WO2005093039A1 - 細胞培養基板の製造方法および細胞培養基板製造装置 - Google Patents

細胞培養基板の製造方法および細胞培養基板製造装置 Download PDF

Info

Publication number
WO2005093039A1
WO2005093039A1 PCT/JP2005/005337 JP2005005337W WO2005093039A1 WO 2005093039 A1 WO2005093039 A1 WO 2005093039A1 JP 2005005337 W JP2005005337 W JP 2005005337W WO 2005093039 A1 WO2005093039 A1 WO 2005093039A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
substrate
cells
cell adhesion
photocatalyst
Prior art date
Application number
PCT/JP2005/005337
Other languages
English (en)
French (fr)
Inventor
Hideshi Hattori
Hideyuki Miyake
Hironori Kobayashi
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to US10/594,174 priority Critical patent/US7687251B2/en
Publication of WO2005093039A1 publication Critical patent/WO2005093039A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • C12N2535/10Patterned coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/702Integrated with dissimilar structures on a common substrate having biological material component
    • Y10S977/703Cellular

Definitions

  • the present invention relates to a method for producing a cell culture substrate having cells adhered in a high-definition pattern, and an apparatus used for producing the cell culture substrate.
  • Some cells particularly many animal cells, have an adhesion dependency of growing by adhering to something, and cannot survive for a long period of time in a floating state outside a living body. Cultivation of cells having such adhesion dependence requires a carrier for the cells to adhere to the cells. Generally, a plastic-made cell on which a cell adhesion protein such as collagen fibronectin is uniformly applied is generally used. A culture dish is used. These cell adhesion proteins are known to act on cultured cells, facilitating cell adhesion and affecting cell morphology.
  • a technique for arranging cultured cells is to use a substrate having a patterned surface with different ease of adhesion to the cells, cultivate the cells on this surface, and allow the cells to adhere.
  • a method is used in which cells are arranged by adhering the cells only to the processed surface.
  • Patent Document 1 a charge holding medium having an electrostatic charge pattern formed thereon is applied to cell culture for the purpose of, for example, growing nerve cells in a circuit form. Further, Patent Document 2 attempts to arrange cultured cells on a surface obtained by patterning a non-cell-adhesive or cell-adhesive photosensitive hydrophilic polymer by a photolithography method.
  • Patent Document 3 describes a cell culture substrate on which a substance such as collagen which affects cell adhesion rate and morphology is patterned, and a method for producing the substrate by photolithography. Has been disclosed. By culturing the cells on such a base material, more cells can be adhered to the surface on which collagen or the like is put on, thereby realizing the cell patterning.
  • the pattern jungle of the cell culture site is required to have high definition depending on the application.
  • a photolithography method or the like using a photosensitive material as described above, a high-definition pattern can be obtained, but the cell adhesive material needs to have photosensitivity.
  • a micro'contact printing method is used as a method for forming a pattern of a high-definition cell adhesive material.
  • Patent Document 1 JP-A-2-245181
  • Patent Document 2 JP-A-3-7576
  • Patent Document 3 JP-A-5-176753
  • Patent Document 4 U.S. Pat.No. 5,512,131
  • Patent Document 5 U.S. Pat.No. 5,900,160
  • Patent Document 6 JP-A-9-240125
  • Patent Document 7 JP-A-10-12545
  • the present invention provides a light-shielding portion and a cell-adhesive material that has adhesiveness to cells and is decomposed or denatured by a photocatalyst accompanying energy irradiation so as to cover the light-shielding portion.
  • a cell adhesion layer containing the substrate and forming a pattern for a puttering substrate
  • the pattern-forming substrate is irradiated with the substrate-side force energy to form a pattern comprising a cell adhesion inhibitor in which the cell adhesive material has been decomposed or denatured and a cell adhesion portion other than the cell adhesion inhibitor.
  • Energy irradiation process
  • the cell adhesion layer is immersed in a cell culture solution in the cell adhesion step.
  • cells can be adhered only to the cell adhesion portion, and cells can be cultured in a cell culture solution in a high-definition pattern.
  • the puttering substrate having the light-shielding portion and the cell adhesive layer is formed in the puttering substrate forming step, the entire surface from the base material side in the energy irradiation step is formed.
  • the cell adhesion material By irradiating the energy, the cell adhesion material can be decomposed or denatured only in the area where the light-shielding part is not formed, so that the cell adhesion material can be efficiently and highly precisely removed from the cell adhesion part and the cell adhesion inhibition part. Form a pattern You can do it.
  • the cell adhesion layer may be a photocatalyst-containing cell adhesion layer containing a photocatalyst and the cell adhesion material.
  • the photocatalyst contained in the photocatalyst-containing cell adhesive layer itself is excited, and the cell adhesive material can be decomposed or denatured. Therefore, a cell culture substrate can be manufactured with high manufacturing efficiency without having to separately form a layer containing a photocatalyst.
  • the patterning substrate forming step includes forming at least a photocatalyst-containing layer containing a photocatalyst and the light-shielding portion on the base material, Alternatively, a step of forming the above-mentioned cell adhesion layer to form a substrate for patterning may be performed.
  • the cell adhesion layer is formed on the photocatalyst containing layer, the possibility that the cells directly contact the photocatalyst when the cells are adhered to the cell adhesion portion in the cell adhesion step is low.
  • a cell culture substrate in which cells are less likely to be affected by a photocatalyst over time can be manufactured.
  • the cell adhesion inhibitor may be irradiated with energy during the cell adhesion step.
  • the adhesion of the cell adhesion inhibitor to the cell can be further reduced by the action of the photocatalyst accompanying the energy irradiation, and the cell can be further prevented from adhering to the cell adhesion inhibitor. be able to.
  • the cell adhesion inhibitor is irradiated with the substrate-side force energy to maintain the pattern of the cells adhered to the cell adhesion.
  • a cell pattern maintenance step may be performed.
  • the present invention provides a substrate support for supporting a substrate, a pH adjusting means for holding a cell culture solution containing the cells and the culture solution, and maintaining the pH of the cell culture solution, and the cell.
  • a cell comprising: a cell culture solution holding unit having a temperature adjusting means for maintaining a temperature of a culture solution; and an energy irradiation unit for irradiating the substrate with energy.
  • a culture substrate manufacturing apparatus Provided is a culture substrate manufacturing apparatus.
  • the cell culture substrate manufacturing apparatus includes the cell culture solution holding unit, the substrate support unit, and the energy irradiation unit, when culturing cells in the cell culture solution, Proteins and cells attached to areas other than the area where cells are cultured can be removed by energy irradiation, etc., and a cell culture substrate on which cells are cultured in a high-definition pattern can be manufactured. And a cell culture substrate manufacturing apparatus. The invention's effect
  • a cell culture substrate in which cells are cultured in a high-definition pattern in a cell culture solution can be produced, and cells can be cultured while maintaining a cell pattern for a long period of time. It can be done as a monkey.
  • FIG. 1 is a process chart showing an example of a method for producing a cell culture substrate of the present invention.
  • FIG. 2 is a process chart showing another example of the method for producing a cell culture substrate of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing one example of a patterning substrate formed in a patterning substrate forming step of the method for producing a cell culture substrate of the present invention.
  • FIG. 4 is an explanatory view showing one example of the cell culture substrate manufacturing apparatus of the present invention.
  • the present invention relates to a method for producing a cell culture substrate on which cells are adhered in a high-definition pattern, and an apparatus used for producing the cell culture substrate.
  • a method for producing a cell culture substrate on which cells are adhered in a high-definition pattern and an apparatus used for producing the cell culture substrate.
  • the method for producing the cell culture substrate of the present invention will be described.
  • the light-shielding portion and the light-shielding portion are adhered to cells and are decomposed or denatured by a photocatalyst accompanying energy irradiation so as to cover the light-shielding portion.
  • the pattern-forming substrate is irradiated with the substrate-side force energy to form a pattern comprising a cell adhesion inhibitor in which the cell adhesive material has been decomposed or denatured and a cell adhesion portion other than the cell adhesion inhibitor.
  • Energy irradiation process
  • the cell adhesive layer and the cell adhesion inhibitory part are formed in the cell adhesive layer in the energy irradiation step, the cell adhesive layer is formed in the cell adhesive step.
  • the cells By immersing the cells in the cell culture solution, the cells can be easily adhered only to the cell adhesion portion, and the cells can be cultured in the desired pattern in the cell culture solution.
  • proteins and cells attached to the cell adhesion inhibitor are removed. The cells can be cultured in a high-definition pattern.
  • a cell culture layer is formed. Since a light-shielding portion is formed between the substrate and the substrate, in the energy irradiation step, the entire surface of the substrate is irradiated with energy to decompose the cell adhesive material only in an area where the light-shielding portion is not formed. Thus, the cell adhesion part and the cell adhesion inhibition part can be easily formed in a high-definition pattern.
  • a first embodiment of the method for producing a cell culture substrate of the present invention will be described.
  • a light-shielding portion and a photocatalyst accompanying energy irradiation are adhered to cells and are decomposed or denatured so as to cover the light-shielding portion.
  • the pattern-forming substrate is irradiated with the substrate-side force energy to form a pattern comprising a cell adhesion inhibitor in which the cell adhesive material has been decomposed or denatured and a cell adhesion portion other than the cell adhesion inhibitor.
  • Energy irradiation process
  • the cell adhesion layer is a photocatalyst-containing cell adhesion material containing a photocatalyst and the cell adhesion material.
  • a light-shielding portion 2 is formed on a substrate 1, and a photocatalyst containing a photocatalyst and a cell adhesive material is covered so as to cover the light-shielding portion 2.
  • a patterning substrate forming step of forming the containing cell adhesive layer 3 to form a patterning substrate is performed (FIG. L (a)).
  • energy 4 is irradiated from the substrate 1 side of the puttering substrate (FIG. 1 (b)), and the cell adhesive material is decomposed or denatured by the action of the photocatalyst accompanying the energy irradiation, and adheres to the cells.
  • the energy that forms a pattern consisting of the cell adhesion inhibitory part 5 with reduced properties and the cell adhesion part 6 where the energy 4 is unirradiated and has good adhesion to cells (Fig. 1 (c)).
  • An irradiation step is performed.
  • the cell culture containing the cells and the culture solution In a nutrient solution 7 a cell adhesion step (FIG. 1 (d)) for adhering the cells 8 to the cell adhesion parts 6 is performed, and a cell culture substrate having the cells 8 adhered to only the cell adhesion parts 6 with high definition is manufactured. It is done.
  • the photocatalyst-containing cell adhesion layer contains a photocatalyst and a cell adhesion material
  • the photocatalyst-containing cell adhesion layer itself is irradiated with energy during an energy irradiation step or the like.
  • the cell adhesive material can be decomposed or denatured, and the production efficiency of the cell culture substrate can be improved without the necessity of separately forming a layer containing the photocatalyst.
  • the patterning substrate forming step in the present embodiment includes the step of forming a light-shielding portion and a light-shielding portion on the base material so as to cover the light-shielding portion and adhere to cells and decompose by the action of a photocatalyst accompanying energy irradiation.
  • this is a step of forming a photocatalyst-containing cell adhesion layer containing a cell adhesion material to be denatured and a photocatalyst to form a substrate for putterjung.
  • the method of forming each member is not particularly limited. Forming a part, and then applying a coating liquid for forming a photocatalyst-containing cell adhesive layer containing a photocatalyst and a cell adhesive material.
  • the photocatalyst-containing cell adhesion layer formed in this step is formed on a base material described later so as to cover a light-shielding portion described later, and contains a photocatalyst and a cell adhesive material.
  • the formation method and the like are not particularly limited as long as such a layer can be formed.
  • a photocatalyst and a photocatalyst-containing cell adhesion layer containing the cell adhesion material spin coating, spray coating, dip coating It can be formed by applying by a wet method such as a method, a roll coating method, a bead coating method, a die coating method and the like.
  • the thickness of the photocatalyst-containing cell adhesion layer is selected appropriately depending on the type of the cell culture substrate, etc. Normally, about 0.01 m-1.0 ⁇ m, and especially about 0.1 ⁇ m 0.3 ⁇ m or so.
  • the type of the cell adhesive material used in this step is not particularly limited as long as it has adhesiveness to cells and is decomposed or denatured by the action of a photocatalyst accompanying energy irradiation.
  • having adhesiveness to cells means that they adhere well to cells. If the adhesiveness to cells differs depending on the type of cells, etc., it means that they adhere well to target cells. .
  • the cell adhesive material used in this step has such an adhesive property to cells, and is decomposed or denatured by the action of a photocatalyst accompanying energy irradiation, and has an adhesive property to cells. Those that disappear or those that change to those having cell adhesion inhibitory properties that inhibit adhesion to cells are used.
  • the above-mentioned materials having adhesive properties to cells include a material having adhesive properties to cells due to physical properties and a material having adhesive properties to cells due to biochemical properties. There are two types; ⁇ .
  • Physically deteriorating factors that determine the adhesiveness between cells and a material having adhesiveness to cells based on physicochemical properties include surface free energy and electrostatic interaction. For example, when the adhesiveness to cells is determined by the surface free energy of the material, if the material has a surface free energy within a predetermined range, the adhesiveness between the cells and the material becomes good, and if the material falls outside the range, the material has good surface free energy. Adhesion between the cells and the material will be reduced. As the change in cell adhesiveness due to such surface free energy, for example, the experimental results shown in the lower part of Yoshinobu Raft, supervised by CMC Publishing Noo Materials, p. 109, are known.
  • Materials having adhesiveness to cells due to such factors include, for example, hydrophilized polystyrene, poly (N-isopropylacrylamide), and the like. like this
  • a material is used, the surface free energy is changed by the action of a photocatalyst accompanying the energy irradiation, for example, the functional group on the surface of the above material is replaced or decomposed, and the material has adhesiveness to cells. No, or have a cell adhesion inhibitory property.
  • the adhesiveness between cells and a material is determined by an electrostatic interaction or the like
  • the adhesiveness to cells is determined by, for example, the amount of positive charge of the material.
  • the material having an adhesive property to cells by such an electrostatic interaction include basic polymers such as polylysine, aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. And condensates containing them.
  • the above-mentioned material is decomposed or denatured by the action of a photocatalyst accompanying energy irradiation, for example, the amount of positive charges present on the surface can be changed, and the adhesion to cells can be improved. Having no, or having cell adhesion inhibitory properties.
  • Examples of the material having adhesive properties to cells due to its biological properties include those having good adhesive properties with specific cells or those having good adhesive properties with many cells.
  • Examples include fibronectin, laminin, tenascin, vitronectin, a peptide containing an RGD (arginine-glycine-aspartate) sequence, a peptide containing a YIGSR (tyrosine isoleucine glycine-serine arginine) sequence, collagen, atelocollagen, gelatin and the like.
  • Such a cell adhesive material varies depending on the type of the above-mentioned material, etc., and is usually 0.01% to 95% by weight, particularly 1% to 10% by weight in the photocatalyst-containing cell adhesive layer. % Is preferably contained. Thereby, the region containing the cell adhesive material can be a region having good adhesion to cells.
  • the photocatalyst contained in the photocatalyst-containing cell adhesion layer formed in this step will be described.
  • the photocatalyst used in this step is the same as the above-mentioned cell adhesive material There is no particular limitation as long as it can be decomposed or denatured by the action of the photocatalyst accompanying the gamma irradiation.
  • the action mechanism of a photocatalyst typified by titanium oxide as described below is not necessarily clear, but a direct reaction with a compound near a carrier force generated by light irradiation, or It is thought that active oxygen species generated in the presence of oxygen, water, and water change the chemical structure of organic matter.
  • the carrier exerts an effect on the above-mentioned cell adhesive material in an energy irradiation step described later.
  • titanium dioxide TiO 2
  • zinc oxide ZnO
  • tin oxide SnO 2
  • strontium titanate known as optical semiconductors
  • the titanium dioxide is particularly preferably used because it has a high band gap energy, is chemically stable, is toxic, and is easily available. Titanium dioxide includes anatase type and rutile type, and any of them can be used in this embodiment. Anatase type titanium dioxide is preferred. The excitation wavelength of anatase-type titanium dioxide is below 380 nm.
  • anatase type titanium dioxide examples include, for example, anatase type titania sol of peptized hydrochloride type (STS-02 (average particle diameter: 7 nm) manufactured by Ishihara Sangyo Co., Ltd.) and ST-K01 manufactured by Ishihara Sangyo Co., Ltd. ), Nitrate peptized anatase-type titazole (TA-15 (average particle size: 12 nm) manufactured by Nissan Chemical Industries, Ltd.), and the like.
  • STS-02 average particle diameter: 7 nm
  • ST-K01 manufactured by Ishihara Sangyo Co., Ltd.
  • TA-15 Nitrate peptized anatase-type titazole manufactured by Nissan Chemical Industries, Ltd.
  • a photocatalyst having a preferred average particle size of 50 nm or less, preferably 20 nm or less, since the smaller the particle size of the photocatalyst, the more effectively the photocatalytic reaction occurs.
  • a visible light responsive titanium oxide may be used as the titanium oxide. Visible light responsive titanium oxide is also excited by the energy of visible light, and examples of such visible light responsive methods include a method of nitriding titanium oxide.
  • the titanium oxide (TiO 2) is subjected to nitriding treatment to form a band gear of titanium oxide (TiO 2). A new energy level is formed inside the gap, and the band gap is narrowed. As a result, the excitation wavelength of ordinary titanium oxide (TiO 2) is 380 nm.
  • TiO 2 titanium oxide
  • Nitriding of titanium oxide is referred to as crystallizing titanium oxide (TiO 2).
  • TiO 2 titanium oxide
  • Processing such as arranging nitrogen atoms at the grain boundaries of the body.
  • TiO 2 nitriding titanium oxide
  • the amount of the photocatalyst contained in the photocatalyst-containing cell adhesion layer formed according to this embodiment is in the range of 5 to 95% by weight, preferably 10 to 60% by weight, and more preferably 20 to 40% by weight. Can be set with. This is because in the energy irradiation step described later, the cell adhesive material of the photocatalyst-containing cell adhesive layer in the area irradiated with the energy can be decomposed or denatured.
  • the photocatalyst used in the present embodiment preferably has low adhesiveness to cells.
  • the area where the photocatalyst is exposed due to the decomposition of the cell adhesive material or the like can be used as an area having low adhesiveness to cells.
  • the photocatalyst-containing cell adhesion layer to be formed may contain, for example, a binder or the like that improves the strength, resistance, or the like, if necessary, for example, without using the cell adhesion material or the photocatalyst alone. Good.
