WO2014112083A1 - 画像取得装置及び画像取得装置のフォーカス方法 - Google Patents

画像取得装置及び画像取得装置のフォーカス方法 Download PDF

Info

Publication number
WO2014112083A1
WO2014112083A1 PCT/JP2013/050852 JP2013050852W WO2014112083A1 WO 2014112083 A1 WO2014112083 A1 WO 2014112083A1 JP 2013050852 W JP2013050852 W JP 2013050852W WO 2014112083 A1 WO2014112083 A1 WO 2014112083A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
image
area
optical path
sample
Prior art date
Application number
PCT/JP2013/050852
Other languages
English (en)
French (fr)
Inventor
英資 大石
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP13871362.3A priority Critical patent/EP2947487A4/en
Priority to US14/398,029 priority patent/US9971140B2/en
Priority to PCT/JP2013/050852 priority patent/WO2014112083A1/ja
Priority to CN201380070777.9A priority patent/CN104919351B/zh
Publication of WO2014112083A1 publication Critical patent/WO2014112083A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Definitions

  • the present invention relates to an image acquisition device used for acquiring an image of a sample or the like and a focusing method thereof.
  • an image acquisition device for example, there is a virtual microscope device in which an imaging region of a sample is divided into a plurality of regions in advance, and each divided region is imaged at a high magnification and then these are combined.
  • a focus map for the entire region of the sample is set as an imaging condition when acquiring an image of a sample such as a biological sample, and focus control based on the focus map is performed. Image acquisition of the sample is performed while performing.
  • an entire sample is acquired as a macro image using an image acquisition device equipped with a macro optical system.
  • an imaging range of the sample is set, the imaging range is divided into a plurality of divided areas, and a focus acquisition position is set for each divided area.
  • the sample is transferred to an image acquisition apparatus having a micro optical system, the focus position at the set focus acquisition position is acquired, and a focus map is created from these focus positions.
  • a second imaging unit that captures a region in front of the region captured by the first imaging unit, and an image captured by the second imaging unit are used for the first imaging unit.
  • the automatic focusing control means for adjusting the in-focus position of the objective lens at the imaging position of the first imaging means and the distance between the divided areas and the moving speed of the sample, the divided areas are imaged by the second imaging means.
  • Timing control means for aligning the timing of moving from the position to the imaging position of the first imaging means and the timing of positioning the imaging position of the divided area imaged by the second imaging means on the imaging surface of the first imaging means And are provided.
  • the optical path length difference in the light guide optical system for focus control is formed using a glass member.
  • an optical path difference optical system is formed by using a half mirror and a mirror, and lights having different optical path lengths are incident on the two imaging regions of the second imaging unit, respectively.
  • a first imaging unit and a second imaging unit are configured by a line sensor.
  • the exposure time is short, so it is important to secure the amount of light in order to obtain a clear image.
  • the light is branched by the optical path difference optical system. There is a problem that it is difficult to secure.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an image acquisition apparatus that can secure a light amount during imaging and can accurately detect the focal position of a sample and a focusing method thereof. To do.
  • an image acquisition apparatus includes a stage on which a sample is placed, stage control means for scanning the stage at a predetermined speed, a light source for irradiating light toward the sample, and a sample
  • a light guiding optical system including a light branching unit that branches the optical image of the first optical path into a first optical path for image acquisition and a second optical path for focus control, and a first optical image that is branched into the first optical path.
  • a first imaging unit that acquires one image
  • a second imaging unit that acquires a second image based on the second optical image branched into the second optical path, and the second image
  • a focus control unit that controls the focal position of imaging by the first imaging unit based on the analysis result, and a first imaging region that acquires a partial image of the second optical image on the imaging surface of the second imaging unit
  • an area control means for setting the second imaging area, and an in-plane direction of the imaging surface disposed in the second optical path
  • An optical path difference generating member that generates an optical path difference in the second optical image along the line, and the area control means includes a stage scanning speed and a distance between the first imaging area and the second imaging area. Based on the above, a waiting time from imaging in the first imaging area to imaging in the second imaging area is set.
  • the optical path difference generating member is disposed in the second optical path, the first imaging area and the second imaging area of the second imaging means are incident on the first imaging means. A light image (front pin) focused before the light image and a light image (rear pin) focused later can be respectively captured.
  • the optical path length difference can be formed without branching light in the second optical path for focus control, the amount of light to the second optical path necessary for obtaining information on the focal position is suppressed. Therefore, it is possible to secure a light amount when performing imaging with the first imaging means.
  • from the imaging in the first imaging region to the second based on the scanning speed of the stage and the interval (distance) between the first imaging region and the second imaging region. A waiting time until imaging in the imaging area is set. Therefore, since the light from the same position of the sample is incident on the first imaging region and the second imaging region, the focus position can be controlled with high accuracy.
  • the second imaging means is preferably an area sensor.
  • the first imaging area and the second imaging area can be suitably set.
  • the apparatus can be simplified.
  • the optical path difference generating member is a flat plate member arranged so as to overlap at least a part of the imaging surface, and the area control means is a flat plate so as to avoid the shadow of the second light image by the edge portion of the flat plate member. It is preferable to set the first imaging region and the second imaging region in a region overlapping the member and a region not overlapping the flat plate member, respectively. In this case, the configuration of the optical path difference generating member can be simplified by using the flat plate member. Further, since the edge portion of the flat plate member forms a shadow of the second optical image on the imaging surface of the second imaging device, the first imaging area and the second imaging area can be set by avoiding the shadow. The accuracy of control of the focal position can be ensured.
  • the optical path difference generating member is a member having a portion whose thickness continuously changes along the in-plane direction of the imaging surface, and the region control means is overlapped with a portion having a different thickness of the optical path difference generating member. It is preferable to set the first imaging region and the second imaging region. In this case, the distance between the front pin and the rear pin can be freely adjusted by adjusting the position of the first imaging region and the position of the second imaging region. As a result, the focal position of the sample can be detected with high accuracy.
  • first imaging region and the second imaging region are configured by separate line sensors. In this case, the time required for setting the first imaging region and the second imaging region can be shortened.
  • an objective lens facing the sample and an objective lens control unit that relatively controls the position of the objective lens with respect to the sample based on control by the focus control unit are provided. It is preferable that the objective lens is not driven during the position analysis, and the objective lens is moved in one direction with respect to the sample while the focus position analysis by the focus control unit is not executed. By not changing the positional relationship between the objective lens and the sample during the analysis of the focal position, the analysis accuracy of the focal position can be ensured.
  • the focus method of the image acquisition apparatus includes a stage on which a sample is placed, stage control means for scanning the stage at a predetermined speed, a light source that irradiates light toward the sample, and light from the sample.
  • a light guide optical system including a light branching unit for branching an image into a first optical path for image acquisition and a second optical path for focus control; and a first optical image formed by a first optical image branched into the first optical path.
  • the optical path difference generating member is arranged in the second optical path, so that the first imaging area and the second imaging area of the second imaging means are compared with the light image incident on the first imaging means.
  • the optical path length difference can be formed without branching light in the second optical path for focus control, the amount of light to the second optical path necessary for obtaining information on the focal position can be suppressed. It is possible to secure the amount of light when performing imaging with the first imaging means.
  • this focusing method from the imaging in the first imaging area to the second imaging based on the scanning speed of the stage and the interval (distance) between the first imaging area and the second imaging area. Set the waiting time until imaging in the area. Therefore, since the light from the same position of the sample is incident on the first imaging region and the second imaging region, the focus position can be controlled with high accuracy.
  • the apparatus can be simplified.
  • the optical path difference generating member a flat plate member arranged so as to overlap at least a part of the imaging surface is used, and the flat plate is used so as to avoid the shadow of the second light image by the edge portion of the flat plate member by the region control means. It is preferable to set the first imaging region and the second imaging region in a region overlapping the member and a region not overlapping the flat plate member, respectively. In this case, the configuration of the optical path difference generating member can be simplified by using the flat plate member. Further, since the edge portion of the flat plate member forms a shadow of the second optical image on the imaging surface of the second imaging device, the first imaging area and the second imaging area can be set by avoiding the shadow. The accuracy of control of the focal position can be ensured.
  • the optical path difference generating member a member having a portion whose thickness continuously changes along the in-plane direction of the imaging surface is used, and the region control unit is configured to overlap the different thickness portions of the optical path difference generating member. It is preferable to set the first imaging region and the second imaging region. In this case, the distance between the front pin and the rear pin can be freely adjusted by adjusting the position of the first imaging region and the position of the second imaging region. As a result, the focal position of the sample can be detected with high accuracy.
  • the first imaging area and the second imaging area are configured by separate line sensors. In this case, the time required for setting the first imaging region and the second imaging region can be shortened.
