WO2005114287A1 - 顕微鏡装置 - Google Patents

顕微鏡装置 Download PDF

Info

Publication number
WO2005114287A1
WO2005114287A1 PCT/JP2005/009443 JP2005009443W WO2005114287A1 WO 2005114287 A1 WO2005114287 A1 WO 2005114287A1 JP 2005009443 W JP2005009443 W JP 2005009443W WO 2005114287 A1 WO2005114287 A1 WO 2005114287A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
focus control
image
optical path
sample
Prior art date
Application number
PCT/JP2005/009443
Other languages
English (en)
French (fr)
Inventor
Masafumi Oshiro
Koji Ichie
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to JP2006513760A priority Critical patent/JPWO2005114287A1/ja
Publication of WO2005114287A1 publication Critical patent/WO2005114287A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors

Definitions

  • the present invention relates to a microscope device used for acquiring an image of a sample.
  • Patent Document 1 Japanese Patent No. 3390106
  • Patent Document 2 JP-A-9-230250
  • Patent Document 3 JP-A-8-21961
  • Patent Document 4 JP-A-11-264937
  • the microscope described in Document 1 includes a line sensor installed in a state of being inclined with respect to the optical axis, and a rotating reflecting mirror arranged in front of the line sensor. Is used.
  • the sample is irradiated with laser light, and the focus is controlled with reference to the amount of reflected laser light incident on the line sensor via the reflecting mirror.
  • the microscope described in Document 2 uses a photosensor that detects the amount of light and a thickness change glass disposed in front of the photosensor. Then, similarly to the above-mentioned document 1, the sample is irradiated with laser light, and the focus is controlled with reference to the amount of reflected laser light incident on the photosensor via the thickness change glass.
  • an imaging device for acquiring an image of a sample includes a vertical position perpendicular to an optical axis and a tilt inclined at a predetermined angle.
  • the focus is controlled by changing the mounting angle depending on the position.
  • the present invention has been made to solve the above problems, and has as its object to provide a microscope apparatus capable of appropriately performing focus control when acquiring an image of a sample. Means for solving the problem
  • the microscope apparatus comprises (1) a light guide optical system for guiding an optical image of a sample to a focus control optical path used for focus control, and (2) a focus control system.
  • Focus control imaging means installed on the control optical path to acquire a two-dimensional image from the optical image guided to the focus control optical path, and (3) analyzing the image acquired by the focus control imaging means And a focus control means for acquiring focus control information for imaging the sample based on the analysis result.
  • the focus control imaging means is provided along a predetermined change direction in the imaging plane.
  • the first imaging means is configured to change the optical path length in the light guide optical system, and the optical path length is changed along the changing direction on the imaging surface and at a different rate from the first imaging means.
  • an imaging unit capable of acquiring a two-dimensional image is used as an imaging unit used for focus control on a sample from which an image is to be acquired.
  • the imaging means is arranged so that the optical path length for guiding the sample force is changed in a predetermined direction. According to the configuration in which focus control is performed by analyzing a two-dimensional image acquired using such an imaging unit, it is not necessary to irradiate the sample with laser light for focus measurement. Therefore, as a whole of the microscope device including the focus measuring portion, the device configuration and the imaging operation can be simplified.
  • the first imaging unit and the second imaging unit configured so that the optical path length changes at different rates of change along the predetermined change direction constitute an imaging unit for focus control. are doing.
  • the first imaging means and the second imaging means constituting the focus control imaging means are configured such that the optical path lengths change in opposite directions along a predetermined change direction. Thereby, the accuracy of the obtained focus control information can be improved.
  • the light guide optical system guides the optical image of the sample to a focus control optical path used for focus control and an image acquisition optical path used for imaging the sample.
  • Image acquisition means which is configured on the image acquisition optical path and is used to acquire a one-dimensional or two-dimensional image from the light image guided to the image acquisition optical path, and an image acquisition means for image acquisition Image acquisition control means for controlling the acquisition of an image by the computer.
  • Image acquisition control means may further control the setting of the imaging position with respect to the sample.
  • the light guide optical system includes a light branching unit that branches a light image of the sample into an image acquisition optical path and a focus control optical path, and the image acquisition imaging unit includes a focus control optical path. It may be configured separately from the imaging means. This is a configuration in which separate imaging devices are used as imaging means for focus control and image acquisition.
  • the light guide optical system is configured such that the same optical path as the focus control optical path is used as an image acquisition optical path, and the image acquisition imaging means uses one imaging device included in the focus control imaging means. It may be configured. This is a configuration in which the same imaging device is used as an imaging means for focus control and image acquisition.
  • each of the first imaging means and the second imaging means has an optical path length along a change direction. It is possible to use a configuration having an image pickup device installed in a state where the image pickup surface is inclined at a predetermined angle with respect to the focus control optical path so as to change. According to such a configuration, it is possible to preferably obtain an image for focus control.
  • each of the first imaging unit and the second imaging unit may include an imaging device and an optical path installed at a predetermined position with respect to an imaging surface of the imaging device so that an optical path length changes along a change direction.
  • a configuration having a length changing unit can be used. Even with such a configuration, it is possible to appropriately obtain an image for focus control.
  • an optical path length changing means for example, there is an optical path length changing member formed in a ⁇ edge shape with a predetermined gradient and transmitting light.
  • the focus control imaging unit has a single imaging device, and the first imaging unit is located at a predetermined position with respect to the first imaging region on the imaging surface of the imaging device along the change direction. It is configured using first optical path length changing means installed so as to change the optical path length, and the second imaging means is located at a predetermined position with respect to the second imaging area on the imaging surface of the imaging device, along the changing direction and It may be configured using a second optical path length changing means installed such that the optical path length changes at a change rate different from that of the first optical path length changing means. In such a configuration, since the focus control imaging unit is configured by a single imaging device, the configuration of the device can be simplified.
  • the first optical path length changing unit and the second optical path length changing unit are moved between a position on the focus control optical path with respect to the imaging surface of the imaging device and a position outside the focus control optical path force.
  • a configuration including a driving unit for driving can be used.
  • the imaging device has an imaging surface that is used when capturing an image of a sample and a focus measurement area that includes a first imaging area and a second imaging area and functions as an imaging unit for focus control. And an image acquisition area functioning as an image acquisition means for image acquisition.
  • the imaging means for focus control and image acquisition with a single imaging device.
  • the first optical path length changing means and the second optical path length changing means are installed so that the optical path lengths change along the changing direction and in opposite directions. Is preferred. Thereby, the accuracy of the acquired focus control information can be improved.
  • the focus control unit determines the direction of change in the image acquired by the focus control imaging unit! It is preferable to analyze the change in contrast of the image and obtain focus control information based on the analysis result. As a result, focus control of imaging using a two-dimensional image based on the optical image of the sample can be realized with high accuracy.
  • the focus control unit cuts out a measurement target image having a predetermined width along a change direction from the image acquired by the focus control imaging unit, and outputs the measurement target image and the measurement target image. It is preferable to use a configuration in which the image contrast change is analyzed by a difference absolute value image of the shifted image obtained by shifting the image in the change direction and the vertical direction.
  • the focus control means determines whether or not the image acquired by the focus control imaging means is an image applicable to acquisition of focus control information, and analyzes the image if it is determined that the image is applicable. It is preferable to obtain focus control information based on the analysis result. Thereby, it is possible to prevent focus control from being performed using an inappropriate image, and to appropriately perform focus control of imaging.
  • the first imaging unit and the second imaging unit are configured so that the optical path length changes at different rates of change along the predetermined changing direction, and can obtain a two-dimensional image.
  • Focus control imaging means having means for measuring the focus using two types of images acquired by these imaging means, thereby accurately obtaining focus control information when acquiring an image of a sample. As a result, it is possible to suitably perform focus control.
  • FIG. 1 is a block diagram showing a configuration of a first embodiment of a microscope device.
  • FIG. 2 is a block diagram showing an example of a configuration of a focus control unit.
  • FIG. 3 is a flowchart showing an example of a focus control method when a single imaging device is used.
  • FIG. 4 is a schematic diagram showing a focus control method shown in FIG. 3.
  • FIG. 5 is a flowchart showing an example of a focus control method when two imaging devices are used.
  • FIG. 6 is a flowchart showing another example of the focus control method when a single imaging device is used.
  • FIG. 7 is a flowchart showing another example of the focus control method when a single imaging device is used.
  • FIG. 8 is a diagram showing an example of a measurement target image used for focus control.
  • FIG. 9 is a diagram showing an example of a measurement target image used for focus control.
  • FIG. 10 is a diagram showing an example of a measurement target image used for focus control.
  • FIG. 11 is a diagram showing an example of a measurement target image used for focus control.
  • FIG. 12 is a diagram showing an example of a measurement target image used for focus control.
  • FIG. 13 is a diagram showing a change in contrast in the measurement target images shown in FIGS. 8 to 12.
  • FIG. 14 is a diagram showing a contrast change in the measurement target images shown in FIG. 8 to FIG.
  • FIG. 15 is a block diagram showing a configuration of a second embodiment of the microscope apparatus.
  • FIG. 16 is a perspective view showing an example of a configuration of an optical path length changing member.
  • FIG. 17 is a block diagram showing a configuration of a third embodiment of the microscope apparatus.
  • FIG. 18 is a flowchart showing an example of a focus control method.
  • FIG. 19 is a block diagram showing a configuration of a fourth embodiment of the microscope apparatus.
  • FIG. 20 is a block diagram showing a configuration of a fifth embodiment of the microscope apparatus.
  • FIG. 21 is a perspective view showing an example of a configuration of an imaging device and an optical path length changing member.
  • FIG. 22 is a flowchart showing an example of a focus control method.
  • FIG. 23 is a flowchart showing another example of the focus control method.
  • FIG. 24 is a block diagram showing a configuration of a sixth embodiment of the microscope apparatus.
  • FIG. 25 is a diagram showing an optical branching optical system for an imaging device for focus control.
  • 10 irradiation light source
  • 11 condensing lens
  • 15 sample stage (XY stage), 16 to XY stage drive unit
  • 20 light guide optical system
  • 21 objective lens 22 piezo actuator, 23 piezo drive, 27a, 27b beam spitter, 28, 29a, 29b imaging lens, 29c drive motor, 31, 41 photodetector, 33 34, 43, 44, 51- CCD camera, 43a, 44a, 51a, 51b, 53a, 53b: Optical path length changing member
  • 53c Optical path length adjusting member, 52 ...
  • Driving motor 36, 46, 56 ⁇ Image acquisition control unit, 37, 47, 57 ⁇ Focus control unit, 37a—AZD conversion 37b... Image memory, 37c... Data processing unit, 37d... Data storage unit, 80 ⁇ Irradiation light source, 81 ⁇ ⁇ Lens, 85 ⁇ Irradiation optics, 86 ⁇ Dichroic mirror, 87 ⁇ Excitation filter, 88... Cut filter.
  • FIG. 1 is a block diagram showing a configuration of a first embodiment of a microscope apparatus according to the present invention.
  • This microscope device is configured as a transmission type microscope used for acquiring an image of the sample S.
  • the sample S for which an image is to be acquired is, for example, a biological sample and is placed on the sample stage 15.
  • the sample stage 15 also has a movable XY stage force in the X and y directions (horizontal direction). By driving the XY stage 15 in the xy plane, the imaging position with respect to the sample S is set or set. Be changed.
  • the drive of the sample stage 15 is controlled by an XY stage drive unit 16.
  • a condensing lens 11 for converging light is installed below the sample stage 15.
  • the sample S on the sample stage 15 irradiated with light from the irradiation light source 10 is A light guiding optical system 20 for guiding an optical image of the sample S is provided above the die 15.
  • the light guide optical system 20 includes an objective lens 21 on which light from the sample S is incident, and beam splitters 27a and 27b disposed downstream of the objective lens 21.
  • the beam splitters 27a and 27b are optical splitting means for splitting the optical image of the sample S into an optical path for image acquisition and an optical path for focus control.
  • the optical path through which the light from the objective lens 21 passes through the beam splitters 27a and 27b is the optical path for image acquisition used when imaging the sample S. Further, an optical path in which light from the objective lens 21 is reflected by the beam splitter 27a and an optical path in which light is reflected by the beam splitter 27b are used for focus control used for acquiring focus control information when imaging the sample S. It is an optical path.
  • the beam splitter 27a at the front stage and the beam splitter 27b at the rear stage are each arranged at an angle of about 45 ° with respect to the optical path for image acquisition, and each of the optical paths for focus control from the beam splitters 27a and 27b. Is substantially orthogonal to the image acquisition optical path.
  • the focus control is the optical axis direction of the microscope optical system including the irradiation light source 10 and the objective lens 21, the direction along the optical path for image acquisition is the z-axis direction, and the focus control is orthogonal to the optical path for image acquisition.
  • the direction along the optical path for use is the y-axis direction, and the direction orthogonal to the y-axis and z-axis is the x-axis direction.
  • a piezo actuator 22 is provided for the objective lens 21.
  • the piezo actuator 22 is an objective lens driving unit that drives the objective lens 21 in the z-axis direction (vertical direction, optical axis direction).
  • the driving of the piezo actuator 22 is controlled by a piezo driving unit 23.
  • the focus of imaging in the image acquisition of the sample S can be adjusted.
  • a photodetector 31 On the optical path for image acquisition, a photodetector 31 is provided at a position corresponding to the image plane of the optical image of the sample S that has passed through the beam splitters 27a and 27b.
  • the photodetector 31 is an image-capturing image-pickup means used for obtaining an image by an optical image branched to an image-capturing optical path by the beam splitters 27a and 27b.
  • the photodetector 31 is a linear sensor capable of acquiring a one-dimensional image of the sample S, or an image sensor capable of acquiring a two-dimensional image. Is used.
  • an imaging device 33 is installed at a position corresponding to the image plane of the optical image of the sample S reflected by the beam splitter 27a.
  • an imaging device 34 is installed at a position corresponding to the image forming plane of the optical image of the sample S reflected by the beam splitter 27b.
  • Each of the imaging devices 33 and 34 has the power of a CCD camera capable of acquiring a two-dimensional image.
  • the CCD cameras 33 and 34 are first and second image pickup means for obtaining an image based on the optical image split by the beam splitters 27a and 27b, and are used in the present embodiment by these cameras 33 and 34.
  • a focus control imaging unit is configured. That is, the microscope apparatus shown in FIG. 1 uses the two-dimensional image of the sample S acquired by the CCD cameras 33 and 34 to obtain focus control information when the sample S is imaged by the photodetector 31. Acquisition and focus control based on the obtained focus control information are performed.
  • the CCD camera 33 which is the first imaging means of the focus control imaging means, has an imaging plane substantially coincident with an xz plane orthogonal to the optical path, and has an angle of inclination with the z-axis direction as a tilt direction. It is installed at an angle to the optical path at ⁇ .
  • the optical path length in the light guiding optical system 20 for guiding light from the sample S to the CCD camera 33 changes along the z-axis direction with the z-axis direction as the changing direction. It's like that.
  • the CCD camera 34 which is the second imaging means of the focus control imaging means, has an imaging surface substantially coincident with an xz plane orthogonal to the optical path, and has an angle ⁇ with the z-axis direction as an inclination direction. On the other hand, it is installed so as to be tilted in the opposite direction to the camera 33.
  • the CCD camera 3 4 imaging plane as the changing direction in the z-axis direction, together along an optical path length force S z-axis direction in the light guide optical system 20 in which light is directed from the sample S to the CCD camera 34 It changes in the opposite direction to the camera 33.
  • the image acquisition control unit 36 is a control unit that controls an image acquisition operation of the sample S by controlling the acquisition of an image of the sample S and the setting of an imaging position for the sample S. Specifically, the image acquisition control unit 36 controls image acquisition by the photodetector 31. Also, the control unit 36 By controlling the drive of the sample stage 15 via the stage drive unit 16, the imaging position on the optical axis of the microscope optical system is set or changed with the sample S placed on the sample stage 15.
  • the focus control unit 37 analyzes the images acquired by the CCD cameras 33 and 34 by a predetermined analysis method. Then, based on the analysis result, focus control information when the sample S is imaged by the photodetector 31 is obtained. Alternatively, further, the focus control unit 37 controls the focus of imaging by the photodetector 31 based on the obtained focus control information. In the present embodiment, the focus control unit 37 controls the driving of the piezo actuator 22 via the piezo driving unit 23 to adjust the position of the objective lens 21 in the z-axis direction, thereby controlling the focus of imaging.
  • the cameras 33 and 34 which are the focus control imaging means, are each arranged at an angle to the optical axis of the focus control optical path as described above.
  • the two-dimensional images acquired by the CCD cameras 33 and 34 are images in which the deviation from the focal position changes along the z-axis direction.
  • Focus control information can be obtained based on the amount of correction required for this purpose.
  • the directions in which the deviation from the focal position changes are opposite to each other.
  • FIG. 2 is a block diagram showing an example of a specific configuration of the focus control unit 37.
  • the focus control unit 37 includes an AZD converter 37a, an image memory 37b, a data processing unit 37c, and a data storage unit 37d.
  • the data signals of the images obtained by the CCD cameras 33 and 34 are AZD-converted by the AZD converter 37a and then stored in the image memory 37b as image data for focus control.
  • the data processing unit 37c reads out image data that also requires power from the image memory 37b, analyzes the data, obtains focus control information for imaging the sample S by the photodetector 31, based on the analysis result, and acquires the data.
  • the information is stored in the storage unit 37d. Further, when the image of the sample S is actually acquired by the photodetector 31, the data processing unit 37c refers to the acquired focus control information, and
  • the moving section 23 is controlled to perform focus control of imaging.
  • CCD cameras 33 and 34 capable of acquiring a two-dimensional image are used as imaging means used for focus control on the sample S to be acquired.
  • the cameras 33 and 34 are arranged so that the optical path under which the optical image is guided from the sample S is changed in a predetermined direction. According to such a configuration in which focus control is performed by analyzing a two-dimensional image acquired using the cameras 33 and 34, it is not necessary to irradiate the sample with laser light for focus measurement. Therefore, as a whole of the microscopic device including the focus measuring portion, the device configuration and the imaging operation can be simplified.
  • the CCD camera 33 as the first imaging unit and the CCD as the second imaging unit are configured so that the optical path lengths change in opposite directions along a predetermined change direction.
  • the camera 34 constitutes a focus control imaging unit.
  • two CCD cameras 33 and 34 installed in a state where they are tilted in opposite directions with the z-axis direction as the tilt direction are used for acquiring focus control information.
  • the two cameras 33 and 34 it is preferable to arrange the two cameras 33 and 34 so that the inclinations are symmetric with respect to the optical axis.
  • the acquisition of the focus control information by the focus control unit 37 and the actual execution of the focus control are performed simultaneously with the image acquisition by the photodetector 31 in parallel with the focus measurement by the cameras 33 and 34. It is possible to do.
  • the focus control unit 37 obtains the focus control information from the images acquired by the cameras 33 and 34, and at the same time, can use the information to perform feedback control of the focus of imaging.
  • the real-time focus technology that performs the focus control using the two-dimensional image of the sample S acquired in step 4 in real time is effective in accelerating the image acquisition work of the sample S.
  • the development of virtual slides that digitize the entire biological sample as image data has been promoted.In order to digitize such samples at high speed, focus control in real time is extremely difficult. It becomes important.
