WO2005118474A1 - Silizium sowie verfahren zu dessen herstellung - Google Patents
Silizium sowie verfahren zu dessen herstellung Download PDFInfo
- Publication number
- WO2005118474A1 WO2005118474A1 PCT/EP2005/005018 EP2005005018W WO2005118474A1 WO 2005118474 A1 WO2005118474 A1 WO 2005118474A1 EP 2005005018 W EP2005005018 W EP 2005005018W WO 2005118474 A1 WO2005118474 A1 WO 2005118474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- powder
- gas
- reactor
- producing
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 70
- 239000010703 silicon Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 106
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 38
- 239000007789 gas Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 18
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 239000007858 starting material Substances 0.000 claims abstract description 3
- 238000005056 compaction Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 6
- 239000011856 silicon-based particle Substances 0.000 claims description 5
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 4
- 229910052755 nonmetal Inorganic materials 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 9
- 230000000593 degrading effect Effects 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000007872 degassing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000220304 Prunus dulcis Species 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
- C01B33/029—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
Definitions
- the invention relates to a method for producing high-purity silicon, silicon produced by the method and, in a particular way, fusible silicon.
- the invention is based on the object of providing a method for producing silicon which leads to energy and cost-saving pure silicon which can be easily further processed.
- the core of the manufacturing process consists of thermally decomposing a monosilane-hydrogen mixture and mechanically compacting the silicon powder that is produced.
- This silicon has the property that it can easily be further processed later and can be melted in particular at melting temperatures in the range of the melting temperature of silicon. Due to the manufacturing process, the silicon in particular contains no silicon oxide compounds on the surface of the silicon particles, which would significantly increase the melting temperature of the silicon powder.
- Show it 1 shows a section of a plant for producing silicon with a compression device according to a first exemplary embodiment
- Fig. 2 is an enlargement of a compaction roller of the compaction device according to Fig. 1 and
- Fig. 3 is an enlargement of a compaction roller according to a second embodiment.
- the structure of a system 1 for producing silicon powder according to a first exemplary embodiment is described below with reference to FIGS. 1 and 2.
- the plant 1 has, starting from above, a tubular, vertically running reactor 2 which encloses a cylindrical reaction chamber 3.
- a gas supply line 4 is arranged, which opens into the reaction chamber 3.
- the line 4 is designed such that a useful gas flow, for example made of monosilane, can be introduced in the middle.
- the useful gas flow is surrounded by a ring flow of an auxiliary gas.
- Approximately the upper half of the reactor 2 is surrounded by a ring-cylindrical heater 5 which surrounds the reactor 2 in such a way that the wall of the chamber 3 can be heated to temperatures of over 800 ° C.
- the lower half of the reactor 2 is surrounded by an annular cylindrical cooling device 6 which is directly adjacent to the reactor 2.
- the degassing device 31 consists of a housing 32, which runs obliquely upwards and is connected to the chamber 3, at the lower end of the reactor 2 is scheduled.
- an annular cylindrical sintered material filter 33 which is closed at the bottom and through which excess hydrogen can escape through an opening 34 located in the upper end of the housing 32.
- a roller breather 35 of known type and then a compression device 10, the construction of which is described in more detail below.
- the compression device 10 is connected to the reaction chamber 3 via the lock 7.
- a storage container 11 connected to it.
- the roller breather 35 has a cuboid housing 36, in which two breather rollers 38, 39 driven by a motor 37 are arranged.
- the rollers 38, 39 are rotatably mounted about associated axes of rotation 40, 41 running parallel to one another.
- the rollers 38, 39 are driven in opposite directions, so that both move downwards in the area of the gap 42 delimited by the rollers 38, 39.
- the roller 38 is hollow and has a porous jacket.
- a gas-permeable plastic film is applied to its outer surface. There is negative pressure within the roller 38. In this way, the gas remaining in the silicon powder 43 is drawn off.
- the surface of the roller 39 is smooth. Both rollers 38, 39 preferably have a non-metallic surface.
- the compression device 10 has a housing 12 which encloses an essentially cubic working space 13.
- the housing 12 has a feed opening 14 facing the lock 7 and connected to it, and a discharge opening 15 provided on the lower edge of the housing 12 and connected to the container 11.
- In the housing 12 there are two compacting rollers 18, 19, which can be driven in rotation about respective axes of rotation 16, 17, in the middle between the openings 14 and 15 are arranged adjacent to each other that a compression gap 20 is formed between them.
- the axes of rotation 16 and 17 run parallel to one another.
- the compression gap 20 has a width B s .
- the compaction rollers 18, 19 can be driven in rotation by a motor 21, which is connected to the control device 9 via a connecting line 22.
- the tubular reactor 2 has a vertical central longitudinal axis 23, which runs centrally through the gap 20.
- the rollers 18, 19 are driven in opposite directions, ie the roller 18 rotates clockwise, the roller 19 counterclockwise. As a result, the surfaces of the rollers 18, 19 move downward together in the region of the gap 20.
- the rollers 18, 19 have a roller core 24 made of steel, which is circular cylindrical in shape.
- a roller jacket 25 with an annular cross section, which completely surrounds the roller core 24 on the circumferential side.
- the roller shell 25 is formed in one piece and consists of a non-metal material, that is, a non-metallic material. In particular, these are glass, graphite or ceramic materials. Ceramic is particularly preferred. The ceramics used consist mainly of silicon nitride.
- the roll shell 25 is fixed on the roll core 24 in the axial and tangential direction, for example by gluing or tongue and groove connections.
- the roller jacket 25 has the shape of a circular cylinder. It is possible to form the entire roller 18 or 19 from a ceramic material.
- FIG. 2 shows a second exemplary embodiment. Identical parts are given the same reference numerals as in the embodiment according to FIG. 2. Structurally different, but functionally similar parts are given the same reference numerals with a suffix a.
- the main difference compared to the exemplary embodiment according to FIG. 2 is that the roller jacket 25a is not formed in one piece, but consists of two half-shells 27, 28 which completely and completely enclose the roller core 24.
- the gaps 29 between the half-shells 27 and 28 are completely and completely closed, so that material which reaches the surface 26 does not come into contact with the roller core 24.
- the half-shells 27, 28 were subjected to an exact mechanical processing after the ceramic production. As part of the mechanical processing, the surface of the half-shells 27, 28 was profiled.
- the surface of the half-shells 27, 28 can also be designed in such a way that the compressed silicon has the shape of rods, pillows, almonds etc.
- the combination of ceramic and metal materials withstood the machining It is also possible to use partial shells with a center angle of ⁇ 180 ° on the circumference. In particular, three partial shells with a center angle of 120 ° or four partial shells with a center angle of 90 ° can be provided on the circumference. Other divisions are also possible.
- a gas mixture of monosilane and hydrogen in a volume or molar ratio of 1: 3 was converted into silicon powder and hydrogen in the reactor 2 with a wall temperature of the wall 30 of> 800 ° C. and a production rate of 200 g silicon per hour implemented.
- the addition took place in such a way that the monosilane was introduced centrally into the reaction chamber 3 from above.
- the hydrogen surrounded the monosilane in the form of a ring flow in order to prevent the silicon from being deposited directly on the walls of the reaction chamber 3.
- the silicon powder 43 was partially degassed after the decomposition by means of the degassing device 31 arranged on the lock 7.
- the powder obtained had a bulk density of approx.
- the silicon powder was heated to a melting temperature of 1415 ° C.
- the silicon powder was then melted without residues at 1450 ° C. in 30 minutes with a melting capacity of 70 kW.
- the silicon melt was then poured off and the silicon solidified in a directed manner.
- the solidified polycrystalline silicon block showed a homogeneous polycrystalline structure of the silicon, and no residues of silicon powder or silicon-containing slag.
- a gas containing silicon can be decomposed in the reactor. Examples of these are trichlorosilane or monosilane. Other gases containing silicon can also be used.
- the silicon-containing gas is introduced into the center of the tubular reactor 2 and is surrounded by a ring flow of an auxiliary gas so that the silicon-containing gas does not separate directly on the reactor walls.
- the auxiliary gas can generally be an inert gas. Hydrogen is particularly advantageous because it also forms during the decomposition of monosilane, for example. However, noble gases such as argon and other gases such as e.g. B. nitrogen or carbon dioxide can be used.
- the mixture ratio, ie volume or molar ratio, of monosilane to hydrogen can be between 1: 0 and 1: 100.
- the specific energy requirement per 1 kg of solid silicon for the process steps of thermal decomposition and mechanical compression was less than 20 kWh.
- the space-time yield per tubular reactor 2 was more than 1 kg of silicon powder per hour.
- the wall temperature of the reactor 2 is more than 400 ° C., in particular more than 800 ° C.
- the silicon powder can be compressed in one or two stages, advantageously in two stages.
- the contact forces in the compression device 10 were between 5 N / cm and 50 kN / cm.