  • the image acquisition apparatus includes an objective lens facing the sample and an objective lens control unit that relatively controls the position of the objective lens with respect to the sample based on the control by the focus control unit. It is preferable that the objective lens is not driven during the execution of the focus position analysis by the focus control means, and the objective lens is moved in one direction with respect to the sample while the focus position analysis is not executed by the focus control means. In this case, since the positional relationship between the objective lens and the sample does not change during the analysis of the focal position, the analysis accuracy of the focal position can be ensured.
  • the amount of light at the time of imaging can be secured, and the focal position of the sample can be detected with high accuracy.
  • FIG. 1 is a diagram showing an embodiment of a macro image acquisition device constituting an image acquisition device according to the present invention.
  • FIG. 2 is a diagram showing an embodiment of a micro image acquisition device constituting the image acquisition device according to the present invention.
  • the image acquisition device M includes a macro image acquisition device M1 that acquires a macro image of the sample S and a micro image acquisition device M2 that acquires a micro image of the sample S. .
  • the image acquisition apparatus M sets, for example, a plurality of line-shaped divided areas 40 (see FIG. 13) for the macro image acquired by the macro image acquisition apparatus M1, and each of the divided areas 40 is set to a high magnification by the micro image acquisition apparatus M2. This is a device that generates a virtual micro image by acquiring and combining them.
  • the macro image acquisition apparatus M1 includes a stage 1 on which a sample S is placed as shown in FIG.
  • the stage 1 is an XY stage that is driven in the horizontal direction by a motor or actuator such as a stepping motor (pulse motor) or a piezoelectric actuator.
  • the sample S to be observed with the image acquisition device M is a biological sample such as a cell, for example, and is placed on the stage 1 in a state of being sealed with a slide glass. By driving the stage 1 in the XY plane, the imaging position with respect to the sample S can be moved.
  • the stage 1 can reciprocate between the macro image acquisition device M1 and the micro image acquisition device M2, and has a function of transporting the sample S between both devices.
  • macro image acquisition the entire image of the sample S may be acquired by one imaging, or the sample S may be divided into a plurality of regions and imaged.
  • the stage 1 may be provided in both the macro image acquisition device M1 and the micro image acquisition device M2.
  • a light source 2 that irradiates light toward the sample S and a condenser lens 3 that condenses the light from the light source 2 onto the sample S are disposed.
  • the light source 2 may be arranged so as to irradiate light obliquely toward the sample S.
  • a light guide optical system 4 that guides a light image from the sample S and an imaging device 5 that captures a light image of the sample S are disposed on the upper surface side of the stage 1.
  • the light guide optical system 4 includes an imaging lens 6 that forms an optical image from the sample S on the imaging surface of the imaging device 5.
  • the imaging device 5 is an area sensor that can acquire a two-dimensional image, for example.
  • the imaging device 5 acquires the entire image of the light image of the sample S incident on the imaging surface via the light guide optical system 4 and stores it in a virtual micro image storage unit 39 described later.
  • the micro image acquisition device M2 has a light source 12 and a condenser lens 13 similar to those of the macro image acquisition device M1 on the bottom surface side of the stage 1, as shown in FIG.
  • a light guide optical system 14 that guides a light image from the sample S is disposed on the upper surface side of the stage 1.
  • the optical system that irradiates the sample S with light from the light source 12 employs an excitation light irradiation optical system for irradiating the sample S with excitation light and a dark field illumination optical system for acquiring a dark field image of the sample S. May be.
  • the beam splitter 16 is a part that branches the optical image of the sample S into a first optical path L1 for image acquisition and a second optical path L2 for focus control.
  • the beam splitter 16 is disposed at an angle of about 45 degrees with respect to the optical axis from the light source 12.
  • the optical path passing through the beam splitter 16 is the first optical path L1
  • the beam splitter 16 The optical path reflected by 16 is the second optical path.
  • an imaging lens 17 that forms an optical image (first optical image) of the sample S that has passed through the beam splitter 16, and an imaging surface is disposed at the imaging position of the imaging lens 17.
  • a first imaging device (first imaging means) 18 is arranged.
  • the first imaging device 18 is a device that can acquire a one-dimensional image (first image) based on a first light image of the sample S.
  • a two-dimensional CCD sensor capable of TDI (Time Delay Integration) drive A line sensor is used.
  • the first imaging device 18 is a device that can acquire a two-dimensional image such as a CMOS sensor or a CCD sensor. There may be.
  • the first images picked up by the first image pickup device 18 are sequentially stored in a temporary storage memory such as a lane buffer, and then compressed and output to an image generation unit 38 to be described later.
  • the second imaging device 20 is a device that can acquire a two-dimensional image (second image) based on the second optical image of the sample S, such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device). These sensors are used. A line sensor may be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the imaging surface 20a of the second imaging device 20 is disposed so as to substantially coincide with the XZ plane orthogonal to the second optical path L2.
  • a first imaging area 22A and a second imaging area 22B for acquiring a partial image of the second light image are set on the imaging surface 20a.
  • the first imaging region 22A and the second imaging region 22B are oriented in a direction perpendicular to the moving direction (scanning direction: Z direction) of the second optical image on the imaging surface 20a accompanying the scanning of the sample S. Is set.
  • the first imaging area 22A and the second imaging area 22B are set with a predetermined interval, and both acquire a part of the second optical image in a line shape.
  • the optical image of the same area as the first optical image of the sample S acquired by the first imaging device 18 can be acquired as the second optical image in the first imaging area 22A and the second imaging area 22B.
  • the first imaging region 22A and the second imaging region 22B may be set using separate line sensors. In this case, the time required for setting the first imaging region 22A and the second imaging region 22B can be shortened by controlling each line sensor separately.
  • the optical path difference generating member 21 is a glass member that causes an optical path difference in the second optical image along the in-plane direction of the imaging surface 20a.
  • the optical path difference generating member 21 ⁇ / b> A has a prism shape with a triangular cross section, and is arranged so that the top portion substantially coincides with the central portion of the imaging surface 20 a in the Z direction. Therefore, the second optical image incident on the imaging surface 20a has the longest optical path in the center portion in the Z direction on the imaging surface 20a, and the optical path becomes shorter toward both end portions in the Z direction on the imaging surface 20a.
  • the optical path difference generating member 21 is arranged so that the surface facing the second imaging device 20 is parallel to the imaging surface (light receiving surface) 20a of the second imaging device. Thereby, refraction of light by the surface facing the second imaging device 20 can be reduced, and the amount of light received by the second imaging device 20 can be ensured.
  • the position of the first imaging area 22A and the position of the second imaging area 22B are set so that the first imaging area 22A is a front pin and the second imaging area 22B is a rear pin.
  • the focus difference between the front pin and the rear pin is incident on the thickness t1 and refractive index of the optical path difference generation member 21A through which the second optical image incident on the first imaging region 22A passes, and on the second imaging region 22B. This depends on the difference between the thickness t2 and the refractive index of the optical path difference generating member 21A through which the second optical image passes.
  • the optical path difference generating member is an optical path difference formed of a flat glass member as shown in FIG. 5A in addition to a member having a portion whose thickness changes along the in-plane direction of the imaging surface 20a.
  • the generating member 21B can also be used.
  • the lower half area in the Z direction on the imaging surface 20a overlaps the optical path difference generating member 21B, and the first imaging area 22A is set as the upper half area of the imaging surface 20a.
  • the second imaging region 22B as the lower half region of the imaging surface 20a, a focus difference between the front pin and the rear pin can be formed according to the thickness and refractive index of the optical path difference generating member 21B.
  • the edge portion E of the optical path difference generating member 21B may form a shadow 23 of the second optical image on the imaging surface 20a. Therefore, as shown in FIG. 5B, the interval d between the first imaging area 22A and the second imaging area 22B is made wider than the width of the shadow 23, and the first position is at a position avoiding the shadow 23. It is preferable to set the imaging region 22A and the second imaging region 22B.
  • an optical path difference generating member 21C in which a plurality of flat glass members having different lengths in the Z direction are superposed can be used.
  • the lower half area in the Z direction on the imaging surface 20a overlaps the optical path difference generating member 21C, and the first imaging area 22A is set to the upper half area of the imaging surface 20a.
  • the second imaging region 22B As the lower half region of the imaging surface 20a, a focus difference between the front pin and the rear pin can be formed according to the thickness and refractive index of the optical path difference generating member 21C.
  • the edge portion E of the optical path difference generating member 21C may form a shadow 23 of the second optical image on the imaging surface 20a. Therefore, as shown in FIG. 6B, the interval d between the first imaging area 22A and the second imaging area 22B is made wider than the width of the shadow 23, and the first position is at a position avoiding the shadow 23. It is preferable to set the imaging region 22A and the second imaging region 22B.
  • the optical path difference generating member 21D having a prism shape with a right-angled cross section may be arranged so that the thickness increases as it proceeds in the Z direction.
  • a flat plate-shaped optical path difference generation member 22E similar to that shown in FIG. 5 may be arranged so as to coincide with the center of the imaging surface 20a in the Z direction.
  • the distance d between the first imaging region 22A and the second imaging region 22B is affected. It is preferable that the first imaging region 22A and the second imaging region 22B are set at a position that is wider than the width of 23 and avoids these two shadows 23.
  • FIG. 8 is a block diagram showing functional components of the image acquisition apparatus.
  • the image acquisition apparatus M includes a computer system including a CPU, a memory, a communication interface, a storage unit such as a hard disk, an operation unit 31 such as a keyboard, a monitor 32, and the like.
  • a focus control unit 34 As constituent elements, a focus control unit 34, an area control unit 35, an objective lens control unit 36, a stage control unit 37, an image generation unit 38, and a virtual micro image storage unit 39 are provided.
  • the focus control unit 34 is a part that analyzes the second image acquired by the second imaging device 20 and controls the focal position of imaging by the first imaging device 18 based on the analysis result. More specifically, the focus control unit 34, first, in the second imaging device 20, the contrast value of the image acquired in the first imaging region 22A and the contrast value of the image acquired in the second imaging region 22B. Find the difference between
  • the image contrast value of the front pin acquired in the first imaging region 22A and the second imaging region. After obtaining at 22B, the image contrast value of the pin substantially matches, and the difference value between them is almost zero.
  • the focus control unit 34 outputs instruction information indicating that the objective lens 15 is driven in a direction approaching the sample S to the objective lens control unit 36.
  • the focus control unit 34 outputs instruction information indicating that the objective lens 15 is driven in a direction away from the sample S to the objective lens control unit 36.
  • the area control unit 35 is a part that controls the position of the first imaging area 22 ⁇ / b> A and the position of the second imaging area 22 ⁇ / b> B on the imaging surface 20 a of the second imaging device 20.
  • the area control unit 35 first sets the first imaging area 22A at a preset position based on an operation from the operation unit 31, and after the imaging in the first imaging area 22A is performed, the first imaging area 22A is set. The setting of the imaging area 22A is canceled.
  • the second imaging area 22B is set with a predetermined interval from the first imaging area 22A in the Z direction (scanning direction), and after the imaging in the second imaging area 22B is performed, the second imaging is performed. The setting of the area 22B is cancelled.
  • the waiting time W is a waiting time W2 from the start of imaging in the first imaging area 22A to the completion of imaging in the second imaging area 22B
  • W2 d / v ⁇ st.
  • the distance d between the first imaging region 22A and the second imaging region 22B is set based on the optical path length difference generated by the optical path difference generating member 21. However, this interval d actually corresponds to the distance on the slide of the sample S, and it is finally necessary to convert the interval d into the number of pixels in the second imaging region 22B.
  • the area control unit 35 determines at least one of the position of the first imaging area 22A and the position of the second imaging area 22B in the scanning direction within the plane of the imaging surface 20a (here, (Z direction) can be changed. In this case, only one of the position of the first imaging area 22A and the position of the second imaging area 22B may be changed, and the position of the first imaging area 22A and the position of the second imaging area 22B may be changed. Both may be changed. In addition, even if both the position of the first imaging area 22A and the position of the second imaging area 22B are changed while maintaining the distance d between the first imaging area 22A and the second imaging area 22B. Good.
  • the first imaging area 22A and the position of the second imaging area 22B By changing the position of the first imaging area 22A and the position of the second imaging area 22B, for example, when the prism-shaped optical path difference generating member 21A as shown in FIG. 4 is used, the first imaging area The thickness t1 of the optical path difference generation member 21A through which the second optical image incident on 22A passes, and the thickness t2 of the optical path difference generation member 21A through which the second optical image incident on the second imaging region 22B passes, Can be changed. Thereby, the space
  • the optical path difference generating member 21C formed by stacking flat glass members as shown in FIG. 6 the position of the second imaging region 22B is switched to a position having a different glass thickness, The focus difference between the pin and the rear pin can be switched in stages.
  • the objective lens control unit 36 is a part that controls the driving of the objective lens 15. Upon receiving the instruction information output from the focus control unit 34, the objective lens control unit 36 drives the objective lens 15 in the Z direction according to the content of the instruction information. Thereby, the focal position of the objective lens 15 with respect to the sample S is adjusted.
  • the objective lens control unit 36 does not drive the objective lens 15 during the analysis of the focal position by the focus control unit 34, and moves the objective lens 15 in the Z direction until the analysis of the next focal position is started. Drive in only one direction along.
  • FIG. 12 is a diagram illustrating the relationship between the distance between the objective lens and the surface of the sample with respect to the scanning time of the stage. As shown in the figure, during the scan of the sample S, the focal position analysis period A and the objective lens driving period B based on the analysis result occur alternately. Thus, the analysis accuracy of the focal position can be ensured by not changing the positional relationship between the objective lens 15 and the sample S during the analysis of the focal position.
  • the stage control unit 37 is a part that controls the driving of the stage 1. More specifically, the stage control unit 37 scans the stage 1 on which the sample S is placed at a predetermined speed based on an operation from the operation unit 31. The scanning of the stage 1 relatively sequentially moves the imaging field of the sample S in the first imaging device 18 and the second imaging device 20. As shown in FIG. 13A, the scanning direction of the stage 1 is set so that the position of the stage 1 is returned to the scanning start position every time scanning of one divided region 40 is completed, and then the next divided region 40 is set in the same direction. As shown in FIG. 13B, after the scanning of one divided region 40 is completed, the stage 1 is moved in the direction orthogonal to the scanning direction to move to the next divided region. Bidirectional scanning may be performed by scanning 40 in the opposite direction.
  • each of the deceleration periods F in which the deceleration occurs occurs when scanning outside the divided region 40.
  • imaging may be started during the stabilization period D, and the data portion acquired during the stabilization period D after image acquisition may be deleted. Such a method is suitable when using an imaging device that requires idle reading of data.
  • the image generation unit 38 is a part that combines the acquired images to generate a virtual micro image.
  • the image generation unit 38 sequentially receives the first image output from the first imaging device 18, that is, the image of each divided region 40, and synthesizes them to synthesize the entire image of the sample S. Then, an image having a lower resolution than this is created based on the synthesized image, and the high resolution image and the low resolution image are associated with each other and stored in the virtual micro image storage unit 39.
  • an image acquired by the macro image acquisition device M1 may be further associated.
  • the virtual micro image may be stored as one image or may be stored as an image divided into a plurality of images.
  • FIG. 15 is a flowchart showing the operation of the image acquisition apparatus M.
  • the macro image of the sample S is acquired by the macro image acquisition device M1 (step S01).
  • the acquired macro image is binarized using, for example, a predetermined threshold, and then displayed on the monitor 32, and a micro image is selected from the macro image by automatic setting using a predetermined program or manual setting by an operator.
  • a range to be acquired is set (step S02).
  • the sample S is transferred to the micro image acquisition device M2 side, and focus acquisition conditions are set (step S03).
  • imaging in the second imaging region 22B is performed based on the scanning speed v of the stage 1 and the interval d between the first imaging region 22A and the second imaging region 22B.
  • a waiting time W until the start is set. More preferably, the exposure time el of imaging in the first imaging area 22A, the time st from when the setting of the first imaging area 22A is canceled until the second imaging area 22B is set, and the like are taken into consideration.
  • step S04 scanning of the stage 1 is started, and micro images for each divided region 40 of the sample S are acquired by the micro image acquisition device M2 (step S04).
  • the second imaging device 20 uses the first imaging region 22A and the second imaging region 22B to obtain the difference between the contrast value of the front pin and the contrast value of the rear pin. Based on this, the deviation direction of the objective lens 15 with respect to the sample S is analyzed, and the position of the objective lens 15 is adjusted in real time.
  • the acquired micro images are synthesized and a virtual micro image is generated (step S05).
  • the optical path difference generation member 21 (21A to 21E) is arranged in the second optical path L2, the first imaging region 22A of the second imaging device 20 and In the second imaging region 22B, a light image (front pin) focused before the light image incident on the first imaging device 18 and a light image (rear pin) focused later are respectively captured. can do.
  • the optical path length difference can be formed without branching the light in the second optical path L2 for focus control, so that the second optical path necessary for obtaining the focal position information can be formed. The amount of light is suppressed, and a sufficient amount of light can be secured when the first imaging device 18 performs imaging.
  • this image acquisition device M from the imaging in the first imaging area 22A based on the scanning speed v of the stage and the interval d between the first imaging area 22A and the second imaging area 22B. A waiting time W until imaging in the second imaging area 22B is set. Therefore, since the light from the same position of the sample S enters the first imaging region 22A and the second imaging region 22B, the focal position of the objective lens 15 can be controlled with high accuracy.
  • an optical path difference generating member 21 (21A, 21D) made of a glass member having a portion whose thickness changes along the in-plane direction of the imaging surface 20a in the second imaging device 20 is used.
  • the distance between the front pin and the rear pin can be freely adjusted by adjusting the position of the first imaging area 22A and the position of the second imaging area 22B by the area control unit 35.
  • the focus of the sample S is adjusted by adjusting the focus difference between the front pin and the rear pin. The position can be detected with high accuracy.
  • the optical path difference generating member 21 (21B, 21C, 21E) made of a flat glass member is used as the optical path difference generating member of the present embodiment
  • the configuration of the optical path difference generating member 21 can be simplified.
  • the edge portion E of the flat plate member forms a shadow 23 of the second optical image on the imaging surface 20a of the second imaging device 20, the first imaging region 22A and the second imaging region 22A are avoided by avoiding the shadow 23.
  • the imaging region 22B it is possible to ensure the accuracy of control of the focal position of the objective lens 15.
  • an apparatus for generating a virtual micro image has been exemplified.
  • the image acquisition apparatus according to the present invention may be various as long as it acquires an image while scanning a sample at a predetermined speed with a stage or the like. It can be applied to the device.

