即ち、リミッタ回路 12は、入力側分岐回路 2から出力された RF信号の振幅が所定レ ベルより小さければ、その RF信号をそのままキャリア増幅器 3に出力する力 その RF 信号の振幅が所定レベルより大きい場合、その RF信号の振幅を所定レベルに減らし てキャリア増幅器 3に出力する。
[0033] これにより、リミッタ回路 12により制限される RF信号の振幅の上限を、キャリア増幅 器 3の効率が最大になる領域 (最大効率は、キャリア増幅器 3の飽和点の近くに存在 する)の辺りに設計すれば、キャリア増幅器 3が完全に飽和した領域での効率低下を 防止することが可能となり、増幅器全体の効率及び線形性を改善することができる効 果を奏する。
[0034] 実施の形態 4.
図 5はこの発明の実施の形態 4による高効率増幅器を示す構成図である。図にお いて、図 1と同一符号は同一または相当部分を示すので説明を省略する。
レベル制限回路であるドライバ増幅器 14はキャリア増幅器 3を駆動するための増幅 器であり、ドライバ増幅器 14は自己の飽和特性によって RF信号の振幅が所定レべ ルを上回る場合、その RF信号の振幅を所定レベル以下に制限してキャリア増幅器 3 に出力する。
ドライバ増幅器 15はピーク増幅器 7を駆動するための増幅器である。
[0035] 次に動作について説明する。
レベル制限回路であるドライバ増幅器 14は、飽和特性を有しており、その飽和特性 によって RF信号の振幅レベルが所望のレベルに制限される。
[0036] 即ち、ドライバ増幅器 14は、入力側分岐回路 2から出力された RF信号の振幅が所 定レベルより小さければ、その RF信号をそのままキャリア増幅器 3に出力するが、そ の RF信号の振幅が所定レベルより大きい場合、その RF信号の振幅を所定レベルに 減らしてキャリア増幅器 3に出力する。
[0037] これにより、ドライバ増幅器 14により制限される RF信号の振幅の上限を、キャリア増 幅器 3の効率が最大になる領域 (最大効率は、キャリア増幅器 3の飽和点の近くに存 在する)の辺りに設計すれば、キャリア増幅器 3が完全に飽和した領域での効率低下 を防止することが可能となり、増幅器全体の効率及び線形性を改善することができる 効果を奏する。
[0038] 実施の形態 5.
図 6はこの発明の実施の形態 5による高効率増幅器を示す構成図である。図にお いて、図 1と同一符号は同一または相当部分を示すので説明を省略する。
レベル制限回路である波形整形回路 21は入力側分岐回路 2により分岐された一方 の BB (Base Band)信号を DA変換器 22に出力する力 その BB信号の振幅が閾 値 A (所定レベル)を上回る場合、その BB信号の振幅を閾値 A以下に制限して、 DA 変換器 22に出力する。
DA変換器 22は波形整形回路 21の出力信号であるデジタルの BB信号をアナログ 信号に変換する。
周波数変換器 23は DA変換器 22の出力信号であるアナログ信号の周波数を RF の周波数にアンプコンバートしてキャリア増幅器 3に出力する。
[0039] 波形整形回路 24は入力側分岐回路 2により分岐された他方の BB信号を DA変換 器 25に出力するが、その BB信号の振幅が閾値 B (所定レベル)を下回る場合には、 DA変換器 25に対して BB信号を出力しない。
DA変換器 25は波形整形回路 24の出力信号であるデジタルの BB信号をアナログ 信号に変換する。
周波数変換器 26は DA変換器 25の出力信号であるアナログ信号の周波数を RF の周波数にアップコンバートしてピーク増幅器 7に出力する。
[0040] 次に動作について説明する。
入力側分岐回路 2は、入力端子 1からデジタルの BB信号が入力されると、デジタル の BB信号を分岐して、 2つの経路に出力する。
[0041] 一方の経路では、波形整形回路 21が入力側分岐回路 2により分岐された一方の B B信号を DA変換器 22に出力するが、その BB信号の振幅が閾値 Aを上回る場合、 その BB信号の振幅を閾値 A以下に制限して DA変換器 22に出力する。
このように、波形整形回路 21は、入力信号の振幅を閾値 A以下に制限する波形整 形を実施するが、その入力信号の振幅が閾値 A以下であっても、その入力信号の振 幅が大きくなつて、閾値 Aに近くなると、その入力信号の振幅を下げるようにしてもよ レ、(入力信号の振幅が閾値 Aに近いほど、その下げ幅を大きくする)。
なお、閾値 Aは、キャリア増幅器 3の効率が最大になる領域の辺りに設定されている
[0042] DA変換器 22は、波形整形回路 21の出力信号であるデジタルの BB信号をアナ口 グ信号に変換する。
周波数変換器 23は、 DA変換器 22の出力信号であるアナログ信号の周波数を RF の周波数にアップコンバートしてキャリア増幅器 3に出力する。
キャリア増幅器 3は、周波数変換器 23の出力信号であるアナログ信号を増幅する。
[0043] 他方の経路では、波形整形回路 24が入力側分岐回路 2により分岐された他方の B B信号を DA変換器 25に出力するが、その BB信号の振幅が閾値 Bを下回る場合、 D A変換器 25に対して BB信号を出力しない。
なお、閾値 Bは、ピーク増幅器 7の効率が最大になる領域の辺りに設定されている。
[0044] DA変換器 25は、波形整形回路 24の出力信号であるデジタルの BB信号をアナ口 グ信号に変換する。
周波数変換器 26は、 DA変換器 25の出力信号であるアナログ信号の周波数を RF の周波数にアップコンバートしてピーク増幅器 7に出力する。
ピーク増幅器 7は、周波数変換器 26の出力信号であるアナログ信号を増幅する。
[0045] ただし、入力信号の瞬時の信号レベルが所定レベルより小さい場合には、 B級又は C級バイアスされてレ、るピーク増幅器 7がオフ状態 (入力信号を増幅しなレ、状態)とな り、ピーク増幅器 7の出力信号は、出力側合成回路 8に出力されなくなる。
したがって、この場合、出力側合成回路 8は、キャリア増幅器 3の出力信号である R F信号を出力端子 9に出力する。
[0046] 一方、入力信号の瞬時の信号レベルが所定レベルより大きい場合には、 B級又は C級バイアスされているピーク増幅器 7がオン状態 (信号を増幅する状態)になるため 、出力側合成回路 8がキャリア増幅器 3の出力信号とピーク増幅器 7の出力信号とを 合成して出力端子 9に出力する。
[0047] 以上で明らかなように、この実施の形態 5によれば、入力側分岐回路 2により分岐さ れた一方の BB信号の振幅が閾値 Aを上回る場合、波形整形回路 21が BB信号の振 幅を閾値 A以下に制限して DA変換器 22に出力するように構成したので、キャリア増 幅器 3が完全に飽和した領域での効率低下を防止することが可能となり、増幅器全 体の効率及び線形性を改善することができる効果を奏する。
[0048] 実施の形態 6.
図 7はこの発明の実施の形態 6による高効率増幅器を示す構成図である。図にお いて、図 6と同一符号は同一または相当部分を示すので説明を省略する。 デジタルプレディストーシヨン回路 27は波形整形回路 21と DA変換器 22の間に接 続され、キャリア増幅器 3の非線形歪みを補償する第 1の歪み補償回路である。 デジタルプレディストーシヨン回路 28は波形整形回路 24と DA変換器 25の間に接 続され、ピーク増幅器 7の非線形歪みを補償する第 2の歪み補償回路である。
[0049] 上記実施の形態 5では、デジタルプレディストーシヨン回路 27, 28が実装されてい ないが、図 7に示すように、デジタルプレディストーシヨン回路 27, 28を実装するよう にしてもよい。
デジタルプレディストーシヨン回路 27は、キャリア増幅器 3の非線形歪みを補償し、 デジタルプレディストーシヨン回路 28は、ピーク増幅器 7の非線形歪みを補償するの で、増幅器全体としての線形性を更に改善することができる。
[0050] 実施の形態 7.
図 8はこの発明の実施の形態 7による高効率増幅器を示す構成図である。図にお いて、図 7と同一符号は同一または相当部分を示すので説明を省略する。
方向性結合器 31はキャリア増幅器 3の出力信号である RF信号の一部を取り出して 減衰器 32に出力する。減衰器 32は方向性結合器 31から出力された RF信号を減衰 する。
[0051] 周波数変換器 33は減衰器 32により減衰された RF信号の周波数をダウンコンパ一 トして AD変換器 34に出力する。 AD変換器 34は周波数変換器 33の出力信号であ るアナログ信号をデジタル信号に変換する。
適応制御回路 35 (第 1の適応制御回路)は AD変換器 34から出力されたデジタノレ 信号に応じてデジタルプレディストーシヨン回路 27のパラメータ(動作条件)を適応的 に変更する。
[0052] 方向性結合器 36はピーク増幅器 7の出力信号である RF信号の一部を取り出して 減衰器 37に出力する。減衰器 37は方向性結合器 36から出力された RF信号を減衰 する。
周波数変換器 38は減衰器 37により減衰された RF信号の周波数をダウンコンパ一 トして AD変換器 39に出力する。 AD変換器 39は周波数変換器 38の出力信号であ るアナログ信号をデジタル信号に変換する。 適応制御回路 40 (第 2の適応制御回路)は AD変換器 39から出力されたデジタノレ 信号に応じてデジタルプレディストーシヨン回路 28のパラメータ(動作条件)を適応的 に変更する。
[0053] 次に動作について説明する。
方向性結合器 31は、上記実施の形態 6と同様にして、キャリア増幅器 3から RF信 号が出力されると、その RF信号の一部を取り出して減衰器 32に出力する。
減衰器 32は、方向性結合器 31から RF信号を受けると、後段の適応制御回路 35 が取り扱うのに適するレベルまで RF信号を減衰する。
[0054] 周波数変換器 33は、減衰器 32から減衰された RF信号を受けると、その RF信号の 周波数をダウンコンバートして AD変換器 34に出力する。
AD変換器 34は、周波数変換器 33の出力信号であるアナログ信号をデジタル信 号に変換する。
[0055] 適応制御回路 35は、 AD変換器 34からデジタル信号を受けると、そのデジタル信 号に応じてデジタルプレディストーシヨン回路 27のパラメータを適応的に変更する。 即ち、適応制御回路 35は、温度変化やデバイスの劣化などの要因で、キャリア増 幅器 3から出力される RF信号が変動する場合があるので、それらの要因に伴う RF信 号の変動を防止するため、キャリア増幅器 3から出力される RF信号の線形性が保た れるようにデジタルプレディストーシヨン回路 27のパラメータを適応的に変更する。
[0056] 方向性結合器 36は、上記実施の形態 6と同様にして、ピーク増幅器 7から RF信号 が出力されると、その RF信号の一部を取り出して減衰器 37に出力する。
減衰器 37は、方向性結合器 36から RF信号を受けると、後段の周波数変換器 38 が取り扱うのに適するレベルまで RF信号を減衰する。
[0057] 周波数変換器 38は、減衰器 37から減衰された RF信号を受けると、その RF信号の 周波数をダウンコンバートして AD変換器 39に出力する。
AD変換器 39は、周波数変換器 38の出力信号であるアナログ信号をデジタル信 号に変換する。
[0058] 適応制御回路 40は、 AD変換器 39からデジタル信号を受けると、そのデジタル信 号に応じてデジタルプレディストーシヨン回路 28のパラメータを適応的に変更する。 即ち、適応制御回路 40は、温度変化やデバイスの劣化などの要因で、ピーク増幅 器 7から出力される RF信号が変動する場合があるので、それらの要因に伴う RF信号 の変動を防止するため、ピーク増幅器 7から出力される RF信号の線形性が保たれる ようにデジタルプレディストーシヨン回路 28のパラメータを適応的に変更する。
[0059] 以上で明らかなように、この実施の形態 7によれば、キャリア増幅器 3及びピーク増 幅器 7から出力された RF信号に応じてデジタルプレディストーシヨン回路 27, 28の パラメータを適応的に変更するように構成したので、キャリア増幅器 3やピーク増幅器 7の特性が変動しても、増幅器全体として安定的な低歪み特性を実現することができ る効果を奏する。
[0060] 実施の形態 8.
図 9はこの発明の実施の形態 8による高効率増幅器を示す構成図である。図にお いて、図 6と同一符号は同一または相当部分を示すので説明を省略する。
デジタルプレディストーシヨン回路 41は入力端子 1と入力側分岐回路 2の間に接続 され、高効率増幅器全体の非線形歪みを補償する歪み補償回路である。
[0061] 方向性結合器 42は出力側合成回路 8の出力信号である RF信号の一部を取り出し て減衰器 43に出力する。減衰器 43は方向性結合器 42から出力された RF信号を減 衰する。
周波数変換器 44は減衰器 43により減衰された RF信号の周波数をダウンコンパ一 トして AD変換器 45に出力する。 AD変換器 45は周波数変換器 44の出力信号であ るアナログ信号をデジタル信号に変換する。
適応制御回路 46は AD変換器 45から出力されたデジタル信号に応じてデジタノレ プレディストーシヨン回路 41のパラメータ(動作条件)を適応的に変更する。
[0062] 次に動作について説明する。
上記実施の形態 7では、デジタルプレディストーシヨン回路 27, 28が波形整形回路 21 , 24の後段に接続されているものについて示したが、入力端子 1と入力側分岐回 路 2の間にデジタルプレディストーシヨン回路 41が接続されていてもよい。
この場合、デジタルプレディストーシヨン回路 41が高効率増幅器全体の非線形歪 みを補償するように作用する。 [0063] この実施の形態 8の場合も、上記実施の形態 1と同様に、入力信号の瞬時の信号レ ベルが所定レベルより小さい場合には、 B級又は C級バイアスされているピーク増幅 器 7がオフ状態 (入力信号を増幅しない状態)となり、ピーク増幅器 7の出力信号は、 出力側合成回路 8に出力されなくなる。
したがって、出力側合成回路 8は、キャリア増幅器 3の出力信号である RF信号を出 力端子 9に出力する。
一方、入力信号の瞬時の信号レベルが所定レベルより大きい場合には、 B級又は C級バイアスされているピーク増幅器 7がオン状態 (信号を増幅する状態)になるため 、出力側合成回路 8がキャリア増幅器 3の出力信号とピーク増幅器 7の出力信号とを 合成して、出力端子 9に出力する。
[0064] 方向性結合器 42は、出力側合成回路 8から RF信号が出力されると、その RF信号 の一部を取り出して減衰器 43に出力する。
減衰器 43は、方向性結合器 42から RF信号を受けると、後段の周波数変換器 44 が取り扱うのに適するレベルまで RF信号を減衰する。
[0065] 周波数変換器 44は、減衰器 43から減衰された RF信号を受けると、その RF信号の 周波数をダウンコンバートして AD変換器 45に出力する。
AD変換器 45は、周波数変換器 44の出力信号であるアナログ信号をデジタル信 号に変換する。
[0066] 適応制御回路 46は、 AD変換器 45からデジタル信号を受けると、そのデジタル信 号に応じてデジタルプレディストーシヨン回路 41のパラメータを適応的に変更する。 即ち、適応制御回路 46は、温度変化やデバイスの劣化などの要因で、出力側合成 回路 8から出力される RF信号が変動する場合があるので、それらの要因に伴う RF信 号の変動を防止するため、出力側合成回路 8から出力される RF信号の線形性が保 たれるようにデジタルプレディストーシヨン回路 41のパラメータを適応的に変更する。
[0067] 以上で明らかなように、この実施の形態 8によれば、 AD変換器 45から出力された デジタル信号に応じてデジタルプレディストーシヨン回路 41のパラメータを適応的に 変更するように構成したので、高効率増幅器の特性が変動しても、増幅器全体の安 定的な低歪み特性を実現することができる効果を奏する。 産業上の利用可能性
以上のように、この発明に係る高効率増幅器は、 RF信号を高い効率で線形に増幅 する必要がある放送用や通信用の RF増幅器などに用いるのに適している。

Claims

請求の範囲
[1] 入力信号を分岐する入力信号分岐手段と、上記入力信号分岐手段により分岐され た一方の入力信号を増幅する第 1の増幅器と、上記入力信号分岐手段により分岐さ れた他方の入力信号の電力が所定の電力より大きい場合、その入力信号を増幅す る第 2の増幅器と、上記第 1の増幅器の出力信号と上記第 2の増幅器の出力信号と を合成する合成回路とを備えた高効率増幅器において、上記第 2の増幅器の非線 形歪みを補償する歪み補償回路が上記第 2の増幅器の前段に設置されていることを 特徴とする高効率増幅器。
[2] 第 1の増幅器の非線形歪みを補償する歪み補償回路が上記第 1の増幅器の前段 に設置されていることを特徴とする請求項 1記載の高効率増幅器。
[3] 入力信号を分岐する入力信号分岐手段と、上記入力信号分岐手段により分岐され た一方の入力信号を増幅する第 1の増幅器と、上記入力信号分岐手段により分岐さ れた他方の入力信号の電力が所定の電力より大きい場合、その入力信号を増幅す る第 2の増幅器と、上記第 1の増幅器の出力信号と上記第 2の増幅器の出力信号と を合成する合成回路とを備えた高効率増幅器において、上記入力信号分岐手段に より分岐された一方の入力信号の振幅が所定レベルを上回る場合、その入力信号の 振幅を所定レベル以下に制限して上記第 1の増幅器に出力するレベル制限回路が 上記第 1の増幅器の前段に設置されていることを特徴とする高効率増幅器。
[4] レベル制限回路がリミッタ回路であることを特徴とする請求項 3記載の高効率増幅
[5] レベル制限回路が飽和特性を有するドライバ増幅器であることを特徴とする請求項
3記載の高効率増幅器。
[6] レベル制限回路が波形整形回路であることを特徴とする請求項 3記載の高効率増 幅器。
[7] 入力信号分岐手段により分岐された他方の入力信号の振幅が所定レベルを下回 る場合、信号を出力しない波形整形回路が上記第 2の増幅器の前段に設置されてい ることを特徴とする請求項 6記載の高効率増幅器。
[8] 第 1の増幅器の非線形歪みを補償する第 1の歪み補償回路が上記第 1の増幅器の 前段に設置され、かつ、第 2の増幅器の非線形歪みを補償する第 2の歪み補償回路 が上記第 2の増幅器の前段に設置されていることを特徴とする請求項 7記載の高効 率増幅器。
[9] 第 1の増幅器の出力信号に応じて第 1の歪み補償回路のノ メータを変更する第 1 の適応制御回路が設置され、かつ、第 2の増幅器の出力信号に応じて第 2の歪み補 償回路のパラメータを変更する第 2の適応制御回路が設置されていることを特徴とす る請求項 8記載の高効率増幅器。
[10] 入力信号を分岐する入力信号分岐手段と、上記入力信号分岐手段により分岐され た一方の入力信号を増幅する第 1の増幅器と、上記入力信号分岐手段により分岐さ れた他方の入力信号を増幅する第 2の増幅器と、上記第 1の増幅器の出力信号と上 記第 2の増幅器の出力信号とを合成する合成回路とを備えた高効率増幅器におい て、上記入力信号分岐手段により分岐された一方の入力信号の振幅が所定レベル を上回る場合、その入力信号の振幅を所定レベル以下に制限して上記第 1の増幅 器に出力する第 1の波形整形回路が上記第 1の増幅器の前段に設置され、かつ、上 記入力信号分岐手段により分岐された他方の入力信号の振幅が所定レベルを下回 る場合、信号を出力しない第 2の波形整形回路が第 2の増幅器の前段に設置されて いることを特徴とする高効率増幅器。
[11] 第 1の波形整形回路は、入力信号の振幅が所定レベルの近傍にある場合、徐々に 入力信号の振幅を制限する特性を有していることを特徴とする請求項 10記載の高効 率増幅器。
[12] 歪み補償回路が第 2の増幅器の前段ではなぐ入力信号分岐手段の前段に設置さ れていることを特徴とする請求項 1記載の高効率増幅器。
[13] 合成回路から出力される合成信号に応じて歪み補償回路のパラメータを変更する 適応制御回路が設置されていることを特徴とする請求項 12記載の高効率増幅器。
PCT/JP2004/008615 2004-06-18 2004-06-18 高効率増幅器 WO2005124994A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04746117A EP1758242A4 (en) 2004-06-18 2004-06-18 HIGH PERFORMANCE AMPLIFIER
JP2006514632A JPWO2005124994A1 (ja) 2004-06-18 2004-06-18 高効率増幅器
EP08010077A EP1959565A1 (en) 2004-06-18 2004-06-18 High efficiency amplifier
US10/591,644 US20070164818A1 (en) 2004-06-18 2004-06-18 High efficiency amplifier
PCT/JP2004/008615 WO2005124994A1 (ja) 2004-06-18 2004-06-18 高効率増幅器
CNB2004800427586A CN100511972C (zh) 2004-06-18 2004-06-18 高效率放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/008615 WO2005124994A1 (ja) 2004-06-18 2004-06-18 高効率増幅器

Publications (1)

Publication Number Publication Date
WO2005124994A1 true WO2005124994A1 (ja) 2005-12-29

Family

ID=35510057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008615 WO2005124994A1 (ja) 2004-06-18 2004-06-18 高効率増幅器

Country Status (5)

Country Link
US (1) US20070164818A1 (ja)
EP (2) EP1758242A4 (ja)
JP (1) JPWO2005124994A1 (ja)
CN (1) CN100511972C (ja)
WO (1) WO2005124994A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197556A (ja) * 2004-12-15 2006-07-27 Hitachi Kokusai Electric Inc 増幅器
JP2007243549A (ja) * 2006-03-08 2007-09-20 Hitachi Kokusai Electric Inc プリディストータ
JP2008061123A (ja) * 2006-09-01 2008-03-13 Sony Ericsson Mobilecommunications Japan Inc 電力増幅装置および携帯電話端末
JP2008206106A (ja) * 2007-02-22 2008-09-04 Fujitsu Ltd 高周波増幅器
JP2009239880A (ja) * 2008-03-05 2009-10-15 Toshiba Corp 高周波電力増幅器、および増幅方法
JP2010273117A (ja) * 2009-05-21 2010-12-02 Nec Corp 増幅器
JP2012504355A (ja) * 2008-09-30 2012-02-16 ノーテル・ネットワークス・リミテッド 信号増幅器、基地局及び入力信号を増幅する方法
JP2013523045A (ja) * 2010-03-22 2013-06-13 レイセオン カンパニー デジタル/アナログ変換器(dac)
JP5234006B2 (ja) * 2007-11-21 2013-07-10 富士通株式会社 電力増幅器
JP2014217058A (ja) * 2013-04-23 2014-11-17 フリースケール セミコンダクター インコーポレイテッド 非線形ドライバを用いる増幅器
JP2014241576A (ja) * 2013-03-15 2014-12-25 エイチビーシー ソリューションズ, インコーポレイテッドHbc Solutions, Inc. 異種電力増幅器システムの線形化

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710202B2 (en) * 2003-09-17 2010-05-04 Nec Corporation Amplifier
KR100830527B1 (ko) * 2003-09-17 2008-05-21 닛본 덴끼 가부시끼가이샤 증폭기
US20080111622A1 (en) * 2006-11-14 2008-05-15 Roland Sperlich Hybrid Doherty Amplifier System and Method
CN101675584B (zh) * 2007-03-30 2012-10-03 北电网络有限公司 放大器预失真系统和方法
CN102906996A (zh) * 2010-03-12 2013-01-30 中兴通讯股份有限公司 用于改善效率和线性度的分解发射系统及方法
KR101128487B1 (ko) * 2010-10-12 2012-06-21 포항공과대학교 산학협력단 전력 증폭기 선형화 방법 및 장치
KR20120056365A (ko) * 2010-11-25 2012-06-04 삼성전자주식회사 포화 레벨 이상을 제한하여 성능 개선을 하는 디지털 전치 왜곡 방법 및 장치
KR101763410B1 (ko) * 2010-12-21 2017-08-04 한국전자통신연구원 디지털 전치 왜곡 전력 증폭 장치 및 그 장치에서의 디지털 방식의 동기 조절 방법
EP2472718B1 (en) * 2011-01-03 2015-07-22 Alcatel Lucent Method and system to amplify a digital signal
US8478210B2 (en) 2011-05-10 2013-07-02 Texas Instruments Incorporated Apparatus and method of digital predistortion for power amplifiers with dynamic nonlinearities
DE102011079613A1 (de) * 2011-06-30 2013-01-03 Rohde & Schwarz Gmbh & Co. Kg Doherty-Verstärker mit Wirkungsgradoptimierung
CN103814519A (zh) * 2011-07-11 2014-05-21 岩星社团美国有限公司 使用非标准反馈的放大器线性化
US8649744B2 (en) * 2011-09-08 2014-02-11 Alcatel Lucent Radio-frequency transmitter, such as for broadcasting and cellular base stations
IN2014CN03801A (ja) * 2011-12-20 2015-10-16 Ericsson Telefon Ab L M
US8995521B2 (en) * 2012-10-30 2015-03-31 Lsi Corporation Method and apparatus for high density pulse density modulation
US11005430B2 (en) * 2017-03-02 2021-05-11 Sumitomo Electric Industries, Ltd. Distortion compensation device and distortion compensation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124840A (ja) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp ドハティ型増幅器
JP2003516013A (ja) * 1999-11-24 2003-05-07 テレフォンアクチーボラゲット エル エム エリクソン(パブル) 無線周波数信号の発生方法と装置
JP2004222151A (ja) * 2003-01-17 2004-08-05 Nec Corp ドハーティ増幅器
JP2004221646A (ja) * 2003-01-09 2004-08-05 Nec Corp ドハ−ティ増幅器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB398853A (en) * 1932-03-22 1933-09-22 Marconi Wireless Telegraph Co Improvements in or relating to radio and other high frequency modulated carrier wave systems
US5420541A (en) 1993-06-04 1995-05-30 Raytheon Company Microwave doherty amplifier
US5936464A (en) * 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US6504428B2 (en) * 2000-05-19 2003-01-07 Spectrian Corporation High linearity multicarrier RF amplifier
SE520760C2 (sv) 2000-06-06 2003-08-19 Ericsson Telefon Ab L M Doherty-förstärkare av flerstegstyp
SE516847C2 (sv) * 2000-07-07 2002-03-12 Ericsson Telefon Ab L M Sammansatt förstärkare samt sändare som innefattar en sådan förstärkare
SE516852C2 (sv) * 2000-07-07 2002-03-12 Ericsson Telefon Ab L M Sammansatt förstärkare, sändare med sådan förstärkare samt förfarande för att driva en dylik förstärkare resp. sändare
SE521268C2 (sv) * 2001-05-18 2003-10-14 Ericsson Telefon Ab L M Sammansatt förstärkare med optimerad linjäritet och effektivitet
US6573793B1 (en) * 2002-04-10 2003-06-03 Romulo Gutierrez Reflect forward adaptive linearizer amplifier
JP4033794B2 (ja) * 2003-03-24 2008-01-16 株式会社エヌ・ティ・ティ・ドコモ 高効率線形電力増幅器
JP4387936B2 (ja) * 2004-12-13 2009-12-24 株式会社東芝 高周波用のドハティ型の高効率増幅器、およびその信号処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516013A (ja) * 1999-11-24 2003-05-07 テレフォンアクチーボラゲット エル エム エリクソン(パブル) 無線周波数信号の発生方法と装置
JP2002124840A (ja) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp ドハティ型増幅器
JP2004221646A (ja) * 2003-01-09 2004-08-05 Nec Corp ドハ−ティ増幅器
JP2004222151A (ja) * 2003-01-17 2004-08-05 Nec Corp ドハーティ増幅器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1758242A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700470B2 (ja) * 2004-12-15 2011-06-15 株式会社日立国際電気 増幅器
JP2006197556A (ja) * 2004-12-15 2006-07-27 Hitachi Kokusai Electric Inc 増幅器
JP2007243549A (ja) * 2006-03-08 2007-09-20 Hitachi Kokusai Electric Inc プリディストータ
JP4704936B2 (ja) * 2006-03-08 2011-06-22 株式会社日立国際電気 プリディストータ
JP2008061123A (ja) * 2006-09-01 2008-03-13 Sony Ericsson Mobilecommunications Japan Inc 電力増幅装置および携帯電話端末
US7974597B2 (en) 2006-09-01 2011-07-05 Sony Ericsson Mobile Communications Japan, Inc. Power amplifier system and mobile phone terminal using same
JP2008206106A (ja) * 2007-02-22 2008-09-04 Fujitsu Ltd 高周波増幅器
JP5234006B2 (ja) * 2007-11-21 2013-07-10 富士通株式会社 電力増幅器
JP2009239880A (ja) * 2008-03-05 2009-10-15 Toshiba Corp 高周波電力増幅器、および増幅方法
JP2012504355A (ja) * 2008-09-30 2012-02-16 ノーテル・ネットワークス・リミテッド 信号増幅器、基地局及び入力信号を増幅する方法
JP2010273117A (ja) * 2009-05-21 2010-12-02 Nec Corp 増幅器
JP2013523045A (ja) * 2010-03-22 2013-06-13 レイセオン カンパニー デジタル/アナログ変換器(dac)
JP2014241576A (ja) * 2013-03-15 2014-12-25 エイチビーシー ソリューションズ, インコーポレイテッドHbc Solutions, Inc. 異種電力増幅器システムの線形化
JP2014217058A (ja) * 2013-04-23 2014-11-17 フリースケール セミコンダクター インコーポレイテッド 非線形ドライバを用いる増幅器

Also Published As

Publication number Publication date
CN1938940A (zh) 2007-03-28
EP1959565A1 (en) 2008-08-20
US20070164818A1 (en) 2007-07-19
EP1758242A1 (en) 2007-02-28
EP1758242A4 (en) 2008-04-09
CN100511972C (zh) 2009-07-08
JPWO2005124994A1 (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
WO2005124994A1 (ja) 高効率増幅器
US7560984B2 (en) Transmitter
US9083284B2 (en) Wide-band multi stage Doherty power amplifier
US9030255B2 (en) Linearization circuit and related techniques
JP4855267B2 (ja) 信号取出回路およびそれを有する歪み補償増幅器
US6392483B2 (en) Feed-forward amplifier
EP1912328B1 (en) Highly efficient amplifier
US7330071B1 (en) High efficiency radio frequency power amplifier having an extended dynamic range
JP2002124840A (ja) ドハティ型増幅器
WO2002021685A1 (fr) Amplificateur haute frequence, amplificateur a correction aval et amplificateur a compensation de distorsion
EP3648343B1 (en) Doherty amplifier and amplification circuit
JP2009260658A (ja) 電力増幅器
JP2014217058A (ja) 非線形ドライバを用いる増幅器
US8442459B2 (en) Transmitter and communication apparatus using the same
KR101066640B1 (ko) 2단 연결 바이어스 혼합 전력 증폭 장치
EP2642660A2 (en) Linearization circuit and related techniques
JP4052834B2 (ja) 増幅回路
Tajima et al. Improved efficiency in outphasing power amplifier by mixing outphasing and amplitude modulation
US20130162350A1 (en) Power amplifier
US6940346B2 (en) Feedforward amplifier, communication apparatus, feedforward amplification method, program and medium
US20230140184A1 (en) Analog pre-distortion processing circuit and signal processing device
GB2437335A (en) An efficient RF transmitter for high peak-to-average ratio (PAR) signals
JP4014404B2 (ja) 歪補償回路
KR100861852B1 (ko) 고효율 증폭기
JP6861908B2 (ja) 送信機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042758.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514632

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007164818

Country of ref document: US

Ref document number: 10591644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004746117

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067026339

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067026339

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004746117

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10591644

Country of ref document: US