WO2005103154A1 - 難燃性樹脂組成物 - Google Patents

難燃性樹脂組成物 Download PDF

Info

Publication number
WO2005103154A1
WO2005103154A1 PCT/JP2005/006626 JP2005006626W WO2005103154A1 WO 2005103154 A1 WO2005103154 A1 WO 2005103154A1 JP 2005006626 W JP2005006626 W JP 2005006626W WO 2005103154 A1 WO2005103154 A1 WO 2005103154A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
group
resin
flame
parts
Prior art date
Application number
PCT/JP2005/006626
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tsuneishi
Takao Michinobu
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US11/547,837 priority Critical patent/US20080125527A1/en
Priority to JP2006512496A priority patent/JPWO2005103154A1/ja
Priority to EP05728874A priority patent/EP1739130A1/en
Publication of WO2005103154A1 publication Critical patent/WO2005103154A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a highly flame-retardant resin composition that does not contain atoms such as halogen, phosphorus, and nitrogen.
  • a blend of a polycarbonate resin and a styrene resin / polyester resin typified by ABS resin has improved heat resistance and impact resistance, and has improved the chemical resistance and molding fluidity of polycarbonate.
  • a so-called polymer alloy it is widely used for various molded articles, for example, automobile, electric and electronic parts.
  • polyphenylene ether resins are used in similar fields because of their characteristics such as excellent dimensional stability, electrical properties, and light weight in addition to heat resistance. When these resins are used for electrical and electronic components, office equipment, housings, enclosures, chassis, etc., high flame retardancy is required.
  • a polycarbonate-based resin / polyphenylene ether-based resin is usually added with a halogen compound or a phosphorus compound.
  • halogen compounds have the disadvantage that corrosive or toxic gases are generated during processing or combustion.
  • phosphorus compounds have the disadvantages of inferior heat resistance and high volatility, and have problems such as the generation of odor during extrusion molding and the influence on mechanical and thermal properties.
  • a silicone conjugate as a method of flame retarding a polyphenylene ether resin.
  • a thermoplastic resin composition of polyorganosiloxane and polyphenylene ether is disclosed (Patent Document 4), and a method of blending a specific phenol siloxane fluid or silicone resin is disclosed.
  • Patent Documents 5 and 6 a thermoplastic resin composition of polyorganosiloxane and polyphenylene ether
  • these silicone conjugates impart some flame retardancy to the polyphenylene ether resin alone, when the other resin is compounded, it is sufficient. High flame retardancy cannot be exhibited.
  • a polyphenylene ether resin is often alloyed with an aromatic vinyl resin for the purpose of improving fluidity.
  • Patent Literatures 7 and 8 Although the technology for addition is disclosed (Patent Literatures 7 and 8), a test piece with a thickness of 1.6 mm or less is difficult to meet UL-94 V-0 (US Underwriters Laboratory Standard). Flammability has been obtained!
  • silicone resins and silicone resins having specific melting property conditions have been disclosed (see, for example, Patent Documents 9, 10, 11, and 12), silicone resins that are used as flame retardants also have economical advantages. Reduction is desired.
  • a flame-retardant resin composition comprising a phosphate ester having a specific cyclic structure, a fluororesin, and a small amount of talc, wherein the amount of phosphorus atoms in the phosphate ester and the talc are in a specific weight ratio. It is disclosed (for example, refer to Patent Document 13), and a flame retardant effect by adding a specific amount of a metal silicate to a polycarbonate resin / polyethylene ether resin and additionally to the composition
  • a technique for adding an organosiloxane conjugate is disclosed (see, for example, Patent Document 14), alloys of polycarbonate resin and styrene resin or polyester resin or polyphenylene ether resin are disclosed.
  • the metal silicate alone does not show effective flame retardancy for alloys with aromatic butyl resins, and furthermore, the synergistic effect of the silicone conjugate and metal silicate on the flame retardancy In the meantime, nothing is disclosed. Furthermore, an alloy composition of a polyphenylene ether resin and an aromatic butyl resin containing a silicone conjugate having a main unit of RSi03Z2 unit and an inorganic filler containing a silicon element is disclosed. However, flame retardancy is insufficient, and further improvement is required.
  • Patent Document 1 JP-A-10-139964
  • Patent Document 2 JP-A-11 140294
  • Patent Document 3 JP-A-11-222559
  • Patent Document 4 US Patent No. 3737479
  • Patent Document 5 Japanese Patent Publication No. 6-62843
  • Patent Document 6 JP 2001-294743
  • Patent Document 7 JP-A-2000-178436
  • Patent Document 8 JP-A-2000-297209
  • Patent Document 9 JP-A-2001-139790
  • Patent Document 10 JP-A-2001-311081
  • Patent Document 11 JP-A-2001-316671
  • Patent Document 12 JP-A-2001-323269
  • Patent Document 13 JP-A-11-256022
  • Patent Document 14 JP-A-2003-82218
  • Patent Document 15 JP-A-2002-97374
  • the present invention provides polycarbonate-based and Z- or polyphenylene ether-based flame retardants that have high heat resistance and impact resistance without containing halogen or phosphorus atoms and have excellent flame retardancy.
  • An object of the present invention is to provide a sex resin composition. Means for solving the problem
  • the present inventors have found that some alloys of polycarbonate resin, styrene-based resin, polyester-based resin, polyphenylene ether-based resin and aromatic butyl-based resin have a certain flame retardant effect.
  • silicone compounds showing the above, and studying the improvement of their flame retardant performance, they discovered that in combination with a specific inorganic compound, they had excellent flame retardancy even with a small amount of silicone compound added.
  • the present invention has been completed.
  • the present invention relates to an aromatic polycarbonate or a polyphenylene ether-based resin (A) 30 to: LOO parts by weight and an aromatic vinyl-based resin or a thermoplastic polyester-based resin (B) 0 to 70 parts by weight.
  • R 1 represents a monovalent aliphatic hydrocarbon group having 1 to 4 carbon atoms
  • R 2 represents a monovalent aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • R 2 may have two or more types each! m and ⁇ represent numbers that satisfy 1. l ⁇ m + n ⁇ l.7 and 0.4 ⁇ n / m ⁇ 2.5.
  • Silicone compound (C) 0.1 to 20 parts by weight, pH is 8.0 or more, SiO 2 unit occupies 30% by weight or more, average particle diameter is in the range of lnm to 100 m
  • the present invention relates to a flame-retardant resin composition containing 0.1 to 20 parts by weight of a silicate compound (D).
  • the flame-retardant resin composition of the present invention exhibits extremely excellent flame retardancy without using a commonly used flame retardant such as chlorine, bromine, phosphorus, nitrogen, etc., and the resin inherently has There is little loss of characteristics. In addition, it can be relatively easily synthesized using inexpensive raw materials. Such a flame-retardant resin composition is industrially very useful.
  • the polycarbonate resin (A-1) used in the present invention is obtained by reacting a di- or more-valent phenolic conjugate with phosgene or a carbonic acid diester such as diphenyl carbonate.
  • the divalent or higher phenol compound is a divalent phenol, for example, 2,2-bis (4-hydroxyphenol) propane [commonly known as bisphenol A], bis (4-hydroxyphenol) Methane; bis (4-hydroxyphenyl) phenylmethane; bis (4-hydroxyphenyl) naphthylmethane; bis (4-hydroxyphenyl) -1- (4-isopropylphenyl) methane; bis (3,5 1,1-bis (4-hydroxyphenyl) ethane; 1-naphthyl 1,1bis (4-hydroxyphenyl) ethane; 1 phenyl-1,1-bis (4hydroxy) 1,2-bis (4-hydroxyphenyl) ethane; 2-methyl-1,1-bis (4-hydroxyphenyl) propane; 2,2 bis (3,5-dimethyl-4-hydroxyphenyl) -Le) Propane; 1 ethyl 1, 1 2,4-bis (3-methyl-4-hydroxyphenyl) propane; 2,2-bis (3-hydroxyphenyl 4-prop
  • dihydroxybenzenes such as hydroquinone, resorcinol, and methylhydroquinone
  • dihydroxynaphthalenes such as 1,5 dihydroxynaphthalene
  • 2,6 dihydroxynaphthalene are also included.
  • Examples of the carbonic acid diester compound include diaryl carbonate such as diphenyl carbonate and dialkyl carbonate such as dimethyl carbonate and getyl carbonate.
  • a branching agent may be used for the purpose of generating branching properties.
  • the branching agent include fluorodalsin, melitic acid, trimellitic acid, trimellitic acid chloride, trimellitic anhydride, gallic acid, n-propyl gallate, protocatechuic acid, pyromellitic acid, pyromellitic dianhydride, ⁇ -resorcinic acid, ⁇ —Resorcinic acid, resorcinaldehyde, trimethyl chloride, isatin bis (o-cresol), trimethyl trichloride, 4-methylformylphthalic anhydride, benzophenonetetracarboxylic acid; 2,4,4'-trihydroxybenzophenone 2,2 ', 4,4'-tetrahydroxybenzophenone;2,4,4'-trihydroxyphenylether;2,2', 4,4,1-tetrahydroxyphenyl ether; 2,4,4 '
  • the polycarbonate resin ( ⁇ ⁇ -1) may be a polycarbonate / polyorganosiloxane copolymer which is strong with the polycarbonate part and the polyorganosiloxane part.
  • the degree of polymerization of the polyorganosiloxane part is preferably 5 or more.
  • the terminal terminator at the time of polymerization of the polycarbonate resin (A-1) various known terminators can be used.
  • examples of the monovalent phenol include phenol, ⁇ -cresol, p-t-butylphenol, p-t-octylphenol, p-cuminolephenol, bromophenol, tribromophenol, and norphenol. No.
  • a copolymer with a phosphorus-containing compound or a phosphorus-containing compound Polycarbonate resin end-capped with a compound can also be used.
  • a copolymer with a divalent phenol having a benzotriazole group, or a polycarbonate resin end-capped with a monovalent phenol having a benzotriazole group can be used. .
  • the polycarbonate resin (A-1) is preferably 2,2 bis (4-hydroxydiphenyl) pronone, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) phenylmethane. , Bis (3,5 dimethyl-4-hydroxyphenyl) methane, 1-phenyl-1,1-bis (4 hydroxyphenyl) ethane, 2,2 bis (3,5 dimethyl-4-hydroxyphenyl) methane G) propane, 1,1-bis (4-hydroxyphenyl) -1,3,3,5 trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone, 4,4'-dihydroxybenzophenone
  • One or more phenolic compounds, more preferably 2,2-bis (4-hydroxydiphenyl) propane, 1,1-bis (4-hydroxyphenyl) -1,3,3,5-trimethylcyclohexane are also selected.
  • One or more phenolic dani Of the flame-retardant thermoplastic resin composition of the present invention and the mechanical properties of the resulting molded article can be obtained by reacting a polycarbonate resin or a polycarbonate polyorganosiloxane copolymer obtained by reacting phenol with phosgene or a diethyl carbonate. Strong point force It is preferably used.
  • the viscosity average molecular weight of the polycarbonate resin (A-1) is preferably 10,000 to 60,000, more preferably 15,000 to 45,000, and most preferably 18,000 to 35,000. If the viscosity average molecular weight is less than 10,000, the resulting resin composition will have insufficient flame retardancy and strength, and if the viscosity average molecular weight exceeds 60,000, there will be a problem in molding fluidity.
  • the polycarbonate resin (A) is used alone or in combination of two or more.
  • the combination is not limited.
  • those having different monomer units, different copolymerization molar ratios, different molecular weights, and the like can be arbitrarily combined.
  • polyphenylene ether resin (A-2) used in the present invention includes the following general formulas [a] and [b]: [0023] [Formula 1]
  • R, R, R, R, R, and R are an alkyl group having 1 to 4 carbon atoms, an aryl group, halogen, water
  • R and R are not hydrogen at the same time
  • a homopolymer or a copolymer whose unit is composed of the above [a] and [b] can be used.
  • Representative examples of homopolymers of polyphenylene ether resin (A) include poly (2,6 dimethyl 1,4 phenyl ether, poly (2-methyl 6-ethyl 1,4 phenylene) Ether, poly (2,6 acetyl-1,4-phenylene) ether, poly (2ethyl-6-n-propynolee 1,4 phenylene) ethereal, poly (2,6 di-n-propynolee 1,4 phenyl) -Ren) ether, poly (2-methyl 6-n-butyl 1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-chloroethyl) Homopolymers such as 1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl 1,4-
  • the polyphenylene ether copolymer is a copolymer of 2,6 dimethylphenol and 2,3,6 trimethylphenol, a copolymer of o-talesol or 2,3,6
  • polyphenylene ether copolymers having a polyphenylene ether structure as a main component such as copolymers with trimethylphenol and o-tarezol.
  • the polyphenylene ether-based resin (A-2) of the present invention may contain a conventional polyphenylene ether-based resin unless it is contrary to the gist of the present invention. It is suggested that V, include various other phenyl ether units as substructures! /, Or! / ⁇ . Examples of those proposed to coexist in a small amount include 2- (dialkylaminomethyl) 6-methylphenylene ether units described in Japanese Patent Application No. 63-12698 and Japanese Patent Application Laid-Open No. 63-301222. And 2- (N-alkyl-N-phenylaminomethyl) 6-methylphenylene ether unit.
  • the polyphenylene ether resin also includes those in which diphenoquinone or the like is bonded in a small amount in the main chain.
  • the molecular weight of the polyphenylene ether-based resin (A-2) used in the present invention [the number average molecular weight is from 1,000 to 100,000, and further from 6,000 to 60,000 force ⁇ preferred! .
  • the number average molecular weight in the present invention is a number average molecular weight in terms of polystyrene obtained by gel permeation chromatography using a calibration curve of standard polystyrene.
  • the aromatic vinyl resin ( ⁇ -1) of the present invention refers to a homopolymer or copolymer of at least one kind of aromatic vinyl ridge, or at least one kind of aromatic vinyl ridge.
  • the aromatic vinyl compound is at least one selected from styrene, methyl styrene, ethyl styrene, dimethyl styrene, chloro styrene, permethyl styrene, and toluene
  • the olefin compound is acrylonitrile, methyl methacrylate, ethylene
  • monoolefins such as propylene, 1-butene and isobutylene, or conjugated diolefins such as butadiene, isoprene and 1,3-pentadiene, and non-conjugated diolefins such as 1,4-hexadiene, norbornene and norbornene derivatives. This is the above-mentioned olefini dani.
  • (A-1) Z (B-1) 40 to 95 ( Parts by weight) preferably about 50 to 95,50 to 5 (parts by weight), more preferably about 55 to 85,45 to 15 (parts by weight).
  • the melt fluidity is high, but the heat resistance and impact resistance of the molded product are reduced, and immediately if it exceeds 95 parts by weight, the melt fluidity during the molding process is reduced. It's easy to do.
  • the aromatic vinyl resin (B-1) which is preferable for alloying with the polyphenylene ether resin (A-2) includes an aromatic vinyl compound homopolymer and an aromatic vinyl compound polymer block. And a polymer block mainly composed of a conjugated genie conjugate and a polymer block mainly composed of a conjugated genie conjugate.
  • the aromatic vinyl conjugate include styrene, a-methylstyrene, vinyltoluene and the like. One or two or more are selected, and styrene is particularly preferred.
  • conjugated diene compound one or more selected from among butadiene, isoprene, 1,3-pentadiene and the like, butadiene and Z or isoprene are particularly preferred.
  • the weight ratio of the content of the aromatic vinyl conjugate to the content of the conjugated genie conjugate is preferably in the range of 50/50 to 90/10, more preferably in the range of 55/45 to 85/15. ! / ,. If the content of the bullet aromatic compound is less than 50% by weight, when the resin composition is molded, a phase separation phenomenon occurs due to poor compatibility, and the fluidity is also adversely affected.
  • the block copolymer preferably has a number average molecular weight of 2,000 to 500,000, more preferably 20,000 to 300,000.
  • the molecular weight distribution (the ratio between the weight average molecular weight and the number average molecular weight) is preferably in the range of 1.05 to: L0.
  • the molecular structure of the block copolymer may be linear, branched, radial, or a combination thereof. Among them, those having a linear structure are more preferable.
  • Examples of the method for producing the block copolymer include, for example, JP-B-36-19286, JP-B-43-14979, JP-B-49-36957, JP-B-48-2423, and JP-B-48.
  • the method described in No. 4106 is exemplified. All of these use an organic lithium compound or the like as an aeon polymerization initiator in a hydrocarbon solvent, and if necessary, use a vinylating agent, a coupling agent, or the like to obtain a vinyl aromatic compound and a conjugated gen compound. Is a block copolymerization method.
  • the ratio of the polyphenylene ether-based resin (A-2) to the aromatic butyl-based resin (B-1) is from 30 parts by weight of LOO.
  • Aromatic butyl resin (B-1) must be 0 to 70 parts by weight (total of 100 parts by weight). If the amount of the polyphenylene ether-based resin (A-2) is less than 30 parts by weight, the mechanical properties deteriorate, which is not preferable.
  • thermoplastic polyester resin (B-2) used in the present invention is obtained by polycondensation of a divalent or higher carboxylic acid component, a divalent or higher valent alcohol and Z or phenol component by a known method.
  • This is a thermoplastic polyester obtained by the above method.
  • specific examples of the thermoplastic polyester resin include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polycyclohexane dimethylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. And the like.
  • divalent or higher valent aromatic carboxylic acid component divalent or higher valent aromatic carboxylic acids having 8 to 22 carbon atoms and ester-forming derivatives thereof are used. Specific examples of these include phthalic acid such as terephthalic acid and isophthalic acid, naphthalenedicarboxylic acid, bis (p-carbophenyl) methaneanthracenedicarboxylic acid, 4-4′-diphenyldicarboxylic acid, 1,2-bis (Phenoxy) ethane Carboxylic acids such as 1,4'-dicarboxylic acid, diphenylsulfonedicarboxylic acid, trimesic acid, trimellitic acid, and pyromellitic acid, and derivatives thereof having an ester-forming ability.
  • phthalic acid such as terephthalic acid and isophthalic acid
  • naphthalenedicarboxylic acid bis (p-carbophenyl) methaneanthracenedicarboxylic acid, 4
  • terephthalic acid isophthalic acid and naphthalenedicarboxylic acid. This is because they are excellent in ease of handling, ease of reaction, physical properties of the obtained resin, and the like.
  • Examples of the dihydric or higher alcohol and Z or phenol component include an aliphatic compound having 2 to 15 carbon atoms, an alicyclic compound having 6 to 20 carbon atoms, and an aromatic compound having 6 to 40 carbon atoms. Compounds having two or more hydroxyl groups therein, as well as ester-forming derivatives thereof.
  • alcohol and Z or phenol components include ethylene glycol, propylene glycol, butanediol, hexanediol, decanediol, neopentyl glycol, cyclohexanedimethanol, cyclohexanediol, 2,2 , 1-bis (4-hydroxyphenyl) propane, 2,2,1-bis (4 -Hydroxycyclohexyl) propane, hydroquinone, glycerin, pentaerythritol, and the like, and derivatives thereof having an ester-forming ability.
  • Preferred alcohol and Z or phenol components are ethylene glycol, butanediol, cyclohexanedimethanol. The ease of handling, the ease of reaction, and the physical properties of the obtained resin are excellent.
  • the thermoplastic polyester resin (B-2) includes, besides the above-mentioned acid component, alcohol and Z or phenol component, known copolymerizable components as long as desired properties are not impaired. May be copolymerized.
  • a copolymerizable component include carboxylic acids such as divalent or higher valent aliphatic carboxylic acids having 4 to 12 carbon atoms, divalent or higher valent alicyclic carboxylic acids having 8 to 15 carbon atoms, and the like. Ester-forming derivatives.
  • dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, maleic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
  • Derivatives having ester forming ability include dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, maleic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
  • oxyacids such as p-oxybenzoic acid and p-hydroxybenzoic acid and their ester-forming derivatives, cyclic esters such as ⁇ -force prolatatatone, and the like can be used as the copolymerization component. is there.
  • polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) blocks and / or random copolymers, bisphenol ⁇ copolymerized polyethylene oxide addition polymers, propylene oxide-added caropolymers, and tetrahydrofuran addition weights A polymer obtained by partially copolymerizing a polyalkylene glycol unit such as coalesced or polytetramethylene glycol in a polymer chain can also be used.
  • the copolymerization amount of the above components is generally 20% by weight or less, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the thermoplastic polyester resin (B-2) is a polyalkylene terephthalate having an alkylene terephthalate unit of preferably 80% by weight or more, more preferably 85% by weight or more, and most preferably 90% by weight or more. . This is because the resulting composition has an excellent balance of physical properties (eg, moldability, mechanical properties).
  • thermoplastic polyester resin (B-2) may be used alone or in combination of two or more.
  • the combination is not limited. For example, those having different copolymer components and different molar ratios, and those having different Z or molecular weight can be arbitrarily combined.
  • the mixing ratio between the aromatic polycarbonate resin (A-1) and the thermoplastic polyester resin (B-2) is 30Z70 to: L00Z0 by weight ratio. Forces 60 / 40-9 5Z5 are preferred 63Z37-90Z10 are more preferred, particularly preferably in the range of 65 35-85 Z15. Molded product obtained when the mixing ratio of aromatic polycarbonate resin (A-1) and thermoplastic polyester resin ( ⁇ -2) is less than 95 ⁇ 5 in the mixing ratio. If it exceeds 60 ⁇ 40, it tends to be unfavorable in terms of heat resistance and the balance of physical properties between flame retardancy and chemical resistance.
  • the silicone conjugate as the component (C) of the present invention is composed of an aromatic group-containing organosiloxane compound, and includes a Q unit (SiO), a T unit (RSiO), a D unit (R SiO) and M unit (R Si
  • R 1 represents a monovalent aliphatic hydrocarbon group having 1 to 4 carbon atoms
  • R 2 represents a monovalent aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • R 2 may have two or more types each! m and ⁇ represent numbers that satisfy 1. l ⁇ m + n ⁇ l.7 and 0.4 ⁇ n / m ⁇ 2.5. )).
  • the aromatic group-containing organosiloxane conjugate represented by the average composition formula (1) has a monovalent aliphatic hydrocarbon group R1 having 1 to 4 carbon atoms and 6 carbon atoms in the molecule. having both aromatic hydrocarbon group R 2 of 24 monovalent, molar ratio m + n of these total hydrocarbon group and Si atoms are within the range of 1. l ⁇ m + n ⁇ l. 7 That is, the molar ratio nZm of the monovalent aliphatic hydrocarbon group R 1 having 1 to 4 carbon atoms to the monovalent aromatic hydrocarbon group R 2 having 6 to 24 carbon atoms is 0.4 ⁇ n / It satisfies that m is within the range of 2.5.
  • Each element and each hydrocarbon The ratio of groups is calculated using NMR of hydrogen, carbon and silicon.
  • the aliphatic hydrocarbon group R1 having 1 to 4 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n -propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-group. And a butyl group. Among these, a methyl group and an ethyl group are preferred because of their excellent flame retardant effect, and a methyl group is more preferred.
  • a plurality of moieties corresponding to R 1 may all have the same force, or different groups may coexist. When the number of carbon atoms of the aliphatic hydrocarbon group is 5 or more, the flame retardancy of the aromatic group-containing organosiloxane conjugate itself is reduced, and the flame retarding effect is reduced.
  • [0048] is not particularly restricted but includes aromatic hydrocarbon group R 2 of the monovalent carbon atoms 6-24, for example, Hue - group, Mechirufue - group, Jimechirufue - group, Echirufue - group, naphthyl And an anthracenyl group.
  • aromatic hydrocarbon group R 2 of the monovalent carbon atoms 6-24 for example, Hue - group, Mechirufue - group, Jimechirufue - group, Echirufue - group, naphthyl And an anthracenyl group.
  • an aromatic group having no substituent on the aromatic ring is preferable because of its excellent flame retardancy effect, and a phenyl group is more preferable.
  • a plurality of moieties corresponding to R 2 may all be the same, or different groups may be mixed.
  • the molar ratio m + n between the total hydrocarbon groups and the number of Si atoms is in the range of 1.l ⁇ m + n ⁇ l.7.
  • the value of m + n is preferably 1.15 ⁇ m + n ⁇ l.65, more preferably 1.18 ⁇ m + n ⁇ 1.6, even more preferably 1.20 ⁇ m + n ⁇ l.55 Range. It is not preferable that the value of m + n is less than 1.1 or more than 1.7, because the flame retardant effect of the aromatic group-containing organosiloxane compound is reduced.
  • Construction of a structure within the above range can be achieved by introducing a T unit and a Z or Q unit into the skeleton of the organosiloxane conjugate. The range can be easily achieved.
  • the amount of the T unit and the Z or Q unit to be introduced is preferably 20% or more of the total Si atoms, more preferably 25% or more, and most preferably 30% or more.
  • an alloy of a polyphenylene ether-based resin (A-1) and an aromatic butyl-based resin (B-1) at least a certain amount of Q units is contained in the skeleton of the organosiloxane compound.
  • Introducing is preferable for flame retardancy.
  • the amount of Q units introduced is preferably at least 10% of all Si atoms, more preferably at least 15%, most preferably at least 20%.
  • T units and Z or Q units As the introduction amount increases, the compatibility with the inorganic silicate conjugate as the component (D) of the present invention improves, so that the synergistic effect of the flame retardant effect further improves.
  • nZm the aromatic hydrocarbon group R 2 of the monovalent carbon atoms force ⁇ ⁇ aliphatic 4 monovalent hydrocarbon groups R 1 and carbon atoms 6 to 24 are, 0. 4 ⁇ n /m ⁇ 2.5.
  • nZm is less than 0.4, the number of monovalent aliphatic hydrocarbon groups R 1 in the molecule increases, but at this time, the heat resistance of the aromatic group-containing organosiloxane conjugate decreases, and This causes the flame retardant effect of the group-containing organosiloxane compound to decrease.
  • nZm is 2.5 or more, the flame-retardant effect of the aromatic group-containing organosiloxane compound may be reduced.
  • the value of n / m is preferably 0.43 ⁇ n / m ⁇ 2.3, more preferably 0.45 ⁇ n / m ⁇ 2.1, even more preferably 0.47 ⁇ n / m ⁇ 2.0. It is.
  • a preferred example of the structure of the aromatic group-containing organosiloxane conjugate is one in which the main chain skeleton contains 10 mol% or more of Q units and the remainder is composed of T units and D units.
  • Another preferred example is one in which the main chain skeleton has a force of only a Q unit and a T unit, and further has a structure in which only a Q unit and a D unit are formed. The ends of these main chain skeletons are blocked by M units.
  • Such an aromatic group-containing organosiloxane compound can be easily synthesized by a known silicone synthesis method. That is, represented by R SIX
  • R represents an aromatic hydrocarbon group or an aliphatic hydrocarbon group.
  • X represents a group capable of condensing to form a siloxane bond, such as a halogen, a hydroxyl group, or an alkoxy group.
  • the reaction conditions vary depending on the composition and molecular weight of the substrate and target compound used.
  • the reaction can be generally carried out by mixing the silicon compound, if necessary, in the presence of water, an acid and Z or an organic solvent, if necessary, with heating.
  • the usage ratio of each silicon compound is determined so that the obtained aromatic group-containing organosiloxane compound satisfies the above conditions. It may be appropriately set in consideration of the unit content and the ratio of the aromatic hydrocarbon group to the aliphatic hydrocarbon group.
  • the number average molecular weight of the organosiloxane compound is in the range of 1,000 to 200,000. Preferred ⁇ 1500-1500,000 and range 2000-10000.
  • the molecular weight and flame retardancy of the silicone-based compounds mentioned in the prior art are discussed, but in the present invention, the heat resistance of silicone is determined by an arbitrary ratio of siloxane bonds in the molecule regardless of the molecular weight. The molecular weight does not have a fatal effect on the flame retardancy within the above range because the property can be controlled. If the number average molecular weight is less than 1,000, the heat resistance of the organopolysiloxane is low and the flame retardancy is insufficient. On the other hand, when the number average molecular weight is larger than 200,000, there is a problem that the dispersibility in resin and the processability are poor.
  • the addition amount of the silicone compound (C) of the present invention may be an aromatic polycarbonate or a polyphenylene ether-based resin ( ⁇ ) 30-: L00 parts by weight and an aromatic vinyl-based resin or a thermoplastic polyester-based resin.
  • the addition amount of the silicone compound (C) of the present invention is not limited to the thermoplastic resin. It is preferable that 0.1 to 6 parts by weight, and even 0.2 to 4.5 parts by weight, per 100 parts by weight of the mixture can obtain the desired flame retardancy.
  • the amount is less than 0.1 part by weight, the flame retardancy may be insufficient. If the amount is more than 20 parts by weight, there is no particular problem in physical properties, but more economical performance is required.
  • the metal silicate compound (D) of the present invention has ⁇ of 8.0 or more and 30 units of SiO units.
  • This component is used for the purpose of enhancing the flame retardant effect by being added in combination with a specific silicone compound, and the SiO unit is 30% by weight or more, and preferably 35% or more from the viewpoint of flame retardancy.
  • Specific substances include magnesium silicate, aluminum silicate, calcium silicate, talc, myriki, wollastonite, kaolin, diatomaceous earth, smectite and the like. Among them, my strength, talc, kaolin or smectite are preferred because the resulting resin composition has excellent flame retardancy and mechanical strength.
  • the metal silicate compound (D) is a fine particle having an average particle diameter of lnm to 100 ⁇ m. If the average particle size exceeds 100 m, the appearance of the obtained molded article tends to be impaired, and the impact strength of the resin composition tends to decrease.
  • Inn! 7070 m more preferably 10 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m.
  • the average particle diameter can be measured by a microtrack laser diffraction method.
  • the shape of the metal silicate conjugate (D) is not particularly limited, but typical examples thereof include powder, granules, needles, and plates.
  • This inorganic compound may be a natural product or a synthesized compound. In the case of a natural product, there is no particular limitation on the place of production and the like, which can be appropriately selected.
  • the metal silicate compound (D) of the present invention has a pH of 8.0 or more.
  • the fact that the pH of the metal silicate compound is 8.0 or more means that the metal silicate compound has ionic bonding properties composed of a silicate ion and a metal cation. Is thermally stable, but when the silicone conjugate is present, it acts synergistically with the silicone conjugate under high temperature conditions due to its ionic bonding properties and synergistically with the flame retardancy. It is considered that they are having an effect.
  • the pH in the present invention can be measured with a digital pH meter based on the JIS-K-5101B method.
  • Such a metal silicate conjugate (D) may be subjected to a surface treatment with various surface treatment agents such as a silane treatment agent in order to enhance the adhesiveness to resin.
  • the surface treatment agent is not particularly limited, and a conventionally known surface treatment agent can be used.
  • An epoxy group-containing silane coupling agent such as epoxy silane and an amino group-containing silane coupling agent such as amino silane This is preferable since the physical properties of the compound are hardly reduced.
  • polyoxyethylene silane or the like can be used.
  • the surface treatment method is particularly limited And a normal processing method can be used.
  • metal silicate compounds (D) may be used alone or in combination of two or more having different average particle diameters, types, surface treatment agents and the like.
  • the amount of the metal silicate compound (D) used in the thermoplastic resin composition of the present invention is preferably from 30 to 30 parts by weight of aromatic polycarbonate or polyphenylene ether-based resin (A). 0.1 to 20 parts by weight based on 100 parts by weight of a thermoplastic resin mixture composed of 0 to 70 parts by weight of the group-based resin or the thermoplastic polyester resin (B).
  • the amount is less than 0.1 part by weight, the flame retardancy of the obtained resin composition is insufficient, and when the amount exceeds 20 parts by weight, the impact resistance and surface properties of the obtained molded product are reduced, and the obtained resin composition is melted. Kneading with the resin during kneading tends to be difficult. It is preferably from 0.3 to 15 parts by weight, and more preferably from 0.5 to: LO parts by weight.
  • the fluorinated resin (E) used in the present invention is a resin having a fluorine atom.
  • examples thereof include polyolefin resin and polyvinylidene fluoride resin.
  • a copolymer obtained by polymerizing a monomer used for producing the fluororesin and a copolymerizable monomer in combination may be used.
  • the fluorinated resin (E) is preferably a fluorinated polyolefin resin, and more preferably a fluorinated polyolefin resin having an average particle diameter of 700 ⁇ m or less.
  • the average particle size refers to an average particle size of secondary particles formed by agglomeration of primary particles of a fluorinated polyolefin resin.
  • a fluorinated polyolefin resin is preferably a fluorinated polyolefin resin having a ratio of density to bulk density (density Z bulk density) of 6.0 or less.
  • density and bulk density are J
  • the fluorine resin (E) may be used alone or in combination of two or more.
  • the combination is not limited. For example, different types are used arbitrarily.
  • the amount of the fluorinated resin (E) used is determined by the amount of the aromatic polycarbonate resin or polyphenylene resin.
  • the amount is 0.005 to 1 part by weight, preferably 0.1 part by weight, based on 100 parts by weight of the total of the two components of the one-ter resin (A) and the aromatic vinyl resin or the thermoplastic polyester resin (B). 0.01 to 0.75 parts by weight, more preferably 0.02 to 0.6 parts by weight.
  • the amount is less than 0.005
  • the effect of improving the flame retardancy is small.
  • the amount exceeds 1 part by weight the molding fluidity and the surface appearance of the molded article of the flame retardant resin composition of the present invention tend to decrease. , Which is not desirable.
  • the flame-retardant resin composition of the present invention is further provided with a range that does not impair the properties of the present invention (flame retardancy and the like) in order to further increase the molding fluidity and improve the flame retardancy. Silicone compounds other than the present invention can be added.
  • the silicone conjugate refers to a polyorganosiloxane in a broad sense, and specifically, a (poly) diorganosiloxane compound such as dimethylsiloxane and phenylmethylsiloxane.
  • (Poly) organosilsesquioxane compounds such as methylsilsesquioxane and phenylsilsesquioxane; (poly) triorganosilshemioxane conjugates such as trimethylsylhemioxane and triphenylsylhemioxane; Copolymer obtained by the above method, such as polydimethylsiloxane and polymethylmethylsiloxane.
  • a modified silicone having a molecular terminal substituted by an epoxy group, a hydroxyl group, a carboxyl group, a mercapto group, an amino group, an ether group or the like is also useful.
  • shape of the silicone and any shape such as oil, gum, varnish, powder, and pellet can be used.
  • the thermoplastic resin composition of the present invention may further include a reinforcing filler other than the metal silicate compound (D) in order to further increase the heat resistance and mechanical strength of the resin composition.
  • a reinforcing filler other than the metal silicate compound (D) in order to further increase the heat resistance and mechanical strength of the resin composition.
  • Such reinforcing fillers are not particularly limited and include, for example, fibrous reinforcing agents such as glass fibers, carbon fibers, and metal fibers; metal oxides such as titanium oxide and iron oxide; carbon dioxide, glass beads, and glass. Powder, ceramic powder, metal powder, carbon black and the like. These reinforcing fillers may be used alone, but may be used in combination of two or more kinds having different types, particle diameters / lengths, surface treatments and the like.
  • the above-mentioned reinforcing filler may be subjected to a surface treatment in order to enhance the adhesiveness with the resin.
  • the surface treatment agent used for performing such surface treatment is not particularly limited! Power of epoxy group-containing silane coupling agent such as epoxy silane Reduces physical properties of resin This is preferable because it is not performed.
  • the surface treatment method is not particularly limited, and an ordinary treatment method is used.
  • the amount of addition thereof may be an aromatic polycarbonate or a polyphenylene ether-based resin (A) 30 or more: LOO parts by weight and an aromatic vinyl-based resin or a thermoplastic polyester-based resin.
  • Fat (B) 100 parts by weight or less based on 100 parts by weight of a thermoplastic resin mixture composed of 0 to 70 parts by weight. If the amount exceeds 100 parts by weight, the impact resistance is reduced, and the formability and flame retardancy may be reduced. It is preferably at most 50 parts by weight, more preferably at most 10 parts by weight.
  • the reinforcing fillers may be used. It is preferable to minimize the amount of addition.
  • thermoplastic or thermosetting resin such as polyamide resin, polyphenylene sulfide resin, and polyacetal, as long as the properties of the flame-retardant resin composition of the present invention are not impaired.
  • a resin, a polysulfone resin, a polyolefin resin, a rubber-like elastic material, or the like may be used alone or in combination of two or more.
  • antioxidants such as phenol-based antioxidants and thioether-based antioxidants, phosphorus-based stabilizers, and the like. It is preferable to use these heat stabilizers alone or in combination of two or more. Further, if necessary, usually well-known stabilizers, lubricants, release agents, plasticizers, ultraviolet absorbers, light stabilizers, pigments, dyes, antistatic agents, conductivity-imparting agents, dispersants, compatibilizers Additives such as agents, antibacterial agents, etc. can be used alone or in combination of two or more.
  • the molding method of the flame-retardant resin composition produced in the present invention is not particularly limited, and molding methods generally used for thermoplastic resin, such as injection molding, professional molding, and extrusion, are used. Molding, vacuum molding, press molding, calendar molding, etc. can be applied.
  • Dichlorodifluorosilane (468 g), dichlorodimethylsilane (80 g), M silicate 51 (29 lg) manufactured by Tama Chemical Industry Co., Ltd. are weighed into a 5 L flask, MIBK (1200 g) is added, and then water (336 g) at 10 ° C or less is added. Was dropped. Thereafter, the reaction mixture was heated to 80 ° C. and reacted for 3 hours. Then, after returning to room temperature, chlorotrimethylsilane (268 g) and then water (44 g) were added dropwise, and the mixture was reacted at 60 ° C. for 3 hours.
  • the obtained reaction mixture was washed with water until it became neutral, and the solvent was distilled off from the separated organic phase under reduced pressure to obtain the desired silicone compound (C1).
  • Methyltrichlorosilane (177 g) and phenyltrichlorosilane (902 g) were weighed into a 5-L flask, and MIBK (2500 ml) was added. Water (1040 g) was added dropwise at 10 ° C or lower. After the addition was completed, trimethylchlorosilane (321 g) was added dropwise, followed by stirring at 60 ° C for 3 hours. The obtained reaction mixture was washed with water until it became neutral, and the solvent was distilled off from the separated organic phase under reduced pressure to obtain the desired organosiloxane conjugate (C2).
  • Dichlorodiphenylsilane (253 g), trichloromethylsilane (179 g), dichlorodimethylsilane (80 g), M silicate 51 (29 lg) manufactured by Tama Chemical Industry Co., Ltd. were weighed into a 5 L flask, and MIBK (1200 g) was added. Thereafter, water (395 g) was added dropwise at 10 ° C or lower. Thereafter, the reaction mixture was heated to 80 ° C. and reacted for 3 hours. Then, after returning to room temperature, chlorotrimethylsilane (317 g) and then water (52 g) were added dropwise, and the mixture was reacted at 60 ° C. for 3 hours.
  • Trichloro-mouth silane (200 g) and M silicate 51 (110 g) manufactured by Tama Chemical Industry Co., Ltd. were weighed into a 3 L flask, and MIBK (800 g) was weighed. Thereafter, the reaction mixture was heated to 80 ° C. and reacted for 3 hours. Then, after returning to room temperature, trimethylsilane (100 g) and water (15 g) were added dropwise, and the mixture was reacted at 60 ° C. for 3 hours. The obtained reaction mixture was washed with water until it became neutral, and the solvent was distilled off from the separated organic phase under reduced pressure to obtain the desired silicone compound (C4).
  • PC Bisphenol A-type polycarbonate with viscosity average molecular weight of 22000 (Teflon A2200 or FN2200A manufactured by Idemitsu Petrochemical Co., Ltd.)
  • PPE Poly (2,6-dimethyl-1,4-phenylene) ether resin with a logarithmic viscosity of 0.50 (PX100F manufactured by Mitsubishi Engineering-Plastics Corporation)
  • HIPS Butadiene 'Styrene copolymer (Estyrene HI H-53 manufactured by Nippon Steel Chemical Co., Ltd.)
  • PET Polyethylene terephthalate resin with logarithmic viscosity 0.70 (Kanebo Gosen Co., Ltd.
  • ABS synthesized by the following method was used.
  • a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, a monomer addition port, and a thermometer was charged with 250 parts by weight of pure water and 0.5 part by weight of sodium palmitate (solid content). The temperature was raised to 70 ° C under a nitrogen stream with stirring. After reaching 70 ° C, 0.4 parts by weight of sodium formaldehyde sulfoxylate, 0.01 parts by weight of disodium ethylenediamine tetraacetate, 0.015 parts by weight, and 0.0025 parts by weight of ferrous sulfate (heptahydrate) were removed.
  • a mixture of 28 parts by weight of acrylonitrile, 72 parts by weight of styrene, 0.2 parts by weight of peroxide at a cumenehydride and 0.3 parts by weight of t-decyl mercaptan was continuously added dropwise over 8 hours. At this time, 0.5 parts by weight (solid content) of sodium palmitate was added 1.5 hours and 3 hours after the start of the dropwise addition. After completion of the addition, the mixture was stirred at 70 ° C. for 2 hours to terminate the polymerization, thereby obtaining a latex of a polymer (ABS-1). The polymerization conversion ratio was 98%.
  • Silicone compound (C7) Octafelu-silsesquioxane (MS0840, manufactured by Hybrid Plastics)
  • Fluorine resin Tetrafluoroethylene (Polyflon FA-500 manufactured by Daikin Industries, Ltd.) (hereinafter abbreviated as PTFE)
  • a resin composition was obtained in the same manner as in Example 1 except that the types and amounts of the resin, the silicone conjugate, and the inorganic silicate compound were changed. From the pellets thus obtained, each test piece was prepared in the same manner as above. The above evaluation method was performed on these test pieces. Tables 1 to 6 show the evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ハロゲン、リン、窒素等の原子を有する難燃剤を含有せずに、極めて高い難燃化効果を発現することが可能な新規難燃性樹脂組成物を提供する。  本発明は、芳香族ポリカーボネート樹脂等(A)、芳香族ビニル系樹脂等(B)で構成された熱可塑性樹脂混合物に対して平均組成式(1) R1 mR2 nSiO(4-m-m)/2 (1) (式中、R1はメチル基等、R2はフェニル基等を表す。また1.1≦m+n≦1.7、0.4≦n/m≦2.5である。)で表されるシリコーン化合物(C)、および特定の金属ケイ酸塩化合物(D)からなる組成物である。                                                                               

Description

明 細 書
難燃性樹脂組成物
技術分野
[0001] 本発明は、ハロゲン、リン、窒素等の原子を含有せず、高度に難燃化された榭脂組 成物に関する。
背景技術
[0002] ポリカーボネート榭脂と ABS榭脂などに代表されるスチレン系榭脂ゃポリエステル 系榭脂とのブレンド物は耐熱性及び耐衝撃性が高ぐポリカーボネートの耐薬品性 や成形流動性を改善した、いわゆるポリマーァロイとして、種々の成形品、例えば、 自動車、電気、電子の部品などに幅広く使用されている。一方、ポリフエ-レンエーテ ル系榭脂は耐熱性に加えて、寸法安定性、電気特性、軽量性に優れるといった特徴 があり、同様の分野で使用されている。これらの榭脂を電気'電子部品や OA機器の ノ、ウジング、エンクロージャー、シャーシなどに使用する場合、高い難燃性が要求さ れる。
[0003] 一方、材料の使用量を低減するためには、部品やハウジングの小型化や薄肉化 が有用である。しかし、燃焼の際、成形品の薄肉部から榭脂の溶融滴下 (ドリップ)が 生じ、他の可燃物を延焼させる危険がある。そのため、難燃性榭脂組成物には、ドリ ップしな 、高度の難燃性も要求される。
[0004] 難燃性を付与するため、ポリカーボネート系榭脂ゃポリフエ二レンエーテル系榭脂 には、通常、ハロゲン系化合物やリン系化合物が添加されている。しかし、ハロゲン 系化合物は、加工時あるいは燃焼時に腐食性又は有毒性のガスが発生するという欠 点を有する。一方、リン系化合物は耐熱性に劣り、揮発性が高いという欠点があり、 押出'成型加工時に臭気が発生したり、機械的特性や熱的特性に影響を及ぼすなど の問題がある。
[0005] 近年、ポリカーボネート榭脂単体に対しては、シリコーン化合物が難燃ィ匕に有効で あることが報告されている。例えば、 R SiO 単位と RSiO 単位を構成成分とするシ
2 1.5 1.0
リコーンィ匕合物や (例えば特許文献 1、 2参照)、フエニル基、アルキル基、アルコキ基 を有し分子量が 10000以下であるシリコーンィ匕合物が開示されている(例えば特許 文献 3参照)。し力しながら、これらのシリコーンィ匕合物はポリカーボネート榭脂単体に は有効であるが、ポリカーボネート榭脂とスチレン系榭脂ゃポリエステル系榭脂のァ ロイには殆ど効果が無力つた。
[0006] 一方、ポリフエ-レンエーテル系榭脂を難燃ィ匕する方法としても、シリコーンィ匕合物 を用いることが知られている。例えば、ポリオルガノシロキサンとポリフエ-レンエーテ ルとの熱可塑性榭脂組成物が開示されており(特許文献 4)、また、特定のフエ-ルシ ロキサン流体やシリコーン榭脂をブレンドする方法が開示されている(特許文献 5、 6) 。し力しながら、これらのシリコーンィ匕合物は、ポリフエ-レンエーテル榭脂単体に対 してはある程度の難燃性を付与するものの、他の樹脂が複合化された場合には、十 分な難燃性を発現することができない。つまり、ポリフエ-レンエーテル系榭脂は流動 性を改良することを目的に芳香族ビニル系榭脂とァロイ化して用いられることが多ぐ その場合には、上記シリコーンィ匕合物を含有するだけでは、難燃性が低下するという 問題があった。最近、ポリフエ-レンエーテル系榭脂と芳香族ビュル系榭脂とのァロ ィに対して特定シリコーン系化合物を添加することにより難燃性を付与する技術がい くつか開示されており、例えば R SiO 単位と RSiO 単位力もなるシリコーン榭脂を
2 2/2 3/2
添加する技術が開示されているが(特許文献 7、 8)、厚みが 1. 6mm以下のテストピ ースでは UL— 94 V—0 (米国アンダーライターズラボラトリー規格)に適合するよう な高度な難燃'性は得られて!/ヽな ヽ。
[0007] シリコーンィ匕合物を用いたポリカーボネート榭脂とスチレン系榭脂ゃポリエステル系 榭脂のァロイおよびポリフエ-レンエーテル系榭脂と芳香族ビュル系榭脂とのァロイ にも有用な難燃性を付与する技術として、 SiO単位を構成成分とする特定構造のシ
2
リコーン榭脂や特定溶融特性条件を有するシリコーン榭脂が開示されているが (例え ば特許文献 9、 10、 11、 12参照)、経済性の観点力も難燃剤として使用するシリコー ン榭脂のさらなる低減が望まれている。
[0008] 他方、金属ケィ酸塩による難燃ィ匕効果に関するものとして、ポリカーボネート系榭脂
、特定の環状構造のリン酸エステル、フッ素榭脂、および少量のタルクカゝらなり、該リ ン酸エステル中のリン原子の量とタルクが特定の重量比である難燃性榭脂組成物が 開示されており(例えば特許文献 13参照)、また、ポリカーボネート榭脂ゃポリフエ- レンエーテル榭脂に特定量の金属ケィ酸塩を添加することによる難燃ィ匕効果および 該組成物に付加的に有機シロキサンィ匕合物を添加する技術が開示されて 、るが(例 えば特許文献 14参照)、ポリカーボネート榭脂とスチレン系榭脂またはポリエステル 系榭脂とのァロイやポリフエ-レンエーテル系榭脂と芳香族ビュル系榭脂とのァロイ に対しては金属ケィ酸塩単独では有効な難燃性は認められず、さらに、シリコーンィ匕 合物と金属ケィ酸塩の難燃性に及ぼす相乗効果につ 、ては何ら開示されて 、な 、。 さらに、 RSi03Z2単位を主単位とするシリコーンィ匕合物とケィ素元素を含む無機充 填剤とを含有するポリフエ-レンエーテル系榭脂と芳香族ビュル系榭脂とのァロイ組 成物が開示されているが (特許文献 15)、難燃性が不十分であり、さらなる改善が求 められている。
特許文献 1 :特開平 10— 139964
特許文献 2:特開平 11 140294
特許文献 3:特開平 11― 222559
特許文献 4:米国特許第 3737479号
特許文献 5:特公平 6— 62843
特許文献 6:特開 2001— 294743
特許文献 7:特開 2000— 178436
特許文献 8:特開 2000 - 297209
特許文献 9:特開平 2001— 139790
特許文献 10:特開平 2001— 311081
特許文献 11 :特開平 2001— 316671
特許文献 12:特開平 2001— 323269
特許文献 13:特開平 11 256022
特許文献 14:特開平 2003— 82218
特許文献 15:特開 2002— 97374
発明の開示
発明が解決しょうとする課題 [0009] 本発明は、上記現状に鑑み、ハロゲンやリン原子を含むことなぐ高い耐熱性、耐 衝撃性を有し、優れた難燃性を有するポリカーボネート系および Zまたはポリフエ- レンエーテル系難燃性榭脂組成物を提供することにある。 課題を解決するための手段
[0010] 本発明者らは、ポリカーボネート榭脂とスチレン系榭脂ゃポリエステル系榭脂のァロ ィゃポリフ -レンエーテル系榭脂と芳香族ビュル系榭脂とのァロイでもある程度難 燃化効果を示すシリコーン化合物の効果に着目し、その難燃性能の向上を鋭意検 討した結果、特定の無機化合物との組合せにより少量のシリコーン化合物の添加で も優れた難燃性を有することを発見し、本発明を完成した。
[0011] すなわち本発明は、芳香族ポリカーボネートまたはポリフエ-レンエーテル系榭脂( A) 30〜: LOO重量部と芳香族ビニル系榭脂または熱可塑性ポリエステル系榭脂 (B) 0〜70重量部で構成された熱可塑性榭脂混合物 100重量部に対して平均組成式( 1)
R1 R2 SiO (1)
m n (4-m-n)/2
(式中、 R1は炭素数が 1〜4の一価の脂肪族炭化水素基を表し、 R2は炭素数が 6〜2 4の一価の芳香族炭化水素基を表す。
Figure imgf000005_0001
R2はそれぞれ 2種類以上存在していても 良!/、。 mと ηは、 1. l≤m+n≤l. 7、及び、 0. 4≤n/m≤2. 5を満たす数を表す。 )で表されるシリコーン化合物(C) 0. 1〜20重量部および、 pHが 8. 0以上であり、 Si O単位が 30重量%以上を占める、平均粒子径が lnm〜 100 mの範囲にある金属
2
ケィ酸塩化合物 (D) 0. 1〜20重量部を含有することを特徴とする難燃性榭脂組成 物に関する。
発明の効果
[0012] 本発明の難燃性榭脂組成物は、塩素、臭素、リン、窒素、等一般に用いられている 難燃剤を用いなくても非常に優れた難燃性を示し、樹脂が本来有する特徴を損なう ことも少ない。かつ安価な原料を用いて比較的容易に合成することが可能である。こ のような難燃性榭脂組成物は工業的に非常に有用である。
発明を実施するための最良の形態
[0013] 以下に本発明を詳述する。 本発明に使用されるポリカーボネート榭脂 (A— 1)とは、 2価以上のフエノールイ匕合 物と、ホスゲン、または、ジフエ-ルカーボネートなどの炭酸ジエステルとを反応させ て得られるものである。
前記 2価以上のフエノール化合物としては、 2価フエノールである、例えば、 2, 2- ビス(4 -ヒドロキシフエ-ル)プロパン〔通称:ビスフエノール A〕、ビス(4 -ヒドロキシフ ェ -ル)メタン;ビス(4 -ヒドロキシフエ-ル)フエニルメタン;ビス(4 -ヒドロキシフエ- ル)ナフチルメタン;ビス(4—ヒドロキシフエ-ル)一(4—イソプロピルフエ-ル)メタン; ビス(3, 5 ジメチル一 4 ヒドロキシフエ-ル)メタン; 1, 1—ビス(4 ヒドロキシフエ -ル)ェタン; 1 ナフチル 1 , 1 ビス(4 ヒドロキシフエ-ル)ェタン; 1 フエニル —1, 1—ビス(4 ヒドロキシフエ-ル)ェタン; 1, 2 ビス(4 ヒドロキシフエ-ル)ェ タン; 2—メチル 1, 1—ビス(4 ヒドロキシフエ-ル)プロパン; 2, 2 ビス(3, 5— ジメチル 4 ヒドロキシフエ-ル)プロパン; 1 ェチル 1 , 1 ビス(4 ヒドロキシ フエ-ル)プロパン;; 2, 2 ビス(3—メチル 4 ヒドロキシフエ-ル)プロパン; 2, 2 -ビス(3 フノレオ口 4 ヒドロキシフエ-ル)プロパン; 1 , 1 ビス(4 ヒドロキシフ ェニル)ブタン; 2, 2 ビス(4 ヒドロキシフエ-ル)ブタン; 1, 4 ビス(4 ヒドロキシ フエ-ル)ブタン; 2, 2 ビス(4 ヒドロキシフエ-ル)ペンタン; 4—メチル 2, 2 ビ ス(4 ヒドロキシフエ-ル)ペンタン;2, 2 ビス(4 ヒドロキシフエ-ル)へキサン; 4 , 4 ビス(4 ヒドロキシフエ-ル)ヘプタン; 2, 2 ビス(4 ヒドロキシフエ-ル)ノナ ン; 1, 10 ビス(4 ヒドロキシフエ-ル)デカン; 1, 1—ビス(4 ヒドロキシフエ-ル) —3, 3, 5 トリメチルシクロへキサン; 2, 2 ビス(4 ヒドロキシフエ-ル)一 1, 1, 1 , 3, 3, 3 へキサフルォロプロパンなどのジヒドロキシジァリールアルカン類、 1, 1 ビス(4 -ヒドロキシフエ-ル)シクロへキサン; 1 , 1 ビス(4 ヒドロキシフエ-ル)シク 口デカンなどのジヒドロキシジァリールシクロアルカン類、ビス(4ーヒドロキシフエ-ル) スルホン;ビス (3, 5—ジメチルー 4—ヒドロキシフエ-ル)スルホンなどのジヒドロキシ ジァリールスルホン類、ビス(4—ヒドロキシフエ-ル)エーテル;ビス(3, 5—ジメチル 4ーヒドロキシフエ-ル)エーテルなどのジヒドロキシジァリールエーテル類、 4, 4, ージヒドロキシベンゾフエノン; 3, 3' , 5, 5,ーテトラメチルー 4, 4'ージヒドロキシベン ゾフエノンなどのジヒドロキシジァリールケトン類、ビス(4—ヒドロキシフエ-ル)スルフ イド;ビス( 3 -メチル 4—ヒドロキシフエ-ル)スルフイド;ビス( 3 , 5—ジメチル 4— ヒドロキシフエ-ル)スルフイドなどのジヒドロキシジァリールスルフイド類、ビス(4—ヒド ロキシフエ-ル)スルホキシドなどのジヒドロキシジァリールスルホキシド類、 4, 4'ージ ヒロキシジフエ-ルなどのジヒドロキシジフエ-ル類、 9, 9 ビス(4ーヒドロキシフエ- ル)フルオレンなどのジヒドロキシァリールフルオレン類などが挙げられる。また、前記 二価フエノール類以外に、ヒドロキノン, レゾルシノール,メチルヒドロキノンなどのジヒ ドロキシベンゼン類、 1 , 5 ジヒドロキシナフタレン; 2, 6 ジヒドロキシナフタレンなど のジヒドロキシナフタレン類なども挙げられる。これらの中では、 2, 2 ビス(4ーヒドロ キシジフエ-ル)プロパン、ビス(4 -ヒドロキシフエ-ル)メタン、ビス(4 -ヒドロキシフ ェ -ル)フエ-ルメタン、ビス(3, 5 ジメチル一 4 ヒドロキシフエ-ル)メタン、 1—フ ェ-ル 1, 1—ビス(4 ヒドロキシフエ-ル)ェタン、 2, 2 ビス(3, 5 ジメチル一 4 —ヒドロキシフエ-ル)プロパン、 1, 1—ビス(4 ヒドロキシフエ-ル)一 3, 3, 5 トリメ チルシクロへキサン、ビス(4ーヒドロキシフエニル)スルホン、 4, 4'ージヒドロキシベン ゾフエノンが本発明の難燃性熱可塑性榭脂組成物の成形加工性、難燃性および得 られる成形体の機械的強度、難燃性の点力 好ましい。これらの二価フエノール等は 、それぞれ単独で用いてもよぐ二種以上を組合わせて用いてもよい。
[0015] 前記炭酸ジエステル化合物としては、ジフエ-ルカーボネートなどのジァリールカー ボネートや、ジメチルカーボネート,ジェチルカーボネートなどのジアルキルカーボネ ートが挙げられる。
[0016] ポリカーボネート榭脂 (A— 1)には、必要に応じて、分岐性を生成させることを目的 として分岐剤を用いるものであってもよい。前記分岐剤としては、例えば、フロロダル シン,メリト酸,トリメリト酸,トリメリト酸クロリド,無水トリメリト酸,没食子酸,没食子酸 n プロピル,プロトカテク酸,ピロメリト酸,ピロメリト酸ニ無水物, α レゾルシン酸, β—レゾルシン酸,レゾルシンアルデヒド, トリメチルクロリド,ィサチンビス(ο クレゾ 一ル), トリメチルトリクロリド, 4 クロ口ホルミルフタル酸無水物,ベンゾフエノンテトラ カルボン酸; 2, 4, 4'—トリヒドロキシベンゾフエノン; 2, 2' , 4, 4'—テトラヒドロキシ ベンゾフエノン; 2, 4, 4'—トリヒドロキシフエニルエーテル; 2, 2' , 4, 4, 一テトラヒド ロキシフエニルエーテル; 2, 4, 4 ' —トリヒドロキシジフエ二ルー 2 プロパン; 2, 2, 一 ビス(2, 4 ジヒドロキシ)プロパン; 2, 2' , 4, 4'—テトラヒドロキシジフエニルメタン; 2, 4, 4'—トリヒドロキシジフエ-ルメタン; 1—〔 a—メチルー a - (4'—ジヒドロキシ フエ-ル)ェチル〕 3—〔 α,, α,一ビス (4" -ヒドロキシフエ-ル)ェチル〕ベンゼン ; 1 〔 α—メチルー α (4,一ジヒドロキシフエ-ル)ェチル〕一 4 〔 α,, α,一ビス (4" -ヒドロキシフエ-ル)ェチル〕ベンゼン; α , α ' , α " トリス(4 -ヒドロキシフエ -ル) 1, 3, 5 トリイソプロピルベンゼン; 2, 6 ビス(2 ヒドロキシ一 5,一メチル ベンジル) 4—メチルフエノール; 4, 6 ジメチルー 2, 4, 6 トリス(4,一ヒドロキシ フエ二ル)一 2 ヘプテン; 4, 6 ジメチル一 2, 4, 6 トリス(4,一ヒドロキシフエニル )—2 ヘプタン; 1, 3, 5 トリス(4,一ヒドロキシフエ-ル)ベンゼン; 1, 1, 1—トリス( 4 ヒドロキシフエ-ル)ェタン; 2, 2 ビス〔4, 4 ビス(4,一ヒドロキシフエ-ル)シク 口へキシル〕プロパン; 2, 6 ビス(2,一ヒドロキシ一 5,一イソプロピルベンジル) 4 —イソプロピルフエノール;ビス〔2 ヒドロキシ一 3— (2,一ヒドロキシ一 5,一メチルべ ンジル) 5—メチルフエ-ル〕メタン;ビス〔2 ヒドロキシ一 3— (2,一ヒドロキシ一 5, —イソプロピルベンジル) - 5—メチルフエ-ル〕メタン;テトラキス(4 -ヒドロキシフエ -ル)メタン;トリス(4 ヒドロキシフエ-ル)フエ-ルメタン; 2,, 4,, 7 トリヒドロキシフ ラバン; 2, 4, 4 トリメチル 2,, 4,, 7 トリヒドロキシフラバン; 1, 3 ビス(2,, 4, -ジヒドロキシフエ-ルイソプロピル)ベンゼン;トリス(4,一ヒドロキシフエ-ル) アミ ル s トリァジンなどが挙げられる。
[0017] また、場合によっては、ポリカーボネート榭脂 (Α— 1)としては、ポリカーボネート部 と、ポリオルガノシロキサン部と力 なるポリカーボネート ポリオルガノシロキサン共 重合体であってもよ 、。この際ポリオルガノシロキサン部の重合度は 5以上が好ま ヽ
[0018] また、ポリカーボネート榭脂 (A— 1)の重合時の末端停止剤としては、公知の各種 のものを使用することができる。具体的には、一価フエノールとして、例えば、フエノー ル, ρ クレゾール, p—t—ブチルフエノール, p—t—ォクチルフエノール, p—クミノレ フエノール,ブロモフエノール, トリブロモフエノール,ノ-ルフエノールなどが挙げられ る。
[0019] さらに、難燃性を高めるために、リン含有化合物との共重合体、あるいは、リン含有 化合物で末端封止したポリカーボネート榭脂を使用することもできる。さらに、耐候性 を高めるためには、ベンゾトリアゾール基を有する二価フエノールとの共重合体、ある いは、ベンゾトリアゾール基を有する一価フエノールで末端封止したポリカーボネート 榭脂を使用することもできる。
[0020] ポリカーボネート榭脂 (A- 1)として、好ましくは 2, 2 ビス(4ーヒドロキシジフエ- ル)プロノ ン、ビス(4ーヒドロキシフエ-ル)メタン、ビス(4ーヒドロキシフエ-ル)フエ二 ルメタン、ビス(3, 5 ジメチル一 4 ヒドロキシフエ-ル)メタン、 1—フエ-ル一 1, 1 —ビス(4 ヒドロキシフエ-ル)ェタン、 2, 2 ビス(3, 5 ジメチルー 4 ヒドロキシフ ェ -ル)プロパン、 1, 1—ビス(4 ヒドロキシフエ-ル)一 3, 3, 5 トリメチルシクロへ キサン、ビス(4ーヒドロキシフエニル)スルホン、 4, 4'ージヒドロキシベンゾフエノンか ら選ばれる 1種以上のフエノール化合物、さらに好ましくは、 2, 2 ビス (4ーヒドロキ シジフエ-ル)プロパン、 1, 1—ビス(4 ヒドロキシフエ-ル)一 3, 3, 5 トリメチルシ クロへキサン力も選ばれる 1種以上のフエノールイ匕合物とホスゲンまたは炭酸ジエス テルとを反応させて得られるポリカーボネート榭脂あるいはポリカーボネート ポリオ ルガノシロキサン共重合体が本発明の難燃性熱可塑性榭脂組成物の成形加工性お よび得られる成形体の機械的強度の点力 好ましく用いられる。
[0021] ポリカーボネート榭脂(A— 1)の粘度平均分子量は、好ましくは 10000〜60000で あり、さらに好ましくは 15000〜45000、最も好ましくは 18000〜35000である。粘 度平均分子量が 10000未満では得られる榭脂組成物の難燃性、強度などが不充分 となり、粘度平均分子量が 60000を越えると、成形流動性に問題がある傾向がある。
[0022] ポリカーボネート榭脂 (A)は、単独で、ある 、は、 2種以上を組み合わせて使用され る。 2種以上組み合わせて使用する場合には、組み合わせは限定されない。例えば 、モノマー単位が異なるもの、共重合モル比が異なるもの、分子量が異なるものなど が任意に組み合わせられる。
さらに本発明に使用されるポリフエ-レンエーテル系榭脂 (A— 2)とは、下記に示す 一般式〔a〕及び〔b〕: [0023] [化 1]
Figure imgf000010_0001
[0024] (式中、 R、 R、 R、 R、 R、 Rは炭素 1〜4のアルキル基、ァリール基、ハロゲン、水
1 2 3 4 5 6
素等の一価の残基であり、 R、 Rは同時に水素ではない)を繰り返し単位とし、構成
5 6
単位が上記〔a〕及び〔b〕からなる単独重合体、あるいは共重合体が使用できる。ポリ フエ-レンエーテル系榭脂 (A)の単独重合体の代表例としては、ポリ(2, 6 ジメチ ルー 1, 4 フエ-レンエーテル、ポリ(2—メチル 6 ェチル 1, 4 フエ二レン)ェ 一テル、ポリ(2, 6 ジェチルー 1, 4 フエ-レン)エーテル、ポリ(2 ェチルー 6— n—プロピノレー 1, 4 フエ二レン)エーテノレ、ポリ(2, 6 ジ n—プロピノレー 1, 4 フエ-レン)エーテル、ポリ(2—メチル 6— n—ブチル 1, 4 フエ-レン)エーテ ル、ポリ(2 ェチルー 6 イソプロピル 1, 4 フエ-レン)エーテル、ポリ(2—メチ ルー 6 クロ口ェチル 1, 4 フエ二レン)エーテル、ポリ(2—メチル 6 ヒドロキシ ェチル 1, 4 フエ-レン)エーテル、ポリ(2—メチル 6 クロ口ェチル 1, 4 フ ェ-レン)エーテル等のホモポリマーが挙げられる。
[0025] ポリフエ-レンエーテル共重合体は、 2, 6 ジメチルフエノールと 2, 3, 6 トリメチ ルフヱノールとの共重合体あるいは o タレゾールとの共重合体あるいは 2, 3, 6 ト リメチルフエノール及び o タレゾールとの共重合体等、ポリフエ-レンエーテル構造 を主体としてなるポリフエ-レンエーテル共重合体を包含する。
[0026] また、本発明のポリフエ-レンエーテル系榭脂 (A— 2)中には、本発明の主旨に反 しない限り、従来ポリフエ-レンエーテル榭脂中に存在させてもょ ヽことが提案されて V、る他の種々のフエ-レンエーテルユニットを部分構造として含んで!/、ても構わな!/ヽ 。少量共存させることが提案されているものの例としては、特願昭 63— 12698及び 特開昭 63— 301222に記載されている、 2— (ジアルキルアミノメチル) 6—メチル フエ-レンエーテルユニットや、 2— (N アルキル一 N フエ-ルアミノメチル) 6— メチルフエ-レンエーテルユニット等が挙げられる。
[0027] また、ポリフエ-レンエーテル榭脂の主鎖中にジフエノキノン等が少量結合したもの も含まれる。本発明に用いるポリフエ-レンエーテル系榭脂 (A— 2)の分子量として 【ま、数平均分子量で 1, 000〜100, 000さらに ίま 6, 000〜60, 000力 ^好まし!/、。本 発明中の数平均分子量とは、ゲルパーミエーシヨンクロマトグラフィーにより、標準ポリ スチレンの検量線を用いて求めたポリスチレン換算の数平均分子量である。
[0028] 本発明の芳香族ビニル系榭脂 (Β— 1)とは、少なくとも一種の芳香族ビ-ルイ匕合 物の単独重合体又は共重合体、もしくは、少なくとも 1種の芳香族ビニルイ匕合物と少 なくとも 1種のォレフィンィ匕合物力 なる共重合体、ブロック共重合体、グラフト共重合 体である。
[0029] 上記芳香族ビュル化合物はスチレン、メチルスチレン、ェチルスチレン、ジメチルス チレン、クロルスチレン、 ひーメチルスチレン、ビュルトルエンから選ばれる 1種以上で あり、ォレフィン化合物とは、アクリロニトリル、メチルメタタリレート、エチレン、プロピレ ン、 1ーブテン、イソブチレン等のモノォレフィン、あるいはブタジエン、イソプレン、 1, 3 ペンタジェン等の共役ジォレフイン、 1, 4一へキサジェン、ノルボルネン、ノルボ ルネン誘導体等の非共役ジォレフインのうちから選ばれた 1種以上のォレフィンィ匕合 物である。
[0030] 芳香族ポリカーボネート(A— 1)とのァロイとしてはポリスチレン、ハイインパクトポリ スチレン、 AS榭脂、 MAS榭脂、 ABS榭脂、 AAS榭脂、 AES榭脂、 MBS榭脂など が好適に選ばれ、耐熱性及び耐衝撃性の高い成形品が得られる。芳香族ポリカーボ ネートと芳香族ビニル系榭脂との割合は、耐熱性、耐衝撃性、溶融流動性などを損 なわない範囲で選択でき、例えば (A— 1)Z(B— 1) =40〜95 (重量部)好ましくは 50〜95,50〜5 (重量部)、さらに好ましくは55〜85,45〜15 (重量部)程度でぁ る。ポリカーボネートの含有量が 40重量部未満であると溶融流動性は高 、ものの成 形品の耐熱性及び耐衝撃性が低下しやすぐ 95重量部を超えると成形過程での溶 融流動性が低下しやすい。
[0031] ポリフエ-レンエーテル系榭脂 (A—2)とのァロイ化に好ましい芳香族ビュル系榭 脂 (B— 1)としては、芳香族ビュル化合物単独重合体や芳香族ビュル化合物重合体 ブロックと共役ジェンィ匕合物を主体とする重合体ブロックとから構成されてなるブロッ ク共重合体であり、芳香族ビ-ルイ匕合物としては、スチレン、 aーメチルスチレン、ビ -ルトルエン等のうちから 1種または 2種以上が選ばれ、中でもスチレンが特に好まし い。
[0032] また共役ジェン化合物としては、ブタジエン、イソプレン、 1, 3—ペンタジェン等のう ちから 1種または 2種以上選ばれ、中でもブタジエン及び Zまたはイソプレンが特に 好ま 、。芳香族ビ-ルイ匕合物の含有量と共役ジェンィ匕合物の含有量の重量比は、 50/50〜90/10の範囲力好ましく、 55/45〜85/15の範囲力さらに好まし!/、。 ビュル芳香族化合物の含有量が 50重量%より少なくなると榭脂組成物を成形する際 、相溶性の不良に起因する相剥離現象が生じ、また流動性にも悪影響が生じる。
[0033] 上記ブロック共重合体は、数平均分子量が 2, 000〜500, 000、さらには 20, 000 〜300, 000の範囲が好ましい。また分子量分布(重量平均分子量と数平均分子量 の比)は 1. 05〜: L0の範囲が好ましい。また、ブロック共重合体の分子構造は、直鎖 状、分枝状、放射状またはこれらの組み合わせなどが挙げられる。この中で、直鎖状 の構造の物がより好ましい。
[0034] 上記ブロック共重合体の製造方法としては、例えば特公昭 36— 19286号公報、特 公昭 43— 14979号公報、特公報 49— 36957号公報、特公昭 48— 2423号公報、 特公昭 48— 4106号公報などに記載された方法が挙げられる。これらはすべて、炭 化水素溶剤中でァ-オン重合開始剤として有機リチウム化合物等を用い、必要に応 じてビニル化剤、カップリング剤等を用い、ビニル芳香族化合物と共役ジェン化合物 をブロック共重合する方法である。
[0035] ポリフエ-レンエーテル系榭脂 (A—2)と芳香族ビュル系榭脂(B— 1)との比率は、 ポリフエ-レンエーテル系榭脂 (A— 2) 30〜: LOO重量部、芳香族ビュル系榭脂(B— 1) 0〜70重量部(あわせて 100重量部)であることを要する。ポリフエ-レンエーテル 系榭脂 (A— 2)が 30重量部より少ないと、機械的性質が低下するので好ましくない。
[0036] さらに、本発明で用いられる、熱可塑性ポリエステル系榭脂(B— 2)は、 2価以上 のカルボン酸成分、 2価以上のアルコールおよび Zまたはフエノール成分とを公知の 方法で重縮合することにより得られる熱可塑性ポリエステルである。熱可塑性ポリエス テル系榭脂の具体的としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテ レフタレート、ポリブチレンテレフタレート、ポリへキサメチレンテレフタレート、ポリシク 口へキサンジメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレ ートなどが挙げられる。
[0037] 2価以上の芳香族カルボン酸成分としては、炭素数 8〜22の 2価以上の芳香族力 ルボン酸、およびこれらのエステル形成性誘導体が用いられる。これらの具体例とし ては、テレフタル酸やイソフタル酸等のフタル酸、ナフタレンジカルボン酸、ビス(p— カルボシフエ-ル)メタンアントラセンジカルボン酸、 4—4'ージフエ-ルジカルボン酸 、 1, 2—ビス(フエノキシ)ェタン一 4, 4'—ジカルボン酸、ジフエ-ルスルホンジカル ボン酸、トリメシン酸、トリメリット酸、ピロメリット酸、等のカルボン酸、ならびにこれらの エステル形成能を有する誘導体が挙げられる。これらは一種あるいは 2種以上を併 用して用いられる。好ましくはテレフタル酸、イソフタル酸、ナフタレンジカルボン酸で ある。取り扱い易さ、反応の容易さ、得られた榭脂の物性、などに優れるからである。
[0038] 2価以上のアルコール及び Z又はフエノール成分としては、炭素数 2〜 15の脂肪 族化合物、炭素数 6〜20の脂環式化合物、炭素数 6〜40の芳香族化合物であって 分子内に 2個以上の水酸基を有する化合物類、ならびにこれらのエステル形成性誘 導体などが挙げられる。このようなアルコールおよび Zまたはフエノール成分の具体 例としては、エチレングリコール、プロピレングリコール、ブタンジオール、へキサンジ オール、デカンジオール、ネオペンチルグリコール、シクロへキサンジメタノール、シク 口へキサンジオール、 2, 2, 一ビス(4—ヒドロキシフエ-ル)プロパン、 2, 2, 一ビス(4 ーヒドロキシシクロへキシル)プロパン、ハイドロキノン、グリセリン、ペンタエリスリトー ル、などの化合物または、そのエステル形成能を有する誘導体が挙げられる。好まし いアルコールおよび Zまたはフエノール成分は、エチレングリコール、ブタンジォー ル、シクロへキサンジメタノール、である。取り扱い易さ、反応の容易さ、得られた榭脂 の物性、などが優れる力 である。
[0039] 熱可塑性ポリエステル系榭脂(B— 2)には、上記の酸成分ならびにアルコールおよ び Zまたはフ ノール成分以外に、所望の特性を損なわない範囲で、公知の共重合 可能な成分が共重合されていても良い。このような共重合可能な成分としては、炭素 数 4〜 12の 2価以上の脂肪族カルボン酸、炭素数 8〜 15の 2価以上の脂環式カルボ ン酸、などのカルボン酸類およびこれらのエステル形成性誘導体が挙げられる。これ らの具体例としては、アジピン酸、セバシン酸、ァゼライン酸、ドデカンジカルボン酸、 マレイン酸、 1, 3—シクロへキサンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸 、などのジカルボン酸または、そのエステル形成能を有する誘導体、が挙げられる。
[0040] また、 p—ォキシ安息香酸、 p—ヒドロキシ安息香酸のようなォキシ酸およびこれらの エステル形成性誘導体、 ε—力プロラタトンのような環状エステル、等も共重合成分と して使用可能である。さらに、ポリエチレングリコール、ポリプロピレングリコール、ポリ( エチレンオキサイド ·プロピレンオキサイド)ブロックおよびまたは、ランダム共重合体、 ビスフエノール Α共重合ポリエチレンォキシド付加重合体、同プロピレンォキシド付カロ 重合体、同テトラヒドロフラン付加重合体、ポリテトラメチレングリコール、等のポリアル キレングリコール単位を高分子鎖中に一部共重合させたものを用いることもできる。 上記成分の共重合量としては、概ね 20重量%以下であり、好ましくは、 15重量%以 下、さらに好ましくは、 10重量%以下である。
[0041] 熱可塑性ポリエステル系榭脂(B— 2)は、アルキレンテレフタレート単位を、好ましく は 80重量%以上、さらに好ましくは 85重量%以上、最も好ましくは 90重量%以上有 するポリアルキレンテレフタレートである。得られた組成物の物性バランス (例えば成 形性,機械的特性)に優れるためである。
[0042] 熱可塑性ポリエステル系榭脂(B— 2)の、フエノール Zテトラクロ口エタン= 1/1 ( 重量比)混合溶媒中、 25°Cで測定したときの対数粘度 (IV)は、好ましくは 0. 30〜2 . OOdlZg以上であり、好ましくは 0. 40-1. 80dlZg、さらに好ましくは 0. 50-1. 6 OdlZgである。対数粘度が 0. 30未満では、成形体の難燃性や機械的強度が不充 分である場合が多ぐ 2. OOdlZgを越えると成形加工性が低下する傾向がある。
[0043] 熱可塑性ポリエステル系榭脂(B— 2)は、一種で、あるいは、 2種以上組み合わせ て使用されうる。 2種以上組み合わせて使用する場合には、組み合わせは限定され ない。例えば、共重合成分やモル比が異なるもの、および Zまたは、分子量が異なる ものが、任意に組み合わせられる。
[0044] 本発明にお ヽては、芳香族ポリカーボネート系榭脂 (A— 1)と熱可塑性ポリエステ ル系榭脂(B— 2)との混合比は、重量比で 30Z70〜: L00Z0である力 60/40-9 5Z5が好ましぐ 63Z37〜90Z10がさらに好ましぐ特に好ましくは 65 35〜85 Z15の範囲である。芳香族ポリカーボネート系榭脂 (A— 1)と熱可塑性ポリエステル 系榭脂(Β— 2)との混合比において、熱可塑性ポリエステル系榭脂(Β— 2)が 95Ζ5 より少なくなると得られた成形品の耐薬品性の面で、また 60Ζ40より多くなると耐熱 性や、難燃性と耐薬品性の物性バランスの面で好ましくなくなる傾向がある。
[0045] 本発明の (C)成分であるシリコーンィ匕合物は、芳香族基含有オルガノシロキサン化 合物からなり、 Q単位 (SiO )、 T単位 (RSiO )、 D単位 (R SiO)及び M単位 (R Si
2 1.5 2 3
O ) t 、う 4種類の構成単位のうち任意の組合わせで構成され、且つ、
0.5
R1 R2 SiO (1)
m n (4-m-n)/2
(式中、 R1は炭素数が 1〜4の一価の脂肪族炭化水素基を表し、 R2は炭素数が 6〜2 4の一価の芳香族炭化水素基を表す。
Figure imgf000015_0001
R2はそれぞれ 2種類以上存在していても 良!/、。 mと ηは、 1. l≤m+n≤l. 7、及び、 0. 4≤n/m≤2. 5を満たす数を表す。 )の平均組成式で表される。
[0046] 平均組成式(1)で表される芳香族基含有オルガノシロキサンィ匕合物は、分子内に 炭素数が 1〜4の一価の脂肪族炭化水素基 R1及び炭素数が 6〜24の一価の芳香族 炭化水素基 R2の両方を有すること、これら全炭化水素基と Si原子数とのモル比 m+ nが 1. l≤m+n≤l. 7という範囲内であること、炭素数が 1〜4の一価の脂肪族炭化 水素基 R1と炭素数が 6〜24の一価の芳香族炭化水素基 R2とのモル比 nZmが 0. 4 ≤n/m≤2. 5という範囲内であること、を満たす。なお、各元素および各炭化水素 基の割合は、水素、炭素およびケィ素の NMRを用いて算出する。
[0047] 炭素数が 1〜4の脂肪族炭化水素基 R1としては特に限定されず、例えば、メチル 基、ェチル基、 n—プロピル基、 i プロピル基、 n ブチル基、 s ブチル基、 tーブ チル基、等が例示される。これらの中で難燃ィ匕効果に優れるため好ましいのは、メチ ル基及びェチル基であり、より好ましいのはメチル基である。本願のシリコーン化合物 (C)には複数の R1に該当する部分が存在する力 全て同一であってもよいし、異なる 基が混在していてもよい。脂肪族炭化水素基の炭素数が 5以上になると、芳香族基 含有オルガノシロキサンィ匕合物自体の難燃性が低下するため難燃化効果が低くなる
[0048] 炭素数が 6〜24の一価の芳香族炭化水素基 R2としては特に限定されず、例えば 、フエ-ル基、メチルフエ-ル基、ジメチルフエ-ル基、ェチルフエ-ル基、ナフチル 基、アントラセニル基、等が例示される。これらの中で難燃ィ匕効果に優れるため好ま しいのは、芳香族環上に置換基を有しない芳香族基であり、より好ましいのはフエ- ル基である。本願のシリコーン化合物(C)には複数の R2に該当する部分が存在する 力 全て同一であってもよいし、異なる基が混在していてもよい。
[0049] 全炭化水素基と Si原子数とのモル比 m+nは、 1. l≤m+n≤l. 7という範囲内 である。 m+nの値は好ましくは 1. 15≤m+n≤l. 65、より好ましくは 1. 18≤m+n ≤1. 6、さらに好ましくは 1. 20≤m+n≤l. 55の範囲である。 m+nの値が 1. 1未 満であっても 1. 7より上であっても、芳香族基含有オルガノシロキサン化合物の難燃 化効果が低下するため好ましくない。上記のような範囲の構造を構築するにはオル ガノシロキサンィ匕合物の骨格中に T単位および Zまたは Q単位を導入することにより 達成でき、一般にそれらの単位の導入量が多 ヽほど上記範囲を容易に達成できる。 T単位および Zまたは Q単位の導入量としては全 Si原子中の 20%以上が好ましぐ 25%以上がさらに好ましぐ 30%以上が最も好ましい。
[0050] ポリフエ-レンエーテル系榭脂 (A— 1)と芳香族ビュル系榭脂(B— 1)とのァロイに 対してはオルガノシロキサンィ匕合物の骨格中に Q単位を一定量以上導入することが 難燃性に好ましい。 Q単位の導入量としては全 Si原子中の 10%以上が好ましぐ 15 %以上がさらに好ましぐ 20%以上が最も好ましい。 T単位および Zまたは Q単位の 導入量が増えるに従い、本発明の (D)成分である無機ケィ酸塩ィ匕合物との相溶性が 向上するため、より難燃効果の相乗性が向上する。
[0051] 炭素数力^〜 4の一価の脂肪族炭化水素基 R1と炭素数が 6〜24の一価の芳香族 炭化水素基 R2とのモル比 nZmは、 0. 4≤n/m≤2. 5という範囲内である。 nZm が 0. 4未満であると、分子内に一価の脂肪族炭化水素基 R1が多くなるが、この時に は芳香族基含有オルガノシロキサンィ匕合物の耐熱性が低下して芳香族基含有オル ガノシロキサンィ匕合物の難燃ィ匕効果が低下する原因となる。また逆に nZmが 2. 5以 上であっても、芳香族基含有オルガノシロキサン化合物の難燃ィ匕効果が低下する原 因となる。 n/mの値は、好ましくは 0. 43≤n/m≤2. 3、より好ましくは 0. 45≤n/ m≤2. 1、さらに好ましくは 0. 47≤n/m≤2. 0である。
[0052] 芳香族基含有オルガノシロキサンィ匕合物の構造の好適な例は主鎖骨格が Q単位 を 10モル%以上含有し、残りを T単位と D単位カゝら構成されるものである。また、別の 好適な例としては主鎖骨格が Q単位と T単位のみ力もなるもの、さらには Q単位と D単 位のみ力 構成されるものである。これら主鎖骨格の末端は M単位で封鎖されて 、る
[0053] このような芳香族基含有オルガノシロキサン化合物は既知のシリコーン合成法に より容易に合成することができる。すなわち、 R SIXで表される
3 一官能性ケィ素化合 物、 R SIXで表される二官能性ケィ素化合物、 RSiXで表される三官能性ケィ素化
2 2 3
合物、四ハロゲン化ケィ素、テトラアルコキシシラン、およびそれらの縮合物である有 機ケィ素化合物や、水ガラス、金属ケィ酸塩などの無機ケィ素化合物のなカゝから必 要に応じて選択した少なくとも 1種、好ましくは少なくとも 2種のケィ素化合物を縮合反 応させることにより合成できる。なお、式中、 Rは、芳香族炭化水素基又は脂肪族炭 化水素基を表す。 Xは、ハロゲン、水酸基、アルコキシ基などの、縮合してシロキサン 結合を形成しうる基を表す。
[0054] 反応条件は、用いる基質や目的化合物の組成および分子量によって異なる。反応 は、一般的に、必要により水、酸及び Z又は有機溶媒の存在下で、必要により加熱し ながらケィ素化合物を混合することにより行うことができる。各ケィ素化合物の使用割 合は、得られる芳香族基含有オルガノシロキサン化合物が上記条件を満たすよう、各 単位の含量、芳香族炭化水素基と脂肪族炭化水素基の比率を考慮して、適宜設定 すればよい。
[0055] さらに、上記オルガノシロキサン化合物の数平均分子量は 1000〜200000の範囲 にある。好まし <ίま 1500〜 1500000であり、 2000〜100000の範囲カ^ょり好まし ヽ 。一般に、従来技術で挙げたシリコーン系化合物においては分子量と難燃性につい て議論されているが、本発明においては、分子量の大小に関係なぐ分子内のシロ キサン結合の任意の比率によりシリコーンの耐熱性が制御できるので、上記範囲内 においては、分子量が難燃性に致命的に影響を及ぼすものではない。数平均分子 量が 1000より小さい場合にはオルガノポリシロキサンの耐熱性が低ぐ難燃性も不十 分である。また、数平均分子量が 200000より大きい場合は、榭脂中での分散性や 加工成形性に劣るといった問題がある。
[0056] 本発明のシリコーン化合物(C)の添加量としては、芳香族ポリカーボネートまたは ポリフエ-レンエーテル系榭脂 (Α) 30〜: L00重量部と芳香族ビュル系榭脂または熱 可塑性ポリエステル系榭脂 (Β) 0〜70重量部で構成された熱可塑性榭脂混合物 10 0重量部に対して 0. 1〜20重量部であり、物性の発現および経済的な面力 添加量 は 0. 3〜15重量部が好ましぐ 0. 5〜 10重量部が最も好ましい。
[0057] 芳香族ポリカーボネート (A— 1)と熱可塑性ポリエステル系榭脂(Β— 2)の熱可塑 性榭脂混合物の場合は、本発明のシリコーン化合物 (C)の添加量は熱可塑性榭脂 混合物 100重量部あたり 0. 1〜6重量部さらには 0. 2〜4. 5重量部でも目的とする 難燃性を得ることができ好まし ヽ。
添加量が 0. 1重量部未満では難燃性が不十分である場合があり、 20重量部以上で は特に物性面での問題はないが、より経済性が求められる。
[0058] 本発明の金属ケィ酸塩化合物(D)は、 ρΗが 8. 0以上であり、 SiO単位が 30重
2
量%以上を占める、平均粒子径が lnm〜 100 /z mの範囲にあるものである。この成 分は特定のシリコーンィ匕合物と併用して添加することにより難燃効果を高める目的で 用いられ、 SiO単位は 30重量%以上であり、難燃性の観点から 35%以上が好ましく
2
、 40重量%以上がさらに好ましい。
[0059] (D)成分として用いる、 SiO単位が 30重量%以上を占める金属ケィ酸塩化合物と しては特に限定されず、 K、 Naゝ Liゝ Caゝ Mnゝ Feゝ Niゝ Mgゝ Feゝ Al、 Ti、 Zn、 T <D うちから選ばれる一種以上金属元素を含有するものである。具体的な物質としては珪 酸マグネシウム、珪酸アルミニウム、珪酸カルシウム、タルク、マイ力、ワラストナイト、 カオリン、珪藻土、スメクタイト等が挙げられる。なかでも、マイ力、タルク、カオリン又 はスメクタイトが、得られる榭脂組成物の難燃性や機械的強度にも優れるため好まし い。
[0060] 金属ケィ酸塩化合物(D)は、平均粒子径が lnm〜100 μ mの微粒子である。平均 粒子径が 100 mを超えると、得られる成形品の外観が損なわれたり、榭脂組成物 の衝撃強度が低下する傾向が見られる。好ましくは Inn!〜 70 m、さらに好ましくは 10應〜50 μ m、より好ましくは 0. 5〜30 μ mである。 なお、本発明で!/、う平均粒 子径とはマイクロトラックレーザー回折法により測定する事ができる。
[0061] 金属ケィ酸塩ィ匕合物 (D)の形状については特に限定されないが、代表的なものと して、粉体状、粒状、針状、板状等が挙げられる。この無機化合物は天然物であって もよいし、合成されたものであってもよい。天然物の場合、産地等には特に限定はな ぐ適宜選択することができる。
[0062] 本発明の金属ケィ酸塩化合物(D)は、 pHが 8. 0以上を示すものである。金属ケィ 酸塩化合物の pHが 8. 0以上であるということは、ケィ酸ァ-オンと金属カチオンとか ら構成されるイオン結合的性質を有して 、ることであり、金属ケィ酸塩自身は熱的に 安定であるものも、シリコーンィ匕合物が共存する場合にはそのイオン結合性により高 温条件でシリコーンィ匕合物とィ匕学的相互作用し難燃性に相乗的に効果を及ぼしてい るものと考えられる。なお、本発明でいう pHは、 JIS—K—5101 B法に基づき、デジ タル pH計にて測定する事ができる。
[0063] このような金属ケィ酸塩ィ匕合物 (D)は、榭脂との接着性を高めるため、シラン処理 剤等の各種表面処理剤で表面処理がなされたものであってもよ 、。表面処理剤とし ては特に限定されず、従来公知のものを使用することができる力 エポキシシラン等 のエポキシ基含有シランカップリング剤、及び、アミノシラン等のアミノ基含有シラン力 ップリング剤は、榭脂の物性を低下させることが少ないため好ましい。その他にもポリ ォキシエチレンシラン等を用いることができる。表面処理方法としては特に限定され ず、通常の処理方法を利用できる。
[0064] これら金属ケィ酸塩化合物(D)は、 1種類のみを単独で用いてもよ!ヽし、平均粒子 径、種類、表面処理剤等が異なる 2種以上を併用してもよい。
[0065] 本発明の熱可塑性榭脂組成物における金属ケィ酸塩化合物 (D)の使用量は、芳 香族ポリカーボネートまたはポリフエ-レンエーテル系榭脂 (A) 30〜: LOO重量部と芳 香族ビュル系榭脂または熱可塑性ポリエステル系榭脂 (B) 0〜70重量部で構成され た熱可塑性榭脂混合物 100重量部に対して、 0. 1〜20重量部である。 0. 1重量部 未満であると、得られる榭脂組成物の難燃性が不十分であり、 20重量部を超えると、 得られる成形品の耐衝撃性や表面性が低下するうえ、溶融混練時の樹脂との混練が 困難となる傾向がある。好ましくは 0. 3〜15重量部であり、より好ましくは 0. 5〜: LO重 量部である。
[0066] 本発明で用いられるフッ素系榭脂 (E)とは、フッ素原子を有する榭脂である。具体 的には、ポリモノフルォロエチレン、ポリジフルォロエチレン、ポリトリフルォロエチレン 、ポリテトラフルォロエチレン、テトラフルォロエチレン Zへキサフルォロプロピレン共 重合体などのフッ素化ポリオレフイン榭脂、ポリフッ化ビ-リデン榭脂などを挙げること ができる。また、該フッ素系榭脂の製造に用いる単量体と共重合可能な単量体とを併 用し重合してえられた共重合体を用いてもょ 、。
[0067] フッ素系榭脂 (E)で好ましくはフッ素化ポリオレフイン榭脂であり、さらに好ましくは、 平均粒径が 700 μ m以下のフッ素化ポリオレフイン榭脂である。ここでいう平均粒径と は、フッ素化ポリオレフイン樹脂の一次粒子が凝集して形成される二次粒子の平均粒 径をいう。
[0068] さらに、フッ素化ポリオレフイン榭脂で好ましくは、密度と嵩密度の比 (密度 Z嵩密 度)が 6. 0以下のフッ素化ポリオレフイン榭脂である。ここでいう、密度と嵩密度とは、 J
IS— K6891に記載されて 、る方法にて測定したものである。
[0069] フッ素系榭脂 (E)は単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。 2 種以上を組み合わせて使用する場合には、組み合わせは限定されない。たとえば、 種類の異なるものなどが任意に用いられる。
[0070] フッ素系榭脂 (E)の使用量は、芳香族ポリカーボネート榭脂またはポリフエ-レンェ 一テル系榭脂 (A)および芳香族ビニル系榭脂または熱可塑性ポリエステル系榭脂( B)の二成分の合計 100重量部に対して 0. 005〜1重量部であり、好ましくは 0. 01 〜0. 75重量部、さらに好ましくは 0. 02-0. 6重量部である。使用量が 0. 005未満 では、難燃性を向上させる効果が小さぐ 1重量部を越えると本発明の難燃性榭脂組 成物の成形流動性、成形体表面外観性が低下する傾向にあるため好ましくな 、。
[0071] 本発明の難燃性榭脂組成物には、更に成形流動性を高めたり、難燃性を向上さ せるために、本発明の特性 (難燃性等)を損なわない範囲で、本発明以外のシリコー ン化合物等を添加することができる。
[0072] シリコーンィ匕合物は、広義のポリオルガノシロキサンのことをさし、具体的には、ジ メチルシロキサン、フエ-ルメチルシロキサン等の(ポリ)ジォルガノシロキサン化合物
;メチルシルセスキォキサン、フエ-ルシルセスキォキサン等の(ポリ)オルガノシルセ スキォキサン化合物;トリメチルシルへミオキサン、トリフエ-ルシルへミオキサン等の( ポリ)トリオルガノシルへミオキサンィ匕合物;これらを重合して得られる共重合体;ポリジ メチルシロキサン、ポリフエ-ルメチルシロキサン等が挙げられる。ポリオルガノシロキ サンである場合には、分子末端がエポキシ基、水酸基、カルボキシル基、メルカプト 基、アミノ基、エーテル基等により置換された変性シリコーンも有用である。シリコーン の形状には特に制限はなぐオイル状、ガム状、ワニス状、粉体状、ペレット状など任 意のものが利用可能である。
[0073] さらに本発明の熱可塑性榭脂組成物は、榭脂組成物の耐熱性や機械的強度を より高めるため、金属ケィ酸塩化合物 (D)以外の強化充填剤を更に添加することが できる。このような強化充填剤としては特に限定されず、例えば、ガラス繊維、カーボ ン繊維、金属繊維等の繊維状強化剤;酸化チタン、酸化鉄等の金属酸化物;炭酸力 ルシゥム、ガラスビーズ、ガラス粉末、セラミック粉末、金属粉末、カーボンブラック等 が挙げられる。これら強化充填剤は単独で用いてもよいが、種類、粒子径ゃ長さ、表 面処理等が異なる 2種以上を併用してもよい。
[0074] 上記強化充填剤は、榭脂との接着性を高めるため、表面処理がなされていてもよい 。このような表面処理を行うために用いられる表面処理剤としては特に限定されな!、 力 エポキシシラン等のエポキシ基含有シランカップリング剤力 榭脂の物性を低下 させることがないため好ましい。表面処理の方法としては特に限定されず、通常の処 理方法が用いられる。
[0075] これら強化充填剤を使用する場合、その添加量は、芳香族ポリカーボネートまたは ポリフエ-レンエーテル系榭脂 (A) 30〜: LOO重量部と芳香族ビュル系榭脂または熱 可塑性ポリエステル系榭脂 (B) 0〜70重量部で構成された熱可塑性榭脂混合物 10 0重量部に対して、 100重量部以下である。添加量が 100重量部を超えると、耐衝撃 性が低下するうえ、成形加工性や難燃性が低下する場合もある。好ましくは 50重量 部以下であり、より好ましくは 10重量部以下である。また、これら強化充填剤の添カロ 量が増加するとともに、成形品の表面性や寸法安定性が悪ィ匕する傾向が見られるた め、これらの特性が重視される場合には、強化充填剤の添加量をできるだけ少なくす ることが好ましい。
[0076] 本発明の難燃性榭脂組成物の特性を損なわない範囲でさらに他の任意の熱可塑 性あるいは熱硬化性の榭脂、例えばポリアミド系榭脂、ポリフエ-レンスルフイド系榭 脂、ポリアセタール系榭脂、ポリサルホン系榭脂、ポリオレフイン系榭脂、ゴム状弾性 体等を単独あるいは 2種以上あわせて添カ卩しても良 、。
[0077] また本発明の難燃性榭脂組成物をより高性能な物にするため、フエノール系酸ィ匕 防止剤、チォエーテル系酸化防止剤、等の酸化防止剤、リン系安定剤、等の熱安定 剤、等を単独または 2種類以上併せて使用することが好ましい。さらに必要に応じて、 通常良く知られた、安定剤、滑剤、離型剤、可塑剤、紫外線吸収剤、光安定剤、顔料 、染料、帯電防止剤、導電性付与剤、分散剤、相溶化剤、抗菌剤、等の添加剤を単 独または 2種類以上併せて使用することが出来る。
[0078] 本発明で製造された難燃性榭脂組成物の成形加工法は特に限定されるものでは なぐ熱可塑性榭脂について一般に用いられている成形法、例えば射出成形、プロ 一成形、押出成形、真空成形、プレス成形、カレンダー成形、等が適用できる。
実施例
[0079] 以下、本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるも のではない。なお、以下では特にことわりがない限り、「部」は重量部を、「%」は重量 %を意味する。 [0080] (製造例 1):シリコーンィ匕合物(CI)の製造
ジクロロジフヱ-ルシラン (468g)、ジクロロジメチルシラン(80g)、多摩化学工業社 製 Mシリケート 51 (29 lg)を 5Lフラスコに計りとり、 MIBK(1200g)を加えた後 10°C 以下で水(336g)を滴下した。その後反応混合物を 80°Cに過熱して 3時間反応させ た。その後室温に戻した後クロロトリメチルシラン(268g)、次いで水 (44g)を滴下し た後 60°Cで 3時間反応させた。得られた反応混合物は中性になるまで水洗し、分離 した有機相を減圧下溶媒を留去することにより目的のシリコーンィ匕合物 (C1)を得た。 生成物の分子量は GPC分析の結果、 Mn= 2660、 Mw= 3585 (ポリスチレン換算 、 RI検出)であった。 NMR分析から、平均組成式(1)で表される構成比率が m=0. 82、 n=0. 60であり、従って、 m+n= l. 42、 n/m= l. 37と算出できた。
[0081] (製造例 2):シリコーンィ匕合物(C2)の製造
メチルトリクロロシラン(177g)、フエ-ルトリクロロシラン(902g)を 5Lフラスコに計りと り、 MIBK (2500ml)をカ卩えた後 10°C以下で水(1040g)を滴下した。添加終了後、 トリメチルクロロシラン(321g)を滴下し、その後 60°Cで 3時間攪拌した。得られた反 応混合物は中性になるまで水洗し、分離した有機相を減圧下溶媒を留去することに より目的のオルガノシロキサンィ匕合物(C2)を得た。生成物の分子量は GPC分析の 結果、 Mn= 3095、 Mw=4762 (ポリスチレン換算、 RI検出)であった。 NMR分析 から、平均組成式(1)で表される構成比率が m=0. 61、 n=0. 67であり、従って、 m+n= l. 28, n/m= l. 10と算出できた。
[0082] (製造例 3):シリコーンィ匕合物(C3)の製造
ジクロロジフエ-ルシラン(253g)、トリクロ口フエ-ルシラン(179g)、ジクロロジメチル シラン (80g)、多摩化学工業社製 Mシリケート 51 (29 lg)を 5Lフラスコに計りとり、 M IBK(1200g)を加えた後 10°C以下で水(395g)を滴下した。その後反応混合物を 8 0°Cに加熱して 3時間反応させた。その後室温に戻した後クロロトリメチルシラン(317 g)、次いで水(52g)を滴下した後 60°Cで 3時間反応させた。得られた反応混合物は 中性になるまで水洗し、分離した有機相を減圧下溶媒を留去することにより目的のシ リコーン化合物(C3)を得た。生成物の分子量は GPC分析の結果、 Mn= 3229、 M w = 4215 (ポリスチレン換算、 RI検出)であった。 NMR分析から、平均組成式(1)で 表される構成比率が m=0. 80、n=0. 57であり、従って、 m+n= 1. 37、 n/m= 0. 71と算出できた。
[0083] (製造例 4):シリコーンィ匕合物(C4)の製造
トリクロ口フエ-ルシラン(200g)、多摩化学工業社製 Mシリケート 51 (110g)を 3Lフ ラスコに計りとり、 MIBK(800g)をカ卩えた後 10°C以下で水(100g)を滴下した。その 後反応混合物を 80°Cに加熱して 3時間反応させた。その後室温に戻した後クロ口トリ メチルシラン(100g)、次いで水(15g)を滴下した後 60°Cで 3時間反応させた。得ら れた反応混合物は中性になるまで水洗し、分離した有機相を減圧下溶媒を留去する ことにより目的のシリコーンィ匕合物(C4)を得た。生成物の分子量は GPC分析の結果 、 Mn= 2583、 Mw= 3355 (ポリスチレン換算、 RI検出)であった。 NMR分析から、 平均組成式(1)で表される構成比率が m= l. 07、 n=0. 46であり、従って、 m+n = 1. 53、nZm=0. 43と算出できた。
[0084] (参考製造例 1):芳香族基含有オルガノシロキサン化合物 (C5)の製造
メチルトリクロロシラン(637g)、フエ-ルトリクロロシラン(250g)を 5Lフラスコに計りと り、 MIBK (2500ml)をカ卩えた後 10°C以下で水(1040g)滴下した。添加終了後、トリ メチルクロロシラン(321g)を滴下し、その後 60°Cで 3時間攪拌した。得られた反応混 合物は中性になるまで水洗し、分離した有機相を減圧下溶媒を留去することにより目 的のオルガノシロキサンィ匕合物(C5)を得た。 NMR分析から、平均組成式(1)で表さ れる構成比率力 ¾ι= 1. 10、n=0. 19であり、従って、 m+n= l. 29, n/m=0. 1 7と算出できた。
[0085] (参考製造例 2):オルガノシロキサン化合物(C6)の製造
メチルトリクロロシラン(637g)、ジクロロジフエ-ルシラン(299g)を 6Lフラスコに計り とり、 MIBK(2500ml)をカ卩えた後 10°C以下で水(1040g)滴下した。その後反応混 合物を 80°Cに加熱して 3時間反応させた。得られた反応混合物は中性になるまで水 洗し、分離した有機相を減圧下溶媒を留去することにより目的のオルガノシロキサン 化合物(C6)を得た。生成物の分子量は GPC分析の結果、 Mn= 2467、 Mw= 35 35 (ポリスチレン換算、 RI検出)であった。 NMR分析から、平均組成式(1)で表され る構成 it率力 Sm=0. 60、 n=0. 33であり、従って、 m+n=0. 93、 n/m=0. 55と 算出できた。
[0086] 実施例、比較例で用いた原料を以下にまとめて示す。
PC:粘度平均分子量が 22000のビスフエノール A型ポリカーボネート(出光石油化 学 (株)製タフロン A2200または FN2200A)
PPE :対数粘度が 0. 50のポリ(2, 6—ジメチル— 1, 4—フエ-レン)エーテル榭脂( 三菱エンジニアリングプラスチックス (株)製 PX100F)
PS:ポリスチレン榭脂 (新日鉄化学 (株)製エスチレン G— 13)
AS:アクリロニトリル 'スチレン共重合体 (新日鉄化学 (株)製エスチレン AS—41)
HIPS:ブタジエン 'スチレン共重合体 (新日鉄化学 (株)製エスチレン HI H- 53)
PET:対数粘度 0. 70のポリエチレンテレフタレート榭脂 (カネボウ合繊 (株)製 EFG
- 70)
ABSは以下の方法により合成したものを用いた。
[0087] 撹拌機、還流冷却器、窒素吹込口、単量体追加口および温度計を備えた反応器 に、純水 250重量部およびパルミチン酸ナトリウム 0. 5重量部(固形分)を仕込み、撹 拌しながら窒素気流下で 70°Cまで昇温した。 70°C到達後、ナトリウムホルムアルデヒ ドスルホキシレート 0. 4重量部、エチレンジァミン 4酢酸 2ナトリウム 0. 01重量部、硫 酸第一鉄(七水塩) 0. 0025重量部をカ卩えた後、アクリロニトリル 28重量部、スチレン 72重量部、クメンハイド口パーオキサイド 0. 2重量部および tードデシルメルカプタン 0. 3重量部の混合物を 8時間かけて連続滴下追加した。この際、滴下開始後 1. 5時 間目および 3時間目に各々パルミチン酸ナトリウム 0. 5重量部(固形分)を添加した。 追加終了後 70°Cで 2時間撹拌し、重合を終了し、重合体 (ABS— 1)のラテックスを 得た。重合転ィ匕率は 98%であった。
[0088] 一方、 100L耐圧重合機に純水 200重量部を仕込み、重合機内を脱気し、窒素置 換した後、ブタジエン 100重量部、ロジン酸カリウム 0. 3重量部、ロジン酸ナトリウム 0 . 1重量部、炭酸ナトリウム 0. 05重量部および過硫酸カリウム 0. 2重量部を仕込んだ 。 60°Cまで昇温して重合を開始し、 30時間重合を継続させた。得られたジェン系ゴ ム重合体ラテックスの体積平均粒子径は 0. 2312 mであり、重合転ィ匕率は 95%で めつに。 [0089] 続ヽて、撹拌機、還流冷却器、窒素吹込口、単量体追加口および温度計を備えた 反応器に、純水 250重量部、および上記ジェン系ゴム重合体ラテックス 70重量部( 固形分換算)を仕込み、撹拌しながら窒素気流下で 65°Cまで昇温し、ナトリウムホル ムアルデヒドスルホキシレート 0. 2重量部、エチレンジァミン 4酢酸 2ナトリウム 0. 01 重量部および硫酸第一鉄(七水塩) 0. 0025重量部をカ卩えた後、アクリロニトリル 8重 量部、スチレン 22重量部、タメンノヽイド口パーオキサイド 0. 3重量部の混合物を 5時 間かけて連続滴下追加し、追加終了後 65°Cで 2時間撹拌し、重合を終了し、ジェン 系ゴム含有グラフト共重合体 (ABS— 2)のラテックスを得た。重合転ィ匕率は 98%で めつに。
[0090] 得られたジェン系ゴム含有グラフト共重合体 (ABS— 2)ラテックスと上記で得られた 重合体 (ABS— 1)ラテックスを 20: 80の割合で混合し、フエノール系抗酸化剤 (旭電 化工業 (株)製 AO— 50) 0. 5重量部を加えた後、塩ィ匕カルシウム 3重量部を 5重量 %水溶液として添加し、凝固スラリーを得た。凝固スラリーを 95°Cまで加熱した後、 5 0°Cまで冷却して脱水後、乾燥させてパウダー状の ABS榭脂を得た。
シリコーン化合物(C7):ォクタフエ-ルシルセスキォキサン(Hybrid Plastics社製 MS0840)
金属ケィ酸塩化合物
(D 1):タルク(日本タルク(株)製 SG— 200、pH = 9. 3、 SiO単位含有量 = 60wt
2
%、平均粒子径 = 3. 2 μ ΐη)
(D2) :マイ力((株)山口雲母工業所製 A—21 S、pH = 8. 0、 SiO単位含有量 = 4
2
5wt%、平均粒子径 = 22. 5 /z m)
(E)フッ素系榭脂:テトラフルォロエチレン (ダイキン工業製ポリフロン FA— 500) (以 下、 PTFEと略記)
(実施例 1)
旨糸且 の調
ポリカーボネート榭脂 90重量部、ポリスチレン榭脂 10重量部、製造例 1で製造した榭 脂添加用難燃剤(C 1) 5重量部、タルク (D 1) 5重量部、並びに、燐系及びフ ノール 系安定剤としてそれぞれアデカスタブ HP— 10及び AO— 60 (いずれも旭電ィ匕製で 商品名)各 0. 1重量部、 PTFEO. 2重量部を予めドライブレンドした後、シリンダー温 度を 270°Cに設定したベント付き二軸押出機 [TEX44 (商品名):日本製鋼所製]の ホッパーに供給し溶融押出することにより、榭脂組成物を得た。
,験 のィ乍)^
得られたペレットを 120°Cにて 5時間乾燥させた後、 35t射出成形機を用い、シリンダ 一温度 295°C、金型温度 50°Cにて厚み 1. 6mmバー(幅 12mm、長さ 127mm)を 作成して下記の評価を行った。結果を表 1に示す。 難燃性は UL— 94規格に従 、難燃性を V試験で評価し、総燃焼秒数を求めた。 (実施例 2〜32及び比較例 1〜17)
榭脂、シリコーンィ匕合物、無機ケィ酸塩化合物の種類、添加量を変更した以外は、 実施例 1と同様にして榭脂組成物を得た。こうして得られたペレットから、上と同様に して各試験片を作成した。これらの試験片で上記評価方法を実施した。評価結果を 表 1〜6に示す。
[表 1]
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000029_0001
表 2 実施例
12 13 14 15 16 17 18 19 20 21 芳香族ポリカーボネート PC 80 80 80 80 80 80 80 80 70 70 熱可塑性ポリエステル PET 20 20 20 20 20 20 20 20 30 30 シリコーン化合物 C1 3 3 4 4 4 4 4 4
C2 3 4
D1 1 3 1 3 1 3 金属ゲイ酸塩
D2 1 3 3 3 総燃焼秒数 (sec.) 152 101 77 50 102 78 143 55 88 95
〕〔0094
表 3 実施例
22 23 24 25 26 27 28 29 30 31 32 ポリフヱニレンエーテル系樹脂 PPE 80 80 80 80 80 80 80 80 70 70 70
PS 20 20 20 20 20 20 30 30 芳香族ビニル系樹脂
HIPS 20 20 30
C1 6 6 6 6 シリコーン化合物 C3 3 3 3 6
C4 6 6 6
D1 1 5 5 5 5 5 5
金属ゲイ酸塩
D2 1 5 5 5 総燃焼秒数 (sec.) 75 67 68 44 42 40 43 42 49 50 51
Figure imgf000031_0001
ssffi090
表 5 比較例
7 8 9 10 1 1 12 芳香族ポリカーボネート PC 80 70 80 80 80 80 熱可塑性ポリエステル PET 20 30 20 20 20 20 シリコーン化合物 C1 3 3
C5 3 4
D1 1 3 1
金属ケィ酸塩
D2 3 総燃焼秒数 (sec.) 228 342 388 354 247 186
Figure imgf000033_0001
[0097] 表 1〜6に示す通り、実施例ではいずれも非常に良好な難燃性を示し短時間に自己 消火している。
[0098] 比較例 1から比較例 17ではシリコーンィ匕合物または金属ケィ酸塩ィ匕合物が単独で 添加されており難燃性が不十分であったり、本発明と異なるシリコーンィ匕合物を用い て!、るため難燃ィ匕効果が不十分であった。
表 1〜6に示すように、いずれも本発明の組成物を形成することにより難燃性に優 れた榭脂組成物が提供できる。

Claims

請求の範囲
[1] 芳香族ポリカーボネートまたはポリフエ-レンエーテル系榭脂 (A) 30〜: LOO重量部 と芳香族ビュル系榭脂または熱可塑性ポリエステル系榭脂 (B) 0〜70重量部で構成 された熱可塑性榭脂混合物 100重量部に対して平均組成式(1)
R1 R2 SiO (1)
m n (4-m-n)/2
(式中、 R1は炭素数が 1〜4の一価の脂肪族炭化水素基を表し、 R2は炭素数が 6〜2 4の一価の芳香族炭化水素基を表す。
Figure imgf000035_0001
R2はそれぞれ 2種類以上存在していても 良!/、。 mと ηは、 1. l≤m+n≤l. 7、及び、 0. 4≤n/m≤2. 5を満たす数を表す。 )で表されるシリコーン化合物(C) 0. 1〜20重量部および、 pHが 8. 0以上であり、 Si O単位が 30重量%以上を占める、平均粒子径が lnm〜 100 mの範囲にある金属
2
ケィ酸塩化合物 (D) 0. 1〜20重量部を含有することを特徴とする難燃性榭脂組成 物。
[2] さらにフッ素系榭脂 (E) 0. 005〜1重量部含有する請求項 1記載の系難燃性榭脂 組成物。
[3] (C)成分のシリコーン化合物力 R3SiO 単位(式中 R3は炭素数 1〜4のアルキル
3/2
基、炭素数 6〜24の芳香族基、力もなる群より選択され、同一であっても、異なっても よい)および Zまたは SiO単位を全 Si原子中の 20%以上含有するシリコーンィ匕合物
2
である請求項 1または 2記載の難燃性榭脂組成物。
[4] (C)成分のシリコーン化合物力 SiO単位を全 Si原子中の 10モル%以上を占める
2
シリコーンィ匕合物である請求項 1から 3のいずれか一項に記載の難燃性榭脂組成物
[5] (C)成分のシリコーン化合物の主鎖骨格力 R3SiO 単位 (式中 R3は炭素数 1〜4
3/2
のアルキル基、炭素数 6〜24の芳香族基、力 なる群より選択され、同一であっても 、異なってもよい)と SiO単位のみ力 なることを特徴とする請求項 1から 4のいずれ
2
か一項に記載の難燃性榭脂組成物。
[6] (C)成分のシリコーン化合物の主鎖骨格が、 R2SiO 単位 (式中 R3は炭素数 1〜4
2/2
のアルキル基、炭素数 6〜24の芳香族基、力 なる群より選択され、同一であっても 、異なってもよい)と SiO単位のみ力 なることを特徴とする請求項 1から 4のいずれ か一項に記載の難燃性榭脂組成物。
[7] (C)成分のシリコーン化合物力 1000から 200000の範囲にある数平均分子量で ある請求項 1から 6のいずれか一項に記載の難燃性榭脂組成物。
[8] (D)成分の金属ケィ酸塩化合物が Kゝ Naゝ Liゝ Caゝ Mn、 Feゝ Niゝ Mgゝ Feゝ Al、 T i、 Zn、 Zrのうちから選ばれる一種以上金属元素を含有することを特徴とする請求項 1から 7のいずれか一項に記載の難燃性榭脂組成物。
PCT/JP2005/006626 2004-04-22 2005-04-04 難燃性樹脂組成物 WO2005103154A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/547,837 US20080125527A1 (en) 2004-04-22 2005-04-04 Flame-Retardant Resin Composition
JP2006512496A JPWO2005103154A1 (ja) 2004-04-22 2005-04-04 難燃性樹脂組成物
EP05728874A EP1739130A1 (en) 2004-04-22 2005-04-04 Flame-retardant resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-126542 2004-04-22
JP2004-126539 2004-04-22
JP2004126539 2004-04-22
JP2004126542 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005103154A1 true WO2005103154A1 (ja) 2005-11-03

Family

ID=35196948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006626 WO2005103154A1 (ja) 2004-04-22 2005-04-04 難燃性樹脂組成物

Country Status (4)

Country Link
US (1) US20080125527A1 (ja)
EP (1) EP1739130A1 (ja)
JP (1) JPWO2005103154A1 (ja)
WO (1) WO2005103154A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048202A1 (de) * 2008-09-20 2010-04-01 Bayer Materialscience Ag Spannungsrissbeständige und verzugsarme Zweikomponenten-Formteile enthaltend plättchen- oder schuppförmigen anorganischen Füllstoff ausgenommen Talk
DE102008048204A1 (de) * 2008-09-20 2010-04-01 Bayer Materialscience Ag Spannungsrissbeständige und verzugsarme Zweikomponenten-Formteile enthaltend Talk
US9050784B2 (en) * 2010-12-22 2015-06-09 E I Du Pont De Nemours And Company Fire resistant back-sheet for photovoltaic module
CN105189651B (zh) * 2013-03-15 2017-09-01 沙特基础全球技术有限公司 含有光敏添加剂的共混物
EP3822320B1 (en) * 2018-07-11 2023-09-06 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115003A (ja) * 1999-10-19 2001-04-24 Idemitsu Petrochem Co Ltd ポリカーボネート樹脂組成物
JP2001139790A (ja) * 1999-11-12 2001-05-22 Kanegafuchi Chem Ind Co Ltd 難燃性熱可塑性樹脂組成物
JP2001316671A (ja) * 2000-05-01 2001-11-16 Kanegafuchi Chem Ind Co Ltd 難燃剤
JP2001323269A (ja) * 2000-05-11 2001-11-22 Kanegafuchi Chem Ind Co Ltd 難燃剤及び難燃性樹脂組成物
JP2001329155A (ja) * 2000-05-19 2001-11-27 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2002097374A (ja) * 2000-09-21 2002-04-02 Asahi Kasei Corp 難燃性樹脂組成物
JP2003082218A (ja) * 2001-09-11 2003-03-19 Teijin Chem Ltd 難燃性樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166812A (en) * 1977-09-30 1979-09-04 General Electric Company Filled compositions of a polyphenylene ether resin and rubber-modified alkenyl aromatic resins
WO1998003587A1 (en) * 1996-07-22 1998-01-29 Icc Industries Inc. Flame retardant polyolefins for molding applications
TWI317749B (en) * 2002-02-15 2009-12-01 Kaneka Corp Graft copolymers and impact-resistant flame-retardant resin compositions containing the same
CA2456423A1 (en) * 2002-04-26 2003-11-06 Kaneka Corporation Flame-retardant thermoplastic resin composition
CA2483647A1 (en) * 2002-04-30 2003-11-13 Kaneka Corporation Polyorganosiloxane-containing graft copolymer composition
EP1614700A1 (en) * 2003-04-11 2006-01-11 Kaneka Corporation Polyorganosiloxane-containing graft copolymer, resin compositions containing the same and process for production of polyorganosiloxane emulsions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115003A (ja) * 1999-10-19 2001-04-24 Idemitsu Petrochem Co Ltd ポリカーボネート樹脂組成物
JP2001139790A (ja) * 1999-11-12 2001-05-22 Kanegafuchi Chem Ind Co Ltd 難燃性熱可塑性樹脂組成物
JP2001316671A (ja) * 2000-05-01 2001-11-16 Kanegafuchi Chem Ind Co Ltd 難燃剤
JP2001323269A (ja) * 2000-05-11 2001-11-22 Kanegafuchi Chem Ind Co Ltd 難燃剤及び難燃性樹脂組成物
JP2001329155A (ja) * 2000-05-19 2001-11-27 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2002097374A (ja) * 2000-09-21 2002-04-02 Asahi Kasei Corp 難燃性樹脂組成物
JP2003082218A (ja) * 2001-09-11 2003-03-19 Teijin Chem Ltd 難燃性樹脂組成物

Also Published As

Publication number Publication date
JPWO2005103154A1 (ja) 2008-03-13
US20080125527A1 (en) 2008-05-29
EP1739130A1 (en) 2007-01-03

Similar Documents

Publication Publication Date Title
JP3454515B2 (ja) 難燃性熱可塑性樹脂組成物
CN101679739A (zh) 阻燃性聚碳酸酯树脂组合物及其成形品
JPH11181268A (ja) 難燃性熱可塑性樹脂組成物
TW200932828A (en) Impact resistant, flame retardant thermoplastic molding composition
JPH10168297A (ja) 難燃性熱可塑性樹脂組成物
EP0992542B1 (en) Flame-retardant thermoplastic resin composition
WO2005103154A1 (ja) 難燃性樹脂組成物
JP2000103953A (ja) 難燃性熱可塑性樹脂組成物
JP3459736B2 (ja) 難燃性樹脂組成物
JPH10114856A (ja) 難燃性熱可塑性樹脂組成物
JP2000159995A (ja) 難燃性熱可塑性樹脂組成物
JP2007321138A (ja) 高熱伝導性熱可塑性樹脂組成物
JPH10130510A (ja) 難燃性熱可塑性樹脂組成物
JPH11343400A (ja) 難燃性熱可塑性樹脂組成物
JP2000044786A (ja) 難燃性熱可塑性樹脂組成物
WO2006126670A1 (ja) 難燃性樹脂組成物
CN113939562B (zh) 热塑性树脂组合物及由其形成的模制品
JP3457811B2 (ja) ポリカーボネート樹脂組成物
JP2006274187A (ja) 難燃性樹脂組成物
JP2002167499A (ja) 難燃性樹脂組成物
JP2000053851A (ja) 難燃性熱可塑性樹脂組成物
JP2001139790A (ja) 難燃性熱可塑性樹脂組成物
JP3875414B2 (ja) ポリカーボネート系樹脂組成物
JPH07196873A (ja) 難燃性樹脂組成物
JP4047086B2 (ja) 難燃性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512496

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005728874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005728874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11547837

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005728874

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547837

Country of ref document: US