Abstract

 画像取得装置Mでは、第2の光路L2に光路差生成部材21が配置されていることにより、第2の撮像装置20において、第1の撮像装置18に入射する光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)と撮像する際の光量が抑えられ、第1の撮像装置18で撮像する際の光量を確保できる。また、画像取得装置Mでは、ステージの走査速度vと、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dとに基づいて、第1の撮像領域22Aでの撮像から第2の撮像領域22Bでの撮像までの待ち時間Wが設定される。したがって、試料Sの同じ位置からの光が第1の撮像領域22Aと第2の撮像領域22Bとに入射するため、焦点位置の制御を精度良く実施できる。

Description

画像取得装置及び画像取得装置のフォーカス方法
 本発明は、試料等の画像取得に用いられる画像取得装置及びそのフォーカス方法に関する。
 画像取得装置として、例えば試料の撮像領域を予め複数の領域に分割し、各分割領域を高倍率で撮像した後、これらを合成するバーチャル顕微鏡装置がある。このようなバーチャル顕微鏡での画像取得では、従来、生体サンプルなどの試料の画像を取得する際の撮像条件として、試料の全領域を対象とする焦点マップが設定され、焦点マップに基づく焦点制御を行いつつ試料の画像取得が行われている。
 焦点マップの作成には、まず、マクロ光学系を備える画像取得装置を用い、試料全体をマクロ画像として取得する。次に、取得したマクロ画像を用い、試料の撮像範囲を設定すると共に、撮像範囲を複数の分割領域に分割し、各分割領域に対して焦点取得位置を設定する。焦点取得位置の設定の後、ミクロ光学系を備える画像取得装置に試料を移し、設定された焦点取得位置における焦点位置を取得し、これらの焦点位置から焦点マップを作成する。
 しかしながら、このような焦点マップを作成するにあたっては、処理に時間を要するという問題があった。また、取得する焦点の間隔や数を抑えれば処理に要する時間は短縮されるが、その場合にはフォーカス精度が低下するという問題があった。そのため、焦点位置を取得しつつ試料の高倍率画像を取得するダイナミックフォーカスの開発が進められている。この方式は、画像取得用の撮像装置に入射する光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)との光強度差或いはコントラスト差に基づいて現在の対物レンズの高さに対する焦点位置のずれ方向を検出し、ずれをキャンセルする方向に対物レンズを移動させて画像を取得する方式である。
 例えば特許文献1に記載の顕微鏡システムでは、第1の撮像手段が撮像する領域よりも手前の領域を撮像する第2の撮像手段と、第2の撮像手段で撮像された画像に基づいて、第1の撮像手段の撮像位置での対物レンズの合焦位置を調整する自動合焦制御手段と、分割領域間の距離と試料の移動速度とに応じて、分割領域が第2の撮像手段の撮像位置から第1の撮像手段の撮像位置まで移動するタイミングと、第2の撮像手段で撮像された分割領域の結像位置を第1の撮像手段の撮像面に位置させるタイミングとを揃えるタイミング制御手段とが設けられている。また、例えば特許文献2,3に記載の顕微鏡装置では、ガラス部材を用いて焦点制御用の導光光学系内での光路長差を形成している。
特開2011-081211号公報 再公表特許WO2005/114287号公報 再公表特許WO2005/114293号公報
 上述した特許文献1に記載の顕微鏡システムでは、ハーフミラー及びミラーを用いることによって光路差光学系を形成し、第2の撮像手段の2つの撮像領域に対して光路長の異なる光をそれぞれ入射させている。この従来の顕微鏡システムでは、例えばラインセンサによって第1の撮像手段及び第2の撮像手段を構成している。ラインセンサでは露光時間が短いため、鮮明な画像を取得するために光量の確保が重要となるのに対し、この従来の顕微鏡システムでは、光路差光学系で光を分岐させているため、光量の確保が難しくなるという問題がある。また、ラインセンサの露光時間を考慮して第1の撮像手段及び第2の撮像手段による画像取得のタイミングを設定する必要がある。
 本発明は、上記課題の解決のためになされたものであり、撮像の際の光量を確保でき、かつ試料の焦点位置を精度良く検出できる画像取得装置及びそのフォーカス方法を提供することを目的とする。
 上記課題の解決のため、本発明に係る画像取得装置は、試料が載置されるステージと、ステージを所定の速度で走査するステージ制御手段と、試料に向けて光を照射する光源と、試料の光像を画像取得用の第1の光路及び焦点制御用の第2の光路に分岐する光分岐手段を含む導光光学系と、第1の光路に分岐された第1の光像による第1の画像を取得する第1の撮像手段と、第2の光路に分岐された第2の光像による第2の画像を取得する第2の撮像手段と、第2の画像を解析し、その解析結果に基づいて第1の撮像手段による撮像の焦点位置を制御する焦点制御手段と、第2の撮像手段の撮像面に、第2の光像の一部画像を取得する第1の撮像領域及び第2の撮像領域を設定する領域制御手段と、第2の光路に配置され、撮像面の面内方向に沿って第2の光像に光路差を生じさせる光路差生成部材と、を備え、領域制御手段は、ステージの走査速度と、第1の撮像領域と第2の撮像領域との間の間隔とに基づいて、第1の撮像領域での撮像から第2の撮像領域での撮像までの待ち時間を設定することを特徴としている。
 この画像取得装置では、第2の光路に光路差生成部材が配置されていることにより、第2の撮像手段の第1の撮像領域及び第2の撮像領域において、第1の撮像手段に入射する光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)とをそれぞれ撮像することができる。この画像取得装置では、焦点制御用の第2の光路での光の分岐を行わずに光路長差を形成できるので、焦点位置の情報を得るために必要な第2の光路への光量が抑えられ、第1の撮像手段での撮像を行う際の光量を確保できる。また、この画像取得装置では、ステージの走査速度と、第1の撮像領域と第2の撮像領域との間の間隔(距離)とに基づいて、第1の撮像領域での撮像から第2の撮像領域での撮像までの待ち時間が設定される。したがって、試料の同じ位置からの光が第1の撮像領域と第2の撮像領域とに入射するため、焦点位置の制御を精度良く実施できる。
 また、第2の撮像手段は、エリアセンサであることが好ましい。この場合、第1の撮像領域と第2の撮像領域とを好適に設定できる。また、装置の簡素化が図られる。
 また、光路差生成部材は、撮像面の少なくとも一部に重なるように配置された平板部材であり、領域制御手段は、平板部材のエッジ部分による第2の光像の影を避けるように、平板部材に重なる領域と平板部材に重ならない領域とに第1の撮像領域と第2の撮像領域とをそれぞれ設定することが好ましい。この場合、平板部材を用いることで、光路差生成部材の構成を簡単化できる。また、平板部材のエッジ部分は、第2の撮像装置の撮像面における第2の光像の影を形成するので、影を避けて第1の撮像領域と第2の撮像領域を設定することで、焦点位置の制御の精度を担保できる。
 また、光路差生成部材は、撮像面の面内方向に沿って連続的に厚さが変化する部分を有する部材であり、領域制御手段は、光路差生成部材の厚みの異なる部分に重なるように第1の撮像領域と第2の撮像領域とを設定することが好ましい。この場合、第1の撮像領域の位置と第2の撮像領域の位置とを調整することで、前ピンと後ピンとの間隔を自在に調整できる。これにより、試料の焦点位置を精度良く検出することが可能となる。
 第1の撮像領域と第2の撮像領域とは、別々のラインセンサによって構成されていることが好ましい。この場合、第1の撮像領域及び第2の撮像領域の設定に要する時間を短縮させることができる。
 また、試料に対峙する対物レンズと、焦点制御手段による制御に基づいて、試料に対する対物レンズの位置を相対的に制御する対物レンズ制御手段とを備え、対物レンズ制御手段は、焦点制御手段による焦点位置の解析実行中は対物レンズの駆動を行わず、焦点制御手段による焦点位置の解析非実行中に対物レンズを試料に対して一方向に移動させることが好ましい。焦点位置の解析中に対物レンズと試料との位置関係を変化させないことで、焦点位置の解析精度を担保できる。
 また、本発明に係る画像取得装置のフォーカス方法は、試料が載置されるステージと、ステージを所定の速度で走査するステージ制御手段と、試料に向けて光を照射する光源と、試料の光像を画像取得用の第1の光路及び焦点制御用の第2の光路に分岐する光分岐手段を含む導光光学系と、第1の光路に分岐された第1の光像による第1の画像を取得する第1の撮像手段と、第2の光路に分岐された第2の光像による第2の画像を取得する第2の撮像手段と、第2の画像を解析し、その解析結果に基づいて第1の撮像手段による撮像の焦点位置を制御する焦点制御手段と、を備えた画像取得装置のフォーカス方法であって、第2の撮像手段の撮像面に、第2の光像の一部画像を取得する第1の撮像領域及び第2の撮像領域を設定し、撮像面の面内方向に沿って第2の光像に光路差を生じさせる光路差生成部材を第2の光路に配置し、領域制御手段によって、ステージの走査速度と、第1の撮像領域と第2の撮像領域との間の間隔とに基づいて、第1の撮像領域での撮像から第2の撮像領域での撮像までの待ち時間を設定することを特徴としている。
 このフォーカス方法では、第2の光路に光路差生成部材が配置することにより、第2の撮像手段の第1の撮像領域及び第2の撮像領域において、第1の撮像手段に入射する光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)とをそれぞれ撮像することができる。このフォーカス方法では、焦点制御用の第2の光路での光の分岐を行わずに光路長差を形成できるので、焦点位置の情報を得るために必要な第2の光路への光量が抑えられ、第1の撮像手段での撮像を行う際の光量を確保できる。また、このフォーカス方法では、ステージの走査速度と、第1の撮像領域と第2の撮像領域との間の間隔(距離)とに基づいて、第1の撮像領域での撮像から第2の撮像領域での撮像までの待ち時間を設定する。したがって、試料の同じ位置からの光が第1の撮像領域と第2の撮像領域とに入射するため、焦点位置の制御を精度良く実施できる。
 また、第2の撮像手段として、エリアセンサを用いることが好ましい。この場合、第1の撮像領域と第2の撮像領域とを好適に設定できる。また、装置の簡素化が図られる。
 また、光路差生成部材として、撮像面の少なくとも一部に重なるように配置された平板部材を用い、領域制御手段によって、平板部材のエッジ部分による第2の光像の影を避けるように、平板部材に重なる領域と平板部材に重ならない領域とに第1の撮像領域と第2の撮像領域とをそれぞれ設定することが好ましい。この場合、平板部材を用いることで、光路差生成部材の構成を簡単化できる。また、平板部材のエッジ部分は、第2の撮像装置の撮像面における第2の光像の影を形成するので、影を避けて第1の撮像領域と第2の撮像領域を設定することで、焦点位置の制御の精度を担保できる。
 また、光路差生成部材として、撮像面の面内方向に沿って連続的に厚さが変化する部分を有する部材を用い、領域制御手段によって、光路差生成部材の厚みの異なる部分に重なるように第1の撮像領域と第2の撮像領域とを設定することが好ましい。この場合、第1の撮像領域の位置と第2の撮像領域の位置とを調整することで、前ピンと後ピンとの間隔を自在に調整できる。これにより、試料の焦点位置を精度良く検出することが可能となる。
 また、第1の撮像領域と第2の撮像領域とを別々のラインセンサによって構成することが好ましい。この場合、第1の撮像領域及び第2の撮像領域の設定に要する時間を短縮させることができる。
 また、画像取得装置は、試料に対峙する対物レンズと、焦点制御手段による制御に基づいて、試料に対する対物レンズの位置を相対的に制御する対物レンズ制御手段とを備え、対物レンズ制御手段によって、焦点制御手段による焦点位置の解析実行中は対物レンズの駆動を行わず、焦点制御手段による焦点位置の解析非実行中に対物レンズを前記試料に対して一方向に移動させることが好ましい。この場合、焦点位置の解析中に対物レンズと試料との位置関係が変化しないので、焦点位置の解析精度を担保できる。
 本発明によれば、撮像の際の光量を確保でき、かつ試料の焦点位置を精度良く検出できる。