  • a material having a cell adhesion-inhibiting property of inhibiting adhesion to cells at least after an energy irradiation step described later at least, as the binder.
  • the energy This is because the adhesiveness with the cells of the cell adhesion inhibitor, which is the area irradiated with energy in the irradiation step, can be reduced.
  • a material having the above-mentioned cell adhesion inhibitory property even before the energy irradiation, and having the cell adhesion inhibitory property by the action of a photocatalyst accompanying the energy irradiation may be.
  • the binder a material which has cell adhesion inhibitory property particularly by the action of a photocatalyst accompanying energy irradiation. Accordingly, in the region before the energy irradiation, only the region irradiated with the energy that does not inhibit the adhesion of the cell adhesive material to the cell has the lower adhesion to the cell. It's a character that comes out.
  • an organic substituent whose main skeleton has a high binding energy so as not to be decomposed by the photoexcitation of the photocatalyst and which is decomposed by the action of the photocatalyst is used.
  • an organopolysiloxane which exhibits a large strength by hydrolyzing and polycondensing a black hole or an alkoxysilane by a sol-gel reaction or the like; (2) water repellency / oil repellency And organopolysiloxanes obtained by cross-linking reactive silicones having excellent properties.
  • Y is an alkyl group, fluoroalkyl group, butyl group, amino group, phenol group or epoxy group, or an organic group containing them, and X represents an alkoxyl group, an acetyl group or a halogen.
  • is an integer from 0 to 3.
  • the organopolysiloxane is one or more hydrolytic condensates or cohydrolytic condensates of the silicon compound represented by
  • the carbon number of the organic group represented by ⁇ is preferably in the range of 120.
  • Alkoxy group represented by X is a methoxy group, an ethoxy group, a propoxy group, or a butoxy group. Preferably, there is.
  • Examples of the reactive silicone of the above (2) include compounds having a skeleton represented by the following general formula. [0061] [Formula 1]
  • n is an integer of 2 or more
  • R 1 and IT are each a substituted or unsubstituted alkyl, aryl, aryl, or cyanoalkyl group having 120 carbon atoms, and the molar ratio of the whole Less than 40% are burs, fouls and halogenated fouls.
  • the surface energy is lowest when R 2 is a methyl group, the methyl group is preferably at least 60% in a preferred molar ratio.
  • the chain terminal or the side chain has at least one or more reactive group such as a hydroxyl group in the molecular chain.
  • the surface of the region irradiated with the energy can be made highly hydrophilic by the action of the photocatalyst accompanying the energy irradiation. Thereby, the adhesion to the cells is inhibited, and the cells do not adhere to the energy-irradiated region.
  • the contact angle with water before irradiation with energy is preferably in the range of 15 ° to 120 °, particularly preferably in the range of 20 ° to 100 °. . Accordingly, the present invention is a glass which does not inhibit the adhesiveness of the above-mentioned cell adhesive material to cells.
  • the contact angle force with water is preferably S10 ° or less.
  • the contact angle with water as used herein is measured using a contact angle measuring instrument (CA-Z type manufactured by Kyowa Interface Science Co., Ltd.) using a contact angle with water or a liquid having an equivalent contact angle. Measurement (micro-syringe force 30 seconds after dropping the droplet), and obtained from the results or as a graph. Further, a stable organosilicon conjugate, which does not undergo a crosslinking reaction such as dimethylpolysiloxane, may be mixed with the above-mentioned organopolysiloxane in a binder.
  • a contact angle measuring instrument CA-Z type manufactured by Kyowa Interface Science Co., Ltd.
  • the adhesiveness to cells is reduced or the change is assisted by causing a change in the wettability of the area irradiated with energy. It may contain a decomposed substance or the like.
  • Examples of such a decomposed substance include a surfactant that is decomposed or the like by the action of a photocatalyst accompanying energy irradiation, becomes hydrophilic, and reduces the adhesiveness to cells. it can.
  • a surfactant that is decomposed or the like by the action of a photocatalyst accompanying energy irradiation, becomes hydrophilic, and reduces the adhesiveness to cells. It can.
  • Specific examples include hydrocarbons such as NIKKOL BL, BC, BO, and BB series from Nikko Chemicals, ZONYL FSN and FSO from DuPont, Surflon S-141, 145 from Asahi Glass, and Dainippon Japan.
  • Megafac F-141, 144 manufactured by Ink Chemical Industry Co., Ltd., Futergent F-200, F251, manufactured by Neos Co., Ltd., Dudyne DS-401, 402, manufactured by Daikin Industries, Ltd., Florad manufactured by Threeem Co., Ltd.
  • silicone-based nonionic surfactants such as FC-170 and 176
  • cationic surfactants ion-based surfactants
  • amphoteric surfactants can also be used.
  • polyvinyl alcohol unsaturated polyester, acrylic resin, polyethylene, diaryl phthalate, ethylene propylene diene monomer, epoxy resin, phenol resin, polyurethane, melamine resin , Polycarbonate, polychlorinated vinyl, polyamide, polyimide, styrene butadiene rubber, chloroprene rubber, polypropylene, polybutylene, polystyrene, polyvinyl acetate, nylon, polyester, polybutadiene, polybenzimidazole, polyacryl-tolyl, epi Examples thereof include oligomers and polymers such as chlorhydrin, polysulfide, and polyisoprene.
  • such a binder is contained in the photocatalyst-containing cell adhesion layer in an amount of 5 wt% to 95 wt%, particularly 40 wt% to 90 wt%, particularly 60 wt% to 80 wt%. It is preferable to be contained within the range.
  • the shape of the light-shielding portion formed in this step is not particularly limited as long as it is provided between the photocatalyst-containing cell adhesive layer and a base material described later.
  • the energy irradiation step it can be formed in a region to be a cell adhesion portion, that is, a region where cells are finally cultured.
  • the energy irradiation is performed in the energy irradiation step described below.
  • the photocatalyst-containing cell adhesive layer on the region where the light-shielding portion is formed is not irradiated with energy, and the cell adhesive material in this region can be prevented from being decomposed.
  • the method for forming such a light-shielding portion is not particularly limited as long as it can shield the energy irradiated in the energy irradiation step described later. It may be formed by forming a metal thin film such as chromium having a thickness of about 1000 to 2000 A by a method or the like, and patterning the thin film. As the patterning method, a usual patterning method such as sputtering can be used.
  • a method in which a layer in which light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments are contained in a resin binder may be formed in a pattern.
  • the resin binder used may be one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polybutyl alcohol, gelatin, casein, and cellulose.
  • An oily resin, or an OZW emulsion resin composition for example, an emulsion whose reactivity is emulsified can be used.
  • the thickness of the resin light-shielding portion can be set within a range of 0.5 to 10 m.
  • a method of patterning the resin light-shielding portion a commonly used method such as a photolithography method and a printing method can be used.
  • the light-shielding portion may be formed on the surface of the substrate on which the photocatalyst-containing cell adhesive layer is formed or may be formed on the opposite surface. Good.
  • a primer layer may be formed between the photocatalyst-containing cell adhesive layer and the light-shielding portion.
  • the function and function of this primer layer are not always clear, the formation of the primer layer prevents the degradation or denaturation of the cell adhesive material in the photocatalyst-containing cell adhesive layer by the action of the photocatalyst.
  • impurities from the openings existing between the light shielding parts, in particular, patterning the light shielding parts It is considered to have a function of preventing the diffusion of residues generated at the time and diffusion of impurities such as metals and metal ions.
  • the cell adhesion material can be decomposed or denatured with high sensitivity in the energy irradiation step described later, and as a result, the cell adhesion portion and the cell adhesion inhibition portion can be separated with high definition. It can be formed in a pattern.
  • the primer layer prevents impurities present not only in the light-shielding portions but also in the openings formed between the light-shielding portions from affecting the action of the photocatalyst. Is preferably formed over the entire light-shielding portion including the opening.
  • the primer layer in the present embodiment is not particularly limited as long as the primer layer is formed so that the light-shielding portion does not come into contact with the photocatalyst-containing cell adhesion layer.
  • the material constituting the primer layer is not particularly limited, but an inorganic material that is not easily decomposed by the action of a photocatalyst is preferable.
  • Specific examples include amorphous silica.
  • the precursor of the amorphous silica is represented by the general formula SiX, wherein X is a halogen, a methoxy group, an ethoxy group, or an acetyl group.
  • Silanols which are silicon compounds that are groups, and hydrolysates thereof, or polysiloxanes having an average molecular weight of 3000 or less are preferable.
  • the thickness of the primer layer is preferably in the range of 0.001 ⁇ m to 1 ⁇ m.
  • the force is preferably in the range of 0.001 ⁇ m to 0.1 ⁇ m.
  • the substrate used in this step is capable of forming the above-mentioned photocatalyst-containing cell adhesive layer and the above-mentioned light shielding portion, and is capable of transmitting the energy irradiated in the energy irradiation step described later.
  • the material is not particularly limited, for example, inorganic materials such as glass and quartz, and organic materials represented by plastics can be used.
  • the flexibility and the like of the substrate are appropriately selected depending on the type and use of the finally obtained cell culture substrate.
  • the energy irradiation step of the present embodiment will be described.
  • the puttering substrate is irradiated with the above-mentioned substrate-side power, and the cell adhesion material is decomposed or denatured.
  • This is a step of forming a pattern including a cell adhesion portion.
  • the substrate-side power of the puttering substrate is also irradiated with energy, and the cell adhesion material is decomposed or denatured, so that the cell adhesion inhibiting portion whose adhesion to cells is reduced, and the energy not yet applied.
  • the method of irradiating the energy is not particularly limited as long as the cell adhesive material remains due to the irradiation and a cell adhesion portion having good adhesion to cells can be formed.
  • the cell adhesion inhibitor contains a photocatalyst, a decomposed product or a modified product of the cell adhesion material, and the like.
  • the substrate-side power is also irradiated with energy to the entire surface, and a region where the light-shielding portion is formed is a cell adhesion inhibiting portion and the light-shielding portion is formed.
  • the area where the cells fall is the cell adhesion area.
  • energy is irradiated using, for example, a photomask to decompose or denature the cell adhesive material only in the target region.
  • a cell adhesion inhibitor can be formed.
  • energy irradiation may be performed in a cell culture solution containing cells and a culture solution used in a cell adhesion step described below.
  • the cell adhesion step and the energy irradiation step which will be described later, can be performed in the same apparatus or the like, and the production efficiency of the cell culture substrate can be improved.
  • the above-mentioned buttering substrate may be entirely immersed in a cell culture solution and subjected to energy irradiation.However, in the present embodiment, in particular, only the photocatalyst-containing cell adhesive layer of the above-mentioned puttering substrate, Preferably, it is contacted with a cell culture.
  • the contact between the photocatalyst-containing layer and the cell culture medium means that the entire photocatalyst-containing layer and the cell adhesion layer can be simply brought into contact with the cell culture medium by simply contacting the surface of the photocatalyst-containing cell adhesion layer with the cell culture medium. It shall include immersion.
  • Irradiation energy irradiation exposure refers to irradiation of a line of energy capable of decomposing or denaturing a cell adhesive material by the action of a photocatalyst accompanying the energy irradiation. And is not limited to light irradiation.
  • the wavelength of light used for such energy irradiation is set to a range of 400 nm or less, preferably 380 nm or less. This is because, as described above, a preferred photocatalyst used as a photocatalyst is titanium dioxide, and as the energy for activating the photocatalytic action by the titanium dioxide, light of the above-described wavelength is preferred. It is.
  • Examples of the light source that can be used for such energy irradiation include a mercury lamp, a metal halide lamp, a xenon lamp, an excimer lamp, and various other light sources.
  • a mercury lamp a mercury lamp
  • a metal halide lamp a xenon lamp
  • an excimer lamp an excimer lamp
  • various other light sources such as a mercury lamp, a metal halide lamp, a xenon lamp, an excimer lamp, and various other light sources.
  • the substrate has a light-shielding portion in the same pattern as the cell adhesion portion, it can be carried out by irradiating the entire surface with energy from the substrate side.
  • the energy irradiation amount at the time of energy irradiation is an irradiation amount necessary for the cell-adhered material to be decomposed or denatured by the action of a photocatalyst.
  • the cell adhesion step of the present embodiment is a step of adhering the above-mentioned cells to the above-mentioned cell adhesion part in a cell culture solution containing cells and a culture solution.
  • the cell adhesion layer is immersed in the cell culture solution containing the cells and the culture solution thereof, for example, so that the cell adhesion portion is formed.
  • Cells can be adhered only to the part. Real truth In the embodiment, the cells can be adhered in the cell culture solution, and the cells can be cultured in a desired pattern.
  • the cells used in such a cell culture solution include, for example, nervous tissue, liver, kidney, spleen, blood vessels, brain, cartilage, and other non-adherent cells such as blood cells, which are present in living organisms. Any tissue and cells derived therefrom can be used.
  • non-adherent cells a technique for modifying a cell membrane in order to perform adhesive fixation has been devised in recent years, and such a technique can be used in this embodiment as necessary. Is possible.
  • each tissue as described above is formed by cells having various functions, it is necessary to select and use desired cells.
  • the liver it is formed from epithelial cells, endothelial cells, Kupffer cells, fibroblasts, fat-ingesting cells, and the like, in addition to hepatic parenchymal cells.
  • the adhesiveness to the cell adhesive material varies depending on the type of cells, it is necessary to select the cell adhesive material used in the photocatalyst-containing cell adhesive layer and the composition ratio thereof according to the cell type.
  • the content of such cells may be appropriately selected depending on the type of cells, etc., and is usually 10 4 cells / ml—10 8 cells / ml, especially 10 5 cells / ml in a normal cell culture medium. It is preferable that the content be within the range of 10 7 cells / ml. Thereby, the cell can efficiently adhere cells to the cell adhesion portion.
  • the culture solution used in this step is appropriately selected depending on the type of the above-mentioned cells.
  • "Tissue culture technology, third edition, basic edition” p3—p5 Japanese Society for Tissue Culture) Edited
  • commercially available products such as an Eagle's medium and a fisher's medium can also be used.
  • the cell adhesion inhibitor may be continuously or intermittently irradiated with energy. This makes it possible to remove cells and the like adhered to the cell adhesion inhibitor by the action of the photocatalyst contained in the photocatalyst-containing cell adhesion layer, and to achieve a high-definition pattern only in the cell adhesion part. This is because the cells can be adhered in a shape.
  • the energy irradiated is the photocatalyst
  • the energy applied in the energy irradiation step is not particularly limited as long as it is an energy capable of removing cells and the like adhering to the cell adhesion inhibitor by the action of the above. .
  • the entire surface of the substrate-side cap is irradiated with energy, so that the surface of the cell adhesion inhibition portion is exposed.
  • the cells can be removed.
  • a cell pattern maintaining step of maintaining the pattern of the cells adhered to the cell adhesion portion by irradiating the inhibitor with energy may be performed.
  • the method of irradiating the substrate-side force energy is not particularly limited as long as the method is capable of irradiating the substrate-side force energy and removing cells and the like adhered on the cell-adhered portion.
  • the cell culture may be performed in a state where the cell culture solution and the cell adhesion layer are in contact with each other, or may be performed after the cell culture substrate to which the cells are adhered is pulled out of the cell culture solution. .
  • the method of irradiating the energy in the cell pattern maintaining step and the like can be the same as in the above-described energy irradiating step, and thus the detailed description is omitted here.
  • a second embodiment of the method for producing a cell culture substrate of the present invention will be described.
  • a light-shielding portion and a photocatalyst which is adherent to cells and is exposed to energy so as to cover the light-shielding portion are provided on a substrate.
  • a cell adhesive layer containing a cell adhesive material that is decomposed or denatured by use and forming a puttering substrate for use as a puttering substrate
  • the pattern-forming substrate is irradiated with the substrate-side force energy to form a pattern comprising a cell adhesion inhibitor in which the cell adhesive material has been decomposed or denatured and a cell adhesion portion other than the cell adhesion inhibitor.
  • Energy irradiation process
  • a light-shielding portion 2 is formed on a substrate 1, and a photocatalyst-containing layer 9 containing a photocatalyst is formed so as to cover the light-shielding portion 2.
  • a patterning substrate forming step is performed in which the cell adhesion layer 10 is formed on the photocatalyst-containing layer 9 and used as a patterning substrate (FIG. 2 (a)).
  • energy 14 is applied from the substrate 1 side of the puttering substrate (FIG. 2 (b)), and is contained in the cell bonding layer 10 by the action of the photocatalyst contained in the photocatalyst containing layer 9.
  • It consists of a cell adhesion inhibitor 5 whose cell adhesion material has been degraded or denatured to reduce its adhesion to cells, and a cell adhesion part 6 where energy 4 has not been irradiated and which has good adhesion to cells.
  • An energy irradiation step for forming a pattern (FIG. 2 (c)) is performed.
  • the cell adhesion section 6 is subjected to the cell adhesion step of adhering the cells 8 (FIG. 2 (d)), so that only the cell adhesion section 6 is formed. It is possible to manufacture a cell culture substrate to which the cells 8 are adhered with high definition.
  • a cell adhesion layer 10 may be formed so as to cover the light shielding part 2.
  • the cell adhesive layer containing the cell adhesive material and the photocatalyst containing layer containing the photocatalyst are separately formed, in the energy irradiation step or the like, from the substrate side When energy is applied, the photocatalyst in the photocatalyst-containing layer is excited, and the cell adhesive material in the adjacent cell adhesive layer is decomposed or denatured.
  • the cells adhered in the cell adhesion step are adhered on the cell adhesion layer, there is little possibility that the cells directly contact the photocatalyst. This has the advantage that cells are less likely to be affected by the photocatalyst over time.
  • each step in the method for manufacturing a cell culture substrate of the present embodiment will be described.
  • the patterning substrate forming step in the present embodiment includes forming a photocatalyst-containing layer having at least a photocatalyst and the above-mentioned light-shielding portion on a base material, having an adhesive property to cells, and an action of the photocatalyst accompanying energy irradiation.
  • This is a step of forming a cell adhesion layer containing a cell adhesion material that is decomposed or denatured by the above process to obtain a patterning substrate.
  • the configuration and the like of the patterning substrate are not particularly limited.
  • light is shielded on the substrate.
  • a photocatalyst-containing layer is formed so as to cover the light-shielding portion
  • a cell adhesion layer is formed on the photocatalyst-containing layer
  • the photocatalyst-containing layer is formed on a substrate for use as a patterning substrate.
  • a light-shielding portion may be formed on the photocatalyst-containing layer, and a cell adhesive layer may be formed so as to cover the light-shielding portion.
  • V does not affect the photocatalyst function in the photocatalyst-containing layer on the region where the light-shielding portion is formed when energy is irradiated from the substrate side in the energy irradiation step described below. This is because this region can be used as a cell adhesion portion.
  • the light-shielding portion may be formed on a surface of the substrate opposite to the surface on which the photocatalyst-containing layer and the cell adhesion layer are formed.
  • the cell adhesion layer formed in this step is a layer having a cell adhesive material having at least adhesive property to cells.
  • a specific cell adhesive material a material similar to the cell adhesive material used for the photocatalyst-containing cell adhesive layer described in the first embodiment can be used, and thus a detailed description is omitted here.
  • the cell adhesive layer formed in this step also contains the material having the cell adhesion inhibitory property described in the photocatalyst-containing cell adhesive layer of the first embodiment. This is a force that makes it possible to lower the adhesiveness to the cells of the cell adhesion inhibitor, which is the area irradiated with energy in the energy irradiation step described later.
  • the formation of such a cell adhesion layer can be carried out by applying a coating solution for forming a cell adhesion layer containing the above-mentioned cell adhesion material by a general application method or the like. Since the method can be the same as the method for forming the photocatalyst-containing cell adhesive layer described in the embodiment, the description is omitted here.
  • the cell adhesion material-containing liquid containing the cell catalyst material contains the photocatalyst-containing liquid.
  • the layer may be soaked to form a cell adhesion layer on the photocatalyst-containing layer by an adsorption method.
  • the energy irradiation step described below can be performed in a liquid, and the cell adhesion step is performed in a cell culture solution. Therefore, for example, when a cell adhesive material is weak against drying or the like! ⁇ A material or oxygen is weak!
  • the energy irradiation step is performed in the cell adhesive material-containing liquid or the cell culture solution. After that, by performing the cell adhesion step, it is possible to prevent the cell adhesion material from drying or denaturing during the production of the cell culture substrate, and to adhere the target cells in a pattern. Because it becomes.
  • the cell adhesive layer in such a liquid containing a cell adhesive material.
  • the cell adhesive material include materials whose functions are reduced by drying, such as proteins. For example, collagen, fibronectin, ⁇ -globulin and the like can be mentioned.
  • the solvent used for the cell adhesive material-containing liquid include water, alcohol, ethylene daryl, acid, buffer, and medium.
  • the thickness of the cell adhesion layer formed in this step is appropriately selected depending on the type of the cell culture substrate, etc. Normally, about 0.1 OOl / zm-l.O / zm, Above all 0.005 ⁇ m — 0.1 ⁇ m or so.
  • the photocatalyst-containing layer formed in this step is not particularly limited as long as it is a layer containing at least a photocatalyst, and may be a layer having only photocatalyst power, and may contain other components such as a binder. It may be a layer or the like.
  • the photocatalyst used in the present embodiment can be the same as that used for the photocatalyst-containing cell adhesive layer in the first embodiment, and in this embodiment, in particular, titanium oxide is used. Is preferred! / ,.
  • Examples of a method for forming a photocatalyst-containing layer in which only a photocatalyst is effective include a method using a vacuum film-forming method such as a sputtering method, a CVD method, and a vacuum evaporation method.
  • a vacuum film-forming method such as a sputtering method, a CVD method, and a vacuum evaporation method.
  • amorphous titania is formed on a base material, and then the crystalline titania is formed by firing.
  • a method of changing the phase to titania may be used.
  • the amorphous titanium used herein includes, for example, hydrolysis, dehydration condensation of inorganic salts of titanium such as titanium tetrachloride and titanium sulfate, tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-propoxytitanium, and tetrabutoxytitanium.
  • Organic titanium conjugates such as titanium and tetramethoxytitanium can be obtained by hydrolysis and dehydration condensation in the presence of an acid. Then, it can be modified to anatase type titania by baking at 400 ° C to 500 ° C, and modified to rutile type titania by baking at 600 ° C to 700 ° C.
  • a binder a binder having a high binding energy such that the main skeleton of the binder is not decomposed by the photoexcitation of the photocatalyst is preferable.
  • the above-mentioned cell adhesion layer is used as such a binder.
  • organopolysiloxanes described in the above section is used.
  • the photocatalyst-containing layer is formed by dispersing a photocatalyst and an organopolysiloxane as a binder in a solvent together with other additives as necessary. It can be formed by preparing a coating solution and applying the coating solution onto a substrate.
  • a coating solution As the solvent to be used, alcohol-based organic solvents such as ethanol and isopropanol are preferable.
  • the coating can be performed by a known coating method such as spin coating, spray coating, dip coating, roll coating, bead coating, and die coating.
  • a UV-curable component is included as a binder, the photocatalyst-containing layer can be formed by performing a curing treatment by irradiating ultraviolet rays.
  • an amorphous silica precursor can be used as a binder.
  • This amorphous silica precursor is represented by the general formula SiX, where X is a halogen, methoxy, ethoxy, or acetyl group.
  • silicon compounds such as hydroxyl groups, silanols which are hydrolysates thereof, and polysiloxanes having an average molecular weight of 3000 or less!
  • Specific examples include tetraethoxysilane, tetraisopropoxysilane, tetra-n-propoxysilane, tetrabutoxysilane, tetramethoxysilane and the like.
  • the precursor of the amorphous silica and the particles of the photocatalyst are uniformly dispersed in a non-aqueous solvent, and the transparent substrate is hydrolyzed with moisture in the air to form silanol.
  • the photocatalyst-containing layer can be formed by dehydration-condensation polymerization at room temperature. If the dehydration-condensation polymerization of silanol is performed at 100 ° C. or higher, the degree of polymerization of silanol increases, and the strength of the film surface can be improved.
  • These binders can be used alone or in combination of two or more.
  • the content of the photocatalyst in the photocatalyst containing layer can be set in the range of 5 to 60% by weight, preferably 20 to 40% by weight.
  • the thickness of the photocatalyst-containing layer is preferably in the range of 0.05-10 / zm.
  • the photocatalyst-containing layer may contain, in addition to the above-mentioned photocatalyst and binder, a surfactant and the like used for the above-mentioned cell adhesion layer.
  • the surface of the photocatalyst-containing layer preferably has low adhesiveness to cells, for example, because the surface has high hydrophilicity. Accordingly, in the energy irradiation step described later, when the photocatalyst-containing layer is exposed by disassembling the cell adhesion layer, the area can be made into an area having low adhesion to cells.
  • the above-mentioned puttering substrate is irradiated with energy from the substrate side, and the cell adhesion material is decomposed or denatured, and the cell adhesion inhibitor other than the cell adhesion inhibitor.
  • This is a step of forming a pattern composed of the parts.
  • the substrate-side power of the puttering substrate is also irradiated with energy, and the cell adhesion material is decomposed or denatured, and the cell adhesion-inhibiting portion whose adhesion to cells is reduced, and the energy is not increased.
  • the method of irradiating the energy is not particularly limited as long as the cell adhesive material remains due to the irradiation and a cell adhesion portion having good adhesion to cells can be formed. At this time, for example, when the cell adhesion material is decomposed by the action of a photocatalyst accompanying energy irradiation, a small amount of the cell adhesion material is contained in the cell adhesion inhibitor!
  • the cell adhesion layer is completely decomposed and removed to expose the photocatalyst-containing layer.
  • the cell adhesive material is modified by the action of a photocatalyst accompanying energy irradiation, the denatured product or the like is contained in the cell adhesion inhibitor.
  • the entire surface of the substrate side is also irradiated with energy so that a region where the light-shielding portion is formed is a cell adhesion inhibiting portion and the light-shielding portion is formed.
  • the area where the cells fall is the cell adhesion area.
  • energy is irradiated using, for example, a photomask to decompose or denature the cell adhesive material only in the target region.
  • a cell adhesion inhibitor can be formed.
  • this step is performed in the cell adhesive material-containing liquid containing the cell adhesive material.
  • the energy irradiation may be performed in a cell culture solution containing cells and a culture solution used in a cell adhesion step described below.
  • the whole of the puttering substrate may be immersed in the cell culture solution and subjected to energy irradiation.
  • the base material of the puttering substrate may be immersed in the cell culture solution. It is preferred not to make contact. Thereby, the transmission efficiency of the irradiated energy can be improved, and the cell culture substrate can be manufactured efficiently.
  • the cell adhesion step of the present embodiment is a step of adhering cells to a cell adhesion portion in the cell adhesion layer in a cell culture solution containing cells and a culture solution.
  • the cell adhesion step in the present embodiment can be the same as the cell adhesion step in the above-described first embodiment, and a detailed description thereof will be omitted.
  • energy may be applied to the cell adhesion inhibition portion.
  • steps may be appropriately performed as needed.
  • energy is irradiated to the above-mentioned cell adhesion inhibitor from the above-mentioned substrate side.
  • a cell pattern maintaining step of maintaining the pattern of the cells adhered to the cell adhesion portion may be performed.
  • proteins or cells adhere to the cell adhesion inhibitor after the cell adhesion step these cells can be removed by the action of the photocatalyst accompanying the energy irradiation. is there.
  • the cell pattern maintaining step can be performed in the same manner as in the first embodiment, and thus the detailed description thereof will be omitted.
  • the plate manufacturing apparatus includes a substrate support for supporting the substrate, a cell culture solution containing the cells and the culture solution, a pH adjusting means for maintaining the pH of the cell culture solution, and a temperature of the cell culture solution.
  • a cell culture solution holding unit having a temperature adjusting means for maintaining the temperature, and an energy irradiation unit for irradiating the substrate with energy.
  • the cell culture substrate manufacturing apparatus of the present invention includes a substrate support 22 for supporting a substrate 21, a cell culture solution holding portion 23 for holding a cell culture solution 7, an energy storage device for the substrate.
  • the cell culture solution holding unit 23 includes a pH adjusting means (not shown) for maintaining pH in the cell culture solution 7, and a cell culture solution 7. It has a temperature adjusting means (not shown) for maintaining the medium temperature.
  • the cell culture substrate manufacturing apparatus includes the cell culture solution holding unit, the substrate support unit, and the energy irradiation unit, for example, a cell culture using a layer containing a photocatalyst is performed.
  • a cell culture using a layer containing a photocatalyst is performed.
  • protein and cells attached to the area other than the area where the cells are cultured on the substrate can be removed by energy irradiation, etc., and cell culture in which cells are cultured in a high-definition pattern
  • a cell culture substrate manufacturing apparatus capable of manufacturing a substrate can be provided.
  • the substrate used in the present invention includes a base material, a light-shielding portion formed on the base material, and a light-shielding portion formed on the base material so as to cover the light-shielding portion.
  • the substrate be a patterning substrate having a cell adhesive layer containing a cell adhesive material that has a cell adhesive material that is decomposed or denatured by the action of a photocatalyst accompanying energy irradiation. This allows the substrate supporting portion to support the patterning substrate, and also irradiates the substrate side power with energy by the energy irradiating portion, thereby forming a light shielding portion.
  • a pattern consisting of a cell adhesion inhibitor in which the cell adhesion material in the cell adhesion layer is decomposed or denatured, and a cell adhesion portion other than the cell adhesion inhibitor.
  • the cells can be attached only on the cell adhesion section, and the cells can be cultured in a desired pattern.
  • the power that can be done.
  • the above-mentioned energy irradiation may be performed with the cell adhesive layer immersed in the cell culture medium or not. You may go in a state.
  • the cell culture solution holding unit and the energy irradiation unit are included in one device, the cell culture solution holding unit and the energy irradiation unit are used when the cells are adhered in the cell culture solution, After adhesion, energy can be irradiated to the cell adhesion inhibitor, so even if proteins or cells adhere to the cell adhesion inhibitor, cells and the like are removed by the action of the photocatalyst accompanying the energy irradiation. Thus, cells can be adhered with high definition only on the cell adhesion portion.
  • the substrate supporting portion in the present invention is not particularly limited as long as it can support the substrate, and preferably adjusts the height and position of the substrate as freely as possible.
  • the substrate supporting portion may be provided with a temperature adjusting means or the like for maintaining the temperature of the substrate. This makes it possible, for example, to maintain the activity of the cells adhered on the cell adhesion portion, and is a force capable of producing a high-quality cell culture substrate.
  • the cell culture solution holding unit in the present invention holds a cell and a cell culture solution containing the culture solution, and maintains a pH of the cell culture solution, and a temperature control unit that maintains the temperature of the cell culture solution.
  • a means it is not particularly limited, and may have a stirring means and the like as necessary.
  • the pH adjusting means and the temperature adjusting means are provided in the cell culture solution holding section for holding the cell culture solution, the pH and temperature in the cell culture solution are maintained. It can keep cells constant and prevent cells from dying or becoming less active.
  • a pH adjusting means the one used as a pH adjusting means in a general cell culture device can be used, and the description is omitted here.
  • the temperature adjusting means the cell culture solution in the cell culture solution holding section is also controlled. Any device that can maintain the temperature can be used as a temperature adjusting device in a general cell culture device, and thus the description thereof is omitted.
  • the energy irradiating unit in the present invention irradiates the substrate supported by the substrate supporting unit with energy using, for example, a layer containing a photocatalyst, and removes cells in the energy-irradiated region to form a cell pattern.
  • the cell adhesion material contained in the cell adhesion layer of the patterning substrate is decomposed or denatured by the action of a photocatalyst. It is preferred that is possible.
  • the light source that can be used for such energy irradiation is not particularly limited as long as it can activate the photocatalyst.
  • a light source such as a laser such as excimer or YAG may be used. By using these light sources, the photocatalyst can be excited, and the cell adhesion portion can be formed.
  • the cell culture substrate manufacturing apparatus of the present invention is not particularly limited as long as it has the above-described substrate support, cell culture solution holding unit, and energy irradiation unit. You may have. Further, the cell culture substrate manufacturing apparatus of the present invention is preferably used for the above-described “A. Method for manufacturing cell culture substrate” and the like.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. Included in the technical scope of the invention.
  • the incubator was modified with a commercially available pH and temperature adjustment function, a mercury lamp was installed on the ceiling, and a power supply with a timer was installed outside the incubator.
  • jigs with adjustable height that can support the cell culture substrate at the four corners were installed on the ceiling.
  • a cylinder with a 5% CO 95% Air regulator was inserted through a flow meter.
  • a 3 cm square quartz glass substrate with a stripe-shaped light-shielding layer with a light-shielding portion of 80 m and an opening of 300 m was provided on the surface of the substrate by a general procedure for manufacturing a chrome mask.
  • the photocatalyst coating solution is applied to the surface of the glass substrate by spin coating, and the substrate is dried at a temperature of 150 ° C for 10 minutes to cause hydrolysis and polycondensation reactions.
  • a photocatalyst-containing layer having a thickness of 0 and firmly fixed in siloxane was formed on the substrate.
  • fibronectin F-4759 Sigma
  • 200 ml of pure water 0.2 mg
  • this aqueous solution is dropped on the photocatalyst layer of the substrate provided with the photocatalyst containing layer at a ratio of 300 1 per lcm 2 of the substrate area. This was allowed to stand at 4 ° C for 24 hours. Further, the substrate was washed twice with PBS to obtain a puttering substrate having a photocatalyst-containing layer and a cell adhesive material-containing layer on the substrate. The substrate was immediately immersed in PBS and immediately moved to the next step.
  • the liver extracted from the rat was transferred to a petri dish, subdivided into 5 mm-sized pieces using a scalpel, 20 ml of DMEM medium was added, lightly suspended with a pipette, and filtered with a cell strainer. The resulting coarsely dispersed cell suspension was centrifuged at 500-600 rpm for 90 seconds, and the supernatant was removed by suction. DMEM medium was newly added to the remaining cells and centrifuged again. By repeating this operation three times, substantially uniform hepatic parenchymal cells were obtained. To the obtained hepatocytes, 20 ml of DMEM medium was added and suspended to prepare a hepatocyte suspension.
  • Wavmouth MB752Z1 medium (containing L-glutamine and no NaHCO) (Gibco)
  • the liver parenchymal cell suspension prepared above was suspended in the Waymouth MB752Z1 medium solution prepared similarly, and then seeded on the above-mentioned cell culture puttering substrate placed in a petri dish. Turn off the germicidal light in the above incubator at 37 ° C, 5% CO for 24 hours.
  • liver parenchymal cells were allowed to adhere to the entire surface of the substrate.
  • Non-adherent cells and dead cells were removed by washing the substrate twice with PBS.
  • the culture medium was newly added to the Petri dish, and the cell-adhered substrate was supported by the jig with the cell-adhered substrate facing down, and the cell-adhered surface was immersed in the medium.
  • the culture of the cells was continued for up to 48 hours while exchanging the medium, and the cells were observed with an optical microscope. As a result, it was confirmed that the cells adhered along the cell adhesion part on the cell culture patterning substrate.
  • the incubator was modified with a commercially available pH and temperature adjustment function, a mercury lamp was installed on the floor, and a power supply with a timer was installed outside the incubator. Instead of the shelves originally provided in the incubator, she made and mounted shelves to support petri dishes with metal wires of about 3 mm in diameter. 5% CO 95% Air Bonus with Regulator
  • the vessel was connected to the incubator via a flow meter.
  • Example 2 Using the same substrate as in Example 1, the same procedure as in Example 1 was performed.
  • the center of the bottom of the polystyrene petri dish was cut out at a diameter of about 2.5 cm, and the substrate with the photocatalyst layer was attached thereto.
  • Example 2 The same operation as in Example 1 was performed using the above-mentioned petri dish to form a substrate for puttering.
  • the Petri dish with a pattern was set on the wire shelf with care so that the center of the Petri dish was not pressed.
  • Example 1 The same experiment as in Example 1 was performed, and the same result as in Example 1 was obtained in this example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、基材上に細胞を高精細なパターン状に接着し、長期にわたりパターンを維持しながら細胞を培養させるために用いられる細胞培養基板の新たな製造方法、およびその製造方法に用いられる製造装置を提供することを主目的としている。  上記目的を達成するために、本発明は、基材上に、遮光部および、前記遮光部を覆うように、細胞と接着性を有し、かつエネルギー照射に伴う光触媒の作用により分解または変性される細胞接着材料を含有する細胞接着層を形成し、パターニング用基板とするパターニング用基板形成工程と、  前記パターニング用基板に前記基材側からエネルギーを照射し、前記細胞接着材料が分解または変性された細胞接着阻害部と、前記細胞接着阻害部以外の細胞接着部とからなるパターンを形成するエネルギー照射工程と、  細胞および培養液を含有する細胞培養液中で、前記細胞接着部に前記細胞を接着させる細胞接着工程と  を有することを特徴とする細胞培養基板の製造方法を提供する。