  • the image acquisition by the photodetector 31 and the focus measurement by the cameras 33 and 34 may be separately performed.
  • the focus control is executed with reference to the map, and the image acquisition by the photodetector 31 may be performed while scanning the imaging position on the sample S.
  • the photodetector 31 for acquiring the image is unnecessary.
  • the light guide optical system 20 may be configured to guide the optical image of the sample S to the focus control optical path. In this case, a light splitting unit such as a beam splitter may not be provided if unnecessary.
  • the optical path lengths of the CCD cameras 33 and 34 constituting the focus control imaging means are opposite to each other along the predetermined change direction as described above. It is configured to change. Thereby, the accuracy of the acquired focus control information can be improved.
  • the first imaging means and the second imaging means of the focus control imaging means may be configured so that the optical path lengths change at different rates of change along a predetermined change direction.
  • the focus control from the sample S to the photodetector 31 is performed by controlling the driving of the piezo actuator 22 to adjust the position of the objective lens 21 in the z-axis direction.
  • the focus knock control using the images acquired by the CCD cameras 33 and 34 can be reliably performed at high speed.
  • a focus control is not limited to the configuration for driving the objective lens 21, but may be a configuration for driving the sample stage 15 on which the sample S is mounted, for example, in the z-axis direction.
  • a drive mechanism for driving the objective lens 21 and the sample stage 15 for example, a stepping motor or the like can be used in addition to the piezo actuator.
  • an imaging device for acquiring a two-dimensional image of the sample S used for focus control may be, for example, a CMOS type imaging device or the like capable of acquiring a two-dimensional image. It is possible to use the imaging device of the above.
  • FIG. 3 is a flowchart showing a specific example of the focus control method.
  • FIG. 4 is a schematic diagram showing the focus control method shown in FIG. The focus control described below is performed by the focus control unit 37 in the configuration shown in FIG.
  • the CCD camera 33 uses the a pixel in the z-axis direction, which is the tilt direction of the imaging surface, and the b pixel in the X-axis direction, which is perpendicular to the tilt. Then, a two-dimensional image X of the sample S composed of the aXb pixels is obtained (step S101). Then, from the image X, an image X ′ to be measured is cut out along the tilt direction, which has a full width in the tilt direction (a pixel) and a constant width in the tilt direction and vertical direction (b ′ pixel) (S102).
  • a shifted image X ′′ is created by shifting the cut-out measurement target image X ′ by a fixed pixel (s pixels) in the vertical direction with respect to the tilt (S103). Then, a difference (X'—X ") is calculated between the two, and the absolute value IX'-X" I is calculated to create a difference absolute value image Y (S104).
  • the difference image Y is an image of aX (b'-s) pixels because the pixel component obtained by shifting the measurement target image X 'becomes an invalid pixel.
  • the optical magnification and the numerical aperture NA of the objective lens are It is preferable to select an appropriate number of pixels in consideration of the above.
  • the difference absolute value image Y and the data sequence Z averaged in the inclination and the vertical direction correspond to the absolute value of the differential of the image component at each position of the measurement target image X along the inclination direction.
  • the contrast pattern of the sample S from which an image is to be acquired is uniform, in an image acquired by the camera 33, the more the image is focused, the greater the image contrast. Also, when the contrast of an image is large, the absolute value of the differential of the corresponding image component becomes large. Therefore, information about focus control can be obtained by performing analysis for obtaining a change in data value corresponding to a change in contrast of an image in the tilt direction in the data string Z. Further, by referring to the analysis result, it is possible to suitably execute the focus control of the imaging.
  • a threshold m on the negative side and a threshold n on the positive side are set with respect to the sum T, and the sum T is set to these thresholds m to n
  • this method as shown in FIG. 3, it is determined whether the sum T is smaller than the negative threshold value m (T ⁇ th threshold value m) (S107). Then, when it is smaller than the threshold value m, focus control is performed so as to raise the focus position (S108). Also, the sum T is positive It is determined whether the threshold value is larger than the threshold value n (T> threshold value n) (S109). Then, when it is larger than the threshold value n, focus control is performed so as to lower the focus position (S110).
  • the data string Z is created for each pixel.
  • the specific method of creating the data string Z is not limited to the above method.
  • a data sequence Z may be created by performing a process of interlacing by sampling for each of a plurality of pixels. In such a method, the focus control can be performed at higher speed.
  • FIG. 5 is a flowchart showing an example of the focus control method.
  • the focus control described below is performed by the focus control unit 37 in the configuration shown in FIG.
  • the specific method of analyzing the image is the same as the focus control method shown in FIGS.
  • X are obtained (step S501). Then, from these images X and X,
  • the measurement target images X ′ and X along the direction are cut out (S502). These measurement target images X
  • X ′ are images tilted in the opposite direction about the z-axis direction, as described above.
  • the address at the center position is set to 0, and an address is assigned to the data at each position. Then, the product of the address and data in the data strings Z 1 and Z 2 is calculated, and their sum ⁇ , T
  • the influence of the contrast pattern of the sample S itself can be reduced.
  • the focus control method described above when only obtaining the focus control information such as creating a map of the focus control information, the obtained information on the focus control is stored in the data storage unit. It may be used for focus control as needed.
  • the data strings Z 1 and Z 2 are created for each pixel.
  • the specific method of creating the force data strings Z 1 and Z 2 is not limited to the above method. For example, multiple
  • Data strings Z 1 and Z 2 may be created by performing sampling thinning processing for each pixel.
  • the focus control can be performed at higher speed.
  • FIGS. 6 and 7 various methods other than the above-described methods can be used as shown in FIGS. 6 and 7 below. Note that the flow charts shown in Figs. 6 and 7 correspond to Fig. 3 when using a single CCD camera, respectively, and also for the focus control method shown in Fig. 5 when using two CCD cameras. Are equally applicable.
  • FIG. 6 is a flowchart showing another example of the focus control method.
  • steps S201 to S210 are the same as steps S101 to S110 in the control method of FIG.
  • the step S204 of creating the absolute difference image Y and the data of the tilt direction A step S211 for removing noise is provided between the step S205 and the step S205 for creating the data sequence Z.
  • the noise level p is set for the data value of each pixel in order to remove the influence on focus control such as image noise in the difference absolute value image Y.
  • FIG. 7 is a flowchart illustrating another example of the focus control method.
  • steps S301 to S310 are the same as steps S101 to S110 in the control method of FIG.
  • the focus control unit 37 determines whether or not the image obtained by the CCD camera 33 is an image that can be applied to the control of the focus of the image. Then, when it is determined that the image can be applied, the image is analyzed, and the focus of imaging is controlled based on the analysis result!
  • steps S311 to S313 are added between step S302 of cutting out the image X ′ to be measured and step S303 of creating the shift image X ′′.
  • the image X is divided into blocks, the standard deviation of each block is calculated, and a standard deviation data sequence SD is created.
  • the average value Av is calculated (S311), and the standard deviation and the average value are calculated.
  • steps S321 and S322 are added between step S305 for creating the data string Z in the inclination direction and step S306 for calculating the sum T of the product of the address and data of the data string Z. are doing.
  • an average value is obtained from the inclination and b' pixels in the vertical direction to create a data string A of a pixels in the inclination direction and a data string A for the data string Z. It is determined whether or not the average value of the average Z data string A (corresponding to the change amount Z brightness, that is, the contrast) is smaller than the threshold value r (the average value Z of the ZA and the threshold value r) (S321).
  • the threshold value r the average value Z of the ZA and the threshold value r
  • Focus control of imaging can be performed appropriately by preventing
  • the analysis of the contrast change of the focus control image is performed by analyzing the absolute difference between the measurement target image cut out at a predetermined width along the tilt direction of the imaging surface and the shifted image. This is done using a value image.
  • each data string A and Z are created for each pixel.
  • the specific creation method of these data strings is not limited to the above method.
  • each data string may be created by performing the interlacing process by sampling for each of a plurality of pixels. In such a method, the focus control can be performed at higher speed.
  • the blocks that divide image X ′ in steps S311 and S312 are not limited to the two-dimensional matrix and may be one-way block divisions.
  • the size of the block is preferably set to an appropriate size in consideration of the optical magnification, the size of the CCD camera, the number of pixels, and the like.
  • the focus control information on the imaging position where the focus position cannot be determined is obtained by referring to the focus control information on the other imaging positions. May be set.
  • the focus control information on the imaging position where the focus position cannot be determined is regarded as the same as the arbitrary focus control information obtained by a series of focus measurements and stored in the data storage unit 37d or the latest (latest) focus control information. And a method of executing focus control.
  • focus control for imaging can be realized with high accuracy by using a method of analyzing a change in contrast of an image.
  • a method other than using the contrast change may be used.
  • the focus control method using the above-described microscope device will be described.
  • the first CCD camera 33 is referred to as camera 1
  • the second CCD camera 34 is referred to as camera 2.
  • a pathological sample of an oral sarcoma mass is used as the sample S.
  • This pathological sample is set on a microscope (NIKONTMD, 20X, NAO.75), and a CCD camera (ORCA, manufactured by Hamamatsu Photonitas) is arranged.
  • the focus is measured.
  • both ends of the imaging surface of the CCD in the tilt direction have a depth of about 3.7 mm in the optical axis direction. This is because the change in the optical axis direction on the sample S is a square of the magnification on the imaging surface, and is converted to a depth on the sample of about 9 ⁇ m.
  • Focus measurement was performed at five points, 4 ⁇ , one 2 ⁇ , ⁇ ⁇ , and 2 ⁇ , where the deviation from the new focus position was 4 ⁇ .
  • FIGS. 8 to 12 are diagrams showing examples of measurement target images used for focus control.
  • the images (a) and (b) in Fig. 8 are obtained for the case where the focal position shift is 4 m, (a) the image X 'to be measured by camera 1, and (b) the image to be measured by camera 2.
  • Image X ' is shown. Also
  • images (a) and (b) in FIG. 11 show (a) measurement target image X 'of camera 1 and (b) measurement target of camera 2 obtained when the focal position shift is 2 / zm. Shows image X '
  • the images (a) and (b) in Fig. 12 are (a) the measurement target image X 'of the camera 1 and (b) the measurement target image of the camera 2 obtained for the case of the focal position shift force / zm.
  • X ' shows
  • the focal center which is the sum ⁇ , T of the product of the address and data in the data strings Z, Z
  • FIG. 13 is a diagram showing a change in contrast in the measurement target image X of the camera 1 shown in the images (a) of FIGS. 8 to 12.
  • the horizontal axis indicates the pixel position in the tilt direction
  • the vertical axis indicates the data string Z corresponding to the contrast at each position.
  • the graphs (a) to (e) in FIG. 13 correspond to the image (a) in FIG. 8, the image (a) in FIG. 9, the image (a) in FIG. 10, the image (a) in FIG. Image (a).
  • F1 total T
  • Fl 5.4 for the focal position
  • F1 49 for the focal position 2 m.
  • Fl 75.2 for focal position O / zm
  • Fl 94.1 for focal position 2 / zm
  • FIG. 14 shows the con- trol of the measurement target image X of the camera 2 shown in the image (b) of Figs.
  • FIG. 2 is a diagram showing a change in trust.
  • the horizontal axis indicates the pixel position in the tilt direction
  • the vertical axis indicates the data string Z corresponding to the contrast at each position.
  • the graphs (a) to (e) in FIG. 14 correspond to the image (b) in FIG. 8, the image (b) in FIG. This corresponds to the image (b), the image (b) in FIG. 11, and the image (b) in FIG.
  • FIG. 15 is a block diagram showing a configuration of the second embodiment of the microscope apparatus according to the present invention.
  • the irradiation light source 10 the condenser lens 11, the sample stage 15, the XY stage drive unit 16, the light guide optical system 20, the piezo actuator 22, and the piezo drive unit 23 are shown in FIG. This is the same as the embodiment described above.
  • a photodetector 41 On the optical path for image acquisition, a photodetector 41 is provided at a position corresponding to the image plane of the optical image of the sample S that has passed through the beam splitters 27a and 27b.
  • the photodetector 41 is an image-capturing image-pickup means used for obtaining an image based on a light image branched by the beam splitters 27a and 27b into an optical path for image-capture.
  • a linear sensor capable of acquiring a one-dimensional image of the sample S or an image sensor capable of acquiring a two-dimensional image is used.
  • an imaging device 43 is installed at a position corresponding to the image plane of the optical image of the sample S reflected by the beam splitter 27a.
  • the light is focused on the image plane of the optical image of the sample S reflected by the beam splitter 27b.
  • An imaging device 44 is installed at a corresponding position.
  • Each of the imaging devices 43 and 44 also has a CCD camera capable of acquiring a two-dimensional image.
  • the CCD cameras 43 and 44 are first and second imaging means for acquiring an image based on the optical image split by the beam splitters 27a and 27b, and the cameras 43 and 44 according to the present embodiment.
  • a focus control imaging unit is configured. That is, the microscope apparatus shown in FIG. 15 uses the two-dimensional image of the sample S obtained by the CCD cameras 43 and 44 to obtain focus control information when the sample S is imaged by the photodetector 41. Acquisition and focus control based on the obtained focus control information are performed.
  • the CCD camera 43 which is the first imaging means of the focus control imaging means, is arranged such that its imaging plane substantially matches the xz plane orthogonal to the optical path. Further, an optical path length changing member 43a is provided at a predetermined position between the beam splitter 27a and the camera 43 with respect to the imaging surface.
  • the optical path length changing member 43a is formed of a light transmitting material that transmits light from the sample S, and is formed in a ⁇ edge shape whose thickness changes along the z-axis direction.
  • the optical path length in the light guiding optical system 20 through which light is guided from the sample S to the camera 43 changes along the z-axis direction with the z-axis direction as the changing direction.
  • the CCD camera 44 which is the second imaging means of the focus control imaging means, is arranged so that its imaging surface substantially matches the xz plane orthogonal to the optical path.
  • an optical path length changing member 44a is provided at a predetermined position between the beam splitter 27b and the camera 44 with respect to the imaging surface.
  • the optical path length changing member 44a is formed of a light transmitting material that transmits light from the sample S into a wedge shape in which the thickness changes along the z-axis direction and in a direction opposite to the optical path length changing member 43a. I have.
  • the optical path length in the light guiding optical system 20 for guiding light from the sample S to the camera 44 is along the z-axis direction and the camera 43 It changes in the opposite direction.
  • the image acquisition control unit 46 is a control unit that controls an image acquisition operation of the sample S by controlling the acquisition of an image of the sample S and the setting of an imaging position for the sample S. Specifically, image capture The acquisition control unit 46 controls acquisition of an image by the photodetector 41. Further, the control unit 46 controls the driving of the sample stage 15 via the XY stage driving unit 16 so that the imaging position on the optical axis of the microscope optical system can be adjusted by the sample S mounted on the sample stage 15. Set or change.
  • the focus control unit 47 analyzes the images acquired by the CCD cameras 43 and 44 by a predetermined analysis method. Then, based on the analysis result, focus control information when the sample S is imaged by the photodetector 41 is acquired. Alternatively, the focus control unit 47 further controls the focus of imaging by the photodetector 41 based on the obtained focus control information. In the present embodiment, the focus control unit 47 controls the driving of the piezo actuator 22 via the piezo driving unit 23 to adjust the position of the objective lens 21 in the z-axis direction, thereby controlling the focus of imaging.
  • the wedge-shaped optical path length changing members 43a and 44a are disposed in front of the optical axis of the focus control optical path, respectively, as described above. Have been. For this reason, the two-dimensional images acquired by the CCD cameras 43 and 44 are displaced by the focal point force along the z-axis direction, respectively, similarly to the configuration shown in FIG. 1 in which the CCD cameras 33 and 34 are arranged at an angle. Is changed.
  • the image in which the shift from the focal position changes along such a predetermined change direction is analyzed by the focus control unit 47, so that the focus shift of the imaging, the necessity of the focus adjustment, and the focus adjustment are performed. Focus control information on the necessary correction amount and the like can be obtained. Further, in the images acquired by the cameras 43 and 44, the directions in which the deviation of the focal position force changes are opposite to each other. By using such two types of images, focus control information can be obtained with high accuracy.
  • CCD cameras 43 and 44 capable of acquiring a two-dimensional image are used as an imaging means used for focus control with respect to a sample S from which an image is to be acquired.
  • the cameras 43 and 44 are arranged so that an optical image is guided under an imaging condition in which an optical path length guided from the sample S changes in a predetermined direction.
  • focus control is performed by analyzing a two-dimensional image acquired by using the cameras 43 and 44 as described above, focus on the sample is obtained. Irradiation with a laser beam for point measurement becomes unnecessary. Therefore, as a whole of the microscopic device including the focus measuring portion, the device configuration and the imaging operation can be simplified.
  • the CCD camera 43 as the first imaging unit and the CCD as the second imaging unit are configured so that the optical path lengths change in opposite directions along a predetermined change direction.
  • the camera 44 constitutes a focus control imaging unit.
  • the two CCD cameras 43, 44 provided with the optical path length changing members 43a, 44a so that the optical path lengths change in opposite directions with the z-axis direction as the changing direction, Used to acquire focus control information.
  • the two CCD cameras 43, 44 provided with the optical path length changing members 43a, 44a so that the optical path lengths change in opposite directions with the z-axis direction as the changing direction, Used to acquire focus control information.
  • the imaging device used for focus control is installed inclined with respect to the optical axis
  • the imaging device and the optical path length changing member are used in combination. Focus measurement is being performed. Even with such a configuration, it is possible to suitably realize focus control of imaging.
  • the first and second imaging units that constitute the focus control imaging unit change the optical path length in the light guide optical system along the predetermined changing direction on the respective optical paths within the imaging plane. Configured and arranged as follows! Good!
  • the range of the controllable focal position is limited in the configuration in which the imaging device is inclined.
  • the optical path length is adjusted according to the range of the focal position to be controlled. It is possible to select the shape of the length changing member.
  • the optical path lengths of the CCD cameras 43 and 44 constituting the focus control imaging means change in opposite directions along the predetermined change direction. It is configured as follows. Thereby, the accuracy of the acquired focus control information can be improved.
  • the first imaging means and the second imaging means of the focus control imaging means may be configured so that the optical path lengths change at different rates of change along a predetermined change direction. As such a configuration, for example, there is a configuration in which the optical path length changes in the same direction but with different amounts of change.
  • the configuration example (a) in FIG. 16 has a ⁇ edge shape whose thickness continuously changes along the optical path length changing direction described above with reference to FIG. is there .
  • the configuration example (b) in FIG. 16 has a step-edge shape in which the thickness changes stepwise.
  • a lens array in which a plurality of microlenses having different focal lengths are arranged along the changing direction is used as an optical path length changing member.
  • a plurality of ⁇ -edge-shaped optical path length changing members having different amounts of change in thickness and changing directions (rates of change in thickness) differ.
  • the figure shows a configuration that uses a combination of.
  • focus measurement under various conditions becomes possible.
  • the edge gradient corresponding to the thickness change rate is small, the edge member is large and the edge component is used in combination, and the edge gradient is Accordingly, the focus control can be performed with high accuracy by selecting the measurement range and the resolution of the focus measurement.
  • the following focus control method is possible. First, the focus position is measured using an edge member having a large gradient, and the focus position is adjusted with low accuracy. Next, the focal position is adjusted with high precision using the edge member with a small gradient! In such a control method, the setting of the focal position can be performed quickly and easily, for example, at the start of image acquisition. It comes out.
  • the focal position is adjusted using an edge member having a small gradient during image acquisition. Then, when the focal position is not measured, the focal position is measured using a ⁇ ⁇ edge member having a large gradient, and the focal position is adjusted with low accuracy. Furthermore, the focus position is adjusted with high precision again using a small edge member having a small gradient. With such a control method, it is possible to suitably realize the focus control even when the sample to be image-acquired is a sample having a large change in thickness.
  • the microscope has a configuration capable of setting a plurality of magnifications
  • the changing member may be attached directly to the imaging device in close contact with the image pickup device, or may be arranged with a certain distance. Further, as the optical path length changing means, an optical element other than the optical path length changing member that transmits light may be used.
  • the specific focus control method of the microscope apparatus shown in FIG. 15 is the same as that described above for the microscope apparatus shown in FIG.
  • the configuration in which the optical path length is changed by arranging the optical path length changing member in front of the imaging device is not limited to the configuration of FIG. 15 using two imaging devices, but may be, for example, the configuration example of FIG. As shown in ()), it is possible to use a configuration in which two types of optical path length changing members in which the thickness changes in opposite directions are provided for one imaging device. In this case, it is possible to simplify the configuration of the microscope device by configuring the focus control imaging unit using a single imaging device.
  • the first imaging means constituting the focus control imaging means is moved to a predetermined position with respect to the first imaging region of the imaging surface of the imaging device so that the optical path length changes along a predetermined change direction. It is configured using the installed first optical path length changing means. Further, the second imaging means constituting the focus control imaging means is provided at a predetermined position with respect to the second imaging area on the imaging surface of the imaging device, along the above-mentioned changing direction and at a different rate of change from the first optical path length changing means. It is preferable to use a second optical path length changing means installed so that the optical path length changes in the opposite direction. This By configuring the microscope apparatus as described above, it is possible to execute the same focus control as the configuration shown in FIG.
  • a beam splitter which is a light splitting unit, is disposed in the light guide optical system 20, and an image obtaining optical path and a focus controlling optical path split by the beam splitter are respectively obtained.
  • Image pickup means for focus control and image pickup means for focus control are also possible to adopt a configuration in which the same light path is used as the image acquisition light path and the focus control light path without disposing the light branching means in the light guide optical system 20.
  • the image capturing means for image acquisition may be constituted by one image capturing device included in the image capturing means for focus control.
  • FIG. 17 is a block diagram showing a configuration of a third embodiment of the microscope apparatus according to the present invention.
  • the irradiation light source 10, the condenser lens 11, the sample stage 15, and the XY stage drive unit 16 are the same as those shown in FIG.
  • a light guide optical system 20 is provided above the sample stage 15.
  • the light guide optical system 20 includes an objective lens 21 and an imaging lens 28 disposed downstream of the objective lens 21.
  • the optical path where the light from the objective lens 21 passes through the imaging lens 28 to form an image is the optical path for image acquisition used to acquire the image of the sample S, and the focus control when imaging the sample S. It is shared with the optical path for focus control used for the optical system.
  • a piezo actuator 22 for driving the objective lens 21 in the z-axis direction is provided.
  • the driving of the piezo actuator 22 is controlled by a piezo driving unit 23.
  • the focus of imaging in the image acquisition of the sample S can be adjusted.
  • an imaging device 51 is installed at a position corresponding to the image plane of the optical image of the sample S that has passed through the imaging lens 28. ing.
  • the imaging device 51 is a CCD camera capable of acquiring a two-dimensional image.
  • the camera 51 uses this camera 51 to acquire an image of an image of the sample S.
  • the step and focus control imaging means used for focus control are configured. That is, the microscope apparatus shown in FIG. 17 uses the two-dimensional image of the sample S acquired by the camera 51 to acquire focus control information when imaging the sample S and obtain the obtained focus control information. Focus control based on the information is performed.
  • the CCD camera 51 is arranged so that the imaging surface substantially matches the xy plane orthogonal to the optical path.
  • two imaging regions, a first imaging region and a second imaging region are set on the imaging surface in the X-axis direction.
  • the first optical path length changing member 5 la in the shape of a wedge, whose thickness changes along the y-axis direction, is provided at a predetermined position with respect to the first imaging region, thereby controlling the focus.
  • the first imaging means of the imaging means is configured.
  • a second wedge-shaped second edge whose thickness changes in a predetermined position with respect to the second imaging region of the camera 51 along the y-axis direction and in a direction opposite to that of the first optical path length changing member 51a.
  • a second imaging unit of the focus control imaging unit is configured. At this time, in the second imaging region of the imaging surface of the camera 51, the light path length in the light guiding optical system 20 that guides light from the sample S to the camera 51 is set in the y-axis direction, with the y-axis direction as the changing direction. Along with the first imaging region.
  • a drive motor 52 is provided for the above-described optical path length changing members 51a and 51b installed on the front side of the CCD camera 51.
  • the drive motor 52 is a drive unit that drives the optical path length changing members 5 la and 5 lb between a position on the optical path with respect to the imaging surface of the camera 51 and a position off the optical path.
  • the camera 51 functions as a focus control imaging unit.
  • the camera 51 functions as an imaging unit for image acquisition.
  • FIG. 17 shows a state where the optical path length changing members 51a and 51b are arranged on the optical path.
  • An image acquisition control unit 56 and a focus control unit 57 are provided for the sample stage 15, the light guide optical system 20, the CCD camera 51, and the drive motor 52.
  • Image acquisition control unit Reference numeral 56 controls acquisition of an image of the sample S and setting of an imaging position for the sample S.
  • the image acquisition control unit 56 controls the drive of the optical path length changing members 51a and 51b by the drive motor 52.
  • the focus control unit 57 analyzes an image acquired by the CCD camera 51 in a state where the change members 51a and 51b are arranged on the optical path by a predetermined analysis method. Then, based on the analysis result, focus control information when the camera 51 captures an image of the sample S with the change members 51a and 5 lb arranged outside the optical path is acquired. Alternatively, further, the focus control unit 57 controls the focus of imaging by the camera 51 based on the acquired focus control information.
  • the light path length changing members 51a and 51b each having a small edge shape are arranged as described above.
  • the displacement of the focal position changes along the y-axis direction, similarly to the configuration shown in FIGS. Image.
  • Focus control information about the correction amount and the like necessary for the alignment can be obtained.
  • the directions in which the deviation of the focal position force changes are opposite to each other.
  • the first and second cameras 51 capable of acquiring a two-dimensional image are used as imaging means used for focus control on the sample S to be acquired.
  • the imaging area is used, and the optical path length changing members 51a and 51b are provided for each imaging area so that the optical path under which the optical image is guided from the sample S changes in a predetermined direction. .
  • focus control is performed by analyzing a two-dimensional image acquired using the camera 51, it is not necessary to irradiate the sample with laser light for focus measurement. Therefore, as a whole of the microscope device including the focus measurement part, The image operation can be simplified.
  • the focus control imaging unit is configured by the CCD camera 51 in which the two imaging regions of the first and second imaging regions are set.
  • the single CCD camera 51 is shared as the image acquisition image pickup device and the focus control image pickup device. According to such a configuration, the configuration of the microscope apparatus can be simplified compared to a configuration in which an imaging device is separately provided.
  • FIG. 18 is a flowchart illustrating an example of the focus control method.
  • the focus control, driving of the optical path length changing member, and image acquisition of the sample, which will be described below, are performed by the image acquisition control unit 56 and the focus control unit 57 in the configuration shown in FIG.
  • the specific analysis method of the image in the focus control is the same as the focus control method shown in FIGS.
  • the optical path length changing members 51a and 51b are driven by the drive motor 52 with respect to the CCD camera 51, and the changing members 51a and 51b are inserted into positions on the optical path to measure focus for obtaining focus control information.
  • the sample stage 15 is driven by the XY stage drive unit 16, and the sample S is moved so that the measurement position on the optical axis of the microscope optical system by the irradiation light source 10 and the objective lens 21 becomes the first measurement position ( Step S601).
  • the image acquired by the camera 51 is analyzed to measure the focal position, and the acquired focal control information is stored (S602). After completing the acquisition of the control information, the sample S is moved so that the measurement position on the optical axis becomes the next measurement position (S60).
  • the optical path length changing members 51a and 51b are driven by the drive motor 52, and the changing members 51a and 5 lb are displaced from the position on the optical path.
  • the sample stage 15 is driven by the XY stage drive unit 16 to move the sample S so that the measurement position on the optical axis becomes the first imaging position (S605).
  • focus control is performed with reference to the previously obtained focus control information, and an image of the sample S is obtained and stored by the camera 51 (S606).
  • the sample S is moved so that the imaging position on the optical axis becomes the next imaging position (S607). Then, it is determined whether or not the image acquisition of the sample S has been completed for all the imaging positions (S608), and if not completed, the steps S606 and S607 of the image acquisition are repeated. On the other hand, if the image acquisition has been completed, the image acquisition operation ends.
  • the microscope apparatus having the configuration shown in FIG. 17, it is possible to suitably execute the image acquisition of the sample S and the focus control of the imaging.
  • the imaging position of the sample S set at the time of image acquisition be the same as the measurement position at the time of focus measurement in order to apply focus control information.
  • the image acquisition is performed after the focus measurement is completed for the entire sample S! / Pull, but the sample S is divided into a plurality of regions, and the focus measurement and the image acquisition are alternately performed for each region. You may go.
  • focus measurement is performed on a plurality of imaging regions appropriately selected on the sample S, and the obtained plurality of focus control information is used to interpolate the focus control information for the imaging region for which focus measurement has not been performed.
  • a map of the focus control information for the entire imaging region may be created.
  • FIG. 19 is a block diagram showing a configuration of a fourth embodiment of the microscope apparatus according to the present invention.
  • the irradiation light source 10 the condenser lens 11, the sample stage 15, the XY stage driving unit 16, the piezo actuator 22, the piezo driving unit 23, the CCD camera 51, the optical path length changing members 51a, 51b, the driving motor 52, the image acquisition control unit 56, and the focus control unit 57 are the same as those shown in FIG.
  • a light guide optical system 20 is provided above the sample stage 15.
  • the light guide optical system has the objective lens 21 and the imaging lenses 29a and 29b disposed downstream of the objective lens 21.
  • These imaging lenses 29a and 29b are connected in a direction perpendicular to the optical axis, and are configured such that lenses on the optical path can be switched by a drive motor 29c.
  • the drive motor 29c drives the lenses 29a and 29b.
  • the change in the optical axis direction on the sample S is a square of the magnification on the imaging surface
  • the imaging lens required for image acquisition has a high magnification
  • the optical path length required for focus measurement is required.
  • the thick edges on the modified member may cause manufacturing problems or total reflection problems on the modified member.
  • the imaging lenses 29a and 29b having different magnifications can be switched, and a low magnification lens is used at the time of focus measurement, so that the magnification at the time of image acquisition is not affected. Focus measurement can be suitably performed.
  • FIG. 20 is a block diagram showing a configuration of a fifth embodiment of the microscope apparatus according to the present invention.
  • the irradiation light source 10 the condenser lens 11, the sample stage 15, the XY stage drive unit 16, the light guide optical system 20, the piezo actuator 22, the piezo drive unit 23, the CCD camera 51, the image acquisition control unit
  • the configuration of 56 and the focus control unit 57 are the same as those shown in FIG.
  • the CCD camera 51 has two imaging areas on the imaging surface, an image acquisition area used for image acquisition and a focus measurement area used for focus measurement in the X-axis direction. ing. Further, in the focus measurement area of the above-described two imaging areas, two imaging areas of a first imaging area and a second imaging area are further set in the X-axis direction. Further, optical path length changing members 53a and 53b similar to the optical path length changing members 51a and 51b shown in FIG. 17 are provided for the first and second imaging regions of the focus measurement region.
  • the image acquisition area of the CCD camera 51 functions as an image acquisition imaging unit.
  • the focus measurement area provided with the optical path length changing members 53a and 53b functions as a focus control imaging unit.
  • a drive motor for driving the optical path length changing members 53a and 53b is unnecessary. Further, by using the image acquisition area and the focus measurement area of the camera 51, it is possible to simultaneously perform the image acquisition of the sample S and the focus control of the imaging.
  • FIG. 21 is a diagram showing an example of the configuration of a CCD camera and an optical path length changing member.
  • the edge-shaped optical path length changing members 53a, 53 b is installed.
  • the edge-shaped optical path length changing member having a wedge shape is used for the focus measurement area 512.
  • 53a and 53b are installed.
  • a plate-like glass member 53c for adjusting the optical path length is provided for the image acquisition area 511.
  • it is necessary to correct the optical path length in image acquisition according to the increase in the optical path length (optical distance) due to the thickness at the center position of the optical path length changing members 53a and 53b. is there.
  • the optical path length adjusting member 53c since the optical path length adjusting member 53c is provided, such correction is not required.
  • FIG. 22 is a flowchart illustrating an example of the focus control method.
  • a control method in a case where image acquisition of a sample and focus control of imaging are separately performed will be described.
  • the sample stage 15 is driven by the XY stage drive unit 16, and the sample S is moved so that the measurement position on the optical axis of the microscope optical system by the irradiation light source 10 and the objective lens 21 becomes the first measurement position. Move (step S701).
  • the image obtained using the focus measurement area of the camera 51 on which the optical path length changing members 53a and 53b are installed is analyzed to measure the focus position, and the obtained focus position is measured.
  • the focus control information obtained is stored (S702).
  • the sample S is moved so that the measurement position on the optical axis becomes the next measurement position (S703).
  • the sample stage 15 is driven by the XY stage drive unit 16 to move the sample S so that the measurement position on the optical axis becomes the first imaging position (S705).
  • FIG. 23 is a flowchart illustrating another example of the focus control method.
  • a control method in a case where image acquisition of a sample and focus control of imaging are simultaneously performed will be described.
  • the sample stage 15 is driven by the XY stage driving unit 16, and the sample S is moved so that the imaging position on the optical axis of the microscope optical system by the irradiation light source 10 and the objective lens 21 becomes the first imaging position.
  • Move step S801.
  • this imaging position is the measurement position of the focus measurement.
  • an image acquired using the focus measurement area of the camera 51 provided with the optical path length changing members 53a and 53b is analyzed to measure the focus position, and the focus control information is obtained. Is acquired (S802). Further, focus control is performed with reference to the acquired focus control information, and an image of the sample S is acquired using the image acquisition area of the camera 51 (S803). After completing the image acquisition, the sample S is moved so that the imaging position on the optical axis becomes the next imaging position (S804). Then, it is determined whether or not the image acquisition of the sample S has been completed for all the imaging positions (S805). If not completed, the steps S802 to S804 of the image acquisition are repeated. On the other hand, if the image acquisition has been completed, the image acquisition operation ends.
  • the microscope apparatus having the configuration shown in FIG. 20, it is possible to appropriately execute the image acquisition of the sample S and the focus control of the imaging. Further, in such a configuration, it is possible to execute image acquisition and focus control separately or simultaneously as described above.
  • the microscope apparatus according to the present invention is not limited to the above-described embodiment and configuration examples, and various modifications are possible.
  • FIG. 24 is a block diagram showing the configuration of the sixth embodiment of the microscope apparatus according to the present invention.
  • This microscope apparatus is a modified example of the microscope apparatus shown in FIG. Specifically, in contrast to the transmission type configuration shown in FIG. 1 in which the irradiation light source 10 and the condenser lens 11 are provided below the sample stage 15, the microscope apparatus shown in FIG. Illumination instead of optical lens 11 It has a configuration of a fluorescence microscope in which a projection light source 80, a lens 81, and an irradiation optical system 85 are installed.
  • a dichroic mirror 86 is arranged between the beam splitter 27a at the previous stage and the objective lens 21.
  • the dichroic mirror 86 reflects the light incident from the irradiation light source 80 via the lens 81 and irradiates it as excitation light to the sample S, and passes the fluorescence generated from the sample S to the beam splitter 27a.
  • An excitation filter 87 and a cut filter 88 are arranged between the dichroic mirror 86 and the irradiation light source 80 and between the dichroic mirror 86 and the objective lens 21, respectively.
  • An irradiation optical system 85 (Fluorescence filter cube) is constituted by the filter 87 and the cut filter 88.
  • the dichroic mirror 86 may be replaced with a half mirror in the configuration of FIG. 24, and the filters 87 and 88 may be removed.
  • the light images incident on the first imaging region and the second imaging region are usually different.
  • an optical image for acquiring an image for focus control is transmitted to the first optical path length changing member, the first optical path to the first imaging area of the imaging surface of the imaging device, and the second optical path length changing member.
  • FIG. 25 is a diagram showing an optical branching optical system for an imaging device for focus control.
  • the first imaging of the imaging device 100 for acquiring an image for focus control is performed.
  • a first optical path length changing member 111 is disposed for the image area 101, and a second optical path length changing member 112 for changing the optical path length in the opposite direction to the first optical path length changing member 111 is provided for the second imaging area 102.
  • a first optical path length changing member 111 is disposed for the image area 101
  • a second optical path length changing member 112 for changing the optical path length in the opposite direction to the first optical path length changing member 111 is provided for the second imaging area 102.
  • the light images incident on the two imaging regions 101 and 102 of the imaging device 100 are different.
  • a 50% reflection mirror 121 that reflects the light image to the first imaging region 101 and a 100% reflection mirror that reflects the light image to the second imaging region 102 A light splitting optical system 120 having 122 is provided.
  • the same light image split by the light splitting optical system 120 enters the imaging regions 101 and 102, and the accuracy of focus control can be improved.
  • a 100% reflection mirror 125 is arranged in front of the light splitting optical system 120.
  • a reflection mirror 125 By providing such a reflection mirror 125, it is possible to narrow the field of view of the optical image incident on the imaging device 100 and prevent the optical image from being superimposed between the imaging regions 101 and 102. However, such a reflection mirror 125 may not be provided if unnecessary.
  • an optical path length adjusting member 126 is provided between the reflection mirror 122 and the second imaging area 102 to correct the optical path length.
  • a light splitting prism 130 or the like shown in the configuration (c) of FIG. 25 may be used as the light splitting optical system.
  • T X the average of X, the average of ZX,
  • the microscope apparatus according to the present invention can be used as a microscope apparatus that can suitably perform focus control when acquiring an image of a sample. That is, according to the microscope apparatus of the present invention, the first imaging unit and the second imaging unit are configured such that the optical path length changes at different rates of change along the predetermined changing direction, and can obtain a two-dimensional image. Focus control imaging means having means for performing focus measurement using the two types of images acquired by these imaging means, so that focus control information when acquiring an image of a sample can be obtained with high accuracy. Thus, it is possible to suitably perform the focus control.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

 対物レンズ21、及び試料Sの光像を分岐するビームスプリッタ27a、27bを含む導光光学系20と、試料Sの画像を取得する光検出器31と、ビームスプリッタ27a、27bで分岐される光路上に設置された焦点制御用の2つのCCDカメラ33、34とを備えて顕微鏡装置を構成する。また、カメラ33、34を、z軸方向に沿って互いに逆方向に導光光学系20での光路長が変化するように、光路に対して傾いた状態でそれぞれ設置する。そして、これらのカメラ33、34によって取得された画像を焦点制御部37で解析し、その解析結果に基づいて試料Sに対する撮像の焦点を制御する。これにより、試料の画像を取得する際の焦点制御を好適に行うことが可能な顕微鏡装置が実現される。

Description

顕微鏡装置
技術分野
[0001] 本発明は、試料の画像の取得に用いられる顕微鏡装置に関するものである。
背景技術
[0002] 顕微鏡を用いて試料の画像を取得する場合、装置内の光学系、機構系の傾き、あ るいは試料自体の傾き、凹凸形状などによる焦点ずれが問題となる。これに対して、 従来、顕微鏡装置において、 CCDカメラなどの撮像装置による撮像の焦点を制御す る自動焦点 (オートフォーカス)が行われて 、る。このような焦点制御を行う装置として は、例えば、文献 1 :特許第 3390106号公報、文献 2 :特開平 9— 230250号公報、 文献 3:特開平 8— 21961号公報、文献 4:特開平 11― 264937号公報に記載され た装置がある。
特許文献 1:特許第 3390106号公報
特許文献 2:特開平 9 - 230250号公報
特許文献 3:特開平 8— 21961号公報
特許文献 4:特開平 11― 264937号公報
発明の開示
発明が解決しょうとする課題
[0003] 上記文献のうち、文献 1に記載された顕微鏡では、光軸に対して傾!、た状態で設 置されたラインセンサと、ラインセンサの前段に配置された回動する反射鏡とを用いる 。そして、試料にレーザ光を照射して、反射鏡を介してラインセンサに入射される反 射レーザ光の光量を参照して焦点を制御している。また、文献 2に記載された顕微鏡 では、光量を検出するフォトセンサと、フォトセンサの前段に配置された厚み変化ガラ スとを用いる。そして、上記文献 1と同様に試料にレーザ光を照射して、厚み変化ガラ スを介してフォトセンサに入射される反射レーザ光の光量を参照して焦点を制御して いる。
[0004] し力しながら、これらの装置構成では、焦点を制御する際に、焦点計測用のレーザ 光を試料に照射する必要がある。このため、焦点計測部分を含めた顕微鏡装置の全 体として、その装置構成や撮像動作が複雑化するという問題がある。
[0005] 一方、文献 3に記載された顕微鏡の自動焦点装置では、試料の画像を取得するた めの撮像装置において、光軸に対して垂直になる垂直位置と、所定角度で傾いた傾 斜位置とで取付け角度を変化させて焦点の制御を行っている。しかしながら、このよう な装置構成では、焦点制御の精度が充分に得られな 、場合がある。
[0006] また、文献 4に記載された顕微鏡では、自動焦点調整部にお!、て、結像光学系か ら分岐された光像を検出するセンサ部を設けている。そして、このセンサ部を予定焦 点面の前方及び後方にずらして、 2つの光像のコントラストレベルの差分を検出して 焦点調整を行っている。しかしながら、このような装置構成では、センサ部を移動させ て 2つの光像を取得しなくてはならないため、その装置構成や撮像動作が複雑ィ匕す る。また、センサ部を移動させる際に、試料とセンサ部との間の光路長が固定されな いうちに試料の光像を取り込むと光像がぼやけてしまうため、その光路長が固定され るまでの待ち時間が必要となる。このため、焦点調整及び試料の画像取得を短時間 で行うことができな 、と 、う問題がある。
[0007] 本発明は、以上の問題点を解決するためになされたものであり、試料の画像を取得 する際の焦点制御を好適に行うことが可能な顕微鏡装置を提供することを目的とする 課題を解決するための手段
[0008] このような目的を達成するために、本発明による顕微鏡装置は、(1)試料の光像を 焦点制御に用いられる焦点制御用光路へと導く導光光学系と、(2)焦点制御用光路 上に設置され、焦点制御用光路へと導かれた光像による 2次元の画像を取得する焦 点制御用撮像手段と、 (3)焦点制御用撮像手段によって取得された画像を解析し、 その解析結果に基づ 、て、試料を撮像する際の焦点制御情報を取得する焦点制御 手段とを備え、(4)焦点制御用撮像手段は、撮像面内において所定の変化方向に 沿って導光光学系での光路長が変化するように構成された第 1撮像手段と、撮像面 内において変化方向に沿うとともに第 1撮像手段とは異なる変化率で光路長が変化 するように構成された第 2撮像手段とを有することを特徴とする。 [0009] 上記した顕微鏡装置にお!ヽては、画像取得の対象となる試料に対して、焦点制御 に用いられる撮像手段として、 2次元の画像を取得可能な撮像手段を用いるとともに 、光像が試料力 導光される光路長が所定方向で変化する撮像条件となるように撮 像手段を配置して 、る。このような撮像手段を用いて取得された 2次元の画像を解析 して焦点制御を行う構成によれば、試料への焦点計測用のレーザ光の照射等が不 要となる。したがって、焦点計測部分を含めた顕微鏡装置の全体として、その装置構 成や撮像動作を簡単化することができる。
[0010] また、上記した装置では、所定の変化方向に沿って互いに異なる変化率で光路長 が変化するように構成された第 1撮像手段及び第 2撮像手段によって焦点制御用撮 像手段を構成している。これらの撮像手段によって取得された 2種類の画像を用いて 焦点計測を行うことにより、試料の画像を取得する際の焦点制御情報を精度良く求 めることが可能となる。また、このようにして求められた焦点制御情報を用いれば、試 料の画像を取得する際に焦点制御を好適に行うことが可能となる。また、焦点制御用 撮像手段を構成する第 1撮像手段及び第 2撮像手段については、所定の変化方向 に沿って互いに逆方向に光路長が変化するように構成することが好ま 、。これによ り、取得される焦点制御情報の精度を向上することができる。
[0011] ここで、上記した顕微鏡装置は、導光光学系が、試料の光像を焦点制御に用いら れる焦点制御用光路、及び試料を撮像する際に用いられる画像取得用光路へと導く ように構成され、画像取得用光路上に設置され、画像取得用光路へと導かれた光像 による 1次元または 2次元の画像の取得に用いられる画像取得用撮像手段と、画像 取得用撮像手段による画像の取得を制御する画像取得制御手段とを備えることが好 ましい。これにより、試料の画像取得と、撮像の焦点制御とを好適に両立することがで きる。なお、画像取得制御手段は、さらに試料に対する撮像位置の設定を制御する こととしても良い。
[0012] 具体的な構成としては、導光光学系は、試料の光像を画像取得用光路及び焦点 制御用光路へと分岐する光分岐手段を含み、画像取得用撮像手段は、焦点制御用 撮像手段とは別個に構成されることとしても良い。これは、焦点制御用及び画像取得 用の撮像手段として別個の撮像装置を用いる構成である。 [0013] あるいは、導光光学系は、焦点制御用光路と同一の光路を画像取得用光路として 構成され、画像取得用撮像手段は、焦点制御用撮像手段に含まれる一の撮像装置 を用いて構成されることとしても良い。これは、焦点制御用及び画像取得用の撮像手 段として同一の撮像装置を用いる構成である。
[0014] 焦点制御用の画像を取得するための焦点制御用撮像手段の具体的な構成につ!、 ては、第 1撮像手段及び第 2撮像手段のそれぞれは、変化方向に沿って光路長が変 化するように撮像面が焦点制御用光路に対して所定角度で傾いた状態で設置され た撮像装置を有する構成を用いることができる。このような構成によれば、焦点制御 用の画像取得を好適に行うことができる。
[0015] あるいは、第 1撮像手段及び第 2撮像手段のそれぞれは、撮像装置と、撮像装置の 撮像面に対して所定位置に、変化方向に沿って光路長が変化するように設置された 光路長変更手段とを有する構成を用いることができる。このような構成によっても、焦 点制御用の画像取得を好適に行うことができる。このような光路長変更手段としては 、例えば、所定勾配のゥエッジ形状に形成され光を透過する光路長変更部材がある
[0016] あるいは、焦点制御用撮像手段は、単一の撮像装置を有し、第 1撮像手段は、撮 像装置の撮像面の第 1撮像領域に対して所定位置に、変化方向に沿って光路長が 変化するように設置された第 1光路長変更手段を用いて構成され、第 2撮像手段は、 撮像装置の撮像面の第 2撮像領域に対して所定位置に、変化方向に沿うとともに第 1光路長変更手段とは異なる変化率で光路長が変化するように設置された第 2光路 長変更手段を用いて構成されていることとしても良い。このような構成では、焦点制御 用撮像手段が単一の撮像装置から構成されるため、その装置構成を簡単化すること ができる。
[0017] この場合、第 1光路長変更手段及び第 2光路長変更手段を、撮像装置の撮像面に 対して焦点制御用光路上にある位置、及び焦点制御用光路力 外れた位置の間で 駆動する駆動手段を備える構成を用いることができる。
[0018] あるいは、撮像装置は、その撮像面が、第 1撮像領域及び第 2撮像領域を含んで 焦点制御用撮像手段として機能する焦点計測領域と、試料を撮像する際に用いられ る画像取得用撮像手段として機能する画像取得領域とを有する構成を用いることが できる。これらの構成では、焦点制御用及び画像取得用の撮像手段を単一の撮像 装置力も構成することが可能となる。
[0019] また、上記構成において、第 1光路長変更手段と第 2光路長変更手段とは、変化方 向に沿うとともに互 ヽに逆方向に光路長が変化するように設置されて 、ることが好ま しい。これにより、取得される焦点制御情報の精度を向上することができる。
[0020] 焦点制御用撮像手段によって取得された画像を用いた焦点制御情報の取得につ いては、焦点制御手段は、焦点制御用撮像手段によって取得された画像における変 化方向につ!、ての画像のコントラスト変化を解析し、その解析結果に基づ!、て焦点 制御情報を取得することが好ましい。これにより、試料の光像による 2次元の画像を用 いた撮像の焦点制御を精度良く実現することができる。
[0021] この場合、具体的には、焦点制御手段は、焦点制御用撮像手段によって取得され た画像から変化方向に沿った所定幅の計測対象画像を切り出し、計測対象画像、及 び計測対象画像を変化方向と垂直方向にシフトさせたシフト画像の差分絶対値画像 によって画像のコントラスト変化を解析する構成を用いることが好ま U、。
[0022] さらに、焦点制御手段は、焦点制御用撮像手段によって取得された画像が焦点制 御情報の取得に適用可能な画像であるかどうかを判断し、適用可能と判断した場合 に画像を解析し、その解析結果に基づ 、て焦点制御情報を取得することが好まし 、 。これにより、不適当な画像を用いて焦点制御が行われることを防止して、撮像の焦 点制御を好適に行うことができる。
発明の効果
[0023] 本発明の顕微鏡装置によれば、所定の変化方向に沿って互いに異なる変化率で 光路長が変化するように構成され、 2次元の画像を取得可能な第 1撮像手段及び第 2撮像手段を有する焦点制御用撮像手段を設け、これらの撮像手段によって取得さ れた 2種類の画像を用いて焦点計測を行うことにより、試料の画像を取得する際の焦 点制御情報を精度良く求めて、焦点制御を好適に行うことが可能となる。
図面の簡単な説明
[0024] [図 1]図 1は、顕微鏡装置の第 1実施形態の構成を示すブロック図である。 [図 2]図 2は、焦点制御部の構成の一例を示すブロック図である。
[図 3]図 3は、単一の撮像装置を用いた場合の焦点制御方法の一例を示すフローチ ヤートである。
[図 4]図 4は、図 3に示した焦点制御方法について示す模式図である。
[図 5]図 5は、 2つの撮像装置を用いた場合の焦点制御方法の一例を示すフローチヤ ートである。
[図 6]図 6は、単一の撮像装置を用いた場合の焦点制御方法の他の例を示すフロー チャートである。
[図 7]図 7は、単一の撮像装置を用いた場合の焦点制御方法の他の例を示すフロー チャートである。
[図 8]図 8は、焦点制御に用いられる計測対象画像の例を示す図である。
[図 9]図 9は、焦点制御に用いられる計測対象画像の例を示す図である。
[図 10]図 10は、焦点制御に用いられる計測対象画像の例を示す図である。
[図 11]図 11は、焦点制御に用いられる計測対象画像の例を示す図である。
[図 12]図 12は、焦点制御に用いられる計測対象画像の例を示す図である。
[図 13]図 13は、図 8〜図 12に示した計測対象画像でのコントラスト変化を示す図で ある。
[図 14]図 14は、図 8〜図 12に示した計測対象画像でのコントラスト変化を示す図で ある。
[図 15]図 15は、顕微鏡装置の第 2実施形態の構成を示すブロック図である。
[図 16]図 16は、光路長変更部材の構成の例を示す斜視図である。
[図 17]図 17は、顕微鏡装置の第 3実施形態の構成を示すブロック図である。
[図 18]図 18は、焦点制御方法の一例を示すフローチャートである。
[図 19]図 19は、顕微鏡装置の第 4実施形態の構成を示すブロック図である。
[図 20]図 20は、顕微鏡装置の第 5実施形態の構成を示すブロック図である。
圆 21]図 21は、撮像装置及び光路長変更部材の構成の例を示す斜視図である。
[図 22]図 22は、焦点制御方法の一例を示すフローチャートである。
[図 23]図 23は、焦点制御方法の他の例を示すフローチャートである。 [図 24]図 24は、顕微鏡装置の第 6実施形態の構成を示すブロック図である。
[図 25]図 25は、焦点制御用の撮像装置に対する光分岐光学系について示す図であ る。
符号の説明
[0025] 10…照射光源、 11· ··集光レンズ、 15· ··試料ステージ(XYステージ)、 16〜XYス テージ駆動部、 20· ··導光光学系、 21· ··対物レンズ、 22…ピエゾァクチユエータ、 23 …ピエゾ駆動部、 27a, 27b…ビームスプジッタ、 28、 29a, 29b…結像レンズ、 29c …駆動モータ、 31、 41· ··光検出器、 33、 34、 43、 44、 51- CCDカメラ、 43a, 44a 、 51a、 51b、 53a、 53b…光路長変更部材、 53c…光路長調整部材、 52· ··駆動モ ータ、 36、 46、 56· ··画像取得制御部、 37、 47、 57· ··焦点制御部、 37a—AZD変 37b…画像メモリ、 37c…データ処理部、 37d…データ記憶部、 80· ··照射光 源、 81· ··レンズ、 85· ··照射光学系、 86· ··ダイクロイツクミラー、 87· ··励起フィルタ、 8 8…カツトフイノレタ。
発明を実施するための最良の形態
[0026] 以下、図面とともに本発明による顕微鏡装置の好適な実施形態について詳細に説 明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明 を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
[0027] 図 1は、本発明による顕微鏡装置の第 1実施形態の構成を示すブロック図である。
この顕微鏡装置は、試料 Sの画像の取得に用いられる透過型の顕微鏡として構成さ れている。画像取得の対象となる試料 Sは、例えば生物サンプルであり、試料ステー ジ 15上に載置されている。
[0028] 試料ステージ 15は、 X方向及び y方向(水平方向)に可動な XYステージ力もなり、こ の XYステージ 15を xy面内で駆動することにより、試料 Sに対する撮像位置が設定ま たは変更される。また、試料ステージ 15は、 XYステージ駆動部 16によって駆動制御 されている。試料ステージ 15の下方には、撮像対象となる光像を生成するための光 を試料 Sへと照射する照射光源 10、及び照射光源 10からの光を試料 Sで設定され て 、る撮像位置へと集光する集光レンズ 11が設置されて 、る。
[0029] 照射光源 10からの光が照射される試料ステージ 15上の試料 Sに対し、試料ステー ジ 15の上方に、試料 Sの光像を導光するための導光光学系 20が設けられている。 本実施形態においては、導光光学系 20は、試料 Sからの光が入射する対物レンズ 2 1と、対物レンズ 21の後段に配置されたビームスプリッタ 27a、 27bとを有している。こ のうち、ビームスプリッタ 27a、 27bは、試料 Sの光像を画像取得用光路及び焦点制 御用光路へと分岐する光分岐手段である。
[0030] 図 1においては、対物レンズ 21からの光がビームスプリッタ 27a、 27bを通過する光 路が、試料 Sを撮像する際に用いられる画像取得用光路となっている。また、対物レ ンズ 21からの光がビームスプリッタ 27aで反射される光路、及びビームスプリッタ 27b で反射される光路が、それぞれ試料 Sを撮像する際の焦点制御情報の取得に用いら れる焦点制御用光路となっている。
[0031] 前段のビームスプリッタ 27a、及び後段のビームスプリッタ 27bは、それぞれ画像取 得用光路に対して約 45° の角度で配置されており、ビームスプリッタ 27a、 27bから の焦点制御用光路のそれぞれは、画像取得用光路に対して略直交している。ここで 、説明の便宜のため、照射光源 10及び対物レンズ 21を含む顕微鏡光学系の光軸 方向であり、画像取得用光路に沿う方向を z軸方向、画像取得用光路に直交する焦 点制御用光路に沿う方向を y軸方向、 y軸及び z軸に直交する方向を X軸方向とする
[0032] また、対物レンズ 21に対して、ピエゾァクチユエータ 22が設けられて!/、る。ピエゾァ クチユエータ 22は、対物レンズ 21を z軸方向(垂直方向、光軸方向)に駆動する対物 レンズ駆動手段である。また、ピエゾァクチユエータ 22は、ピエゾ駆動部 23によって 駆動制御されている。本顕微鏡装置では、このピエゾァクチユエータ 22を用いて対 物レンズ 21の z軸方向の位置を変えることにより、試料 Sの画像取得における撮像の 焦点が調整可能になっている。
[0033] 画像取得用光路上には、ビームスプリッタ 27a、 27bを通過した試料 Sの光像の結 像面に対応する位置に、光検出器 31が設置されている。光検出器 31は、ビームスプ リツタ 27a、 27bで画像取得用光路へと分岐された光像による画像の取得に用いられ る画像取得用撮像手段である。この光検出器 31としては、具体的には、試料 Sの 1次 元の画像を取得可能なリニアセンサ、または 2次元の画像を取得可能なイメージセン サが用いられる。
[0034] 一方、前段の焦点制御用光路上には、ビームスプリッタ 27aで反射された試料 Sの 光像の結像面に対応する位置に、撮像装置 33が設置されている。また、後段の焦点 制御用光路上には、ビームスプリッタ 27bで反射された試料 Sの光像の結像面に対 応する位置に、撮像装置 34が設置されている。撮像装置 33、 34は、それぞれ 2次元 の画像を取得可能な CCDカメラ力もなる。
[0035] CCDカメラ 33、 34は、ビームスプリッタ 27a、 27bで分岐された光像による画像を取 得する第 1、第 2撮像手段であり、これらのカメラ 33、 34によって、本実施形態におけ る焦点制御用撮像手段が構成されている。すなわち、図 1に示した顕微鏡装置では 、これらの CCDカメラ 33、 34によって取得される試料 Sの 2次元の画像を用いて、試 料 Sを光検出器 31によって撮像する際の焦点制御情報の取得、及び得られた焦点 制御情報に基づく焦点制御が行われる。
[0036] 具体的には、焦点制御用撮像手段の第 1撮像手段である CCDカメラ 33は、その撮 像面が光路に直交する xz面と略一致するとともに、 z軸方向を傾き方向として角度 Θ で光路に対して傾いた状態で設置されている。このとき、 CCDカメラ 33の撮像面内 において、 z軸方向を変化方向として、試料 Sから CCDカメラ 33へと光が導かれる導 光光学系 20での光路長が z軸方向に沿って変化するようになって 、る。
[0037] また、焦点制御用撮像手段の第 2撮像手段である CCDカメラ 34は、その撮像面が 光路に直交する xz面と略一致するとともに、 z軸方向を傾き方向として角度 Θで光路 に対してカメラ 33とは逆方向に傾いた状態で設置されている。このとき、 CCDカメラ 3 4の撮像面内において、 z軸方向を変化方向として、試料 Sから CCDカメラ 34へと光 が導かれる導光光学系 20での光路長力 Sz軸方向に沿うとともにカメラ 33とは逆方向 に変化するようになって 、る。
[0038] これらの試料ステージ 15、導光光学系 20、光検出器 31、及び CCDカメラ 33、 34 に対し、画像取得制御部 36、及び焦点制御部 37が設けられている。画像取得制御 部 36は、試料 Sの画像の取得、及び試料 Sに対する撮像位置の設定を制御すること によって、試料 Sの画像取得動作を制御する制御手段である。具体的には、画像取 得制御部 36は、光検出器 31による画像の取得を制御する。また、制御部 36は、 XY ステージ駆動部 16を介して試料ステージ 15を駆動制御することにより、試料ステー ジ 15上に載置された試料 Sで顕微鏡光学系の光軸上にある撮像位置を設定または 変更する。
[0039] 焦点制御部 37は、 CCDカメラ 33、 34によって取得された画像について所定の解 析方法で解析を行う。そして、その解析結果に基づいて、光検出器 31によって試料 Sを撮像する際の焦点制御情報を取得する。あるいはさらに、焦点制御部 37は、取 得された焦点制御情報に基づいて、光検出器 31による撮像の焦点を制御する。本 実施形態においては、焦点制御部 37は、ピエゾ駆動部 23を介してピエゾァクチユエ ータ 22を駆動制御して対物レンズ 21の z軸方向の位置を調整することにより、撮像の 焦点制御を行う。
[0040] ここで、焦点制御用撮像手段であるカメラ 33、 34は、上記したようにそれぞれ焦点 制御用光路の光軸に対して傾いて配置されている。このため、 CCDカメラ 33、 34に よって取得される 2次元の画像は、それぞれ z軸方向に沿って焦点位置からのずれが 変化する画像となる。このような所定の変化方向に沿って焦点位置からのずれが変 化する画像を、焦点制御部 37において解析することにより、撮像の焦点のずれ、焦 点調整の必要性の有無、焦点を合わせるために必要な補正量などにっ 、ての焦点 制御情報が得られる。さらに、カメラ 33、 34によって取得される画像は、焦点位置か らのずれが変化する方向が互いに逆方向となる。このような 2種類の画像を用いるこ とにより、焦点制御情報を精度良く求めることが可能となる。
[0041] 図 2は、焦点制御部 37の具体的な構成の一例を示すブロック図である。本構成例 においては、焦点制御部 37は、 AZD変換器 37a、画像メモリ 37b、データ処理部 3 7c、及びデータ記憶部 37dから構成されている。 CCDカメラ 33、 34によって取得さ れた画像のデータ信号は、 AZD変換器 37aで AZD変換された後、焦点制御用の 画像データとして画像メモリ 37bに格納される。データ処理部 37cは、画像メモリ 37b 力も必要な画像データを読み出し、その解析を行うとともに、解析結果に基づいて、 試料 Sを光検出器 31によって撮像する際の焦点制御情報を取得して、データ記憶 部 37dに情報を記憶する。また、実際に光検出器 31によって試料 Sの画像の取得を 行う場合には、データ処理部 37cは、取得された焦点制御情報を参照してピエゾ駆 動部 23を制御し、撮像の焦点制御を行う。
[0042] 本実施形態による顕微鏡装置の効果について説明する。
[0043] 図 1に示した顕微鏡装置においては、画像取得の対象となる試料 Sに対して、焦点 制御に用いられる撮像手段として、 2次元の画像を取得可能な CCDカメラ 33、 34を 用いるとともに、光像が試料 Sから導光される光路長が所定方向で変化する撮像条 件となるようにそれぞれのカメラ 33、 34を配置している。このようなカメラ 33、 34を用 Vヽて取得された 2次元の画像を解析して焦点制御を行う構成によれば、試料への焦 点計測用のレーザ光の照射等が不要となる。したがって、焦点計測部分を含めた顕 微鏡装置の全体として、その装置構成や撮像動作を簡単ィ匕することができる。
[0044] また、上記した装置では、所定の変化方向に沿って互いに逆方向に光路長が変化 するように構成された第 1撮像手段である CCDカメラ 33、及び第 2撮像手段である C CDカメラ 34によって焦点制御用撮像手段を構成している。このような撮像手段によ つて取得された 2種類の画像を用いて焦点計測を行うことにより、試料 Sの画像を画 像取得用撮像手段である光検出器 31によって取得する際の焦点制御情報を精度良 く求めることが可能となる。また、このようにして求められた焦点制御情報を用いれば 、試料 Sの画像を取得する際に焦点制御を好適に行うことが可能となる。
[0045] 具体的には、上記構成では、 z軸方向を傾き方向として互いに逆方向に傾いた状 態で設置された 2つの CCDカメラ 33、 34を、焦点制御情報の取得に用いている。こ のように、逆方向に傾いた 2つの撮像装置を用いて焦点計測を行うことにより、試料 S 自体のコントラストパターンが不均一な場合においても、その影響を低減して好適に 焦点制御を行うことができる。また、このような構成では、 2つのカメラ 33、 34を光軸に 対して傾きが対称となるように配置することが好ま 、。
[0046] なお、焦点制御部 37による焦点制御情報の取得の実行と、実際の焦点制御の実 行とについては、光検出器 31による画像取得をカメラ 33、 34による焦点計測と並行 して同時に行うことが可能である。この場合には、カメラ 33、 34で取得された画像か ら焦点制御部 37において焦点制御情報を求めると同時に、その情報を用いて撮像 の焦点をフィードバック制御することができる。
[0047] このように、光検出器 31による試料 Sの画像の取得を行いつつ、 CCDカメラ 33、 3 4によって取得される試料 Sの 2次元の画像を用いた焦点制御をリアルタイムで行うリ アルタイムフォーカス技術は、試料 Sの画像取得作業を高速化する上で有効である。 例えば、近年、生物サンプルの全体を画像データとして電子化するバーチヤルスライ ドの開発がすすめられている力 このようなサンプルの電子化を高速で行うためには 、リアルタイムでの焦点制御が非常に重要となる。
[0048] あるいは、光検出器 31による画像取得と、カメラ 33、 34による焦点計測とを別々に 行うこととしても良い。例えば、あら力じめ試料 Sでの撮像位置をスキャンしつつカメラ 33、 34による焦点計測を行って、試料 Sに対する焦点制御情報のマップを作成する ことも可能である。この場合、焦点制御情報のマップを作成した後に、そのマップを参 照して焦点制御を実行して、試料 Sでの撮像位置をスキャンしつつ光検出器 31によ る画像取得を行えば良い。このように、焦点制御情報のマップの作成を行う際には、 画像取得用の光検出器 31は不要である。また、焦点計測においては、導光光学系 2 0は、試料 Sの光像が焦点制御用光路へと導かれるように構成されていれば良い。こ の場合、ビームスプリッタなどの光分岐手段は、不要であれば設けなくても良い。
[0049] なお、焦点制御情報のマップの作成にお!、ては、必ずしも試料 Sのすベての撮像 領域に対して焦点計測及び焦点制御情報の取得を実行しなくても良い。例えば、試 料 S上において適宜選択された複数の撮像領域に対して焦点計測を行って焦点制 御情報を取得する。そして、得られた複数の焦点制御情報を利用し、焦点計測を未 実行の撮像領域にっ ヽて焦点制御情報を補間処理することによって、撮像領域全 体にっ 、ての焦点制御情報のマップを作成することが可能である。このような方法で は、焦点制御情報のマップの作成に要する時間が短縮される。
[0050] また、本実施形態にぉ 、ては、焦点制御用撮像手段を構成する CCDカメラ 33、 34 につ 、て、上記したように所定の変化方向に沿って互いに逆方向に光路長が変化す るように構成している。これにより、取得される焦点制御情報の精度を向上することが できる。この焦点制御用撮像手段の第 1撮像手段及び第 2撮像手段については、一 般には、所定の変化方向に沿って互いに異なる変化率で光路長が変化するように構 成すれば良い。そのような構成としては、例えば、同方向であるが互いに異なる変化 量で光路長が変化する構成がある。 [0051] また、上記実施形態では、試料 Sから光検出器 31への焦点制御を、ピエゾァクチュ エータ 22を駆動制御して対物レンズ 21の z軸方向の位置を調整することによって行 つている。これにより、 CCDカメラ 33、 34で取得された画像を用いた焦点のフィード ノ ック制御を高速で確実に実行することができる。ただし、このような焦点制御には、 対物レンズ 21を駆動する構成に限らず、例えば試料 Sが載置される試料ステージ 15 を z軸方向に駆動する構成を用いても良い。また、対物レンズ 21や試料ステージ 15 を駆動する駆動機構としては、ピエゾァクチユエータ以外にも、例えばステッピングモ ータなどを用いることができる。
[0052] また、焦点制御に用いられる試料 Sの 2次元の画像を取得するための撮像装置に ついては、 CCDカメラ以外にも、例えば CMOS型の撮像装置など、 2次元の画像を 取得可能な他の撮像装置を用いても良 、。
[0053] 図 1に示した顕微鏡装置における焦点制御方法について説明する。
[0054] まず、焦点制御用撮像手段として単一の CCDカメラ 33のみを用いた場合の焦点 制御方法について説明しておく。図 3は、焦点制御方法の具体的な一例を示すフロ 一チャートである。また、図 4は、図 3に示した焦点制御方法について示す模式図で ある。なお、以下に説明する焦点制御は、図 1に示した構成において焦点制御部 37 によって行われる。
[0055] この制御方法では、まず、図 4に示すように、 CCDカメラ 33により、その撮像面の傾 き方向である z軸方向に a画素、傾きと垂直方向である X軸方向に b画素で、 a X b画 素からなる試料 Sの 2次元の画像 Xを取得する(ステップ S101)。そして、この画像 X から、傾き方向の全幅 (a画素)、傾きと垂直方向の一定の幅 (b'画素)からなる、傾き 方向に沿った計測対象画像 X'を切り出す (S 102)。
[0056] 次に、切り出した計測対象画像 X'について、傾きと垂直方向に一定画素(s画素) だけシフトさせたシフト画像 X"を作成する(S 103)。また、画像 X"と画像 X'との間で 差分 (X'— X")をとり、さらに、その絶対値 I X' -X" I の計算を行って、差分絶対 値画像 Yを作成する(S 104)。この差分画像 Yは、計測対象画像 X'をシフトさせた画 素分が無効画素となるため、 a X (b'—s)画素の画像となる。ここで、計測対象画像 X 'をシフトさせる画素数 sについては、光学的な倍率及び対物レンズの開口数 NAを 考慮して適当な画素数を選択することが好ましい。
[0057] 続いて、差分絶対値画像 Yについて、傾きと垂直方向の b'— s画素分で平均値を 求めて、傾き方向の a画素のデータ列 Zを作成する(S105)。この差分絶対値画像 Y 、及び傾きと垂直方向について平均したデータ列 Zは、傾き方向に沿った計測対象 画像 X,の各位置での画像成分の微分の絶対値を求めたものに相当する。
[0058] 一方、画像取得の対象となる試料 Sのコントラストパターンが均一な場合、カメラ 33 で取得される画像では、焦点が合っているほど画像のコントラストが大きくなる。また、 画像のコントラストが大きいと、対応する画像成分の微分の絶対値が大きくなる。した がって、データ列 Zにおいて、傾き方向についての画像のコントラスト変化に相当する データ値の変化を求める解析を行うことにより、焦点制御についての情報が得られる 。また、その解析結果を参照することにより、撮像の焦点制御を好適に実行すること ができる。
[0059] 図 3においては、具体的には、図 4に示すように、データ列 Zの各データについて、 その傾き方向に沿った中心位置のアドレスを 0、前方に傾いている z軸の正の方向に ある各位置のアドレスを—、後方に傾 、て 、る z軸の負の方向にある各位置のアドレ スを +として、それぞれの位置のデータにアドレスを割り振る。そして、そのデータ列 Zでのアドレスとデータとの積をとり、それらの総和 Tを計算する(S106)。
[0060] このようにして求められる総和 Tにおいて、総和 Tが負の値の場合、現在の焦点位 置は正しい焦点位置よりも近い位置にあり、また、その絶対値が大きいほど正しい焦 点位置からのずれが大きい。一方、総和 Tが正の値の場合、現在の焦点位置は正し い焦点位置よりも遠い位置にあり、また、その絶対値が大きいほど正しい焦点位置か らのずれが大きい。したがって、このような総和 Tの値を参照して焦点制御を行えば、 実際の焦点位置を正しい焦点位置に近付けることができる。
[0061] この場合の具体的な制御方法としては、例えば、総和 Tに対して負の側の閾値 m、 及び正の側の閾値 nを設定しておき、総和 Tがこれらの閾値 m〜nの範囲外になつた ときに焦点位置を調整する方法がある。この方法では、図 3に示すように、総和 Tが負 の閾値 mよりも小さい (Tく閾値 m)かどうかを判定する(S 107)。そして、閾値 mよりも 小さい場合に、焦点位置を上げるように焦点制御を行う(S108)。また、総和 Tが正 の閾値 nよりも大きい (T>閾値 n)かどうかを判定する(S109)。そして、閾値 nよりも 大きい場合に、焦点位置を下げるように焦点制御を行う(S110)。
[0062] 以上のステップ S 101〜S110の焦点制御動作を、試料 Sでの撮像位置をスキャン しつつ繰返し行うことにより、試料 Sの画像を良好な画質で高速に取得することが可 能となる。
[0063] なお、上記した焦点制御方法では、データ列 Zの作成を画素毎に行って 、るが、デ ータ列 Zの具体的な作成方法は上記方法に限定されない。例えば、複数画素毎にサ ンプリングによる間弓 Iき処理を行ってデータ列 Zを作成しても良 、。このような方法で は、焦点制御をさらに高速ィ匕することができる。
[0064] 次に、焦点制御用撮像手段として上記した CCDカメラ 33、 34の 2つのカメラを用い た場合の焦点制御方法について説明する。図 5は、焦点制御方法の一例を示すフロ 一チャートである。なお、以下に説明する焦点制御は、図 1に示した構成において焦 点制御部 37によって行われる。また、画像の具体的な解析方法については、図 3及 び図 4に示した焦点制御方法と同様である。
[0065] この制御方法では、まず、 CCDカメラ 33、 34により、試料 Sの 2つの 2次元の画像 X
, Xを取得する(ステップ S501)。そして、これらの画像 X , Xから、それぞれ傾き方
1 2 1 2
向に沿った計測対象画像 X ' , X,を切り出す (S502)。これらの計測対象画像 X
1 2 1,
, X 'は、上記したように、 z軸方向について逆方向に傾いた画像である。
2
[0066] 次に、切り出した計測対象画像 X ' , X 'について、傾きと垂直方向に一定画素だ
1 2
けシフトさせたシフト画像 X ", X "を作成する(S503)。また、カメラ 33で取得された
1 2
画像 Xについて、画像 X "と画像 X,との間で差分 (X ,一X ")をとり、さら〖こ、その 絶対値 I X ' -X " I の計算を行って、差分絶対値画像 Yを作成する。また、カメラ 34で取得された画像 Xについて、画像 X "と画像 X 'との間で差分 (X
2 2 2 2,—X ")をと
2 り、さらに、その絶対値 I X ' -X "
2 2 I の計算を行って、差分絶対値画像 γ
2を作成す る(S504)。
[0067] 続いて、差分絶対値画像 Υ , Yについて、傾きと垂直方向で平均値を求めて、傾
1 2
き方向のデータ列 Z
1, Zを作成する(S505)。また、データ列 Z
2 1, Zの各データにつ
2
いて、中心位置のアドレスを 0として、それぞれの位置のデータにアドレスを割り振る。 そして、そのデータ列 Z , Zでのアドレスとデータとの積をとり、それらの総和 τ , T
1 2 1 2 を計算する(S506)。なお、データ列 Z , Zに対するアドレスの割り振りは、撮像面の
1 2
傾き方向である z軸方向につ!、て同方向に行う。
[0068] 図 5に示す焦点制御方法においては、さらに、これらのカメラ 33、 34で取得された 2 画像 X , Xに対して求められた総和 T , Tについて、その差分 T=T— Τを計算
1 2 1 2 1 2 する(S511)。そして、この総和の差分 Tを参照して、閾値 m, nを用いた焦点制御を 行う(S507〜S510)。
[0069] 以上のステップ S501〜S511の焦点制御動作を、試料 Sでの撮像位置をスキャン しつつ繰返し行うことにより、試料 Sの画像を良好な画質で高速に取得することが可 能となる。特に、本実施形態においては、互いに逆方向に傾いた CCDカメラ 33、 34 によって取得された画像 X , Xを用い、それぞれについて求められた総和 T , Tの
1 2 1 2 差分 Tをとつて焦点制御を行うことにより、試料 S自体のコントラストパターンの影響を 低減することができる。なお、上記した焦点制御方法において、焦点制御情報のマツ プの作成など、焦点制御情報の取得のみを行う場合には、得られた焦点制御につい ての情報をデータ記憶部に記憶しておき、必要に応じて焦点制御に用いれば良い。
[0070] なお、上記した焦点制御方法では、データ列 Z , Zの作成を画素毎に行っている
1 2
力 データ列 Z , Zの具体的な作成方法は上記方法に限定されない。例えば、複数
1 2
画素毎にサンプリングによる間引き処理を行ってデータ列 Z , Zを作成しても良い。
1 2
このような方法では、焦点制御をさらに高速ィ匕することができる。
[0071] また、具体的な焦点の制御方法については、上記した方法以外にも、以下の図 6、 図 7に示すように、様々な方法を用いることができる。なお、図 6、図 7に示すフローチ ヤートは、それぞれ単一の CCDカメラを用いる場合の図 3に対応するものである力 2 つの CCDカメラを用いる場合の図 5の焦点制御方法に対しても、同様に適用可能で ある。
[0072] 図 6は、焦点制御方法の他の例を示すフローチャートである。この制御方法におい て、ステップ S201〜S210については、図 3の制御方法におけるステップ S101〜S 110と同様である。
[0073] この制御方法では、差分絶対値画像 Yを作成するステップ S204と、傾き方向のデ ータ列 Zを作成するステップ S205との間に、ノイズ除去を行うステップ S211を設けて いる。ここでは、差分絶対値画像 Yにおける画像のノイズなどの焦点制御への影響を 取り去るために、各画素のデータ値に対してノイズレベル pを設定して 、る。
[0074] そして、差分絶対値画像 Yの各画素のうち、そのデータ値がノイズレベル pよりも小 さければ、ノイズデータであるとしてその画素のデータ値を 0とし、ノイズ除去がなされ た差分絶対値画像 Y'を作成する(S211)。傾き方向のデータ列 Zは、このノイズ除去 画像 Y'を用いて作成される。これにより、導光光学系 20や CCDカメラ 33に起因する ノイズなどが焦点制御に与える影響を抑制することができる。
[0075] 図 7は、焦点制御方法の他の例を示すフローチャートである。この制御方法におい て、ステップ S301〜S310については、図 3の制御方法におけるステップ S101〜S 110と同様である。
[0076] この制御方法では、焦点制御部 37は、 CCDカメラ 33によって取得された画像が撮 像の焦点の制御に適用可能な画像であるかどうかを判断する。そして、適用可能で あると判断した場合に画像を解析し、その解析結果に基づ!ヽて撮像の焦点を制御す ることとして!/、る。
[0077] 具体的には、まず、計測対象画像 X'を切り出すステップ S302と、シフト画像 X"を 作成するステップ S303との間に、ステップ S311〜S313を追カロしている。ここでは、 計測対象画像 X'について、画像 X,をブロックに分割し、それぞれのブロックの標準 偏差を計算して、標準偏差データ列 SDを作成する。また、この標準偏差データ列 S Dから、その標準偏差 Sd 及び平均値 Av を計算し (S311)、標準偏差と平均値と
SD SD
の比 Sd /Av が閾値 pよりも大きい(Sd /Av >閾値 p)かどうかを判断する(S
SD SD SD SD
312)。そして、閾値 pよりも大きい場合に、試料 S自体のコントラストが不均一であり、 したがって、焦点位置の判断不可(S313)であるとして焦点制御を行わないこととす る。
[0078] また、傾き方向のデータ列 Zを作成するステップ S305と、データ列 Zのアドレスとデ ータとの積の総和 Tを計算するステップ S306との間に、ステップ S321、 S322を追 カロしている。ここでは、計測対象画像 X'について、傾きと垂直方向の b'画素分で平 均値を求めて、傾き方向の a画素のデータ列 Aを作成するとともに、データ列 Zの平 均値 Zデータ列 Aの平均値 (変化量 Z明るさ、すなわちコントラストに相当)が閾値 r よりも小さい (Zの平均値 ZAの平均値く閾値 r)かどうかを判定する(S321)。そして 、閾値 rよりも小さい場合に、撮像位置に試料 Sが存在しないか、または焦点が大きく ずれており、したがって、焦点位置の判断不可(S322)であるとして焦点制御を行わ な 、こととする。
[0079] このように、 CCDカメラによって取得された画像について焦点制御に適当な画像か どうかを判断した上で画像の解析及び焦点制御を行うことにより、不適当な画像を用 いて焦点制御が行われることを防止して、撮像の焦点制御を好適に行うことができる
[0080] なお、上記した各焦点制御方法では、焦点制御用の画像のコントラスト変化の解析 を、撮像面の傾き方向に沿って所定幅で切り出した計測対象画像と、そのシフト画像 との差分絶対値画像を用いて行っている。このような方法を用いることにより、画像の コントラスト変化を簡易な方法で確実に解析することができる。ただし、コントラストの 具体的な解析方法にっ 、ては、上記以外の方法を用いても良 、。
[0081] また、上記した焦点制御方法では、データ列 A及び Zの作成を画素毎に行っている 力 これらのデータ列の具体的な作成方法は上記方法に限定されない。例えば、複 数画素毎にサンプリングによる間弓 Iき処理を行って各データ列を作成しても良 、。こ のような方法では、焦点制御をさらに高速ィ匕することができる。
[0082] また、図 7に示した方法では、ステップ S311及び S312において画像 X'を分割す るブロックは、 2次元マトリクス状の分割に限らず、一方向のブロック分割としても良い 。また、ブロックのサイズについては、光学的な倍率、 CCDカメラのサイズ、画素数等 を考慮して適当なサイズに設定することが好ましい。
[0083] また、上記方法では、ステップ S313及び S322〖こおいて、対象画像が均一なコント ラストパターンでない場合、あるいは画像の一部にのみ試料 Sが存在して充分なコン トラストレベルが得られな 、場合等に、焦点位置が判断不可であるとして焦点制御を 行わないこととしている。これに対して、ステージ 15を駆動させて試料 Sの画像を順次 取得する際には、焦点位置が判断不可の撮像位置に関する焦点制御情報は、他の 撮像位置についての焦点制御情報を参照して設定しても良い。この場合、例えば、 焦点位置が判断不可の撮像位置に関する焦点制御情報を、一連の焦点計測で取 得されてデータ記憶部 37dに記憶された任意の焦点制御情報、もしくは直近 (最新) の焦点制御情報と同一とみなして焦点制御を実行する方法を用いることができる。
[0084] また、 CCDカメラ 33、 34によって取得された画像を用いた焦点制御については、 画像のコントラスト変化を解析する方法を用いることにより、撮像の焦点制御を精度良 く実現することができる。ただし、このような焦点制御方法については、コントラスト変 化を用いる以外の方法を用いても良 、。
[0085] 上記した顕微鏡装置を用いた焦点制御方法の具体的な一実施例について説明す る。ここで、以下においては、焦点制御用撮像手段を構成する 2つの CCDカメラ 33、 34について、前段の CCDカメラ 33をカメラ 1、後段の CCDカメラ 34をカメラ 2とする。
[0086] 本実施例では、試料 Sとして口腔肉腫瘤の病理サンプルを用いる。この病理サンプ ルを顕微鏡(NIKONTMD, 20 X , NAO. 75)にセットし、 CCDカメラ(ORCA,浜 松ホトニタス製)を配置する。本実施例では、傾き方向が逆方向の 2つの画像を用い ることによる効果の確認を目的とするため、単一の CCDカメラを用い、その配置角度 を 0 = ± 25° で変えて 2度の焦点計測を行う。このとき、 CCDの撮像面の傾き方向 の両端は、光軸方向に約 3. 7mmの深さを持つ。これは、試料 S上での光軸方向の 変化は撮像面上では倍率の自乗となることから、サンプル上での深さに換算すると約 9 μ mとなる。
[0087] また、 2つの CCDカメラのそれぞれで取得される焦点制御用の画像において、計 測対象画像 X ' , X,のサイズを a X b' = 1024画素 X I 90画素とし、焦点位置の正
1 2
しい焦点位置からのずれが 4 πι、 一 2 πι、 Ο πι、 2 πι、 の 5点について 焦点計測を行った。
[0088] 図 8〜図 12は、焦点制御に用いられる計測対象画像の例を示す図である。ここで、 図 8の画像 (a)、(b)は、焦点位置のずれが 4 mの場合について取得された (a) カメラ 1の計測対象画像 X '、及び (b)カメラ 2の計測対象画像 X 'を示している。また
1 2
、図 9の画像 (a)、(b)は、焦点位置のずれが 2 mの場合について取得された (a) カメラ 1の計測対象画像 X '、及び (b)カメラ 2の計測対象画像 X 'を示している。
1 2
[0089] また、図 10の画像 (a)、 (b)は、焦点位置のずれが 0 μ mの場合にっ 、て取得され た (a)カメラ 1の計測対象画像 X '、及び (b)カメラ 2の計測対象画像 X 'を示している
1 2
。また、図 11の画像 (a)、(b)は、焦点位置のずれが 2 /z mの場合について取得され た (a)カメラ 1の計測対象画像 X '、及び (b)カメラ 2の計測対象画像 X 'を示している
1 2
。また、図 12の画像 (a)、(b)は、焦点位置のずれ力 /z mの場合について取得され た (a)カメラ 1の計測対象画像 X '、及び (b)カメラ 2の計測対象画像 X 'を示している
1 2
[0090] このような 2種類の計測対象画像 X,, X,に対し、 4画素のシフトでシフト画像 X ",
1 2 1
X "を作成し、画像 X'、 X"から差分絶対値画像 Y , Y、及びデータ列 Z , Zを求め
2 1 2 1 2 る。そして、データ列 Z , Zでのアドレスとデータとの積の総和 τ , Tである焦点重心
1 2 1 2
のデータ Fl, F2を求める。また、この焦点重心のデータ Fl, F2の差分 F = F1—F2 (総和 T , Tの差分 T=T Τ )を求めて、焦点制御に用いる。
1 2 1 2
[0091] 図 13は、図 8〜図 12の画像(a)に示したカメラ 1の計測対象画像 Xでのコントラスト 変化を示す図である。図 13のグラフ(a)〜(e)において、横軸は傾き方向の画素位 置を示し、縦軸は各位置でのコントラストに対応するデータ列 Zを示している。また、 図 13のグラフ(a)〜(e)は、それぞれ図 8の画像 (a)、図 9の画像 (a)、図 10の画像( a)、図 11の画像 (a)、図 12の画像 (a)に対応している。
[0092] これらのデータ列 Zから、各焦点位置に対する焦点重心 F1 (総和 T )は、(a)焦点 位置 に対して Fl = 5. 4、(b)焦点位置 2 mに対して F1 =49. 0、(c)焦 点位置 O /z mに対して Fl = 75. 2、(d)焦点位置 2 /z mに対して Fl = 94. 1、(e)焦 点位置 に対して Fl = 120. 8とそれぞれ求められる。この結果では、焦点位置 のずれに対してデータ列 Z力 求められる焦点重心 F1の値の変化において、 F1の すべてが正の値であって負の値から正の値へと移行する点が存在しない。このような 焦点重心 F1の値の変化は、試料 S自体のコントラストパターンの変化に起因するもの である。
[0093] 一方、図 14は、図 8〜図 12の画像 (b)に示したカメラ 2の計測対象画像 Xでのコン
2 トラスト変化を示す図である。図 14のグラフ(a)〜(e)において、横軸は傾き方向の画 素位置を示し、縦軸は各位置でのコントラストに対応するデータ列 Zを示している。ま
2
た、図 14のグラフ(a)〜(e)は、それぞれ図 8の画像(b)、図 9の画像(b)、図 10の画 像 (b)、図 11の画像 (b)、図 12の画像 (b)に対応している。
[0094] これらのデータ列 Zから、各焦点位置に対する焦点重心 F2 (総和 T )は、(a)焦点
2 2
位置 【こ対して F2 = 89. 2、(b)焦^;位置 2 /z m【こ対して F2 = 55. 8、 (c) 焦点位置 0 mに対して F2= 12. 0、(d)焦点位置 2 mに対して F2=— 13. 4、 (e )焦点位置 4 μ mに対して F2 =—61. 6とそれぞれ求められる。
[0095] また、これらの焦点重心 Fl、 F2から焦点重心の差分 F (総和の差分 T)は、(a)焦 点位置 に対して F=—83. 8、(b)焦点位置 2 /z mに対して F=—6. 8、 ( c)焦点位置 O /z mに対して F = 63. 2、(d)焦点位置 2 mに対して F= 107. 5、 (e) 焦点位置 4 /z mに対して F= 182. 4とそれぞれ求められる。この結果より、上記のよう に光軸に対して逆方向に傾 、た 2つのカメラによって取得される画像を解析して得ら れる解析結果では、試料 S自体が有するコントラストパターンにかかわらず、焦点位 置のずれと、データ列 Z , Z力 求められる焦点重心の差分 Fの値の変化とが、良く
1 2
対応していることがわかる。したがって、このような解析結果を参照することで、撮像の 焦点制御情報を好適に取得することができる。
[0096] 本発明による顕微鏡装置について、さらに説明する。
[0097] 図 15は、本発明による顕微鏡装置の第 2実施形態の構成を示すブロック図である。
本実施形態において、照射光源 10、集光レンズ 11、試料ステージ 15、 XYステージ 駆動部 16、導光光学系 20、ピエゾァクチユエータ 22、及びピエゾ駆動部 23につい ては、図 1に示した実施形態と同様である。
[0098] 画像取得用光路上には、ビームスプリッタ 27a、 27bを通過した試料 Sの光像の結 像面に対応する位置に、光検出器 41が設置されている。光検出器 41は、ビームスプ リツタ 27a、 27bで画像取得用光路へと分岐された光像による画像の取得に用いられ る画像取得用撮像手段である。この光検出器 41としては、具体的には、試料 Sの 1次 元の画像を取得可能なリニアセンサ、または 2次元の画像を取得可能なイメージセン サが用いられる。
[0099] 一方、前段の焦点制御用光路上には、ビームスプリッタ 27aで反射された試料 Sの 光像の結像面に対応する位置に、撮像装置 43が設置されている。また、後段の焦点 制御用光路上には、ビームスプリッタ 27bで反射された試料 Sの光像の結像面に対 応する位置に、撮像装置 44が設置されている。撮像装置 43、 44は、それぞれ 2次元 の画像を取得可能な CCDカメラ力もなる。
[0100] CCDカメラ 43、 44は、ビームスプリッタ 27a、 27bで分岐された光像による画像を取 得する第 1、第 2撮像手段であり、これらのカメラ 43、 44によって、本実施形態におけ る焦点制御用撮像手段が構成されている。すなわち、図 15に示した顕微鏡装置で は、これらの CCDカメラ 43、 44によって取得される試料 Sの 2次元の画像を用いて、 試料 Sを光検出器 41によって撮像する際の焦点制御情報の取得、及び得られた焦 点制御情報に基づく焦点制御が行われる。
[0101] 具体的には、焦点制御用撮像手段の第 1撮像手段である CCDカメラ 43は、その撮 像面が光路に直交する xz面と略一致するように配置されている。また、ビームスプリツ タ 27aとカメラ 43との間で撮像面に対して所定位置に、光路長変更部材 43aが設置 されている。光路長変更部材 43aは、試料 Sからの光を透過する光透過材料により、 z軸方向に沿って厚さが変化していくゥエッジ形状に形成されている。このとき、 CCD カメラ 43の撮像面内において、 z軸方向を変化方向として、試料 Sからカメラ 43へと 光が導かれる導光光学系 20での光路長が z軸方向に沿って変化するようになって 、 る。
[0102] また、焦点制御用撮像手段の第 2撮像手段である CCDカメラ 44は、その撮像面が 光路に直交する xz面と略一致するように配置されている。また、ビームスプリッタ 27b とカメラ 44との間で撮像面に対して所定位置に、光路長変更部材 44aが設置されて いる。光路長変更部材 44aは、試料 Sからの光を透過する光透過材料により、 z軸方 向に沿うとともに光路長変更部材 43aとは逆方向に厚さが変化していくゥェッジ形状 に形成されている。このとき、 CCDカメラ 44の撮像面内において、 z軸方向を変化方 向として、試料 Sからカメラ 44へと光が導かれる導光光学系 20での光路長が z軸方向 に沿うとともにカメラ 43とは逆方向に変化するようになっている。
[0103] これらの試料ステージ 15、導光光学系 20、光検出器 41、及び CCDカメラ 43、 44 に対し、画像取得制御部 46、及び焦点制御部 47が設けられている。画像取得制御 部 46は、試料 Sの画像の取得、及び試料 Sに対する撮像位置の設定を制御すること によって、試料 Sの画像取得動作を制御する制御手段である。具体的には、画像取 得制御部 46は、光検出器 41による画像の取得を制御する。また、制御部 46は、 XY ステージ駆動部 16を介して試料ステージ 15を駆動制御することにより、試料ステー ジ 15上に載置された試料 Sで顕微鏡光学系の光軸上にある撮像位置を設定または 変更する。
[0104] 焦点制御部 47は、 CCDカメラ 43、 44によって取得された画像について所定の解 析方法で解析を行う。そして、その解析結果に基づいて、光検出器 41によって試料 Sを撮像する際の焦点制御情報を取得する。あるいはさらに、焦点制御部 47は、取 得された焦点制御情報に基づいて、光検出器 41による撮像の焦点を制御する。本 実施形態においては、焦点制御部 47は、ピエゾ駆動部 23を介してピエゾァクチユエ ータ 22を駆動制御して対物レンズ 21の z軸方向の位置を調整することにより、撮像の 焦点制御を行う。
[0105] ここで、焦点制御用撮像手段であるカメラ 43、 44では、上記したようにそれぞれ焦 点制御用光路の光軸に対して前方側にゥェッジ形状の光路長変更部材 43a、 44a が配置されている。このため、 CCDカメラ 43、 44によって取得される 2次元の画像は 、 CCDカメラ 33、 34を傾けて配置する図 1に示した構成と同様に、それぞれ z軸方向 に沿って焦点位置力ものずれが変化する画像となる。このような所定の変化方向に 沿って焦点位置からのずれが変化する画像を、焦点制御部 47において解析すること により、撮像の焦点のずれ、焦点調整の必要性の有無、焦点を合わせるために必要 な補正量などについての焦点制御情報が得られる。さらに、カメラ 43、 44によって取 得される画像は、焦点位置力 のずれが変化する方向が互いに逆方向となる。このよ うな 2種類の画像を用いることにより、焦点制御情報を精度良く求めることが可能とな る。
[0106] 本実施形態による顕微鏡装置の効果について説明する。
[0107] 図 15に示した顕微鏡装置においては、画像取得の対象となる試料 Sに対して、焦 点制御に用いられる撮像手段として、 2次元の画像を取得可能な CCDカメラ 43、 44 を用いるとともに、光像が試料 Sから導光される光路長が所定方向で変化する撮像条 件となるようにそれぞれのカメラ 43、 44を配置している。このようなカメラ 43、 44を用 Vヽて取得された 2次元の画像を解析して焦点制御を行う構成によれば、試料への焦 点計測用のレーザ光の照射等が不要となる。したがって、焦点計測部分を含めた顕 微鏡装置の全体として、その装置構成や撮像動作を簡単ィ匕することができる。
[0108] また、上記した装置では、所定の変化方向に沿って互いに逆方向に光路長が変化 するように構成された第 1撮像手段である CCDカメラ 43、及び第 2撮像手段である C CDカメラ 44によって焦点制御用撮像手段を構成している。このような撮像手段によ つて取得された 2種類の画像を用いて焦点計測を行うことにより、試料 Sの画像を画 像取得用撮像手段である光検出器 41によって取得する際の焦点制御情報を精度良 く求めることが可能となる。また、このようにして求められた焦点制御情報を用いれば 、試料 Sの画像を取得する際に焦点制御を好適に行うことが可能となる。
[0109] 具体的には、上記構成では、 z軸方向を変化方向として互いに逆方向に光路長が 変化するように光路長変更部材 43a、 44aが設置された 2つの CCDカメラ 43、 44を、 焦点制御情報の取得に用いている。このように、逆方向に光路長が変化する 2つの 撮像装置を用いて焦点計測を行うことにより、試料 S自体のコントラストパターンが不 均一な場合においても、その影響を低減して好適に焦点制御を行うことができる。
[0110] また、焦点制御に用いられる撮像装置を光軸に対して傾いた状態で設置する図 1 の構成に対し、本構成では、撮像装置と光路長変更部材とを組み合わせて用いるこ とによって焦点計測を行っている。このような構成によっても、撮像の焦点制御を好適 に実現することが可能である。一般には、焦点制御用撮像手段を構成する第 1、第 2 撮像手段は、それぞれの光路上に、その撮像面内において所定の変化方向に沿つ て導光光学系での光路長が変化するように構成、配置されて!ヽれば良!ヽ。
[0111] 特に、光路長変更部材を用いる構成では、撮像装置を傾けて配置する必要がなく 顕微鏡へのマウントが簡単になるという利点がある。また、 CCDカメラの撮像面に対 して斜めに光が入射したときに、画素の不均一性に起因する固定パターンノイズが 顕著となる場合があるが、光軸に対して垂直に撮像装置を配置する上記構成では、 そのようなノイズの問題は発生しな 、。
[0112] また、試料 S上での光軸方向の変化は撮像面上では倍率の自乗となるため、撮像 装置を傾ける構成では制御可能な焦点位置の範囲に限界がある。これに対して、光 路長変更部材を用いる構成では、制御しょうとする焦点位置の範囲に合わせて光路 長変更部材の形状を選択することが可能である。なお、このように光路長変更部材を 用いた場合の光路長 (光学距離)の差 Δ χは、変更部材のガラスなどの厚み d、及び 屈折率 nから Δ x=d (n— 1) Znと求められる。
[0113] また、本実施形態においては、焦点制御用撮像手段を構成する CCDカメラ 43、 44 につ 、て、上記したように所定の変化方向に沿って互いに逆方向に光路長が変化す るように構成している。これにより、取得される焦点制御情報の精度を向上することが できる。この焦点制御用撮像手段の第 1撮像手段及び第 2撮像手段については、一 般には、所定の変化方向に沿って互いに異なる変化率で光路長が変化するように構 成すれば良い。そのような構成としては、例えば、同方向であるが互いに異なる変化 量で光路長が変化する構成がある。
[0114] 焦点制御用の撮像装置の前方側に設置される光路長変更部材については、図 16 の構成例(a)〜(f)に示すように、具体的には様々な形状のものを用いて良い。これ らの図 16に示す光路長変更部材のうち、図 16の構成例(a)は、図 15に関して上述 した光路長の変化方向に沿って厚さが連続的に変化するゥエッジ形状のものである 。また、図 16の構成例 (b)は、厚さが階段状に変化するステップゥェッジ形状のもの である。また、図 16の構成例(c)では、焦点距離が異なる複数のマイクロレンズを変 化方向に沿って配列したレンズアレイを、光路長変更部材として!/、る。
[0115] また、図 16の構成例 (d)〜(f)では、厚さが変化する変化量や変化していく方向( 厚さの変化率)が異なる複数のゥエッジ形状の光路長変更部材を組み合わせて用い る構成を示している。このように複数種類の部材を用いることにより、様々な条件での 焦点計測が可能となる。例えば、図 16の構成例 (e)に示すように、厚さの変化率に相 当するゥエッジの勾配が小さ 、ゥエッジ部材と大き 、ゥエッジ部材とを組み合わせて 使用する構成では、ゥェッジの勾配に応じて焦点計測の計測範囲及び分解能を選 択して、精度良く焦点制御を行うことができる。
[0116] この場合、例えば、次のような焦点制御方法が可能である。最初に勾配が大きいゥ エッジ部材を用いて焦点位置を計測して、低精度で焦点位置を調整する。次に、勾 配が小さ!/、ゥエッジ部材を用いて高精度で焦点位置を調整する。このような制御方 法では、画像取得の開始時などにおいて、焦点位置の設定を高速かつ簡単に行うこ とがでさる。
[0117] あるいは、画像取得中に勾配が小さ!/、ゥエッジ部材を用いて焦点位置の調整を行 う。そして、焦点位置が計測されない場合に、勾配が大きいゥエッジ部材を用いて焦 点位置を計測して、低精度で焦点位置を調整する。さらに、再び勾配が小さいゥエツ ジ部材を用いて高精度で焦点位置を調整する。このような制御方法では、画像取得 の対象となる試料が厚さの変化の大きい試料である場合にも好適に焦点制御を実現 することができる。
[0118] また、顕微鏡が複数の倍率に設定可能な構成である場合には、複数の倍率のそれ ぞれに対応した勾配のゥエッジ部材を設けておくことが好ましい。これにより、顕微鏡 の倍率を変更する場合にも焦点計測部分の光学的、機構的な変更が不要な構成の 顕微鏡装置とすることができる。
[0119] なお、光路長変更部材を用いる構成では、変更部材は、撮像装置に密着させて直 接取り付けるか、または多少の距離をあけて配置しても良い。また、光路長変更手段 としては、光を透過する光路長変更部材以外の光学素子を用いても良い。また、図 1 5に示した顕微鏡装置においても、その具体的な焦点制御方法については、図 1に 示した顕微鏡装置に関して上述したものと同様である。
[0120] また、撮像装置の前方側に光路長変更部材を配置することによって光路長を変化 させる構成では、 2つの撮像装置を用いる図 15の構成に限らず、例えば図 16の構成 例 (d)に示したように、厚さの変化方向が逆方向となる 2種類の光路長変更部材を 1 つの撮像装置に対して設ける構成を用いることが可能である。この場合、焦点制御用 撮像手段を単一の撮像装置を用いて構成して、顕微鏡装置の構成を簡単化すること ができる。
[0121] すなわち、焦点制御用撮像手段を構成する第 1撮像手段を、撮像装置の撮像面の 第 1撮像領域に対して所定位置に、所定の変化方向に沿って光路長が変化するよう に設置された第 1光路長変更手段を用いて構成する。また、焦点制御用撮像手段を 構成する第 2撮像手段を、撮像装置の撮像面の第 2撮像領域に対して所定位置に、 上記変化方向に沿うとともに第 1光路長変更手段とは異なる変化率、好ましくは逆方 向に光路長が変化するように設置された第 2光路長変更手段を用いて構成する。こ のように顕微鏡装置を構成することにより、図 15に示した構成と同様の焦点制御を実 行することができる。
[0122] また、上記した各実施形態では、導光光学系 20に光分岐手段であるビームスプリツ タを配置し、ビームスプリッタによって分岐された画像取得用光路、焦点制御用光路 に対してそれぞれ画像取得用撮像手段、焦点制御用撮像手段を設置している。これ に対して、導光光学系 20に光分岐手段を配置せず、同一の光路を画像取得用光路 及び焦点制御用光路として用いる構成とすることも可能である。
[0123] この場合、同一の撮像装置を画像取得用撮像手段及び焦点制御用撮像手段とし て用いる構成とすることができる。一般には、画像取得用撮像手段を、焦点制御用撮 像手段に含まれる一の撮像装置によって構成すれば良い。
[0124] 図 17は、本発明による顕微鏡装置の第 3実施形態の構成を示すブロック図である。
本実施形態において、照射光源 10、集光レンズ 11、試料ステージ 15、及び XYステ ージ駆動部 16については、図 1に示した構成と同様である。
[0125] 試料 Sに対し、試料ステージ 15の上方に導光光学系 20が設けられている。本実施 形態においては、導光光学系 20は、対物レンズ 21と、対物レンズ 21の後段に配置 された結像レンズ 28とを有している。図 17においては、対物レンズ 21からの光が結 像レンズ 28を通過して結像される光路が、試料 Sの画像取得に用いられる画像取得 用光路、及び試料 Sを撮像する際の焦点制御に用いられる焦点制御用光路に共用 されている。
[0126] 対物レンズ 21に対して、対物レンズ 21を z軸方向に駆動するピエゾァクチユエータ 22が設けられている。また、ピエゾァクチユエータ 22は、ピエゾ駆動部 23によって駆 動制御されている。本顕微鏡装置では、このピエゾァクチユエータ 22を用いて対物レ ンズ 21の z軸方向の位置を変えることにより、試料 Sの画像取得における撮像の焦点 が調整可能になっている。
[0127] 画像取得用光路及び焦点制御用光路として共用される光路上には、結像レンズ 2 8を通過した試料 Sの光像の結像面に対応する位置に、撮像装置 51が設置されてい る。撮像装置 51は、 2次元の画像を取得可能な CCDカメラ力 なる。本実施形態に おいては、このカメラ 51により、試料 Sの画像の取得に用いられる画像取得用撮像手 段、及び焦点制御に用いられる焦点制御用撮像手段が構成されている。すなわち、 図 17に示した顕微鏡装置では、このカメラ 51によって取得される試料 Sの 2次元の画 像を用いて、試料 Sを撮像する際の焦点制御情報の取得、及び得られた焦点制御情 報に基づく焦点制御が行われる。
[0128] 具体的には、 CCDカメラ 51は、撮像面が光路に直交する xy面と略一致するように 配置されている。また、その撮像面には、 X軸方向について第 1撮像領域及び第 2撮 像領域の 2つの撮像領域が設定されている。そして、その第 1撮像領域に対して所定 位置に、 y軸方向に沿って厚さが変化していくゥ工ッジ形状の第 1光路長変更部材 5 laが設置されることにより、焦点制御用撮像手段の第 1撮像手段が構成されている。 このとき、カメラ 51の撮像面の第 1撮像領域内において、 y軸方向を変化方向として、 試料 Sからカメラ 51へと光が導かれる導光光学系 20での光路長が y軸方向に沿って 変化するようになっている。
[0129] また、カメラ 51の第 2撮像領域に対して所定位置に、 y軸方向に沿うとともに第 1光 路長変更部材 51aとは逆方向に厚さが変化していくゥェッジ形状の第 2光路長変更 部材 51bが設置されることにより、焦点制御用撮像手段の第 2撮像手段が構成されて いる。このとき、カメラ 51の撮像面の第 2撮像領域内において、 y軸方向を変化方向と して、試料 Sからカメラ 51へと光が導かれる導光光学系 20での光路長が y軸方向に 沿うとともに第 1撮像領域とは逆方向に変化するようになっている。
[0130] また、 CCDカメラ 51の前方側に設置された上記した光路長変更部材 51a、 51bに 対し、駆動モータ 52が設けられている。この駆動モータ 52は、光路長変更部材 5 la 、 5 lbを、カメラ 51の撮像面に対して光路上にある位置、及び光路から外れた位置 の間で駆動する駆動手段である。駆動モータ 52により光路長変更部材 51a、 51bを 光路上に配置した状態では、カメラ 51は焦点制御用撮像手段として機能する。一方 、駆動モータ 52により光路長変更部材 51a、 51bを光路外に配置した状態では、カメ ラ 51は画像取得用撮像手段として機能する。なお、図 17においては、光路長変更 部材 51a、 51bが光路上に配置された状態を示している。
[0131] これらの試料ステージ 15、導光光学系 20、 CCDカメラ 51、及び駆動モータ 52に 対し、画像取得制御部 56、及び焦点制御部 57が設けられている。画像取得制御部 56は、試料 Sの画像の取得、試料 Sに対する撮像位置の設定を制御する。また、本 実施形態においては、画像取得制御部 56は、駆動モータ 52による光路長変更部材 51a、 51bの駆動を制御する。これにより、光路長変更部材 51a、 51bが光路上に配 置された焦点計測モード、及び光路外に配置された画像取得モードが切り換えられ る。
[0132] 焦点制御部 57は、変更部材 51a、 51bが光路上に配置された状態で CCDカメラ 5 1によって取得された画像について所定の解析方法で解析を行う。そして、その解析 結果に基づいて、変更部材 51a、 5 lbが光路外に配置された状態でカメラ 51によつ て試料 Sを撮像する際の焦点制御情報を取得する。あるいはさらに、焦点制御部 57 は、取得された焦点制御情報に基づいて、カメラ 51による撮像の焦点を制御する。
[0133] ここで、カメラ 51の第 1、第 2撮像領域では、上記したようにそれぞれゥエッジ形状 の光路長変更部材 51a、 51bが配置されている。このため、カメラ 51の第 1、第 2撮像 領域でそれぞれ取得される 2次元の画像は、図 1及び図 15に示した構成と同様に、 y 軸方向に沿って焦点位置力ものずれが変化する画像となる。このような所定の変化 方向に沿って焦点位置力ものずれが変化する画像を、焦点制御部 57にお 、て解析 することにより、撮像の焦点のずれ、焦点調整の必要性の有無、焦点を合わせるため に必要な補正量などについての焦点制御情報が得られる。さらに、カメラ 51の第 1、 第 2撮像領域で取得される画像は、焦点位置力 のずれが変化する方向が互いに逆 方向となる。このような 2種類の画像を用いることにより、焦点制御情報を精度良く求 めることが可能となる。
[0134] 本実施形態による顕微鏡装置の効果について説明する。
[0135] 図 17に示した顕微鏡装置においては、画像取得の対象となる試料 Sに対して、焦 点制御に用いられる撮像手段として、 2次元の画像を取得可能なカメラ 51の第 1、第 2撮像領域を用いるとともに、光像が試料 Sから導光される光路長が所定方向で変化 する撮像条件となるようにそれぞれの撮像領域に対して光路長変更部材 51a、 51b を設置している。このようなカメラ 51を用いて取得された 2次元の画像を解析して焦 点制御を行う構成によれば、試料への焦点計測用のレーザ光の照射等が不要となる 。したがって、焦点計測部分を含めた顕微鏡装置の全体として、その装置構成や撮 像動作を簡単ィ匕することができる。
[0136] また、上記した装置では、第 1、第 2撮像領域の 2つの撮像領域が設定された CCD カメラ 51によって焦点制御用撮像手段を構成している。このような撮像領域で取得さ れた 2種類の画像を用いて焦点計測を行うことにより、試料 Sの画像を取得する際の 焦点制御情報を精度良く求めることが可能となる。また、このようにして求められた焦 点制御情報を用いれば、試料 Sの画像を取得する際に焦点制御を好適に行うことが 可能となる。
[0137] また、上記構成では、単一の CCDカメラ 51を、画像取得用撮像手段及び焦点制 御用撮像手段として共用している。このような構成によれば、別個に撮像装置を設け る構成と比べて、顕微鏡装置の構成を簡単ィ匕することができる。
[0138] 図 17に示した顕微鏡装置における焦点制御方法について説明する。図 18は、焦 点制御方法の一例を示すフローチャートである。なお、以下に説明する焦点制御、 光路長変更部材の駆動、及び試料の画像取得は、図 17に示した構成において画像 取得制御部 56及び焦点制御部 57によって行われる。また、焦点制御における画像 の具体的な解析方法については、図 3〜図 5に示した焦点制御方法と同様である。
[0139] まず、 CCDカメラ 51に対して駆動モータ 52によって光路長変更部材 51a、 51bを 駆動し、変更部材 51a、 51bを光路上の位置に挿入して、焦点制御情報取得のため の焦点計測モードの状態とする。また、 XYステージ駆動部 16によって試料ステージ 15を駆動し、照射光源 10及び対物レンズ 21による顕微鏡光学系の光軸上となる計 測位置が最初の計測位置となるように試料 Sを移動する (ステップ S601)。
[0140] 次に、設定された計測位置について、カメラ 51によって取得された画像を解析して 焦点位置を計測し、取得された焦点制御情報を記憶する (S602)。制御情報取得を 終了したら、光軸上の計測位置が次の計測位置となるように試料 Sを移動する(S60
3)。そして、すべての計測位置について焦点計測を完了した力どうかを判断し (S60
4)、完了していなければ、焦点計測のステップ S602、 S603を繰り返す。一方、焦点 計測を完了して 、れば、焦点計測作業を終了する。
[0141] 続いて、駆動モータ 52によって光路長変更部材 51a、 51bを駆動し、変更部材 51 a、 5 lbを光路上の位置力 外して、試料 Sの画像取得のための画像取得モードの状 態とする。また、 XYステージ駆動部 16によって試料ステージ 15を駆動して、光軸上 の計測位置が最初の撮像位置となるように試料 Sを移動する(S605)。
[0142] 次に、設定された撮像位置について、先に取得されている焦点制御情報を参照し て焦点制御を行うとともに、カメラ 51によって試料 Sの画像を取得、記憶する(S606) 。画像取得を終了したら、光軸上の撮像位置が次の撮像位置となるように試料 Sを移 動する(S607)。そして、すべての撮像位置について試料 Sの画像取得を完了した かどうかを判断し(S608)、完了していなければ、画像取得のステップ S606、 S607 を繰り返す。一方、画像取得を完了していれば、画像取得作業を終了する。
[0143] 以上のような焦点制御方法により、図 17に示した構成の顕微鏡装置において、試 料 Sの画像取得と、撮像の焦点制御とを好適に実行することができる。なお、上記し た方法において、画像取得時に設定される試料 Sの撮像位置は、焦点制御情報の 適用のため、焦点計測時の計測位置と同一の位置とすることが好ましい。また、上記 した方法では、試料 Sの全体で焦点計測を完了した後に画像取得を行って!/ヽるが、 試料 Sを複数の領域に分け、領域毎に焦点計測、及び画像取得を交互に行っても良 い。あるいは、試料 S上において適宜選択された複数の撮像領域に対して焦点計測 を行うとともに、得られた複数の焦点制御情報を利用し、焦点計測を未実行の撮像領 域について焦点制御情報を補間処理することによって、撮像領域全体についての焦 点制御情報のマップを作成しても良 、。
[0144] 図 19は、本発明による顕微鏡装置の第 4実施形態の構成を示すブロック図である。
本実施形態において、照射光源 10、集光レンズ 11、試料ステージ 15、 XYステージ 駆動部 16、ピエゾァクチユエータ 22、ピエゾ駆動部 23、 CCDカメラ 51、光路長変更 部材 51a、 51b、駆動モータ 52、画像取得制御部 56、及び焦点制御部 57について は、図 17に示した構成と同様である。
[0145] 試料 Sに対し、試料ステージ 15の上方に導光光学系 20が設けられている。本実施 形態においては、導光光学系は、対物レンズ 21と、対物レンズ 21の後段に配置され た結像レンズ 29a、 29bとを有している。また、これらの結像レンズ 29a、 29bは、光軸 に垂直な方向に連結されるとともに、駆動モータ 29cによって光路上にあるレンズを 切り換え可能に構成されている。また、駆動モータ 29cによるレンズ 29a、 29bの駆動 は、画像取得制御部 56によって制御されている。
[0146] ここで、試料 S上での光軸方向の変化は撮像面上では倍率の自乗となるため、画 像取得に必要な結像レンズが高い倍率の場合、焦点計測に必要な光路長変更部材 でのゥエッジが厚くなり、製造上の問題または変更部材での全反射の問題などを生じ る場合がある。これに対して、上記構成のように倍率の異なる結像レンズ 29a、 29bを 切り換え可能な構成とし、焦点計測時には低い倍率のレンズを用いることにより、画 像取得時の倍率に影響されることなく好適に焦点計測を行うことができる。
[0147] 図 20は、本発明による顕微鏡装置の第 5実施形態の構成を示すブロック図である。
本実施形態において、照射光源 10、集光レンズ 11、試料ステージ 15、 XYステージ 駆動部 16、導光光学系 20、ピエゾァクチユエータ 22、ピエゾ駆動部 23、 CCDカメラ 51、画像取得制御部 56、及び焦点制御部 57については、図 17に示した構成と同 様である。
[0148] 本実施形態においては、 CCDカメラ 51は、その撮像面において、 X軸方向につい て画像取得に用いられる画像取得領域、及び焦点計測に用いられる焦点計測領域 の 2つの撮像領域が設定されている。また、上記した 2つの撮像領域のうちの焦点計 測領域には、さらに、 X軸方向について第 1撮像領域及び第 2撮像領域の 2つの撮像 領域が設定されている。また、焦点計測領域の第 1、第 2撮像領域に対し、図 17に示 した光路長変更部材 51a、 51bと同様の光路長変更部材 53a、 53bが設置されてい る。
[0149] このような構成において、 CCDカメラ 51の画像取得領域は、画像取得用撮像手段 として機能する。また、光路長変更部材 53a、 53bが設けられた焦点計測領域は、焦 点制御用撮像手段として機能する。このような構成では、光路長変更部材 53a、 53b を駆動するための駆動モータは不要である。また、カメラ 51の画像取得領域及び焦 点計測領域を利用することにより、試料 Sの画像取得と、撮像の焦点制御とを同時に 行うことも可能である。
[0150] 図 21は、 CCDカメラ及び光路長変更部材の構成の例を示す図である。図 21の構 成例(a)に示す構成では、カメラ 51の画像取得領域 511及び焦点計測領域 512のう ち、焦点計測領域 512に対して、ゥェッジ形状の上記した光路長変更部材 53a、 53 bが設置されている。
[0151] また、図 21の構成例 (b)に示す構成では、カメラ 51の画像取得領域 511及び焦点 計測領域 512のうち、焦点計測領域 512に対して、ゥェッジ形状の上記した光路長 変更部材 53a、 53bが設置されている。また、画像取得領域 511に対して、光路長調 整用の板状のガラス部材 53cが設置されている。図 21の構成例 (a)では、光路長変 更部材 53a、 53bの中心位置での厚さによる光路長(光学距離)の増加分にっ 、て、 画像取得において光路長を補正する必要がある。これに対して、構成例 (b)では、光 路長調整部材 53cを設けていることにより、このような補正が不要となる。
[0152] 図 20に示した顕微鏡装置における焦点制御方法について説明する。図 22は、焦 点制御方法の一例を示すフローチャートである。ここでは、試料の画像取得と、撮像 の焦点制御とを別個に行う場合の制御方法を示して 、る。
[0153] まず、 XYステージ駆動部 16によって試料ステージ 15を駆動し、照射光源 10及び 対物レンズ 21による顕微鏡光学系の光軸上となる計測位置が最初の計測位置とな るように試料 Sを移動する (ステップ S701)。
[0154] 次に、設定された計測位置について、光路長変更部材 53a、 53bが設置されたカメ ラ 51の焦点計測領域を用いて取得された画像を解析して焦点位置を計測し、取得さ れた焦点制御情報を記憶する (S702)。制御情報取得を終了したら、光軸上の計測 位置が次の計測位置となるように試料 Sを移動する(S703)。そして、すべての計測 位置について焦点計測を完了した力どうかを判断し (S704)、完了していなければ、 焦点計測のステップ S702、 S703を繰り返す。一方、焦点計測を完了していれば、 焦点計測作業を終了する。
[0155] 続いて、 XYステージ駆動部 16によって試料ステージ 15を駆動して、光軸上の計 測位置が最初の撮像位置となるように試料 Sを移動する(S705)。
[0156] 次に、設定された撮像位置について、先に取得されている焦点制御情報を参照し て焦点制御を行うとともに、カメラ 51の画像取得領域を用いて試料 Sの画像を取得、 記憶する(S706)。画像取得を終了したら、光軸上の撮像位置が次の撮像位置とな るように試料 Sを移動する(S707)。そして、すべての撮像位置について試料 Sの画 像取得を完了したかどうかを判断し (S708)、完了していなければ、画像取得のステ ップ S 706、 S707を繰り返す。一方、画像取得を完了していれば、画像取得作業を 終了する。
[0157] 図 23は、焦点制御方法の他の例を示すフローチャートである。ここでは、試料の画 像取得と、撮像の焦点制御とを同時に行う場合の制御方法を示して 、る。
[0158] まず、 XYステージ駆動部 16によって試料ステージ 15を駆動し、照射光源 10及び 対物レンズ 21による顕微鏡光学系の光軸上となる撮像位置が最初の撮像位置とな るように試料 Sを移動する (ステップ S801)。この例では、画像取得及び焦点制御を 同時に行うため、この撮像位置が焦点計測の計測位置となる。
[0159] 次に設定された撮像位置について、光路長変更部材 53a、 53bが設置されたカメラ 51の焦点計測領域を用いて取得された画像を解析して焦点位置を計測し、焦点制 御情報を取得する(S802)。さらに、取得された焦点制御情報を参照して焦点制御 を行うとともに、カメラ 51の画像取得領域を用いて試料 Sの画像を取得する(S803) 。画像取得を終了したら、光軸上の撮像位置が次の撮像位置となるように試料 Sを移 動する(S804)。そして、すべての撮像位置について試料 Sの画像取得を完了した かどうかを判断し(S805)、完了していなければ、画像取得のステップ S802〜S804 を繰り返す。一方、画像取得を完了していれば、画像取得作業を終了する。
[0160] 以上のような焦点制御方法により、図 20に示した構成の顕微鏡装置において、試 料 Sの画像取得と、撮像の焦点制御とを好適に実行することができる。また、このよう な構成では、上記したように画像取得及び焦点制御を別個に、または同時に実行す ることが可能である。
[0161] 本発明による顕微鏡装置は、上記した実施形態及び構成例に限られるものではな ぐ様々な変形が可能である。例えば、上記した各実施形態では、顕微鏡装置を透 過型の顕微鏡として構成している力 反射型の顕微鏡、または蛍光顕微鏡に対して も同様に焦点制御を行うことが可能である。
[0162] 図 24は、本発明による顕微鏡装置の第 6実施形態の構成を示すブロック図である。
本顕微鏡装置は、図 1に示した顕微鏡装置の変形例である。具体的には、試料ステ ージ 15の下方に照射光源 10及び集光レンズ 11を設置した図 1に示した透過型の構 成に対し、図 24に示す顕微鏡装置は、照射光源 10及び集光レンズ 11に代えて照 射光源 80、レンズ 81、及び照射光学系 85を設置した蛍光顕微鏡の構成となってい る。
[0163] すなわち、図 24においては、導光光学系 20において、前段のビームスプリッタ 27a と、対物レンズ 21との間に、ダイクロイツクミラー 86が配置されている。ダイクロイツクミ ラー 86は、照射光源 80からレンズ 81を介して入射される光を反射して励起光として 試料 Sへと照射するとともに、試料 Sで発生した蛍光をビームスプリッタ 27aへと通過さ せる。また、ダイクロイツクミラー 86と照射光源 80との間、ダイクロイツクミラー 86と対 物レンズ 21との間には、それぞれ励起フィルタ 87、カットフィルタ 88が配置され、これ らのダイクロイツクミラー 86、励起フィルタ 87、及びカットフィルタ 88によって照射光学 系 85 (Fluorescence filter cube)が構成されている。
[0164] このような構成の蛍光顕微鏡においても、上記した透過型の顕微鏡の場合と同様 に焦点制御を行うことができる。また、顕微鏡を反射型の構成とする場合には、図 24 の構成において、ダイクロイツクミラー 86をハーフミラーに置き換え、フィルタ 87、 88 を取り除けば良い。
[0165] なお、撮像装置の前方側に光路長変更部材を配置することによって光路長を変化 させる構成では、上記したように、例えば図 16の構成例(d)に示したように、厚さの変 化方向が逆方向となる 2種類の光路長変更部材を 1つの撮像装置に対して設ける構 成を用いることが可能である。この場合、撮像装置の撮像面の第 1撮像領域に対して 、所定の変化方向に沿って光路長が変化する第 1光路長変更部材を配置し、撮像 面の第 2撮像領域に対して、上記変化方向に沿うとともに異なる変化率、好ましくは 逆方向に光路長が変化する第 2光路長変更部材を配置する構成とする。
[0166] このような構成では、通常、第 1撮像領域、及び第 2撮像領域に入射する光像が異 なるものとなる。これに対して、焦点制御用の画像を取得するための光像を、第 1光 路長変更部材及び撮像装置の撮像面の第 1撮像領域への第 1光路、及び第 2光路 長変更部材及び撮像装置の撮像面の第 2撮像領域への第 2光路へと分岐する光分 岐光学系を備えることが好まし ヽ。
[0167] 図 25は、焦点制御用の撮像装置に対する光分岐光学系について示す図である。
図 25の構成 (a)では、焦点制御用の画像を取得するための撮像装置 100の第 1撮 像領域 101に対して第 1光路長変更部材 111を配置し、第 2撮像領域 102に対して 第 1光路長変更部材 111とは逆方向に光路長が変化する第 2光路長変更部材 112 を配置している。この場合、上記したように、撮像装置 100の 2つの撮像領域 101、 1 02に入射する光像が異なるものとなる。
[0168] 一方、図 25の構成 (b)では、光像を第 1撮像領域 101へと反射する 50%反射ミラ 一 121、及び光像を第 2撮像領域 102へと反射する 100%反射ミラー 122を有する 光分岐光学系 120を設けている。これにより、光分岐光学系 120で分岐された同一 の光像が撮像領域 101、 102に入射することとなり、焦点制御の精度を向上すること ができる。
[0169] なお、この構成 (b)では、光分岐光学系 120の前段に 100%反射ミラー 125を配置 している。このような反射ミラー 125を設けることにより、撮像装置 100へと入射される 光像の視野を絞って、撮像領域 101、 102間での光像の重畳等を防止することがで きる。ただし、このような反射ミラー 125については、不要であれば設けなくても良い。 また、この構成 (b)では、反射ミラー 122と第 2撮像領域 102との間に光路長調整部 材 126を設置して、光路長の補正を行っている。また、光分岐光学系としては、図 25 の構成 (c)に示す光分岐プリズム 130等を用いても良い。
[0170] また、上記した構成では、撮像領域 101、 102で取得された 2つの計測対象画像 X
' , X,に対して求められた総和 τ , Tについて、それらの輝度差を補正するため、 T
2 1 2
を T X (X,の平均 ZX,の平均)に置き換えることが好ましい(図 5のフローチャート
1 1 2 1
参照)。
産業上の利用可能性
[0171] 本発明による顕微鏡装置は、試料の画像を取得する際の焦点制御を好適に行うこ とが可能な顕微鏡装置として利用可能である。すなわち、本発明の顕微鏡装置によ れば、所定の変化方向に沿って互いに異なる変化率で光路長が変化するように構成 され、 2次元の画像を取得可能な第 1撮像手段及び第 2撮像手段を有する焦点制御 用撮像手段を設け、これらの撮像手段によって取得された 2種類の画像を用いて焦 点計測を行うことにより、試料の画像を取得する際の焦点制御情報を精度良く求めて 、焦点制御を好適に行うことが可能となる。