本発明に係る画像取得装置を構成するマクロ画像取得装置の一実施形態を示す図である。 本発明に係る画像取得装置を構成するミクロ画像取得装置の一実施形態を示す図である。 第2の撮像装置を示す図である。 光路差生成部材及び第2の撮像装置の組み合わせの一例を示す図である。 光路差生成部材及び第2の撮像装置の組み合わせの別の例を示す図である。 光路差生成部材及び第2の撮像装置の組み合わせの別の例を示す図である。 光路差生成部材の更なる変形例を示す図である。 画像取得装置の機能的な構成要素を示すブロック図である。 試料の表面までの距離が対物レンズの焦点距離に一致している場合のコントラスト値の解析結果を示す図である。 試料の表面までの距離が対物レンズの焦点距離よりも長い場合のコントラスト値の解析結果を示す図である。 試料の表面までの距離が対物レンズの焦点距離よりも短い場合のコントラスト値の解析結果を示す図である。 ステージの走査時間に対する対物レンズと試料の表面との距離の関係を示す図である。 ステージ制御部によるステージの走査方向の制御を示す図である。 ステージ制御部によるステージの走査速度の制御を示す図である。 画像取得装置の動作を示すフローチャートである。
 以下、図面を参照しながら、本発明に係る画像取得装置及び画像取得装置のフォーカス方法の好適な実施形態について詳細に説明する。
 図1は、本発明に係る画像取得装置を構成するマクロ画像取得装置の一実施形態を示す図である。また、図2は、本発明に係る画像取得装置を構成するミクロ画像取得装置の一実施形態を示す図である。図1及び図2に示すように、画像取得装置Mは、試料Sのマクロ画像を取得するマクロ画像取得装置M1と、試料Sのミクロ画像を取得するミクロ画像取得装置M2とによって構成されている。画像取得装置Mは、マクロ画像取得装置M1で取得したマクロ画像に対して例えばライン状の複数の分割領域40(図13参照)を設定し、各分割領域40をミクロ画像取得装置M2で高倍率に取得して合成することにより、バーチャルマイクロ画像を生成する装置である。
 マクロ画像取得装置M1は、図1に示すように、試料Sが載置されるステージ1を備えている。ステージ1は、例えばステッピングモータ(パルスモータ)或いはピエゾアクチュエータなどのモータやアクチュエータによって水平方向に駆動するXYステージである。画像取得装置Mで観察する試料Sは、例えば細胞などの生体サンプルであり、スライドガラスに密封された状態でステージ1に載置される。このステージ1をXY面内で駆動させることにより、試料Sに対する撮像位置を移動させることができる。
 ステージ1は、マクロ画像取得装置M1とミクロ画像取得装置M2との間を往復可能となっており、両装置間で試料Sを搬送する機能を有している。なお、マクロ画像取得においては、試料Sの全体画像を1度の撮像で取得してもよく、試料Sを複数の領域に分割して撮像してもよい。また、ステージ1は、マクロ画像取得装置M1及びミクロ画像取得装置M2の双方にそれぞれ設けておいてもよい。
 ステージ1の底面側には、試料Sに向けて光を照射する光源2と、光源2からの光を試料Sに集光する集光レンズ3とが配置されている。光源2は、試料Sに向けて斜めに光を照射するように配置されていてもよい。また、ステージ1の上面側には、試料Sからの光像を導光する導光光学系4と、試料Sの光像を撮像する撮像装置5とが配置されている。導光光学系4は、試料Sからの光像を撮像装置5の撮像面に結像させる結像レンズ6を有している。また、撮像装置5は、例えば2次元画像を取得可能なエリアセンサである。撮像装置5は、導光光学系4を経て撮像面に入射した試料Sの光像の全体画像を取得し、後述のバーチャルマイクロ画像格納部39に格納する。
 ミクロ画像取得装置M2は、図2に示すように、ステージ1の底面側にマクロ画像取得装置M1と同様の光源12及び集光レンズ13を有している。また、ステージ1の上面側には、試料Sからの光像を導光する導光光学系14が配置されている。光源12からの光を試料Sに照射させる光学系には、試料Sに励起光を照射するための励起光照射光学系や試料Sの暗視野画像を取得するための暗視野照明光学系を採用してもよい。
 導光光学系4は、試料Sと対峙して配置された対物レンズ15と、対物レンズ15の後段に配置されたビームスプリッタ(光分岐手段)16とを有している。対物レンズ15には、ステージ1の載置面に直交するZ方向に対物レンズ15を駆動するステッピングモータ(パルスモータ)或いはピエゾアクチュエータなどのモータやアクチュエータが設けられている。これらの駆動手段によって対物レンズ15のZ方向の位置を変えることにより、試料Sの画像取得における撮像の焦点位置が調整可能になっている。なお、焦点位置の調整は、ステージ1のZ方向の位置を変えてもよく、対物レンズ15及びステージ1の双方のZ方向の位置を変えてもよい。
 ビームスプリッタ16は、試料Sの光像を画像取得用の第1の光路L1と焦点制御用の第2の光路L2とに分岐する部分である。このビームスプリッタ16は、光源12からの光軸に対しておよそ45度の角度で配置されており、図2において、ビームスプリッタ16を通過する光路が第1の光路L1となっており、ビームスプリッタ16で反射する光路が第2の光路となっている。
 第1の光路L1には、ビームスプリッタ16を通過した試料Sの光像(第1の光像)を結像させる結像レンズ17と、結像レンズ17の結像位置に撮像面を配置した第1の撮像装置(第1の撮像手段)18とが配置されている。第1の撮像装置18は、試料Sの第1の光像による1次元画像(第1の画像)を取得可能な装置であり、例えばTDI(Time Delay Integration)駆動が可能な2次元CCDセンサやラインセンサが用いられる。また、ステージ1を一定の速度で制御しながら、試料Sの画像を順次取得する方式であれば、第1の撮像装置18は、CMOSセンサやCCDセンサなどの2次元画像を取得可能な装置であってもよい。第1の撮像装置18で撮像された第1の画像は、レーンバッファなどの一時保存メモリに順次保存された後、圧縮されて後述の画像生成部38に出力される。
 一方、第2の光路L2には、ビームスプリッタ16で反射した試料の光像(第2の光像)を縮小する視野調整レンズ19と、第2の撮像装置(第2の撮像手段)20とが配置されている。また、第2の撮像装置20の前段には、第2の光像に光路差を生じさせる光路差生成部材21が配置されている。視野調整レンズ19は、第2の光像が第1の光像と同程度の大きさで第2の撮像装置20に結像するように構成されていることが好ましい。
 第2の撮像装置20は、試料Sの第2の光像による2次元画像(第2の画像)を取得可能な装置であり、例えばCMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などのセンサが用いられる。また、ラインセンサを用いてもよい。
 第2の撮像装置20の撮像面20aは、第2の光路L2に直交するXZ面と略一致するように配置されている。この撮像面20aには、図3に示すように、第2の光像の一部画像を取得する第1の撮像領域22A及び第2の撮像領域22Bが設定されている。第1の撮像領域22A及び第2の撮像領域22Bは、試料Sの走査に伴う撮像面20a上での第2の光像の移動方向(走査方向:Z方向)に対して垂直となる向きに設定される。第1の撮像領域22Aと第2の撮像領域22Bとは、所定の間隔をもって設定されており、いずれも第2の光像の一部をライン状に取得する。これにより、第1の撮像装置18で取得される試料Sの第1の光像と同じ領域の光像を第2の光像として第1の撮像領域22A及び第2の撮像領域22Bで取得できる。なお、第1の撮像領域22Aと第2の撮像領域22Bとを別々のラインセンサを用いて設定してもよい。この場合、各ラインセンサを別々に制御することで、第1の撮像領域22A及び第2の撮像領域22Bの設定に要する時間を短縮させることができる。
 光路差生成部材21は、撮像面20aの面内方向に沿って第2の光像に光路差を生じさせるガラス部材である。図4に示す例では、光路差生成部材21Aは、断面三角形のプリズム状をなしており、撮像面20aのZ方向の中央部分に頂部が略一致するように配置されている。したがって、撮像面20aに入射する第2の光像は、撮像面20aにおけるZ方向の中央部分で最も光路が長くなり、撮像面20aにおけるZ方向の両端部分に向かうほど光路が短くなる。また、光路差生成部材21は、第2の撮像装置20と対向する面が第2の撮像装置の撮像面(受光面)20aと平行となるように配置されることが好ましい。これにより、第2の撮像装置20と対向する面による光の屈折を低減でき、第2の撮像装置20で受光する光量を確保することができる。
 これにより、第2の撮像装置20では、第1の撮像領域22Aの位置と第2の撮像領域22Bの位置に基づいて、第1の撮像装置18に入射する第1の光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)とを取得できる。本実施形態では、例えば第1の撮像領域22Aが前ピンとなり、第2の撮像領域22Bが後ピンとなるように第1の撮像領域22Aの位置と第2の撮像領域22Bの位置とが設定される。前ピンと後ピンとの間のフォーカス差は、第1の撮像領域22Aに入射する第2の光像が通過する光路差生成部材21Aの厚さt1及び屈折率と、第2の撮像領域22Bに入射する第2の光像が通過する光路差生成部材21Aの厚さt2及び屈折率との差に依存する。
 なお、光路差生成部材は、撮像面20aの面内方向に沿って厚みが変化する部分を有する部材のほか、図5(a)に示すように、平板形状のガラス部材で形成された光路差生成部材21Bを用いることもできる。この場合、図5(b)に示すように、撮像面20aにおけるZ方向の下半分領域が光路差生成部材21Bに重なるようにし、第1の撮像領域22Aを撮像面20aの上半分領域に設定し、第2の撮像領域22Bを撮像面20aの下半分領域に設定することで、光路差生成部材21Bの厚さ及び屈折率に応じて前ピンと後ピンとの間のフォーカス差を形成できる。
 また、この場合、光路差生成部材21Bのエッジ部分Eは、撮像面20aにおける第2の光像の影23を形成するおそれがある。したがって、図5(b)に示すように、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dを影23の幅よりも広くし、影23を避けた位置に第1の撮像領域22Aと第2の撮像領域22Bとを設定することが好適である。
 さらに、図6(a)に示すように、Z方向の長さが異なる複数の平板形状のガラス部材を重ね合わせた光路差生成部材21Cを用いることもできる。この場合も、図6(b)に示すように、撮像面20aにおけるZ方向の下半分領域が光路差生成部材21Cに重なるようにし、第1の撮像領域22Aを撮像面20aの上半分領域に設定し、第2の撮像領域22Bを撮像面20aの下半分領域に設定することで、光路差生成部材21Cの厚さ及び屈折率に応じて前ピンと後ピンとの間のフォーカス差を形成できる。
 この場合も、光路差生成部材21Cのエッジ部分Eは、撮像面20aにおける第2の光像の影23を形成するおそれがある。したがって、図6(b)に示すように、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dを影23の幅よりも広くし、影23を避けた位置に第1の撮像領域22Aと第2の撮像領域22Bとを設定することが好適である。
 その他、図7(a)に示すように、断面直角三角形のプリズム状をなす光路差生成部材21Dを、Z方向に進むにつれて厚さが増加するように配置してもよく、図7(b)に示すように、図5と同様の平板形状の光路差生成部材22Eを、撮像面20aのZ方向の中心に一致するように配置してもよい。図7(b)の場合、光路差生成部材22Eの2つのエッジ部分Eが撮像面20aに投影されるので、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dを影23の幅よりも広くし、これら2つの影23を避けた位置に第1の撮像領域22Aと第2の撮像領域22Bとを設定することが好適である。
 図8は、画像取得装置の機能的な構成要素を示すブロック図である。同図に示すように、画像取得装置Mは、CPU、メモリ、通信インタフェイス、ハードディスクといった格納部、キーボードなどの操作部31、モニタ32等を備えたコンピュータシステムを備え、制御部33の機能的な構成要素として、焦点制御部34と、領域制御部35と、対物レンズ制御部36と、ステージ制御部37と、画像生成部38と、バーチャルマイクロ画像格納部39とを備えている。
 焦点制御部34は、第2の撮像装置20で取得した第2の画像を解析し、その解析結果に基づいて第1の撮像装置18による撮像の焦点位置を制御する部分である。より具体的には、焦点制御部34は、まず、第2の撮像装置20において、第1の撮像領域22Aで取得した画像のコントラスト値と、第2の撮像領域22Bで取得した画像のコントラスト値との差分を求める。