Description

明 細 書
細胞培養基板の製造方法および細胞培養基板製造装置
技術分野
[0001] 本発明は、細胞を高精細なパターン状に接着させた細胞培養基板の製造方法、お よび細胞培養基板の製造に用いられる装置に関するものである。
背景技術
[0002] 現在、 V、ろ 、ろな動物や植物の細胞培養が行われており、また、新たな細胞の培 養法が開発されている。細胞培養の技術は、細胞の生化学的現象や性質の解明、 有用な物質の生産などの目的で利用されている。さらに、培養細胞を用いて、人工 的に合成された薬剤の生理活性や毒性を調べる試みがなされている。
[0003] 一部の細胞、特に多くの動物細胞は、何かに接着して生育する接着依存性を有し ており、生体外の浮遊状態では長期間生存することができない。このような接着依存 性を有した細胞の培養には、細胞が接着するための担体が必要であり、一般的には 、コラーゲンゃフイブロネクチンなどの細胞接着性タンパク質を均一に塗布したプラス チック製の培養皿が用いられている。これらの細胞接着性タンパク質は、培養細胞に 作用し、細胞の接着を容易にしたり、細胞の形態に影響を与えることが知られている
[0004] 一方、培養細胞を基材上の微小な部分にのみ接着させ、配列させる技術が報告さ れている。このような技術により、培養細胞を人工臓器やバイオセンサ、バイオリアク ターなどに応用することが可能になる。培養細胞を配列させる方法としては、細胞に 対して接着の容易さが異なるような表面がパターンをなしているような基材を用い、こ の表面で細胞を培養し、細胞が接着するように加工した表面だけに細胞を接着させ ることによって細胞を配列させる方法がとられている。
[0005] 例えば、特許文献 1には、回路状に神経細胞を増殖させるなどの目的で、静電荷 パターンを形成させた電荷保持媒体を細胞培養に応用している。また、特許文献 2 では、細胞非接着性あるいは細胞接着性の光感受性親水性高分子をフォトリソダラ フィ法によりパターニングした表面上への培養細胞の配列を試みている。 [0006] さらに、特許文献 3では、細胞の接着率や形態に影響を与えるコラーゲンなどの物 質がパター-ングされた細胞培養用基材と、この基材をフォトリソグラフィ法によって 作製する方法について開示している。このような基材の上で細胞を培養することによ つて、コラーゲンなどがパターユングされた表面により多くの細胞を接着させ、細胞の パター-ングを実現して 、る。
[0007] し力しながら、このような細胞培養部位のパターユングは、用途によっては高精細で あることが要求される場合がある。上述したような感光性材料を用いたフォトリソグラフ ィ法等によるパターユングを行う場合は、高精細なパターンを得ることはできるが、細 胞接着性材料が感光性を有する必要があり、例えば生体高分子等にこのような感光 性を付与するための化学的修飾を行うことが困難な場合が多ぐ細胞接着性材料の 選択性の幅を極めて狭くするといつた問題があった。また、フォトレジストを用いたフォ トリソグラフィ法では、現像液等を用いる必要性があり、これらが細胞培養に際して悪 影響を及ぼす場合があった。
[0008] さらに、高精細な細胞接着性材料のパターンの形成方法として、マイクロ 'コンタクト プリンティング法が、ハーバード大学のジョージ M,ホワイトサイズ (George M.
Whitesides)により提唱されている(例えば、特許文献 4、特許文献 5、特許文献 6、特 許文献 7等)。し力しながら、この方法を用いて工業的に細胞接着性材料のパターン を有する細胞培養基材を製造することは難し 、と 、つた問題があった。
[0009] また、細胞パターンを維持しながら、細胞の機能分化や異種細胞との積層共培養 による細胞集合体の機能化などを実現することができれば、細胞組織工学分野にお いて意義深い。し力しながら、一般に、長期間培養しながら細胞パターンを維持する ことは困難である。これは、時間とともに細胞接着阻害部表面に培養細胞が分泌する タンパク質などが徐々に吸着し、それによつて細胞接着阻害部表面が細胞接着性を 有するよう〖こなる力らである。
[0010] 特許文献 1 :特開平 2— 245181号公報
特許文献 2:特開平 3-7576号公報
特許文献 3 :特開平 5— 176753号公報
特許文献 4 :米国特許第 5, 512, 131号公報 特許文献 5 :米国特許第 5, 900, 160号公報
特許文献 6:特開平 9— 240125号公報
特許文献 7:特開平 10-12545号公報
発明の開示
発明が解決しょうとする課題
[0011] そこで、基材上に細胞を高精細なパターン状に接着し、長期にわたりパターンを維 持しながら細胞を培養させるために用いられる細胞培養基板の新たな製造方法、お よびその製造方法に用いられる製造装置の提供が望まれて!/、る。
課題を解決するための手段
[0012] 本発明は、基材上に、遮光部および、上記遮光部を覆うように、細胞と接着性を有 し、かつエネルギー照射に伴う光触媒の作用により分解または変性される細胞接着 材料を含有する細胞接着層を形成し、パターユング用基板とするパターユング用基 板形成工程と、
上記パターユング用基板に上記基材側力 エネルギーを照射し、上記細胞接着材 料が分解または変性された細胞接着阻害部と、上記細胞接着阻害部以外の細胞接 着部とからなるパターンを形成するエネルギー照射工程と、
細胞および培養液を含有する細胞培養液中で、上記細胞接着部に上記細胞を接 着させる細胞接着工程と
を有することを特徴とする細胞培養基板の製造方法を提供する。
[0013] 本発明によれば、上記エネルギー照射工程により、上記細胞接着部および細胞接 着阻害部が形成されていることから、上記細胞接着工程において、細胞培養液に細 胞接着層を浸すこと等によって、細胞接着部のみに細胞を接着させることができ、細 胞培養液中で高精細なパターン状に細胞を培養することができる。また本発明にお いては、上記パターユング用基板形成工程において、上記遮光部および上記細胞 接着層を有するパターユング用基板を形成することから、エネルギー照射工程にお いて、基材側から全面にエネルギーを照射することによって、遮光部が形成されてい ない領域のみ細胞接着材料が分解または変性された細胞接着阻害部とすることもで き、効率よく高精細に細胞接着部および細胞接着阻害部からなるパターンを形成す ることがでさる。
[0014] 上記発明においては、上記細胞接着層が、光触媒および上記細胞接着材料を含 有する光触媒含有細胞接着層としてもよい。この場合、上記エネルギー照射工程に おいてエネルギーを照射することにより、光触媒含有細胞接着層自体に含有される 光触媒が励起されて、細胞接着材料を分解または変性させることができる。したがつ て、別途光触媒を含有する層等を形成する必要がなぐ製造効率よく細胞培養基板 を製造することができる。
[0015] また、上記発明にお 、ては、上記パターニング用基板形成工程が、上記基材上に 、少なくとも光触媒を含有する光触媒含有層および上記遮光部を形成し、上記光触 媒含有層上に上記細胞接着層を形成し、パターニング用基板とする工程とすることも できる。この場合、上記細胞接着層が光触媒含有層上に形成されていることから、細 胞接着工程において、細胞を細胞接着部に接着させた際、細胞が直接光触媒と接 触する可能性が低ぐ経時で細胞が光触媒の影響を受けるおそれが少ない細胞培 養基板を製造することができる。
[0016] また、上記発明にお 、ては、上記細胞接着工程中に、上記細胞接着阻害部にエネ ルギーを照射することもできる。これにより、エネルギー照射に伴う光触媒の作用によ つて上記細胞接着阻害部の細胞との接着性をより低 、ものとすることができ、細胞接 着阻害部に細胞が付着することをより防止することができる。
[0017] またさらに、上記発明においては、上記細胞接着工程後に、上記細胞接着阻害部 に上記基材側力 エネルギーを照射することにより、上記細胞接着部に接着した上 記細胞のパターンを維持する細胞パターン維持工程を行ってもよい。これにより、培 養された細胞が、上記細胞接着阻害部に付着した場合であっても、細胞接着阻害部 上の細胞をエネルギー照射に伴う光触媒の作用により除去することができ、高精細な ノターン状に細胞を維持することができるからである。
[0018] また、本発明は、基板を支持する基板支持部と、上記細胞および培養液を含有す る細胞培養液を保持し、かつ上記細胞培養液の pHを維持する pH調整手段および 上記細胞培養液の温度を維持する温度調整手段を有する細胞培養液保持部と、上 記基板にエネルギーを照射するエネルギー照射部とを有することを特徴とする細胞 培養基板製造装置を提供する。
[0019] 本発明によれば、上記細胞培養基板製造装置が、上記細胞培養液保持部、基板 支持部、およびエネルギー照射部を有することから、細胞培養液中で細胞を培養す る際、基板の細胞を培養する領域以外の領域に付着したたんぱく質や細胞をェネル ギー照射ににより除去すること等ができ、高精細なパターン状に細胞が培養された細 胞培養基板を製造することが可能な、細胞培養基板製造装置とすることができる。 発明の効果
[0020] 本発明によれば、細胞培養液中で、高精細なパターン状に細胞が培養された細胞 培養基板を製造することができ、長期に渡り細胞パターンを維持しながら細胞を培養 することがでさるちのとすることがでさる。
図面の簡単な説明
[0021] [図 1]本発明の細胞培養基板の製造方法の一例を示す工程図である。
[図 2]本発明の細胞培養基板の製造方法の他の例を示す工程図である。
[図 3]本発明の細胞培養基板の製造方法のパターユング用基板形成工程で形成さ れるパターニング用基板の一例を示す概略断面図である。
[図 4]本発明の細胞培養基板製造装置の一例を示す説明図である。
符号の説明
1 · · - 基材
2 · · - 細胞培養領域
3 · · - 細胞接着部
4 · · - 細胞接着補助部
5 · · - フォトマスク
6 · · - エネノレギー
7 · · - 細胞培養液
8 · · - 細胞
9 · · - 光触媒含有層
10· · • 細胞接着層
21· · • 基板 22· ·· 基板支持部
23· ·· 細胞培養液保持部
24· ·· エネルギー照射部
発明を実施するための最良の形態
[0023] 本発明は、細胞を高精細なパターン状に接着させた細胞培養基板の製造方法、お よび細胞培養基板の製造に用いられる装置に関するものである。以下、それぞれに ついてわけて説明する。
[0024] A.細胞培養基板の製造方法
まず、本発明の細胞培養基板の製造方法について説明する。本発明の細胞培養 基板の製造方法は、基材上に、遮光部および、上記遮光部を覆うように、細胞と接着 性を有し、かつエネルギー照射に伴う光触媒の作用により分解または変性される細 胞接着材料を含有する細胞接着層を形成し、パターユング用基板とするパターニン グ用基板形成工程と、
上記パターユング用基板に上記基材側力 エネルギーを照射し、上記細胞接着材 料が分解または変性された細胞接着阻害部と、上記細胞接着阻害部以外の細胞接 着部とからなるパターンを形成するエネルギー照射工程と、
細胞および培養液を含有する細胞培養液中で、上記細胞接着部に上記細胞を接 着させる細胞接着工程と
を有することを特徴とするものである。
[0025] 本発明によれば、上記エネルギー照射工程にぉ 、て、細胞接着層に細胞接着部 および細胞接着阻害部力もなるパターンが形成されることから、上記細胞接着工程 において、この細胞接着層を細胞培養液に浸すこと等によって、容易に細胞接着部 のみに細胞を接着させることができ、細胞培養液中で目的とするパターン状に細胞 を培養することができるのである。また、本発明においては、上記細胞接着工程中や 、細胞接着工程後、上記細胞接着阻害部に上記基材側からエネルギー照射をする ことによって、細胞接着阻害部に付着したたんぱく質や細胞を除去すること等もでき 、高精細なパターン状に細胞を培養することができる。
[0026] また、本発明によれば、上記パターニング用基板形成工程にぉ 、て、細胞培養層 と基材の間に、遮光部が形成されることから、エネルギー照射工程において、基材側 力 全面にエネルギーを照射することにより、遮光部が形成されていない領域のみの 細胞接着材料を分解することができ、容易に高精細なパターン状に細胞接着部およ び細胞接着阻害部を形成することができる。
[0027] ここで、本発明にお 、ては、上記パターユング用基板の構成や、エネノレギー照射 工程におけるエネルギーの照射方法等により、 2つの実施態様がある。以下、それぞ れの実施態様ごとに詳しく説明する。
[0028] 1.第 1実施態様
まず、本発明の細胞培養基板の製造方法の第 1実施態様について説明する。本発 明の細胞培養基板の製造方法は、基材上に、遮光部および、上記遮光部を覆うよう に、細胞と接着性を有し、かつエネルギー照射に伴う光触媒の作用により分解または 変性される細胞接着材料を含有する細胞接着層を形成し、パターユング用基板とす るパター-ング用基板形成工程と、
上記パターユング用基板に上記基材側力 エネルギーを照射し、上記細胞接着材 料が分解または変性された細胞接着阻害部と、上記細胞接着阻害部以外の細胞接 着部とからなるパターンを形成するエネルギー照射工程と、
細胞および培養液を含有する細胞培養液中で、上記細胞接着部に上記細胞を接 着させる細胞接着工程と
を有するものであり、上記細胞接着層が、光触媒および上記細胞接着材料を含有 する光触媒含有細胞接着材料とされるものである。
[0029] 本実施態様によれば、例えば図 1に示すように、まず、基材 1上に遮光部 2を形成し 、その遮光部 2を覆うように、光触媒および細胞接着材料を含有する光触媒含有細 胞接着層 3を形成してパターニング用基板を形成するパターニング用基板形成工程 を行う(図 l (a) )。続いて、上記パターユング用基板の基材 1側からエネルギー 4を照 射し (図 1 (b) )、細胞接着材料がエネルギー照射に伴う光触媒の作用により分解また は変性されて細胞との接着性が低下した細胞接着阻害部 5と、エネルギー 4が未照 射の領域であり、細胞との接着性が良好な細胞接着部 6とからなるパターンを形成す る(図 1 (c) )エネルギー照射工程を行う。次に、細胞および培養液を含有する細胞培 養液 7中で、上記細胞接着部 6に細胞 8を接着させる細胞接着工程(図 1 (d) )を行い 、細胞接着部 6のみに高精細に細胞 8が接着された細胞培養基板が製造されるので ある。
[0030] 本実施態様においては、上記光触媒含有細胞接着層が、光触媒および細胞接着 材料を含有することから、エネルギー照射工程等にぉ 、てエネルギーを照射する際 、上記光触媒含有細胞接着層自体に含有される光触媒の作用により、細胞接着材 料を分解または変性させることができ、別途光触媒を含有する層等を形成する必要 等がなぐ細胞培養基板の製造効率が良いものとすることができる。
[0031] 以下、本実施態様の細胞培養基板の製造方法における各工程ごとに説明する。
[0032] (1)パターニング用基板形成工程
まず、本実施態様におけるパターユング用基板形成工程について説明する。本実 施態様におけるパターユング用基板形成工程は、基材上に、遮光部および、上記遮 光部を覆うように、細胞と接着性を有し、かつエネルギー照射に伴う光触媒の作用に より分解または変性される細胞接着材料と光触媒とを含有する光触媒含有細胞接着 層を形成し、パターユング用基板とする工程である。
[0033] 本工程は、基材上に遮光部および光触媒含有細胞接着層を形成することが可能 であれば、それぞれの部材の形成方法等は特に限定されるものではなぐ例えば基 材上に遮光部を形成し、その後、光触媒および細胞接着材料を含有する光触媒含 有細胞接着層形成用塗工液等を塗布する工程等とすることができる。
以下、本工程により形成されるパターユング用基板の各構成ごとに説明する。
[0034] (光触媒含有細胞接着層)
まず、本工程において形成される光触媒含有細胞接着層について説明する。本ェ 程において形成される光触媒含有細胞接着層は、後述する基材上に、後述する遮 光部を覆うように形成されるものであり、光触媒および細胞接着材料を含有するもの である。
[0035] 本工程においては、このような層が形成可能であれば、その形成方法等は特に限 定されるものではなぐ例えば、光触媒および上記細胞接着材料を含有する光触媒 含有細胞接着層形成用塗工液を、スピンコート法、スプレーコート法、ディップコート 法、ロールコート法、ビードコート法、ダイコート法等の湿式法によって塗布すること等 により、形成することができる。このような光触媒含有細胞接着層の膜厚としては、細 胞培養基板の種類等によって適宜選択されるものである力 通常 0. 01 m— 1. 0 μ m程度、中でも 0. 1 μ m— 0. 3 μ m程度とすること力 Sできる。
[0036] 以下、上記光触媒含有細胞接着層に用いられる各材料につ!ヽて説明する。
[0037] a.細胞接着材料
まず、本工程にお ヽて形成される光触媒含有細胞接着層に用いられる細胞接着材 料について説明する。本工程において用いられる細胞接着材料は、細胞と接着性を 有しかつエネルギー照射に伴う光触媒の作用により分解または変性されるものであ れば、その種類等は特に限定されるものではない。ここで、細胞と接着性を有すると は、細胞と良好に接着することをいい、細胞との接着性が細胞の種類によって異なる 場合等には、目的とする細胞と良好に接着することをいう。
[0038] 本工程に用いられる細胞接着材料は、このような細胞との接着性を有しており、ェ ネルギー照射に伴う光触媒の作用によって分解または変性されて、細胞との接着性 を有しなくなるものや、細胞との接着を阻害する細胞接着阻害性を有するものに変化 するもの等が用いられる。
[0039] ここで、上記のような細胞と接着性を有する材料には、物理ィ匕学的特性により細胞 と接着性を有する材料と、生物化学的特性により細胞と接着性を有する材料との 2種 類;^ある。
[0040] 物理化学的特性により細胞と接着性を有する材料の、細胞との接着性を決定する 物理ィ匕学的な因子としては、表面自由エネルギーや、静電相互作用等が挙げられる 。例えば細胞との接着性が材料の表面自由エネルギーにより決定される場合には、 材料が所定の範囲内の表面自由エネルギーを有すると細胞と材料との接着性が良 好となり、その範囲を外れると細胞と材料との接着性が低下することとなる。このような 表面自由エネルギーによる細胞の接着性の変化としては、例えば資料 CMC出版 ノ^オマテリアルの最先端 筏 義人 (監修) p. 109下部に示されるような実験結果 が知られている。このような因子により細胞との接着性を有する材料としては、例えば 親水化ポリスチレン、ポリ(N—イソプロピルアクリルアミド)等が挙げられる。このような 材料を用いた場合、エネルギー照射に伴う光触媒の作用により、例えば上記材料の 表面の官能基が置換等されたり、分解されること等によって、表面自由エネルギーが 変化し、細胞との接着性を有しないもの、または細胞接着阻害性を有するものとする ことができる。
[0041] また、静電相互作用等により細胞と材料との接着性が決定される場合、例えば材料 が有する正電荷の量等によって細胞との接着性が決定されることとなる。このような静 電相互作用により細胞との接着性を有する材料としては、例えばポリリジン等の塩基 性高分子、ァミノプロピルトリエトキシシラン、 N— (2—アミノエチル)—3—ァミノプロピル トリメトキシシラン等の塩基性ィ匕合物およびそれらを含む縮合物等が挙げられる。この ような材料を用いた場合、エネルギー照射に伴う光触媒の作用により、上記材料が分 解または変性されることによって、例えば表面に存在する正電荷量を変化させること ができ、細胞との接着性を有しないもの、または細胞接着阻害性を有するものとする ことができる。
[0042] また、生物学的特性により細胞と接着性を有する材料としては、特定の細胞と接着 性が良好なもの、または多くの細胞と接着性が良好なもの等が挙げられ、具体的に は、フイブロネクチン、ラミニン、テネイシン、ビトロネクチン、 RGD (アルギ-ンーグリシ ンーァスパラギン酸)配列含有ペプチド、 YIGSR (チロシン イソロイシン グリシンーセ リン アルギニン)配列含有ペプチド、コラーゲン、ァテロコラーゲン、ゼラチン等が挙 げられる。このような材料を用いた場合、エネルギー照射に伴う光触媒の作用により、 例えば上記材料の構造の一部を破壊したり、主鎖を破壊すること等によって、細胞と の接着性を有しな 、もの、または細胞接着阻害性を有するものとすることができる。
[0043] このような細胞接着材料は、上記材料の種類等によって異なるものであるが、光触 媒含有細胞接着層中に通常 0. 01重量%— 95重量%、中でも 1重量%— 10重量% 含有されることが好ましい。これにより、細胞接着材料を含有する領域を細胞との接 着性が良好な領域とすることができるからである。
[0044] b.光触媒
次に、本工程において形成される光触媒含有細胞接着層に含有される光触媒に ついて説明する。本工程に用いられる光触媒は、上述した細胞接着材料を、ェネル ギー照射に伴う光触媒の作用によって分解または変性させることが可能なものであ れば、特に限定されるものではない。
[0045] ここで、後述するような酸ィ匕チタンに代表される光触媒の作用機構は、必ずしも明 確なものではないが、光の照射によって生成したキャリア力 近傍の化合物との直接 反応、あるいは、酸素、水の存在下で生じた活性酸素種によって、有機物の化学構 造に変化を及ぼすものと考えられている。本実施態様においては、後述するェネル ギー照射工程において、このキャリアが上述した細胞接着材料に作用を及ぼすもの であると思われる。
[0046] 本実施態様に用いられる光触媒として、具体的には、光半導体として知られる例え ば二酸化チタン (TiO )、酸化亜鉛 (ZnO)、酸化スズ(SnO )、チタン酸ストロンチウ
2 2
ム(SrTiO )、酸化タングステン (WO )、酸化ビスマス(Bi O )、および酸化鉄(Fe
3 3 2 3 2
O )を挙げることができ、これら力も選択して 1種または 2種以上を混合して用いること
3
ができる。
[0047] 本実施態様においては、特に二酸ィ匕チタン力 バンドギャップエネルギーが高ぐ 化学的に安定で毒性もなぐ入手も容易であることから好適に使用される。二酸化チ タンには、アナターゼ型とルチル型があり本実施態様ではいずれも使用することがで きるが、アナターゼ型の二酸ィ匕チタンが好ましい。アナターゼ型ニ酸化チタンは励起 波長が 380nm以下にある。
[0048] このようなアナターゼ型ニ酸化チタンとしては、例えば、塩酸解膠型のアナターゼ 型チタニアゾル (石原産業 (株)製 STS - 02 (平均粒径 7nm)、石原産業 (株)製 ST - K01)、硝酸解膠型のアナターゼ型チタ-ァゾル (日産化学 (株)製 TA— 15 (平均粒 径 12nm) )等を挙げることができる。
[0049] 光触媒の粒径は小さいほど光触媒反応が効果的に起こるので好ましぐ平均粒径 が 50nm以下が好ましぐ 20nm以下の光触媒を使用するのが特に好ましい。
[0050] また、上記酸ィ匕チタンとして可視光応答型のものを用いてもよ!、。可視光応答型の 酸化チタンとは、可視光のエネルギーによっても励起されるものであり、このような可 視光応答化の方法としては、酸化チタンを窒化処理する方法等が挙げられる。
[0051] 酸ィ匕チタン (TiO )は、窒化処理をすることにより、酸ィ匕チタン (TiO )のバンドギヤ ップの内側に新しいエネルギー準位が形成され、バンドギャップが狭くなる。その結 果、通常酸ィ匕チタン (TiO )の励起波長は 380nmである力 その励起波長より長波
2
長の可視光によっても、励起されることが可能となるのである。これにより、種々の光 源によるエネルギー照射の可視光領域の波長も酸ィ匕チタン (TiO )の励起に寄与さ
2
せることが可能となることから、さらに酸ィ匕チタンを高感度化させることが可能となるの である。
[0052] ここで、本実施態様で!/、う酸ィ匕チタンの窒化処理とは、酸化チタン (TiO )の結晶の
2 酸素サイトの一部を窒素原子での置換する処理や、酸ィヒチタン (TiO )結晶の格子
2
間に窒素原子をドーピングする処理、または酸ィ匕チタン (TiO )結晶の多結晶集合
2
体の粒界に窒素原子を配する処理等を 、う。
[0053] 酸ィ匕チタン (TiO )の窒化処理方法は、特に限定されるものではなぐ例えば、結晶
2
性酸ィ匕チタンの微粒子をアンモニア雰囲気下で 700°Cの熱処理により、窒素をドー ビングし、この窒素のドーピングされた微粒子と、無機バインダゃ溶媒等を用いて、分 散液とする方法等が挙げられる。
[0054] 本実施態様により形成される光触媒含有細胞接着層中に含有される光触媒の量 は、 5— 95重量%、好ましくは 10— 60重量%、さらに好ましくは 20— 40重量%の範 囲で設定することができる。これにより、後述するエネルギー照射工程において、ェ ネルギ一が照射された領域の光触媒含有細胞接着層の細胞接着材料を分解または 変性することが可能となるからである。
[0055] ここで、本実施態様に用いられる光触媒は、細胞との接着性が低 、ものであること が好ましい。これにより、上述した細胞接着材料が分解等されて光触媒が露出した領 域を、細胞との接着性が低い領域として用いることが可能となるからである。
[0056] cその他
本実施態様においては、形成される光触媒含有細胞接着層中に、上記細胞接着 材料や光触媒だけでなぐ必要に応じて例えば、強度や耐性等を向上させるバイン ダ等を含有するものであってもよい。本実施態様においては、特にバインダとして、少 なくとも後述するエネルギー照射工程後に、細胞と接着することを阻害する細胞接着 阻害性を有する材料が用いられることが好ましい。これにより、後述するエネルギー 照射工程においてエネルギーが照射された領域である細胞接着阻害部の細胞との 接着性を低いものとすることができるからである。このような材料としては、例えばエネ ルギ一照射される前から上記細胞接着阻害性を有するものであってもよぐエネルギ 一照射に伴う光触媒の作用によって、細胞接着阻害性を有するものとなるものであつ てもよい。
[0057] 本実施態様にお!、ては、特にエネルギー照射に伴う光触媒の作用によって、細胞 接着阻害性を有するものとなる材料をバインダとして用いることが好まし 、。これによ り、エネルギー照射される前の領域においては、上記細胞接着材料の細胞との接着 性を阻害することがなぐエネルギー照射された領域のみを、細胞との接着性が低い ちのとすることがでさるカゝらである。
[0058] このようなバインダとして用いられる材料としては、例えば主骨格が上記の光触媒の 光励起により分解されないような高い結合エネルギーを有するものであって、光触媒 の作用により分解されるような有機置換基を有するものが好ましぐ例えば、(1)ゾル ゲル反応等によりクロ口またはアルコキシシラン等を加水分解、重縮合して大きな強 度を発揮するオルガノポリシロキサン、 (2)撥水牲ゃ撥油性に優れた反応性シリコー ンを架橋したオルガノポリシロキサン等を挙げることができる。
[0059] 上記の(1)の場合、一般式:
Y SiX
n (4-n)
(ここで、 Yはアルキル基、フルォロアルキル基、ビュル基、アミノ基、フエ-ル基もしく はエポキシ基、またはこれらを含む有機基であり、 Xはアルコキシル基、ァセチル基ま たはハロゲンを示す。 ηは 0— 3までの整数である。 )
で示される珪素化合物の 1種または 2種以上の加水分解縮合物もしくは共加水分解 縮合物であるオルガノポリシロキサンであることが好ましい。なお、ここで Υで示される 有機基の炭素数は 1一 20の範囲内であることが好ましぐまた、 Xで示されるアルコキ シ基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であることが好ましい。
[0060] また、上記の(2)の反応性シリコーンとしては、下記一般式で表される骨格をもつ化 合物を挙げることができる。 [0061] [化 1]
Figure imgf000016_0001
[0062] ただし、 nは 2以上の整数であり、 R1, ITはそれぞれ炭素数 1一 20の置換もしくは非 置換のアルキル、ァルケ-ル、ァリールあるいはシァノアルキル基であり、モル比で全 体の 40%以下がビュル、フエ-ル、ハロゲン化フエ-ルである。また、
Figure imgf000016_0002
R2がメチル 基のものが表面エネルギーが最も小さくなるので好ましぐモル比でメチル基が 60% 以上であることが好ましい。また、鎖末端もしくは側鎖には、分子鎖中に少なくとも 1個 以上の水酸基等の反応性基を有する。上記のような材料を用いることによって、エネ ルギ一照射に伴う光触媒の作用により、エネルギー照射された領域の表面を高い親 水性を有するものとすることができる。これにより、細胞との接着が阻害され、ェネル ギー照射された領域には細胞が接着しないものとすることができるからである。
[0063] 上記材料を細胞接着阻害材料として用いる場合、エネルギーが照射される前の水 との接触角が 15° — 120° 、中でも 20° — 100° の範囲内となるものであることが 好ましい。これにより、上記細胞接着材料の細胞との接着性を阻害することのないも のとすることができるカゝらである。
[0064] また、この細胞接着阻害材料にエネルギーが照射された場合には、水との接触角 力 S10° 以下となるものであることが好ましい。上記範囲とすることにより、高い親水性 を有するものとすることができ、細胞との接着性を低いものとすることができるからであ る。
[0065] なお、ここでいう水との接触角は、水、もしくは同等の接触角を有する液体との接触 角を接触角測定器 (協和界面科学 (株)製 CA-Z型)を用 、て測定 (マイクロシリンジ 力も液滴を滴下して 30秒後)し、その結果から、もしくはその結果をグラフにして得た ものである。 [0066] また、上記のオルガノポリシロキサンとともに、ジメチルポリシロキサンのような架橋反 応をしな 、安定なオルガノシリコンィ匕合物をバインダに混合してもよ 、。
[0067] また、本実施態様にぉ 、ては、エネルギーが照射された領域の濡れ性の変化を起 こさせること等により、細胞との接着性が低下する、もしくはそのような変化を補助する 分解物質等を含有するものであってもよ 、。
[0068] このような分解物質としては、例えばエネルギー照射に伴う光触媒の作用により分 解等されて、親水性となること等により、細胞との接着性が低下する界面活性剤等を 挙げることができる。具体的には、 日光ケミカルズ (株)製 NIKKOL BL、BC、BO、 BBの各シリーズ等の炭化水素系、デュポン社製 ZONYL FSN、 FSO、旭硝子 (株 )製サーフロン S— 141、 145、大日本インキ化学工業 (株)製メガファック F— 141、 14 4、ネオス(株)製フタージェント F—200、 F251、ダイキン工業 (株)製ュ-ダイン DS— 401、 402、スリーェム(株)製フロラード FC— 170、 176等のシリコーン系の非イオン 界面活性剤を挙げることができ、また、カチオン系界面活性剤、ァ-オン系界面活性 剤、両性界面活性剤を用いることもできる。
[0069] また、界面活性剤の他にも、ポリビニルアルコール、不飽和ポリエステル、アクリル 榭脂、ポリエチレン、ジァリルフタレート、エチレンプロピレンジェンモノマー、ェポキ シ榭脂、フエノール榭脂、ポリウレタン、メラミン榭脂、ポリカーボネート、ポリ塩ィ匕ビ二 ル、ポリアミド、ポリイミド、スチレンブタジエンゴム、クロロプレンゴム、ポリプロピレン、 ポリブチレン、ポリスチレン、ポリ酢酸ビュル、ナイロン、ポリエステル、ポリブタジエン、 ポリべンズイミダゾール、ポリアクリル-トリル、ェピクロルヒドリン、ポリサルファイド、ポ リイソプレン等のオリゴマー、ポリマー等を挙げることができる。
[0070] 本実施態様にぉ 、ては、このようなバインダは、光触媒含有細胞接着層中に 5重量 %— 95重量%、中でも 40重量%— 90重量%、特に 60重量%— 80重量%の範囲 内含有されることが好ましい。
[0071] (遮光部)
次に、本工程において形成される遮光部について説明する。本工程において形成 される遮光部は、上記光触媒含有細胞接着層と、後述する基材との間に設けられる ものであれば、その形状等は特に限定されるものではなぐ例えば、後述するェネル ギー照射工程において、細胞接着部とされる領域、すなわち最終的には細胞が培養 される領域に形成されるものとすることができる。本実施態様においては、上記基材と 光触媒含有細胞接着層との間に、遮光部が形成されていることから、後述するエネ ルギ一照射工程において、エネルギーが全面に照射された場合であっても、遮光部 が形成された領域上の光触媒含有細胞接着層にはエネルギーが照射されず、この 領域の細胞接着材料が分解されないものとすることができるのである。
[0072] このような遮光部は、後述するエネルギー照射工程において照射されるエネルギー を遮蔽することが可能なものであれば、特にその形成方法等は限定されるものでは なぐ例えばスパッタリング法、真空蒸着法等により厚み 1000— 2000A程度のクロ ム等の金属薄膜を形成し、この薄膜をパター-ングすることにより形成されてもよい。 このパター-ングの方法としては、スパッタ等の通常のパターユング方法を用いること ができる。
[0073] また、榭脂バインダ中にカーボン微粒子、金属酸化物、無機顔料、有機顔料等の 遮光性粒子を含有させた層をパターン状に形成する方法であってもよい。用いられ る榭脂バインダとしては、ポリイミド榭脂、アクリル榭脂、エポキシ榭脂、ポリアクリルァ ミド、ポリビュルアルコール、ゼラチン、カゼイン、セルロース等の榭脂を 1種または 2 種以上混合したものや、感光性榭脂、さらには OZWェマルジヨン型の榭脂組成物、 例えば、反応性をェマルジヨンィ匕したもの等を用いることができる。このような榭脂製 遮光部の厚みとしては、 0. 5— 10 mの範囲内で設定することができる。このような 榭脂製遮光部のパターユングの方法は、フォトリソ法、印刷法等一般的に用いられて V、る方法を用いることができる。
[0074] なお、上記遮光部は、基材の光触媒含有細胞接着層が形成される側の面に形成さ れるものであってもよぐまた反対側の面に形成されるものであってもよい。
[0075] また、上記遮光部を形成する場合には、上記光触媒含有細胞接着層と遮光部との 間にプライマー層を形成してもよい。このプライマー層の作用 ·機能は必ずしも明確 なものではないが、プライマー層を形成することにより、光触媒の作用による光触媒 含有細胞接着層中の細胞接着材料の分解または変性を阻害する要因となる遮光部 および遮光部間に存在する開口部からの不純物、特に、遮光部をパターニングする 際に生じる残渣や、金属、金属イオン等の不純物の拡散を防止する機能を示すもの と考えられる。したがって、プライマー層を形成することにより、後述するエネルギー照 射工程で、高感度で細胞接着材料を分解または変性させることができ、その結果、 細胞接着部と細胞接着阻害部とを、高精細なパターン状に形成することができるの である。
[0076] なお、本実施態様においてプライマー層は、遮光部のみならず遮光部間に形成さ れた開口部に存在する不純物が光触媒の作用に影響することを防止するものである ので、プライマー層は開口部を含めた遮光部全面にわたって形成されていることが 好ましい。
[0077] 本実施態様におけるプライマー層は、上記遮光部と上記光触媒含有細胞接着層と が接触しな 、ようにプライマー層が形成された構造であれば特に限定されるものでは ない。
[0078] このプライマー層を構成する材料としては、特に限定されるものではないが、光触 媒の作用により分解されにくい無機材料が好ましい。具体的には無定形シリカを挙げ ることができる。このような無定形シリカを用いる場合には、この無定形シリカの前駆 体は、一般式 SiXで示され、 Xはハロゲン、メトキシ基、エトキシ基、またはァセチル
4
基等であるケィ素化合物であり、それらの加水分解物であるシラノール、または平均 分子量 3000以下のポリシロキサンが好まし 、。
[0079] また、プライマー層の膜厚は、 0. 001 μ mから 1 μ mの範囲内であることが好ましく
、特に 0. 001 μ m力ら 0. 1 μ mの範囲内であること力好ましい。
[0080] (基材)
次に、本工程により形成されるパターニング用基板に用いられる基材について説明 する。本工程に用いられる基材としては、上記光触媒含有細胞接着層および上記遮 光部を形成可能なものであって、後述するエネルギー照射工程にぉ ヽて照射される エネルギーを透過させることが可能なものであれば、特に限定されるものではなぐ例 えばガラス、石英等の無機材料、およびプラスチックで代表される有機材料等を用い ることができる。また、基材の可撓性等は最終的に得られる細胞培養基板の種類や 用途等によって適宜選択される。 [0081] (2)エネルギー照射工程
次に、本実施態様のエネルギー照射工程について説明する。本実施態様における エネルギー照射工程は、上記パターユング用基板に上記基材側カゝらエネルギーを 照射し、上記細胞接着材料が分解または変性された細胞接着阻害部と、上記細胞 接着阻害部以外の細胞接着部とからなるパターンを形成する工程である。
[0082] 本工程においては、上記パターユング用基板の基材側カもエネルギーを照射し、 細胞接着材料が分解または変性されて細胞との接着性が低下した細胞接着阻害部 と、エネルギーが未照射であるため細胞接着材料が残存し、細胞との接着性が良好 な細胞接着部とを形成可能であれば、そのエネルギーの照射方法等は特に限定さ れるものではない。この際、細胞接着阻害部には、光触媒、および細胞接着材料の 分解物や変性物等が含有されることとなる。
[0083] 本実施態様にぉ 、ては、通常、基材側カも全面にエネルギーを照射し、上記遮光 部が形成されて ヽな ヽ領域を細胞接着阻害部、上記遮光部が形成されて ヽる領域 を細胞接着部とする。なお、上記遮光部の形状より、目的とする細胞接着部の形状 が広い場合には、例えばフォトマスク等を用いてエネルギーを照射し、目的とする領 域のみの細胞接着材料を分解または変性させて細胞接着阻害部を形成することが できる。
[0084] また、本工程にぉ ヽては、例えば後述する細胞接着工程で用いられる細胞および 培養液を含有する細胞培養液中で、エネルギー照射が行われてもよい。この場合、 後述する細胞接着工程と、エネルギー照射工程とを同一の装置内等で行うことがで き、細胞培養基板の製造効率を良いものとすることができる。なお、この際上記バタ 一-ング用基板を細胞培養液中に全て浸してエネルギー照射を行ってもょ ヽが、本 実施態様においては、特に上記パターユング用基板の光触媒含有細胞接着層のみ 、細胞培養液と接触させることが好ましい。これにより、照射されたエネルギーの透過 効率を良 ヽものとすることができ、効率よく細胞培養基板を製造することができるから である。ここで、光触媒含有層細胞接着層と細胞培養液とを接触させるとは、光触媒 含有細胞接着層表面を細胞培養液と接触させるだけでなぐ光触媒含有層細胞接 着層全てを細胞培養液中に浸すことも含むものとする。 [0085] また、本実施態様で!/、うエネルギー照射 (露光)とは、エネルギー照射に伴う光触媒 の作用によって、細胞接着材料を分解または変性させることが可能な 、かなるェネル ギ一線の照射をも含む概念であり、光の照射に限定されるものではない。
[0086] 通常このようなエネルギー照射に用いられる光の波長は、 400nm以下の範囲、好 ましくは 380nm以下の範囲力も設定される。これは、上述したように光触媒として用 いられる好ましい光触媒が二酸ィ匕チタンであり、この二酸ィ匕チタンにより光触媒作用 を活性ィ匕させるエネルギーとして、上述した波長の光が好ま U、からである。
[0087] なお、上述した可視光応答型の光触媒を用いる場合には、エネルギー照射の際、 光の波長が 400nmを超えるものも用いることができる。
[0088] このようなエネルギー照射に用いることができる光源としては、水銀ランプ、メタルノヽ ライドランプ、キセノンランプ、エキシマランプ、その他種々の光源を挙げることができ る。ここで、上述したように、基材が細胞接着部と同じパターン状に遮光部を有する場 合には、基材側カゝらエネルギーを全面に照射することにより、行うことができる。
[0089] また、上述したような光源を用いる方法の他、エキシマ、 YAG等のレーザを用いて パターン状に描画照射する方法を用いることも可能である。
[0090] エネルギー照射に際してのエネルギーの照射量は、光触媒の作用によって細胞接 着材料が分解または変性されるのに必要な照射量とする。
[0091] この際、光触媒が含有される光触媒含有細胞接着層を加熱しながらエネルギー照 射することにより、感度を上昇させることが可能となり、効率的に細胞接着材料を分解 または変性させることができる点で好まし 、。具体的には 30°C— 80°Cの範囲内でカロ 熱することが好ましい。
[0092] (3)細胞接着工程
次に、本実施態様における細胞接着工程について説明する。本実施態様の細胞 接着工程は、細胞および培養液を含有する細胞培養液中で、上記細胞接着部に上 記細胞を接着させる工程である。
[0093] 上記エネルギー照射工程により細胞接着部および細胞接着阻害部が形成されて いることから、細胞およびその培養液を含有する細胞培養液中に、細胞接着層を浸 すこと等によって、細胞接着部のみに細胞を接着させることができるのである。本実 施態様においては、上記細胞培養液中で、細胞を接着させることができ、目的とする パターン状に細胞を培養することができるのである。
[0094] このような細胞培養液に用いられる細胞としては、例えば、神経組織、肝臓、腎臓、 脾臓、血管、脳、軟骨等、血球系等の非接着性細胞以外なら、生体に存在するあら ゆる組織とそれに由来する細胞とすることができる。また一般的に非接着性の細胞に ついても、近年、接着固定を行う為に細胞膜を修飾する技術が考案されており、必要 に応じてこのような技術を用いることで本実施態様に用いることが可能である。
[0095] ここで、上述したような各組織は種々の機能をもつ細胞により形成されていることか ら、所望する細胞を選択し、使用する必要がある。例えば肝臓の場合、肝実質細胞 以外にも上皮細胞、内皮細胞、クッパー細胞、繊維芽細胞、脂肪摂取細胞等から形 成されることとなる。なおこの場合、細胞の種類により細胞接着材料に対する接着性 が異なる為、細胞種に応じて、上記光触媒含有細胞接着層に用いられる細胞接着 材料やその組成比の選択が必要となる。
[0096] このような細胞の含有量は、細胞の種類等により適宜選択されるものである力 通 常細胞培養液中に 104個/ ml— 108個/ ml、中でも 105個/ ml— 107個/ mlの範 囲内含有されていることが好ましい。これにより、上記細胞接着部上に効率よく細胞 を接着させることができるカゝらである。
[0097] また、本工程に用いられる培養液は、上記細胞の種類に応じて適宜選択されるもの であり、例えば、「組織培養の技術 第三版 基礎編」 p3— p5 (日本組織培養学会編 集)に記載されている培養液 (培地)等を用いることができる。また、イーグル培地、フ イツシヤー培地など市販品を用いることもできる。
[0098] ここで、本工程を行う際には、上記細胞培養液中の温度や pHが一定に保たれて ヽ ることが好ましい。これにより、細胞の死滅を防ぐことができるからである。
[0099] また、本工程にぉ 、て上記細胞接着部上に細胞を接着させる間、上記細胞接着阻 害部に連続的、または断続的にエネルギーを照射してもよい。これにより、上記光触 媒含有細胞接着層中に含有される光触媒の作用によって、細胞接着阻害部上に付 着した細胞等を除去すること等ができ、細胞接着部のみに、高精細なパターン状に 細胞を接着させることができるからである。ここで、照射されるエネルギーは、光触媒 の作用により細胞接着阻害部上に付着した細胞等を除去すること等が可能なェネル ギーであれば、特に限定されるものではなぐ上記エネルギー照射工程で照射される エネルギーと同様とすることができる。また、上記細胞接着部の形状と遮光部との形 状が同じである場合には、この場合においても、上記基材側カゝら全面にエネルギー を照射することによって、細胞接着阻害部上の細胞を除去することが可能となるので ある。
[0100] (4)その他
本実施態様の細胞培養基板の製造方法においては、上記各工程以外に、必要に 応じて適宜他の工程を有していてもよぐ例えば、上記細胞接着工程後、基材側から 上記細胞接着阻害部にエネルギーを照射することにより、上記細胞接着部に接着し た上記細胞のパターンを維持する細胞パターン維持工程を行ってもょ ヽ。これにより 、細胞接着部工程後、細胞が分泌したたんぱく質や、細胞それ自体等が、細胞接着 阻害部上に付着した場合等であっても、エネルギー照射に伴う光触媒の作用により これらの細胞を除去することができる力もである。
[0101] 上記細胞パターン維持工程は、基材側力 エネルギーを照射し、上記細胞接着部 上に付着した細胞等を除去することが可能な方法であれば、そのエネルギーの照射 方法等は特に限定されるものではなぐ例えば上記細胞培養液と細胞接着層が接触 した状態で行ってもよぐまた細胞が接着した細胞培養基板を、細胞培養液から引き 上げた後、行うものであってもよい。
[0102] ここで、上記細胞パターン維持工程におけるエネルギー照射の方法等については 、上記エネルギー照射工程と同様とすることができるので、ここでの詳しい説明は省 略する。
[0103] 2.第 2実施態様
次に、本発明の細胞培養基板の製造方法の第 2実施態様について説明する。本 発明の細胞培養基板の製造方法の第 2実施態様は、基材上に、遮光部および、上 記遮光部を覆うように、細胞と接着性を有し、かつエネルギー照射に伴う光触媒の作 用により分解または変性される細胞接着材料を含有する細胞接着層を形成し、バタ 一ユング用基板とするパターユング用基板形成工程と、 上記パターユング用基板に上記基材側力 エネルギーを照射し、上記細胞接着材 料が分解または変性された細胞接着阻害部と、上記細胞接着阻害部以外の細胞接 着部とからなるパターンを形成するエネルギー照射工程と、
細胞および培養液を含有する細胞培養液中で、上記細胞接着部に上記細胞を接 着させる細胞接着工程と
を有するものであって、上記パターニング用基板形成工程力 上記基材上に、少な くとも光触媒を含有する光触媒含有層および上記遮光部を形成し、上記光触媒含有 層上に上記細胞接着層を形成し、パターニング用基板とする工程であるものである。
[0104] 本実施態様は、例えば図 2に示すように、まず、基材 1上に遮光部 2を形成し、その 遮光部 2を覆うように、光触媒を含有する光触媒含有層 9を形成し、その光触媒含有 層 9上に細胞接着層 10を形成してパターニング用基板とするパターニング用基板形 成工程を行う(図 2 (a) )。続いて、上記パターユング用基板の基材 1側からエネルギ 一 4を照射し (図 2 (b) )、光触媒含有層 9に含有される光触媒の作用によって細胞接 着層 10中に含有される細胞接着材料が分解または変性されて細胞との接着性が低 下した細胞接着阻害部 5と、エネルギー 4が未照射の領域であり、細胞との接着性が 良好な細胞接着部 6とからなるパターンを形成する(図 2 (c) )エネルギー照射工程を 行う。次に、細胞および培養液を含有する細胞培養液 7中で、上記細胞接着部 6〖こ 細胞 8を接着させる細胞接着工程(図 2 (d) )を行うことにより、細胞接着部 6のみに高 精細に細胞 8が接着された細胞培養基板を製造することができるのである。
[0105] なお、上記パターニング用基板形成工程においては、例えば図 3に示すように、基 材 1上に光触媒含有層 9を形成し、その光触媒含有層 9上に遮光部 2を形成した後、 その遮光部 2を覆うように細胞接着層 10を形成してもよ ヽ。
[0106] 本実施態様にお ヽては、細胞接着材料を含有する細胞接着層および、光触媒を 含有する光触媒含有層が別々に形成されることから、エネルギー照射工程等におい て、基材側からエネルギーが照射された場合、上記光触媒含有層中の光触媒が励 起されて、隣接する細胞接着層中の細胞接着材料を分解または変性させることとな るのである。本実施態様によれば、細胞接着工程により接着される細胞は、上記細胞 接着層上に接着されることとなるため、直接細胞と光触媒とが接触する可能性が少な ぐ経時で細胞が光触媒の影響を受ける可能性を低いものとすることができる、という 利点を有する。さら〖こ、この実施態様においては、光触媒材料と直接混合することが 不可能であったり、極めて高価であったりする細胞接着材料を用いることが可能とな る。以下、本実施態様の細胞培養基板の製造方法における各工程ごとに説明する。
[0107] (1)パターユング用基板形成工程
まず、本実施態様におけるパターユング用基板形成工程について説明する。本実 施態様におけるパターユング用基板形成工程は、基材上に、少なくとも光触媒を含 有する光触媒含有層および上記遮光部を形成し細胞と接着性を有し、かつエネルギ 一照射に伴う光触媒の作用により分解または変性される細胞接着材料を含有する細 胞接着層を形成し、パターユング用基板とする工程である。
[0108] 本実施態様においては、上記パターユング用基板を形成することが可能であれば 、そのパターユング用基板の構成等は特に限定されるものではなぐ上述したように、 基材上に遮光部を形成し、その遮光部を覆うように光触媒含有層を形成し、その光 触媒含有層上に細胞接着層を形成し、パターユング用基板としてもよぐまた基材上 に光触媒含有層を形成し、その光触媒含有層上に遮光部を形成し、その遮光部を 覆うように細胞接着層を形成し、パターユング用基板としてもよい。どちらの場合にお V、ても、後述するエネルギー照射工程で基材側からエネルギーが照射された際に、 遮光部が形成された領域上には光触媒含有層中の光触媒の作用を及ばないものと することができ、この領域を細胞接着部とすることができるからである。なお、上記遮 光部は、基材の、上記光触媒含有層および細胞接着層が形成される面と反対側の 面に形成されて 、てもよ 、。
[0109] 以下、本工程により形成されるパターユング用基板の各構成ごとに説明する。なお 、本実施態様に用いられる基材および遮光部やプライマー層等については、上述し た第 1実施態様と同様であるので、ここでの詳しい説明は省略する。
[0110] (細胞接着層)
まず、本工程により形成される細胞接着層について説明する。本工程により形成さ れる細胞接着層は、少なくとも細胞との接着性を有する細胞接着材料を有する層で ある。 [0111] 具体的な細胞接着材料としては、第 1実施態様で説明した光触媒含有細胞接着層 に用いられる細胞接着材料と同様のものを用いることができるので、ここでの詳しい 説明は省略する。また、本工程により形成される細胞接着層にも、第 1実施態様の光 触媒含有細胞接着層で説明した細胞接着阻害性を有する材料が含有されているこ とが好ましい。これにより、後述するエネルギー照射工程でエネルギー照射された領 域である細胞接着阻害部の細胞との接着性を低いものとすることが可能となる力 で ある。
[0112] また、このような細胞接着層の形成は、上記細胞接着材料を含有する細胞接着層 形成用塗工液を、一般的な塗布方法により塗布すること等により行うことができ、第 1 実施態様で説明した光触媒含有細胞接着層の形成方法と同様とすることができるの で、ここでの説明は省略する。
[0113] また、本実施態様においては、後述する光触媒含有層を形成した後、細胞接着層 を形成する際、例えば細胞接着材料が含有されて 、る細胞接着材料含有液中に、 上記光触媒含有層を浸して、吸着法によりその光触媒含有層上に細胞接着層を形 成してもよい。本実施態様においては、後述するエネルギー照射工程を液中で行う ことが可能であり、また細胞接着工程は、細胞培養液中で行われる。したがって、例 えば細胞接着材料として、乾燥等に弱!ヽ材料や酸素に弱!ヽ材料等を用いた場合で あっても、エネルギー照射工程をこの細胞接着材料含有液中や細胞培養液中等で 行い、その後細胞接着工程を行うことにより、細胞培養基板製造中に細胞接着材料 が乾燥したり変性したりすること等を防ぐことができ、目的とする細胞をパターン状に 接着させることが可能となるからである。
[0114] このような細胞接着材料含有液中で細胞接着層の形成を行うことが好ま 、細胞 接着材料としては、例えばタンパク質など乾燥によって機能が低下する材料が挙げら れる。例えば、コラーゲン、フイブロネクチン、 γ -グロブリン等が挙げられる。また、細 胞接着材料含有液に用いられる溶媒としては、例えば水、アルコール、エチレンダリ コール、酸、緩衝液、培地等が挙げられる。
[0115] なお、本工程により形成される細胞接着層の膜厚は、細胞培養基板の種類等によ つて適宜選択されるものである力 通常 0. OOl /z m—l. O /z m程度、中でも 0. 005 μ m— 0. 1 μ m程度とすること力 Sできる。
[0116] (光触媒含有層)
次に、本工程により形成される光触媒含有層について説明する。本工程により形成 される光触媒含有層は、少なくとも光触媒を含有する層であれば、特に限定されるも のではなぐ光触媒のみ力もなる層であってもよぐまたバインダ等、他の成分を含有 する層等であってもよい。
[0117] 本実施態様で用いられる光触媒としては、第 1実施態様における光触媒含有細胞 接着層に用いられるものと同様とすることができ、本実施態様においても特に酸ィ匕チ タンが用いられることが好まし!/、。
[0118] ここで、光触媒のみからなる光触媒含有層を形成する場合には、上記細胞接着層 中の細胞接着材料の分解または変性に対する効率が向上し、処理時間の短縮化等 のコスト面で有利である。一方、光触媒とバインダとからなる光触媒含有層を形成す る場合には、光触媒含有層の形成が容易であるという利点を有する。
[0119] 光触媒のみ力 なる光触媒含有層の形成方法としては、例えば、スパッタリング法、 CVD法、真空蒸着法等の真空製膜法を用いる方法を挙げることができる。真空製膜 法により光触媒含有層を形成することにより、均一な膜でかつ光触媒のみを含有する 光触媒含有層とすることが可能であり、これにより細胞接着材料を均一に分解または 変性させることが可能であり、かつ光触媒のみ力もなることから、バインダを用いる場 合と比較して効率的に細胞接着材料を分解または変性させることが可能となる。
[0120] また、光触媒のみからなる光触媒含有層の形成方法の他の例としては、例えば光 触媒が二酸化チタンの場合は、基材上に無定形チタニアを形成し、次いで焼成によ り結晶性チタニアに相変化させる方法等が挙げられる。ここで用いられる無定形チタ ユアとしては、例えば四塩化チタン、硫酸チタン等のチタンの無機塩の加水分解、脱 水縮合、テトラエトキシチタン、テトライソプロポキシチタン、テトラー n—プロポキシチタ ン、テトラブトキシチタン、テトラメトキシチタン等の有機チタンィ匕合物を酸存在下にお いて加水分解、脱水縮合によって得ることができる。次いで、 400°C— 500°Cにおけ る焼成によってアナターゼ型チタニアに変性し、 600°C— 700°Cの焼成によってルチ ル型チタニアに変性することができる。 [0121] また、バインダを用いる場合は、バインダの主骨格が上記の光触媒の光励起により 分解されないような高い結合エネルギーを有するものが好ましぐ例えばこのようなバ インダとしては、上述した細胞接着層の項で説明したオルガノポリシロキサン等を挙 げることができる。
[0122] このようにオルガノポリシロキサンをバインダとして用いた場合は、上記光触媒含有 層は、光触媒とバインダであるオルガノポリシロキサンを必要に応じて他の添加剤とと もに溶剤中に分散して塗布液を調製し、この塗布液を基材上に塗布することにより形 成することができる。使用する溶剤としては、エタノール、イソプロパノール等のアルコ ール系の有機溶剤が好ましい。塗布はスピンコート、スプレーコート、ディップコート、 ロールコート、ビードコート、ダイコート等の公知の塗布方法により行うことができる。バ インダとして紫外線硬化型の成分を含有して!/ヽる場合、紫外線を照射して硬化処理 を行うことにより光触媒含有層を形成することができる。
[0123] また、バインダとして無定形シリカ前駆体を用いることができる。この無定形シリカ前 駆体は、一般式 SiXで表され、 Xはハロゲン、メトキシ基、エトキシ基、またはァセチ
4
ル基等であるケィ素化合物、それらの加水分解物であるシラノール、または平均分子 量 3000以下のポリシロキサンが好まし!/、。
[0124] 具体的には、テトラエトキシシラン、テトライソプロボキシシラン、テトラー n—プロポキ シシラン、テトラブトキシシラン、テトラメトキシシラン等が挙げられる。また、この場合に は、無定形シリカの前駆体と光触媒の粒子とを非水性溶媒中に均一に分散させ、透 明基材上に空気中の水分により加水分解させてシラノールを形成させた後、常温で 脱水縮重合することにより光触媒含有層を形成できる。シラノールの脱水縮重合を 1 00°C以上で行えば、シラノールの重合度が増し、膜表面の強度を向上できる。また、 これらの結着剤は、単独あるいは 2種以上を混合して用いることができる。
[0125] 光触媒含有層中の光触媒の含有量は、 5— 60重量%、好ましくは 20— 40重量% の範囲で設定することができる。また、光触媒含有層の厚みは、 0. 05— 10 /z mの範 囲内が好ましい。
[0126] また、光触媒含有層には上記の光触媒、バインダの他に、上述した細胞接着層に 用いられる界面活性剤等を含有させることもできる。 [0127] ここで、本実施態様においては上記光触媒含有層は、その表面は細胞との接着性 力 例えば表面が高い親水性を有すること等によって細胞との接着性が低いことが 好ましい。これにより、後述するエネルギー照射工程において、上記細胞接着層が分 解等されて光触媒含有層が露出した場合に、その領域を細胞との接着性が低い領 域とすることができる力 である。
[0128] (2)エネルギー照射工程
本実施態様におけるエネルギー照射工程は、上記パターユング用基板に基材側 からエネルギーを照射し、上記細胞接着材料が分解または変性された細胞接着阻 害部と、上記細胞接着阻害部以外の細胞接着部とからなるパターンを形成する工程 である。
[0129] 本工程においては、上記パターユング用基板の基材側カもエネルギーを照射し、 細胞接着材料が分解または変性されて細胞との接着性が低下した細胞接着阻害部 と、エネルギーが未照射であるため細胞接着材料が残存し、細胞との接着性が良好 な細胞接着部とを形成可能であれば、そのエネルギーの照射方法等は特に限定さ れるものではない。この際、例えば上記細胞接着材料がエネルギー照射に伴う光触 媒の作用により分解されるものである場合には、細胞接着阻害部中にはその細胞接 着材料が少量含有されて!ヽる、または細胞接着材料の分解物等が含有されて!ヽる、 もしくは細胞接着層が完全に分解除去されて光触媒含有層が露出すること等となる。 また、上記細胞接着材料がエネルギー照射に伴う光触媒の作用により変性されるも のである場合には、細胞接着阻害部中にはその変性物等が含有されていることとな る。
[0130] 本実施態様にぉ 、ても、通常、基材側カも全面にエネルギーを照射し、上記遮光 部が形成されて ヽな ヽ領域を細胞接着阻害部、上記遮光部が形成されて ヽる領域 を細胞接着部とする。なお、上記遮光部の形状より、目的とする細胞接着部の形状 が広い場合には、例えばフォトマスク等を用いてエネルギーを照射し、目的とする領 域のみの細胞接着材料を分解または変性させて細胞接着阻害部を形成することが できる。
[0131] また、本工程は上述したように、細胞接着材料を含有する細胞接着材料含有液中 や、後述する細胞接着工程で用いられる細胞および培養液を含有する細胞培養液 中で、エネルギー照射が行われてもよい。なお、この際上記パターユング用基板を全 て細胞培養液中に浸してエネルギー照射を行っても良 、が、本実施態様にぉ 、て は、上記パターユング用基板の基材を細胞培養液と接触させないことが好ましい。こ れにより、照射されたエネルギーの透過効率を良いものとすることができ、効率よく細 胞培養基板を製造することができるからである。
[0132] なお、本工程において照射するエネルギーの種類や、照射方法等については、上 述した第 1実施態様のエネルギー照射工程と同様とすることができるので、ここでの 詳しい説明は省略する。
[0133] (3)細胞接着工程
次に、本実施態様における細胞接着工程について説明する。本実施態様の細胞 接着工程は、細胞および培養液を含有する細胞培養液中で、上記細胞接着層にお ける細胞接着部に、細胞を接着させる工程である。
[0134] 本実施態様における細胞接着工程については、上記第 1実施態様における細胞 接着工程と同様とすることができるので、ここでの詳しい説明は省略する。なお、本実 施態様においても、上記細胞接着部上に細胞を接着させる際、細胞接着阻害部に エネルギーを照射してもよ 、。
[0135] (4)その他
本実施態様においても、上記各工程以外に、必要に応じて適宜他の工程を有して いてもよぐ例えば、上記細胞接着工程後、上記基材側から上記細胞接着阻害部に エネルギーを照射することにより、上記細胞接着部に接着した上記細胞のパターンを 維持する細胞パターン維持工程を行ってもよい。これにより、細胞接着部工程後、た んぱく質や細胞が細胞接着阻害部上に付着した場合等であっても、エネルギー照射 に伴う光触媒の作用によりこれらの細胞を除去することができるからである。
[0136] なお、上記細胞パターン維持工程についても、上記第 1実施態様と同様とすること ができるので、ここでの詳し 、説明は省略する。
[0137] B.細胞培養基板製造装置
次に、本発明の細胞培養基板製造装置について説明する。本発明の細胞培養基 板製造装置は、基板を支持する基板支持部と、上記細胞および培養液を含有する 細胞培養液を保持し、かつ上記細胞培養液の pHを維持する pH調整手段および上 記細胞培養液の温度を維持する温度調整手段を有する細胞培養液保持部と、上記 基板にエネルギーを照射するエネルギー照射部とを有することを特徴とするものであ る。
[0138] 本発明の細胞培養基板製造装置は、例えば図 4に示すように、基板 21を支持する 基板支持部 22と、細胞培養液 7を保持する細胞培養液保持部 23と、基板にェネル ギーを照射するエネルギー照射部 24とを有するものであって、上記細胞培養液保持 部 23には、細胞培養液 7中の pHを維持する pH調整手段(図示略)および、細胞培 養液 7中の温度を維持する温度調整手段(図示略)を有するものである。
[0139] 本発明によれば、上記細胞培養基板製造装置が、上記細胞培養液保持部、基板 支持部、およびエネルギー照射部を有することから、例えば光触媒を含有する層等 を用いて、細胞培養液中で細胞を培養する際、基板の細胞を培養する領域以外の 領域に付着したたんぱく質や細胞をエネルギー照射ににより除去すること等ができ、 高精細なパターン状に細胞が培養された細胞培養基板を製造することが可能な、細 胞培養基板製造装置とすることができる。
[0140] ここで、本発明に用いられる基板としては、基材と、その基材上に形成された遮光 部と、基材上に上記遮光部を覆うように形成され、細胞と接着性を有しかつエネルギ 一照射に伴う光触媒の作用により分解または変性される細胞接着材料を含有する細 胞接着層とを有するパターユング用基板であることが好ましい。これにより、基板支持 部に上記パターユング用基板を支持させて、基材側カもエネルギー照射部によって エネルギーを照射することにより、遮光部が形成されて!ヽな 、領域にのみエネルギー を照射することができ、細胞接着層中の細胞接着材料が分解または変性された細胞 接着阻害部と、それ以外の領域である細胞接着部からなるパターンを形成することが できる。続いて、この細胞接着層を、上記細胞培養液保持部における細胞培養液中 に浸すことにより、細胞を細胞接着部上にのみ付着させることができ、目的とするバタ ーン状に細胞を培養することができる力もである。なお、上記エネルギー照射は、細 胞接着層を細胞培養液中に浸した状態で行ってもよぐまた細胞培養液に浸さない 状態で、行ってもよい。
[0141] 本発明においては、上記細胞培養液保持部と、エネルギー照射部とが、一つの装 置内に含まれていることから、上記細胞培養液中で細胞を接着させる際や、細胞を 接着させた後、上記細胞接着阻害部にエネルギーを照射することができることから、 細胞接着阻害部上にたんぱく質や細胞が付着した場合であっても、エネルギー照射 に伴う光触媒の作用により細胞等を除去することが可能となり、細胞接着部上にのみ 、高精細に細胞を接着させることができるのである。
以下、本発明の細胞培養基板製造装置の各構成ごとに説明する。
[0142] 1.基板支持部
まず、本発明の細胞培養基板製造装置における基板支持部について説明する。 本発明における基板支持部は、基板を支持することが可能なものであれば、特に限 定されるものではなぐ自在に基板の高さや位置を調整するものとすることが好ましい
[0143] また、この基板支持部には、基板の温度を維持する温度調整手段等が設けられて いてもよい。これにより、細胞接着部上に接着した細胞の活性を保つこと等が可能と なり、高品質な細胞培養基板を製造することができる力 である。
[0144] 2.細胞培養液保持部
次に、本発明の細胞培養基板製造装置における細胞培養液保持部について説明 する。本発明における細胞培養液保持部は、細胞および培養液を含有する細胞培 養液を保持し、かつ上記細胞培養液の pHを維持する pH調整手段および上記細胞 培養液の温度を維持する温度調整手段を有するものであれば、特に限定されるもの ではなぐ必要に応じて攪拌手段等を有するものであってもよい。
[0145] 本発明にお ヽては、上記細胞培養液を保持する細胞培養液保持部に、上記 pH調 整手段や温度調整手段が設けられていることから、細胞培養液中の pHや温度を一 定に保つことができ、細胞が死滅したり活性が悪くなることを防止することができるの である。このような pH調整手段としては、一般的な細胞培養装置において、 pH調整 手段として用いられて 、るものを用いることが可能であるので、ここでの説明は省略 する。また、温度調整手段についても、上記細胞培養液保持部中の細胞培養液の 温度を維持することが可能なものであれば、一般的な細胞培養装置において、温度 調整手段として用いられて 、るものを用いることが可能であるので、ここでの説明は 省略する。
[0146] 3.エネルギー照射部
次に、本発明の細胞培養基板製造装置におけるエネルギー照射部について説明 する。本発明におけるエネルギー照射部は、上記基板支持部により支持されている 基板に、例えば光触媒を含有する層を用いてエネルギーを照射し、エネルギー照射 された領域の細胞を除去等して、細胞のパターンを維持すること等が可能なものであ れば特に限定されるものではなぐ特に上述したパターニング用基板の上記細胞接 着層に含有される細胞接着材料を光触媒の作用により、分解または変性することが 可能なものであることが好まし 、。
[0147] このようなエネルギー照射に用いることができる光源としては、光触媒を活性化させ ることが可能なものであれば、特に限定されるものではなぐ例えば水銀ランプ、メタ ルハライドランプ、キセノンランプ、エキシマランプ、その他種々の光源を挙げることが できる。また、エキシマ、 YAG等のレーザ等を光源とするものであってもよい。これら の光源を用いることにより、光触媒を励起させることができ、上記細胞接着部を形成 することができるカゝらである。
[0148] 4.細胞培養基板製造装置
本発明の細胞培養基板製造装置は、上記基板支持部、細胞培養液保持部、エネ ルギ一照射部を有するものであれば、特に限定されるものではなぐ必要に応じて適 宜必要な部材を有していてもよい。また、本発明の細胞培養基板製造装置は、上述 した「A.細胞培養基板の製造方法」等に用いられることが好ま 、。
[0149] なお、本発明は上記実施形態に限定されるものではない。上記実施形態は、例示 であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成 を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範 囲に包含される。
実施例
[0150] 以下に実施例を示し、本発明をさらに具体的に説明する。 [0151] <実施例 1 >
(ランプ付きインキュベータの作製)
市販の pH調整機能ならびに温度調整機能のっ 、たインキュベータを改造し、天井 部分に水銀ランプを設置しタイマー付き電源をインキュベータの外部に取り付けた。 また、上記細胞培養用基板を四隅で支えることができる高さ調整可能な治具を天井 に設置した。さらに、 5%CO 95%Airのレギユレータ付きボンべを流量計を介してィ
2
ンキュベータに接続した。
[0152] [パターユング用基板形成工程]
(光触媒含有層の形成)
イソプロピルアルコール 3g、オルガノシラン TSL8114 (GE東芝シリコーン) 0. 4g、光 触媒無機コーティング剤 ST— K01 (石原産業) 1. 5gを混合し、攪拌しながら 20分間 、 100。Cでカロ温した。
一般的なクロムマスクを作製する手順により、遮光部 80 m開口部 300 mのスト ライプ状遮光層を基板の表面に設けた 3cm角の石英ガラス基板を作製した。この石 英ガラス基板表面に上記光触媒コーティング液をスピンコーティング法により塗布し、 その基板を 150°Cの温度で 10分間乾燥することにより、加水分解、重縮合反応を進 行させ、光触媒がオルガノポリシロキサン中に強固に固定された膜厚 0. の光 触媒含有層を基板上に形成した。
[0153] (細胞接着材料含有層の形成)
フイブロネクチン F— 4759 (シグマ) 0. 2mg、純水 200mlとを混合し、この水溶液を 先に光触媒含有層を設けた基板の光触媒層に対し、基板面積 lcm2当たり 300 1の 比率で滴下し、これを 4°C下で 24時間静置した。更に基板を PBSにて 2回洗浄し、基 板上に光触媒含有層と細胞接着材料含有層を有するパターユング用基板を得た。 当該基板は PBSに漬けた状態で速やかに次の工程に移した。
[0154] [エネルギー照射工程]
シャーレに PBSを注ぎ、上記パターユング用基板をインキュベータ内の治具でフイブ ロネクチン吸着面を下にして支え、フイブロネクチン吸着面をシャーレ内の PBSに浸し た。天井の水銀ランプにより 6jZcm2 (測定波長 254nm)の紫外線露光を行い、未露 光部が細胞接着性で露光部が細胞接着阻害性にパターン化された細胞接着性表 面を有する細胞培養用基板を得た。
[細胞接着工程]
各種組織に由来する細胞の培養実験手順にっ ヽては、例えば"組織培養の技術 第三版基礎編"、日本組織培養学会編、朝倉書店等にその詳細が述べられている。 本出願にお ヽては、ラット肝実質細胞を用いて基板を評価した。
ラットより摘出した肝臓をシャーレに移してメスで 5mm大に細分し、 20mlの DMEM 培地を加えてピペットで軽く懸濁した後、細胞濾過器で濾過した。得られた粗分散細 胞浮遊液を 500— 600rpmで 90秒間遠心処理し、上清を吸引して除去した。残留した 細胞に新たに DMEM培地を加えて再び遠心処理した。この操作を 3回繰り返すこと により、ほぼ均一な肝実質細胞を得た。得られた肝実質細胞に、 DMEM培地 20mlを 加えて懸濁し、肝実質細胞懸濁液を調製した。
次に Wavmouth MB752Z1培地(L-グルタミン含有、 NaHCO非含有)(ギブコ)
3
14.12gに蒸留水 900mlを添カ卩した。これに NaHCO 2.24g、アンホテリシン B液(ICN)
3
10ml、ペニシリンストレプトマイシン液(ギブコ) 10mlをカ卩えて攪拌した。これを pH7.4に 調整した後、全量を 1000mlとし、 0.22 μ mのメンブレンフィルターで濾過滅菌したもの を Waymouth MB752Z1培地液とした。
先に作成した肝実質細胞懸濁液を、同じく作成した Waymouth MB752Z1培地液に 懸濁した上で、シャーレ内に置かれた上述の細胞培養用パターユング基板上に播種 した。この基板を上記インキュベータ内で殺菌灯オフ、 37°C、 5%COの条件下で 24時
2
間静置し、基板上全面に肝実質細胞を接着させた。
この基板を PBSで 2回洗浄することで非接着細胞や死細胞を除去した。シャーレ内 に新 、培地液を加え、上記の細胞接着済み基板を細胞接着面を下にして上記治 具で支え培地液に細胞接着面を浸した。
培地液を交換しながら 48時間まで細胞の培養を続け光学顕微鏡で細胞を観察した ところ、細胞が細胞培養用パターユング基板上の細胞接着部に沿いながら接着して いる事を確認した。
さらに水銀ランプを 4時間当り 5分照射する条件下、培地液を交換しながら 1週間培 養を続けたところ、細胞集合体が基板のパターンに沿って形成されていることを光学 顕微鏡により確認した。
[0156] <実施例 2>
(ランプ付きインキュベータ)
市販の pH調整機能ならびに温度調整機能のっ 、たインキュベータを改造し、床部 分に水銀ランプを設置しタイマー付き電源をインキュベータの外部に取り付けた。ィ ンキュベータに元から備え付けられて 、た棚の代わりに、直径約 3mmの金属ワイヤ でシャーレを支える棚を作り、備え付けた。 5%CO 95%Airのレギユレータ付きボン
2
ベを流量計を介してインキュベータに接続した。
[0157] [パターユング用基板形成工程]
(光触媒含有層の形成)
実施例 1と同様の基板を用い、実施例 1と同様にして行った。
[0158] (基板付きシャーレの作製)
ポリスチレンシャーレの底面中央を直径約 2. 5cmで切り抜き、そこに上記の光触媒 層付き基板を、貼り付けた。
[0159] (細胞接着材料含有層の形成)
上記シャーレを用いて実施例 1と同様に実施し、パターユング用基板を形成した。
[0160] [エネルギー照射工程]
37°C、 5%COに設定済みのインキュベータ内に、 PBSの入った上記細胞接着材料
2
付きシャーレ (パター-ング用基板)を、ワイヤ製棚にシャーレの中央部が力からない ように注意してセットした。インキュベータ床に設置された水銀ランプにより 6jZcm2 ( 測定波長 254nm)の紫外線露光を行い、未露光部が細胞接着性で露光部が細胞 接着阻害性にパターン化された細胞接着性表面を有する細胞培養用基板を得た。
[0161] [細胞接着工程]
実施例 1と同様の実験を行 ヽ、本実施例にお ヽても実施例 1と同様の結果を得た。

Claims

請求の範囲
[1] 基材上に、遮光部および、前記遮光部を覆うように、細胞と接着性を有し、かつェ ネルギー照射に伴う光触媒の作用により分解または変性される細胞接着材料を含有 する細胞接着層を形成し、パターニング用基板とするパターニング用基板形成工程 と、
前記パターユング用基板に前記基材側力 エネルギーを照射し、前記細胞接着材 料が分解または変性された細胞接着阻害部と、前記細胞接着阻害部以外の細胞接 着部とからなるパターンを形成するエネルギー照射工程と、
細胞および培養液を含有する細胞培養液中で、前記細胞接着部に前記細胞を接 着させる細胞接着工程と
を有することを特徴とする細胞培養基板の製造方法。
[2] 前記細胞接着層が、光触媒および前記細胞接着材料を含有する光触媒含有細胞 接着層であることを特徴とする請求の範囲第 1項に記載の細胞培養基板の製造方法
[3] 前記パターユング用基板形成工程が、前記基材上に、少なくとも光触媒を含有する 光触媒含有層および前記遮光部を形成し、前記光触媒含有層上に前記細胞接着 層を形成し、パターユング用基板とする工程であることを特徴とする請求の範囲第 1 項に記載の細胞培養基板の製造方法。
[4] 前記細胞接着工程中に、前記細胞接着阻害部にエネルギーを照射することを特徴 とする請求の範囲第 1項力 第 3項までのいずれかに記載の細胞培養基板の製造方 法。
[5] 前記細胞接着工程後に、前記細胞接着阻害部に前記基材側からエネルギーを照 射することにより、前記細胞接着部に接着した前記細胞のパターンを維持する細胞 ノターン維持工程を行うことを特徴とする請求の範囲第 1項力も第 4項までのいずれ かに記載の細胞培養基板の製造方法。
[6] 基板を支持する基板支持部と、前記細胞および培養液を含有する細胞培養液を 保持し、かつ前記細胞培養液の pHを保持する pH調整手段、および前記細胞培養 液の温度を維持する温度調整手段を有する細胞培養液保持部と、前記基板にエネ ルギーを照射するエネルギー照射部とを有することを特徴とする細胞培養基板製造
PCT/JP2005/005337 2004-03-26 2005-03-24 細胞培養基板の製造方法および細胞培養基板製造装置 WO2005093039A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/594,174 US7687251B2 (en) 2004-03-26 2005-03-24 Method for producing cell culture substrate and apparatus for producing cell culture substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-091653 2004-03-26
JP2004091653A JP4456393B2 (ja) 2004-03-26 2004-03-26 細胞培養基板の製造方法および細胞培養基板製造装置

Publications (1)

Publication Number Publication Date
WO2005093039A1 true WO2005093039A1 (ja) 2005-10-06

Family

ID=35056182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005337 WO2005093039A1 (ja) 2004-03-26 2005-03-24 細胞培養基板の製造方法および細胞培養基板製造装置

Country Status (3)

Country Link
US (1) US7687251B2 (ja)
JP (1) JP4456393B2 (ja)
WO (1) WO2005093039A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571229B2 (ja) * 2009-01-29 2010-10-27 エンパイア テクノロジー ディベロップメント エルエルシー 細胞培養システム、細胞培養方法、細胞培養容器、及び細胞培養容器の製造方法
JP2012125218A (ja) * 2010-12-17 2012-07-05 National Institute Of Advanced Industrial Science & Technology 細胞分別用マイクロチップおよび細胞分別方法ならびに細胞分別装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019390A1 (en) * 2004-01-28 2006-01-26 Dai Nippon Printing Co., Ltd. Patterning substrate and cell culture substrate
US20050255594A1 (en) * 2004-01-28 2005-11-17 Dai Nippon Printing Co., Ltd. Patterning substrate and cell culture substrate
US20070190645A1 (en) * 2004-03-10 2007-08-16 Dai Nippon Printing Co., Ltd. Vascular cell culture patterning substrate
JP4949831B2 (ja) 2004-06-01 2012-06-13 大日本印刷株式会社 人工血管およびその製造方法
JP5082930B2 (ja) * 2008-03-03 2012-11-28 大日本印刷株式会社 微生物培養シート
JP5338609B2 (ja) * 2009-10-16 2013-11-13 大日本印刷株式会社 細胞培養方法
EP2516618B1 (en) * 2010-05-11 2020-07-08 Pall Artelis BVBA Bioreactor for cell culture
WO2012032646A1 (ja) * 2010-09-10 2012-03-15 株式会社島津製作所 細胞培養デバイス及び細胞培養方法
JP5819056B2 (ja) * 2010-11-18 2015-11-18 大日本印刷株式会社 細胞培養用基材
US8759100B2 (en) 2010-12-06 2014-06-24 Dai Nippon Printing Co., Ltd. Method of cell culture
WO2020071332A1 (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
JP7343119B2 (ja) 2019-04-26 2023-09-12 株式会社片岡製作所 細胞培養基材、細胞培養容器、細胞の培養方法、細胞の製造方法、細胞培養基材の製造方法、および細胞培養容器の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037576A (ja) * 1989-06-03 1991-01-14 Kanegafuchi Chem Ind Co Ltd 細胞の配列制御用具の製法
JP2002355026A (ja) * 2001-03-29 2002-12-10 Canon Inc 細胞培養用の基体、その製造方法、それを用いた細胞培養法及び細胞培養装置

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721131A (en) 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US4789601A (en) 1987-05-04 1988-12-06 Banes Albert J Biocompatible polyorganosiloxane composition for cell culture apparatus
US5284766A (en) 1989-02-10 1994-02-08 Kao Corporation Bed material for cell culture
JPH06104061B2 (ja) 1989-02-10 1994-12-21 花王株式会社 細胞培養支持体材料
JPH02245181A (ja) 1989-03-18 1990-09-28 Dainippon Printing Co Ltd 静電荷パターンによる細胞培養方法
EP0402718B1 (en) 1989-06-03 1994-11-02 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Control of cell arrangement
JPH03198771A (ja) 1989-12-27 1991-08-29 Sanyo Electric Co Ltd 神経細胞のパターン化方法
JP3139004B2 (ja) 1990-04-20 2001-02-26 東レ株式会社 細胞培養基材およびそれを用いる細胞培養方法
JPH0494679A (ja) 1990-08-08 1992-03-26 Kao Corp 細胞培養支持体材料
US5096941A (en) 1990-08-23 1992-03-17 The Dow Chemical Company Environmentally degradable polyethylene composition
JP2609559B2 (ja) 1990-09-14 1997-05-14 株式会社バイオマテリアル研究所 組織系細胞の培養に用いる基質
JPH04126071A (ja) 1990-09-17 1992-04-27 Kao Corp 細胞培養用支持体
JPH05176753A (ja) 1991-12-26 1993-07-20 Nec Corp 細胞培養用基板とその作製方法
JPH06335381A (ja) 1993-05-28 1994-12-06 Dainippon Printing Co Ltd 細胞培養基板
JP3126269B2 (ja) 1993-09-07 2001-01-22 株式会社バイオマテリアル研究所 培養基質
US5900160A (en) 1993-10-04 1999-05-04 President And Fellows Of Harvard College Methods of etching articles via microcontact printing
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
JP2500472B2 (ja) 1993-10-06 1996-05-29 日本電気株式会社 細胞配列培養装置およびその方法
JP2570621B2 (ja) 1994-06-27 1997-01-08 日本電気株式会社 細胞培養用基板とその作製方法および細胞配列形成方法
JP2609073B2 (ja) 1994-10-26 1997-05-14 鐘淵化学工業株式会社 細胞の配列制御用具および細胞の配列制御法
US5669303A (en) 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US5725788A (en) 1996-03-04 1998-03-10 Motorola Apparatus and method for patterning a surface
JP2002510969A (ja) 1997-05-14 2002-04-09 ザ ジェネラル ホスピタル コーポレーション マイクロパターン化形態における細胞の共培養
EP1376226B1 (en) 1997-08-08 2010-10-13 Dai Nippon Printing Co., Ltd. Structure for pattern formation, method for pattern formation, and application thereof
JP2002274077A (ja) 1997-08-08 2002-09-25 Dainippon Printing Co Ltd パターン形成体およびパターン形成方法
US5981425A (en) 1998-04-14 1999-11-09 Agency Of Industrial Science & Tech. Photocatalyst-containing coating composition
CA2370781A1 (en) 1999-04-30 2000-11-09 Joseph P. Vacanti Fabrication of vascularized tissue using microfabricated two-dimensional molds
AU2001283492A1 (en) 2000-07-11 2002-01-21 The Johns Hopkins University School Of Medicine Methods of patterning protein and cell adhesivity
EP1199354B1 (en) 2000-10-20 2005-04-20 Sony International (Europe) GmbH A method of forming a cell pattern on a surface
JP4408177B2 (ja) 2000-12-14 2010-02-03 大日本印刷株式会社 パターン形成体の製造方法
JP3550659B2 (ja) 2001-02-28 2004-08-04 独立行政法人産業技術総合研究所 細胞接着性基材
JP4201162B2 (ja) 2001-03-29 2008-12-24 大日本印刷株式会社 パターン形成体の製造方法およびそれに用いるフォトマスク
KR100877708B1 (ko) 2001-03-29 2009-01-07 다이니폰 인사츠 가부시키가이샤 패턴 형성체의 제조 방법 및 그것에 사용하는 포토마스크
US6772687B2 (en) 2001-06-15 2004-08-10 Agfa-Gevaert Method for the preparation of a lithographic printing plate
JP2003009860A (ja) 2001-06-27 2003-01-14 Fuji Photo Film Co Ltd 区画培養基板及びそれを用いたdnaチップ
JP4475847B2 (ja) 2001-07-26 2010-06-09 株式会社セルシード 前眼部関連細胞シート、3次元構造体、及びそれらの製造法
JP5055672B2 (ja) 2001-07-31 2012-10-24 大日本印刷株式会社 薄膜パターン形成用スタンプ
JP4201175B2 (ja) 2001-11-20 2008-12-24 大日本印刷株式会社 パターン形成体の製造方法
JP3975266B2 (ja) 2002-05-24 2007-09-12 独立行政法人産業技術総合研究所 細胞培養装置
JP2004000051A (ja) 2002-05-31 2004-01-08 Ecodevice Co Ltd 細胞培養容器及び培養細胞の製造方法
JP2004057019A (ja) 2002-07-25 2004-02-26 Toshiba Ceramics Co Ltd 細胞培養用基材
JP4201182B2 (ja) 2003-05-20 2008-12-24 大日本印刷株式会社 細胞培養基材およびその製造方法
JP4554913B2 (ja) 2003-11-14 2010-09-29 大日本印刷株式会社 パターニング用基板および細胞培養基板
JP4401153B2 (ja) 2003-12-05 2010-01-20 大日本印刷株式会社 パターニング用基板および細胞培養基板
US20050266319A1 (en) 2004-01-28 2005-12-01 Dai Nippon Printing Co., Ltd. Patterning substrate and cell culture substrate
US20060183219A1 (en) 2004-01-28 2006-08-17 Dai Nippon Printing Co., Ltd. Patterning substrate and cell culture substrate
US20050255594A1 (en) 2004-01-28 2005-11-17 Dai Nippon Printing Co., Ltd. Patterning substrate and cell culture substrate
US20060019390A1 (en) 2004-01-28 2006-01-26 Dai Nippon Printing Co., Ltd. Patterning substrate and cell culture substrate
US7919305B2 (en) 2004-02-19 2011-04-05 Dai Nippon Printing Co., Ltd. Method for manufacturing cell culture substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037576A (ja) * 1989-06-03 1991-01-14 Kanegafuchi Chem Ind Co Ltd 細胞の配列制御用具の製法
JP2002355026A (ja) * 2001-03-29 2002-12-10 Canon Inc 細胞培養用の基体、その製造方法、それを用いた細胞培養法及び細胞培養装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571229B2 (ja) * 2009-01-29 2010-10-27 エンパイア テクノロジー ディベロップメント エルエルシー 細胞培養システム、細胞培養方法、細胞培養容器、及び細胞培養容器の製造方法
JPWO2010086976A1 (ja) * 2009-01-29 2012-07-26 エンパイア テクノロジー ディベロップメント エルエルシー 細胞培養システム、細胞培養方法、細胞培養容器、及び細胞培養容器の製造方法
US9080138B2 (en) 2009-01-29 2015-07-14 Empire Technology Development Llc Cell culture system, cell culture method, cell culture vessel and method for manufacturing cell culture vessel
JP2012125218A (ja) * 2010-12-17 2012-07-05 National Institute Of Advanced Industrial Science & Technology 細胞分別用マイクロチップおよび細胞分別方法ならびに細胞分別装置

Also Published As

Publication number Publication date
US20070141697A1 (en) 2007-06-21
JP2005270055A (ja) 2005-10-06
JP4456393B2 (ja) 2010-04-28
US7687251B2 (en) 2010-03-30

Similar Documents

Publication Publication Date Title
WO2005093039A1 (ja) 細胞培養基板の製造方法および細胞培養基板製造装置
JP4699361B2 (ja) 細胞培養用パターニング基板およびその製造方法
KR100832286B1 (ko) 인공 세포 조직의 작성 방법 및 그를 위한 기재
US8497117B2 (en) Method for manufacturing cell culture substrate
US20050266319A1 (en) Patterning substrate and cell culture substrate
US20060019390A1 (en) Patterning substrate and cell culture substrate
US20080213857A1 (en) Patterning substrate and cell culture substrate
WO2005080547A1 (ja) 細胞培養用パターニング基板
JP4401153B2 (ja) パターニング用基板および細胞培養基板
JP4554913B2 (ja) パターニング用基板および細胞培養基板
US20060183219A1 (en) Patterning substrate and cell culture substrate
JP4303643B2 (ja) 人工組織体およびその製造方法
JP4765934B2 (ja) 血管細胞培養用パターニング基板
JP4201182B2 (ja) 細胞培養基材およびその製造方法
JP4858166B2 (ja) 血管細胞培養用パターニング基板
JP4742599B2 (ja) パターニング用基板および細胞培養基板
JP4862261B2 (ja) パターニング用基板および細胞培養基板
JP4742598B2 (ja) パターニング用基板および細胞培養基板
JP4826092B2 (ja) パターニング用基板および細胞培養基板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007141697

Country of ref document: US

Ref document number: 10594174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10594174

Country of ref document: US

122 Ep: pct application non-entry in european phase