- the silicon powder comes into contact only with the roller jacket 25 made of ceramic, so that this is ensured.
- the high-purity powdered silicon produced by the process according to the invention has good handling properties despite its powdery ground state and is suitable for the production of pure silicon melts from which silicon blocks or silicon crystals can be produced. It was found that with the defined composition of the pyrolysis gas consisting of hydrogen and monosilane, it is possible to produce silicon in powder form with high yields and very low energy consumption.
- the method is particularly characterized in that the silicon powder can be handled, packaged and shipped separately after the method has been carried out and can therefore be used with a time delay for the production of silicon blocks or silicon crystals.
- the silicon is characterized by a good melting behavior and a high purity despite the large surface and an unfavorable, small volume / surface ratio in comparison to Prime Poly silicon.
- the silicon powder produced by the thermal decomposition had a bulk density of 10 to 100 g / dm 3 .
- the silicon powder finally compacted by the device 10 had a bulk density of 100 to 1500 g / dm 3 , in particular from 200 to 1200 g / dm 3 , in particular from 250 to
- the total silicon powder contained no more than 10 19 atoms of foreign elements per 1 cm 3 silicon.
- the silicon powder consisted of crystalline particles with a primary particle size of 10 nm to 10000 nm, preferably 50 nm to 500 nm, typically about 200 nm.
- the compacted silicon powder consisted of aggregates with an aggregate size of 500 nm to 100000 nm, in particular 1000 nm to 10000 nm, typically about 4000 nm.
- the compressed silicon pieces from silicon aggregates had a largest dimension of 1 to 200 mm. They were irregular in shape, which could also be chopsticks.
- the silicon powder had a surface area of 1 to 50 m 2 / g.
- the compacted silicon powder had a total of no more than 10 atoms of transition metals per 1 cm 3 silicon.
- the silicon powder according to the invention has a brown color, whereas silicon granules produced by conventional processes are gray.
- the compressed silicon powder can be used for the production of polycrystalline silicon blocks for photovoltaics or for the production of silicon single crystals. Silicon wafers can be produced from the silicon according to the invention.
- the metal content of the compacted silicon powder corresponded to that of the starting product. No contamination was found. Due to the manufacturing process, the silicon did not contain any silicon oxide compounds on the surface of the silicon particles, which would have significantly increased the melting temperature of the silicon powder.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT05745255T ATE438589T1 (de) | 2004-06-04 | 2005-05-10 | Silizium sowie verfahren zu dessen herstellung |
EP05745255A EP1758819B1 (de) | 2004-06-04 | 2005-05-10 | Silizium sowie verfahren zu dessen herstellung |
JP2007513734A JP4848368B2 (ja) | 2004-06-04 | 2005-05-10 | 珪素と当該珪素を製造する方法 |
CN200580017512A CN100594178C (zh) | 2004-06-04 | 2005-05-10 | 硅及其生产方法 |
US11/569,774 US7758839B2 (en) | 2004-06-04 | 2005-05-10 | Silicon and method for producing the same |
DE502005007853T DE502005007853D1 (de) | 2004-06-04 | 2005-05-10 | Silizium sowie verfahren zu dessen herstellung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004027563A DE102004027563A1 (de) | 2004-06-04 | 2004-06-04 | Silizium sowie Verfahren zu dessen Herstellung |
DE102004027563.7 | 2004-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005118474A1 true WO2005118474A1 (de) | 2005-12-15 |
Family
ID=34968688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/005018 WO2005118474A1 (de) | 2004-06-04 | 2005-05-10 | Silizium sowie verfahren zu dessen herstellung |
Country Status (8)
Country | Link |
---|---|
US (1) | US7758839B2 (de) |
EP (1) | EP1758819B1 (de) |
JP (1) | JP4848368B2 (de) |
CN (1) | CN100594178C (de) |
AT (1) | ATE438589T1 (de) |
DE (2) | DE102004027563A1 (de) |
ES (1) | ES2328377T3 (de) |
WO (1) | WO2005118474A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009025559A1 (en) | 2007-08-17 | 2009-02-26 | Silansil As | Apparatus and method for compaction of silicon powder |
WO2010000347A2 (de) * | 2008-07-01 | 2010-01-07 | Sunicon Ag | Kompaktierung von silizium |
WO2010037694A2 (de) | 2008-09-30 | 2010-04-08 | Evonik Degussa Gmbh | Herstellung von solar-silicium aus siliciumdioxid |
DE102012218823A1 (de) | 2012-10-16 | 2014-04-17 | Evonik Degussa Gmbh | Verfahren zur Herstellung von hochreinem Siliziumnitrid |
DE102012218815A1 (de) | 2012-10-16 | 2014-04-17 | Evonik Industries Ag | Verfahren zur Reinigung von Phosphonsäure- bzw. Phosphonatgruppen enthaltenden Verbindungen |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004038717A1 (de) * | 2004-08-10 | 2006-02-23 | Joint Solar Silicon Gmbh & Co. Kg | Herstellungsverfahren für Reaktor zur Zersetzung von Gasen |
WO2006094714A1 (de) | 2005-03-05 | 2006-09-14 | Joint Solar Silicon Gmbh & Co. Kg | Reaktor und verfahren zur herstellung von silizium |
DE102007035757A1 (de) | 2007-07-27 | 2009-01-29 | Joint Solar Silicon Gmbh & Co. Kg | Verfahren und Reaktor zur Herstellung von Silizium |
DE102007050199A1 (de) * | 2007-10-20 | 2009-04-23 | Evonik Degussa Gmbh | Entfernung von Fremdmetallen aus anorganischen Silanen |
DE102009016014B3 (de) * | 2009-04-02 | 2010-09-30 | Sunicon Ag | Verfahren zur Gewinnung von reinem Silizium |
CN101555012B (zh) * | 2009-05-08 | 2011-01-12 | 六九硅业有限公司 | 一种制备多晶硅的方法 |
DE102009035041B3 (de) * | 2009-07-28 | 2011-01-05 | Sunicon Ag | Anlage zur Herstellung von Silizium-Granulat |
CN104354321A (zh) * | 2014-11-11 | 2015-02-18 | 成都利君科技有限责任公司 | 一种压球机 |
JP2020007196A (ja) * | 2018-07-11 | 2020-01-16 | 株式会社トクヤマ | シリコン微粒子の製造装置 |
JP7088774B2 (ja) * | 2018-07-31 | 2022-06-21 | 株式会社トクヤマ | シリコン微粒子製造装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354987A (en) * | 1981-03-31 | 1982-10-19 | Union Carbide Corporation | Consolidation of high purity silicon powder |
US4661335A (en) * | 1982-07-26 | 1987-04-28 | Rhone-Poulenc Specialites Chimiques | Novel silicon powder having high purity and density and method of making same |
US4883687A (en) * | 1986-08-25 | 1989-11-28 | Ethyl Corporation | Fluid bed process for producing polysilicon |
WO2004011372A1 (en) * | 2002-07-31 | 2004-02-05 | Sørlandets Teknologisenter As | Production of high grade silicon, reactor, particle recapture tower and use of the aforementioned |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1807714C2 (de) * | 1968-11-08 | 1971-01-04 | Degussa | Verfahren und Vorrichtung zum kontinuierlichen Vorverdichten sowie gleichzeitigen Formen von feinteiligen Stoffen |
JPS5767019A (en) * | 1980-10-13 | 1982-04-23 | Shin Etsu Handotai Co Ltd | Manufacture of pure silicon granule for manufacturing polycrystalline silicon by fluidized bed method |
JPS58145611A (ja) * | 1982-02-23 | 1983-08-30 | Shin Etsu Chem Co Ltd | シリコン粒子の粉砕、篩別方法 |
JPS605013A (ja) * | 1983-06-22 | 1985-01-11 | Denki Kagaku Kogyo Kk | シリコン粉末の製法及びその装置 |
CA1252356A (fr) * | 1983-11-09 | 1989-04-11 | Michel F.E. Couarc'h | Procede et dispositif de reinjection de particules envolees dans une chaudiere a combustible solide |
DE3431865A1 (de) * | 1984-08-30 | 1986-03-06 | Degussa Ag, 6000 Frankfurt | Verfahren und vorrichtung zum granulieren von pulverfoermigen stoffen |
DE3613778A1 (de) * | 1986-04-23 | 1987-10-29 | Heliotronic Gmbh | Verfahren zur herstellung von formkoerpern aus granulat auf der basis von silicium, germanium oder mischkristallen dieser elemente |
US4820587A (en) * | 1986-08-25 | 1989-04-11 | Ethyl Corporation | Polysilicon produced by a fluid bed process |
JPS63209715A (ja) * | 1987-02-26 | 1988-08-31 | デグツサ・アクチエンゲゼルシヤフト | 微細な、粉末状物質の圧縮法 |
DE3741846A1 (de) * | 1987-02-26 | 1989-01-26 | Degussa | Verfahren zum verdichten von pyrogen hergestellter kieselsaeure |
DE3842099A1 (de) * | 1987-12-14 | 1989-06-22 | Union Carbide Corp | Wirbelschichtreaktor zur herstellung von polykristallinem silicium |
US5139762A (en) * | 1987-12-14 | 1992-08-18 | Advanced Silicon Materials, Inc. | Fluidized bed for production of polycrystalline silicon |
DE19859288A1 (de) * | 1998-12-22 | 2000-06-29 | Bayer Ag | Agglomeration von Siliciumpulvern |
DE10061682A1 (de) * | 2000-12-11 | 2002-07-04 | Solarworld Ag | Verfahren zur Herstellung von Reinstsilicium |
JP2004136294A (ja) * | 2002-10-15 | 2004-05-13 | Hitachi Metals Ltd | セラミックス製ロール |
US7247013B2 (en) * | 2003-10-20 | 2007-07-24 | Roland Edward J | Powder compacting apparatus for continuous pressing of pharmaceutical powder |
DE102004027564A1 (de) * | 2004-06-04 | 2005-12-22 | Joint Solar Silicon Gmbh & Co. Kg | Verdichtungs-Vorrichtung |
-
2004
- 2004-06-04 DE DE102004027563A patent/DE102004027563A1/de not_active Withdrawn
-
2005
- 2005-05-10 JP JP2007513734A patent/JP4848368B2/ja not_active Expired - Fee Related
- 2005-05-10 EP EP05745255A patent/EP1758819B1/de not_active Not-in-force
- 2005-05-10 ES ES05745255T patent/ES2328377T3/es active Active
- 2005-05-10 CN CN200580017512A patent/CN100594178C/zh not_active Expired - Fee Related
- 2005-05-10 AT AT05745255T patent/ATE438589T1/de not_active IP Right Cessation
- 2005-05-10 WO PCT/EP2005/005018 patent/WO2005118474A1/de not_active Application Discontinuation
- 2005-05-10 DE DE502005007853T patent/DE502005007853D1/de active Active
- 2005-05-10 US US11/569,774 patent/US7758839B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354987A (en) * | 1981-03-31 | 1982-10-19 | Union Carbide Corporation | Consolidation of high purity silicon powder |
US4661335A (en) * | 1982-07-26 | 1987-04-28 | Rhone-Poulenc Specialites Chimiques | Novel silicon powder having high purity and density and method of making same |
US4883687A (en) * | 1986-08-25 | 1989-11-28 | Ethyl Corporation | Fluid bed process for producing polysilicon |
WO2004011372A1 (en) * | 2002-07-31 | 2004-02-05 | Sørlandets Teknologisenter As | Production of high grade silicon, reactor, particle recapture tower and use of the aforementioned |
Non-Patent Citations (1)
Title |
---|
SANTANA C J ET AL: "THE EFFECTS OF PROCESSING CONDITIONS ON THE DENSITY AND MICROSTRUCTURE OF HOT-PRESSED SILICON POWDER", JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, vol. 31, 1996, pages 4985 - 4990, XP000892023, ISSN: 0022-2461 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009025559A1 (en) | 2007-08-17 | 2009-02-26 | Silansil As | Apparatus and method for compaction of silicon powder |
US8418605B2 (en) | 2007-08-17 | 2013-04-16 | Silansil As | Apparatus and method for compaction of silicon powder |
WO2010000347A2 (de) * | 2008-07-01 | 2010-01-07 | Sunicon Ag | Kompaktierung von silizium |
WO2010000347A3 (de) * | 2008-07-01 | 2010-04-29 | Sunicon Ag | Kompaktierung von silizium |
CN102076449A (zh) * | 2008-07-01 | 2011-05-25 | 苏尼康股份公司 | 硅的压制 |
WO2010037694A2 (de) | 2008-09-30 | 2010-04-08 | Evonik Degussa Gmbh | Herstellung von solar-silicium aus siliciumdioxid |
DE102012218823A1 (de) | 2012-10-16 | 2014-04-17 | Evonik Degussa Gmbh | Verfahren zur Herstellung von hochreinem Siliziumnitrid |
DE102012218815A1 (de) | 2012-10-16 | 2014-04-17 | Evonik Industries Ag | Verfahren zur Reinigung von Phosphonsäure- bzw. Phosphonatgruppen enthaltenden Verbindungen |
WO2014060250A1 (de) | 2012-10-16 | 2014-04-24 | Evonik Degussa Gmbh | Verfahren zur herstellung von hochreinem siliziumnitrid |
WO2014060247A1 (de) | 2012-10-16 | 2014-04-24 | Evonik Industries Ag | Verfahren zur reinigung von phosphonsäure- bzw. phosphonatgruppen enthaltenden verbindungen |
Also Published As
Publication number | Publication date |
---|---|
CN100594178C (zh) | 2010-03-17 |
JP4848368B2 (ja) | 2011-12-28 |
US7758839B2 (en) | 2010-07-20 |
EP1758819B1 (de) | 2009-08-05 |
JP2008501603A (ja) | 2008-01-24 |
DE102004027563A1 (de) | 2005-12-22 |
ATE438589T1 (de) | 2009-08-15 |
DE502005007853D1 (de) | 2009-09-17 |
US20080279748A1 (en) | 2008-11-13 |
EP1758819A1 (de) | 2007-03-07 |
ES2328377T3 (es) | 2009-11-12 |
CN1960944A (zh) | 2007-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1758819B1 (de) | Silizium sowie verfahren zu dessen herstellung | |
EP1750931B1 (de) | Verdichtungs-vorrichtung und verwendung einer solchen vorrichtung | |
DE102010008162B4 (de) | Verfahren für die Herstellung von Quarzglas für einen Quarzglastiegel | |
DE3013319C2 (de) | Verfahren zum Herstellen von Silicium und dessen Verwendung in Solarzellen | |
EP0084369B1 (de) | Dichte Formkörper aus polykristallinem, hexagonalem Bornitrid und Verfahren zu ihrer Herstellung durch isostatisches Heisspressen | |
DE60021579T2 (de) | Verfahren zur herstellung von feuerfestpulver mit niedrigen sauerstoffgehalt zur verwendung in der pulvermetallurgie | |
DE3241979C2 (de) | Verfahren zur Herstellung von kubischem Bornitrid unter Verwendung einer Verbindung vom Bornitridtyp als Katalysator | |
DE2759243A1 (de) | Polykristalliner siliziumnitrid- sinterkoerper und verfahren zu dessen herstellung | |
EP0956173A1 (de) | Metallpulver-granulat, verfahren zu seiner herstellung sowie dessen verwendung | |
DE2147708C2 (de) | Verfahren zur Herstellung keramischer Strukturen von Urandioxid aus gasförmigen Uranhexefluorid | |
DE2548740C2 (de) | Verfahren zur Herstellung von Körpern aus Siliziumnitrid | |
EP0131884A2 (de) | Feuerfeste, elektrisch leitfähige Mischwerkstoffe und Verfahren zu ihrer Herstellung durch isostatisches Heisspressen. | |
DE2700208A1 (de) | Polykristalliner siliziumnitrid- koerper und verfahren zu dessen herstellung | |
DE2909104A1 (de) | Sinternde siliziumkarbidpulver und verfahren zu deren herstellung | |
EP0482808B1 (de) | Verfahren zum Herstellen von Chrom hoher Reinheit | |
WO2002083562A1 (de) | Methode zur herstellung von magnesiumdiborid sowie von magnesiumdiborid-formkörpern aus magnesiumhybrid und elementarem bor mittels puls-plasma-synthese | |
EP0693456A1 (de) | Verfahren zur Herstellung von spärischen Nitrid- und/oder Carbonidpulvern des Titans | |
DE2228714C2 (de) | ||
DE1533319B1 (de) | Verfahren zur pulvermetallurgischen Herstellung poroeser Zinkkoerper aus oberflaechlich oxydierten Zinkteilchen | |
DE2523700A1 (de) | Herstellung von urannitrid | |
DE3442370A1 (de) | Verfahren zur herstellung von siliciumtetrachlorid | |
WO2023062154A1 (de) | Verfahren zur herstellung von silizium-pellets und zum aufschmelzen von hergestellten pellets | |
DE3330597C2 (de) | Verfahren zur Herstellung eines Legierungszusatzes für Aluminium-Leichtbauteile und dessen Verwendung | |
DE963403C (de) | Hochkorrosionsfeste Koerper und Verfahren zu deren Herstellung | |
JPS6016391B2 (ja) | 熱間鍛造法による高純度、高強度ZnSe焼結体の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005745255 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11569774 Country of ref document: US Ref document number: 200580017512.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007513734 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005745255 Country of ref document: EP |