 ここで、図9に示すように、試料Sの表面に対して対物レンズ15の焦点位置が合っている場合、第1の撮像領域22Aで取得した前ピンの画像コントラスト値と第2の撮像領域22Bで取得した後ピンの画像コントラスト値とが略一致し、これらの差分値はほぼゼロとなる。
 一方、図10に示すように、試料Sの表面までの距離が対物レンズ15の焦点距離よりも長い場合、第1の撮像領域22Aで取得した前ピンの画像コントラスト値よりも第2の撮像領域22Bで取得した後ピンの画像コントラスト値の方が大きくなり、これらの差分値はプラスとなる。この場合、焦点制御部34は、対物レンズ制御部36に対し、対物レンズ15を試料Sに近づける向きに駆動する旨の指示情報を出力する。
 また、図11に示すように、試料Sの表面までの距離が対物レンズ15の焦点距離よりも短い場合、第1の撮像領域22Aで取得した前ピンの画像コントラスト値よりも第2の撮像領域22Bで取得した後ピンの画像コントラスト値の方が小さくなり、これらの差分値はマイナスとなる。この場合、焦点制御部34は、対物レンズ制御部36に対し、対物レンズ15を試料Sに遠ざける向きに駆動する旨の指示情報を出力する。
 領域制御部35は、第2の撮像装置20の撮像面20aにおける第1の撮像領域22Aの位置及び第2の撮像領域22Bの位置を制御する部分である。領域制御部35は、操作部31からの操作に基づき、予め設定された位置にまず第1の撮像領域22Aを設定し、第1の撮像領域22Aでの撮像が行われた後、第1の撮像領域22Aの設定を解除する。次に、第1の撮像領域22AからZ方向(走査方向)に所定の間隔をもって第2の撮像領域22Bを設定し、第2の撮像領域22Bでの撮像が行われた後、第2の撮像領域22Bの設定を解除する。
 このとき、第1の撮像領域22Aでの撮像から第2の撮像領域22Bでの撮像までの待ち時間Wは、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dと、ステージ1の走査速度vに基づいて設定される。例えば、待ち時間Wを第1の撮像領域22Aでの撮像開始から第2の撮像領域22Bでの撮像開始までの時間W1とすると、第1の撮像領域22Aでの撮像の露光時間el、第1の撮像領域22Aの設定を解除してから第2の撮像領域22Bを設定するまでの時間stを考慮して、W1=d/v-el-stで求めることができる。
 また、待ち時間Wを第1の撮像領域22Aでの撮像開始から第2の撮像領域22Bでの撮像完了までの待ち時間W2とすると、第1の撮像領域22Aの設定を解除してから第2の撮像領域22Bを設定するまでの時間stを考慮して、W2=d/v-stで求めることができる。また、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dは、光路差生成部材21によって生じる光路長差に基づいて設定される。ただし、この間隔dは、実際には試料Sのスライド上の距離に対応しており、最終的には間隔dを第2の撮像領域22Bの画素数に変換する必要がある。第2の撮像装置20の画素サイズをAFpsz、倍率をAFmagとした場合、間隔dに対応する画素数dpixは、dpix=d÷(AFpsz/AFmag)で求められる。
 また、領域制御部35は、操作部31からの操作に基づき、第1の撮像領域22Aの位置と第2の撮像領域22Bの位置の少なくとも一方を撮像面20aの面内の走査方向(ここではZ方向)に沿って変更することができる。この場合、第1の撮像領域22Aの位置及び第2の撮像領域22Bの位置のいずれか一方のみを変更してもよく、第1の撮像領域22Aの位置及び第2の撮像領域22Bの位置の双方を変更してもよい。また、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dを維持したまま、第1の撮像領域22Aの位置及び第2の撮像領域22Bの位置の双方を変更してもよい。
 第1の撮像領域22Aの位置と第2の撮像領域22Bの位置を変更することにより、例えば図4に示したようなプリズム状の光路差生成部材21Aを用いる場合には、第1の撮像領域22Aに入射する第2の光像が通過する光路差生成部材21Aの厚さt1と、第2の撮像領域22Bに入射する第2の光像が通過する光路差生成部材21Aの厚さt2とを変化させることができる。これにより、前ピン及び後ピンの間隔が変わり、コントラスト値の差分を求める際の分解能を調整できる。また、例えば図6に示したような平板状のガラス部材を重ねてなる光路差生成部材21Cを用いる場合にも、第2の撮像領域22Bの位置をガラス厚の異なる位置に切り替えることで、前ピンと後ピンとの間のフォーカス差を段階的に切り替えることができる。
 対物レンズ制御部36は、対物レンズ15の駆動を制御する部分である。対物レンズ制御部36は、焦点制御部34から出力される指示情報を受け取ると、指示情報の内容に従って、対物レンズ15をZ方向に駆動させる。これにより、試料Sに対する対物レンズ15の焦点位置が調整される。
 なお、対物レンズ制御部36は、焦点制御部34による焦点位置の解析中は対物レンズ15の駆動は行わず、また、次の焦点位置の解析が開始されるまで、対物レンズ15をZ方向に沿って一方向にのみ駆動させる。図12は、ステージの走査時間に対する対物レンズと試料の表面との距離の関係を示す図である。同図に示すように、試料Sの走査中は、焦点位置の解析期間Aと、解析結果に基づく対物レンズ駆動期間Bとが交互に生じることとなる。このように、焦点位置の解析中に対物レンズ15と試料Sとの位置関係を変化させないことで、焦点位置の解析精度を担保できる。
 ステージ制御部37は、ステージ1の駆動を制御する部分である。より具体的には、ステージ制御部37は、操作部31からの操作に基づき、試料Sが載置されたステージ1を所定の速度で走査させる。このステージ1の走査により、第1の撮像装置18及び第2の撮像装置20での試料Sの撮像視野が相対的に順次移動する。ステージ1の走査方向は、図13(a)に示すように、一つの分割領域40の走査が終了する度にステージ1の位置を走査開始位置まで戻してから次の分割領域40を同一方向に走査する一方向走査であってもよく、図13(b)に示すように、一つの分割領域40の走査が終了した後、ステージ1を走査方向と直交する方向に移動させて次の分割領域40を反対方向に走査する双方向走査であってもよい。
 また、画像取得の間のステージ1の走査速度は一定であるが、実際には走査の開始直後にステージ1の振動等の影響によって走査速度が不安定な期間が存在する。このため、図14に示すように、分割領域40よりも長い走査幅を設定し、ステージ1が加速する加速期間C、ステージ1の走査速度が安定化するまでの安定化期間D、及びステージ1が減速する減速期間Fのそれぞれが、分割領域40よりも外側を走査しているときに生じるようにすることが好ましい。これにより、ステージ1の走査速度が一定となる一定速度期間Eに合わせて画像取得を行うことが可能となる。なお、安定化期間D中に撮像を開始し、画像取得後に安定化期間D中に取得したデータ部分を削除するようにしてもよい。このような手法は、データの空読みが必要な撮像装置を用いる場合に好適である。
 画像生成部38は、取得した画像を合成してバーチャルマイクロ画像を生成する部分である。画像生成部38は、第1の撮像装置18から出力される第1の画像、すなわち、各分割領域40の画像を順次受け取り、これらを合成して試料Sの全体の画像を合成する。そして、この合成画像に基づいてこれよりも低い解像度の画像を作成し、高解像度の画像と低解像度の画像とを関連付けてバーチャルマイクロ画像格納部39に格納する。バーチャルマイクロ画像格納部39では、マクロ画像取得装置M1で取得した画像も更に関連付けてもよい。バーチャルマイクロ画像は、1枚の画像として格納してもよく、複数に分割された画像として格納してもよい。
 続いて、上述した画像取得装置Mの動作について説明する。
 図15は、画像取得装置Mの動作を示すフローチャートである。同図に示すように、画像取得装置Mでは、まず、マクロ画像取得装置M1による試料Sのマクロ画像の取得がなされる(ステップS01)。取得したマクロ画像は、例えば所定の閾値を用いて二値化された後、モニタ32に表示され、所定のプログラムを用いた自動設定又は操作者による手動設定により、マクロ画像の中からミクロ画像を取得する範囲が設定される(ステップS02)。
 次に、試料Sがミクロ画像取得装置M2側に移送され、焦点取得条件の設定がなされる(ステップS03)。ここでは、上述したように、ステージ1の走査速度vと、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dとに基づいて、第2の撮像領域22Bでの撮像が開始されるまでの待ち時間Wを設定する。より好ましくは、第1の撮像領域22Aでの撮像の露光時間el、及び第1の撮像領域22Aの設定を解除してから第2の撮像領域22Bを設定するまでの時間st等を考慮する。
 焦点取得条件を設定した後、ステージ1の走査を開始し、ミクロ画像取得装置M2による試料Sの各分割領域40ごとのミクロ画像の取得がなされる(ステップS04)。第1の撮像装置18でのミクロ画像の取得の際、第2の撮像装置20では第1の撮像領域22A及び第2の撮像領域22Bによって前ピンのコントラスト値と後ピンのコントラスト値の差分に基づいて試料Sに対する対物レンズ15のずれ方向が解析され、対物レンズ15の位置の調整がリアルタイムで実行される。全ての分割領域40についてミクロ画像の取得が完了した後、取得したミクロ画像が合成され、バーチャルマイクロ画像が生成される(ステップS05)。
 以上説明したように、画像取得装置Mでは、第2の光路L2に光路差生成部材21(21A~21E)が配置されていることにより、第2の撮像装置20の第1の撮像領域22A及び第2の撮像領域22Bにおいて、第1の撮像装置18に入射する光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)とをそれぞれ撮像することができる。この画像取得装置Mでは、焦点制御用の第2の光路L2での光の分岐を行わずに、光路長差を形成できるため、焦点位置の情報を得るために必要な第2の光路への光量が抑えられ、第1の撮像装置18で撮像を行う際の光量を十分に確保できる。また、この画像取得装置Mでは、ステージの走査速度vと、第1の撮像領域22Aと第2の撮像領域22Bとの間の間隔dとに基づいて、第1の撮像領域22Aでの撮像から第2の撮像領域22Bでの撮像までの待ち時間Wが設定される。したがって、試料Sの同じ位置からの光が第1の撮像領域22Aと第2の撮像領域22Bとに入射するため、対物レンズ15の焦点位置の制御を精度良く実施できる。
 本実施形態の光路差生成部材として、第2の撮像装置20における撮像面20aの面内方向に沿って厚みが変化する部分を有するガラス部材からなる光路差生成部材21(21A,21D)を用いる場合、領域制御部35によって第1の撮像領域22Aの位置と第2の撮像領域22Bの位置とを調整することで、前ピンと後ピンとの間隔を自在に調整できる。これにより、例えば第2の撮像装置20で撮像した画像のコントラストのピークが複数存在する場合やピーク形状が平らである場合などに、前ピンと後ピンとのフォーカス差を調整することによって試料Sの焦点位置を精度良く検出することが可能となる。
 また、本実施形態の光路差生成部材として、平板形状のガラス部材からなる光路差生成部材21(21B,21C,21E)を用いる場合には、光路差生成部材21の構成を簡単化できる。この場合、平板部材のエッジ部分Eは、第2の撮像装置20の撮像面20aにおける第2の光像の影23を形成するので、影23を避けて第1の撮像領域22Aと第2の撮像領域22Bを設定することで、対物レンズ15の焦点位置の制御の精度を担保できる。
 上述した実施形態では、バーチャルマイクロ画像を生成する装置を例示したが、本発明に係る画像取得装置は、ステージ等によって試料を所定の速度で走査しながら画像を取得する装置であれば、種々の装置に適用することができる。
 1…ステージ、12…光源、14…導光光学系、15…対物レンズ、16…ビームスプリッタ(光分岐手段)、18…第1の撮像装置(第1の撮像手段)、20…第2の撮像装置(第2の撮像手段)、20a…撮像面、21(21A~21E)…光路差生成部材、22A…第1の撮像領域、22B…第2の撮像領域、34…焦点制御部(焦点制御手段)、35…領域制御部(領域制御手段)、36…対物レンズ制御部(対物レンズ制御手段)、E…エッジ部分、L1…第1の光路、L2…第2の光路、M…画像取得装置、M1…マクロ画像取得装置、M2…ミクロ画像取得装置、S…試料。

Claims (12)

  1.  試料が載置されるステージと、
     前記ステージを所定の速度で走査するステージ制御手段と、
     前記試料に向けて光を照射する光源と、
     前記試料の光像を画像取得用の第1の光路及び焦点制御用の第2の光路に分岐する光分岐手段を含む導光光学系と、
     前記第1の光路に分岐された第1の光像による第1の画像を取得する第1の撮像手段と、
     前記第2の光路に分岐された第2の光像による第2の画像を取得する第2の撮像手段と、
     前記第2の画像を解析し、その解析結果に基づいて前記第1の撮像手段による撮像の焦点位置を制御する焦点制御手段と、
     前記第2の撮像手段の撮像面に、前記第2の光像の一部画像を取得する第1の撮像領域及び第2の撮像領域を設定する領域制御手段と、
     前記第2の光路に配置され、前記撮像面の面内方向に沿って前記第2の光像に光路差を生じさせる光路差生成部材と、を備え、
     前記領域制御手段は、前記ステージの走査速度と、前記第1の撮像領域と前記第2の撮像領域との間の間隔とに基づいて、前記第1の撮像領域での撮像から前記第2の撮像領域での撮像までの待ち時間を設定することを特徴とする画像取得装置。
  2.  前記第2の撮像手段は、エリアセンサであることを特徴とする請求項1記載の画像取得装置。
  3.  前記光路差生成部材は、前記撮像面の少なくとも一部に重なるように配置された平板部材であり、
     前記領域制御手段は、前記平板部材のエッジ部分による前記第2の光像の影を避けるように、前記平板部材に重なる領域と前記平板部材に重ならない領域とに前記第1の撮像領域と前記第2の撮像領域とをそれぞれ設定することを特徴とする請求項2記載の画像取得装置。
  4.  前記光路差生成部材は、前記撮像面の面内方向に沿って連続的に厚さが変化する部分を有する部材であり、
     前記領域制御手段は、前記光路差生成部材の厚みの異なる部分に重なるように前記第1の撮像領域と前記第2の撮像領域とを設定することを特徴とする請求項2記載の画像取得装置。
  5.  前記第1の撮像領域と前記第2の撮像領域とは、別々のラインセンサによって構成されていることを特徴とする請求項1記載の画像取得装置。
  6.  前記試料に対峙する対物レンズと、
     前記焦点制御手段による制御に基づいて、前記試料に対する前記対物レンズの位置を相対的に制御する対物レンズ制御手段とを備え、
     前記対物レンズ制御手段は、前記焦点制御手段による焦点位置の解析実行中は前記対物レンズの駆動を行わず、前記焦点制御手段による焦点位置の解析非実行中に前記対物レンズを前記試料に対して一方向に移動させることを特徴とする請求項1~5のいずれか一項記載の画像取得装置。
  7.  試料が載置されるステージと、
     前記ステージを所定の速度で走査するステージ制御手段と、
     前記試料に向けて光を照射する光源と、
     前記試料の光像を画像取得用の第1の光路及び焦点制御用の第2の光路に分岐する光分岐手段を含む導光光学系と、
     前記第1の光路に分岐された第1の光像による第1の画像を取得する第1の撮像手段と、
     前記第2の光路に分岐された第2の光像による第2の画像を取得する第2の撮像手段と、
     前記第2の画像を解析し、その解析結果に基づいて前記第1の撮像手段による撮像の焦点位置を制御する焦点制御手段と、を備えた画像取得装置のフォーカス方法であって、
     前記第2の撮像手段の撮像面に、前記第2の光像の一部画像を取得する第1の撮像領域及び第2の撮像領域を設定し、
     前記撮像面の面内方向に沿って前記第2の光像に光路差を生じさせる光路差生成部材を前記第2の光路に配置し、
     領域制御手段によって、前記ステージの走査速度と、前記第1の撮像領域と前記第2の撮像領域との間の間隔とに基づいて、前記第1の撮像領域での撮像から前記第2の撮像領域での撮像までの待ち時間を設定することを特徴とする画像取得装置のフォーカス方法。
  8.  前記第2の撮像手段として、エリアセンサを用いることを特徴とする請求項7記載の画像取得装置のフォーカス方法。
  9.  前記光路差生成部材として、前記撮像面の少なくとも一部に重なるように配置された平板部材を用い、
     前記領域制御手段によって、前記平板部材のエッジ部分による前記第2の光像の影を避けるように、前記平板部材に重なる領域と前記平板部材に重ならない領域とに前記第1の撮像領域と前記第2の撮像領域とをそれぞれ設定することを特徴とする請求項8記載の画像取得装置のフォーカス方法。
  10.  前記光路差生成部材として、前記撮像面の面内方向に沿って連続的に厚さが変化する部分を有する部材を用い、
     前記領域制御手段によって、前記光路差生成部材の厚みの異なる部分に重なるように前記第1の撮像領域と前記第2の撮像領域とを設定することを特徴とする請求項8記載の画像取得装置のフォーカス方法。
  11.  前記第1の撮像領域と前記第2の撮像領域とを別々のラインセンサによって構成することを特徴とする請求項7記載の画像取得装置のフォーカス方法。
  12.  前記画像取得装置は、
     前記試料に対峙する対物レンズと、
     前記焦点制御手段による制御に基づいて、前記試料に対する前記対物レンズの位置を相対的に制御する対物レンズ制御手段とを備え、
     前記対物レンズ制御手段によって、前記焦点制御手段による焦点位置の解析実行中は前記対物レンズの駆動を行わず、前記焦点制御手段による焦点位置の解析非実行中に前記対物レンズを前記試料に対して一方向に移動させることを特徴とする請求項7~11のいずれか一項記載の画像取得装置のフォーカス方法。
PCT/JP2013/050852 2011-12-19 2013-01-17 画像取得装置及び画像取得装置のフォーカス方法 WO2014112083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13871362.3A EP2947487A4 (en) 2013-01-17 2013-01-17 IMAGE-DEFINITION APPARATUS AND METHOD FOR FOCUSING AN IMAGE-DEFINITION DEVICE
US14/398,029 US9971140B2 (en) 2011-12-19 2013-01-17 Image capturing apparatus and focusing method thereof
PCT/JP2013/050852 WO2014112083A1 (ja) 2013-01-17 2013-01-17 画像取得装置及び画像取得装置のフォーカス方法
CN201380070777.9A CN104919351B (zh) 2013-01-17 2013-01-17 图像取得装置以及图像取得装置的聚焦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050852 WO2014112083A1 (ja) 2013-01-17 2013-01-17 画像取得装置及び画像取得装置のフォーカス方法

Publications (1)

Publication Number Publication Date
WO2014112083A1 true WO2014112083A1 (ja) 2014-07-24

Family

ID=51209204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050852 WO2014112083A1 (ja) 2011-12-19 2013-01-17 画像取得装置及び画像取得装置のフォーカス方法

Country Status (4)

Country Link
US (1) US9971140B2 (ja)
EP (1) EP2947487A4 (ja)
CN (1) CN104919351B (ja)
WO (1) WO2014112083A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845045B1 (en) 2012-05-02 2023-07-12 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
JP6865740B2 (ja) 2015-09-24 2021-04-28 ライカ バイオシステムズ イメージング インコーポレイテッドLeica Biosystems Imaging, Inc. ライン走査イメージングにおけるリアルタイム合焦

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320430A (ja) * 1995-05-23 1996-12-03 Nikon Corp 自動焦点検出装置
WO2005114293A1 (ja) 2004-05-24 2005-12-01 Hamamatsu Photonics K.K. 顕微鏡装置
WO2005114287A1 (ja) 2004-05-24 2005-12-01 Hamamatsu Photonics K.K. 顕微鏡装置
JP2011081211A (ja) 2009-10-07 2011-04-21 Olympus Corp 顕微鏡システム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668887A (en) * 1992-05-29 1997-09-16 Eastman Kodak Company Coating density analyzer and method using non-synchronous TDI camera
DE19714221A1 (de) 1997-04-07 1998-10-08 Zeiss Carl Fa Konfokales Mikroskop mit einem motorischen Scanningtisch
US6181474B1 (en) * 1999-03-22 2001-01-30 Kovex Corporation Scanning confocal microscope with objective lens position tracking
JP3726699B2 (ja) * 2001-04-20 2005-12-14 日本ビクター株式会社 光学撮像装置、光学測距装置
JP4334784B2 (ja) 2001-06-11 2009-09-30 日本放送協会 オートフォーカス装置及びそれを用いた撮像装置
JP2003185914A (ja) 2001-12-21 2003-07-03 Nikon Corp 焦点検出装置およびこれを備えた光学装置および焦点検出方法
JP2005202092A (ja) 2004-01-15 2005-07-28 Hitachi Kokusai Electric Inc 合焦点検出方法及びそれを用いた光学顕微鏡
JP4917331B2 (ja) * 2006-03-01 2012-04-18 浜松ホトニクス株式会社 画像取得装置、画像取得方法、及び画像取得プログラム
JP4664871B2 (ja) 2006-07-10 2011-04-06 オリンパス株式会社 自動焦点検出装置
JP5290557B2 (ja) 2007-10-01 2013-09-18 三星電子株式会社 撮像装置及び撮像方法
TWI425203B (zh) * 2008-09-03 2014-02-01 Univ Nat Central 高頻譜掃描裝置及其方法
US8120781B2 (en) 2008-11-26 2012-02-21 Zygo Corporation Interferometric systems and methods featuring spectral analysis of unevenly sampled data
JP5504881B2 (ja) 2009-12-25 2014-05-28 ソニー株式会社 演算装置、演算方法、演算プログラム及び顕微鏡
CN101799611A (zh) 2010-01-12 2010-08-11 珠海保税区光联通讯技术有限公司 无热差分相移键控解调器
EP2565702B1 (en) 2010-04-30 2018-09-05 Hamamatsu Photonics K.K. Observation device
US9041930B1 (en) 2010-05-20 2015-05-26 Kla-Tencor Corporation Digital pathology system
JP5577885B2 (ja) 2010-06-28 2014-08-27 ソニー株式会社 顕微鏡及び合焦点方法
JP5589619B2 (ja) 2010-07-01 2014-09-17 ソニー株式会社 情報処理装置、ステージうねり補正方法、プログラム
WO2012017684A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 レンズユニット
CN101963582B (zh) 2010-09-13 2012-03-14 深圳大学 一种三维荧光纳米显微成像方法、系统及成像设备
JP2012073285A (ja) 2010-09-27 2012-04-12 Olympus Corp 撮像方法および顕微鏡装置
US8896918B2 (en) 2010-12-24 2014-11-25 Huron Technologies International Inc. Pathology slide scanner
JP2012194487A (ja) 2011-03-17 2012-10-11 Casio Comput Co Ltd 撮像装置、撮像方法及びプログラム
JP2013120239A (ja) * 2011-12-06 2013-06-17 Sony Corp 撮影画像のリニアリティ評価方法、画像取得方法及び画像取得装置
JP5307221B2 (ja) 2011-12-19 2013-10-02 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
JP5296861B2 (ja) 2011-12-19 2013-09-25 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
JP5848596B2 (ja) 2011-12-19 2016-01-27 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
JP5301642B2 (ja) 2011-12-19 2013-09-25 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
CN102628799A (zh) 2012-04-25 2012-08-08 中国科学院上海光学精密机械研究所 无需深度扫描的时域光学相干层析成像方法与系统
EP2845045B1 (en) 2012-05-02 2023-07-12 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
CN102882107B (zh) 2012-10-22 2014-06-18 上海理工大学 一种可快速连续调节太赫兹波偏振和强度的方法
JP5923026B2 (ja) 2012-10-31 2016-05-24 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
JP5941395B2 (ja) 2012-10-31 2016-06-29 浜松ホトニクス株式会社 画像取得装置及び画像取得装置のフォーカス方法
US8780418B1 (en) 2013-03-15 2014-07-15 Northrop Grumman Systems Corporation Scanning focal plane sensor systems and methods for imaging large dynamic range scenes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320430A (ja) * 1995-05-23 1996-12-03 Nikon Corp 自動焦点検出装置
WO2005114293A1 (ja) 2004-05-24 2005-12-01 Hamamatsu Photonics K.K. 顕微鏡装置
WO2005114287A1 (ja) 2004-05-24 2005-12-01 Hamamatsu Photonics K.K. 顕微鏡装置
JP2011081211A (ja) 2009-10-07 2011-04-21 Olympus Corp 顕微鏡システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947487A4

Also Published As

Publication number Publication date
CN104919351A (zh) 2015-09-16
CN104919351B (zh) 2017-05-24
EP2947487A4 (en) 2016-08-24
EP2947487A1 (en) 2015-11-25
US20150116475A1 (en) 2015-04-30
US9971140B2 (en) 2018-05-15
US20180074307A9 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5307221B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP5941395B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP5923026B2 (ja) 画像取得装置及び画像取得方法
JP6010505B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP5301642B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
US20200033564A1 (en) Image capturing apparatus and focusing method thereof
JP5848596B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP5296861B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
WO2014112085A1 (ja) 画像取得装置及び画像取得装置のフォーカス方法
WO2014112086A1 (ja) 画像取得装置及び画像取得装置のフォーカス方法
WO2014112083A1 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP5986041B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP6023012B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP2013088570A (ja) 顕微鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398029

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013871362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013871362

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP