CN103814519A - 使用非标准反馈的放大器线性化 - Google Patents
使用非标准反馈的放大器线性化 Download PDFInfo
- Publication number
- CN103814519A CN103814519A CN201180072230.3A CN201180072230A CN103814519A CN 103814519 A CN103814519 A CN 103814519A CN 201180072230 A CN201180072230 A CN 201180072230A CN 103814519 A CN103814519 A CN 103814519A
- Authority
- CN
- China
- Prior art keywords
- amplifier
- signal
- predistortion
- output
- amplifying unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003321 amplification Effects 0.000 claims abstract description 21
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 230000010363 phase shift Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 23
- 238000012546 transfer Methods 0.000 description 22
- 238000004891 communication Methods 0.000 description 14
- 230000006978 adaptation Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011469 building brick Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0294—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3205—Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/462—Indexing scheme relating to amplifiers the current being sensed
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
Abstract
提供了一种放大单元。该放大单元包括第一放大器、第二放大器、第一传感器、第一预失真组件、和信号合并器。第一放大器放大第一信号来产生第二信号。第一传感器基于第二信号来产生第三信号。第二放大器当第四信号超过阈值幅度时开启并且放大第四信号以产生第五信号以及当第四信号的幅度小于阈值幅度时关闭。第一预失真组件基于第一输入信号、基于第三信号、以及基于第二放大器的开-关状态来产生第一信号。信号合并器基于第二信号和第五信号来产生放大单元的输出。
Description
背景技术
功率放大器可以被用于包括无线通信的各种电子应用中。一般而言,功率放大器放大输入电信号以产生相对于输入具有增加的幅度的输出电信号。基站收发器、增强型节点B、和/或小区站可以包含一个或多个射频功率放大器以在从天线和/或天线阵列发射之前提高信号的功率。便携式电子设备同样可以包含功率放大器以在从天线发射之前提高信号的功率。功率放大器的各种操作参数在无线环境中尤为关注。例如,管理机构可以约束在授权频谱外的杂散信号的发射,因而提高功率放大器减少杂散频谱发射的重要性。功率放大器的过度功耗是不合期望的,原因在于这缩短了便携式电子设备的电池寿命,从而潜在地降低了用户对设备的满意度,和/或增加了操作的基站收发站点、增强型节点B、和/或小区站点的开销。
Doherty放大器架构在一些无线通信应用中已变得广泛地用作功率放大器。虽然Doherty放大器可以以各种不同结构来实现,但是Doherty放大器通常包括主放大器和辅放大器(也分别被称为载波放大器和峰值放大器)。在一些情境中,主放大器可以被称为载波放大器并且辅放大器可以被称为峰化放大器。当至Doherty放大器的输入保持在幅度阈值之下时辅放大器被操作于关闭状态,并且然后由主放大器的输出来单独提供Doherty放大器的输出。当至Doherty放大器的输入处于幅度阈值处或之上时辅放大器被操作于开启状态,并且然后由主放大器和辅放大器这二者的输出的组合来提供Doherty放大器的输出。典型Doherty放大器的辅放大器可以被说成被偏置用于C类操作。
LINC(利用非线性组件的线性放大)放大器以信号分离器为特征,所述信号分离器将具有恒定幅度包络的输入馈给到两个放大器中的每个,从而每个放大器均产生具有基本上恒定幅度包络的输出。该输入的信息内容基本上是相位信号。两个放大器的输出被合并以产生LINC放大器单元的输出,其中该输出由于输入相位调制以及求和过程而具有变化的幅度。恒定包络输入信号促进高效率。
发明内容
在一个实施例中,公开了放大单元。该放大单元包括第一放大器、第一传感器、第二放大器、第一预失真组件、和信号合并器。第一放大器可操作以放大第一信号来产生第二信号。第一传感器可操作以基于第二信号产生第三信号。第二放大器可操作以当第四信号的幅度超过阈值幅度时开启并且放大第四信号来产生第五信号以及当第四信号的幅度小于阈值幅度时关闭。第一预失真组件可操作以基于第一输入信号、基于第三信号、以及基于第二放大器的开-关状态来产生第一信号。信号合并器可操作以基于第二信号和第五信号来产生放大单元的输出。
在一个实施例中,公开了放大单元。放大单元包括接收第一信号并且输出第二信号的第一放大器,其中第一放大器放大第一信号来产生第二信号;以及感测第二信号并且输出第三信号的传感器,其中第三信号基于第二信号。放大单元进一步包括接收第四信号并且输出第五信号的第二放大器,其中第二放大器放大第四信号来产生第五信号;以及至少部分地基于第三信号来确定预失真值并且基于第一输入信号和预失真值来输出第一信号的预失真组件。放大单元进一步包括信号合并器,其中信号合并器基于第二信号以及基于第五信号来输出第六信号,其中传感器位于第一放大器的输出和信号合并器之间。
在一个实施例中,公开了放大单元。放大单元包括第一放大器、电流监视器、第二放大器、预失真组件、和信号合并器。第一放大器接收第一信号并且输出第二信号。第一放大器包括场效应晶体管(FET),其中场效应晶体管放大第一信号来产生第二信号。电流监视器感测与第二信号关联的电流并且输出第三信号。第二放大器接收第四信号并且基于第四信号来输出第五信号。预失真组件基于第三信号以及基于第二放大器的操作状态来确定预失真值。预失真组件基于第一输入信号和预失真值来输出第一信号。信号合并器基于第二信号以及基于第五信号来输出第六信号。
在一个实施例中,公开了放大电子信号来产生射频输出的方法。该方法包括放大第一输入来产生第二放大器的输出,其中第二放大器操作于开启状态或关闭状态并且基于第一放大器的输出以及基于第二放大器正操作于开启状态还是关闭状态来确定第一预失真。该方法进一步包括放大第二输入来产生第一放大器的输出,其中第二输入基于第三输入以及基于第一预失真,并且将第一放大器的输出和第二放大器的输出进行合并以产生射频输出。
根据以下联合附图和权利要求来进行的详细描述将更清楚地理解这些以及其他特征。
附图说明
为了更完全地理解本公开,现在进行引用以下结合附图和详细描述来进行的简要描述,其中相似的附图标记表示相似的部分。
图1是根据本公开的一个实施例的无线通信系统的图示。
图2是根据本公开的一个实施例的功率放大器的图示。
图3是根据本公开的一个实施例的功率放大器的一部分中的输出晶体管的图示。
图4是根据本公开的一个实施例的方法的图示。
具体实施方式
起初应该理解的是尽管以下说明了一个或多个实施例的说明性实现,但所公开的系统和方法可以使用不管是当前已知还是尚未存在的任何数量的技术来实现。本公开绝不应该被局限于以下所说明的说明性实现、附图、和技术,而是可以在所附权利要求的范围连同其等价物的完整范围内被修改。
现在转到图1,描述了无线通信系统100。系统100包括移动电话102、基站收发器104、和网络106。第一移动电话102a可以经由基站收发器104和网络106与第二移动电话102b通信,例如进行语音对话。第一基站收发器104a提供去往第一移动电话102a的无线通信链路并且将其耦合到网络106。第二基站收发器104b提供去往第二移动电话102b的无线通信链路并且将其耦合到网络106。网络106可以是一个或多个公用网络和/或一个或多个专用网络的任何组合。
基站收发器104可以例如但不通过限制的方式使用码分多址(CDMA)、全球移动通信系统(GSM)、长期演进(LTE)、全球微波接入互操作性(WiMAX)、WiFi、或其他无线通信协议之类的各种无线通信协议中的任何一个来提供无线通信链路。在一些情境中基站收发器104可以被称为增强型节点B或小区塔或另一术语。如本文所使用的,基站收发器104和/或小区塔被理解成包括天线和BTS功率放大器(108)。移动电话102包括移动功率放大器110。在一个实施例中,功率放大器108、110分别将基站收发器104和移动电话102的输出功率级别提高到促进可接受质量无线通信链路的级别。虽然图1的描述基于移动电话102,但要理解的是例如个人数字助理(PDA)、媒体播放器、被耦合到或者嵌入在膝上型计算机或其他便携式计算机中的空中接口卡之类的其他便携式电子设备同样可以以功率放大器110为特征并且经由基站收发器104所提供的无线链路来加入与网络106的无线通信。
要理解的是,功率放大器108、110的性能可以以各种方式影响系统100。可以通过提高BTS功率放大器108的效率例如通过减少与基站收发器104关联的电功耗的年度成本来改善基站收发器104的经济效率。基站收发器104与诸如联邦通信委员会(FCC)无线频谱条例之类的管理机构要求的符合性可以通过使BTS功率放大器108更好线性化来促进。移动电话102的电池寿命可以通过使用更高效的移动功率放大器110来延长,从而提高顾客满意度。本公开讲授了改善功率放大器108、110并且从而改善系统100的收益性和服务的多种方法。
在一个实施例中,功率放大器108、110可以被实现为多个功率放大器路径。例如,功率放大器108、110可以被实现为具有主放大器和辅放大器的Doherty类型的放大单元,其中该放大单元的输出基于将主放大器和辅放大器的输出进行合并。可替代地,功率放大器108、110可以被实现为具有第一放大器路径和第二放大器路径的LINC放大单元,其中放大单元的输出基于将第一放大器路径和第二放大器路径的输出进行合并。本公开考虑功率放大器108、110的又其他架构,其中放大单元包括两个或更多放大路径并且其中主体放大单元的输出基于将两个或更多放大路径的输出进行合并。本公开讲授了在合并以产生放大单元的输出之前感测两个或更多放大器路径的输出,并且将所感测的路径输出馈给到路径适配器组件例如到预失真组件以促进适配主体放大器路径的性能。具有两个放大器路径的放大单元——诸如LINC放大单元、诸如Doherty放大单元、以及诸如具有两个放大器路径的其他放大单元——可以被说成具有第一放大器和第二放大器。虽然以下公开在Doherty型放大器的情境中描述了该新颖功率放大器概念的应用,但要理解的是该相同感测-适配概念被考虑用于在以两个或更多放大路径为特征的其他放大单元架构中使用。
现在转到图2,描述了功率放大器108的实施例的细节。要理解的是功率放大器108的描述可以相等地应用于被包含在移动电话102中的功率放大器110。在一个实施例中,功率放大器108包括信号分离器160、主放大器162、输出变换器164、输入移相器166、辅放大器168、和输出合并器170。在一些情境中,主放大器162可以被称为第一放大器,并且辅放大器168可以被称为第二放大器。以上所列举的组件与典型Doherty型放大单元基本上相对应。至功率放大器108的输入可以被分离,并且输入信号的第一部分传播到放大输入信号的第一部分的主放大器162。输入信号的第二部分可以被传播到输入移相器166。输入移相器166相对于输入信号的第一部分的相位来移动输入信号相位的第二部分的相位。在一个实施例中,由输入移相器166所产生的相移可以是大约90度和/或1/4波长。
然而在其他实施例中,例如在其中主放大器162的输出晶体管和辅放大器168的输出晶体管由彼此不同的材料和/或不同的半导体族来形成的实施例中,由输入移相器166所产生的相移可以与90度和/或1/4波长不同。在本文通过引用将其全部内容包含在内的由Gregory Bowles等人在2006年9月29日提交、在2009年6月2日授权的、名为“Enhanced Doherty Amplifier with Asymmetrical Semiconductors”的第7,541,866号美国专利中描述了功率放大单元的制造和使用,所述功率放大单元具有由具有第一材料组成并且属于第一半导体族的第一材料所形成的主放大器的输出晶体管以及具有由具有第二材料组成并且属于第二半导体族的第二材料所形成的辅放大器的输出晶体管,其中第一材料组成中的至少一个与第二材料组成不同并且第一半导体族与第二半导体族不同。
在一个操作模式中,例如当输入信号超过与在开启操作模式中操作的辅放大器168关联的阈值幅度时,主放大器162放大输入信号的第一部分并且辅放大器168放大输入信号的第二部分。由输出变换器164来变换主放大器162的输出。在一个实施例中,输出变换器164匹配主放大器162以促进从功率放大器108的输出到天线的射频(RF)信号传播。输出变换器164将例如大约90度和/或1/4波长相移的相移引入到主放大器162的输出中。由输入移相器166所引入到输入信号的第二部分中的相移导致了在输出合并器170处与输出变换器164的输出基本上同相地合并的辅放大器168的输出。要理解的是,该功率放大器108的操作的描述是摘要并且省略了后文中所进一步讨论的一些细节。
在一个实施例中,所期望的是,功率放大器108的输出与输入基本上线性相关。可替代地,在另一个实施例中,所期望的是,功率放大器108的输出与输入具有某一其他非线性但预定义的关系。功率放大器108的输入和输出之间的关系在一些情境中可以被称为功率放大器108的传递函数。由于放大器162、168的组件和/或偏置点的限制性、由于改变的环境条件、以及由于其他因素,如果不采用校正方法的话功率放大器108的传递函数可能不可接受地与所期望的传递函数相偏离。因而,功率放大器108包含逐路径(path-wise)预失真以促进功率放大器108实现所期望的传递函数。术语“逐路径预失真”意味着在功率放大器108的两个或更多放大路径中的每个上独立地执行预失真。
逐路径预失真可以促进实现所期望的作为整体的功率放大器108的传递函数。进一步地,逐路径预失真可以促进实现所期望的主放大器162的第一传递函数和辅放大器168的第二传递函数。使用逐路径预失真来与辅放大器168的传递函数的适配独立地适配主放大器162的传递函数的能力可以促进实现针对所期望的作为整体的功率放大器108的传递函数的更高保真度。另外地,使用逐路径预失真来独立适配主放大器162和辅放大器168的传递函数可以促进原本难以实现的新的放大特征。
在一个实施例中,第一传感器180检测辅放大器168的输出的幅度和相位并且向第一预失真组件182提供该幅度和相位的指示。基于输入信号的第二部分以及基于由第一传感器180所提供的对辅放大器168所输出的幅度和相位的指示,第一预失真组件182确定向辅放大器168输入的预失真值,以使得基本上实现所期望的辅放大器168的传递函数。在一个实施例中,第二传感器184检测主放大器162的输出的幅度和相位并且向第二预失真组件186提供该幅度和相位的指示。基于输入信号的第一部分、基于由第二传感器184所提供的对主放大器162所输出的幅度和相位的指示、以及基于由第一传感器180所提供的对辅放大器168所输出的幅度和相位的指示,第二预失真组件186确定向主放大器162输入的预失真值,以使得基本上实现所期望的主放大器162的传递函数。
第二预失真组件186使用由第一传感器180所提供的对辅放大器168所输出的幅度和相位的指示来确定辅放大器168的操作状态。例如,在一个实施例中,第二预失真组件186使用由第一传感器180所提供的对辅放大器所输出的幅度和相位的指示来确定辅放大器168正操作于开启操作状态还是关闭操作状态。当辅放大器168正操作于关闭操作状态时,辅放大器168的输出晶体管在其输出处呈现高阻抗,并且主放大器162看到第一阻抗。
如本文所使用的,术语“开启操作状态”指代辅放大器168的操作状态,其中辅放大器168提供显著的增益而不仅是DC电流的传导。例如,当提供至少3 dB的增益时辅放大器168可以被认为处于开启操作状态。可替代地,当提供至少9 dB的增益时辅放大器168可以被认为处于开启操作状态。可替代地,当提供至少18 dB的增益时辅放大器168可以被认为处于开启操作状态。可替代地,当提供至少27 dB的增益时辅放大器168可以被认为处于开启操作状态。可替代地,可以定义区分辅放大器168的开启操作状态的某一其他增益阈值。要理解的是,辅放大器168可以经历开启状态和关闭状态之间的中间操作状态。在一个实施例中,可以基于阈值AC电流幅度来可替代地定义辅放大器168的开启操作状态。
当辅放大器168操作于开启操作状态时,辅放大器168的输出晶体管在其输出处呈现低阻抗,并且主放大器162看到第二阻抗。第二预失真组件186基于可以被称为主放大器162所看到的估算阻抗和/或估计阻抗的主放大器162所看到的阻抗知识来解释由第二传感器184所提供的对主放大器162所输出的幅度和相位的指示。例如在一个实施例中,第二传感器184包括电流监视器并且向第二预失真组件186提供电流指示。第二预失真组件186基于欧姆定律(在直流情形中,电压=电流乘以电阻[V = IR];在交流情形中,电压=电流乘以阻抗[V = IZ]);以及基于主放大器162所看到的阻抗(Z)的估算值将电流(I)指示转换为电压(V)指示,其中阻抗的估算值基于辅放大器168的开启状态和关闭状态而改变。
实际上,当辅放大器168在关闭状态和开启状态之间转移时,辅放大器168的输出晶体管所呈现的阻抗具有在关闭状态中所看到的高阻抗值与在开启状态中所看到的低阻抗值之间的阻抗值的范围。在一些实施例中,忽略这些转移阻抗值并且第二预失真组件186仅基于被估算到辅放大器168的高阻抗或低阻抗之一来确定向主放大器162输入的预失真值。然而在另一个实施例中,第二预失真组件186包括将由第一传感器180所提供的对辅放大器168的幅度和相位的指示映射或变换为主放大器162所看到的估算阻抗的辅放大器168的模型。该阻抗映射能够定义当辅放大器168不是完全关闭并且不是完全开启时所看到的中间、转移阻抗值,从而促进更准确地确定向主放大器162提供的预失真输入值。当然,阻抗映射同样还可以包括完全关闭阻抗和完全开启阻抗。在该实施例中,第二预失真组件186基于以上所描述的基于阻抗映射而确定的估算和/或估计阻抗值来确定向主放大器162输入的预失真值。
在一个实施例中,阻抗映射可以通过查找表来定义,其中当并且在落在查找表的条目之间的由第一传感器180所感测的相位和幅度的值被线性推断处于与查找表的边界相位和幅度条目关联的估算阻抗值之间的情况下,对查找表中条目进行匹配的由第一传感器180所感测的相位和幅度的值直接映射到被存储在查找表中对应条目中的估算阻抗。能够基于使与更大量的条目关联的保真度和/或准确度的提高级别的值相对增加的存储器消耗和/或更大的计算工作量的成本得到平衡来确定查找表中所定义的条目或点的数量。在一个实施例中,可以通过诸如具有用于偏移和乘法系数的预定义常量的多项式函数之类的函数来定义阻抗映射。在另一个实施例中,第二预失真组件186可以采用用于将第一传感器180所感测的相位和幅度值映射到所估算的阻抗值的又一其他过程。
在一个实施例中,第二预失真组件186基于确定输入信号的第一部分与主放大器162所输出的计算信号之间的幅度差异和相位差异来确定预失真值。由第二传感器184所提供的主放大器162的输出的感测幅度可以被合适地缩放以促进输入信号的第一部分的未放大级别与主放大器162的输出的放大级别之间的适当比较。第二预失真组件186或第二传感器184任一可以提供该缩放。在一个实施例中,可以基于以上所描述的阻抗映射而将缩放与电流指示器至电压指示器的变换相结合。可替代地,缩放可以被执行为电流指示至电压指示的变换之前或之后任一的一系列操作。
幅度差异被用来确定通过其来提高输入信号的第一部分的幅度预失真值,并且相位差异被用来确定通过其来使输入信号的第一部分相移的相位预失真值。第二预失真组件186可以存储与查找表中输入信号的第一部分的多个值中的每个相关联的预失真值。与输入信号的第一部分的值对应的被选择用于索引查找表的值可以在输入信号的第一部分可以取的值的范围被均匀地分布。可替代地,可以以某一其他方式来分布被选择用于索引查找表的值,例如为了更准确地捕获所期望的预失真值,例如在其中所期望的预失真值改变得最快的输入信号的第一部分的局部区域中对值进行更密集地选择。在不同的实施例中查找表中条目的数量可以变化。结合本公开,本领域技术人员将容易能够确定要包括在查找表中的条目的数量,以使针对提供准确预失真的期望相对节省存储器空间和减少预失真值计算处理负载得到平衡。
第二预失真组件186可以例如周期地或可替代地基于超过预失真值的当前计算对被存储在查找表中的预失真值之间的阈值改变量来偶尔地更新预失真值的查找表。主放大器162的传递函数可以响应于改变的诸如热度之类的环境条件、响应于电子组件的物理演进、以及响应于其他因素而随时间改变。该改变的传递函数可以通过偶尔地更新预失真值的查找表来适应。
输入信号的第一部分被用来从查找表中选择预失真值,从而将主体预失真值传给第二预失真组件186的幅度调制组件和第二预失真组件186的相位调制组件。幅度调制组件接收输入信号的第一部分并且输出已经以幅度预失真值所定义的量被提高或衰减的导出信号。相位调制组件接收由幅度调制组件所输出的导出信号并且输出已经以相位预失真值所定义的量以及意义上被相移的导出信号。向主放大器162提供相位调制组件的输出。输入信号的第一部分的适配可以在模拟域中在射频处执行并且然后被提供到主放大器162。可替代地,输入信号的第一部分的适配可以在模拟域中在基带频率处执行并且此后在向主放大器162提供之前被上变频。可替代地,输入信号的第一部分可以是基带数字信号,该适配可以在数字域中执行,然后可以在向主放大器162提供之前对经适配的信号进行数字-至-模拟转换并且上变频至射频。在可替代实施例中,考虑数字和模拟域之间以及射频、中频、和基带频率之间的其他转移。例如,使数字-至-模拟转换器的输出处于射频的中频处是可能的,其中可能在数字域中生成中频和射频。在一些情况下可以将输入信号的第一部分的适配说成被预失真。然而在一些情况下,除传统线性化预失真之外,可以执行输入信号的第一部分的进一步适配。
在一个实施例中,去往和来自第二预失真组件186的输入和输出是射频(RF)模拟的,但第二预失真组件186在数字基带频率处执行其内部处理。在该实施例中,至第二预失真组件186的输入被下变频和模拟至数字转换,并且输出被模拟-至-数字转换以及然后上变频。在可替代的实施例中,输入信号的第一部分可以是基带数字的。将领会的是,本公开考虑了用于第二预失真组件186调节输入和输出信号的又其他布置。针对用于提供预失真的一种考虑方法的进一步细节,见由David N. Wessel等人在1998年12月10日提交、在2001年8月14日授权的、名为“Linear Amplifier Arrangement”的第6,275,685号美国专利,本文通过引用将其全部内容包含在内。要理解的是,本公开与用于确定、存储、以及提供预失真和/或输入信号的第一部分的适配的其他方法一致并且考虑之。
在以上由第二预失真组件186确定预失真值的描述中,基于输入信号的第一部分与主放大器162的经缩放和调节的输出之间的差异来确定预失真值。根据从仅比较输入与输出而产生的预失真的简单校正促进了主放大器162的线性化。然而在一个实施例中,所期望的主放大器162的传递函数更复杂。在该情况下,可以将主放大器162的输出与不同于未调节输入的值相比较以确定预失真值。例如在一个实施例中,可以首先根据所期望的传递函数来处理信号输入的第一部分,并且然后可以将该变换的值与主放大器162的经调节输出相比较以确定预失真值。
除现在将描述的一些例外情况之外,第一预失真组件186的行为与第二预失真组件182的行为在很大程度上相似。在一个实施例中,辅放大器168被偏置以便仅当输入信号的第二部分的幅度超过预定义阈值时开启。例如在一个实施例中,辅放大器168可以被偏置用于C类操作。
可替代地,在一个实施例中,辅放大器168可以被偏置用于B类操作,并且信号分离器160可以执行输入信号整形。例如,信号分离器160可以将输入信号的恒定部分作为输入信号的第一部分提供给第二预失真组件186和主放大器162,但可以仅当输入信号超过阈值时向第一预失真组件182以及向辅放大器168提供输入信号的第二部分。这种输入调节可以被称为输入信号整形并且能够被用来适应当辅放大器168在完全关闭状态至完全开启状态之间以及在完全开启状态至完全关闭状态之间转移时可能经历的一些不合期望的效应。针对关于信号整形的进一步细节,见由Gregory J. Bowles等人在2009年6月10日提交的、名为“Doherty Amplifier and Method for Operation Thereof”的第12/482,110号美国专利申请,本文通过引用将其全部内容包含在内。可替代地,在一个实施例中,信号整形功能可以不由信号分离器160来执行,而是可以被并入由第一预失真组件182所提供的预失真处理中或与之集成。
虽然在多放大路径放大单元中提供预失真的以上描述已针对Doherty放大器架构,本领域技术人员将领会的是,所描述的新颖特征中的许多可以适用于其他多放大路径放大单元例如在LINC放大器中。在LINC放大单元的情况下,鉴于例如至第一放大器和第二放大器中每个的基本上恒定幅度输入之类的LINC放大单元的操作原理,可能的是输入信号的第一部分的预失真和/或适配可以仅针对适配相位。另一方面,即使在LINC放大单元中,也可能存在单独放大器路径的幅度输出的小的不平衡,其可以由幅度预失真来补偿。
现在转到图3,描述了放大器的输出级的实施例的细节。在一个实施例中,图3中所图示的输出级可以被用来实现主放大器162的输出级和/或辅放大器168的输出级。输出晶体管200被示出为具有被耦合到电源Vdd和到输出偏置204的漏极、经由输入偏置202被耦合到输入信号A的栅极、以及被耦合到地的源极的场效应晶体管(FET)。然而在另一个实施例中,放大器的输出级可以不使用FET输出晶体管来实现。在一个实施例中,放大器的输出级可以使用双极型晶体管(BJT)来实现。输出晶体管200经由输出偏置204提供输出信号B。第二传感器184被示出为耦合到输出晶体管200的漏极并且输出幅度和相位指示C。虽然为了避免使附图凌乱而在图3中未被图示,但要理解的是输出晶体管200在射频范围中操作并且通过例如到地的隔直电容器和内联电感器和/或扼流圈之类的适当的隔离电路与Vdd的直流相隔离。同样地,适当的射频输入匹配线可以将输入信号A耦合到输出晶体管200,并且射频输出匹配线可以将输出信号B耦合到输出变换器164。
在一个实施例中,第二传感器184是电流传感器。在一个实施例中,第二传感器184可以被实现为变换器电流传感器。可替代地,第二传感器184可以被实现为例如大约1欧姆的低电阻,并且可以输出电压值,所述电压值是通过该电阻的电流的指示。
要理解的是,本公开还考虑了可替代的预失真和传感器架构。例如在一个实施例中,可以省掉图2中所图示的第一传感器180和第一预失真组件182,取而代之的是传感器(未示出)可以感测输出信号合并器170的输出并且将其提供到基于输出信号合并器170的输出将信号输入预失真到信号分离器160的预失真组件(未示出),从而提供围绕功率放大器108的预失真环。在另一个实施例中,可以省略第二传感器184,并且可以基于第一传感器180以及输出信号合并器170的输出上的传感器的输出以及基于减法和建模来推断主放大器162的输出。所推断的主放大器162的输出然后可以被输入到第二预失真组件186来代替第二传感器184的输出。要理解的是,本文参考具有第一和第二放大器的功率放大器108所公开的技术和结构能够被应用于具有三个或更多放大器的其他功率放大器。
现在转到图4,描述了方法300。在块302处,第一输入被放大以产生辅放大器的输出,其中辅放大器操作于开启状态或关闭状态。要理解的是,如以上所进一步描述的,在开启状态和关闭状态之间的转移期间辅放大器可以操作于中间状态。在一个实施例中,块302的辅放大器与以上所描述的辅放大器168相对应。辅放大器的开启状态、关闭状态、和中间状态可以通过被应用于辅放大器的放大器偏置、通过栅极使能信号、通过信号整形、或通过其组合来确定。
在块304处,基于主放大器的输出以及基于辅放大器正操作于开启状态还是关闭状态来确定第一预失真。例如,主放大器与以上所描述的主放大器162相对应,并且如由辅放大器的开启状态或关闭状态所估算的,基于由主放大器162所看到的阻抗值来确定第一预失真。在一个实施例中,例如如以上参考阻抗映射所描述的,可以通过更复杂的过程例如通过当辅放大器在开启状态和关闭状态之间转移时对主放大器所看到的阻抗值进行估算来确定第一预失真。第一预失真的确定还可以基于例如输入信号的第一部分之类的至主放大器的输入的值。第一预失真的确定还可以基于所期望的主放大器的传递函数。在一个实施例中,所期望的主放大器的传递函数与基本上线性的传递函数相偏离。在一个实施例中,第一预失真——以及在不同操作点处所确定的预失真的其他值——被存储在查找表中。
在块306处,第二输入被放大以产生主放大器的输出,其中第二输入基于第三输入以及基于第一预失真。在实施例中,第二输入是以上参考图2所描述的第二预失真组件186的幅度和相位调制器组件的输出。第三输入可以是输入信号的第一部分并且可以由第二预失真组件186的幅度调制器组件和相位调制器组件来调制。第二预失真组件186可以使用第三输入来选择第一预失真。
在块308处,主放大器的输出与辅放大器的输出被合并以产生射频输出。例如,主放大器的输出被变换并且与辅放大器的输出基本上同相地合并。
虽然在本公开中已提供若干实施例,但应该理解的是所公开的系统和方法可以以许多其他特定形式来实现而不背离本公开的精神或范围。当前示例要被视为说明性且非限制性,并且意在不被局限于本文所给出的细节。例如,在另一个系统中可以将各种元件或组件进行组合或集成,或者可以省略或不实现某些特征。
同样,在各种实施例中被描述和说明为离散或单独的技术、系统、子系统、和方法可以与其他系统、模块、技术、或方法进行组合或集成而不背离本公开的范围。被示出或讨论为彼此直接耦合或通信的其他项目可以不管是电气、机械、还是以其他方式地通过某种接口、设备、或中间组件来间接耦合或通信。改变、代替物、和更改的其他示例可由本领域技术人员查明并且能够被做出而不背离本文所公开的精神和范围。
Claims (20)
1.一种放大单元,包括:
第一放大器,其中所述第一放大器可操作以放大第一信号来产生第二信号;
第一传感器,其中所述第一传感器可操作以基于所述第二信号产生第三信号;
第二放大器,其中所述第二放大器可操作以当第四信号的幅度超过阈值幅度时开启并且放大所述第四信号以产生第五信号以及当所述第四信号的幅度小于所述阈值幅度时关闭;
第一预失真组件,其中所述第一预失真组件可操作以基于第一输入信号、基于所述第三信号、以及基于所述第二放大器的开-关状态来产生所述第一信号;以及
信号合并器,其中所述信号合并器可操作以基于所述第二信号和所述第五信号来产生所述放大单元的输出。
2.权利要求1的放大单元,其中所述第二放大器被偏置为B类放大器。
3.权利要求1的放大单元,其中所述第一传感器是位于所述第一放大器的输出和所述信号合并器之间的射频耦合器。
4.权利要求1的放大单元,其中所述第一传感器是位于所述第一放大器的输出和所述信号合并器之间的电流监视器,其中所述第一传感器基于由所述第一放大器所输出的电流来产生所述第三信号。
5.权利要求1的放大单元,其中所述放大单元包括Doherty放大器。
6.权利要求5的放大单元,进一步包括:
第二传感器,其中所述第二传感器可操作以基于所述第五信号产生第六信号;
第二预失真组件,其中所述第二预失真组件可操作以基于第二输入信号以及基于所述第六信号来产生所述第四信号。
7.权利要求1的放大单元,
其中所述第一放大器由具有第一材料组成并且属于第一半导体族的至少一个半导体来形成;
其中所述第二放大器由具有第二材料组成并且属于第二半导体族的至少一个半导体来形成;以及
其中所述第一材料组成中的至少一个与所述第二材料组成不同并且所述第一半导体族与所述第二半导体族不同。
8.一种放大单元,包括:
接收第一信号并且输出第二信号的第一放大器,其中所述第一放大器放大所述第一信号来产生所述第二信号;
感测所述第二信号并且输出第三信号的传感器,其中所述第三信号基于所述第二信号;
接收第四信号并且输出第五信号的第二放大器,其中所述第二放大器放大所述第四信号来产生所述第五信号;
至少部分地基于所述第三信号来确定预失真值并且基于第一输入信号和所述预失真值来输出所述第一信号的预失真组件;以及
信号合并器,其中所述信号合并器基于所述第二信号以及基于所述第五信号来输出第六信号,其中所述传感器位于所述第一放大器的输出与所述信号合并器之间。
9.权利要求8的放大单元,进一步包括使所述第二信号相移的相移组件,其中所述相移组件位于所述传感器与所述信号合并器之间。
10.权利要求8的放大单元,其中所述第一信号和所述第四信号是基本上恒定幅度信号。
11.权利要求8的放大单元,其中所述预失真组件进一步基于所述第二放大器的操作状态来确定所述预失真值。
12.权利要求11的放大单元,其中所述第三信号指示所述第一放大器的输出晶体管中的电流,并且其中所述预失真组件基于将所述第三信号的电流指示转换为电压指示来确定所述预失真值,其中将电流指示转换为电压指示基于在所述第二放大器的第一操作状态期间由所述第一放大器所看到的第一已知输出阻抗以及基于在所述第二放大器的第二操作状态期间由所述第一放大器所看到的第二已知输出阻抗。
13.权利要求8的放大单元,其中所述预失真组件包括确定多个预失真值的适配器组件以及基于从所述多个预失真值中所选择的至少一个预失真值来修改所述第一输入信号的校正组件,其中基于所述第一输入信号来从所述多个预失真值中选择所述至少一个预失真值。
14.权利要求13的放大单元,其中所述校正组件基于预失真增益值以及基于从所述多个预失真值中所选择的预失真相位值来修改所述第一输入信号。
15.一种放大电信号来产生射频输出的方法,包括:
放大第一输入来产生第二放大器的输出,其中所述第二放大器操作于开启状态或关闭状态;
基于第一放大器的输出以及基于所述第二放大器正操作于开启状态还是关闭状态来确定第一预失真;
放大第二输入来产生第一放大器的输出,其中所述第二输入基于第三输入并且基于所述第一预失真;以及
将所述第一放大器的输出与所述第二放大器的输出进行合并以产生射频输出。
16.权利要求15的方法,其中基于当所述第二放大器操作于开启状态时由所述第一放大器所经历的第一输出阻抗以及基于当所述第二放大器操作于关闭状态时由所述第一放大器所经历的第二输出阻抗来确定所述第一预失真。
17.权利要求16的方法,其中基于所述第一放大器的输出来确定所述第一预失真,在其上游将所述第一放大器的输出与所述第二放大器的输出进行合并以产生所述射频输出。
18.权利要求15的方法,其中所述第一放大器和所述第二放大器被布置于Doherty放大器配置中。
19.权利要求15的方法,其中确定所述第一预失真进一步基于所述第三输入。
20.权利要求19的方法,进一步包括基于所述第二放大器的输出以及基于所述第一输入来确定第二预失真,其中当产生所述第二放大器的输出时所述第二放大器进一步放大所述第二预失真。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CA2011/050421 WO2013006943A1 (en) | 2011-07-11 | 2011-07-11 | Amplifier linearization using non-standard feedback |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103814519A true CN103814519A (zh) | 2014-05-21 |
Family
ID=47505444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180072230.3A Pending CN103814519A (zh) | 2011-07-11 | 2011-07-11 | 使用非标准反馈的放大器线性化 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9024690B2 (zh) |
EP (1) | EP2732549A4 (zh) |
JP (1) | JP2014518495A (zh) |
KR (1) | KR20140053090A (zh) |
CN (1) | CN103814519A (zh) |
WO (1) | WO2013006943A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108093678A (zh) * | 2015-07-01 | 2018-05-29 | 瑞典爱立信有限公司 | B/C类Doherty功率放大器 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2732549A4 (en) | 2011-07-11 | 2015-03-18 | Rockstar Consortium Us Ip | AMPLIFIER LINEARIZATION WITH NON-STANDARD FEEDBACK |
US9203348B2 (en) | 2012-01-27 | 2015-12-01 | Freescale Semiconductor, Inc. | Adjustable power splitters and corresponding methods and apparatus |
US8514007B1 (en) | 2012-01-27 | 2013-08-20 | Freescale Semiconductor, Inc. | Adjustable power splitter and corresponding methods and apparatus |
US9461596B1 (en) * | 2013-05-31 | 2016-10-04 | Skyworks Solutions, Inc. | Doherty power amplifier with integrated pre-distortion |
US9225291B2 (en) * | 2013-10-29 | 2015-12-29 | Freescale Semiconductor, Inc. | Adaptive adjustment of power splitter |
US9774299B2 (en) | 2014-09-29 | 2017-09-26 | Nxp Usa, Inc. | Modifiable signal adjustment devices for power amplifiers and corresponding methods and apparatus |
US10530313B2 (en) * | 2014-12-30 | 2020-01-07 | Solid, Inc. | Amplification device and relay apparatus including the same |
US9647611B1 (en) | 2015-10-28 | 2017-05-09 | Nxp Usa, Inc. | Reconfigurable power splitters and amplifiers, and corresponding methods |
US9837966B1 (en) * | 2016-08-26 | 2017-12-05 | Nxp Usa, Inc. | Series-type Doherty amplifier |
US10361733B2 (en) | 2017-12-13 | 2019-07-23 | At&T Intellectual Property I, L.P. | Low complexity transmitter structure for active antenna systems |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030017813A1 (en) * | 2001-07-17 | 2003-01-23 | Satoshi Maruyama | Parallel operation system of transmission amplifier |
US20060001485A1 (en) * | 2004-07-02 | 2006-01-05 | Icefyre Semiconductor Corporation | Power amplifier |
CN1938940A (zh) * | 2004-06-18 | 2007-03-28 | 三菱电机株式会社 | 高效率放大器 |
EP2017956A1 (en) * | 2007-07-18 | 2009-01-21 | Nokia Siemens Networks Oy | Radio signal amplifying device and method for generating and for amplifying a radio frequency signal |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3738513A1 (de) | 1987-11-13 | 1989-06-01 | Dornier System Gmbh | Mikrostreifenleiterantenne |
JPH0537263A (ja) * | 1991-07-30 | 1993-02-12 | Fujitsu Ltd | 定振幅波合成形増幅器 |
US6252461B1 (en) * | 1997-08-25 | 2001-06-26 | Frederick Herbert Raab | Technique for wideband operation of power amplifiers |
US6275685B1 (en) | 1998-12-10 | 2001-08-14 | Nortel Networks Limited | Linear amplifier arrangement |
SE516847C2 (sv) * | 2000-07-07 | 2002-03-12 | Ericsson Telefon Ab L M | Sammansatt förstärkare samt sändare som innefattar en sådan förstärkare |
SE0102885D0 (en) * | 2001-08-28 | 2001-08-28 | Ericsson Telefon Ab L M | Calibration of an adaptive signal conditioning systern |
US8811917B2 (en) * | 2002-05-01 | 2014-08-19 | Dali Systems Co. Ltd. | Digital hybrid mode power amplifier system |
US6664935B1 (en) | 2002-07-31 | 2003-12-16 | Motorola, Inc. | Broad band impedance matching device with coupled transmission lines |
WO2004034574A1 (ja) * | 2002-10-10 | 2004-04-22 | Fujitsu Limited | 歪み補償増幅装置、増幅システムおよび無線基地局 |
EP1609239B1 (en) | 2003-03-28 | 2010-07-21 | Andrew AG | High efficiency amplifier and method of designing same |
JP2005117599A (ja) * | 2003-10-08 | 2005-04-28 | Hiroshi Suzuki | 高周波増幅器 |
JP4617265B2 (ja) * | 2006-02-14 | 2011-01-19 | 富士通株式会社 | 歪補償装置及び歪補償方法 |
EP2005580B1 (en) * | 2006-04-10 | 2010-07-07 | Telefonaktiebolaget LM Ericsson (PUBL) | A method for compensating signal distortions in composite amplifiers |
US7541866B2 (en) * | 2006-09-29 | 2009-06-02 | Nortel Networks Limited | Enhanced doherty amplifier with asymmetrical semiconductors |
US7961045B2 (en) | 2007-03-30 | 2011-06-14 | Nortel Networks Limited | Amplifier pre-distortion systems and methods |
WO2009066353A1 (ja) | 2007-11-21 | 2009-05-28 | Fujitsu Limited | 電力増幅器 |
US8848824B2 (en) * | 2008-03-07 | 2014-09-30 | Andrew M. Teetzel | High efficiency RF system linearizer using controlled complex nonlinear distortion generators |
KR20100069454A (ko) | 2008-12-16 | 2010-06-24 | 삼성전자주식회사 | 도허티 전력 증폭기의 성능 개선 방법 및 장치 |
US8022768B1 (en) | 2008-12-19 | 2011-09-20 | Nortel Networks Limited | Doherty amplifier and method for operation thereof |
US8706062B1 (en) * | 2008-12-19 | 2014-04-22 | Scintera Networks, Inc. | Self-adaptive power amplification |
CN102577104B (zh) | 2009-10-23 | 2015-01-14 | 日本碍子株式会社 | 多赫蒂放大器用合成器 |
EP2732549A4 (en) | 2011-07-11 | 2015-03-18 | Rockstar Consortium Us Ip | AMPLIFIER LINEARIZATION WITH NON-STANDARD FEEDBACK |
WO2013006941A1 (en) | 2011-07-13 | 2013-01-17 | Nortel Networks Limited | Broadband doherty amplifier using broadband transformer |
US8653890B1 (en) * | 2012-10-19 | 2014-02-18 | Freescale Semiconductor, Inc. | Amplifier calibration |
-
2011
- 2011-07-11 EP EP11869203.7A patent/EP2732549A4/en not_active Withdrawn
- 2011-07-11 JP JP2014519355A patent/JP2014518495A/ja active Pending
- 2011-07-11 CN CN201180072230.3A patent/CN103814519A/zh active Pending
- 2011-07-11 US US14/131,131 patent/US9024690B2/en not_active Expired - Fee Related
- 2011-07-11 KR KR1020147000812A patent/KR20140053090A/ko not_active Application Discontinuation
- 2011-07-11 WO PCT/CA2011/050421 patent/WO2013006943A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030017813A1 (en) * | 2001-07-17 | 2003-01-23 | Satoshi Maruyama | Parallel operation system of transmission amplifier |
CN1938940A (zh) * | 2004-06-18 | 2007-03-28 | 三菱电机株式会社 | 高效率放大器 |
US20060001485A1 (en) * | 2004-07-02 | 2006-01-05 | Icefyre Semiconductor Corporation | Power amplifier |
EP2017956A1 (en) * | 2007-07-18 | 2009-01-21 | Nokia Siemens Networks Oy | Radio signal amplifying device and method for generating and for amplifying a radio frequency signal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108093678A (zh) * | 2015-07-01 | 2018-05-29 | 瑞典爱立信有限公司 | B/C类Doherty功率放大器 |
Also Published As
Publication number | Publication date |
---|---|
US20140125416A1 (en) | 2014-05-08 |
EP2732549A4 (en) | 2015-03-18 |
US9024690B2 (en) | 2015-05-05 |
KR20140053090A (ko) | 2014-05-07 |
WO2013006943A1 (en) | 2013-01-17 |
JP2014518495A (ja) | 2014-07-28 |
EP2732549A1 (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103814519A (zh) | 使用非标准反馈的放大器线性化 | |
Xu et al. | A flip-chip-packaged 25.3 dBm class-D outphasing power amplifier in 32 nm CMOS for WLAN application | |
Liu et al. | A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers | |
CN102484454B (zh) | 用于功率放大的线性化电路和方法 | |
CN101040502B (zh) | 宽带增强型数字注射预失真系统和方法 | |
TWI583132B (zh) | 用於功率放大器系統中之波封之形塑之裝置及方法 | |
Kang et al. | A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feedback linearizer | |
US10284149B2 (en) | Radio-frequency devices having AM-PM distortion correction features | |
CN100527604C (zh) | 功率放大器 | |
CN101919158B (zh) | 微波功率放大器 | |
US8269559B2 (en) | Amplifying device | |
CN102185566A (zh) | 补充系统供电电源电压变化的射频功率放大器控制技术 | |
Jagadheswaran et al. | A 2-$\mu {\hbox {m}} $ InGaP/GaAs Class-J Power Amplifier for Multi-Band LTE Achieving 35.8-dB Gain, 40.5% to 55.8% PAE and 28-dBm Linear Output Power | |
Hong et al. | Weighted polynomial digital predistortion for low memory effect Doherty power amplifier | |
US20140035678A1 (en) | Power Amplifier Apparatus and Power Amplifier Circuit | |
Eswaran et al. | Power amplifier design methodologies for next generation wireless communications | |
CN102983824A (zh) | 一种自适应预失真功率放大器 | |
Moon et al. | A multimode/multiband envelope tracking transmitter with broadband saturated power amplifier | |
Uthirajoo et al. | Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications | |
Moon et al. | Effects of even-order terms on behavior model of envelope tracking transmitters | |
Mohammed et al. | A 15.5 W Si-LDMOS Balanced Power Amplifier with 53% Ultimate PAE for High Speed LTE | |
CN208158549U (zh) | 高线性对消结构 | |
Schuartz et al. | Concurrent Tri-band CMOS Power Amplifier Linearized by 3D Improved Memory Polynomial Digital Predistorter | |
Lee et al. | Advanced design of high-linearity analog predistortion Doherty amplifiers using spectrum analysis for WCDMA applications | |
Yusoff | The auxiliary envelope tracking RF power amplifier system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140521 |