WO2005093844A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2005093844A1
WO2005093844A1 PCT/JP2005/004178 JP2005004178W WO2005093844A1 WO 2005093844 A1 WO2005093844 A1 WO 2005093844A1 JP 2005004178 W JP2005004178 W JP 2005004178W WO 2005093844 A1 WO2005093844 A1 WO 2005093844A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
base
regions
guard
conductivity type
Prior art date
Application number
PCT/JP2005/004178
Other languages
English (en)
French (fr)
Inventor
Shinji Kunori
Hiroaki Shishido
Masato Mikawa
Kosuke Ohshima
Masahiro Kuriyama
Mizue Kitada
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to EP05720449A priority Critical patent/EP1755169A4/en
Publication of WO2005093844A1 publication Critical patent/WO2005093844A1/ja
Priority to US11/528,654 priority patent/US7573109B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a technique for increasing a breakdown voltage of a semiconductor device, and more particularly to a technique for improving a breakdown voltage and improving a breakdown voltage.
  • Reference numeral 101 in FIG. 38 is an example of a MOSFET-type semiconductor device.
  • the resistance value is large on an N-type substrate 111 having a small resistance value! ⁇ N-type resistive layer 112 is formed by epitaxial growth.
  • a plurality of P-shaped guard regions 146b having a square ring shape in plan view are formed concentrically.
  • a plurality of P-shaped and elongated base diffusion regions 117 are formed, and at the center in the width direction of the inner surface of each base diffusion region 117, An elongated ohmic diffusion region 120 having a P-type and having a surface concentration higher than that of the base diffusion region 117 is provided.
  • An N-type and elongated source diffusion region 121 is arranged in parallel with the ohmic diffusion region 120.
  • a portion of the inner surface of the base diffusion region 117 between the outer periphery of the source diffusion region 121 and the outer periphery of the base diffusion region 117 is a channel region 122, on which a gate insulating film 134 and a gate
  • the electrode films 136 are arranged in this order.
  • An interlayer insulating film 137 is disposed on the gate electrode film 136, and a source electrode film 138 in contact with the source diffusion region 121 and the ohmic diffusion region 120 is disposed on the interlayer insulating film 137. .
  • the source electrode film 138 is separated from the gate electrode film 136 by an interlayer insulating film 137. Therefore, the source electrode film 138 is electrically insulated from the gate electrode film 136, is electrically connected to the source diffusion region 121, and is electrically connected to the base diffusion region 117 via the ohmic diffusion region 120. It is connected.
  • a protective film 139 is formed on the surface of the source electrode film 138.
  • a drain electrode film 130 is formed on the back surface of the substrate 111.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode film 136 with the source electrode film 138 grounded and a positive voltage applied to the drain electrode film 130, the channel region 122 is inverted to an N-type, and Source diffusion region 121 and resistance layer 112 are connected. This state is a conduction state, and a current flows from the drain electrode film 130 to the source electrode film 138.
  • a P-type base buried region 146a is arranged in contact with base diffusion region 117.
  • the PN junction between the P-type region composed of the base diffusion region 117 and the base buried region 146a and the N-type region composed of the resistance layer 112 is reverse-biased, and From the PN junctions in both the region 117 and the base buried region 146a, the depletion layer spreads greatly in both the P-type region and the N-type region.
  • the base buried region 146a is a slender V region along the direction in which the slender base diffusion region 117 extends, and one base buried region 146a is arranged at a central position in the width direction of each base diffusion region 117.
  • the base diffusion regions 117 are arranged in parallel with each other, and the base buried regions 146a are also in parallel with each other.
  • the resistance layer 112 at a portion sandwiched between the base buried regions 146a is a depletion layer. It is filled.
  • a region inside the center position in the width direction of the innermost guard region 146b and included in the RESURF region located between the bottom surface of the base buried region 146a and the bottom surface of the base diffusion region 117. Is set so that the amount of N-type impurities and the amount of P-type impurities are equal!
  • a voltage is applied that just fills the N-type region in the RESURF region with a depletion layer.
  • the P-type region in the RESURF region is also filled with the depletion layer.
  • the depletion layer in the RESURF region is flat, a voltage higher than that voltage is applied, and the depletion layer is depleted toward the substrate 111 beyond the bottom surface of the base buried region 146a.
  • the warming force also has the advantage that the depletion layer is widened and the breakdown voltage is increased.
  • the amount of impurities and the diffusion structure forming such a depletion layer are called RESURF conditions.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-101022
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-86800
  • avalanche breakdown occurs when a high reverse bias voltage is applied.
  • the semiconductor device 101 may be broken. Therefore, it is desired to develop a semiconductor device having a high withstand voltage and a high breakdown strength!
  • Avalanche breakdown may occur in the active region inside the innermost guard region 146b, or may occur in the breakdown voltage region outside the active region.
  • guard region 146b Since the guard region 146b is placed at the floating potential, when avalanche breakdown occurs in the breakdown voltage region, the current flowing in the avalanche breakdown is concentrated around the base diffusion region 117 close to the innermost guard region 146b. Then, the semiconductor device 101 is destroyed.
  • the inventors of the present invention set the distance Wm between the base buried region located adjacent to the bottom surface of the same base diffusion region and the distance Wm located at the bottom surface of a different base diffusion region.
  • the distance Wm between the adjacent base embedding areas and the distance W between the guard embedding areas It has been found that, when the relationship between the two is appropriately set, a semiconductor device with high breakdown strength can be obtained while satisfying the resurfing conditions of the region where the base region is arranged.
  • the present invention has been created based on the above-mentioned findings, and the invention according to claim 1 has a first conductive type resistive layer and a second conductive type formed inside the resistive layer and arranged concentrically. A plurality of guard buried regions of a second conductivity type disposed near the inner surface of the resistance layer and inside the innermost guard buried region.
  • a source diffusion region of a first conductivity type which is formed near a surface inside each of the base diffusion regions in a region inside the edge of each of the base diffusion regions and is shallower than each of the base diffusion regions;
  • a channel region near an edge of the diffusion region and between an edge of each of the base diffusion regions and an edge of each of the source diffusion regions;
  • a gate insulating film located at least on each of the channel regions;
  • a gate electrode film located at the A plurality of base buried regions of a second conductivity type, each of which is arranged on the bottom surface of the base diffusion region and connected to each of the base diffusion regions; The distance Wm between the base embedding areas and the different base
  • each base buried region and the bottom surface of each guard buried region are located at substantially the same depth, and the bottom surface of each base diffusion region is located at substantially the same depth.
  • the semiconductor device has the following relationship.
  • the invention according to claim 2 provides a resistance layer of the first conductivity type, a plurality of guard buried regions of the second conductivity type formed inside the resistance layer and arranged concentrically, and the inside of the resistance layer.
  • a source diffusion region of the first conductivity type formed near the surface inside the diffusion region and shallower than each of the base diffusion regions; and near an edge of each of the base diffusion regions, A channel region between the edges of each source diffusion region, a gate insulating film located at least on each channel region, a gate electrode film located on the gate insulating film, and a bottom surface of each base diffusion region.
  • each base buried region and the bottom surface of each guard buried region are located at substantially the same depth, and the bottom surface of each base diffusion region is located at substantially the same depth.
  • the semiconductor device has the following relationship.
  • the invention according to claim 3 provides a resistance layer of the first conductivity type, a plurality of guard-embedded regions of the second conductivity type formed inside the resistance layer and arranged concentrically, and the inside of the resistance layer.
  • a plurality of base diffusion regions of the second conductivity type disposed near the innermost periphery of the guard buried region and a region inside the edge of each base diffusion region.
  • a first conductivity type source diffusion region formed near the surface inside each base diffusion region and shallower than the base diffusion region; and an edge of the base diffusion region near an edge of the base diffusion region. And a channel region between the edges of each of the source diffusion regions.
  • each base buried region and the bottom surface of each guard ring region are located at substantially the same depth, and the bottom surface of each base diffusion region is located at substantially the same depth. And a region inside the center position in the width direction of the innermost guard buried region, and a region between the base buried region and the bottom surface of the guard buried region and the bottom surface of the base diffusion region.
  • the semiconductor device has the following relationship.
  • the invention according to claim 4 is the semiconductor device according to claim 1, wherein each of the guard buried regions includes a ring-shaped groove formed in the resistance layer, A semiconductor device having a semiconductor material of a second conductivity type filled in a ring-shaped groove.
  • the invention according to claim 5 is the semiconductor device according to any one of claims 1 to 4, wherein each of the base buried regions includes a groove formed in the resistance layer and a groove formed in the groove. This is a semiconductor device having a filled second conductivity type semiconductor material.
  • the invention according to claim 6 is the semiconductor device according to any one of claims 1 to 5, wherein an upper portion of each of the guard embedding regions is wider than a width of the guard embedding region.
  • a guard diffusion region of the second conductivity type is arranged, and a guard ring region is formed by each of the guard buried regions and the guard diffusion region connected thereto.
  • the width of the upper portion of the guard ring region is larger than that of the lower portion. This is a semiconductor device that has been widened.
  • each of the base diffusion regions and the base buried region are formed to be elongated, the respective base diffusion regions are arranged in parallel with each other, and the base buried region is formed along the longitudinal direction of each of the base diffusion regions.
  • Semiconductor devices arranged in parallel with each other.
  • each of the guard embedding regions is formed in a rectangular or square quadrangular ring shape, and each of the guard embedding regions is formed. Adjacent sides of the embedding region are arranged in parallel with each other, and each of the base embedding regions is a semiconductor device arranged in parallel with two parallel sides of the four sides of each of the guard embedding regions. .
  • the semiconductor device has the following relationship.
  • the invention according to claim 10 is the semiconductor device according to any one of claims 1 to 9, wherein the base buried region is formed to be elongated, and both ends of the base buried region in the longitudinal direction. And the distance W between the innermost guard embedding area and the guard embedding area a
  • the invention according to claim 11 is the semiconductor device according to any one of claims 1 to 9, wherein the base buried region is formed to be elongated, and both ends of the base buried region in the longitudinal direction. Is a semiconductor device connected to the innermost buried region.
  • a twelfth aspect of the present invention is the semiconductor device according to any one of the first to eleventh aspects, wherein each of the base buried regions has the same width.
  • a thirteenth aspect of the present invention is the semiconductor device according to any one of the first to twelfth aspects, wherein each of the guard buried regions has the same width.
  • the invention according to claim 14 is a semiconductor device according to any one of claims 1 to 13. Wherein the widths of the base buried regions are equal to each other and the widths of the guard buried regions are equal to each other. is there.
  • the invention according to claim 15 is the semiconductor device according to any one of claims 1 to 14, wherein the source electrode film electrically connected to the source diffusion region and the base diffusion region is formed.
  • the semiconductor device has:
  • the invention according to claim 16 is the semiconductor device according to any one of claims 1 to 15, wherein a surface of the resistive layer on a side opposite to a surface on which the base region is formed includes: A semiconductor device having a drain layer of the same conductivity type as the resistance layer and a higher concentration than the resistance layer.
  • the invention according to claim 17 is the semiconductor device according to any one of claims 1 to 15, wherein a surface of the resistance layer opposite to a surface on which the base region is formed includes: This is a semiconductor device in which a collector layer of a conductivity type opposite to that of the resistance layer is arranged.
  • the invention according to claim 18 is the semiconductor device according to any one of claims 1 to 15, wherein a surface of the resistance layer opposite to a surface on which the base region is formed includes: A semiconductor device in which a Schottky electrode film forming a Schottky junction with the resistance layer is arranged.
  • the semiconductor device according to any one of the first to fifteenth aspects, wherein a surface of the resistance layer on the side where the base diffusion region is formed is electrically connected to the resistance layer.
  • the semiconductor device has a drain electrode film insulated from the source electrode film.
  • the present invention is configured as described above, and the source diffusion region can be arranged along the edge of the base diffusion region at a predetermined distance from the edge of the base diffusion region.
  • the source electrode film connected to the source diffusion region can be electrically connected to the base diffusion region near the center in the width direction of the base diffusion region.
  • avalanche breakdown does not occur in the breakdown voltage region, so that a high avalanche current can be obtained without concentration of the avalanche current in the base diffusion region adjacent to the innermost guard region.
  • the avalanche current does not pass through the high resistance portion of the base diffusion region below the bottom surface of the source diffusion region, so that a higher resistance to breakdown can be obtained. .
  • the base buried region is arranged in parallel along the longitudinal direction of the base diffusion region.
  • a semiconductor element having a high withstand voltage and a high breakdown strength can be obtained.
  • FIG. 2 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention
  • FIG. 3 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (3)
  • FIG. 4 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (4)
  • FIG. 5 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (5)
  • FIG. 6 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (6)
  • FIG. 7 (a), (b): diagrams for explaining the manufacturing steps of the semiconductor device of the present invention (7)
  • FIG. 8 (a), (b): diagrams for explaining the manufacturing steps of the semiconductor device of the present invention (8)
  • FIG. 9 (a), (b): diagrams for explaining the manufacturing steps of the semiconductor device of the present invention (9)
  • FIG. 10 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (10)
  • FIG. 11 (a), (b): views for explaining the manufacturing process of the semiconductor device of the present invention (11)
  • FIG. 12 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (12)
  • FIG. 13 (a), (b): diagrams for explaining the manufacturing steps of the semiconductor device of the present invention (13)
  • FIG. 14 (a), (b): diagrams for explaining the manufacturing steps of the semiconductor device of the present invention (14)
  • FIG. 15 (a), (b): views for explaining the manufacturing process of the semiconductor device of the present invention (15)
  • FIG. 16 (a) and (b): views for explaining the manufacturing process of the semiconductor device of the present invention (16)
  • FIG. 17 (a), (b): diagrams for explaining the manufacturing process of the semiconductor device of the present invention (17)
  • FIG. 18 (a), (b): diagrams for explaining the manufacturing steps of the semiconductor device of the present invention (18)
  • FIG. 19 (a), (b): views for explaining the manufacturing process of the semiconductor device of the present invention (19)
  • FIG. 20 (a), (b): views for explaining the manufacturing process of the semiconductor device of the present invention (20) ⁇ 21] (a), (b): FIGS. 21 (a), 22 (a), (b) for explaining the manufacturing process of the semiconductor device of the present invention.
  • FIGS. 21 (a), 22 (a), 22 (b) for explaining the manufacturing process of the semiconductor device of the present invention.
  • FIG.30 B-B section view of Fig.8 (a), (b)
  • FIG.31 C-C section view of Fig.17 (a), (b)
  • FIG. 37 A drawing for explaining an example in which the innermost guard buried region is connected to the ground potential ⁇ 38] A cross-sectional view for explaining a conventional semiconductor device
  • Source electrode film 40a Semiconductor material
  • one of the P-type and the N-type will be described as the first conductivity type, and the other will be described as the second conductivity type. If the first conductivity type is N-type, the second conductivity type is P-type. Conversely, if the first conductivity type is P-type, the second conductivity type is N-type.
  • the semiconductor substrate and the semiconductor layer are made of single crystal silicon, but may be made of another semiconductor material.
  • Reference numeral 1 in FIGS. 27 and 28 indicates a semiconductor device according to a first example of the present invention.
  • a growth layer 12 of the first conductivity type is formed on the surface of the semiconductor support layer 11 of the first conductivity type in the wafer state by epitaxial growth.
  • a plurality of the semiconductor devices of the present invention are formed in one wafer.
  • the internal structure of one semiconductor device will be illustrated and described.
  • a conductive layer 14 of the first conductivity type having a higher concentration than the growth layer 12 is formed on the inner surface of the growth layer 12 and at the center of the semiconductor device 1.
  • the resistive layer 15 which is the drain of the MOS transistor is constituted by the conductive layer 12 and the conductive layer 14.
  • the present invention includes a semiconductor device having no conductive layer 14, in which case the resistive layer 15 is constituted by the growth layer 12.
  • the semiconductor device 1 of the present invention has a plurality of guard buried regions 44b of the second conductivity type.
  • Each guard embedding region 44b has a ring shape and is arranged concentrically.
  • a plurality of base diffusion regions 17a of the second conductivity type are formed at predetermined intervals inside the innermost guard buried region 44b and near the surface inside the resistance layer 15.
  • the depth of all the base diffusion regions 17a is the same, and is smaller than the depth of the conductive layer 14 here.
  • the present invention includes a semiconductor device in which the depth of the conductive layer 14 is smaller than the base diffusion region 17a.
  • a first conductivity type source diffusion region 21 and a second conductivity type ohmic diffusion region 20 having a higher surface concentration than the base diffusion region 17a are arranged. I have.
  • the planar shape of the base diffusion region 17a, the planar shape of the source diffusion region 21, and the planar shape of the ohmic diffusion region 20 are each formed in an elongated shape such as a rectangle, and inside one base diffusion region 17a.
  • One or two source diffusion regions 21 have their long sides arranged along the longitudinal direction of the base diffusion region 17a.
  • the ohmic diffusion region 20 is located at the center in the width direction of each base diffusion region 17a, and its long side is arranged along the longitudinal direction of the base diffusion region 17a.
  • the width and length of the source diffusion region 21 and the ohmic diffusion region 20 are smaller than the width and length of the base diffusion region 17a, and the source diffusion region 21 and the ohmic diffusion region 20 are formed of the base diffusion region. It is made shallower than 17a, and the source diffusion region 21 and the ohmic diffusion region 20 are arranged so as not to protrude from the base diffusion region 17a.
  • the source diffusion region 21 and the base diffusion region 17a are of opposite conductivity types, a pn junction is formed between the source diffusion region 21 and the base diffusion region 17a, and the ohmic diffusion region 20 and the base diffusion region 17a are formed. Are of the same conductivity type, the ohmic diffusion region 20 and the base diffusion region 17a are electrically connected to each other.
  • the source diffusion region 21 is separated from the long side of the base diffusion region 17a by a certain distance, and inside the base diffusion region 17a, the long side of the base diffusion region 17a and the long side of the source diffusion region 21 are provided. The portion between these is a channel region 22 where an inversion layer as described later is formed. Since the base diffusion region 17a and the source diffusion region 21 are elongated, the channel region 22 is also elongated.
  • a gate insulating film 34 is disposed on the channel region 22.
  • the gate insulating film 34 slightly protrudes on both sides in the width direction of the channel region 22. Therefore, the ends of the gate insulating film 34 in the width direction are located on the source diffusion region 21 and the resistance layer 15.
  • a gate electrode film 36 is disposed on the surface of the gate insulating film 34, and an interlayer insulating film 37 is disposed on the gate electrode film 36.
  • the source electrode film 38 is disposed on the interlayer insulating film 37. Source diffusion area 21 table The surface and at least a part of the surface of the ohmic diffusion region 20 are exposed, and the source electrode film 38 is also disposed on the exposed portion and is electrically connected to the source diffusion region 21 and the ohmic diffusion region 20. .
  • the base diffusion region 17a is connected to the source electrode film 38 via the ohmic diffusion region 20. Therefore, the source diffusion region 21 and the base diffusion region 17a are short-circuited by the source electrode film 38. Since the interlayer insulating film 37 is located between the source electrode film 38 and the gate electrode film 36, the source electrode film 38 and the gate electrode film 36 are insulated by the interlayer insulating film 37.
  • a drain electrode film 30 is disposed on the surface of the semiconductor support layer 11 opposite to the surface on which the resistance layer 15 is disposed.
  • the drain electrode film 30 and the semiconductor support layer 11 are in ohmic contact unlike the Schottky junction type IGBT described later, and the drain electrode film 30 and the semiconductor support layer 11 are electrically connected.
  • the source electrode film 38 is grounded and a positive voltage is applied to the drain electrode film 30.
  • a positive voltage equal to or higher than the threshold voltage is applied to the gate electrode film 36, an inversion layer of a conductivity type opposite to the channel region 22 is formed on the inner surface of the channel region 22, and the source diffusion region 21 and the resistance Layer 15 is connected at its inversion layer and becomes conductive.
  • the semiconductor support layer 11 When the semiconductor device 1 is a MOS transistor, the semiconductor support layer 11 functions as a drain layer. In a conductive state, the semiconductor support layer 11 extends from the drain electrode film 30 to the source electrode film 38, and the inversion layer, the resistance layer 15, and the drain layer ( A current flows through the semiconductor support layer 11).
  • the inversion layer disappears and enters the cutoff state. No current flows in the cutoff state.
  • an elongated groove 43a is formed in the resistance layer 15 (in this embodiment, the groove 43a is formed after forming the conductive region 14).
  • the groove 43a may be formed before the formation of the conductive region 14), and as shown in FIG. 9 (a), the groove 43a is filled with a semiconductor material 40a of the second conductivity type.
  • the base buried region 44a is formed below the groove 43a and the base diffusion region 17a of the semiconductor material 4 Oa. As described later, the upper part of the base buried region 44a is connected to the base diffusion region 17a.
  • a PN junction is formed between a region of the second conductivity type composed of the base diffusion region 17a and the base buried region 44a and a region of the first conductivity type composed of the resistor layer 15.
  • a depletion layer spreads in the base diffusion region 17a and the resistance layer 15 and in the base buried region 44a.
  • the depth D of the groove 43a from the surface of the resistance layer 15 is a depth that does not reach the semiconductor support layer 11, and the base diffusion region 1
  • the base diffusion region 17a has its longitudinal direction arranged along the longitudinal direction of the groove 43a. Further, the base diffusion region 17a is formed to have a width straddling the plurality of grooves 43a, and as a result, two or more base buried regions 44a are arranged at the bottom of each base diffusion region 17a. The number of base buried regions 44a located on the bottom surface of each base diffusion region 17a is the same.
  • Each base diffusion region 17a is parallel to each other, and a plurality of base buried regions 44a located at the bottom of one base diffusion region 17a are connected to the long side of base diffusion region 17a to which the tops thereof are connected. Is parallel to Therefore, each base buried region 44a is parallel to each other. The width of each base buried region 44a is equal.
  • base buried region 44a is located inside base diffusion region 17a rather than channel region 22. Therefore, base buried region 44a is located directly below channel region 22. I don't have it! /
  • the distance between the base embedding area 44a, the distance between the base embedding area 44a and the guard embedding area 44b, and the distance between the guard embedding area 44b are determined by two opposing base embedding areas 44a.
  • the same base is defined as the width of the resistive layer 15 sandwiched therebetween, or the width of the resistive layer 15 sandwiched between the opposed base buried region 44a and the guard buried region 44b or the opposed guard buried region 44b.
  • the distance Wm is fixed for the scattering region 17a.
  • FIG. 27 shows a case where two base buried regions 44a are located on the bottom surface of one base diffusion region 17a, and the distance Wm is equal to the distance between two base buried regions 17a located on the same base diffusion region 17a bottom surface.
  • the distance W m between the base buried regions 44a below the bottom surface of the same base diffusion region 17a and the base buried regions 44 located on the bottom surfaces of different base diffusion regions 17a and facing each other are different.
  • the distance between a is not necessarily equal to Wm.
  • the innermost guard embedding area 44b faces the base embedding area 44a.
  • Each of the guard embedding regions 44b has a square ring shape, and the sides of the adjacent guard embedding regions 44b are parallel to each other and are arranged at an equal distance W.
  • the innermost guard embedding area 44b has one side facing in parallel with the long side of the base embedding area 44a.
  • the distance between the long side of the base embedding area 44a and the innermost guard embedding area 44b facing the long side is W, and each base embedding area 44a b
  • guard buried region 44b are formed to have the same width Wt.
  • the distance of 2 1, that is, the height D-D of the base buried area 44a is H (this code H is the base diffusion area).
  • the length of the base buried region 44a is L
  • the number of base buried regions 44a located on the bottom surface of one base diffusion region 17a is n
  • the conductive region is formed in the base buried region.
  • 4 N is the average concentration of impurities of the first conductivity type in the resistance layer 15 between the top of 4a (the bottom surface of the base diffusion region 17a) and the bottom surface
  • N is the impurity concentration of the second conductivity type in the base buried region 44a.
  • the symbol S in FIG. 27 is an area indicating one cell range, and a pair of adjacent two base expansions.
  • the diffusion region 17a the range from the center position in the width direction of one base diffusion region 17a to the center position in the width direction of the other base diffusion region 17a is shown, and the base diffusion region in one cell range S is shown.
  • the impurity amount q of the first conductivity type and the impurity amount q of the second conductivity type included in the range H that is deeper than the depth of 17a and shallower than the bottom surface of the base buried region 44a are
  • the inside of the base buried region 44a also Filled with depletion layer (However, before the resistance layer 15 and the base buried region 44a are filled with the depletion layer, the critical value at which the electric field at the PN junction between the base buried region 44a and the resistance layer 15 causes avalanche breakdown ).
  • the inner side of the innermost guard buried region 44b is located inside the center in the width direction and is shallower than the bottom of the base diffusion region 17a and shallower than the bottom of the base buried region 44a or the guard buried region 44b.
  • FIG. 36 shows the following equation (a),
  • the vertical axis represents the current la flowing in the active region, which is the region inside the innermost guard buried region 44b, and the current Ig flowing in the breakdown voltage region outside the active region.
  • the abscissa represents the impurity amount Q, and the ratio Q / Q.
  • the current Ig flowing in the breakdown voltage region becomes larger than the current la flowing in the active region, and the value of IgZla becomes greater than 1.
  • the current la flowing in the active region becomes larger than the current Ig flowing in the breakdown voltage region, so that the value of IgZla becomes smaller than 1.
  • Width unit is m
  • Impurity amount Q unit is X 1012cm-1 2
  • the IgZla becomes smaller than 1, and avalanche breakdown occurs in the active region.
  • three or more base embedding regions 44a may be disposed below the bottom surface of each base diffusion region 17a.
  • each is placed on the bottom surface of each base diffusion region 17a; ⁇
  • the number of base buried regions 44a can be increased. However, if the width Wt is increased, it becomes difficult to grow the semiconductor material 40a on the inner surface of the groove 43a. Therefore, it is better to increase the number of base buried regions 44a.
  • Avalanche breakdown occurs when the value of Q / Q is 0.9 or less.
  • Table 5 shows the results corresponding to Table 4
  • Table 7 shows the results corresponding to Table 6.
  • Avalanche breakdown occurs when the value of Q / Q is 0.92 or more.
  • Avalanche breakdown occurs when the value of Q / Q is 1.10 or less.
  • the base buried region 44a is formed to be elongated, and the distance W (between both ends in the longitudinal direction of the base buried region 44a and the innermost guard buried region 44b is obtained.
  • b is the width of the growth layer 12 sandwiched between b. ) Is substantially equal to the distance W between the inner edge of the innermost guard embedding area 44b and the edge of the longer side of the base embedding area 44a facing in parallel with the guard embedding area 44b. It is half the size.
  • the innermost guard buried region 44b extends from both ends of the base buried region 44a. Assuming that the depletion layer does not spread out and the long side force of the base buried region 44a extends toward the innermost guard buried region 44b, the long side of the base buried region 44a A depletion layer spreads from the inner peripheral surface of the peripheral guard buried region 44b by half the distance W, and depletion b
  • the layers will come into contact.
  • a depletion layer is extended from the guard buried region 44b by half the distance W between both ends of the base buried region 44a and the innermost guard buried region 44b.
  • the distance between both ends of the embedding region 44a and the inner periphery of the innermost guard embedding region 44b is substantially half the distance Wb, the distance between the ends of the base embedding region 44a and The space between the innermost guard buried regions 44b is also filled with the depletion layer.
  • FIGS. 1 (a) to 26 (a) are cross-sectional views taken along a step of forming an active region.
  • FIGS. 1 (b) to 26 (b) show a portion near the outer periphery of the active region and an active region.
  • FIG. 4 is a cross-sectional view of a breakdown voltage region surrounding the region.
  • Reference numeral 10 in FIGS. L (a) and (b) indicates a processing substrate for manufacturing the semiconductor device of the present invention.
  • the processing substrate 10 has a semiconductor support layer 11 made of a first conductivity type semiconductor single crystal, and a semiconductor crystal of the same conductivity type as the semiconductor support layer 11 formed on the surface of the semiconductor support layer 11 by epitaxy. It has a growth layer 12.
  • an initial oxide film 28 having a semiconductor single crystal oxidation property is formed on the surface of the growth layer 12.
  • a resist film is formed on the surface of the processing substrate 10 and patterned, and as shown in FIGS. 2A and 2B, a rectangular opening 49 is formed at a position on the active region of the resist film.
  • Reference numeral 41 in FIG. 2B indicates a patterned resist film, and an initial oxidation film 28 is exposed at the bottom of the opening 49.
  • the initial oxidation film 28 located on the bottom surface of the opening 49 is removed by etching, the initial oxidation film 28 has a resist film 41 as shown in FIGS. 3 (a) and 3 (b).
  • An opening 31 having the same shape as the opening 49 is formed.
  • the surface of the growth layer 12 is exposed.
  • the resist film 41 has been removed.
  • a relaxation layer made of a semiconductor oxide constituting the growth layer 12 is provided at the bottom of the opening 31. 32 are formed.
  • the thickness of the relaxing layer 32 is formed thin.
  • the impurity is shielded by the initial oxide film 28 and transmitted through the relaxation layer 32, and as shown in FIGS. 5 (a) and 5 (b).
  • the first conductivity type high concentration impurity layer 13 is formed on the inner surface of the growth layer 12 at the bottom surface of the opening 31. The depth of the high-concentration impurity layer 13 is shallow.
  • the impurities of the first conductivity type contained in the high-concentration impurity layer 13 diffuse in the depth direction and the lateral direction, and as shown in FIGS. 6 (a) and 6 (b). Then, a first conductive type conductive layer 14 is formed in the active region.
  • the conductive layer 14 and the growth layer 12 form a first conductive type resistance layer 15.
  • a thermal oxide film of a semiconductor is formed on the surface of the processing substrate 10 by thermal oxidation during diffusion.
  • Reference numerals 33 in FIGS. 6A and 6B denote the thermal oxidation film, the relaxation layer 32, and the initial oxidation film 28.
  • An integrated mask oxidation film is shown.
  • the concentration of the surface of the conductive layer 14 is higher than the concentration of the growth layer 12 by about one digit. Since the conductive layer 14 is formed by diffusion, its concentration becomes smaller as the surface becomes deeper and deeper. Since the conductive layer 14 and the growth layer 12 are of the same conductivity type and do not form a PN junction, in the present invention, the depth of the conductive layer 14 is defined at a position reduced to twice the concentration of the growth layer 12.
  • FIG. 29 is a sectional view taken along line AA of FIGS. 6 (a) and 6 (b). Due to the lateral diffusion of the impurities of the first conductivity type, the planar shape of the conductive layer 14 is a quadrangle with four rounded corners larger than the high-concentration impurity layer 13.
  • a resist film is formed on the mask oxide film 33 and patterned to form a plurality of parallel elongated openings 42a in the active region as shown in FIG. 7 (a). Also, as shown in FIG. 2B, a plurality of ring-shaped openings 42b are formed in the breakdown voltage region.
  • Reference numeral 41 denotes a resist film in which openings 42a and 42b are formed.
  • the elongated opening 42a is an elongated rectangle, and the ring-shaped opening 42b is a square ring (rectangular or square ring) having different sizes.
  • the ring-shaped openings 42b are arranged concentrically, and the elongated openings 42a are surrounded by the respective ring-shaped openings 42b.
  • Opposite sides of the adjacent ring-shaped openings 42b are parallel to each other, and four sides of the elongated openings 42a are made parallel or perpendicular to the sides of the ring-shaped openings 42b.
  • the surface of the mask oxide film 33 is exposed at the bottom of each of the openings 42a and 42b, and the mask oxide film 33 at the bottom positions of the openings 42a and 42b is removed by etching.
  • the resist film 41 is removed, and then the resistive layer 15 is etched by etching using the mask oxide film 33 as a mask, as shown in FIGS. 8 (a) and 8 (b).
  • An active groove 43a is formed at the bottom of the elongated opening 42a, and a pressure-resistant groove 43b is formed at the bottom of the ring-shaped opening 42b.
  • FIG. 30 is a sectional view taken along the line BB of FIGS. 8 (a) and 8 (b).
  • the planar shape of the active groove 43a is an elongated rectangle like the elongated opening 42a, and the pressure-resistant groove 43b is the same square ring as the ring-shaped opening 42b.
  • each of the grooves 43a and 43b is deeper than the conductive layer 14 and the semiconductor support layer 11 1 It is formed to a depth that does not reach. Therefore, the growth layer 12 is exposed at the bottom of each of the grooves 43a and 43b.
  • the bottom surface of each groove 43a, 43b is parallel to the surface of the growth layer 12, and the side surface of each groove 43a, 43b is perpendicular to the bottom surface.
  • the planar shape of the active groove 43a is an elongated rectangle, and the planar shape of the pressure-resistant groove 43b is a rectangular or square quadrangular ring.
  • a semiconductor single crystal or semiconductor polycrystal of the second conductivity type is grown on the bottom and side surfaces inside the trenches 43a and 43b by CVD, and as shown in FIGS. 9 (a) and 9 (b), The inside of each of the trenches 43a and 43b is filled with a second conductive type semiconductor material 40a made of a grown semiconductor single crystal or semiconductor polycrystal, and black.
  • the mask oxide film 33 adhered to the growth layer 12 remains, and the surface of the resistive layer 15 in the breakdown voltage region (the growth layer 12), the surfaces of the conductive layer 14 in the active region and the surfaces of the semiconductor materials 40a and 40b in the active region and the breakdown voltage region are exposed.
  • a thin gate insulating film 34 is formed by a thermal oxidation process, and then a conductive poly-Si is formed on the surface of the gate insulating film 34 by a CVD method or the like.
  • a silicon thin film is deposited to form a conductive thin film 35 made of polysilicon.
  • a patterned resist film 46 is disposed at a predetermined position on the conductive thin film 35, and the conductive thin film 35 is patterned by etching.
  • Fig. 15
  • a gate electrode film 36 is formed.
  • the gate electrode film 36 and the mask oxide film 33 serve as a mask, and the impurities transmitted through the exposed gate insulating film 34
  • the second conductive type high-concentration surface is formed on the inner surface of the conductive layer 14 and the inner surfaces of the semiconductor materials 40a and 40b inside the active groove 43a and the withstand voltage groove 43b. Impurity region 16 is formed.
  • a conductive base diffusion region 17a and a guard diffusion region 17b are formed respectively.
  • a high-concentration impurity region 16 having the same width as the semiconductor material 40b is formed above the semiconductor material 40b filled in the breakdown voltage groove 43b, but the width of the guard diffusion region 17b is reduced by lateral diffusion. It is wider than the width of the guard buried area 44b.
  • the base diffusion region 17a and the guard diffusion region 17b have the same depth and are shallower than the depth of the conductive layer 14.
  • the base buried region 44a of the second conductivity type is formed on the bottom surface of the base diffusion region 17a by the remaining portion (lower portion) of the active groove 43a and the semiconductor material 40a filled therein.
  • a second conductive type guard buried region 44b is formed on the bottom surface of the guard diffusion region 17b by the remaining portion (lower portion) of the breakdown voltage groove 43b and the second conductive type semiconductor material 40b filled therein. Is done.
  • the guard buried region 44b is formed of a portion of the semiconductor material 40b inside the breakdown voltage groove 43b below the guard diffusion region 17b, and includes the guard diffusion region 17b and the guard buried region 44b below the guard diffusion region 17b. Thus, a guard ring region is formed.
  • the semiconductor device 1 of the present invention also includes a case where the guard diffusion region 17b is not provided, in which case the guard ring region is constituted by the guard buried region 44b.
  • the guard ring region does not have the guard diffusion region 17b,
  • the portion has the same height as the surface of the growth layer 12. Furthermore, when the upper portion of the breakdown voltage groove 43b is formed by a groove formed in an insulating film such as the mask oxide film 33, and the semiconductor material 44b is also filled in the groove of the insulating film, the guard filling is performed.
  • the embedded region 44a is higher than the surface of the growth layer 12.
  • the base embedding regions 44a are elongated and are parallel to each other.
  • the base buried region 44a is formed of a portion below the depth of the base diffusion region 17a, and has a rectangular parallelepiped shape. Further, since the upper portion of the base buried region 44a is connected to the base diffusion region 17a, it has the same potential as the base diffusion region 17a.
  • FIG. 31 is a cross-sectional view taken along the line CC of FIGS. 17 (a) and (b).
  • Each base diffusion region 17a is a rectangle whose four corners are rounded and whose long sides extend along the direction in which the base buried region 44a extends.
  • the base diffusion regions 17a are separated from each other, and the edge of the base diffusion region 17a enters below the bottom surface of the gate electrode film 36 due to the lateral diffusion of the impurity of the second conductivity type. 36 is located so as to straddle the adjacent base diffusion region 17a.
  • the guard diffusion region 17b has a square ring shape, and the guard diffusion regions 17b concentrically adjacent to each other are separated from each other by a certain distance.
  • a patterned resist film 45 is disposed on the surface of the processing substrate 10, and the gate insulating film 34 at the center in the width direction of the base diffusion region 17a is formed. Irradiation of impurities of the second conductivity type in the exposed state causes impurities of the second conductivity type that have passed through the gate insulating film 34 to cause a shallow surface on the inner surface of the base diffusion region 17a, resulting in high-concentration impurities of the second conductivity type.
  • the second conductive type high-concentration impurity layer 18 has a rectangular shape having a long side along the longitudinal direction of the base diffusion region 17a, and a long side of the high-concentration impurity layer 18 and a long side of the base diffusion region 17a. Are parallel.
  • the long side of the high-concentration impurity layer 18 is separated from the edge of the gate electrode film 36 by a certain distance, and the resist film 45 is removed, as shown in FIGS. 19 (a) and 19 (b). Then, another patterned resist film 46 was formed, and the surface of the gate insulating film 34 at a position between the long side of the high-concentration impurity layer 18 and the edge of the gate electrode film 36 was exposed to cover another portion. 1st conductivity type impurities in the state , The impurity penetrates through the exposed portion of the gate insulating film 34, and the first conductive film is formed on the inner surface of the base diffusion region 17a located between the high-concentration impurity region 18 of the second conductivity type and the gate electrode film 36. A high-concentration impurity region 19 is formed.
  • the impurities contained in the high-concentration impurity regions 18 of the second conductivity type and the high-concentration impurity regions 19 of the first conductivity type are respectively diffused, and as shown in FIG.
  • an ohmic diffusion region 20 of the second conductivity type and a source diffusion region 21 of the first conductivity type are formed, respectively.
  • the surface concentration of the ohmic diffusion region 20 is higher than the surface concentration of the base diffusion region 17a, so that the source diffusion region 21 and the ohmic diffusion region 20 form an ohmic contact with the metal film.
  • FIG. 32 is a sectional view taken along line FF of FIGS. 20 (a) and (b).
  • the planar shapes of the ohmic diffusion region 20 and the source diffusion region 21 are smaller than the base diffusion region 17a, and their depth is smaller than the depth of the base diffusion region 17a.
  • the omic diffusion region 20 and the source diffusion region 21 are located inside the base diffusion region 17a, and are not in contact with the conductive layer 14 and the growth layer 12.
  • At least one or more ohmic diffusion regions 20 and source diffusion regions 21 are formed in each base diffusion region 17a.
  • the end of the source diffusion region 21 enters below the bottom of the gate electrode film 36 by lateral diffusion, but does not contact the end of the base diffusion region 17a, and
  • the channel region 22 is formed by a portion of the base diffusion region 17a, which is in contact with the gate insulating film 34 between the edge of the source diffusion region 21 and the edge of the base diffusion region 17a.
  • an interlayer insulating film 37 such as a silicon oxide film is formed on the surface of the processing substrate 10 by a CVD method or the like.
  • a patterned resist film 47 is disposed on the gate electrode film 36 in the active region and on the surface of the breakdown voltage region, and the exposed interlayer insulating film 37 and the gate located thereunder are formed.
  • the insulating film 34 is etched to expose at least a part of the surface of the ohmic diffusion region 20 and the source diffusion region 21 as shown in FIGS. 23 (a) and 23 (b).
  • a notched resist film (not shown) is arranged on the metal thin film 29, and the metal thin film 29 is patterned by etching, thereby forming the source electrode film 38 as shown in FIG.
  • the source electrode film 38 When the source electrode film 38 is formed, the source electrode film 38 is formed of a metal film, is insulated from the source electrode film 38, and is connected to the gate pad connected to the gate electrode film 36 and the source electrode. A source pad that also forms part of the membrane 38 is formed.
  • the source electrode film 38 is in ohmic contact with the source diffusion region 21 and the ohmic diffusion region 20, the source diffusion region 21 is directly electrically connected to the source electrode film 38, and the base diffusion region 17a is in ohmic contact. It is electrically connected to source electrode film 38 through diffusion region 20.
  • Base buried region 44a is in contact with base diffusion region 17a, and thus base buried region 44a is also electrically connected to source electrode film 38.
  • the source electrode film 38 is an interlayer insulating film
  • the gate electrode film 36 is electrically insulated from the gate electrode film 36 by the conductive layer 14 and the growth layer.
  • a protection layer 39 made of a silicon oxide film or the like is formed on the surface of the processing substrate 10, and the protection layer 39 is patterned by etching. The patterning exposes the gate and source pads.
  • a metal film is formed on the exposed surface on the back surface side of the semiconductor support layer 11, and the metal film forms the drain electrode film 30.
  • a dicing step a plurality of semiconductor devices 1 are obtained from one wafer.
  • the drain electrode film 30 is in ohmic contact with the semiconductor support layer 11, and the growth layer 12 and the conductive layer 14 are electrically connected to the drain electrode film 30 via the semiconductor support layer 11.
  • the GG sectional views of FIGS. 27 and 28 are the same as the FF sectional views of FIGS. 20 (a) and (b), and are shown in FIG.
  • the above is the power when the semiconductor device 1 of the present invention is a MOS transistor.
  • the present invention also includes other types of semiconductor devices.
  • Reference numeral 2 in FIG. 33 denotes a PN junction type IGBT according to a second embodiment of the present invention. This second
  • the semiconductor device 2 of the second example has a collector layer 51 of the second conductivity type in place of the support layer 11 of the first conductivity type, and a growth layer of the first conductivity type is formed on the collector layer 51.
  • Layer 12 is arranged.
  • a collector electrode 55 that is in ohmic contact with the collector layer 51 is formed.
  • Other configurations are the same as those of the semiconductor device 1 of the first example.
  • a PN junction is formed between the collector layer 51 and the growth layer 12, and when the semiconductor device 2 conducts, the PN junction is forward-biased and the power of the collector layer 51 increases. Since the minority carriers are injected into the layer 12, the conduction resistance is reduced.
  • Reference numeral 3 in FIG. 34 is a semiconductor device according to a third example of the present invention of a Schottky IGBT.
  • the semiconductor device 3 After a corresponding portion of the semiconductor support layer 11 of the semiconductor device 1 of the first example is removed by a polishing process or the like, the surface of the growth layer 12 exposed by polishing is removed.
  • a metal film such as chromium which forms a Schottky junction with the growth layer 12 is formed, and the Schottky electrode film 56 is formed by the metal film.
  • the polarity of the Schottky junction is a polarity that is forward-biased when the semiconductor device 3 is turned on. Carriers are injected, and the conduction resistance decreases.
  • Reference numeral 4 in FIG. 35 denotes a semiconductor device according to a fourth example of the present invention, in which a growth layer 12 of the first conductivity type is formed on a support substrate 52 of the second conductivity type by epitaxy.
  • the semiconductor device 4 has an isolation diffusion region 53 that is formed by diffusion from the surface of the resistance layer 15 and has a bottom surface that reaches the semiconductor support layer 11.
  • Separation diffusion region 53 has a ring shape and surrounds the active region where base diffusion region 17a is arranged.
  • the conductive layer 14 is formed inside a region surrounded by the separation diffusion region 53, and a first conductivity type drain formed simultaneously with the source diffusion region 21 is formed near the inner surface of the conductive layer 14. Diffusion region 54 is provided. A drain electrode film 59 is formed on the surface of the drain diffusion region 54 at the same time as the source electrode film 38 and is electrically insulated from the source electrode film 38, and the transistor 6 is formed by them.
  • a semiconductor element 57 such as a small signal transistor or a diode is formed outside the ring-shaped separation / diffusion region 53, and a plurality of semiconductor elements 57 constitute an electronic circuit such as a control circuit. Being done.
  • an earth electrode film 58 connected to the ground potential is formed on the surface of the support substrate 52.
  • the gate electrode film 36 is connected to a semiconductor element 57 outside the isolation diffusion region 53, and the transistor 6 is controlled by a control circuit formed by the semiconductor element 57.
  • the ground electrode film 58 When the ground electrode film 58 is placed at the ground potential, and a voltage is applied between the drain electrode film 59 and the source electrode film 38 and a voltage higher than the threshold voltage is applied to the gate electrode film 36, the channel region An inversion layer is formed at 22 to conduct.
  • the isolation / diffusion region 53 and the resistance layer 15 are reverse-biased, and the transistor 6 and the other semiconductor element 57 are electrically isolated.
  • a silicon single crystal can be used as a semiconductor single crystal, and a single crystal of another semiconductor such as GaAs can be used.
  • each base diffusion region 17a may be connected by a second conductivity type diffusion region to form a comb shape.
  • the ring-shaped guard buried region 44b surrounding the base diffusion region 17a is not connected to the source electrode film 38 or the gate electrode film 36 but is placed at the floating potential.
  • the innermost guard buried region can be electrically connected to the source electrode film 38.
  • Reference numeral 44c in FIG. 37 indicates the innermost guard embedding area, and the innermost guard embedding area is indicated.
  • the base diffusion region 17a adjacent to the region 44c is extended in the outer peripheral direction, and is in contact with the innermost guard embedding region 44c.
  • the innermost guard buried region 44c is also set to the ground potential.
  • the other guard buried region 44b concentrically surrounding the innermost guard buried region 44c remains at the floating potential.
  • the impurity amount Q of the second conductivity type is 2XWtXN.
  • each buried region 44a, 44b is assumed to be all equal.
  • the distance W between the guard buried regions 44b is below the same base diffusion region 17a.
  • the resurf condition holds when the sum of the distances Wm between the regions 44a is equal to 1Z2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 高耐圧の半導体装置を提供する。  細長の主溝部26と、主溝部の長手方向側面に接続された副溝部27とで活性溝22aを構成させ、主溝部26の底面上に、第二導電型のベース拡散領域32aの底面よりも高さが低い第二導電型の埋込領域24を配置し、副溝部27内にベース拡散領域32aと接触する第二導電型の活性溝充填領域25を配置する。埋込領域24は活性溝充填領域25を介してベース拡散領域32aと接触される。1個の活性溝22a内では、埋込領域24よりも上の部分で1個のゲート溝83が形成されるから、ゲート電極プラグ48が分断されず、電極パターンが簡単になる。

Description

明 細 書
半導体装置
技術分野
[0001] 本発明は半導体装置を高耐圧化する技術に関し、特に、高耐圧化と共に破壊耐量 を向上させる技術に関する。
背景技術
[0002] パワー半導体装置の技術分野では、高耐圧化の有力手段としてリサーフ構造の素 子が研究されている。
図 38の符号 101は、 MOSFET型の半導体装置の一例であり、抵抗値が小さい N 型基板 111上に抵抗値が大き!ヽ N型の抵抗層 112がェピタキシャル成長によって形 成されている。
[0003] 抵抗層 112の内部表面には、平面形状が四角リング状の P型のガード領域 146bが 複数個同心状に形成されて!ヽる。
最内周のガード領域 146bで取り囲まれた領域には、 P型で細長い形状のベース拡 散領域 117が複数個形成されており、各ベース拡散領域 117内部表面の幅方向中 央位置には、表面濃度がベース拡散領域 117よりも高い、 P型で細長いォーミック拡 散領域 120が配置されている。
[0004] また、ベース拡散領域 117の内部表面のォーミック拡散領域 120の両側位置には
、ォーミック拡散領域 120と平行に N型で細長のソース拡散領域 121が配置されてい る。
[0005] ベース拡散領域 117内部表面のうち、ソース拡散領域 121の外周とベース拡散領 域 117の外周との間の部分はチャネル領域 122であり、その上には、ゲート絶縁膜 1 34とゲート電極膜 136とがこの順序で配置されている。
[0006] ゲート電極膜 136上には層間絶縁膜 137が配置されており、その層間絶縁膜 137 上には、ソース拡散領域 121とォーミック拡散領域 120と接触したソース電極膜 138 が配置されている。ソース電極膜 138は、層間絶縁膜 137によってゲート電極膜 136 とは分離されている。 [0007] 従って、ソース電極膜 138はゲート電極膜 136とは絶縁されながら、ソース拡散領 域 121とは電気的に接続され、ベース拡散領域 117には、ォーミック拡散領域 120を 介して電気的に接続されている。ソース電極膜 138の表面には保護膜 139が形成さ れている。
[0008] 基板 111の裏側の表面にはドレイン電極膜 130が形成されている。ソース電極膜 1 38を接地させ、ドレイン電極膜 130に正電圧を印加した状態でゲート電極膜 136に しきい値電圧以上の電圧を印加するとチャネル領域 122が N型に反転し、その反転 層によってソース拡散領域 121と抵抗層 112とが接続される。この状態は導通状態で あり、ドレイン電極膜 130からソース電極膜 138に向けて電流が流れる。
その状態カゝらゲート電極膜 136がソース電極膜 138と同じ電位にされると反転層は 消滅する。その結果、電流は流れなくなり、遮断状態になる。
[0009] ベース拡散領域 117の底部には、 P型のベース埋込領域 146aがベース拡散領域 117と接して配置されている。遮断状態では、ベース拡散領域 117とベース埋込領 域 146aとで構成される P型の領域と、抵抗層 112で構成される N型の領域との間の P N接合が逆バイアスされ、ベース拡散領域 117とベース埋込領域 146aの両方の PN 接合から、 P型の領域と N型の領域の両方に空乏層が大きく広がる。
[0010] ベース埋込領域 146aは、細長のベース拡散領域 117が伸びる方向に沿った細長 V、領域であり、各ベース拡散領域 117の幅方向の中央位置に 1個ずつ配置されて 、 る。
[0011] 各ベース拡散領域 117は互いに平行に配置されており、ベース埋込領域 146a相 互間も互いに平行になって!/、る。各ベース埋込領域 146aから横方向に広がった空 乏層同士は、隣り合うベース埋込領域 146aの中央位置で接触すると、ベース埋込 領域 146aで挟まれた部分の抵抗層 112は空乏層で満たされる。
[0012] また、ベース埋込領域 146aやベース拡散領域 117から横方向外側に向けて広が つた空乏層がガード領域 146bに到達すると、ガード領域 146bからも空乏層が広が り始める。
[0013] 最内周のガード領域 146bの幅方向中央位置よりも内側の領域であって、ベース埋 込領域 146aの底面とベース拡散領域 117の底面の間に位置するリサーフ領域に含 まれる N型の不純物量と、 P型の不純物量とが等しくなるように設定されて!、る場合は 、ちょうどリサーフ領域内の N型の領域が空乏層で満たされる電圧が印加されたとき、 リサーフ領域内の P型の領域も空乏層で満たされる。
[0014] この状態ではリサーフ領域内の空乏層の底面は平面になるから、その電圧よりも大 きな電圧が印加され、ベース埋込領域 146aの底面を超えて基板 111側に向けて空 乏層が広がるときには、あた力もプレーナ接合力 空乏層が広がったようになり、耐圧 が高くなるという利点がある。このような空乏層を形成する不純物量や拡散構造はリ サーフ条件と呼ばれて 、る。
特許文献 1:特開 2003— 101022号公報
特許文献 2:特開 2003 - 86800号公報
発明の開示
発明が解決しょうとする課題
[0015] 上記のような構造を持つ半導体装置は高耐圧である力 大きな逆バイアスが印加さ れた場合にはアバランシェ降伏が生じる。
[0016] そしてアバランシェ降伏が生じると半導体装置 101が破壊する場合があるため、高 耐圧で破壊耐量の高!ヽ半導体装置の開発が望まれて!/ヽる。
課題を解決するための手段
[0017] アバランシェ降伏は、最内周のガード領域 146bよりも内側の活性領域内で発生す る場合と、活性領域よりも外側の耐圧領域で発生する場合とがある。
ガード領域 146bは浮遊電位に置かれて 、るため、耐圧領域でアバランシヱ降伏が 発生した場合は、アバランシェ降伏で流れる電流は、最内周のガード領域 146bに近 接するベース拡散領域 117の周辺に集中し、半導体装置 101が破壊してしまう。
[0018] それに対し活性領域で発生した場合はベース拡散領域 117の底面の広い領域に 流れ、耐圧領域で発生した場合には破壊してしまう電流が流れても、活性領域で発 生した場合は破壊しな 、で済む。
[0019] 本発明の発明者等は、同じ前記ベース拡散領域の底面に隣接して位置する前記 ベース埋込領域の距離 Wmと、異なるベース拡散領域の底面にそれぞれ位置し互
1
いに隣接するベース埋込領域の距離 Wmと、ガード埋込領域同士の間の距離 W と の間の関係を適切に設定すると、ベース領域が配置された領域のリサーフ条件を満 足させながら、破壊耐量の高い半導体装置が得られることを見いだした。
本発明は、上記知見に基づいて創作されたものであり、請求項 1記載の発明は、第 1導電型の抵抗層と、前記抵抗層内部に形成され、同心状に配置された第 2導電型 の複数のガード埋込領域と、前記抵抗層の内部の表面付近であって、最内周の前 記ガード埋込領域よりも内側に配置された第 2導電型の複数のベース拡散領域と、 前記各ベース拡散領域の縁よりも内側の領域の前記各ベース拡散領域内部の表面 付近にそれぞれ形成され、前記各ベース拡散領域よりも浅い第 1導電型のソース拡 散領域と、前記各ベース拡散領域の縁付近であって、前記各ベース拡散領域の縁と 前記各ソース拡散領域の縁の間のチャネル領域と、少なくとも前記各チャネル領域 上に位置するゲート絶縁膜と、前記ゲート絶縁膜上に位置するゲート電極膜と、前記 各ベース拡散領域底面に複数個ずつ配置され、前記各ベース拡散領域にそれぞれ 接続された複数の第 2導電型のベース埋込領域とを有し、同じ前記ベース拡散領域 の底面に位置する隣り合う前記ベース埋込領域間の距離 Wmと、異なる前記ベース
1
拡散領域の底面に位置して隣り合う前記ベース埋込領域間の距離 Wmと、前記べ
2
ース拡散領域の底面よりも深 、位置での前記ガード埋込領域同士の間の距離 W
PEは
、 T c^a)式、
Wm <W <Wm …… (a)
1 PE 2
の関係にあり、前記各ベース埋込領域の底面と前記各ガード埋込領域の底面は実 質的に同じ深さに位置し、前記各ベース拡散領域の底面は実質的に同じ深さに位 置し、最内周の前記ガード埋込領域の幅方向中央位置よりも内側の領域であって、 前記ベース埋込領域及び前記ガード埋込領域の底面と前記ベース拡散領域の底面 の間の領域に含まれる前記第 1導電型の不純物量 Q
1と、前記第 2導電型の不純物 量 Qは、下記 (b)式、
2
0. 90< Q /Q …… (b)
2 1
の関係にある半導体装置である。
請求項 2記載の発明は、第 1導電型の抵抗層と、前記抵抗層内部に形成され、同 心状に配置された第 2導電型の複数のガード埋込領域と、前記抵抗層の内部の表 面付近であって、最内周の前記ガード埋込領域よりも内側に配置された第 2導電型 の複数のベース拡散領域と、前記各ベース拡散領域の縁よりも内側の領域の前記各 ベース拡散領域内部の表面付近にそれぞれ形成され、前記各ベース拡散領域より も浅い第 1導電型のソース拡散領域と、前記各ベース拡散領域の縁付近であって、 前記各ベース拡散領域の縁と前記各ソース拡散領域の縁の間のチャネル領域と、少 なくとも前記各チャネル領域上に位置するゲート絶縁膜と、前記ゲート絶縁膜上に位 置するゲート電極膜と、前記各ベース拡散領域底面に複数個ずつ配置され、前記各 ベース拡散領域にそれぞれ接続された複数の第 2導電型のベース埋込領域と、同じ 前記ベース拡散領域の底面に位置する隣り合う前記ベース埋込領域間の距離 Wm
1 と、異なる前記ベース拡散領域の底面に位置して隣り合う前記ベース埋込領域間の 距離 Wmと、前記ベース拡散領域の底面よりも深い位置での前記ガード埋込領域同
2
士の間の距離 W は、下記 (c)式、
PE
W <Wm <Wm …… (c)
PE 1 2
の関係にあり、前記各ベース埋込領域の底面と前記各ガード埋込領域の底面は実 質的に同じ深さに位置し、前記各ベース拡散領域の底面は実質的に同じ深さに位 置し、最内周の前記ガード埋込領域の幅方向中央位置よりも内側の領域であって、 前記ベース埋込領域及び前記ガード埋込領域の底面と前記ベース拡散領域の底面 の間の領域に含まれる前記第 1導電型の不純物量 Qと、前記第 2導電型の不純物
1
量 Qは、下記 (d)式、
2
Q /Q < 0. 92 …… (d)
2 1
の関係にある半導体装置である。
請求項 3記載の発明は、第 1導電型の抵抗層と、前記抵抗層内部に形成され、同 心状に配置された第 2導電型の複数のガード埋込領域と、前記抵抗層の内部の表 面付近であって、最内周の前記ガード埋込領域よりも内側に配置された第 2導電型 の複数のベース拡散領域と、前記各ベース拡散領域の縁よりも内側の領域の前記各 ベース拡散領域内部の表面付近にそれぞれ形成され、前記各ベース拡散領域より も浅い第 1導電型のソース拡散領域と、前記各ベース拡散領域の縁付近であって、 前記各ベース拡散領域の縁と前記各ソース拡散領域の縁の間のチャネル領域と、少 なくとも前記各チャネル領域上に位置するゲート絶縁膜と、前記ゲート絶縁膜上に位 置するゲート電極膜と、前記各ベース拡散領域底面に複数個ずつ配置され、前記各 ベース拡散領域にそれぞれ接続された複数の第 2導電型のベース埋込領域と、同じ 前記ベース拡散領域の底面に位置する隣り合う前記ベース埋込領域間の距離 Wm
1 と、異なる前記ベース拡散領域の底面に位置して隣り合う前記ベース埋込領域間の 距離 Wmと、前記ベース拡散領域の底面よりも深い位置での前記ガード埋込領域同
2
士の間の距離 W は、下記 (e)式、
PE
Wm <Wm <W …… (e)
1 2 PE
の関係にあり、前記各ベース埋込領域の底面と前記各ガードリング領域の底面は実 質的に同じ深さに位置し、前記各ベース拡散領域の底面は実質的に同じ深さに位 置し、最内周の前記ガード埋込領域の幅方向中央位置よりも内側の領域であって、 前記ベース埋込領域及び前記ガード埋込領域の底面と前記ベース拡散領域の底面 の間の領域に含まれる前記第 1導電型の不純物量 Q
1と、前記第 2導電型の不純物 量 Q
2は、下記 (f)式、
1. 10< Q /Q …… (f)
2 1
の関係にある半導体装置である。
請求項 4記載の発明は、請求項 1乃至請求項 3のいずれか 1項記載の半導体装置 であって、前記各ガード埋込領域は、前記抵抗層に形成されたリング状の溝と、前記 リング状の溝内に充填された第 2導電型の半導体材料を有する半導体装置である。 請求項 5記載の発明は、請求項 1乃至請求項 4のいずれか 1項記載の半導体装置 であって、前記各ベース埋込領域は、前記抵抗層に形成された溝と、前記溝内に充 填された第 2導電型の半導体材料を有する半導体装置である。
請求項 6記載の発明は、請求項 1乃至請求項 5のいずれか 1項記載の半導体装置 であって、前記各ガード埋込領域の上部には、前記ガード埋込領域の幅よりも幅広 の第 2導電型のガード拡散領域が配置され、前記各ガード埋込領域とそれに接続さ れた前記ガード拡散領域とでガードリング領域が構成され、前記ガードリング領域の 上部の幅は、下部よりも広くされた半導体装置である。
請求項 7記載の発明は、請求項 1乃至請求項 6のいずれか 1項記載の半導体装置 であって、前記各ベース拡散領域と前記ベース埋込領域は細長く形成され、前記各 ベース拡散領域は互いに平行に配置され、前記ベース埋込領域は前記各ベース拡 散領域の長手方向に沿って互いに平行に配置された半導体装置である。
請求項 8記載の発明は、請求項 1乃至請求項 7のいずれか 1項記載の半導体装置 であって、前記各ガード埋込領域は長方形又は正方形の四角リング状に形成され、 前記各ガード埋込領域の隣接する辺は互いに平行に配置され、前記各ベース埋込 領域は、前記各ガード埋込領域の四辺のうち、互いに平行な二辺に対して平行に配 置された半導体装置である。
請求項 9記載の発明は、請求項 1乃至請求項 8のいずれか 1項記載の半導体装置 であって、前記ガード埋込領域のうちの最内周のガード埋込領域の内周の縁と、そ のガード埋込領域と平行に対向するベース埋込領域の長辺の縁との間の距離 Wと b
、前記幅 Wm、 Wmとは、下記 (g)式、
1 2
Wm <W <Wm …… (g)
1 b 2
の関係にある半導体装置である。
請求項 10記載の発明は、請求項 1乃至請求項 9のいずれか 1項記載の半導体装 置であって、前記ベース埋込領域は細長く形成され、前記ベース埋込領域の長手方 向の両端と最内周の前記ガード埋込領域との間の距離 Wは、前記ガード埋込領域 a
のうちの最内周のガード埋込領域の内周の縁と、そのガード埋込領域と平行に対向 するベース埋込領域の長辺の縁との間の距離 wの実質的に半分の大きさにされた b
半導体装置である。
請求項 11記載の発明は、請求項 1乃至請求項 9のいずれか 1項記載の半導体装 置であって、前記ベース埋込領域は細長く形成され、前記ベース埋込領域の長手方 向の両端は最内周の前記埋込領域に接続された半導体装置である。
請求項 12記載の発明は、請求項 1乃至請求項 11のいずれか 1項記載の半導体装 置であって、前記各ベース埋込領域の幅はそれぞれ等 、半導体装置である。 請求項 13記載の発明は、請求項 1乃至請求項 12のいずれか 1項記載の半導体装 置であって、前記各ガード埋込領域の幅はそれぞれ等 、半導体装置である。 請求項 14記載の発明は、請求項 1乃至請求項 13のいずれか 1項記載の半導体装 置であって、前記各ベース埋込領域の幅はそれぞれ等しぐ前記各ガード埋込領域 の幅はそれぞれ等しぐ前記ベース埋込領域と前記ガード埋込領域の幅はそれぞれ 等しい半導体装置である。
請求項 15記載の発明は、請求項 1乃至請求項 14のいずれか 1項記載の半導体装 置であって、前記ソース拡散領域と前記ベース拡散領域に電気的に接続されたソー ス電極膜を有する半導体装置である。
請求項 16記載の発明は、請求項 1乃至請求項 15のいずれか 1項記載の半導体装 置であって、前記抵抗層の前記ベース領域が形成された面とは反対側の面には、前 記抵抗層と同じ導電型で前記抵抗層よりも高濃度のドレイン層が配置された半導体 装置である。
請求項 17記載の発明は、請求項 1乃至請求項 15のいずれか 1項記載の半導体装 置であって、前記抵抗層の前記ベース領域が形成された面とは反対側の面には、前 記抵抗層とは反対の導電型のコレクタ層が配置された半導体装置である。
請求項 18記載の発明は、請求項 1乃至請求項 15のいずれか 1項記載の半導体装 置であって、前記抵抗層の前記ベース領域が形成された面とは反対側の面には、前 記抵抗層とショットキー接合を形成するショットキー電極膜が配置された半導体装置 である。
請求項 19記載の発明は、請求項 1乃至請求項 15のいずれか 1項記載の半導体装 置前記抵抗層の前記ベース拡散領域が形成された側の表面に、前記抵抗層と電気 的に接続され、前記ソース電極膜とは絶縁されたドレイン電極膜が配置された半導 体装置である。
本発明は上記のように構成されており、ソース拡散領域は、ベース拡散領域の縁に 沿ってベース拡散領域の縁からは所定の距離を保って配置することができる。この場 合、ソース拡散領域に接続されたソース電極膜は、ベース拡散領域の幅方向中央付 近でベース拡散領域と電気的に接続することができる。
本発明では、耐圧領域でアバランシェ降伏が発生しな 、ため、アバランシェ電流は 、最内周のガード領域に隣接するベース拡散領域に集中することがなぐ高い破壊 耐量が得られる。 [0022] 更に請求項 1と請求項 3の条件にすることで、ァバランシ 電流は、ソース拡散領域 の底面下のベース拡散領域の高抵抗部分を通らな 、ので、更に高 、破壊耐量が得 られる。
なお、ベース拡散領域とベース埋込領域を細長に形成した場合、ベース埋込領域 はベース拡散領域の長手方向に沿って平行に配置される。
発明の効果
[0023] 高耐圧、高破壊耐量の半導体素子が得られる。
図面の簡単な説明
[0024] [011(a), (b) :本発明の半導体装置の製造工程を説明するための図 (1)
[図 2](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (2)
[図 3](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (3)
[図 4](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (4)
[図 5](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (5)
[図 6](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (6)
[図 7](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (7)
[図 8](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (8)
[図 9](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (9)
[図 10](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (10)
[図 l l](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (11)
[図 12](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (12)
[図 13](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (13)
[図 14](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (14)
[図 15](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (15)
[図 16](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (16)
[図 17](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (17)
[図 18](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (18)
[図 19](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (19)
[図 20](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (20) 圆 21](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (21) 圆 22](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (22) 圆 23](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (23) 圆 24](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (24) 圆 25](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (25) 圆 26](a)、(b) :本発明の半導体装置の製造工程を説明するための図 (26) 圆 27]本発明の第 1例の半導体装置の活性領域部分の切断面図
圆 28]本発明の第 1例の半導体装置の耐圧領域部分の切断面図
[図 29]図 6(a)、(b)の A— A線切断面図
[図 30]図 8(a)、(b)の B— B線切断面図
[図 31]図 17(a)、(b)の C C線切断面図
[図 32]図 20(a)、(b)の F— F線切断面図
圆 33]本発明の第 2例の半導体装置を説明するための断面図
圆 34]本発明の第 3例の半導体装置を説明するための断面図
圆 35]本発明の第 4例の半導体装置を説明するための断面図
[図 36]アバランシェ降伏が生じる位置を説明するための図
圆 37]最内周のガード埋込領域が接地電位に接続される例を説明するための図面 圆 38]従来技術の半導体装置を説明するための断面図
符号の説明
11……半導体支持層
15……抵抗層
17a……ベース拡散領域
17b……ガード拡散領域
21……ソース拡散領域
22……チヤネノレ領域
34……ゲート絶縁膜
36……ゲート電極膜
38……ソース電極膜 40a……半導体材料
43a……溝
44a……ベース埋込領域
44b……ガード埋込領域
発明を実施するための最良の形態
[0026] 本発明では、 P型と N型のうち、いずれか一方を第 1導電型とし、他方を第 2導電型と して説明する。第 1導電型が N型の場合、第 2導電型は P型であり、それとは逆に第 1 導電型が P型の場合は第 2導電型は N型となる。
また、下記実施例では半導体基板や半導体層はシリコン単結晶であるが、他の半 導体材料の結晶であってもよ 、。
[0027] 本発明の半導体装置の構造を説明する。図 27、図 28の符号 1は、本発明の第 1例 の半導体装置を示している。
先ず、ゥヱーハ状態の第 1導電型の半導体支持層 11の表面にェピタキシャル成長 によって第 1導電型の成長層 12が形成される。本発明の半導体装置は、 1枚のゥ ーハ中に複数個が作成されるが、以下、 1個の半導体装置の内部構造を図示して説 明する。
[0028] 成長層 12のうち、その内部表面であって、半導体装置 1の中央位置には、成長層 1 2よりも高濃度の第 1導電型の導電層 14が形成されており、成長層 12と導電層 14と で MOSトランジスタのドレインである抵抗層 15が構成されて ヽる。本発明には導電 層 14を有さない半導体装置も含まれるが、その場合、成長層 12によって抵抗層 15 が構成される。
[0029] 本発明の半導体装置 1は、複数の第 2導電型のガード埋込領域 44bを有している。
各ガード埋込領域 44bは、リング状であり、同心状に配置されている。
最内周のガード埋込領域 44bの内側であって、抵抗層 15内部の表面付近には、 第 2導電型のベース拡散領域 17aが複数個所定間隔で形成されている。全てのベー ス拡散領域 17aの深さは同じであり、ここでは導電層 14の深さよりも浅くされている。 但し、導電層 14の深さがベース拡散領域 17aよりも浅い半導体装置も本発明に含ま れる。 [0030] 各ベース拡散領域 17a内部の表面付近には、第 1導電型のソース拡散領域 21と、 ベース拡散領域 17aよりも表面濃度が高い第 2導電型のォーミック拡散領域 20とが 配置されている。
[0031] ベース拡散領域 17aの平面形状とソース拡散領域 21の平面形状とォーミック拡散 領域 20の平面形状はそれぞれ長方形等の細長に形成されており、 1個のベース拡 散領域 17aの内部には、 1又は 2個のソース拡散領域 21が、その長辺がベース拡散 領域 17aの長手方向に沿って配置されて 、る。
また、ォーミック拡散領域 20は、各ベース拡散領域 17aの幅方向中央位置に、そ の長辺がベース拡散領域 17aの長手方向に沿って配置されて 、る。
[0032] ソース拡散領域 21とォーミック拡散領域 20の幅と長さはベース拡散領域 17aの幅 と長さよりも小さくされており、また、ソース拡散領域 21とォーミック拡散領域 20はべ ース拡散領域 17aよりも浅くされ、ソース拡散領域 21とォーミック拡散領域 20は、ベ ース拡散領域 17aからはみ出さな 、ように配置されて 、る。
[0033] ソース拡散領域 21とベース拡散領域 17aとは、反対の導電型であるからソース拡散 領域 21とベース拡散領域 17aの間には pn接合が形成され、ォーミック拡散領域 20と ベース拡散領域 17aとは同じ導電型であるから、ォーミック拡散領域 20とベース拡散 領域 17aとは、互いに電気的に接続されている。
[0034] ソース拡散領域 21は、ベース拡散領域 17aの長辺から一定距離だけ離間されてお り、ベース拡散領域 17a内部のうち、ベース拡散領域の 17a長辺とソース拡散領域 2 1の長辺の間の部分は、後述するような反転層が形成されるチャネル領域 22にされ ている。ベース拡散領域 17aとソース拡散領域 21は細長いので、チャネル領域 22も 細長い。
[0035] チャネル領域 22上にはゲート絶縁膜 34が配置されている。ゲート絶縁膜 34はチヤ ネル領域 22の幅方向両側に僅かにはみ出ており、従って、ゲート絶縁膜 34の幅方 向の端は、ソース拡散領域 21上と抵抗層 15上に位置している。
ゲート絶縁膜 34の表面にはゲート電極膜 36が配置されており、ゲート電極膜 36上 には層間絶縁膜 37が配置されている。
[0036] 層間絶縁膜 37上にはソース電極膜 38が配置されている。ソース拡散領域 21の表 面とォーミック拡散領域 20の表面の少なくとも一部は露出されており、ソース電極膜 38は、その露出部分にも配置され、ソース拡散領域 21とォーミック拡散領域 20とに 電気的に接続されている。
[0037] その結果、ベース拡散領域 17aはォーミック拡散領域 20を介してソース電極膜 38 に接続されている。従って、ソース拡散領域 21とベース拡散領域 17aとはソース電極 膜 38によって短絡されている。ソース電極膜 38とゲート電極膜 36の間には層間絶縁 膜 37が位置しているので、ソース電極膜 38とゲート電極膜 36とは、層間絶縁膜 37 によって絶縁されている。
[0038] 半導体支持層 11の抵抗層 15が配置された側の面とは反対側の面にはドレイン電 極膜 30が配置されている。ドレイン電極膜 30と半導体支持層 11とは、後述するショ ットキー接合型 IGBTとは異なり、ォーミック接触であり、ドレイン電極膜 30と半導体支 持層 11とは電気的に接続されて!ヽる。
[0039] この半導体装置 1の動作を説明すると、第 1導電型が N型、第 2導電型が P型の場 合、ソース電極膜 38を接地させ、ドレイン電極膜 30に正電圧を印加した状態で、ゲ ート電極膜 36にしきい値電圧以上の正電圧を印加すると、チャネル領域 22の内部 表面にチャネル領域 22とは反対の導電型の反転層が形成され、ソース拡散領域 21 と抵抗層 15とがその反転層で接続され、導通状態になる。
[0040] 半導体装置 1が MOSトランジスタの場合は半導体支持層 11がドレイン層として機 能し、導通状態では、ドレイン電極膜 30からソース電極膜 38に向け、反転層と抵抗 層 15とドレイン層 (半導体支持層 11)を通って電流が流れる。
[0041] 導通状態カゝらゲート電極膜 36とソース電極膜 38とを短絡させる等、ゲート電極膜 3 6の電位をしきい値電圧未満にすると反転層は消滅し、遮断状態になる。遮断状態 では電流は流れない。
[0042] この半導体装置 1では、後述する図 8(a)に示すように、抵抗層 15には細長の溝 43a が形成され (この実施例では溝 43aは導電領域 14を形成した後に形成されているが 、溝 43aの形成は、導電領域 14を形成する前であってもよい)、図 9(a)に示すように、 その溝 43a内に第 2導電型の半導体材料 40aが充填され、溝 43a及び半導体材料 4 Oaのベース拡散領域 17aよりも下の部分でベース埋込領域 44aが構成されている。 後述するように、ベース埋込領域 44aの上部はベース拡散領域 17aに接続されて いる。
[0043] ベース拡散領域 17aとベース埋込領域 44aとで構成される第 2導電型の領域と、抵 抗層 15で構成される第 1導電型の領域の間には PN接合が形成されており、その PN 接合が逆バイアスされると、その PN接合カゝらベース拡散領域 17a内や抵抗層 15内と 、ベース埋込領域 44a内に空乏層が広がる。
[0044] ここで、ベース埋込領域 44aの形状や位置関係を説明すると、溝 43aの抵抗層 15 表面からの深さ Dは、半導体支持層 11に達しない深さであって、ベース拡散領域 1
1
7aの深さ Dや導電層 14の深さよりも深く形成されて 、る。
2
[0045] ベース拡散領域 17aは、その長手方向が溝 43aの長手方向に沿って配置されてい る。また、ベース拡散領域 17aは、複数個の溝 43aを跨ぐ幅に形成されており、その 結果、各ベース拡散領域 17aの底部にはベース埋込領域 44aが 2個以上配置されて いる。各ベース拡散領域 17aの底面に位置するベース埋込領域 44aの個数は同じで ある。
[0046] 各ベース拡散領域 17aは互いに平行であり、 1個のベース拡散領域 17aの底部に 位置する複数のベース埋込領域 44aは、それらの上部が接続されたベース拡散領 域 17aの長辺に対して平行になっている。従って、各ベース埋込領域 44aは互いに 平行である。また、各ベース埋込領域 44aの幅は等しくなつている。
[0047] ベース埋込領域 44aとベース拡散領域 17aの接続部分は、チャネル領域 22よりも ベース拡散領域 17aの内側に位置しており、従って、チャネル領域 22の真下には、 ベース埋込領域 44aは存しな!/、ようにされて!、る。
[0048] ベース埋込領域 44a間の距離と、ベース埋込領域 44aとガード埋込領域 44b間の 距離と、ガード埋込領域 44b間の距離を、相対する二個のベース埋込領域 44aで挟 まれた抵抗層 15の幅や、相対するベース埋込領域 44aとガード埋込領域 44b、又は 相対するガード埋込領域 44bで挟まれた抵抗層 15の幅であると定義すると、同じべ ース拡散領域 17aの底面下に 3個以上のベース埋込領域 44aが位置した場合、同じ ベース拡散領域 17a底面下のベース埋込領域 44a間の距離 Wmは等しくされてい
1
る (1個のベース拡散領域 17aの底面下に 3個以上のベース埋込領域 44aが位置した 場合)。
[0049] また、異なるベース拡散領域 17a同士の間でも、同じベース拡散領域 17a底面下 のベース埋込領域 17aの距離 Wmは同じ値になっている。従って、全部のベース拡
1
散領域 17aに対し、距離 Wmは一定にされている。
1
[0050] 図 27は、 1個のベース拡散領域 17aの底面に 2個のベース埋込領域 44aが位置す る場合であり、距離 Wmは、同じベース拡散領域 17a底面に位置する二個のベース
1
埋込領域 44aで挟まれた抵抗層 15の幅でもある。
[0051] また、隣接する 2個のベース拡散領域 17aを一組とすると、異なるベース拡散領域 1 7aの底面に位置し、互いに面するベース埋込領域 44a間の距離 Wmは、各ベース
2
拡散領域 17aの組に関して一定値である。
[0052] それに対し、同じベース拡散領域 17aの底面下のベース埋込領域 44a間の距離 W mと、異なるベース拡散領域 17aの底面に位置し、互いに面するベース埋込領域 44
1
a間の距離 Wmとは等しいとは限らない。
2
ベース埋込領域 44aには最内周のガード埋込領域 44bが面している。
[0053] 各ガード埋込領域 44bは四角リング状であり、隣接するガード埋込領域 44bの各辺 は互いに平行で、等しい距離 W に配置されている。
PE
各ガード埋込領域 44bのうち、最内周のガード埋込領域 44bは、ベース埋込領域 4 4aの長辺と平行に面する一辺を有して!/、る。ベース埋込領域 44aの長辺とその長辺 と面する最内周のガード埋込領域 44bの間の距離を Wとし、各ベース埋込領域 44a b
とガード埋込領域 44bは、同じ幅 Wtに形成されて 、る。
[0054] また、ベース拡散領域 17aの深さ D力 ベース埋込領域 44aの底面の深さ Dの間
2 1 の距離、即ち、ベース埋込領域 44aの高さ D -Dを H (この符号 Hは、ベース拡散領
1 2
域 17aの深さよりも深ぐベース埋込領域 44aの底面よりも浅い範囲を示している。 ), ベース埋込領域 44aの長さを L、 1個のベース拡散領域 17a底面に位置するベース 埋込領域 44aの数を n、導電領域が形成されている領域であって、ベース埋込領域 4 4aの上部 (ベース拡散領域 17aの底面)と底面の間の抵抗層 15の第 1導電型の不純 物の平均濃度を N、ベース埋込領域 44aの第 2導電型の不純物濃度を Nで表す。
1 2
[0055] 図 27の符号 Sは、 1個のセル範囲を示す領域であり、隣接する 2個一組のベース拡 散領域 17aのうち、一方のベース拡散領域 17aの幅方向中央位置から他方のベース 拡散領域 17aの幅方向中央位置までの間の範囲を示しており、 1個のセル範囲 S内 のベース拡散領域 17aの深さよりも深ぐベース埋込領域 44aの底面よりも浅い範囲 Hの間に含まれる第 1導電型の不純物量 qと第 2導電型の不純物量 qは、
1 2
q = {Wm X (n-1)+Wm } X N X H X L…… (1)
1 1 2 1
q = Wt X n X H X L X N …… (2)
2 2
となる。
第 1導電型の不純物量と第 2導電型の不純物量が等しいリサーフ条件は、 q =qで
1 2 ある。
[0056] ベース拡散領域 17aと抵抗層 15とが逆バイアスされ、抵抗層 15のうち、ベース埋込 領域 44aで挟まれた部分が空乏層で満たされるときには、ベース埋込領域 44aの内 部も空乏層で満たされる (但し、抵抗層 15やベース埋込領域 44aが空乏層で満たさ れる前にベース埋込領域 44aと抵抗層 15の間の PN接合部の電界がアバランシェ降 伏を起こす臨界値に達しないことが前提である。 )。
[0057] そして、逆バイアスがそれ以上の大きさになると、空乏層は半導体支持層 11方向に 向かって広がり、耐圧を超える大きさになったときにアバランシェ降伏が生じる。
[0058] 最内周のガード埋込領域 44bの幅方向中央位置よりも内側であって、ベース拡散 領域 17aの底面よりも深ぐベース埋込領域 44aやガード埋込領域 44bの底面よりも 浅い部分の間に含まれる第 1導電型の不純物量を Q 2
1とし、第 導電型の不純物量を
Qとすると、図 36は、下記 (a)式、
2
Wm <W <Wm …… (a)
1 PE 2
を満たす場合に、不純物量 Q、 Qの比 Q /Qとアバランシェ降伏が生じる位置の関
1 2 2 1
係を説明するためのグラフであり、縦軸は、最内周のガード埋込領域 44bよりも内側 の領域である活性領域に流れる電流 laと、活性領域の外側の耐圧領域に流れる電 流 Igの比 IgZlaであり、横軸は不純物量 Q、 Qの比 Q /Qである。
1 2 2 1
Ig/Iaの値から、アバランシェブレークダウンが生じた位置が分かる。
[0059] 即ち、耐圧領域でアバランシヱブレークダウンが生じた場合、耐圧領域に流れる電 流 Igが活性領域に流れる電流 laよりも大きくなるから、 IgZlaの値は 1よりも大きくなる [0060] 活性領域でアバランシェブレークダウンが生じた場合、活性領域に流れる電流 laが 耐圧領域に流れる電流 Igよりも大きくなるから、 IgZlaの値は 1よりも小さくなる。
[0061] 図 36のグラフを計算した条件は、下記表 1の通りである。
[0062] [表 1] ドッ卜と計算条件
Wm2 wb WPE Q
十 5.0 1.4 4.1 3.2 2.0
→ - 5.0 1.4 4.1 3.2 1.5
- 5.0 2.0 4.25 3.5 1.5
5.0 3.0 4.5 4.0 1.5
6.0 2.0 5.0 4.0 1.5
* 5.0 2.0 4.25 3.5 1.37 幅の単位は m
不純物量 Qの単位は X 1012cm一 2
[0063] 図 36から分力るように、 Q /Qの値が 0. 9以下の場合は IgZlaが 1よりも大きぐ
2 1
耐圧領域でアバランシェブレークダウンが生じている力 Q /Qの値が 0. 9よりも大
2 1
きくなると IgZlaが 1よりも小さくなり、活性領域でアバランシェブレークダウンが生じる ようになる。
[0064] 特に、 Q /Qの値が 1以上の場合は、表 1の各条件で IgZlaが 1よりも小さい。 Q
2 1 2
/Qの値を 1以上にするためには、第 2導電型の不純物総量が第 1導電型の不純物
1
総量よりも多くなるようにすればよぐ例えばベース埋込領域 44aとガード埋込領域 4 4b中の第 2導電型の不純物濃度 Nを適切な値に設定することで達成できる。
2
リサーフ条件が大きく崩れると、耐圧が低下するので、第 2導電型の不純物量 Q、 q
2 は、 Q≤Q≤Q X 2. 0、 q≤q≤q X 2. 0である。
2 1 2 1 1 2 1
[0065] なお、上記は、各ベース拡散領域 17aの底面下にベース埋込領域 44aが二個ずつ 配置されていた力 三個以上であってもよい。(2)式を満たすために第二導電型の不 純物量を増加させる場合は、第 2導電型の不純物濃度 Nを高くしたり、ベース埋込
2
領域 44aの幅 Wtを大きくする他、各ベース拡散領域 17a底面にそれぞ; ^立置する ベース埋込領域 44aの本数を増やすことができる。但し、幅 Wtを大きくすると溝 43a の内部表面に半導体材料 40aを成長させにくくなるので、ベース埋込領域 44aの本 数を増やす方がよい。
次に、距離 Wm、 Wm、 W や深さ D、 D等を下記表 2、
[0066] [表 2] 表 2計算条件
距離 Wmi 2.0 j .m
距離 Wm2 5.0 Atm
距離 W b 4.25 m
距離 W pE 3.5 xm
幅 Wt 1.4 Aim
埋込領域深さ 1 / Aim
成長層不純物濃度 変数
埋込領域不純物濃度 変数
ベース拡散領域表面濃度 3.0 X 1018cm_3
ベース拡散領域深さ D2 1.0 xm
Wm1<WPE<Wm2
[0067] に示した値に固定し、成長層 12の濃度と、ベース埋込領域 44a及びガード埋込領域 44bの濃度を変えて計算することで、濃度 Q Qの比を変え、ァバランシ 降伏が生
1、 2
じる位置を検証した。
その結果を下記表 3に示す。
[0068] [表 3]
表 3 濃度と降伏位置の関係
Q2/Qi 成長層の濃度 溝内の半導体材
降伏位置 降伏電圧 (V) (cm- 3) 料の濃度、cm—
2.00 1.37 X 1015 6.86 X 1015 活性領域 327
1.43 1.92 X 1015 6.86 X 1015 活性領域 382
1.25 2.19 X 1015 6.86 X 1015 活性領域 399
1.1 1 2.47 X 1015 6.86 X I 015 活性領域 408
1.00 2.74 X 1015 6.86 X 1015 活性領域 405
0.90 2.74 X 1015 6.18 X 1015 耐圧領域 393
0.80 2.74 X 1015 5.94 X 1015 耐圧領域 366
0.70 2.74 X 1015 4.80 X 1015 耐圧領域 329
0.50 2.74 X 1015 3.43 X 1015 耐圧領域 252
[0069] 表 2の条件では、下記 (a)式、
Wm <W <Wm …… (a)
1 PE 2
が成立しており、その場合、 Q /Qの値が 0. 9以下のときにアバランシェ降伏が周
2 1
辺領域で発生している。従って、 Q /Qが 0. 90を超える大きさ、特に 1. 00以上の
2 1
ときに活性領域で生じるようになつている。
[0070] 次に、距離 Wm、 Wm、 W や深さ D、 D等を上記表 2とは異なり、下記表 4、表 6
1 2 PE 1 2
に示した値に固定し、成長層 12の濃度と、ベース埋込領域 44a及びガード埋込領域 44bの濃度を変えて計算することで、濃度 Q Qの比を変え、ァバランシ 降伏が生
1、 2
じる位置を検証した。
[0071] 表 4に対応する結果を表 5に示し、表 6に対応する結果を表 7に示す。
[0072] [表 4] 表 4計算条件
距離 wmi 乙 .0 Atrn
距離 Wm2 5.0 jU-in
距離 W b 4.5 Atm
距離 W pE 1.4
幅 Wt 1 .4 μιτι
埋込領域深さ C I ( μηη
成長層不純物濃度 変数
変数
埋込領域不純物濃度
ベース拡散領域表面濃度 3.0 Χ 1018cm— 3
ベース拡散領域深さ D2 1 .0 yam
WPE<Wm1<Wm2
[0073] [表 5] 表 5 濃度と降伏位置の関係
成長層の濃度 溝内の半導体材
Q2/Q1 降伏位置 降伏電圧 (V)
(cm— 3) 料の濃度(cm—3)
1.64 1.62 X 1015 6.86 X 1015 耐圧領域 313
1.18 2.26 X 1015 6.86 X 1015 耐圧領域 356
1.03 2.58 X 1015 6.86 X 1015 耐圧領域 378
0.92 2.91 X 1015 6.86 X 1015 耐圧領域 398
0.83 3.23 X 1015 6.86 X 1015 活性領域 394
0.75 3.23 X 1015 6.18 X 1015 活性領域 371
0.66 3.23 X 1015 5.94 X 1015 活性領域 327
0.58 3.23 X 1015 4.80 X I 015 活性領域 284
0.41 3.23 X 1015 3.43 X 1015 活性領域 214
[0074] [表 6] 表 6 計算条件
距離 wmi 4.0 Mm
距離 Wm2 5.0 μιτι
距離 Wb 4.5 μ,Γη
距離 W pE ο.Ο Αί-πη
幅 Wt 1.4 Mm
埋込領域深さ I ( Atm
成長層不純物濃度 変数
埋込領域不純物濃度 変数
ベース拡散領域表面濃度 3.0 X 1018cm- 3
ベース拡散領域深さ D2 1.0 μηη
Wm1<Wm2<WPE [表 7] 表 7 濃度と降伏位置の関係
成長層の濃度 溝内の半導体材
Q2/Q1 降伏位置 降伏電圧(V)
(cm 料の濃度 (cm一3)
2.22 9.90 X 1015 6.86 X 1015 活性領域 369
1.56 1.39 X 1015 6.86 X 1015 活性領域 411
1.39 1.58 X 1015 6.86 X 1015 活性領域 423
1.22 1.78 X 1015 6.86 X 1015 活性領域 427
1.10 1.98 X 1015 6.86 X 1015 耐圧領域 414
0.99 1.98 X 1015 6.18 X 1015 耐圧領域 379
0.88 1.98 X 1015 5.94 X 1015 耐圧領域 340
0.77 1.98 X 1015 4.80 X 1015 耐圧領域 301
0.55 1.98 X 1015 3.43 X 1015 耐圧領域 232
表 4の条件では、下記 (c)式、
W <Wm <Wm …… (c)
PE 1 2
が成立しており、その場合、 Q /Qの値が 0.92以上のときにアバランシェ降伏が周
2 1
辺領域で発生している。従って、 Q /Qが 0.92未満、特に 0.83以下のときに活性 領域で生じるようになって!/、る。
[0077] 表 6の条件では、下記 (e)式、
Wm <Wm <W …… (e)
1 2 PE
が成立しており、その場合、 Q /Qの値が 1. 10以下のときにアバランシェ降伏が周
2 1
辺領域で発生している。従って、 Q 2 ZQが 1. 10を超える値、特に 1. 22以上のとき
1
に活性領域で生じるようになって 、る。
[0078] また、本発明の半導体装置 1では、ベース埋込領域 44aは細長く形成され、ベース 埋込領域 44aの長手方向の両端と最内周のガード埋込領域 44bとの間の距離 W (こ a の距離 Wは、ベース埋込領域 44aの長手方向の両端と最内周のガード埋込領域 44 a
bとの間に挟まれた成長層 12の幅である。)は、最内周のガード埋込領域 44bの内周 の縁と、そのガード埋込領域 44bと平行に対向するベース埋込領域 44aの長辺の縁 との間の距離 Wの実質的に半分の大きさにされている。
b
[0079] ベース埋込領域 44aと最内周のガード埋込領域 44bの間の成長層 12が空乏層で 満たされる場合、ベース埋込領域 44aの両端から最内周のガード埋込領域 44bに向 けて空乏層は広がらず、ベース埋込領域 44aの長辺力 最内周のガード埋込領域 4 4bに向けて空乏層が広がるとすると、ベース埋込領域 44aの長辺と、最内周のガー ド埋込領域 44bの内周面から、それぞれ距離 Wの半分だけ空乏層が広がり、空乏 b
層同士が接触することになる。
[0080] この場合、ベース埋込領域 44aの両端と最内周のガード埋込領域 44bの間には、 ガード埋込領域 44bから、距離 Wの半分だけ空乏層が広がっているから、ベース埋 b
込領域 44aの両端と最内周のガード埋込領域 44bの内周の縁との間の距離を、距離 Wbの実質的に半分の大きさにしておけば、ベース埋込領域 44aの両端と最内周の ガード埋込領域 44bの間も空乏層で満たされることになる。
[0081] <製造方法 >
次に、本発明の半導体装置の製造方法を説明する。
図 1(a)—図 26(a)は、活性領域の形成工程に沿った断面図であり、図 1(b)—図 26( b)は、活性領域の外周付近の一部と、活性領域を取り囲む耐圧領域の断面図である [0082] 図 l(a)、(b)の符号 10は、本発明の半導体装置を製造するための処理基板を示し ている。
この処理基板 10は、第 1導電型の半導体単結晶から成る半導体支持層 11と、該半 導体支持層 11表面に半導体支持層 11と同じ導電型の半導体結晶がェピタキシャル 成長によって成膜された成長層 12とを有して 、る。
熱酸ィ匕処理により、成長層 12の表面には半導体単結晶の酸ィ匕物力 成る初期酸 化膜 28が形成されている。
[0083] 次に、処理基板 10表面にレジスト膜を形成し、パターニングし、図 2(a)、(b)に示す ように、レジスト膜の活性領域上の位置に四角形の開口 49を形成する。図 2(b)の符 号 41は、パターユングされたレジスト膜を示しており、開口 49底面には初期酸ィ匕膜 2 8が露出している。
[0084] 次に、開口 49底面に位置する初期酸ィ匕膜 28をエッチングによって除去すると、初 期酸ィ匕膜 28に、図 3(a)、(b)に示すように、レジスト膜 41の開口 49と同形状の開口 31 が形成される。この開口 31の底面には成長層 12の表面が露出している。同図 (a)、 (b )の状態では、レジスト膜 41は除去されている。
[0085] 次に、熱酸化処理を行うと、図 4(a)、(b)に示すように、開口 31の底面の位置に、成 長層 12を構成する半導体の酸化物から成る緩和層 32が形成される。この緩和層 32 の膜厚は薄く形成されている。
[0086] その状態で処理基板 10の表面から第 1導電型の不純物を照射すると、不純物は初 期酸化膜 28で遮蔽され、緩和層 32は透過し、図 5(a)、(b)に示すように、開口 31底 面位置の成長層 12の内部表面に、第 1導電型の高濃度不純物層 13が形成される。 この高濃度不純物層 13の深さは浅 、。
[0087] 次に、熱酸化処理を行うと、高濃度不純物層 13に含まれる第 1導電型の不純物が 深さ方向と横方向に拡散し、図 6(a)、(b)に示すように、活性領域に第 1導電型の導電 層 14が形成される。この導電層 14と成長層 12とで第 1導電型の抵抗層 15が構成さ れる。
[0088] このとき、拡散の際の熱酸化により、処理基板 10表面には半導体の熱酸化膜が形 成される。図 6(a)、(b)の符号 33は、その熱酸ィ匕膜と、緩和層 32や初期酸ィ匕膜 28と 一体になつたマスク酸ィ匕膜を示して 、る。
[0089] 導電層 14の表面の濃度は成長層 12の濃度よりも一桁程度高濃度である。導電層 14は拡散で形成されるため、その濃度は表面が高ぐ深さが深くなるほど小さくなる。 なお、導電層 14と成長層 12は同じ導電型であり、 PN接合を形成しないので、本発 明では、導電層 14の深さを、成長層 12の濃度の二倍まで低下した位置で定義する
[0090] 図 29は、図 6(a)、(b)の A— A線切断面図である。第 1導電型の不純物の横方向拡 散により、導電層 14の平面形状は、高濃度不純物層 13よりも大きぐ四隅が丸まった 四角形である。
[0091] 次に、マスク酸ィ匕膜 33上にレジスト膜を形成し、パターニングして図 7(a)に示すよう に、活性領域に複数の平行な細長開口 42aを形成する。また、同図 (b)に示すように 、耐圧領域にリング形状の複数のリング状開口 42bを形成する。符号 41は、開口 42 a、 42bが形成されたレジスト膜を示している。
[0092] 細長開口 42aは細長の長方形であり、リング状開口 42bは大きさが異なる四角リン グ (長方形又は正方形のリング)である。リング状開口 42bは同心状に配置されており 、細長開口 42aは、各リング状開口 42bによって取り囲まれている。
[0093] 隣り合うリング状開口 42bの対向する辺同士は平行にされており、且つ、細長開口 42aの四辺は、リング状開口 42bの辺に対して平行力、又は垂直にされている。
[0094] 各開口 42a、 42bの底面にはマスク酸ィ匕膜 33表面が露出しており、エッチングによ つて開口 42a、 42b底面位置のマスク酸ィ匕膜 33を除去してマスク酸ィ匕膜 33をパター ユングした後、レジスト膜 41を除去し、今度はマスク酸ィ匕膜 33をマスクとして抵抗層 1 5をエッチングによって掘削すると、図 8(a)、(b)に示すように、細長開口 42aの底面位 置に、活性溝 43aが形成され、リング状開口 42bの底面位置に、耐圧溝 43bが形成 される。
図 8(a)、(b)の B— B線切断面図を図 30に示す。
[0095] 活性溝 43aの平面形状は細長開口 42aと同じく細長の長方形であり、耐圧溝 43b の形状はリング状開口 42bと同じ四角リングである。
活性溝 43a相互間の距離や、耐圧溝 43b間の距離や、活性溝 43aと耐圧溝 43bの 間の距離は、開口 42aの距離によって決定され、上記 (a)式を満たす距離にされてい る。
[0096] 活性溝 43aと耐圧溝 43bは同じエッチング工程によって形成されるため、それらは 全て同じ深さであり、各溝 43a、 43bは、導電層 14よりも深ぐ且つ、半導体支持層 1 1に達しない深さに形成されている。従って、各溝 43a、 43bの底面には、成長層 12 が露出している。各溝 43a、 43bの底面は、成長層 12の表面と平行であり、各溝 43a 、 43bの側面は底面と垂直である。
活性溝 43aの平面形状は、細長い長方形であり、耐圧溝 43bの平面形状は、長方 形又は正方形の四角リング状である。
[0097] 次に、 CVDにより、溝 43a、 43bの内部の底面及び側面に第 2導電型の半導体単 結晶又は半導体多結晶を成長させ、図 9(a)、(b)に示すように、各溝 43a、 43b内を、 成長させた半導体単結晶又は半導体多結晶から成る第 2導電型の半導体材料 40a 、墨によって充填する。
[0098] 充填直後の状態では、半導体材料 40a、 40bの上部はマスク酸ィ匕膜 33の表面上 に突き出ており、図 10(a)、(b)に示すように、抵抗層 15よりも上の部分をエッチングに よって除去した後、図 l l(a)、(b)に示すように、導電層 14上に位置するマスク酸化膜 33表面は露出したままで、成長層 12に密着しているマスク酸ィ匕膜 33上にパター- ングしたレジスト膜 27を配置する。
[0099] その状態でエッチングすると、図 12(a)、(b)に示すように、成長層 12に密着したマス ク酸ィ匕膜 33は残り、耐圧領域の抵抗層 15の表面 (成長層 12の表面)は覆われたまま 、活性領域の導電層 14と、活性領域及び耐圧領域の半導体材料 40a、 40b表面が 露出する。
[0100] 次に、熱酸化処理により、図 13(a)、(b)に示すように、薄いゲート絶縁膜 34を形成し た後、 CVD法等によりゲート絶縁膜 34表面に導電性のポリシリコン薄膜を堆積させ、 ポリシリコンから成る導電性薄膜 35を形成する。
[0101] 次いで、図 14(a)、(b)に示すように、導電性薄膜 35上の所定位置にパターユングし たレジスト膜 46を配置し、エッチングによって導電性薄膜 35をパターユングし、図 15
(a)、(b)に示すように、ゲート電極膜 36を形成する。 [0102] 次に、処理基板 10の表面に第 2導電型の不純物を照射すると、ゲート電極膜 36と マスク酸ィ匕膜 33がマスクとなり、露出されたゲート絶縁膜 34を透過した不純物によつ て、図 16(a)、(b)に示すように、導電層 14の内部表面、及び活性溝 43aと耐圧溝 43b 内部の半導体材料 40a、 40bの内部表面に第 2導電型の高濃度不純物領域 16が形 成される。
[0103] 次いで、熱処理によって高濃度不純物領域 16に含まれる第 2導電型の不純物を拡 散させると、図 17(a)、(b)に示すように、活性領域と耐圧領域に、第 2導電型のベース 拡散領域 17aとガード拡散領域 17bがそれぞれ形成される。
[0104] 耐圧溝 43b内に充填された半導体材料 40bの上部には、半導体材料 40bと同じ幅 の高濃度不純物領域 16が形成されるが、横方向拡散により、ガード拡散領域 17bの 幅は、ガード埋込領域 44bの幅よりも広くなる。
ベース拡散領域 17aとガード拡散領域 17bの深さは同じであり、導電層 14の深さよ りも浅くされている。
[0105] 半導体材料 40a、 40bに含まれる第 2導電型の不純物濃度よりもベース拡散領域 1 7aとガード拡散領域 17bに含まれる第 2導電型の不純物濃度の方が高いので、各半 導体材料 40a、 40bのベース拡散領域 17aやガード拡散領域 17bよりも浅い部分は 、それぞれベース拡散領域 17aとガード拡散領域 17bで置換されたものとする。
[0106] その場合、ベース拡散領域 17aの底面に、活性溝 43aの残部 (下部)と、その内部に 充填されている半導体材料 40aとで第 2導電型のベース埋込領域 44aが形成され、 また、ガード拡散領域 17bの底面には、耐圧溝 43bの残部 (下部)と、その内部に充填 されている第 2導電型の半導体材料 40bにより、第 2導電型のガード埋込領域 44bが 形成される。
[0107] このガード埋込領域 44bは、耐圧溝 43b内部の半導体材料 40bのうち、ガード拡散 領域 17bよりも下の部分で構成されており、ガード拡散領域 17bとその下部のガード 埋込領域 44bとでガードリング領域が形成される。
ただし、本発明の半導体装置 1では、ガード拡散領域 17bを有さない場合も含み、 その場合は、ガードリング領域はガード埋込領域 44bで構成される。
[0108] ガードリング領域がガード拡散領域 17bを有さな 、場合はガード埋込領域 44bの上 部は、成長層 12の表面と同じ高さになる。更にまた、耐圧溝 43bの上部が、マスク酸 化膜 33等の絶縁膜に形成された溝で構成され、半導体材料 44bがその絶縁膜の溝 内にも充填されている場合には、ガード埋込領域 44aは、成長層 12の表面よりも高く なる。
[0109] ベース埋込領域 44aは細長であり、互いに平行になっている。ベース埋込領域 44a は、ベース拡散領域 17aの深さよりも下の部分で構成されており、横向きの直方体形 状になる。また、ベース埋込領域 44aの上部はベース拡散領域 17aに接続されてい るから、ベース拡散領域 17aと同電位になる。
[0110] 図 17(a)、(b)の C C線切断面図を図 31に示す。
各ベース拡散領域 17aは、四隅が丸ぐ長辺がベース埋込領域 44aが伸びる方向 に沿った長方形である。
[0111] 各ベース拡散領域 17aは互いに離間しており、第 2導電型の不純物の横方向拡散 により、ベース拡散領域 17aの縁はゲート電極膜 36の底面下に進入するため、ゲー ト電極膜 36は隣接するベース拡散領域 17aを跨ぐように位置している。
ガード拡散領域 17bの形状は四角リング状であり、同心状に隣接するガード拡散領 域 17bは、互いに一定距離だけ離間している。
[0112] 次に、図 18(a)、(b)に示すように、処理基板 10表面にパターニングしたレジスト膜 4 5を配置し、ベース拡散領域 17aの幅方向中央位置のゲート絶縁膜 34を露出させた 状態で第 2導電型の不純物を照射し、ゲート絶縁膜 34を透過した第 2導電型の不純 物により、ベース拡散領域 17aの内部表面に浅!、第 2導電型の高濃度不純物層 18 を形成する。
[0113] この第 2導電型の高濃度不純物層 18は、長辺がベース拡散領域 17aの長手方向 に沿った長方形であり、高濃度不純物層 18の長辺とベース拡散領域 17aの長辺とは 平行である。
[0114] また、高濃度不純物層 18の長辺は、ゲート電極膜 36の縁から一定距離だけ離間し ており、レジスト膜 45を除去し、図 19(a)、(b)に示すように、パターユングした別のレジ スト膜 46を形成し、高濃度不純物層 18の長辺とゲート電極膜 36の縁との間の位置 のゲート絶縁膜 34表面を露出させて他の部分を覆った状態で第 1導電型の不純物 を照射すると、その不純物はゲート絶縁膜 34の露出部分を透過し、第 2導電型の高 濃度不純物領域 18とゲート電極膜 36の間に位置するベース拡散領域 17aの内部表 面に第 1導電型の高濃度不純物領域 19が形成される。
[0115] レジスト膜 46を除去した後、熱処理を行うと、第 2導電型の高濃度不純物領域 18と 第 1導電型の高濃度不純物領域 19に含まれる不純物がそれぞれ拡散し、図 20(a)、 ( b)に示すように、第 2導電型のォーミック拡散領域 20と第 1導電型のソース拡散領域 21がそれぞれ形成される。ォーミック拡散領域 20の表面濃度は、ベース拡散領域 1 7aの表面濃度よりも高ぐソース拡散領域 21とォーミック拡散領域 20は金属膜とォ 一ミック接触を形成するようになっている。
[0116] 図 20(a)、(b)の F— F線切断面図を図 32に示す。
ォーミック拡散領域 20とソース拡散領域 21の平面形状の大きさはベース拡散領域 17aよりも小さぐまた、それらの深さはベース拡散領域 17aの深さよりも浅い。ォーミ ック拡散領域 20とソース拡散領域 21は、ベース拡散領域 17aの内側に位置しており 、導電層 14や成長層 12とは接触していない。
各ベース拡散領域 17a内には、ォーミック拡散領域 20とソース拡散領域 21とが少 なくとも 1個以上は形成される。
[0117] ソース拡散領域 21の端部は、横方向拡散によってゲート電極膜 36の底面下に進 入するが、ベース拡散領域 17aの端部とは接触せず、ゲート電極膜 36の底面下のベ ース拡散領域 17aの部分であって、ソース拡散領域 21の縁とベース拡散領域 17aの 縁の間でゲート絶縁膜 34と接触する部分によってチャネル領域 22が形成される。
[0118] 次に、 CVD法等により、図 21(a)、(b)に示すように、処理基板 10表面にシリコン酸 化膜等の層間絶縁膜 37を形成した後、図 22(a)、(b)に示すように、活性領域のゲー ト電極膜 36上や、耐圧領域の表面上にパターユングしたレジスト膜 47を配置し、露 出した層間絶縁膜 37とその下層に位置するゲート絶縁膜 34とをエッチングして図 23 (a)、 (b)に示すように、ォーミック拡散領域 20とソース拡散領域 21の少なくとも一部 表面を露出させ、次いで、図 24(a)、(b)に示すように、アルミニウム等の金属薄膜 29 を形成すると、ォーミック拡散領域 20—部表面とソース拡散領域 21一部表面は金属 薄膜 29と接触する。 [0119] 次いで、ノターユングしたレジスト膜 (不図示)を金属薄膜 29上に配置し、エッチング によって金属薄膜 29をパターユングすると、図 25に示すように、ソース電極膜 38が 形成される。
[0120] ソース電極膜 38を形成する際に、ソース電極膜 38を構成する金属膜から成り、ソ ース電極膜 38からは絶縁され、ゲート電極膜 36に接続されたゲートパッドと、ソース 電極膜 38の一部力も成るソースパッドとを形成する。
[0121] このソース電極膜 38はソース拡散領域 21ゃォーミック拡散領域 20とォーミック接 触しており、ソース拡散領域 21はソース電極膜 38に直接電気的に接続され、ベース 拡散領域 17aは、ォーミック拡散領域 20を介してソース電極膜 38に電気的に接続さ れる。
[0122] ベース埋込領域 44aは、ベース拡散領域 17aに接触しており、従って、ベース埋込 領域 44aもソース電極膜 38に電気的に接続される。ソース電極膜 38は、層間絶縁膜
37によってゲート電極膜 36とは電気的に絶縁されており、また、導電層 14や成長層
12には接虫していない。
[0123] 次に、図 26(a)、(b)に示すように、処理基板 10表面にシリコン酸化膜等から成る保 護層 39を形成し、エッチングによって保護層 39をパターユングする。そのパターニン グにより、ゲートパッドやソースパッドは露出される。
[0124] 次いで、図 27、図 28に示すように、半導体支持層 11の裏面側の露出した表面に 金属膜を形成し、その金属膜によってドレイン電極膜 30を構成させる。そして、ダイ シング工程を経ると、 1枚のゥヱーハから複数の半導体装置 1が得られる。
[0125] ドレイン電極膜 30は、半導体支持層 11とォーミック接触しており、成長層 12や導電 層 14は、半導体支持層 11を介してドレイン電極膜 30に電気的に接続されて ヽる。 なお、この図 27、 28の G— G線切断面図は図 20(a)、(b)の F— F線切断面図と同じで あり、図 32に示されている。
[0126] 以上は、本発明の半導体装置 1が MOSトランジスタの場合であった力 本発明は、 他の種類の半導体装置も含まれる。
[0127] 図 33の符号 2は、 PN接合型 IGBTの本発明の第 2例の半導体装置である。この第
2例の半導体装置 2や、後述する各実施例の半導体装置 3、 4において、第 1例の半 導体装置 1と同じ部材については同じ符号を付して説明を省略する。また、後述する 各実施例のうち、少なくとも第 2—第 3例の各半導体装置 2— 3の耐圧領域の構成は 第 1例の半導体装置 1と同じである。
[0128] 第 2例の半導体装置 2は、第 1導電型の支持層 11に替え、第 2導電型のコレクタ層 51を有しており、該コレクタ層 51上に、第 1導電型の成長層 12が配置されている。コ レクタ層 51裏面には、コレクタ層 51とォーミック接触するコレクタ電極 55が形成され ている。他の構成は第 1例の半導体装置 1と同じである。
[0129] この半導体装置 2では、コレクタ層 51と成長層 12との間で PN接合が形成されてお り、半導体装置 2が導通するときには、その PN接合が順バイアスされ、コレクタ層 51 力も成長層 12内に少数キャリアが注入されるため、導通抵抗が低くなるようになって いる。
図 34の符号 3は、ショットキ一接合型 IGBTの本発明の第 3例の半導体装置である
[0130] この半導体装置 3では、研磨工程等によって第 1例の半導体装置 1の半導体支持 層 11の相当する部分が除去された後、研磨によって露出された成長層 12の表面に
、成長層 12とショットキー接合を形成するクロム等の金属膜が成膜され、その金属膜 によってショットキー電極膜 56が構成されて 、る。
[0131] このショットキー接合の極性は、半導体装置 3が導通する際に順バイアスされる極性 であり、ショットキー接合が順バイアスされることにより、ショットキー電極膜 56から成長 層 12内に少数キャリアが注入され、導通抵抗が低くなる。
図 35の符号 4は、本発明の第 4例の半導体装置であり、第 2導電型の支持基板 52 上に第 1導電型の成長層 12がェピタキシャル成長によって形成されている。
[0132] この半導体装置 4では、抵抗層 15表面から拡散によって形成され、底面が半導体 支持層 11に達する分離拡散領域 53を有して ヽる。
分離拡散領域 53はリング状であり、ベース拡散領域 17aが配置された活性領域を 取り囲んでいる。
[0133] 分離拡散領域 53が取り囲む領域の内側には、導電層 14が形成されており、該導 電層 14の内部表面近傍には、ソース拡散領域 21と同時形成の第 1導電型のドレイ ン拡散領域 54が配置されている。ドレイン拡散領域 54表面には、ソース電極膜 38と 同時に形成され、ソース電極膜 38とは電気的に絶縁されたドレイン電極膜 59が配置 されており、それらにより、トランジスタ 6が構成されている。
[0134] 他方、リング状の分離拡散領域 53の外側には、小信号用のトランジスタやダイォー ド等の半導体素子 57が形成されており、複数の半導体素子 57によって制御回路等 の電子回路が構成されて 、る。
[0135] 支持基板 52の表面には、接地電位に接続されるアース電極膜 58が形成されてい る。ゲート電極膜 36は、分離拡散領域 53外側の半導体素子 57に接続されており、ト ランジスタ 6は、半導体素子 57によって形成された制御回路によって制御されている
[0136] アース電極膜 58を接地電位に置き、ドレイン電極膜 59とソース電極膜 38の間に電 圧を印加した状態で、ゲート電極膜 36にしきい値電圧以上の電圧を印加するとチヤ ネル領域 22に反転層が形成され、導通する。
[0137] 導通すると、ソース電極膜 38とドレイン電極膜 59との間で、電流は抵抗層 15内部 を横方向に流れる。
ゲート電極膜 36がしきい値電圧未満の電圧になると遮断する。
[0138] 導通状態と遮断状態の両方において、分離拡散領域 53と抵抗層 15とは逆バイァ スされており、このトランジスタ 6と他の半導体素子 57とは電気的に分離されている。
[0139] なお、本発明の半導体装置では、半導体単結晶にはシリコン単結晶を用いることが できる他、 GaAs等の他の半導体の単結晶を用いることもできる。
また、上記各実施例では、互いに分離された複数のベース拡散領域 17aを有して いたが、各ベース拡散領域 17aを第 2導電型の拡散領域で接続し、櫛状にしてもよ い。
[0140] また、上記実施例では、ベース拡散領域 17aを取り囲むリング状のガード埋込領域 44bはソース電極膜 38やゲート電極膜 36には接続されておらず、浮遊電位に置か れていたが、最内周のガード埋込領域をソース電極膜 38に電気的に接続することも できる。
[0141] 図 37の符号 44cは最内周のガード埋込領域を示しており、最内周のガード埋込領 域 44cに隣接するベース拡散領域 17aが外周方向に伸ばされ、最内周のガード埋 込領域 44cに接触している。
[0142] その結果、ソース電極膜 38が接地電位に置かれると、最内周のガード埋込領域 44 cも接地電位に置かれる。ここでは、最内周のガード埋込領域 44cを同心状に囲む他 のガード埋込領域 44bは浮遊電位に置かれたままである。
[0143] 最内周のガード埋込領域 44cが接地電位に接続される場合と浮遊電位に置かれる 場合とを比較すると、降伏電圧に差はないが、アバランシェ電流は最内周のガード埋 込領域 44cにも流れ込むことができるため、接地電位に接続された方が破壊耐量が 高くなる。
[0144] なお、 1個のベース拡散領域 17aの底面に 2個のベース埋込領域 44aが配置され ている場合について、ベース拡散領域 17aの底面とベース埋込領域 44aの底面との 間の領域での第 1導電型の不純物量 Q
1は、(Wm +Wm)XN
1 2 1であり、第 2導電型の 不純物量 Qは 2XWtXNである。
2 2
Q =Qの フ
1 2 リサー 条件が成り立つ場合は、
(Wm +Wm)XN = 2XWtXN …… (3)
1 2 1 2
である。各埋込領域 44a、 44bの幅 Wが全て等しいものとした。
t
[0145] 同様に、リサーフ条件が成り立つ場合、ガードリング領域では、
N XW = WtXN …… (4)
1 PE 2
である。上記二式から WtXNを消去すると、
2
N XW = N (Wm +Wm )/2 …… (5)
1 PE 1 1 2
··· W = (Wm + Wm )/2 …… (6)
PE 1 2
上記のように、ガード埋込領域 44b間の距離 W は、同じベース拡散領域 17aの下
PE
のベース埋込領域 44a間の距離 Wmと隣接するベース拡散領域 17aのベース埋込
1
領域 44a間の距離 Wmの和の 1Z2に等しくすると、リサーフ条件が成り立つ。
2
[0146] 本発明のように、リサーフ条件からはずれるような設定にする場合、先ず (6)式が成 り立つように設計した後、(a)、(b)式、(c)、(d)式、又は (e)、(f)式が成り立つように、各 距離 Wm、Wm、W を設定すればよい。

Claims

請求の範囲
[1] 第 1導電型の抵抗層と、
前記抵抗層内部に形成され、同心状に配置された第 2導電型の複数のガード埋込 領域と、
前記抵抗層の内部の表面付近であって、最内周の前記ガード埋込領域よりも内側 に配置された第 2導電型の複数のベース拡散領域と、
前記各ベース拡散領域の縁よりも内側の領域の前記各ベース拡散領域内部の表 面付近にそれぞれ形成され、前記各ベース拡散領域よりも浅い第 1導電型のソース 拡散領域と、
前記各ベース拡散領域の縁付近であって、前記各ベース拡散領域の縁と前記各ソ ース拡散領域の縁の間のチャネル領域と、
少なくとも前記各チャネル領域上に位置するゲート絶縁膜と、
前記ゲート絶縁膜上に位置するゲート電極膜と、
前記各ベース拡散領域底面に複数個ずつ配置され、前記各ベース拡散領域にそ れぞれ接続された複数の第 2導電型のベース埋込領域とを有し、
同じ前記ベース拡散領域の底面に位置する隣り合う前記ベース埋込領域間の距 離 Wmと、異なる前記ベース拡散領域の底面に位置して隣り合う前記ベース埋込領
1
域間の距離 Wmと、
2
前記ベース拡散領域の底面よりも深い位置での前記ガード埋込領域同士の間の 距離 W は、下記 (a)式、
PE
Wm <W <Wm …… (a)
1 PE 2
の関係にあり、
前記各ベース埋込領域の底面と前記各ガード埋込領域の底面は実質的に同じ深 さに位置し、
前記各ベース拡散領域の底面は実質的に同じ深さに位置し、
最内周の前記ガード埋込領域の幅方向中央位置よりも内側の領域であって、 前記ベース埋込領域及び前記ガード埋込領域の底面と前記ベース拡散領域の底 面の間の領域に含まれる前記第 1導電型の不純物量 Qと、前記第 2導電型の不純 物量 Qは、下記 (b)式、
2
0· 90< Q /Q …… (b)
2 1
の関係にある半導体装置。
[2] 第 1導電型の抵抗層と、
前記抵抗層内部に形成され、同心状に配置された第 2導電型の複数のガード埋込 領域と、
前記抵抗層の内部の表面付近であって、最内周の前記ガード埋込領域よりも内側 に配置された第 2導電型の複数のベース拡散領域と、
前記各ベース拡散領域の縁よりも内側の領域の前記各ベース拡散領域内部の表 面付近にそれぞれ形成され、前記各ベース拡散領域よりも浅い第 1導電型のソース 拡散領域と、
前記各ベース拡散領域の縁付近であって、前記各ベース拡散領域の縁と前記各ソ ース拡散領域の縁の間のチャネル領域と、
少なくとも前記各チャネル領域上に位置するゲート絶縁膜と、
前記ゲート絶縁膜上に位置するゲート電極膜と、
前記各ベース拡散領域底面に複数個ずつ配置され、前記各ベース拡散領域にそ れぞれ接続された複数の第 2導電型のベース埋込領域と、
同じ前記ベース拡散領域の底面に位置する隣り合う前記ベース埋込領域間の距 離 Wmと、異なる前記ベース拡散領域の底面に位置して隣り合う前記ベース埋込領
1
域間の距離 Wmと、
2
前記ベース拡散領域の底面よりも深い位置での前記ガード埋込領域同士の間の 距離 w は、下記 (c)式、
PE
W <Wm <Wm …… (c)
PE 1 2
の関係にあり、
前記各ベース埋込領域の底面と前記各ガード埋込領域の底面は実質的に同じ深 さに位置し、
前記各ベース拡散領域の底面は実質的に同じ深さに位置し、
最内周の前記ガード埋込領域の幅方向中央位置よりも内側の領域であって、 前記ベース埋込領域及び前記ガード埋込領域の底面と前記ベース拡散領域の底 面の間の領域に含まれる前記第 1導電型の不純物量 Qと、前記第 2導電型の不純
1
物量 Qは、下記 (d)式、
2
Q /Q < 0. 92 …… (d)
2 1
の関係にある半導体装置。
第 1導電型の抵抗層と、
前記抵抗層内部に形成され、同心状に配置された第 2導電型の複数のガード埋込 領域と、
前記抵抗層の内部の表面付近であって、最内周の前記ガード埋込領域よりも内側 に配置された第 2導電型の複数のベース拡散領域と、
前記各ベース拡散領域の縁よりも内側の領域の前記各ベース拡散領域内部の表 面付近にそれぞれ形成され、前記各ベース拡散領域よりも浅い第 1導電型のソース 拡散領域と、
前記各ベース拡散領域の縁付近であって、前記各ベース拡散領域の縁と前記各ソ ース拡散領域の縁の間のチャネル領域と、
少なくとも前記各チャネル領域上に位置するゲート絶縁膜と、
前記ゲート絶縁膜上に位置するゲート電極膜と、
前記各ベース拡散領域底面に複数個ずつ配置され、前記各ベース拡散領域にそ れぞれ接続された複数の第 2導電型のベース埋込領域と、
同じ前記ベース拡散領域の底面に位置する隣り合う前記ベース埋込領域間の距 離 Wmと、異なる前記ベース拡散領域の底面に位置して隣り合う前記ベース埋込領
1
域間の距離 Wmと、
2
前記ベース拡散領域の底面よりも深い位置での前記ガード埋込領域同士の間の 距離 W は、下記 (e)式、
PE
Wm <Wm <W …… (e)
1 2 PE
の関係にあり、
前記各ベース埋込領域の底面と前記各ガードリング領域の底面は実質的に同じ深 さに位置し、 前記各ベース拡散領域の底面は実質的に同じ深さに位置し、
最内周の前記ガード埋込領域の幅方向中央位置よりも内側の領域であって、 前記ベース埋込領域及び前記ガード埋込領域の底面と前記ベース拡散領域の底 面の間の領域に含まれる前記第 1導電型の不純物量 Qと、前記第 2導電型の不純
1
物量 Qは、下記 (f)式、
2
1. 10< Q /Q …… (f)
2 1
の関係にある半導体装置。
[4] 前記各ガード埋込領域は、前記抵抗層に形成されたリング状の溝と、前記リング状 の溝内に充填された第 2導電型の半導体材料を有する請求項 1乃至請求項 3のいず れか 1項記載の半導体装置。
[5] 前記各ベース埋込領域は、前記抵抗層に形成された溝と、前記溝内に充填された 第 2導電型の半導体材料を有する請求項 1乃至請求項 4のいずれか 1項記載の半導 体装置。
[6] 前記各ガード埋込領域の上部には、前記ガード埋込領域の幅よりも幅広の第 2導 電型のガード拡散領域が配置され、前記各ガード埋込領域とそれに接続された前記 ガード拡散領域とでガードリング領域が構成され、前記ガードリング領域の上部の幅 は、下部よりも広くされた請求項 1乃至請求項 5のいずれか 1項記載の半導体装置。
[7] 前記各ベース拡散領域と前記ベース埋込領域は細長く形成され、
前記各ベース拡散領域は互いに平行に配置され、
前記ベース埋込領域は前記各ベース拡散領域の長手方向に沿って互いに平行に 配置された請求項 1乃至請求項 6のいずれか 1項記載の半導体装置。
[8] 前記各ガード埋込領域は長方形又は正方形の四角リング状に形成され、
前記各ガード埋込領域の隣接する辺は互いに平行に配置され、
前記各ベース埋込領域は、前記各ガード埋込領域の四辺のうち、互いに平行な二 辺に対して平行に配置された請求項 1乃至請求項 7のいずれか 1項記載の半導体装 置。
[9] 前記ガード埋込領域のうちの最内周のガード埋込領域の内周の縁と、そのガード 埋込領域と平行に対向するベース埋込領域の長辺の縁との間の距離 Wと、前記幅 Wm、 Wmとは、下記 (g)式、
1 2
Wm <W <Wm …… (g)
1 b 2
の関係にある請求項 1乃至請求項 8のいずれ力 1項記載の半導体装置。
[10] 前記ベース埋込領域は細長く形成され、
前記ベース埋込領域の長手方向の両端と最内周の前記ガード埋込領域との間の 距離 Wは、
a
前記ガード埋込領域のうちの最内周のガード埋込領域の内周の縁と、そのガード 埋込領域と平行に対向するベース埋込領域の長辺の縁との間の距離 wの実質的に b 半分の大きさにされた請求項 1乃至請求項 9のいずれか 1項記載の半導体装置。
[11] 前記ベース埋込領域は細長く形成され、
前記ベース埋込領域の長手方向の両端は最内周の前記埋込領域に接続された請 求項 1乃至請求項 9のいずれか 1項記載の半導体装置。
[12] 前記各ベース埋込領域の幅はそれぞれ等 、請求項 1乃至請求項 11の 、ずれか
1項記載の半導体装置。
[13] 前記各ガード埋込領域の幅はそれぞれ等 、請求項 1乃至請求項 12の 、ずれか
1項記載の半導体装置。
[14] 前記各ベース埋込領域の幅はそれぞれ等しぐ
前記各ガード埋込領域の幅はそれぞれ等しぐ
前記ベース埋込領域と前記ガード埋込領域の幅はそれぞれ等しい請求項 1乃至請 求項 13のいずれか 1項記載の半導体装置。
[15] 前記ソース拡散領域と前記ベース拡散領域に電気的に接続されたソース電極膜を 有する請求項 1乃至請求項 14のいずれか 1項記載の半導体装置。
[16] 前記抵抗層の前記ベース領域が形成された面とは反対側の面には、前記抵抗層と 同じ導電型で前記抵抗層よりも高濃度のドレイン層が配置された請求項 1乃至請求 項 15のいずれか 1項記載の半導体装置。
[17] 前記抵抗層の前記ベース領域が形成された面とは反対側の面には、前記抵抗層と は反対の導電型のコレクタ層が配置された請求項 1乃至請求項 15のいずれか 1項記 載の半導体装置。 [18] 前記抵抗層の前記ベース領域が形成された面とは反対側の面には、前記抵抗層と ショットキー接合を形成するショットキー電極膜が配置された請求項 1乃至請求項 15 のいずれか 1項記載の半導体装置。
[19] 前記抵抗層の前記ベース拡散領域が形成された側の表面に、前記抵抗層と電気 的に接続され、前記ソース電極膜とは絶縁されたドレイン電極膜が配置された請求 項 1乃至請求項 15のいずれか 1項記載の半導体装置。
PCT/JP2005/004178 2004-03-29 2005-03-10 半導体装置 WO2005093844A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05720449A EP1755169A4 (en) 2004-03-29 2005-03-10 SEMICONDUCTOR COMPONENT
US11/528,654 US7573109B2 (en) 2004-03-29 2006-09-28 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-095754 2004-03-29
JP2004095754A JP3689420B1 (ja) 2004-03-29 2004-03-29 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/528,654 Continuation US7573109B2 (en) 2004-03-29 2006-09-28 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2005093844A1 true WO2005093844A1 (ja) 2005-10-06

Family

ID=35004114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004178 WO2005093844A1 (ja) 2004-03-29 2005-03-10 半導体装置

Country Status (6)

Country Link
US (1) US7573109B2 (ja)
EP (1) EP1755169A4 (ja)
JP (1) JP3689420B1 (ja)
KR (1) KR100843532B1 (ja)
CN (1) CN100573913C (ja)
WO (1) WO2005093844A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069309A1 (ja) * 2006-12-07 2008-06-12 Shindengen Electric Manufacturing Co., Ltd. 半導体装置及びその製造方法
TWI574405B (zh) * 2014-09-24 2017-03-11 Shindengen Electric Manufacturing Co Ltd Silicon carbide semiconductor device, method for manufacturing silicon carbide semiconductor device, and design method of silicon carbide semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008734B2 (en) * 2007-01-11 2011-08-30 Fuji Electric Co., Ltd. Power semiconductor device
TWI376752B (en) * 2008-04-22 2012-11-11 Pfc Device Co Mos pn junction schottky diode and method for manufacturing the same
TWI381455B (zh) * 2008-04-22 2013-01-01 Pfc Device Co 金氧半p-n接面二極體結構及其製作方法
US20100163833A1 (en) * 2008-12-31 2010-07-01 Stmicroelectronics S.R.I. Electrical fuse device based on a phase-change memory element and corresponding programming method
JP2013065749A (ja) * 2011-09-20 2013-04-11 Toshiba Corp 半導体装置
CN105103298B (zh) * 2013-03-31 2019-01-01 新电元工业株式会社 半导体装置
JP6363540B2 (ja) * 2015-03-16 2018-07-25 株式会社東芝 半導体装置
JP2022137613A (ja) 2021-03-09 2022-09-22 三菱電機株式会社 SiC-MOSFET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167713A (ja) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd 縦型mos半導体装置
JP2003069016A (ja) * 2001-08-29 2003-03-07 Denso Corp 半導体装置及びその製造方法
JP2003086800A (ja) 2001-09-12 2003-03-20 Toshiba Corp 半導体装置及びその製造方法
JP2003101022A (ja) 2001-09-27 2003-04-04 Toshiba Corp 電力用半導体素子
JP2003101021A (ja) * 2001-09-20 2003-04-04 Shindengen Electric Mfg Co Ltd 電界効果トランジスタ及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569171B2 (ja) * 1989-04-12 1997-01-08 株式会社日立製作所 半導体装置
KR100245303B1 (ko) * 1996-12-30 2000-02-15 김영환 바이 모스형 전력 반도체 소자 및 그의 제조방법
JP3111947B2 (ja) * 1997-10-28 2000-11-27 日本電気株式会社 半導体装置、その製造方法
DE19818299B4 (de) * 1998-04-23 2006-10-12 Infineon Technologies Ag Niederohmiger Hochvolt-Feldeffekttransistor
DE10052170C2 (de) * 2000-10-20 2002-10-31 Infineon Technologies Ag Mittels Feldeffekt steuerbares Halbleiterbauelement
KR100808158B1 (ko) * 2001-10-26 2008-02-29 엘지전자 주식회사 세탁기의 유체 밸런서 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167713A (ja) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd 縦型mos半導体装置
JP2003069016A (ja) * 2001-08-29 2003-03-07 Denso Corp 半導体装置及びその製造方法
JP2003086800A (ja) 2001-09-12 2003-03-20 Toshiba Corp 半導体装置及びその製造方法
JP2003101021A (ja) * 2001-09-20 2003-04-04 Shindengen Electric Mfg Co Ltd 電界効果トランジスタ及びその製造方法
JP2003101022A (ja) 2001-09-27 2003-04-04 Toshiba Corp 電力用半導体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1755169A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069309A1 (ja) * 2006-12-07 2008-06-12 Shindengen Electric Manufacturing Co., Ltd. 半導体装置及びその製造方法
US7923771B2 (en) 2006-12-07 2011-04-12 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
US8343833B2 (en) 2006-12-07 2013-01-01 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
TWI574405B (zh) * 2014-09-24 2017-03-11 Shindengen Electric Manufacturing Co Ltd Silicon carbide semiconductor device, method for manufacturing silicon carbide semiconductor device, and design method of silicon carbide semiconductor device

Also Published As

Publication number Publication date
CN100573913C (zh) 2009-12-23
US20070069323A1 (en) 2007-03-29
JP3689420B1 (ja) 2005-08-31
KR20070004013A (ko) 2007-01-05
EP1755169A4 (en) 2008-08-20
KR100843532B1 (ko) 2008-07-04
US7573109B2 (en) 2009-08-11
CN1938862A (zh) 2007-03-28
JP2005285984A (ja) 2005-10-13
EP1755169A1 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP4980663B2 (ja) 半導体装置および製造方法
JP5196980B2 (ja) 半導体装置
JP4930894B2 (ja) 半導体装置
JP3392665B2 (ja) 半導体装置
JP5015488B2 (ja) 半導体装置
WO2005093844A1 (ja) 半導体装置
CN104380471A (zh) 碳化硅半导体装置及其制造方法
US10964809B2 (en) Semiconductor device and manufacturing process therefor
JP2006073740A (ja) 半導体装置及びその製造方法
US7135718B2 (en) Diode device and transistor device
JP7155641B2 (ja) 半導体装置
JP4867131B2 (ja) 半導体装置およびその製造方法
JP2011243915A (ja) 半導体装置及びその製造方法
KR100958561B1 (ko) 반도체 장치, 반도체 장치의 제조 방법
JP4929594B2 (ja) 半導体装置および半導体装置の製造方法
JP2004039655A (ja) 半導体装置
TWI741185B (zh) 半導體裝置及半導體裝置之製造方法
JP5134746B2 (ja) 電界効果トランジスタの製造方法
US20210320171A1 (en) Superjunction semiconductor device and method of manufacturing superjunction semiconductor device
JP4095492B2 (ja) 半導体装置
JP4406535B2 (ja) ショットキーダイオード付きトランジスタ
WO2005093843A1 (ja) 半導体装置、半導体装置の製造方法
JP2021170625A (ja) 超接合半導体装置および超接合半導体装置の製造方法
JP3681741B2 (ja) 半導体装置
JP2007109712A (ja) トランジスタ、ダイオード

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11528654

Country of ref document: US

Ref document number: 200580010103.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067020530

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720449

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020530

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005720449

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11528654

Country of ref document: US