WO2005097674A1 - 球状炭素材の製造方法 - Google Patents

球状炭素材の製造方法 Download PDF

Info

Publication number
WO2005097674A1
WO2005097674A1 PCT/JP2005/005581 JP2005005581W WO2005097674A1 WO 2005097674 A1 WO2005097674 A1 WO 2005097674A1 JP 2005005581 W JP2005005581 W JP 2005005581W WO 2005097674 A1 WO2005097674 A1 WO 2005097674A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
weight
carbon material
monomer
carbon
Prior art date
Application number
PCT/JP2005/005581
Other languages
English (en)
French (fr)
Inventor
Naohiro Sonobe
Hiroshi Ohta
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to KR1020067018830A priority Critical patent/KR101151663B1/ko
Priority to EP05721508A priority patent/EP1743870A4/en
Priority to JP2006512038A priority patent/JP4836781B2/ja
Priority to US11/547,364 priority patent/US7651817B2/en
Publication of WO2005097674A1 publication Critical patent/WO2005097674A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a spherical carbon material having excellent suitability as, for example, a negative electrode material of a nonaqueous electrolyte secondary battery.
  • the system is electrochemically doped between the layers of the negative electrode carbon. Then, the lithium-doped carbon acts as a lithium electrode, and with discharge, the lithium is undoped from between the layers of the negative electrode carbon and returns to the positive electrode.
  • non-aqueous electrolyte lithium secondary batteries have been expected to be used not only for power supplies for small portable devices but also as power supplies for electronic and hybrid electric vehicles (hereinafter referred to as "HEV")!
  • HEVs use an internal combustion engine in addition to a battery as a vehicle power source, so a large amount of energy is not required.However, a high output that drives the vehicle or sufficiently satisfies the vehicle's power performance is required. You. Furthermore, it is indispensable to efficiently recover vehicle braking energy in order to promote low fuel consumption, and high input characteristics are also required for that purpose.
  • Patent Document 5 As a method for improving the output characteristics of a nonaqueous electrolyte lithium secondary battery, it has been proposed to control the thickness of the electrode and the particle size of the active material (Patent Document 5 below). That is, the reaction area can be increased by making the electrode thinner, and the difference in the reaction potential distribution in the thickness direction of the electrode can be reduced. As a result, the polarization between the layer on the surface side of the electrode and the layer on the current collector side can be reduced, and a decrease in performance at the time of large current discharge is reduced, so that high output can be obtained. However, its output is still not enough, and higher output is required. In addition, when the electrodes are made thinner, the current collector plate / separator for the positive electrode and the negative electrode are used more than usual, and there is a problem that the energy density of the battery is reduced, and these improvements are also expected.
  • non-graphitizable carbon is promising as a negative electrode material for non-aqueous electrolyte lithium secondary batteries for HEVs because of its ability to expand and contract particles due to lithium doping and de-doping reactions, and has high cycle durability.
  • the structure of the non-graphitizable carbon varies in various ways depending on the structure of the carbon precursor and the subsequent heat treatment conditions.
  • Structural control is important to obtain good charge / discharge characteristics.
  • non-graphitizable carbon particles having good charge / discharge capability have been obtained by firing and then grinding a carbon precursor, and are indispensable for thinning the active material of the electrode. If a large amount of pulverizing energy is required, small particles with a small force will cause an increase in fine powder, resulting in a decrease in battery reliability. . Further, when the pulverization and the removal of the fine particles for the small particle diameter are advanced, the problem that the pulverization yield becomes extremely low occurs.
  • Synthetic resins include thermosetting resins whose polycondensation proceeds by heat and vinyl resins obtained by radical polymerization.
  • Thermosetting resins generally show a relatively good carbonization yield, but are difficult to handle because they are viscous condensates at the initial stage of condensation, and more steps are required to obtain spherical particles.
  • Patent Document 7 discloses a spheroidal graphite hard carbon made from a phenol resin, but does not specifically disclose a method for producing a spherical phenol resin as the raw material.
  • the discharge capacity of the obtained spheroidal graphite hard carbon is 185 mAhZg, which is considerably low.
  • vinyl resin is obtained as a spherical polymer by radical suspension polymerization.However, almost no resin is left after depolymerization or thermal decomposition during carbonization treatment. is there.
  • Patent Document 1 JP-A-57-208079
  • Patent Document 2 JP-A-62-90863
  • Patent Document 3 JP-A-62-122066
  • Patent Document 4 JP-A-2-66856
  • Patent Document 5 JP-A-11-185821
  • Patent Document 6 JP-A-6-150927
  • Patent Document 7 JP-A-6-20680
  • a main object of the present invention is to provide a spherical carbon material capable of producing a spherical carbon material at a good yield from a spherical vinyl resin obtained with a good sphericity by suspension polymerization or the like. It is an object of the present invention to provide a method for producing the same.
  • Another object of the present invention is to produce a spherical carbon material having high output characteristics and high durability when used as a negative electrode material for a non-aqueous electrolyte secondary battery and capable of providing a high discharge capacity. It is to provide a method. [0012] According to the study of the present inventors, it has been found that subjecting a carbon precursor obtained by oxidizing spherical vinyl resin to a carbonization step is extremely effective in achieving the above object. .
  • a spherical vinyl resin is oxidized in an oxidizing gas atmosphere to obtain a spherical carbon precursor, which is then placed in a non-oxidizing gas atmosphere.
  • Medium It is characterized by carbonization at 1000-2000 ° C. It has also been found that it is particularly preferable to use a crosslinked spherical vulcan resin obtained from a monomer mixture having a specific composition as a raw material.
  • a spherical vulcan resin particularly preferably used in the present invention can be obtained, for example, as follows. That is, a monomer mixture obtained by mixing a radical polymerizable bullet monomer and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer, and the mixture is suspended by stirring and mixing to form the monomer mixture into fine droplets. Thus, by raising the temperature in advance, radical polymerization can be promoted to obtain a true spherical resin.
  • the butyl monomer any butyl monomer capable of forming a vinyl resin that provides a carbon precursor by acidification is used, but a crosslinking agent is included to provide a crosslinked butyl resin that increases the carbonization yield. Bull monomer mixtures are preferably used. Further, from the viewpoint that the carbonization yield from the obtained spherical vinyl resin is high and the obtained spherical carbon has favorable battery performance, the raw monomer mixture is 10-80% by weight of the styrene monomer and 10-80% by weight. include acrylonitrile monomer 90 weight 0/0, not further particularly preferably be used a monomer mixture containing 15 weight 0/0 or more crosslinking agents of the styrene-based monomer.
  • Styrene-based monomers include, in addition to styrene, a styrene derivative in which a hydrogen of a butyl group or a hydrogen of a phenyl group is substituted, or a heterocyclic group instead of a phenyl group! And a compound in which the compound is bonded to a vinyl group.
  • a- or j8-methinolestyrene ⁇ - or 13-ethylstyrene, methoxystyrene, phenylstyrene, or chlorostyrene, or o, m or ⁇ -methylstyrene, ethylstyrene, methylsilylstyrene, Hydroxystyrene, cyanostyrene, nitros
  • Representative examples include ethylene, aminostyrene, carboxystyrene, sulfoxystyrene, sodium styrene sulfonate, and the like, as well as vinylpyridine, vinylthiophene, vinylpyrrolidone, vinylnaphthalene, vinylanthracene, and vinylbiphenyl. Included as
  • acrylonitrile-based monomer examples include acrylonitrile and metal-tolyl. Of these, acrylonitrile is preferred in terms of price.
  • styrene-based monomer is contained 10 to 80 wt 0/0, is preferably contained particularly 20- 70 wt 0/0.
  • styrene monomer is less than 10 weight 0/0, the more relatively soluble acrylonitrile monomer, tends to difficult to form spherical with good monomer droplets during suspension polymerization. If the amount of the styrene-based monomer exceeds 80% by weight, the amounts of the acrylonitrile-based monomer and the crosslinking agent are inevitably reduced, which is not preferable.
  • the acrylonitrile-based monomer in the monomer mixture is 10 to 90% by weight (88.5% by weight or less in consideration of the minimum amount of the crosslinking agent in the mixture), more preferably 20 to 80% by weight, and especially 30 to 80% by weight. — Preferably 70% by weight.
  • the acrylonitrile-based monomer improves the carbonization yield of the formed vinyl resin, and further reduces the specific surface area of the resulting spherical carbon material, thereby reducing the carbon surface of the electrolytic solution when used as a negative electrode material for nonaqueous electrolyte secondary batteries. It works effectively to suppress the decomposition reaction of.
  • the amount of the acrylonitrile-based monomer is less than 10% by weight, the above-mentioned effects are poor, and if it exceeds 90% by weight, the spheroidity of the obtained spherical vinyl resin is undesirably reduced.
  • the monomer mixture contains 15% by weight or more, particularly 20% by weight or more of the styrene-based monomer (and the lower limit of 10% by weight of the styrene-based monomer and the acrylonitrile-based monomer mixture in the monomer mixture).
  • the crosslinking agent in such a ratio as not to fall below the above range. If the cross-linking agent is less than 15% by weight of the styrene-based monomer, it may be difficult to perform the oxidation treatment while the spherical vinyl resin is decomposed and melted during the oxidation treatment (insolubilization treatment) of the spherical vinyl resin. It is.
  • crosslinking agent examples include dibutylbenzene, divinylpyridine, dibutyltoluene, divinylnaphthalene, diarylphthalate, ethylene glycol diatalylate, and ethylene glycol.
  • cross-linking agents examples include polybutyl aromatic hydrocarbons (eg, dibutylbenzene), glycol trimetatalates (eg, ethylene glycol dimethatalylate), and polybutyl hydrocarbons (eg, tributylcyclohexane). Kisan). Most preferred is dibutylbenzene because of its pyrolytic properties.
  • the polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator that is soluble in a polymerizable monomer is preferable.
  • the polymerization initiator includes, for example, dialkyl peroxide, diacyl peroxide, peroxyster, peroxydicarbonate, and azodiamide.
  • dialkyl peroxides such as methylethyl peroxide, di-butyl peroxide, dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 3 Diasyl peroxide such as, 5,5-trimethylhexanoyl peroxide; t-butyl peroxybivalate, t-hexyl oxyvaliva, t-butyl peroxy neodecanoate, t-hexyl oxyne decanoate; 1-cyclohexyl 1 methylethyl peroxy neodecanoate, 1,1,3,3-tetramethylbutyl peroxy neodecanoate, Tamyl peroxy neode Peroxyesters such as canoate, ( ⁇ , ⁇ -bis neodecanoyl baroxy) diisopropylbenzene; bis
  • the polymerization initiator is usually contained in the monomer mixture. However, if it is necessary to suppress early polymerization, a part or all of the polymerization initiator is contained in the aqueous dispersion medium, and the polymerization initiator is added during the granulation step. Alternatively, after the granulation step, the mixture may be transferred into droplets of the polymerizable mixture.
  • the polymerization initiator is used in an amount of 0.001 to 20 parts by weight based on 100 parts by weight of the BULL monomer.
  • the suspension polymerization is usually performed in an aqueous dispersion medium containing a dispersion stabilizer (suspension agent).
  • a dispersion stabilizer include silica, calcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate, calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, barium carbonate, and magnesium carbonate. be able to.
  • co-stabilizers such as condensation products of diethanolamine and aliphatic dicarboxylic acids, condensation products of urea and formaldehyde, polybutylpyrrolidone, polyethylene oxide, polyethyleneimine, tetramethylammonium-dimethyl hydroxide, gelatin, Methyl cellulose, polyvinyl alcohol, octyl sulfosuccinate, sonolebitan ester, various emulsifiers and the like can be used.
  • the dispersion stabilizer is usually used in a ratio of 0.1 to 20 parts by weight based on 100 parts by weight of the polymerizable monomer mixture.
  • the aqueous dispersion medium containing a dispersion stabilizer is usually prepared by blending a dispersion stabilizer or an auxiliary stabilizer with deionized water.
  • the pH of the aqueous phase at the time of polymerization is appropriately determined depending on the type of the dispersion stabilizer and the auxiliary stabilizer used. For example, when silica such as colloidal silica is used as a dispersion stabilizer, polymerization is performed in an acidic environment. Acidify the aqueous dispersion medium To adjust the pH of the system to about 3-4, add acid as needed. When magnesium hydroxide or calcium phosphate is used, it is polymerized in an alkaline environment.
  • One of the preferable combinations is a combination of colloidal silica and a condensation product.
  • the condensation product is preferably a condensation product of diethanolamine and an aliphatic dicarboxylic acid, and more preferably a condensation product of diethanolamine and adipic acid, that is, a condensation product of diethanolamine and itaconic acid.
  • Condensates are defined by their acid number.
  • the acid value is 60 or more and less than 95.
  • Particularly preferred is a condensate having an acid value of 65 or more and 90 or less.
  • Silica is used as a dispersion stabilizer in suspension polymerization, and carbonization is carried out while holding silica on the surface of a spherical synthetic resin formed by polymerization. It is particularly preferable to use silica (colloidal silica) as a stabilizer because it can suppress surface oxidation that occurs when the carbon material is left.
  • the amount of colloidal silica used varies depending on the particle size. Usually, 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, is used per 100 parts by weight of the monomer mixture.
  • the condensation product is usually used in a proportion of 0.05 to 2 parts by weight based on 100 parts by weight of the monomer mixture.
  • the inorganic salt such as sodium salt is used in an amount of about 0 to 100 parts by weight based on 100 parts by weight of the monomer mixture.
  • Another preferred combination is a combination of colloidal silica and a water-soluble nitrogen-containing compound.
  • the water-soluble nitrogen-containing compound include polybutylpyrrolidone, polyethyleneimine, polyoxyethylene alkylamine, polydimethylaminoethyl methacrylate and polydialkylaminoalkyl (meth) represented by polydimethylaminoethyl acrylate.
  • Atharylate polydimethylaminopropylacrylamide ⁇ polydimethylaminopropyl
  • Polydialkylaminoalkyl (meth) acrylamide represented by pyrmethacrylamide, polyacrylamide, polycationic acrylamide, polyamine sulfone, and polyallylamine.
  • colloidal silica and polybutylpyrrolidone is preferably used.
  • Other preferred combinations include combinations of magnesium hydroxide and Z or calcium phosphate with an emulsifier.
  • the dispersion stabilizer include poorly water-soluble metals obtained by reacting a water-soluble polyvalent metal compound (eg, magnesium chloride) with an alkali metal hydroxide salt (eg, sodium hydroxide) in an aqueous phase.
  • a colloid of a hydroxide for example, magnesium hydroxide
  • the calcium phosphate a reaction product of sodium phosphate and calcium salt in the aqueous phase can be used.
  • an emulsifier an anionic surfactant such as a dialkyl sulfosuccinate or a phosphate of polyoxyethylene alkyl (aryl) ether may be used.
  • At least one compound selected from the group consisting of alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acids, and boric acid in an aqueous dispersion medium can be present.
  • the suspension polymerization is carried out in the presence of these compounds, the polymerization particles do not agglomerate during the polymerization, and the polymer is stable while efficiently removing the heat generated by the polymerization without adhering to the polymerization vessel wall.
  • a spherical synthetic resin can be produced.
  • alkali metal nitrites sodium nitrite and potassium nitrite are preferred in terms of availability and price.
  • Ascorbic acids include ascorbic acid, metal salts of ascorbic acid, and esters of ascorbic acid.
  • water-soluble ones are preferably used.
  • “water-soluble” with respect to ascorbic acids means those having a solubility in water at 23 ° C. of lgZlOOcm 3 or more, and is preferably ascorbic acid and its alkali metal salt.
  • L-ascorbic acid (vitamin C), sodium ascorbate, and potassium ascorbate are particularly preferably used in terms of availability, price, and effect. These compounds are generally used in a proportion of 0.001 to 1 part by weight, preferably 0.01 to 0.1 part by weight, per 100 parts by weight of the monomer mixture.
  • the suspension polymerization 5-150 parts by weight, preferably 15-100 parts by weight, of a monomer mixture is dispersed in 100 parts by weight of a water-based dispersion medium to which the above-mentioned various auxiliaries are added.
  • a high-speed agitation suitable for producing a monomer mixture droplet having a diameter is performed by maintaining the polymerization system under a slower agitation speed such that coalescence does not usually occur after the droplet is formed. Done.
  • the polymerization temperature varies depending on the type of initiator, and the force is 30-100 ° C, preferably about 40-80 ° C, and the polymerization time is 1-140 hours, preferably about 5-30 hours. . If necessary, a part of the monomer mixture may be added in portions. In the late stage of the polymerization, the temperature may be increased as necessary to complete the polymerization.
  • the particle diameter of the spherical ball resin obtained can be generally adjusted in a wide range of about 11 to 2000 / zm by selecting a dispersant and controlling stirring conditions in the above suspension polymerization.
  • colloidal silica is used as a dispersing agent, it is easy to prepare a spherical resin having a particle diameter of 1 to 100 m, especially 3 to 50 m.
  • the preferred particle diameter is 112 O / zm, and the spherical vinyl resin is heat-treated.
  • the particle size of the resin shrinks by 30 to 60% due to heat shrinkage, so that the spherical vinyl resin is preferable, and the particle size is 5 to 40 ⁇ m, more preferably 5 to 40 ⁇ m. — 30 ⁇ m, especially 5-20 ⁇ m.
  • the spherical vinyl resin used in the method of the present invention can be formed by dispersing the molten vinyl resin in a gas or hot water in addition to the above suspension polymerization.
  • suspension polymerization is preferred for adjusting the above-mentioned small-particle-size spherical vinyl resin having a particle size.
  • a spherical carbon precursor showing a good carbonization yield can be obtained.
  • the oxidation treatment is preferably performed at a temperature of 100 ° C to 400 ° C.
  • the sintering method is not particularly limited, but it is preferable that the sintering be performed using a fluidized bed because uniform heat treatment is possible. Oxidants include O, O, SO, NO, and mixed gas diluted with air, nitrogen, etc.
  • An oxidizing gas such as gas or air, or an oxidizing liquid such as sulfuric acid, nitric acid, and hydrogen peroxide can be used.
  • the spherical carbon material of the present invention can be obtained by heat-treating (carbonizing) the spherical carbon precursor in a non-oxidizing gas atmosphere at 800 to 2000 ° C.
  • a spherical carbon material suitable as a negative electrode material for a nonaqueous electrolyte secondary battery can be produced.
  • the heat treatment temperature is preferably 1000 ° C or higher and 1500 ° C or lower, more preferably 1100 ° C or more and 1500 ° C or less.
  • the spherical carbon material obtained by the method of the present invention by force is characterized by a uniform particle size with a high sphericity as a result of carbonization of the spherical resin.
  • the sphericity is represented by a circularity C obtained by image analysis described below of 0.80 or more, preferably 0.90 or more, and more preferably 0.95 or more.
  • the uniformity of the particle size is 3.0 or less as the particle size distribution coefficient DZD ratio described later.
  • the spherical carbon material When considering the use of the spherical carbon material as a negative electrode material of a non-aqueous electrolyte secondary battery, which is a preferable use thereof, it is more preferable that the spherical carbon material is hardly graphitic carbon.
  • the characteristic is that the (002) average layer spacing d obtained by the X-ray diffraction method is 0.365 nm or more.
  • Hydrogen atom to carbon atom ratio is 0.1 or less, average particle diameter Dv m) is 1
  • the obtained spherical carbon material is used as it is, or together with, for example, 110% by weight of a conductive auxiliary such as acetylene black or conductive carbon black such as furnace black, and further, a binder (binder).
  • a conductive auxiliary such as acetylene black or conductive carbon black such as furnace black
  • a binder binder
  • After adding an appropriate amount of a suitable solvent and kneading to form an electrode mixture paste for example, apply it to a conductive current collector consisting of a circular or rectangular metal plate, etc. It is used for manufacturing electrodes by a method such as forming a layer having a thickness of 10 to 200 m.
  • the binder is not particularly limited as long as it does not react with the electrolytic solution, such as polyvinylidene fluoride, polytetrafluoroethylene, and SBR.
  • an aqueous emulsion such as SBR, in which a polar solvent such as N-methylpyrrolidone (NMP) is preferably used, can also be used.
  • NMP N-methylpyrrolidone
  • the preferable addition amount of the agent is 0.5 to 10 parts by weight based on 100 parts by weight of the spherical carbon material of the present invention. If the amount of the binder is too large, the electrical resistance of the resulting electrode increases, the internal resistance of the battery increases, and the battery characteristics deteriorate, which is not preferable. If the amount of the binder is too small, the bonding between the spherical carbon material particles and the current collector is insufficient, which is not preferable.
  • the spherical carbon material of the present invention can be used as a negative electrode of a non-aqueous electrolyte type secondary battery, particularly as a negative electrode active material of a lithium secondary battery, for the configuration of a negative electrode for lithium doping by utilizing its good doping characteristics.
  • a negative electrode active material of a lithium secondary battery for the configuration of a negative electrode for lithium doping by utilizing its good doping characteristics.
  • 60GZm 2 or less more preferably 50GZm 2 or less.
  • a negative electrode of a non-aqueous electrolyte secondary battery is formed using the spherical carbon material of the present invention
  • other materials constituting the battery such as a positive electrode material, a separator, and an electrolyte are not particularly limited. It is possible to use various materials conventionally used or proposed as a non-aqueous solvent secondary battery.
  • composite metals such as LiCoO, LiNiO, LiMnO, and LiMnO are used.
  • the positive electrode is formed by molding with a suitable binder preferred by chalcogenide and a carbon material for imparting conductivity to the electrode, and forming a layer on the conductive current collector.
  • the non-aqueous solvent-type electrolyte used in combination with these positive and negative electrodes is generally formed by dissolving an electrolyte in a non-aqueous solvent.
  • the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, getyl carbonate, dimethoxyethane, dietoxetane, ⁇ -petit mouth ratataton, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane.
  • electrolytes LiCIO, LiPF, L
  • the secondary battery is configured such that the positive electrode layer and the negative electrode layer formed as described above are opposed to each other via a liquid-permeable separator made of a non-woven fabric, other porous material, or the like, if necessary, so that the electrolyte is It is formed by dipping in
  • a dispersant cationic surfactant "SN Dispersant 7347-C” (manufactured by San Nopco)
  • SALD-3000J particle size distribution analyzer
  • the particle size at which the cumulative volume becomes 50% is defined as the average particle size Dv, ⁇ m).
  • the carbon material particles are embedded in epoxy resin, polished, and observed with an optical microscope.
  • the particles have an average particle diameter of 50% Dv and have no overlapping or contact with other particles.
  • the force specific gravity was measured according to JIS K-6721: 1977. Specifically, a test was conducted by thoroughly stirring the funnel with a damper of a force-specific-gravity measuring instrument (manufactured by Kuramochi Scientific Instruments). After adding about 120 ml of the sample, pull out the damper and drop the sample into a receiver (100 ⁇ 0.5 ml). After the sample that has risen from the receiver is scraped off with a glass rod, accurately weigh the container containing the sample to 0.1 lg, and calculate the bulk specific gravity to the second decimal place using the following formula. Repeat the measurement three times and take the average value.
  • a force-specific-gravity measuring instrument manufactured by Kuramochi Scientific Instruments
  • the peak position of the diffraction pattern is determined by the center of gravity method (a method of determining the position of the center of gravity of the diffraction line and determining the peak position by the corresponding 2 2 value), and the diffraction of the (111) plane of the high-purity silicon powder for the reference material is determined. Correct using peaks. Set the wavelength of Cu ⁇ ⁇ -ray to 0.141818nm and calculate d by Bragg's formula. Also, 002 times
  • the crystallite thickness Lc (002) in the c-axis direction was calculated from the value ⁇ obtained by subtracting the half value width of the (111) diffraction line of the silicon powder from the half value width obtained by the integration method of the broken line by Scherrer's formula. .
  • V 1 / (v (lx)) derived from the BET equation
  • V is the amount of adsorption (cm 3 Zg) required to form a monolayer on the sample surface
  • V is the measured Adsorbed amount (cm 3 Zg)
  • x is relative pressure
  • the sample tube Cool the sample tube to 196 ° C while flowing helium gas containing at% concentration, and adsorb nitrogen on the carbon material. Next, the test tube is returned to room temperature. At this time, the amount of nitrogen released from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas was measured.
  • An aqueous dispersion medium was prepared by sequentially adding 0.92 g of sodium nitrite and 0.99 g of sodium nitrite. Hydrochloric acid was added to adjust the pH of the dispersion medium to about 3.5, and then adjusted with a homogenizer at 8000 rpm. Dispersion treatment was performed for minutes.
  • a monomer mixture consisting of 890 g of acrylonitrile (AN), 823 g of styrene (St), 266 g of dibutylbenzene (DVB), and 10.69 g of 2,2,2-azobis-2,4-dimethylvale-tolyl was prepared.
  • AN acrylonitrile
  • St styrene
  • DVD dibutylbenzene
  • 2,2,2-azobis-2,4-dimethylvale-tolyl was prepared.
  • AN acrylonitrile
  • St styrene
  • DVD dibutylbenzene
  • aqueous dispersion medium containing fine droplets of this polymerizable mixture is charged into a polymerization can (10 L) equipped with a stirrer, reacted at 55 ° C for 1 hour using a warm bath, and then 1.7 g of a silane coupling agent is added.
  • the diluted solution was added to 42.8 g of acidic water (PH3.5), and after an elapse of 30 minutes, 27 g of 1% diluted hydrochloric acid was added, and the mixture was further reacted at 55 ° C for 20 hours.
  • the obtained polymerization product was filtered from the aqueous phase, dried, and pulverized with a jet mill to obtain a spherical vinyl resin having an average particle diameter (Dv) of 17 ⁇ m.
  • spherical vinyl resin 60 g is charged into a quartz vertical annular furnace equipped with a dispersion plate, and air is allowed to flow from the lower part to the upper part to form a fluidized bed.
  • a spherical carbon precursor was obtained. Content of elemental oxygen in this carbon precursor The percentage was determined by elemental analysis and was found to be 15% by weight.
  • the obtained spherical carbon precursor was heat-treated in nitrogen at 600 ° C. for 1 hour to obtain spherical pre-fired carbon, which was then heated to 1200 ° C. under a nitrogen atmosphere in a horizontal tubular furnace, and 1 After the main baking was carried out for a period of time, cooling was performed to obtain a spherical carbon material having an average particle diameter of 10 m.
  • Example 2 A spherical carbon material was obtained in the same manner as in Example 1 except that the main firing temperature was changed from 1200 ° C for 1 hour to 1300 ° C for 1 hour.
  • Example 3 The oxidation temperature of the spherical synthetic resin was changed from 1 hour at 280 ° C. to 1 hour at 260 ° C., and the oxygen content of the spherical carbon precursor was changed from 15% by weight to 10% by weight.
  • a spherical carbon material was obtained in the same manner as in Example 2, except for the following.
  • the colloidal silica was removed from the obtained product by filtration at the time of filtration, dried, and further crushed by a jet mill to obtain a true spherical resin having an average particle diameter of 17 / zm.
  • a spherical carbon material was obtained in the same manner as in Example 2.
  • Example 2 A spherical carbon material was obtained in the same manner as in Example 1, except that the main firing temperature was changed from 1200 ° C for 1 hour to 900 ° C for 1 hour.
  • this cord-like molded product was crushed so that the ratio of diameter to length became about 1.5, and the obtained crushed material was heated to 93 ° C and 0.53% by weight of a polybutyl alcohol was heated. (Ken-Dani degree of 88%) was dissolved in the aqueous solution, stirred, dispersed, and cooled to obtain a spherical pitch molded body slurry. After removing most of the water by filtration, naphthalene in the pitch compact was extracted and removed with about 6 times the weight of n-hexane of the spherical pitch compact.
  • the porous spherical pitch obtained in this way is heated to 260 ° C using a fluidized bed while passing heated air, kept at 260 ° C for 1 hour and oxidized.
  • An infusible porous spherical oxide pitch was obtained.
  • the resulting oxidized pitch had an oxygen content of 17% by weight.
  • the oxide pitch was heated to 600 ° C in a nitrogen gas atmosphere (normal pressure), and was held at 600 ° C for 1 hour and calcined to obtain a carbon precursor having a volatile content of 2% or less.
  • the obtained carbon precursor was pulverized to obtain a powdery carbon precursor having an average particle diameter of 10 m.
  • the powdered carbon precursor is charged into a firing furnace, When the temperature of the firing furnace reached 1200 ° C in the air stream, the main firing was performed at 1200 ° C for 1 hour, followed by cooling to produce a powdery carbon material.
  • the powdered carbon precursor is charged into the firing furnace, and when the temperature of the firing furnace reaches 1200 ° C in a nitrogen stream, the temperature is maintained at 1200 ° C for 1 hour, and the main firing is performed.
  • a powdery carbon material having a particle diameter of 10 / zm was produced.
  • Example 6 A needle coater was pulverized to obtain a powdery carbon precursor having an average particle diameter of 12 m. Next, the powdered carbon precursor was charged into a firing furnace, and when the temperature of the firing furnace reached 1200 ° C. in a nitrogen stream, the temperature was maintained at 1200 ° C. for 1 hour, and the main firing was performed. A powdery carbon material with a particle diameter of 10 ⁇ m was produced.
  • electrodes were formed as follows (a) to (f), and the electrode performance and storage characteristics were evaluated.
  • NMP was added to 90 parts by weight of the carbon material and 10 parts by weight of polyvinylidene fluoride ("KF # 1100" manufactured by Kureha Chemical Industry Co., Ltd.) to form a paste, which was uniformly applied on a copper foil. After drying, it was peeled off from the copper foil and punched into a disk with a diameter of 15 mm. The amount of carbon material in the electrode was adjusted to about 20 mg.
  • the carbon material of the present invention is suitable for forming a negative electrode of a non-aqueous electrolyte secondary battery.
  • a lithium secondary battery was constructed using the electrode obtained above with lithium metal having stable characteristics as a counter electrode, and the characteristics were evaluated.
  • the disc-shaped membrane electrode having a diameter of 15 mm obtained by using the carbon material of each of the above Examples and Comparative Examples was used for a coin-type battery can of 2016 size (that is, a diameter of 20 mm and a thickness of 1.6 mm).
  • a 17 mm diameter stainless steel mesh disk spot-welded to the inner lid was pressed with a press and pressed to form an electrode.
  • the lithium electrode was prepared in a glove box in an Ar atmosphere.
  • a stainless steel mesh disk with a diameter of 17 mm was spot-welded to the outer lid of a 2016-size coin-type battery can in advance, and a 0.5-mm-thick lithium metal sheet was punched out into a 15-mm-diameter disk to form a stainless steel plate.
  • An electrode (counter electrode) was formed by crimping on a flat mesh disk.
  • LiClO was added at a ratio of 1 mol / liter to a mixed solvent of propylene carbonate and dimethoxyethane mixed at a volume ratio of 1: 1 as an electrolytic solution.
  • a polypropylene microporous membrane with a diameter of 17 mm as a separator.
  • a charge / discharge test was performed on the lithium secondary battery having the above configuration using a charge / discharge test apparatus (“TOSC AT” manufactured by Toyo System). Charge and discharge were performed by a constant current constant voltage method.
  • charge is a force that is a discharge reaction in the test battery. In this case, since it is a reaction of lithium insertion into the carbon material, it is described as “charge” for convenience.
  • discharge is a charge reaction in the test battery, but is a “discharge” for convenience because it is a desorption reaction of lithium due to carbon material power.
  • the constant current and constant voltage conditions adopted here are such that the battery is charged at a constant current density of 0.5 mAZcm 2 until the battery voltage reaches OV, and then the voltage is maintained at OV (while maintaining the voltage at OV). ) Continue charging until the current value reaches 20 ⁇ m by continuously changing the current value. At this time, the value obtained by dividing the supplied amount of electricity by the weight of the carbon material of the electrode is expressed as a unit of the carbon material. It was defined as the charge capacity per weight (mAhZg). After charging, the battery circuit was opened for 30 minutes and then discharged. Discharging was conducted at a constant current density 0. 5mAZcm 2 until the battery voltage reached 1. 5V, the discharge capacity per unit weight at this time discharged electricity quantity electrodes carbon material a value obtained by dividing the weight of the carbon material ( mAhg). Irreversible capacity is calculated as charge amount and discharge amount.
  • the carbon material was charged in the same manner as in (c), the current density charging was completed, the battery circuit was opened for 30 minutes, and then the battery was discharged. Discharge is performed at a constant current density of 20 mAZcm 2 until the battery voltage reaches 1.5 V. The value obtained by dividing the amount of electricity discharged at this time by the electrode area is defined as the rapid discharge capacity (mAhZcm 2 ).
  • NMP is added to 90 parts by weight of each of the carbon materials obtained in the above Examples and Comparative Examples, and 10 parts by weight of polyvinylidene fluoride (“KF # 1100” manufactured by Kureha Chemical Industry Co., Ltd.) to form a paste, which is uniformly spread on copper foil. Applied. After drying, the coated electrode was punched out into a disk shape with a diameter of 15 mm to produce a negative electrode. The amount of the carbon material in the electrode was adjusted to about 14 mg.
  • NMP was added to 3 parts by weight of Liden (“KF # 1300” manufactured by Kureha Chemical Industry Co., Ltd.) to form a paste, which was then uniformly applied on aluminum foil. After drying, the coated electrode is punched into a 14 mm diameter disk.
  • the amount of lithium cobalt oxide in the positive electrode was adjusted so as to be 80% of the charge capacity of the negative electrode active material measured in (c). Let the capacity of lithium cobaltate be 150mAhZg I did it.
  • LiPF was added at a ratio of 1 mol Zl to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 as an electrolytic solution.
  • a 2016-sized coin-type non-aqueous electrolyte lithium secondary battery was assembled in an Ar glove box using a microporous membrane made of polypropylene with a diameter of 17 mm facing the separator.
  • Resin composition Resin Oxygen content in carbon material Firing temperature Firing yield N content wt% Silica content Sphericity H / C Silica content
  • a rapid discharge occurs when spherical bulb resin is used as a starting material and as a negative electrode material of a non-aqueous electrolyte secondary battery.
  • a method for producing a spherical carbon material exhibiting excellent suitability including strength characteristics and durability is provided.
  • the obtained spherical carbon material has good antistatic properties (non-static electricity generation) by utilizing its excellent sphericity and uniformity of particle size in addition to the negative electrode material of non-aqueous electrolyte secondary batteries.
  • it is expected to be used in various applications including adsorbents and various fillers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 球状ビニル樹脂を酸化性ガス雰囲気中で酸化処理して球状の炭素前駆体を得、これを非酸化性ガス雰囲気中1000~2000°Cで炭素化することを特徴とする球状炭素材の製造方法。得られた球状炭素材は、例えば非水電解質二次電池の負極材料として、高い出力特性および耐久性を含む優れた適性を示す。

Description

球状炭素材の製造方法
技術分野
[0001] 本発明は、例えば非水電解質二次電池の負極材料として優れた適性を有する球 状炭素材の製造方法に関する。
背景技術
[0002] 高工ネルギー密度の二次電池として、炭素材を負極として用いる非水電解質系リチ ゥム二次電池が提案されている (例えば、下記特許文献 1一 4参照)。これは、リチウ ムの炭素層間化合物が電気化学的に容易に形成できることを利用したものであり、こ の電池を充電すると、例えば LiCoO等のカルコゲン化合物からなる正極中のリチウ
2
ムは電気化学的に負極炭素の層間にドープされる。そして、リチウムをドープした炭 素はリチウム電極として作用し、放電に伴ってリチウムは負極炭素の層間から脱ドー プされ正極中へ戻る。
[0003] これら非水電解質系リチウム二次電池において、高エネルギー密度化を進めるに は、正極物質の単位重量あたり脱ドープ 'ドープされるリチウム量および負極物質の 単位重量あたりドープ'脱ドープされるリチウム量を増加させ、さらに二次電池内に多 くの正'負極材料を入れることが必要となる。このような観点で、特に負極材料として は、体積当たりのドープ '脱ドープ容量の高いことから黒鉛質材料が使用されてきた。
[0004] 近年、非水電解質系リチウム二次電池は小型携帯機器用の電源用途ば力りでなく 、ノ、イブリツド電気自動車 (以後「HEV」と記す)用電源としての使用が期待されて!、 る。 HEVでは車の動力源として電池のほかに内燃エンジンを搭載しているため、多 量のエネルギーは不要であるが、車を駆動する、或いは車両の動力性能を充分賄う だけの高出力が要求される。さらに、低燃費を進めるには車両の制動エネルギーを 効率良く回収することが不可欠であり、そのためには高入力特性も要求される。
[0005] 一方、小型携帯機器用電源としての非水電解質系二次電池の寿命は、数年であつ たが、 HEV用途では数百セルを直列に接続した電源システムと成るため、途中交換 が困難であり、車両の寿命と同等以上、つまり 10年以上の寿命と信頼性が要求され る。
[0006] 非水電解質系リチウム二次電池の出力特性の向上させる方法として、電極の厚み 及び活物質の粒子径を制御することが提案されている(下記特許文献 5)。すなわち 、電極を薄くすることにより反応面積を大きくすることができ、電極の厚み方向での反 応電位分布差を小さくすることができる。これにより、電極の表面側の層と集電体側 の層との分極を小さくすることができ、大電流放電時の性能低下が低減されるため高 出力が得られる。しかし、未だその出力は十分とは言えず、更なる高出力が求められ ている。また、電極を薄くすると正極および負極分の集電板ゃセパレーターなどを通 常より多く使用することになり、電池のエネルギー密度が低下するという問題点があり 、これらの改善も期待されている。
[0007] 負極材料の信頼性に関して言えば、黒鉛質材料や乱層構造を有する易黒鉛ィ匕性 炭素材は、リチウムのドープ '脱ドープ反応時に結晶子が膨張 ·収縮を繰り返すため 、 HEV用途の非水電解質二次電池用負極材料としては信頼性が乏しい。一方、難 黒鉛化性炭素は、リチウムのドープ '脱ドープ反応による粒子の膨張収縮力 、さく高 いサイクル耐久性を有するため、 HEV用非水電解質系リチウム二次電池用負極材 料として有望視されている。しかし、難黒鉛ィ匕性炭素の構造は、炭素前駆体の構造 やその後の熱処理条件により多様に変化し、良好な充放電特性を得るには構造制 御が重要である。これまで良好な充放電能力を有する難黒鉛ィ匕性炭素粒子は、炭素 前駆体またはそれを焼成したのち粉砕することにより得られたものであり、電極の活 物質を薄層化するために不可欠な粒子の小粒子径ィ匕には多くの粉砕エネルギーが 必要になるば力りでなぐ粒子を小粒子径ィ匕すると微粉が増加し電池の信頼性の低 下をもたらするという問題がある。さらに、小粒子径ィ匕のための粉砕と微粒子の除去 を進めると粉砕収率が極めて低くなるという問題が発生する。
[0008] 高エネルギー密度でデンドライトによる短絡が起こりにくぐ信頼性の高!、非水電解 質二次電池として球状の形状を有する難黒鉛化性炭素を負極活物質として使用す ることが提案されている(下記特許文献 6)。球状炭素を負極活物質として用いること により、塗布等により活物質が均一に分布した負極を得ることが可能になり、デンドラ イトによる内部短絡が起りにくぐより理論電気容量に近い負極を与えることが意図さ れている。し力しながら、その球状難黒鉛ィ匕炭素の製法は、ほとんど開示されていな い。また、その放電容量も最大で 320mAhZgと黒鉛質材料の理論容量を超えるも のではなぐ充分に大きいとは言えない。
[0009] 他方、球状の炭素材を得るためには、球状の合成樹脂を炭素化することも容易に 考えられるところではあるが、実際には容易ではない。合成樹脂としては、熱により重 縮合が進行する熱硬化性榭脂と、ラジカル重合により得られるビニル榭脂がある。熱 硬化性榭脂は、一般に比較的良好な炭化収率を示すが、縮合初期段階で粘稠な縮 合物であるため、取り扱いが困難であり、球状ィ匕するには更に多くの工程が必要とな る。フエノール榭脂を原料とした球状難黒鉛ィ匕炭素が下記特許文献 7に開示されて いるが、具体的にその原料となる球状フエノール榭脂の製法は開示されていない。ま た得られた球状難黒鉛ィ匕炭素の放電容量は 185mAhZgとかなり低いものである。 他方、ビニル榭脂は、ラジカル懸濁重合により、球状の重合物として得られるが、炭 素化処理時に解重合や熱分解を起して殆んど炭素化物を残さないものが殆んどで ある。
特許文献 1:特開昭 57— 208079号公報
特許文献 2:特開昭 62- 90863号公報
特許文献 3 :特開昭 62- 122066号公報
特許文献 4:特開平 2-66856号公報
特許文献 5 :特開平 11—185821号公報
特許文献 6:特開平 6— 150927号公報
特許文献 7:特開平 6— 20680号公報
[0010] 発明の開示
上記事情に鑑み、本発明の主要な目的は、懸濁重合等により良好な球形度で得ら れる球状ビニル榭脂を出発原料として、良好な収率で球状炭素材を製造し得る球状 炭素材の製造方法を提供することを目的とする。
[0011] 本発明の別の目的は、非水電解質二次電池用負極材料として用いたときに高い出 力特性と高い耐久性を有し、且つ高い放電容量を与え得る、球状炭素材の製造方 法を提供することにある。 [0012] 本発明者等の研究によれば、球状ビニル榭脂を酸化処理して得た炭素前駆体を 炭素化工程に付すことが上記目的の達成に極めて有効であることが見出された。
[0013] すなわち、本発明の球状炭素材の製造方法は、球状ビニル榭脂を酸ィ匕性ガス雰囲 気中で酸化処理して球状の炭素前駆体を得、これを非酸化性ガス雰囲気中 1000— 2000°Cで炭素化することを特徴とするものである。また、特定の組成のモノマー混合 物から得られる、架橋された球状ビュル榭脂を原料として用いることが、特に好ましい ことも見出されている。
発明を実施するための最良の形態
[0014] 本発明で特に好ましく用いられる球状のビュル榭脂は、例えば以下のようにして得 られる。すなわち、ラジカル重合性のビュルモノマー及び重合開始剤を混合したモノ マー混合物を分散安定剤を含有する水系分散媒体中に添加し、攪拌混合により懸 濁してモノマー混合物を微細な液滴としたのち、っ 、で昇温することによりラジカル重 合を進めて真球状のビュル榭脂を得ることができる。
[0015] (モノマー混合物)
ビュルモノマーとしては、酸ィ匕により炭素前駆体を与えるビニル榭脂を形成可能な 任意のビュルモノマーが用いられるが、炭化収率の増大する架橋ビュル榭脂を与え るために、架橋剤を含むビュルモノマー混合物が好ましく用いられる。また、得られる 球状ビニル榭脂からの炭素化収率が高く且つ得られる球状炭素の電池性能が好ま しいという観点から、原料モノマー混合物としては、その 10— 80重量%のスチレン系 モノマーおよび 10— 90重量0 /0のアクリロニトリル系モノマーを含み、更にスチレン系 モノマーの 15重量0 /0以上の架橋剤を含むモノマー混合物を用いることが特に好まし い。
[0016] スチレン系モノマーとしては、スチレンに加えて、そのビュル基水素やフエ-ル基水 素が置換されたスチレン誘導体、あるいはフエニル基の代わりに複素環式ある!、は多 環式ィ匕合物がビニル基に結合した化合物などが挙げられる。より具体的には、 a - るいは j8—メチノレスチレン、 α—あるいは 13ーェチルスチレン、メトキシスチレン、フエ二 ルスチレン、あるいはクロロスチレンなど、あるいは o、 mあるいは ρ—メチルスチレン、 ェチルスチレン、メチルシリルスチレン、ヒドロキシスチレン、シァノスチレン、ニトロス チレン、アミノスチレン、カルボキシスチレン、あるいはスルホキシスチレン、スチレンス ルホン酸ソーダなど、あるいはビュルピリジン、ビ-ルチオフェン、ビュルピロリドン、ビ 二ルナフタレン、ビ-ルアントラセン、ビ-ルビフエ-ル等が代表的なものとして含ま れる。
[0017] またアクリロニトリル系モノマーとしては、アクリロニトリル、メタタリ口-トリルが挙げら れる。なかでも価格的にアクリロニトリルが好ましい。
[0018] モノマー混合物中に、スチレン系モノマーが 10— 80重量0 /0含まれることが好ましく 、特に 20— 70重量0 /0含まれることが好ましい。スチレン系モノマーが 10重量0 /0未満 であると、比較的水溶性のアクリロニトリル系モノマーが多くなり、懸濁重合に際して 球状性の良いモノマー液滴の形成が困難になり易い。スチレン系モノマーが 80重量 %を超えると、アクリロニトリル系モノマーおよび架橋剤の量が必然的に小さくなるた め、好ましくない。
[0019] 他方、モノマー混合物中にアクリロニトリル系モノマーは、 10— 90重量% (混合物 中の架橋剤の最少量を考慮すると 88. 5重量%以下)、より好ましくは 20— 80重量 %、特に 30— 70重量%含まれることが好ましい。アクリロニトリル系モノマーは形成さ れるビニル榭脂の炭化収率を向上し、更に得られる球状炭素材の比表面積を低下さ せ非水電解質二次電池の負極材料として用いる際の電解液の炭素表面での分解反 応を抑制するために有効に作用する。アクリロニトリル系モノマーが 10重量%未満で は、上述の効果が乏しぐまた 90重量%を超えると、得られる球状ビニル榭脂の球状 性が低下するため好ましくな 、。
[0020] モノマー混合物には、スチレン系モノマーの 15重量%以上、特に 20重量%以上、 の割合(且つ上記スチレン系モノマーおよびアクリロニトリル系モノマー力 モノマー 混合物中でのそれぞれの下限量である 10重量%を下回ることのない様な割合で)の 架橋剤が含まれることが好ましい。架橋剤がスチレン系モノマーの 15重量%未満で は、球状ビニル榭脂の酸化処理 (不溶化処理)中に、球状ビニル榭脂が分解溶融し た状態で酸ィ匕処理を行うことが困難となりがちである。
[0021] 架橋剤としては、ジビュルベンゼン、ジビュルピリジン、ジビュルトルエン、ジビニル ナフタレン、ジァリルフタレート、エチレングリコールジアタリレート、エチレングリコー ルジメチレート、ジビニノレキシレン、ジビュルェチルベンゼン、ジビ-ルスルホン;グリ コールまたはグリセロールの、ペンタエリトリトールの、グリコールのモノまたはジチォ 誘導体の、およびレゾルシノールのポリビュルまたはポリアリルエーテル類;ジビュル ケトン、ジビニルスルフイド、ァリルアタリレート、ジァリルマレエート、ジァリルフマレー ト、ジァリルスクシネート、ジァリルカルボネート、ジァリルマロネート、ジァリルォキサレ ート、ジァリノレアジペート、ジァリノレセノ ケート、トリァリノレトリ力ノレノ リレート、トリァリノレ アコ-テート、トリアリルシトレート、トリアリルホスフェート、 N、 N' —メチレンジアクリル アミド、 1, 2—ジ(α—メチルメチレンスルホンアミド)エチレン、トリビュルベンゼン、トリ ビュルナフタレン、ポリビ-ルアントラセンおよびトリビュルシクロへキサンから成る群 より選択されてよい。特に好ましい架橋剤の例に含まれるものはポリビュル芳香族炭 化水素(例えば、ジビュルベンゼン)、グリコールトリメタタリレート(例えば、エチレング リコールジメタタリレート)、およびポリビュル炭化水素(例えば、トリビュルシクロへキ サン)である。その熱分解特性の故に、最も好ましいものはジビュルベンゼンである。
[0022] 上記したスチレン系モノマー、アクリロニトリル系モノマー及び架橋剤に加えて、これ ら成分のそれぞれの必要量を確保する範囲内で、スチレン系モノマーおよびアタリ口 二トリル系モノマーと共重合可能な他のビュルモノマーを、モノマー混合物中に含め ることちでさる。
[0023] 重合開始剤としては、特に限定されず、この分野で一般に使用されているものを使 用することができるが、重合性単量体に可溶性である油溶性重合開始剤が好ま ヽ 。重合開始剤としては、例えば、過酸ィ匕ジアルキル、過酸化ジァシル、パーォキシェ ステル、パーォキシジカーボネート、及びァゾィ匕合物が挙げられる。より具体的には、 例えば、メチルェチルパーオキサイド、ジー t ブチルパーオキサイド、ジクミルバーオ キサイドなどの過酸化ジアルキル;イソブチルパーオキサイド、ベンゾィルパーォキサ イド、 2, 4—ジクロロベンゾィルパーオキサイド、 3, 5, 5—トリメチルへキサノィルパー オキサイドなどの過酸化ジァシル; t ブチルパーォキシビバレート、 t一へキシルバー ォキシビバレート、 t ブチルパーォキシネオデカノエート、 t一へキシルバーォキシネ ォデカノエート、 1ーシクロへキシルー 1 メチルェチルパーォキシネオデカノエート、 1 , 1, 3, 3—テトラメチルブチルパーォキシネオデカノエート、タミルパーォキシネオデ カノエート、 ( α , α—ビス ネオデカノィルバーオキシ)ジイソプロピルベンゼンなどの パーォキシエステル;ビス(4 tーブチルシクロへキシル)パーォキシジカーボネート、 ジー n プロピル一才キシジカーボネート、ジーイソプロピルパーォキシジカーボネート、 ジ(2—ェチノレエチノレバーオキシ)ジカーボネート、ジーメトキシブチノレパーォキシジカ ーボネート、ジ(3—メチルー 3—メトキシブチルバ一才キシ)ジカーボネートなどのパー ォキシジカーボネート;2, 2'—ァゾビスイソブチロニトリル、 2, 2,ーァゾビス(4ーメトキ シ— 2, 4—ジメチルバレ口-トリル、 2, 2,ーァゾビス(2, 4—ジメチルバレ口-トリル)、 1 , 1,ーァゾビス ( 1ーシクロへキサンカルボ-トリル)などのァゾ化合物;などが挙げられ る。
[0024] 重合開始剤は、通常、単量体混合物中に含有させるが、早期重合を抑制する必要 力 Sある場合には、一部または全部を水系分散媒体中に含有させ、造粒工程中または 造粒工程後に、重合性混合物の液滴中に移行させてもよい。重合開始剤は、ビュル モノマー 100重量部に対して、 0. 001— 20重量部の割合で使用される。
[0025] (懸濁重合)
懸濁重合は、通常、分散安定剤 (懸濁剤)を含有する水系分散媒体中で行われる。 分散安定剤としては、例えば、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸 化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、蓚酸 カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウムなどを挙げることができ る。この他に補助安定剤、例えば、ジエタノールァミンと脂肪族ジカルボン酸の縮合 生成物、尿素とホルムアルデヒドとの縮合生成物、ポリビュルピロリドン、ポリエチレン オキサイド、ポリエチレンィミン、テトラメチルアンモ-ゥムヒドロキシド、ゼラチン、メチ ルセルロース、ポリビュルアルコール、ジォクチルスルホサクシネート、ソノレビタンエス テル、各種乳化剤等を使用することができる。分散安定剤は、重合性モノマー混合 物 100重量部に対して、通常、 0. 1— 20重量部の割合で使用される。
[0026] 分散安定剤を含有する水系分散媒体は、通常、分散安定剤や補助安定剤を脱ィ オン水に配合して調製する。重合時の水相の pHは、使用する分散安定剤や補助安 定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカなど のシリカを使用する場合は、酸性環境で重合が行われる。水系分散媒体を酸性にす るには、必要に応じて酸を加えて、系の pHを約 3— 4に調整する。水酸化マグネシゥ ムまたはリン酸カルシウムを使用する場合は、アルカリ性環境の中で重合させる。
[0027] 好ましい組み合わせの一つとして、コロイダルシリカと縮合生成物の組み合わせが ある。縮合生成物は、ジエタノールァミンと脂肪族ジカルボン酸の縮合生成物が好ま しぐ特にジエタノールァミンとアジピン酸の縮合物ゃジエタノールァミンとィタコン酸 の縮合生成物が好ましい。縮合物は、その酸価によって規定される。好ましくは、酸 価が 60以上 95未満のものである。特に好ましくは、酸価が 65以上 90以下の縮合物 である。さらに、塩ィ匕ナトリウム、硫酸ナトリウム等の無機塩を添加すると、より均一な 粒子形状を有する球状の合成樹脂が得られる。
[0028] 懸濁重合における分散安定剤としてシリカ(コロイダルシリカ)を使用し、重合により 形成された真球状の合成樹脂表面にシリカを保持した状態で炭素化することにより、 炭素表面に安定な皮膜を形成し、炭素材の放置時に生じる表面酸化を抑制すること ができるため、安定剤としてシリカ(コロイダルシリカ)を使用することが特に好ましい。 コロイダルシリカの使用量は、その粒子径によっても変わる力 通常、モノマー混合物 100重量部に対して、 0. 1— 10重量部、好ましくは 0. 5— 5重量部の割合で使用さ れる。縮合生成物は、モノマー混合物 100重量部に対して、通常 0. 05— 2重量部の 割合で使用される。塩ィ匕ナトリウム等の無機塩は、モノマー混合物 100重量部に対し て、 0— 100重量部程度の割合で使用する。
[0029] 他の好ましい組み合わせは、コロイダルシリカと水溶性窒素含有ィ匕合物の組み合 わせが挙げられる。水溶性窒素含有化合物の例としては、ポリビュルピロリドン、ポリ エチレンィミン、ポリオキシエチレンアルキルァミン、ポリジメチルアミノエチルメタクリレ ートゃポリジメチルアミノエチルアタリレートに代表されるポリジアルキルアミノアルキ ル (メタ)アタリレート、ポリジメチルァミノプロピルアクリルアミドゃポリジメチルアミノプ 口ピルメタクリルアミドに代表されるポリジアルキルアミノアルキル (メタ)アクリルアミド、 ポリアクリルアミド、ポリカチオン性アクリルアミド、ポリアミンサルフォン、ポリアリルアミ ンが挙げられる。これらの中でも、コロイダルシリカとポリビュルピロリドンの組み合わ せが好適に用いられる。他の好ましい組み合わせには、水酸ィ匕マグネシウム及び Z またはリン酸カルシウムと乳化剤との組み合わせがある。 [0030] 分散安定剤としては、水溶性多価金属化合物(例えば、塩化マグネシウム)と水酸 化アルカリ金属塩 (例えば、水酸化ナトリウム)との水相中での反応により得られる難 水溶性金属水酸化物(例えば、水酸ィ匕マグネシウム)のコロイドを用いることができる 。また、リン酸カルシウムは、リン酸ナトリウムと塩ィ匕カルシウムとの水相中での反応生 成物を使用することが可能である。乳化剤として、陰イオン性界面活性剤、例えば、 ジアルキルスルホコハク酸塩やポリオキシエチレンアルキル(ァリル)エーテルのリン 酸エステル等を用いてもょ 、。
[0031] 重合助剤として、水系分散媒体中に、亜硝酸アルカリ金属塩、塩化第一スズ、塩化 第二スズ、水可溶性ァスコルビン酸類、及び硼酸カゝらなる群より選ばれる少なくとも一 種の化合物を存在させることができる。これらの化合物の存在下に懸濁重合を行うと 、重合時に、重合粒子同士の凝集が起こらず、重合物が重合缶壁に付着することが なぐ重合による発熱を効率的に除去しながら安定して球状の合成樹脂を製造する ことができる。亜硝酸アルカリ金属塩の中では、亜硝酸ナトリウム及び亜硝酸カリウム が入手の容易性や価格の点で好ましい。ァスコルビン酸類としては、ァスコルビン酸 、ァスコルビン酸の金属塩、ァスコルビン酸のエステルなどが挙げられる力 本発明 においては、水可溶性のものが好適に用いられる。ここで、ァスコルビン酸類につい て「水可溶性」とは、 23°Cの水に対する溶解性が lgZlOOcm3以上であるものを意 味し、ァスコルビン酸とそのアルカリ金属塩が好ましい。これらの中でも、 L—ァスコル ビン酸(ビタミン C)、ァスコルビン酸ナトリウム、及びァスコルビン酸カリウム力 入手の 容易性や価格、作用効果の点で、特に好適に用いられる。これらの化合物は、モノマ 一混合物 100重量部に対して、通常、 0. 001— 1重量部、好ましくは 0. 01-0. 1重 量部の割合で使用される。
[0032] 懸濁重合は、上記各種助剤を添加した、好ましくは水系の分散媒体 100重量部に 対し、モノマー混合物 5— 150重量部、好ましくは 15— 100重量部を分散させ、所望 の粒径のモノマー混合物液滴を生ずるに適当な高速攪拌を行ヽ、通常は液滴形成 後は、その合一が起らない程度のより緩い攪拌速度下で、重合系を保持することによ り行われる。重合温度は、開始剤の種類によっても異なる力 30— 100°C、好ましく は 40— 80°C程度であり、重合時間は 1一 40時間、好ましくは 5— 30時間程度である 。必要に応じて、モノマー混合物の一部を分割添加してもよい。また重合後期には重 合を完結させるために温度を必要に応じて上昇させてもょ 、。
[0033] (球状ビニル榭脂)
上記懸濁重合における分散剤の選択および攪拌条件の制御等により、得られる球 状ビュル榭脂の粒径は、一般に 1一 2000 /z m程度の広範囲に調整可能である。特 に分散剤として、コロイダルシリカを用いると、 1一 100 m、特に 3— 50 mの粒径 の球状ビュル榭脂の調製が容易である。本発明で目的とする球状炭素材の好ま U、 用途としての、非水電解質二次電池用負極材料の場合、その好適な粒子径は 1一 2 O /z mであり、球状ビニル榭脂を熱処理し炭素化処理により炭素材とする際、熱収縮 により榭脂の粒子径が 30— 60%収縮するため、球状ビニル榭脂の好ま 、粒子径 は 5— 40 μ m、さら〖こ好ましくは 5— 30 μ m、特〖こ好ましく 5— 20 μ mである。
[0034] なお、本発明法に用いる球状ビニル榭脂は、上記した懸濁重合以外にも、溶融ビ -ル榭脂の気体中あるいは熱水中への分散等によっても形成可能である。但し、上 記した粒度の小粒径球状ビニル榭脂の調整には懸濁重合が好ましい。
[0035] (酸化処理)
カゝくして得られた球状ビニル榭脂を酸化 (不融化)処理して架橋構造を発達させる ことにより、熱分解性高分子化合物である例えばポリスチレンに富む架橋球状ビニル 榭脂であっても、良好な炭素化収率を示す球状の炭素前駆体とすることができる。酸 化処理は、 100°Cから 400°Cまでの温度で行うことが好ましい。焼成方法は、特に限 定しないが均一な熱処理が可能であるとの観点力 流動層を用いて行うことが好まし い。酸化剤としては、 O、 O、 SO、 NO、これらを空気、窒素等で希釈した混合ガ
2 3 3 2
ス、または空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液 体を用いることができる。
[0036] (炭素化)
球状の炭素前駆体を非酸化性ガス雰囲気中 800— 2000°Cで熱処理 (炭素化)す ることにより本発明の球状炭素材が得られる。特に 1000— 2000°Cで熱処理すること により非水電解質二次電池用負極材料として好適な球状の炭素材を製造することが できる。熱処理温度は好ましくは 1000°C以上 1500°C以下、さらに好ましくは 1100 °C以上 1500°C以下である。
[0037] (球状炭素材)
力べして本発明法により得られる球状炭素材は、球状ビュル榭脂の炭素化の結果と して、真球度が高ぐ均一粒径であることが特徴的である。その真球度は後述の画像 解析による円形度 Cとして、 0. 80以上、好ましくは 0. 90以上、より好ましくは 0. 95 以上で表わされる。また粒径の均一さは、後記粒径分布係数 D ZD比として 3. 0以
4 1
下、より好ましくは 2. 0以下、更に好ましくは 1. 5以下で代表される。
[0038] 球状炭素材は、その好ましい用途である非水電解質二次電池負極材料としての使 用を考えた場合、難黒鉛ィ匕炭素であることが好ましぐより具体的には、その好ましい 特性としては、 X回折法により求められる(002)平均層面間隔 d が 0. 365nm以上
002
0. 400nm以下, c軸方向の結晶子径 Lc 力^ nm以下,元素分析により求められ
(002)
る水素原子と炭素原子の原子比 (HZC)が 0. 1以下,平均粒子径 Dv m)が 1
50
m以上 20 m以下;嵩比重が 0. 40以上 0. 60未満、比表面積 S (m2Zg)と平均 粒子径 Dv の積が 3以上 40以下、球状炭素表面に 0. 1重量%以上 10重量%以下
50
の珪素化合物で被覆されていること、窒素元素を 0. 5— 5重量%含有することなどが 挙げられる。
[0039] 以下、本発明の球状炭素材の非水電解質二次電池用負極材料としての利用形態 に関して述べる。
[0040] (非水電解質二次電池負極材料)
得られた球状の炭素材は、そのまま、または例えばその 1一 10重量%のアセチレン ブラックや、ファーネスブラック等の導電性カーボンブラック等力 なる導電助剤ととも に用いられ、更に結合剤 (バインダー)を添加し適当な溶媒を適量添加、混練し、電 極合剤ペーストとした後、例えば、円形あるいは矩形の金属板等からなる導電性の集 電材に塗布'乾燥後、加圧成形することにより、厚さが 10— 200 mの層を形成する などの方法により、電極製造に用いられる。結合剤としては、ポリフッ化ビ-リデン、ポ リテトラフルォロエチレン、および SBR等、電解液と反応しないものであれば特に限 定されない。ポリフッ化ビ-リデンの場合、 N—メチルピロリドン (NMP)などの極性溶 媒が好ましく用いられる力 SBRなどの水性ェマルジヨンを用いることもできる。結合 剤の好ましい添加量は、本発明の球状炭素材 100重量部に対して、 0. 5— 10重量 部である。結合剤の添加量が多すぎると、得られる電極の電気抵抗が大きくなり電池 の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添 加量が少なすぎると、球状炭素材粒子相互および集電材との結合が不充分となり好 ましくない。本発明の球状炭素材は、その良好なドープ特性を利用して、非水電解 質型二次電池の負極、特にリチウム二次電池の負極活物質として、リチウムドープ用 負極の構成に用いることが好ましい。さらに活物質の目付けは少ないほど大きな出力 が得られるので好ましい。好ましくは 60gZm2以下、更に好ましくは 50gZm2以下で ある。
[0041] 本発明の球状炭素材を用いて、非水電解質二次電池の負極を形成した場合、正 極材料、セパレータ、電解液など電池を構成する他の材料としては特に制限されるこ となぐ非水溶媒二次電池として従来使用され、或いは提案されている種々の材料を 使用することが可能である。
[0042] 例えば、正極材料としては、 LiCoO、 LiNiO、 LiMnO、 LiMn O等の複合金属
2 2 2 2 4
カルコゲンィ匕物が好ましぐ適当なバインダーと電極に導電性を付与するための炭素 材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される
[0043] これら正極および負極との組み合わせで用いられる非水溶媒型電解液は、一般に 非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロ ピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジェチルカーボ ネート、ジメトキシェタン、ジエトキシェタン、 γ—プチ口ラタトン、テトラヒドロフラン、 2— メチルテトラヒドロフラン、スルホラン、 1, 3-ジォキソラン等の有機溶媒の一種または 二種以上を組合わせて用いることができる。また電解質としては、 LiCIO、 LiPF、 L
4 6 iBF、 LiCF SO、 LiAsF、 LiCl、 LiBrゝ LiB (C H ) 、 LiN (SO CF )等が用い
4 3 3 6 6 5 4 3 3 2 られる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応 じて不織布、その他の多孔質材料等カゝらなる透液性セパレータを介して、対向させ 電解液中に浸漬することにより形成される。
[0044] セパレータの代わりに電解液を含浸させたポリマーゲルカゝらなる固体電解質を用い ることちでさる。
実施例
[0045] 以下、実施例および比較例により、本発明を更に具体的に説明する。以下の例を 含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づく。
[0046] ( 1)粒径分布の測定:
試料約 0. lgに対し分散剤 (カチオン系界面活性剤「SNデイスパーサント 7347— C 」(サンノプコ社製))を 3滴加え、試料に分散剤を馴染ませる。つぎに、純水 30mlを 加え、超音波洗浄機で約 2分間分散させたのち、粒径分布測定器 (島津製作所製「 SALD— 3000J」)で、粒径 0. 5— 3000 μ mの範囲の粒径分布を求めた。
[0047] (2)平均粒径 Dv ( ^ m):
50
上記(1)で求めた粒径分布から、累積容積が 50%となる粒径をもって平均粒径 Dv 、 μ m)とし 7こ。
50
[0048] (3)粒径分布係数 D /Ό:
4 1
上記(1)で求めた粒径分布力も重量平均粒径 D ( =∑ (nD4) /∑ (nD3) )と長さ
4
平均径 D ( =∑nD/∑n) (ここで Dは個々の粒子径、 nは該当粒子数)との比 D /
1 4
Dにより求めた。
[0049] (4)真球度:
炭素材粒子をエポキシ榭脂に埋め込み、研磨後、光学顕微鏡で観察し、平均粒子 径 Dv 士 50%の粒径を有する粒子で且つ他の粒子との重なりおよび接触の無!、粒
50
子 30個につ 、て高機能画像解析システム (旭エンジニアリング製「IP— 500PC」 )に より粒子の平面画像解析を行い、下式による円形度 Cの平均値をもって真球度とした
[数 1]
C = 4 - π - S/l2
ここで、 1 :周囲長、 S :面積である。
[0050] (5)かさ比重:
力さ比重の測定を JIS K— 6721: 1977に準じて測定した。具体的には、力さ比重 測定器 (蔵持科学機器製作所製)のダンパーの付いたロートに十分にかき混ぜた試 料の約 120mlを入れたのち、ダンパーを引き抜き、試料を受け器(100 ± 0. 5ml)に 落とす。受け器カゝら盛り上がった試料をガラス棒ですり落とした後、試料の入った容 器の重さを 0. lgまで正確に測り、次式によりかさ比重を小数点以下 2桁まで求める。 測定を 3回繰り返し、その平均値を取る。
[0051] [数 2]
、さ比重 試料の入った受け器の重さ (g)—受け器の重さ )
~ 受け器の内容積 (m/)
[0052] (6)炭素材の平均層面間隔 d :
002
炭素材粉末を試料ホルダーに充填し、グラフアイトモノクロメーターにより単色化し た CuK a線を線源とし X線回折図形を得る。回折図形のピーク位置は重心法(回折 線の重心位置を求め、これに対応する 2 Θ値でピークの位置をもとめる方法)により求 め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正する。 Cu Κ α線の波長を 0. 15418nmとし、 Braggの公式により d を計算する。また、 002回
002
折線の積分法により求められた半値幅カゝらシリコン粉末の(111)回折線の半値幅を 差し引いた値 βより Scherrerの式により c軸方向の結晶子の厚み Lc (002)を計算し た。
[0053] [数 3] = 2Γ■ s~in & の式)
i = -n (&fe?rerの式)
[0054] (7)水素 Z炭素 (HZC)の原子比の測定:
CHNアナライザーによる元素分析により得られる試料中の水素及び炭素の重量割 合から、水素 Z炭素の原子数の比として求めた。
[0055] (8)比表面積:
BETの式から誘導された近似式 V = 1/ (v ( l-x) )を用いて液体窒素温度におけ る、窒素吸着による 1点法 (相対圧力 χ= 0. 3)により Vを求め、次式により試料の比 表面積を計算した:比表面積 =4. 35 X v (mVg)
ここに、 Vは試料表面に単分子層を形成するに必要な吸着量 (cm3Zg)、 Vは実測 される吸着量 (cm3Zg)、 xは相対圧力である。
[0056] 具体的には、 MICROMERITICS社製「Flow Sorb 112300」を用いて、以下の ようにして液体窒素温度における炭素質物質への窒素の吸着量を測定した。
[0057] 粒子径約 5— 50 μ mに粉砕した炭素材料を試料管に充填し、窒素ガスを 30モル
%濃度で含有するヘリウムガスを流しながら、試料管を 196°Cに冷却し、炭素材に 窒素を吸着させる。つぎに試験管を室温に戻す。このとき試料力 脱離してくる窒素 量を熱伝導度型検出器で測定し、吸着ガス量 した。
[0058] 実施例および比較例を記す。成分量比を表わす「%」は特に断らない限り重量%と する。
[0059] (実施例 1) 水 5176kg中にコロイダルシリカ 32g (固形分 20重量%のシリカ分散 液として 160g)、ジエタノールァミン-アジピン酸縮合生成物(酸化 = 75mgKOH/g ) 3. 96g (50重量%で 7. 92g)、亜硝酸ナトリウム 0. 99gを順番に加えた水系分散 媒体を調製し、これが pH3. 5程度になるよう塩酸を添加し調整し、さらにホモジナイ ザ一にて 8000rpmで 10分間分散処理を行った。一方、アクリロニトリル (AN) 890g 、スチレン(St) 823g、ジビュルベンゼン(DVB) 266g、 2, 2,ーァゾビス— 2, 4—ジメ チルバレ口-トリル 10. 69gからなるモノマー混合物を調製した。(便宜的に St/DV B = 76%Z24%の混合物 Aを、混合物 AZAN= 54%Z45%で混合して得たモノ マー混合物に相当する。 )このモノマー混合物と水系分散媒体をホモジナイザーによ り 3200rpmで 2分間攪拌混合し、モノマー混合物の微小液滴を造粒した。この重合 性混合物の微小な液滴を含有する水系分散媒体を攪拌機付重合缶(10L)に仕込 み、温浴を使用し 55°Cで 1時間反応させたのち、シランカップリング剤 1. 7gを 42. 8 gの酸性水 (PH3. 5)に希釈したものを投入し、さらに 30分経過後 1 %希塩酸 27g投 入し、さらに 55°Cで 20時間反応させた。得られた重合生成物を水相からろ過後、乾 燥し、ジヱットミルで解砕し、平均粒子径 (Dv ) 17 μ mの真球状のビニル榭脂を得
50
た。
[0060] 得られた真球状のビニル榭脂を分散板付石英製の縦型環状炉に 60g仕込み、下 部より上部に向けて空気を流すことにより流動層を形成させ、 280°Cで 1時間酸化処 理を行うことにより、球状の炭素前駆体を得た。この炭素前駆体中の酸素元素の含有 率を元素分析により求めた結果 15重量%であった。得られた球状の炭素前駆体を 窒素中 600°Cで 1時間熱処理することにより球状の予備焼成炭素とした後、これを横 型管状炉にて窒素雰囲気下 1200°Cまで昇温し、 1時間保持して本焼成を行った後 、冷却し、平均粒子径 10 mの球状の炭素材を得た。
[0061] 上記で得られた炭素材の概要を、以下の実施例および比較例で得られた炭素材 の概要と共にまとめて後記表 1に示す。
[0062] (実施例 2) 本焼成温度を、 1200°Cで 1時間から、 1300°Cで 1時間に変更する以 外は、実施例 1と同様にして球状の炭素材を得た。
[0063] (実施例 3) 球状の合成樹脂の酸化温度を 280°Cで 1時間から 260°Cで 1時間に 変更し、球状の炭素前駆体の酸素含有率を 15重量%から 10重量%とする以外は、 実施例 2と同様にして球状の炭素材を得た。
[0064] (実施例 4) モノマー混合物の組成を AN 1800g、 St 77g、 DVB 103g、 2, 2 ,—ァゾビス— 2, 4—ジメチルバレ口-トリル 10. 69g (混合物 A: St/DVB=43%/5 7%、モノマー混合物:混合物AZAN=9%Z91%)とした以外は、実施例 2と同様 にして球状の炭素材を得た。
[0065] (実施例 5) モノマー混合物の組成を AN 1380g、 St 403g、 DVB 177g、 2, 2,―ァゾビス— 2, 4—ジメチルバレ口-トリル 10. 69g (混合物 A: St/DVB = 70%/ 30%、モノマー混合物:混合物 AZAN = 30%Z70%)とした以外は、実施例 2と同 様にして球状の炭素材を得た。
[0066] (実施例 6) モノマー混合物の組成を AN 590g、 St 977g、 DVB 413g、 2, 2 ,—ァゾビス— 2, 4—ジメチルバレ口-トリル 10. 69g (混合物 A: St/DVB = 70%/3 0%、モノマー混合物:混合物 AZAN=70%Z30%)とし、本焼成温度を 1300°C で 1時間から 1350°Cで 1時間に変更した以外は、実施例 2と同様にして球状の炭素 材を得た。
[0067] (実施例 7) モノマー混合物の組成を St 1194g、DVB 78 lg、 2, 2,ーァゾビス —2, 4—ジメチルバレ口-トリル 10. 69g (混合物 A: StZDVB = 59%Z40%、モノ マー混合物:混合物 AZAN= 100%ZO%)とした以外は、実施例 2と同様にして球 状の炭素材を得た。 [0068] (実施例 8) シランカップリング剤 1. 7gを 42. 8gの酸性水 (pH3. 5)に希釈したも のを投入し、さらに 30分経過後 1%希塩酸 27g投入する工程を省略することにより、 得られた生成物からコロイドダルシリカをろ過時に除去し、これを乾燥、さらにジェット ミルで解砕し、平均粒子径 17 /z mの真球状のビュル榭脂を得た以外、実施例 2と同 様にして球状の炭素材を得た。
[0069] (比較例 1) 実施例 1で得られた真球状の合成樹脂に対し、酸化処理を行わず予 備焼成を行ったところ、榭脂が溶融発泡し目的の球状の炭素材が得られな力つた。
[0070] (比較例 2) 本焼成温度を、 1200°Cで 1時間を 900°Cで 1時間に変更する以外は 、実施例 1と同様にして球状の炭素材を得た。
[0071] (比較例 3) モノマー混合物の組成を St 1750g、 DVB 200g、 2, 2,ーァゾビス -2, 4—ジメチルバレ口-トリル 10. 69g (混合物 A: StZDVB = 89%ZlO%、モノ マー混合物:混合物 AZAN= 100%ZO%)とし、実施例 1と同様の方法で真球状 のビュル榭脂を得た。これを実施例 1と同様の方法で酸ィ匕処理を行ったが、昇温中 に合成樹脂が溶融し、球状の炭素前駆体を得ることができなかった。
[0072] (比較例 4) 軟化点 210°C、キノリン不溶分 1重量%、 HZC原子比 0. 63の石油系 ピッチ 68kgと、ナフタレン 32kgとを、攪拌翼のついた内容積 300リットルの耐圧容器 に仕込み、 190°Cで溶融混合を行った後、 80— 90°Cに冷却して押し出し、径約 500 mの紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約 1. 5にな るように破砕し、得られた破砕物を 93°Cに加熱した 0. 53重量%のポリビュルアルコ ール (ケンィ匕度 88%)を溶解した水溶液中に投入し、攪拌分散し、冷却して球状ピッ チ成形体スラリーを得た。大部分の水をろ過により除いた後、球状ピッチ成形体の約 6倍量の重量の n—へキサンでピッチ成形体中のナフタレンを抽出除去した。この様 にして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、 260°Cま で昇温し、 260°Cに 1時間保持して酸ィ匕し、熱に対して不融性の多孔性球状酸化ピ ツチを得た。得られた酸ィ匕ピッチは酸素含有量が 17重量%であった。次に酸化ピッ チを窒素ガス雰囲気中(常圧)で 600°Cまで昇温し、 600°Cで 1時間保持して仮焼成 し、揮発分 2%以下の炭素前駆体を得た。得られた炭素前駆体を粉砕し、平均粒径 10 mの粉末状炭素前駆体とした。次に粉末状炭素前駆体を焼成炉に仕込み、窒 素気流中、焼成炉の温度が 1200°Cに到達したら、 1200°Cで 1時間保持して本焼成 を行った後、冷却し、粉末状の炭素材を製造した。
[0073] (比較例 5) 比較例 4と同様の方法で調製した多孔性球状ピッチを流動床により、 加熱空気を通じながら、 160°Cまで昇温し、 160°Cに 1時間保持して酸ィ匕し、多孔性 球状酸化ピッチを得た。得られた酸化ピッチは酸素含有量が 2重量%であった。次に 酸化ピッチを窒素ガス雰囲気中(常圧)で 600°Cまで昇温し、 600°Cで 1時間保持し て晶質化し、 2%以下の炭素前駆体を得た。得られた炭素前駆体を粉砕し、平均粒 径 12 mの粉末状炭素前駆体とした。次に粉末状炭素前駆体を焼成炉に仕込み、 窒素気流中、焼成炉の温度が 1200°Cに到達したら、 1200°Cで 1時間保持して本焼 成を行った後、冷却し、平均粒子径 10 /z mの粉末状の炭素材を製造した。
[0074] (比較例 6) ニードルコータスを粉砕し、平均粒径 12 mの粉末状炭素前駆体とし た。次に粉末状炭素前駆体を焼成炉に仕込み、窒素気流中、焼成炉の温度が 120 0°Cに到達したら、 1200°Cで 1時間保持して本焼成を行った後、冷却し、平均粒子 径 10 μ mの粉末状の炭素材を製造した。
[0075] (比較例 7) 平均粒子径 の真球状のフエノール榭脂 (マリリン:群栄化学製) を窒素ガス雰囲気中(常圧)で 600°Cまで昇温し、 600°Cで 1時間保持して仮焼成し 、揮発分 2%以下の球状の炭素前駆体を得た。次に球状の炭素前駆体を焼成炉に 仕込み、窒素気流中、焼成炉の温度が 1200°Cに到達したら、 1200°Cで 1時間保持 して本焼成を行った後、冷却し、真球状の炭素材を製造した。
[0076] (活物質のドーブー脱ドープ試験)
上記、実施例および比較例で得た炭素材を用いて、以下 (a)—(f)のようにして電 極形成を行 ヽ、且つ電極性能および保存特性の評価を行った。
[0077] (a)電極作製
上記炭素材 90重量部、ポリフッ化ビ-リデン (呉羽化学工業製「KF # 1100」) 10 重量部に NMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅 箔より剥離させ直径 15mmの円板状に打ち抜いた。なお、電極中の炭素材料の量は 約 20mgになるように調整した。
[0078] (b)試験電池の作製 本発明の炭素材は非水電解質二次電池の負極を構成するのに適している力 電池 活物質の放電容量 (脱ドープ量)および不可逆容量 (非脱ドープ量)を、対極の性能 のノ ラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金 属を対極として、上記で得られた電極を用いてリチウム二次電池を構成し、その特性 を評価した。
[0079] すなわち、上記各実施例または比較例の炭素材を用いて得られた直径 15mmの 円盤膜状電極を、 2016サイズ (すなわち直径 20mm、厚さ 1. 6mm)のコイン型電池 用缶の内蓋にスポット溶接された直径 17mmのステンレススチール網円盤に、プレス により加圧して圧着して電極とした。
[0080] リチウム極の調製は、 Ar雰囲気中のグローブボックス内で行った。予め 2016サイズ のコイン型電池用缶の外蓋に直径 17mmのステンレススチール網円盤をスポット溶 接した後、厚さ 0. 5mmの金属リチウム薄板を直径 15mmの円盤状に打ち抜いたも のをステンレススチーノレ網円盤に圧着し、電極 (対極)とした。
[0081] このようにして製造した電極の対を用い、電解液としてはプロピレンカーボネートと ジメトキシェタンを容量比で 1: 1で混合した混合溶媒に 1モル/リットルの割合で LiC lOを加えたものを使用し、直径 17mmのポリプロピレン製微細孔膜をセパレータを
4
介して対向きさせ、 Arグローブボックス中で、 2016サイズのコイン型非水電解質系リ チウムニ次電池を組み立てた。
[0082] (c)電池容量の測定
上記構成のリチウム二次電池について、充放電試験装置 (東洋システム製「TOSC AT」)を用いて充放電試験を行った。充放電は定電流定電圧法により行った。ここで 、「充電」は試験電池では放電反応である力 この場合は炭素材へのリチウム挿入反 応であるので、便宜上「充電」と記述する。逆に「放電」とは試験電池では充電反応で あるが、炭素材力 のリチウムの脱離反応であるため便宜上「放電」と記述することに する。ここで採用した定電流定電圧条件は、電池電圧が OVになるまで一定の電流密 度 0. 5mAZcm2で充電を行い、その後、電圧を OVに保持するように(定電圧に保 持しながら)電流値を連続的に変化させて電流値が 20 μ Αに達するまで充電を継続 する。このとき、供給した電気量を電極の炭素材の重量で除した値を炭素材の単位 重量当たりの充電容量 (mAhZg)と定義した。充電終了後、 30分間電池回路を開 放し、その後放電を行った。放電は電池電圧が 1. 5Vに達するまで一定の電流密度 0. 5mAZcm2で行い、このとき放電した電気量を電極の炭素材の重量で除した値 を炭素材の単位重量当たりの放電容量 (mAhg)と定義する。不可逆容量は、充電量 放電量として計算される。
[0083] 同一試料を用いて作製した試験電池にっ 、ての n= 3の測定値を平均して充放電 容量および不可逆容量を決定した。
[0084] (d)急速放電性試験
上記構成のリチウム二次電池について、(c)と同様の方法で炭素材に充電した後、 電流密度充電終了後、 30分間電池回路を開放し、その後放電を行った。放電は電 池電圧が 1. 5Vに達するまで一定の電流密度 20mAZcm2で行い、このとき放電し た電気量を電極面積で除した値を急速放電容量 (mAhZcm2)と定義する。
[0085] (e)電極材料の保存特性試験
(c)の方法により負極材料製造直後(0日)の不可逆容量 I 0および露点 - 60°C、温 度 25°Cの空気中で 30日保管した電極の不可逆容量 I 30を測定し、以下の式により大 気中劣化率を測定した。
( (I 30 -I 0 ) /ι 0 ) χ ιοο
[0086] (f)繰り返し性能試験
上記実施例または比較例で得られた炭素材各 90重量部、ポリフッ化ビニリデン (呉 羽化学工業製「KF # 1100」) 10重量部に NMPを加えてペースト状にし、銅箔上に 均一に塗布した。乾燥した後、塗工電極を直径 15mmの円板状に打ち抜くことにより 負極電極を作製した。なお、電極中の炭素材料の量は約 14mgに調整した。
[0087] コバルト酸リチウム(LiCoO ) 94重量部、カーボンブラック 3重量部、ポリフッ化ビ-
2
リデン (呉羽化学工業製「KF # 1300」)3重量部に NMPをカ卩えてペースト状にし、ァ ルミ-ゥム箔上に均一に塗布した。乾燥した後、塗工電極を直径 14mmの円板状に 打ち抜く。なお、(c)で測定した負極活物質の充電容量の 80%となるよう正極電極中 のコバルト酸リチウムの量を調整した。コバルト酸リチウムの容量を 150mAhZgとし 十异した。
[0088] このようにして調製した電極の対を用い、電解液としてはエチレンカーボネートとジ ェチルカーボネートを容量比 1: 1で混合した混合溶媒に 1モル Zリットルの割合で Li PFを加えたものを使用し、直径 17mmのポリプロピレン製微細孔膜をセパレータを 介して対向させ、 Arグローブボックス中で、 2016サイズのコイン型非水電解質系リチ ゥム二次電池を組み立てた。
[0089] ここで採用した定電流定電圧条件は、電池電圧が 4. 2Vになるまで一定の電流密 度 3mAZcm2で充電を行い、その後、電圧を 4. 2Vに保持するように(定電圧に保 持しながら)電流値を連続的に変化させて電流値が 50 μ Αに達するまで充電を継続 する。充電終了後、 30分間電池回路を開放し、その後放電を行った。放電は電池電 圧が 2. 75Vに達するまで一定の電流密度 3mAZcm2で行った。この充放および放 電を 25°Cで 25回繰り返したのち、 45°Cまで電池をカ卩温し、 45°Cでさらに 100回充放 電を繰り返し 100回後の放電容量を加温後最初の放電容量で除し、容量維持率(% )とした。
[0090] 上記 (a)— (f)のようにして測定した実施例、比較例の炭素材の電気化学特性評価 結果を、用いた炭素材の代表的物性のいくつ力とともに下表 2にまとめて記す。
[0091] [表 1]
樹脂組成 樹脂中 炭素材中 酸素含有量 焼成温度 焼成収率 N含有率 wt% シリカ含量 真球度 H/C シリカ含量
St DVB AN % % °C % wt% %
〔〕0092
実施例 1 41.8 13.2 45 1 .6 15 1200 65 0.98 0.02 2.0 2.5 実施例 2 41.8 13.2 45 1 .6 15 1300 61 0.99 < 0.01 1.8 2.9 実施例 3 41.8 13.2 45 1 .6 10 1300 48 0.99 く 0.01 1.6 3.5 実施例 4 3.87 5.13 91 1 .6 15 1300 45 0.99 < 0.01 3.8 2.3 実施例 5 20.3 8.7 70 1.6 15 1300 62 0.99 < 0.01 3.2 2.9 実施例 6 48.3 20.7 30 1.6 15 1350 61 0.98 < 0.01 1.6 2.9 実施例 7 60 40 0 1 .6 15 1200 48 0.97 < 0.01 0.0 2.9 実施例 8 41.8 13.2 45 0 15 1300 58 0.99 く 0.01 1.8 0.0 比較例 1 41.8 13.2 45 1 .6 0 1300 10 ― ― 2.9 比較例 2 41.8 13.2 45 1 .6 15 900 66 0.99 0.08 4.2 2.9 比較例 3 90 10 0 1 .6 ― ― 8 ― ― ― 2.9 比較例 4 石油ピッチ 0 15 1200 0.68 0.02 0.0 0 比較例 5 石油ピッチ 0 2 1200 0.65 0.02 0.0 0 比較例 6 二一ドルコ一クス 0 - 1200 - 0.71 0.01 0.0 0 比較例つ フエノ一ル樹脂 0 - 1200 40 0.97 0.03 1.7 0
Figure imgf000024_0001
産業上の利用可能性
上記表 1および表 2の結果を見れば明らかなように、本発明によれば球状ビュル榭 脂を出発原料として、非水電解質二次電池の負極材料として用いた場合に急速出 力特性および耐久性を含む優れた適性を示す球状炭素材の製造方法が提供される 。得られた球状炭素材は、非水電解質二次電池の負極材料以外にも、その優れた 真球度、粒径の均一性を利用して、例えば制電性 (静電気非発生性)の良好な非金 属ベアリング材としても優れた適性を示す他、吸着剤、各種充填材を含む多様な用 途展開が期待される。

Claims

請求の範囲
[1] 球状ビニル榭脂を酸化性ガス雰囲気中で酸化処理して球状の炭素前駆体を得、こ れを非酸化性ガス雰囲気中 1000— 2000°Cで炭素化することを特徴とする球状炭 素材の製造方法。
[2] 球状ビュル榭脂が 150— 400°Cの温度で酸ィ匕処理される請求項 1に記載の製造方 法。
[3] 球状ビュル榭脂が架橋ビニル榭脂からなる請求項 1または 2に記載の製造方法。
[4] 球状ビュル榭脂力 その 10— 80重量0 /0のスチレン系モノマーおよび 10— 90重量 %のアクリロニトリル系モノマーを含み、更にスチレン系モノマーの 15重量0 /0以上の 架橋剤を含むモノマー混合物の懸濁重合生成物からなる請求項 3に記載の製造方 法。
[5] 懸濁重合がモノマー混合物 100重量部に対し、 0. 1— 10重量部のコロイダルシリカ を分散安定剤として含む水性媒体中で行われる請求項 4に記載の製造方法。
[6] 請求項 1一 5のいずれかに記載の製造方法により製造された球状炭素材からなる非 水電解質二次電池用負極材料。
PCT/JP2005/005581 2004-03-30 2005-03-25 球状炭素材の製造方法 WO2005097674A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067018830A KR101151663B1 (ko) 2004-03-30 2005-03-25 구형 탄소재의 제조 방법
EP05721508A EP1743870A4 (en) 2004-03-30 2005-03-25 PROCESS FOR PRODUCING SPHERICAL CARBON MATERIAL
JP2006512038A JP4836781B2 (ja) 2004-03-30 2005-03-25 球状炭素材の製造方法
US11/547,364 US7651817B2 (en) 2004-03-30 2005-03-25 Process for producing spherical carbon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-100750 2004-03-30
JP2004100750 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005097674A1 true WO2005097674A1 (ja) 2005-10-20

Family

ID=35124966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005581 WO2005097674A1 (ja) 2004-03-30 2005-03-25 球状炭素材の製造方法

Country Status (6)

Country Link
US (1) US7651817B2 (ja)
EP (1) EP1743870A4 (ja)
JP (1) JP4836781B2 (ja)
KR (1) KR101151663B1 (ja)
CN (1) CN100509620C (ja)
WO (1) WO2005097674A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222472A (ja) * 2010-03-25 2011-11-04 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2012064407A (ja) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2014231444A (ja) * 2013-05-28 2014-12-11 Jsr株式会社 炭素材料
JP2017154951A (ja) * 2016-03-04 2017-09-07 株式会社 東北テクノアーチ 多孔質炭素材料の製造方法および球状の多孔質炭素材料
JP2018514638A (ja) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド 充填剤
JP2018190732A (ja) * 2013-12-16 2018-11-29 Jfeケミカル株式会社 リチウムイオン二次電池負極材用炭素質被覆黒鉛粒子の製造方法
JP2020114804A (ja) * 2020-05-12 2020-07-30 株式会社 東北テクノアーチ 多孔質炭素材料

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056380B1 (en) * 2006-08-17 2018-02-28 Mitsubishi Chemical Corporation Negative electrode active material for lithium ion secondary battery, process for producing the same, and negative electrode for lithium ion secondary battery and lithium ion secondary battery both employing the same.
US20110020701A1 (en) * 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
KR102184848B1 (ko) * 2010-01-18 2020-12-02 에네베이트 코포레이션 전기화학적 축전지용 복합재 박막
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
KR101077870B1 (ko) * 2010-02-26 2011-10-28 주식회사 엘지화학 접착력이 우수한 이차전지용 바인더
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9397338B2 (en) 2010-12-22 2016-07-19 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
JP6062849B2 (ja) * 2011-03-10 2017-01-18 株式会社クレハ 非水電解質二次電池負極用炭素質材料
CN103259002A (zh) * 2013-05-28 2013-08-21 宁德新能源科技有限公司 锂离子电池及其电极片
CN104130766B (zh) * 2014-08-13 2017-03-22 中国地质大学(武汉) 一种低密度压裂支撑剂的制备方法
CN104909364B (zh) * 2015-06-09 2017-05-31 中国科学院山西煤炭化学研究所 具有高co2吸附量的高强度毫米级聚丙烯腈基球状活性炭的制法
US20180134901A1 (en) * 2016-11-11 2018-05-17 Carbon Research & Development, Co. Renewable biomass derived carbon material and method of making the same
US20180134899A1 (en) * 2016-11-11 2018-05-17 Carbon Research & Development, Co. Renewable Pyrolysis-Gas Derived Carbon Black Material and Method of Making the Same
US11390524B2 (en) 2017-02-08 2022-07-19 National Electrical Carbon Products, Inc. Carbon powders and methods of making same
CN107416823B (zh) * 2017-06-23 2019-10-01 上海应用技术大学 一种利用星状聚合物可控制备多孔碳材料的方法
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
CN116995210A (zh) 2017-12-07 2023-11-03 新强能电池公司 包含碳化硅和碳颗粒的复合物
CN110098385B (zh) * 2019-01-16 2022-07-12 上海普澜特夫精细化工有限公司 一种硅-硬碳复合材料及其制备方法
CN112551509A (zh) * 2019-09-25 2021-03-26 中国科学院金属研究所 一种制备纳米多孔碳或纳米球形碳的方法
CN113072055B (zh) * 2020-01-06 2023-03-31 国家能源投资集团有限责任公司 碳材料及其制备方法与应用
CN114618432B (zh) * 2020-12-10 2023-06-30 中国科学院大连化学物理研究所 一种树脂基碳微球的制备方法及其应用
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126505A (ja) * 1984-07-17 1986-02-05 Toray Ind Inc 黒色粒子
JPH0221942A (ja) * 1988-07-12 1990-01-24 Nippon Carbon Co Ltd 炭素質吸着剤の製造方法
JPH05139711A (ja) * 1991-11-13 1993-06-08 Kao Corp 均一粒子径焼成微粒子及びその製造方法
JPH0620680A (ja) * 1992-06-30 1994-01-28 Japan Storage Battery Co Ltd 非水電解液二次電池
JPH06150927A (ja) * 1992-11-02 1994-05-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000191817A (ja) * 1998-12-28 2000-07-11 Kureha Chem Ind Co Ltd 発泡性マイクロスフェア―及びその製造方法
WO2002083557A1 (en) * 2001-04-17 2002-10-24 Lg Chem, Ltd. Spherical carbons and method for preparing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962604A (ja) * 1982-10-01 1984-04-10 Kanegafuchi Chem Ind Co Ltd 共重合体の製造方法
JP2645756B2 (ja) * 1989-12-18 1997-08-25 日本カーボン株式会社 球状炭素材料の製造方法
JPH0598302A (ja) * 1991-10-07 1993-04-20 Nippon Shokubai Co Ltd 金属元素担持炭素微粒子およびその製造方法
US6613810B1 (en) * 1998-01-26 2003-09-02 Kureha Kagaku K.K. Expandable microspheres and process for producing the same
JP3777123B2 (ja) * 2000-04-28 2006-05-24 ブリュッヒャー ゲゼルシャフト ミット ベシュレンクテル ハフツング 球状活性炭を製造する方法
JP2002145938A (ja) * 2000-11-16 2002-05-22 Mitsubishi Rayon Co Ltd アクリロニトリル系重合体およびこれを用いた炭素材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126505A (ja) * 1984-07-17 1986-02-05 Toray Ind Inc 黒色粒子
JPH0221942A (ja) * 1988-07-12 1990-01-24 Nippon Carbon Co Ltd 炭素質吸着剤の製造方法
JPH05139711A (ja) * 1991-11-13 1993-06-08 Kao Corp 均一粒子径焼成微粒子及びその製造方法
JPH0620680A (ja) * 1992-06-30 1994-01-28 Japan Storage Battery Co Ltd 非水電解液二次電池
JPH06150927A (ja) * 1992-11-02 1994-05-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000191817A (ja) * 1998-12-28 2000-07-11 Kureha Chem Ind Co Ltd 発泡性マイクロスフェア―及びその製造方法
WO2002083557A1 (en) * 2001-04-17 2002-10-24 Lg Chem, Ltd. Spherical carbons and method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1743870A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222472A (ja) * 2010-03-25 2011-11-04 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2012064407A (ja) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2014231444A (ja) * 2013-05-28 2014-12-11 Jsr株式会社 炭素材料
JP2018190732A (ja) * 2013-12-16 2018-11-29 Jfeケミカル株式会社 リチウムイオン二次電池負極材用炭素質被覆黒鉛粒子の製造方法
JP2018514638A (ja) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド 充填剤
JP2017154951A (ja) * 2016-03-04 2017-09-07 株式会社 東北テクノアーチ 多孔質炭素材料の製造方法および球状の多孔質炭素材料
WO2017149886A1 (ja) * 2016-03-04 2017-09-08 株式会社東北テクノアーチ 多孔質炭素材料の製造方法および球状の多孔質炭素材料
US11180374B2 (en) 2016-03-04 2021-11-23 Tohoku Techno Arch Co., Ltd. Method for producing porous carbon material and spherical porous carbon material
US11377358B2 (en) 2016-03-04 2022-07-05 Tohoku Techno Arch Co., Ltd. Method for producing porous carbon material
JP2020114804A (ja) * 2020-05-12 2020-07-30 株式会社 東北テクノアーチ 多孔質炭素材料
JP7093085B2 (ja) 2020-05-12 2022-06-29 株式会社 東北テクノアーチ 多孔質炭素材料

Also Published As

Publication number Publication date
CN100509620C (zh) 2009-07-08
EP1743870A4 (en) 2011-04-06
KR20070001186A (ko) 2007-01-03
US20070212610A1 (en) 2007-09-13
CN1938223A (zh) 2007-03-28
US7651817B2 (en) 2010-01-26
KR101151663B1 (ko) 2012-06-08
JP4836781B2 (ja) 2011-12-14
EP1743870A1 (en) 2007-01-17
JPWO2005097674A1 (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
KR101151663B1 (ko) 구형 탄소재의 제조 방법
JP4937737B2 (ja) 非水電解質二次電池用負極材料、その製造方法、負極および電池
EP1478038B1 (en) Negative electrode material for lithium ion secondary battery
TWI481105B (zh) 非水電解質二次電池用碳質材料
US20030160215A1 (en) Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same
JP2017130274A (ja) リチウム二次電池用負極材およびその製造方法、リチウム二次電池
TWI599092B (zh) Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material
JP2012036048A (ja) リン酸バナジウムリチウム炭素複合体の製造方法
JP2002231225A (ja) 複合電極材料とその製造方法、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
CN106165162B (zh) 非水电解质二次电池负极用碳质材料和包含其的负极电极
JP4747482B2 (ja) リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
WO2015152088A1 (ja) 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
WO2015141852A1 (ja) 非水電解質二次電池
JP6605451B2 (ja) 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
JP2022190387A (ja) リチウム二次電池用複合活物質およびその製造方法
WO2015152089A1 (ja) 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020067018830

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006512038

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005721508

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580010046.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11547364

Country of ref document: US

Ref document number: 2007212610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067018830

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005721508

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547364

Country of ref document: US