Claims

請求の範囲
[1] 試料の光像を焦点制御に用いられる焦点制御用光路へと導く導光光学系と、 前記焦点制御用光路上に設置され、前記焦点制御用光路へと導かれた前記光像 による 2次元の画像を取得する焦点制御用撮像手段と、
前記焦点制御用撮像手段によって取得された画像を解析し、その解析結果に基づ V、て、前記試料を撮像する際の焦点制御情報を取得する焦点制御手段とを備え、 前記焦点制御用撮像手段は、
撮像面内において所定の変化方向に沿って前記導光光学系での光路長が変化 するように構成された第 1撮像手段と、
撮像面内において前記変化方向に沿うとともに前記第 1撮像手段とは異なる変化 率で前記光路長が変化するように構成された第 2撮像手段と
を有することを特徴とする顕微鏡装置。
[2] 前記導光光学系は、前記試料の光像を焦点制御に用いられる前記焦点制御用光 路、及び前記試料を撮像する際に用いられる画像取得用光路へと導くように構成さ れ、
前記画像取得用光路上に設置され、前記画像取得用光路へと導かれた前記光像 による 1次元または 2次元の画像の取得に用いられる画像取得用撮像手段と、 前記画像取得用撮像手段による画像の取得を制御する画像取得制御手段と を備えることを特徴とする請求項 1記載の顕微鏡装置。
[3] 前記導光光学系は、前記試料の光像を前記画像取得用光路及び前記焦点制御 用光路へと分岐する光分岐手段を含み、
前記画像取得用撮像手段は、前記焦点制御用撮像手段とは別個に構成されること を特徴とする請求項 2記載の顕微鏡装置。
[4] 前記導光光学系は、前記焦点制御用光路と同一の光路を前記画像取得用光路と して構成され、
前記画像取得用撮像手段は、前記焦点制御用撮像手段に含まれる一の撮像装置 を用いて構成されることを特徴とする請求項 2記載の顕微鏡装置。
[5] 前記第 1撮像手段及び前記第 2撮像手段のそれぞれは、 前記変化方向に沿って前記光路長が変化するように撮像面が前記焦点制御用光 路に対して所定角度で傾いた状態で設置された撮像装置
を有することを特徴とする請求項 1記載の顕微鏡装置。
[6] 前記第 1撮像手段及び前記第 2撮像手段のそれぞれは、
撮像装置と、
前記撮像装置の撮像面に対して所定位置に、前記変化方向に沿って前記光路長 が変化するように設置された光路長変更手段と
を有することを特徴とする請求項 1記載の顕微鏡装置。
[7] 前記焦点制御用撮像手段は、単一の撮像装置を有し、
前記第 1撮像手段は、前記撮像装置の撮像面の第 1撮像領域に対して所定位置
〖こ、前記変化方向に沿って前記光路長が変化するように設置された第 1光路長変更 手段を用いて構成され、
前記第 2撮像手段は、前記撮像装置の撮像面の第 2撮像領域に対して所定位置 に、前記変化方向に沿うとともに前記第 1光路長変更手段とは異なる変化率で前記 光路長が変化するように設置された第 2光路長変更手段を用いて構成されて ヽる ことを特徴とする請求項 1記載の顕微鏡装置。
[8] 焦点制御用の画像を取得するための前記光像を、前記第 1光路長変更手段及び 前記撮像装置の撮像面の前記第 1撮像領域への第 1光路、及び前記第 2光路長変 更手段及び前記撮像装置の撮像面の前記第 2撮像領域への第 2光路へと分岐する 光分岐光学系を備えることを特徴とする請求項 7記載の顕微鏡装置。
[9] 前記第 1光路長変更手段及び前記第 2光路長変更手段を、前記撮像装置の撮像 面に対して前記焦点制御用光路上にある位置、及び前記焦点制御用光路から外れ た位置の間で駆動する駆動手段を備えることを特徴とする請求項 7記載の顕微鏡装 置。
[10] 前記撮像装置は、その撮像面が、前記第 1撮像領域及び前記第 2撮像領域を含ん で前記焦点制御用撮像手段として機能する焦点計測領域と、前記試料を撮像する 際に用いられる画像取得用撮像手段として機能する画像取得領域とを有することを 特徴とする請求項 7記載の顕微鏡装置。
[11] 前記第 1光路長変更手段と前記第 2光路長変更手段とは、前記変化方向に沿うとと もに互いに逆方向に前記光路長が変化するように設置されて 、ることを特徴とする請 求項 7記載の顕微鏡装置。
[12] 前記焦点制御手段は、前記焦点制御用撮像手段によって取得された画像におけ る前記変化方向についての画像のコントラスト変化を解析し、その解析結果に基づ いて前記焦点制御情報を取得することを特徴とする請求項 1記載の顕微鏡装置。
[13] 前記焦点制御手段は、前記焦点制御用撮像手段によって取得された画像から前 記変化方向に沿った所定幅の計測対象画像を切り出し、前記計測対象画像、及び 前記計測対象画像を前記変化方向と垂直方向にシフトさせたシフト画像の差分絶対 値画像によって前記画像のコントラスト変化を解析することを特徴とする請求項 12記 載の顕微鏡装置。
[14] 前記焦点制御手段は、前記焦点制御用撮像手段によって取得された画像が前記 焦点制御情報の取得に適用可能な画像であるかどうかを判断し、適用可能と判断し た場合に前記画像を解析し、その解析結果に基づ!ヽて前記焦点制御情報を取得す ることを特徴とする請求項 1記載の顕微鏡装置。
PCT/JP2005/009443 2004-05-24 2005-05-24 顕微鏡装置 WO2005114287A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513760A JPWO2005114287A1 (ja) 2004-05-24 2005-05-24 顕微鏡装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-153871 2004-05-24
JP2004153871 2004-05-24

Publications (1)

Publication Number Publication Date
WO2005114287A1 true WO2005114287A1 (ja) 2005-12-01

Family

ID=35428505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009443 WO2005114287A1 (ja) 2004-05-24 2005-05-24 顕微鏡装置

Country Status (3)

Country Link
US (3) US7813579B2 (ja)
JP (1) JPWO2005114287A1 (ja)
WO (1) WO2005114287A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020498A (ja) * 2006-07-10 2008-01-31 Olympus Corp 自動焦点検出装置
JP2013127581A (ja) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk 画像取得装置及び画像取得装置のフォーカス方法
JP2013534647A (ja) * 2010-06-24 2013-09-05 コーニンクレッカ フィリップス エヌ ヴェ 差分測定に基づき顕微鏡検査をスキャンするためのオートフォーカス
JP2013210672A (ja) * 2013-06-13 2013-10-10 Hamamatsu Photonics Kk 画像取得装置及び画像取得装置のフォーカス方法
WO2014112083A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
WO2014112086A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
WO2014112085A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
WO2014112084A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
JP2015523587A (ja) * 2012-05-02 2015-08-13 ライカ バイオシステムズ イメージング インコーポレイテッド ライン走査イメージングにおけるリアルタイムフォーカシング
US10634894B2 (en) 2015-09-24 2020-04-28 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293222A (ja) * 2005-04-14 2006-10-26 Olympus Corp 焦点検出装置
JP4917330B2 (ja) * 2006-03-01 2012-04-18 浜松ホトニクス株式会社 画像取得装置、画像取得方法、及び画像取得プログラム
FR2923619B1 (fr) * 2007-11-13 2009-11-20 Thales Sa Dispositif de mesure de defauts d'un instrument d'imagerie a capteur opto-electronique et dispositif de correction le comportant
JP5499732B2 (ja) * 2009-06-23 2014-05-21 ソニー株式会社 生体サンプル像取得装置、生体サンプル像取得方法及び生体サンプル像取得プログラム
EP3151052A1 (en) * 2010-02-01 2017-04-05 Illumina, Inc. Focusing methods and optical systems and assemblies using the same
JP2011180442A (ja) * 2010-03-02 2011-09-15 Sony Corp サンプル像取得装置、サンプル像取得方法及びサンプル像取得プログラム
EP2390706A1 (en) * 2010-05-27 2011-11-30 Koninklijke Philips Electronics N.V. Autofocus imaging.
WO2011145016A1 (en) 2010-05-18 2011-11-24 Koninklijke Philips Electronics N.V. Autofocus imaging
JP5626367B2 (ja) * 2011-01-21 2014-11-19 株式会社ニコン 焦点位置維持装置及び顕微鏡
US20120238032A1 (en) 2011-03-18 2012-09-20 International Business Machines Corporation Lab on a chip
US8464076B2 (en) * 2011-03-24 2013-06-11 International Business Machines Corporation Born encrypted optical data
GB201113071D0 (en) * 2011-07-29 2011-09-14 Ffei Ltd Method and apparatus for image scanning
JP5220172B2 (ja) * 2011-08-22 2013-06-26 キヤノン株式会社 画像取得装置、画像取得システム、および対物光学系
JP2014056078A (ja) * 2012-09-12 2014-03-27 Canon Inc 画像取得装置、画像取得システム及び顕微鏡装置
JP5923026B2 (ja) * 2012-10-31 2016-05-24 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
US20140168402A1 (en) * 2012-12-13 2014-06-19 Vala Sciences, Inc. Continuous-Scanning Image Acquisition in Automated Microscopy Using Reflective Autofocus
US9215425B1 (en) * 2013-02-04 2015-12-15 Bruker Nano Inc. Camera-aided focusing in optical metrology
WO2014175220A1 (ja) 2013-04-26 2014-10-30 浜松ホトニクス株式会社 画像取得装置、試料のフォーカスマップを作成する方法及びシステム
EP2990850B1 (en) 2013-04-26 2020-09-16 Hamamatsu Photonics K.K. Image acquisition device and method and system for acquiring focusing information for specimen
CN105143952B (zh) * 2013-04-26 2018-09-28 浜松光子学株式会社 图像取得装置以及图像取得装置的聚焦方法
US8809809B1 (en) * 2013-09-27 2014-08-19 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and method for focusing in fluorescence microscope
US20150205088A1 (en) * 2014-01-23 2015-07-23 U&U Engineering Inc. Bevel-axial auto-focusing microscopic system and method thereof
WO2016022359A1 (en) * 2014-08-06 2016-02-11 Cellomics, Inc. Image-based laser autofocus system
EP3186778B1 (en) * 2014-08-27 2023-01-11 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
EP3201310B1 (en) * 2014-10-01 2021-02-17 Purdue Research Foundation Microorganism identification
WO2016055176A1 (de) 2014-10-06 2016-04-14 Leica Microsystems (Schweiz) Ag Mikroskop
US9921399B2 (en) * 2015-03-31 2018-03-20 General Electric Company System and method for continuous, asynchronous autofocus of optical instruments
JP6887751B2 (ja) * 2015-12-25 2021-06-16 大塚電子株式会社 光学特性測定装置
US10712548B2 (en) 2017-06-08 2020-07-14 Microscope International, LLC Systems and methods for rapid scanning of images in digital microscopes
US10444486B2 (en) 2017-09-04 2019-10-15 Microscopes International, Llc Systems and methods for detection of blank fields in digital microscopes
US11112952B2 (en) 2018-03-26 2021-09-07 Microscopes International, Llc Interface for display of multi-layer images in digital microscopy
US11330164B2 (en) * 2020-03-17 2022-05-10 KLA Corp. Determining focus settings for specimen scans
JP2022127536A (ja) * 2021-02-19 2022-08-31 株式会社キーエンス 拡大観察装置、拡大画像観察方法、拡大画像観察プログラム及びコンピュータで読み取り可能な記録媒体並びに記憶した機器
KR20240042095A (ko) * 2021-08-18 2024-04-01 온투 이노베이션 아이엔씨. 고해상도 다중 시야 범위 이미징 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011810A (ja) * 1983-06-30 1985-01-22 Minolta Camera Co Ltd 焦点検出装置
JPH03117182A (ja) * 1989-09-29 1991-05-17 Sony Corp ビデオカメラ
JPH03293610A (ja) * 1990-04-12 1991-12-25 Olympus Optical Co Ltd 合焦位置検出装置
JPH0821961A (ja) * 1994-07-08 1996-01-23 Matsushita Electric Ind Co Ltd 顕微鏡の自動焦点装置
JP2001318302A (ja) * 2000-05-08 2001-11-16 Tokyo Seimitsu Co Ltd 焦点検出装置及び自動焦点顕微鏡
JP2002169101A (ja) * 2000-09-22 2002-06-14 Olympus Optical Co Ltd 顕微鏡
JP2002365524A (ja) * 2001-06-11 2002-12-18 Nippon Hoso Kyokai <Nhk> オートフォーカス装置及びそれを用いた撮像装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597320A (ja) 1982-07-02 1984-01-14 Nippon Kogaku Kk <Nikon> ピントずれ量の検出装置
US5235375A (en) * 1990-04-12 1993-08-10 Olympus Optical Co., Ltd. Focusing position detecting and automatic focusing apparatus with optimal focusing position calculation method
JP3390106B2 (ja) 1995-06-06 2003-03-24 株式会社日立国際電気 自動合焦点装置を備えた光学顕微鏡
US6362852B2 (en) * 1996-01-11 2002-03-26 Sony Corporation Focus control apparatus and method for use with a video camera or the like
JPH09230250A (ja) 1996-02-26 1997-09-05 Hitachi Denshi Ltd 光学顕微鏡自動合焦点装置
JPH1096848A (ja) * 1996-09-20 1998-04-14 Olympus Optical Co Ltd 自動焦点検出装置
JP3338322B2 (ja) * 1997-02-25 2002-10-28 三洋電機株式会社 オートフォーカスカメラ
JP3863993B2 (ja) 1998-03-18 2006-12-27 オリンパス株式会社 顕微鏡
JP2000147306A (ja) * 1998-08-31 2000-05-26 Kokusai Electric Co Ltd 波長領域多重光スタ―カプラ、通信局、及び光伝送システム
JP2002365517A (ja) * 2001-06-04 2002-12-18 Fuji Photo Optical Co Ltd 撮影レンズのピント状態検出装置
US7232980B2 (en) * 2004-05-24 2007-06-19 Hamamatsu Photonics K.K. Microscope system
HUP0401802A2 (en) * 2004-09-02 2006-03-28 3D Histech Kft Focusing method object carriers on fast-moving digitalization and object carrier moving mechanics, focusing optic, optical distance-measuring instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011810A (ja) * 1983-06-30 1985-01-22 Minolta Camera Co Ltd 焦点検出装置
JPH03117182A (ja) * 1989-09-29 1991-05-17 Sony Corp ビデオカメラ
JPH03293610A (ja) * 1990-04-12 1991-12-25 Olympus Optical Co Ltd 合焦位置検出装置
JPH0821961A (ja) * 1994-07-08 1996-01-23 Matsushita Electric Ind Co Ltd 顕微鏡の自動焦点装置
JP2001318302A (ja) * 2000-05-08 2001-11-16 Tokyo Seimitsu Co Ltd 焦点検出装置及び自動焦点顕微鏡
JP2002169101A (ja) * 2000-09-22 2002-06-14 Olympus Optical Co Ltd 顕微鏡
JP2002365524A (ja) * 2001-06-11 2002-12-18 Nippon Hoso Kyokai <Nhk> オートフォーカス装置及びそれを用いた撮像装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664871B2 (ja) * 2006-07-10 2011-04-06 オリンパス株式会社 自動焦点検出装置
JP2008020498A (ja) * 2006-07-10 2008-01-31 Olympus Corp 自動焦点検出装置
JP2016173594A (ja) * 2010-06-24 2016-09-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 差分測定に基づき顕微鏡検査をスキャンするためのオートフォーカス
JP2013534647A (ja) * 2010-06-24 2013-09-05 コーニンクレッカ フィリップス エヌ ヴェ 差分測定に基づき顕微鏡検査をスキャンするためのオートフォーカス
JP2013127581A (ja) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk 画像取得装置及び画像取得装置のフォーカス方法
US9971140B2 (en) 2011-12-19 2018-05-15 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US9921392B2 (en) 2011-12-19 2018-03-20 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US10571664B2 (en) 2011-12-19 2020-02-25 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US10298833B2 (en) 2011-12-19 2019-05-21 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US9860437B2 (en) 2011-12-19 2018-01-02 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US10852521B2 (en) 2012-05-02 2020-12-01 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US9841590B2 (en) 2012-05-02 2017-12-12 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
JP2015523587A (ja) * 2012-05-02 2015-08-13 ライカ バイオシステムズ イメージング インコーポレイテッド ライン走査イメージングにおけるリアルタイムフォーカシング
US10191264B2 (en) 2012-05-02 2019-01-29 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US11243387B2 (en) 2012-05-02 2022-02-08 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
WO2014112083A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
EP3333608A1 (en) 2013-01-17 2018-06-13 Hamamatsu Photonics K.K. Image capturing appartus and focusing method thereof
WO2014112084A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
WO2014112085A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
WO2014112086A1 (ja) 2013-01-17 2014-07-24 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
JP2013210672A (ja) * 2013-06-13 2013-10-10 Hamamatsu Photonics Kk 画像取得装置及び画像取得装置のフォーカス方法
US10634894B2 (en) 2015-09-24 2020-04-28 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US11422350B2 (en) 2015-09-24 2022-08-23 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging

Also Published As

Publication number Publication date
JPWO2005114287A1 (ja) 2008-03-27
US20050270611A1 (en) 2005-12-08
US8027548B2 (en) 2011-09-27
US7813579B2 (en) 2010-10-12
US20110298914A1 (en) 2011-12-08
US8184920B2 (en) 2012-05-22
US20100328445A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
WO2005114287A1 (ja) 顕微鏡装置
US7232980B2 (en) Microscope system
US7702229B2 (en) Lens array assisted focus detection
TWI695995B (zh) 自動顯微鏡聚焦系統、裝置及方法
JP4756819B2 (ja) 走査型顕微鏡システム
JP4923541B2 (ja) 顕微鏡
US20150301327A1 (en) Image capturing apparatus and image capturing method
WO2011007768A1 (ja) 3次元方向ドリフト制御装置および顕微鏡装置
JP5053691B2 (ja) 標本スキャナ装置、該装置による標本位置検出方法
JP2010101959A (ja) 顕微鏡装置
JP2008268815A (ja) 自動合焦装置
JP2009053485A (ja) オートフォーカス装置、オートフォーカス方法および計測装置
JP2005189876A (ja) オートフォーカス装置及びカメラ
US11480777B2 (en) Observation device, observation method, and observation device control program storage medium
JP2007102102A (ja) 共焦点顕微鏡及び合焦カラー画像の生成方法
KR102058780B1 (ko) 라인 스캐닝 방식의 공초점 현미경에서의 자동초점조절 방법 및 장치
JP2013088570A (ja) 顕微鏡装置
WO2019123869A1 (ja) 画像取得装置及び画像取得方法
JP2013174709A (ja) 顕微鏡装置およびバーチャル顕微鏡装置
JP4684646B2 (ja) オートフォーカス方法
JP2004078175A (ja) 共焦点顕微鏡
JP2006030304A (ja) 顕微鏡の焦点検出装置
JP2005080093A (ja) 撮像装置及び合焦確認用の表示方法
JP2003042720A (ja) 高さ測定装置
JP2008070428A (ja) 焦点調節装置およびカメラ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513760

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase