WO2005092962A1 - プラスチックの分解方法 - Google Patents

プラスチックの分解方法 Download PDF

Info

Publication number
WO2005092962A1
WO2005092962A1 PCT/JP2005/005366 JP2005005366W WO2005092962A1 WO 2005092962 A1 WO2005092962 A1 WO 2005092962A1 JP 2005005366 W JP2005005366 W JP 2005005366W WO 2005092962 A1 WO2005092962 A1 WO 2005092962A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
polyester
decomposition
acid
residue derived
Prior art date
Application number
PCT/JP2005/005366
Other languages
English (en)
French (fr)
Inventor
Masaru Hidaka
Takaharu Nakagawa
Toyoyuki Urabe
Tetsuya Maekawa
Original Assignee
Matsushita Electric Works, Ltd.
International Center For Environmental Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd., International Center For Environmental Technology Transfer filed Critical Matsushita Electric Works, Ltd.
Priority to JP2006511493A priority Critical patent/JP4473268B2/ja
Priority to US10/593,081 priority patent/US7601760B2/en
Priority to EP20050721380 priority patent/EP1731557B1/en
Publication of WO2005092962A1 publication Critical patent/WO2005092962A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for decomposing plastic, particularly for recovering plastic valuables from waste.
  • the plastic is made into an oil component that has been decomposed into a low molecular weight by decomposition, and this is reused mainly as a liquid fuel.
  • a decomposition method using a hydrolysis reaction with high-temperature steam has also been proposed. According to this method, the organic polymer components of the thermoplastic plastic and the thermosetting plastic can be temporarily decomposed.
  • Patent Document 1 JP-A-8-85736
  • Patent Document 2 JP-A-2000-53801
  • the present invention has been made in view of the above points, and it is an object of the present invention to provide a method for decomposing plastic, which can decompose plastic so that it can be reused as a raw material of plastic. is there.
  • thermosetting resin containing a polyester and a crosslinked portion thereof is treated with subcritical water at a temperature lower than the thermal decomposition temperature of the thermosetting resin.
  • thermosetting resin plastic
  • a thermosetting resin (plastic) comprising a polyester and a crosslinked portion thereof is treated with subcritical water at a temperature lower than the thermal decomposition temperature of the thermosetting resin.
  • the decomposition products can be reused as raw materials for producing plastics.
  • a compound containing an acid residue derived from a polyester and a residue derived from a crosslinked portion is added not only to a raw material of a thermosetting resin but also to another resin as a low shrinkage agent or a surfactant. It can also be used as a dispersant for pigments in inks and inks.
  • the present invention provides that the subcritical water contains an alkali salt (preferably an alkali metal hydroxide). It is preferred to contain.
  • an alkali salt preferably an alkali metal hydroxide
  • thermosetting resin since the hydrolysis reaction of the thermosetting resin is promoted, the processing time can be shortened.
  • organic acid generated by treating the thermosetting resin with subcritical water can be neutralized with an alkali salt base, the polyhydric alcohol generated at the same time has an acid catalytic effect of the organic acid. Thus, secondary decomposition can be suppressed, and polyhydric alcohol can be efficiently recovered.
  • the present invention relates to an acid contained in a compound containing an acid residue derived from a polyester obtained by decomposing a thermosetting resin and a residue derived from a crosslinked portion, wherein the content of the alkali salt is contained. It is preferably at least 2 molar equivalents relative to the theoretical number of moles of the residue.
  • the organic acid can be sufficiently neutralized, and the effect of suppressing the secondary decomposition of the polyhydric alcohol by the organic acid can be enhanced.
  • a compound containing an acid residue derived from the polyester and a residue derived from a crosslinked portion can be obtained in high yield.
  • the method for decomposing a plastic according to the present invention includes an acid residue derived from a polyester and a residue derived from a crosslinked portion obtained by decomposing a thermosetting resin with subcritical water as described above. It is preferable to include a step of recovering the compound consisting of
  • a compound comprising an acid residue derived from a polyester and a residue derived from a crosslinked portion can be used for IJ.
  • thermosetting resin containing a polyester and a crosslinked portion thereof is not decomposed into a random form, and is a valuable polyhydric alcohol, a polybasic acid, or an acid derived from a polyester.
  • the compound can be decomposed so as to obtain a compound containing a residue and a residue derived from a crosslinked portion. That is, it is possible to prevent the decomposition product from becoming an oily substance composed of various components, and to obtain a decomposition product of a certain quality.
  • the resulting decomposition products can be reused as raw materials for producing plastics.
  • FIG. 1 is a flowchart showing an embodiment of the method of the present invention.
  • FIG. 2 is a schematic view showing steps in an example.
  • FIG. 3 is a chart showing the results of analysis of a black form solution in Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • the plastic to be decomposed in the present invention is a thermosetting resin containing a polyester and a crosslinked portion thereof.
  • the “polyester” is a polymer obtained by polycondensation of a polyhydric alcohol component and a polybasic acid component, in which a polyhydric alcohol residue and a polybasic acid residue are connected to each other via an ester bond.
  • the polyester is not particularly limited as long as the object of the present invention can be achieved. Further, the polyester may include a double bond derived from, for example, an unsaturated polybasic acid.
  • the “crosslinking portion” is a portion that crosslinks between the above polyester molecules.
  • the crosslinked portion is, for example, a portion derived from a crosslinking agent, but is not particularly limited. Further, the crosslinked portion may be a portion derived from one crosslinker or a portion derived from an oligomer or polymer obtained by polymerizing a plurality of crosslinkers (hereinafter, collectively referred to as “polymer”). Further, the bonding position and bonding mode between the molecule and the polyester are not particularly limited.
  • thermosetting resin containing polyester and its crosslinked portion refers to a reticulated heat obtained by crosslinking a polyester obtained from a polyhydric alcohol component and a polybasic acid component via a crosslinked portion. It is a curable resin (reticulated polyester resin).
  • the resin may be any type of resin as long as the object of the present invention is achieved. That is, there is no limitation on the type, structure, and constituent components of the resin, the type, amount and degree of cross-linking (cross-linking agent), the type and amount of additives, and the like.
  • a preferred example of the resin is a reticulated polyester resin obtained by crosslinking a polyhydric alcohol and an unsaturated polyester which is an unsaturated polybasic acid with a crosslinking agent.
  • thermosetting resin mainly refers to a resin cured (crosslinked) by heating or the like, but as long as the object of the present invention is achieved, curing (crosslinking) by heating or the like is possible. Includes ongoing uncured or partially cured resins.
  • Examples of the above-mentioned polyhydric alcohol include glycols such as ethylene glycol, propylene glycol, jetylene glycol, and dipropylene glycol, but are not limited thereto. These can be used in combination.
  • Examples of the polybasic acids include aliphatic unsaturated polybasic acids (for example, aliphatic unsaturated dibasic acids such as maleic anhydride, maleic acid, and fumaric acid).
  • a saturated polybasic acid such as phthalic anhydride may be used in combination with the unsaturated polybasic acid.
  • cross-linking agent may be exemplified by a polymerizable vinyl monomer such as styrene-methyl methacrylate.
  • the cross-linking agent is not limited to this.
  • the present invention provides a method for producing the above thermosetting resin, which comprises subcritical water having a temperature lower than the decomposition temperature of the thermosetting resin.
  • thermosetting resin mainly, waste of thermosetting plastic
  • temperature and pressure are increased to bring the water to a subcritical state, thereby decomposing the thermosetting resin.
  • polyester-derived monomer polyhydric alcohol and polybasic acid
  • the “compound comprising an acid residue derived from the polyester and a residue derived from the crosslinked portion” is a reaction product of a polybasic acid generated by hydrolysis of the polyester and the crosslinked portion.
  • the acid residue includes a residue derived from a polymer obtained by polymerizing the above polybasic acid.
  • the polyester has a fumaric acid residue and the crosslinked portion is a styrene polymer, a styrene-fumaric acid copolymer is obtained as the above compound.
  • the mixing ratio of the above thermosetting resin and water is not particularly limited, but the amount of water to be added is in the range of 100 to 500 parts by mass with respect to 100 parts by mass of the thermosetting resin. Is preferred.
  • subcritical water in the present invention means that the temperature and pressure of water are below the critical point of water (critical temperature 374.4 ° C, critical pressure 22. IMPa), and the temperature is 140 ° C. C or more (In this case, since the ion product becomes about 100 times the normal temperature and the dielectric constant of water drops about 50% of the normal temperature, hydrolysis is promoted and the thermosetting resin can be monomerized. ), Water with a pressure at that time in the range of 0.36MPa (saturated vapor pressure of 140 ° C) or more! , U.
  • the subcritical water temperature in the present invention is lower than the thermal decomposition temperature of the thermosetting resin, and is preferably in the range of 180 to 270 ° C. If the temperature at the time of the decomposition reaction is lower than 180 ° C, it takes a long time for the decomposition treatment, and the treatment cost may increase. On the other hand, the temperature during the decomposition reaction When the temperature exceeds 270 ° C, the polyester and the crosslinked portion are decomposed, and it may be difficult to recover a compound containing an acid residue derived from the polyester and a residue derived from the crosslinked portion.
  • thermosetting resin The thermal decomposition temperature of thermosetting resin is defined as the tangent drawn at the inflection point of the resin component decomposition step in the chart obtained by thermogravimetric analysis (TG analysis) of the resin sample, and the zero horizontal line of the TG curve. Means the temperature corresponding to the intersection of
  • the treatment time with subcritical water is preferably about 114 hours, which depends on conditions such as the reaction temperature.
  • the processing time is preferably shorter because the processing cost is reduced.
  • the pressure of the decomposition reaction (during the treatment with subcritical water) varies depending on conditions such as the reaction temperature, but is preferably in the range of about 2 to 15 MPa.
  • thermosetting plastics resins manufactured from raw materials containing polyhydric alcohols and organic acids.
  • the above-mentioned thermosetting resin is brought into contact with subcritical water at a temperature lower than the thermal decomposition temperature of the resin while treating the resin, whereby the hydrolysis reaction is selectively performed. Can wake up. As a result, it is possible to obtain a compound containing an acid residue derived from a polyhydric alcohol, a polybasic acid, or a polyester and a residue derived from a crosslinked portion, which are valuables.
  • These decomposition products can be collected and reused as raw materials for producing plastics.
  • the subcritical water contains an alkali salt. Since the hydrolysis reaction of the thermosetting resin is promoted by the alkali salt, the processing time can be shortened, and the processing cost can be reduced.
  • thermosetting resin is treated with subcritical water in a high temperature range close to the supercritical state, polyhydric alcohol, which is a decomposition product, is secondarily decomposed by the acid catalysis effect of the organic acid generated at the same time. There is a possibility that.
  • an alkali salt is contained in subcritical water, the organic acid can be neutralized by the base of the alkali salt, so that the above-mentioned secondary decomposition can be suppressed.
  • alkali salt means a salt of an alkali metal or an alkaline earth metal which shows a basic property by reacting with an acid, for example, potassium hydroxide (KOH) or hydroxide potassium.
  • Alkali metal hydroxides such as sodium hydroxide (NaOH), calcium carbonate, barium carbonate, calcium hydroxide , Magnesium carbonate, etc. Power is not limited to this. Of these, alkali metal hydroxides are particularly preferred.
  • the content of the alkali salt in the above subcritical water is not particularly limited, but the content of the acid residue derived from the polyester obtained by decomposing the thermosetting resin and the residue derived from the crosslinked portion are not limited. It is preferably at least 2 molar equivalents based on the theoretical number of moles of the acid residue contained in the compound. When the content of the alkali salt is less than 2 molar equivalents, there is a possibility that the compound may be difficult to recover.
  • the upper limit of the content of the alkali salt in the subcritical water is not particularly limited, but is preferably 10 molar equivalents or less.
  • theoretical molar number of the acid residue contained in the compound containing the acid residue derived from the polyester and the residue derived from the cross-linking portion means that the compound obtained by decomposition is analyzed by NMR. It indicates the estimated number of moles of the acid residue present in the compound, determined from the ratio of the number of the molecules of the acid residue to the residue derived from the crosslinked portion and the amount of the used crosslinkable material.
  • Figure 1 shows the use of subcritical water to decompose a thermosetting resin containing a polyester and its cross-linking part, and acid residues from polyhydric alcohols, polybasic acids, and polyester, and residues from the cross-linking part.
  • 4 is a flow chart showing a process for recovering a compound comprising the above and an inorganic filler contained in the resin.
  • thermosetting resin to be decomposed is mixed with an additive such as water and an alkali metal hydroxide, and the mixture is heated and pressurized to decompose the thermosetting resin.
  • the thermosetting resin is decomposed with subcritical water at a temperature lower than the temperature.
  • solid-liquid separation is performed by a method such as filtration.
  • an inorganic filler such as glass fiber or calcium carbonate contained in the thermosetting resin is obtained as a solid content.
  • Water and water-soluble components dissolved therein are obtained as liquid components. If the solid content contains an unreacted residue of the thermosetting resin or the like, the solid content is mixed with a solvent such as chloroform as necessary. This makes it possible to separate the component soluble in the solvent (unreacted residue of the thermosetting resin) from the inorganic filler insoluble in the solvent. As a result, the inorganic filler can be recovered with high purity.
  • neutralization is performed by adding an acidic solution such as hydrochloric acid to the liquid component obtained by the solid-liquid separation. Causes a precipitate by acidification.
  • the aqueous phase and the precipitate are separated by a method such as filtration.
  • a compound containing an acid residue derived from the polyester and a residue derived from the crosslinked portion for example, a styrene-fumaric acid copolymer (styrene fumarate) or a styrene maleic acid copolymer
  • a compound containing an acid residue derived from the polyester and a residue derived from the crosslinked portion for example, a styrene-fumaric acid copolymer (styrene fumarate) or a styrene maleic acid copolymer
  • the obtained styrene fumarate or the like can be added to another resin and reused as a low shrinkage agent, or as a surfactant or a dispersant for a pigment in an ink. Further, by distilling the aqueous phase obtained above, water, a polyhydric alcohol such as dalicol and an organic acid can be separately recovered. These can be reused as raw materials (monomers) for manufacturing plastics. The water obtained by the distillation can be used again as water for producing subcritical water.
  • thermosetting resin the thermal decomposition temperature of the thermosetting resin, the glycol recovery rate, the organic acid recovery rate, the decomposition rate, and the compound containing an acid residue derived from polyester and a residue derived from a crosslinked portion
  • the formation rate of “compound [1]” was determined as follows. [Thermal decomposition temperature of thermosetting resin]
  • the glycol recovery was calculated from the following equation.
  • Glycol recovery rate (%) Quantitative result of glycol monomer component Z Estimated content of dalicol monomer component in thermosetting resin X 100
  • the organic acid recovery rate was calculated from the following equation.
  • Organic acid recovery rate (%) Quantification result of organic acid monomer component Z Estimated content of organic acid monomer component of thermosetting resin X 100
  • Decomposition rate (%) (Amount of thermosetting resin-Unreacted resin residue) Z Amount of thermosetting resin X 100
  • Formation rate (%) of compound [1] (dry weight of precipitate formed by adding hydrochloric acid to water-soluble component after decomposition treatment to adjust pH to about 4) / (decomposed and obtained (Estimated content of compound [1], determined from the ratio of the number of molecules of acid residues and residues derived from the crosslinks obtained by analyzing the compound by NMR and the amount of the crosslinker forming material used) X 100
  • thermosetting resin unsaturated polyester resin
  • a varnish was prepared by blending 50 wt% of propylene glycol, a glycol which is a polyhydric alcohol, and 50 wt% of maleic anhydride, which is an unsaturated organic acid.
  • styrene as a crosslinking agent was blended with the varnish in an approximately equivalent amount.
  • 50% by weight of a mixture of varnish and styrene and 50% by weight of calcium carbonate were blended and cured to obtain the thermosetting resin.
  • the thermal decomposition temperature of this thermosetting resin was 320 ° C.
  • thermosetting resin 3 g of the above-mentioned thermosetting resin and 15 g of pure water were taken and charged in a reaction tube, and the inside of the reaction tube was replaced and sealed with argon gas.
  • the reaction tube 1 charged with the thermosetting resin and pure water is immersed in a constant temperature bath 2 at 230 ° C to bring the pure water in the reaction tube 1 to a subcritical state.
  • the thermosetting resin was decomposed by leaving it immersed for 4 hours. Thereafter, the reaction tube 1 was taken out of the constant temperature bath 2 and immersed in the cooling bath 3, and the reaction tube 1 was rapidly cooled and returned to room temperature.
  • the content of the reaction tube 1 after the decomposition treatment was a water-soluble component, an unreacted resin residue, and carbonic acid calcium.
  • the content was filtered to separate a solid content, and collected from the reaction tube 1.
  • water-soluble components and unreacted resin residues were analyzed.
  • the glycol monomer component was quantified by gas chromatography analysis (GC analysis) from the water-soluble component, and the glycol recovery was calculated.
  • Organic acid monomer by ion exchange chromatography analysis (IC analysis) The components were quantified to calculate the organic acid recovery rate.
  • the decomposition rate was calculated from the unreacted resin residue. Table 1 shows the results.
  • Example 1 was repeated except that a 0.2 mol / L KOH aqueous solution was used instead of pure water.
  • the decomposition treatment was performed in the same manner as in 1, and the glycol recovery rate, organic acid recovery rate, decomposition rate, and formation rate of compound [1] were calculated. The results are shown in Table 1.
  • Example 1 was repeated except that a 0.5 mol / L KOH aqueous solution was used instead of pure water.
  • the decomposition treatment was performed in the same manner as in 1, and the glycol recovery rate, organic acid recovery rate, decomposition rate, and formation rate of compound [1] were calculated. The results are shown in Table 1.
  • Example 1 was repeated except that an aqueous solution of KOH having a concentration of 1.0 mol Z liter was used instead of pure water.
  • the decomposition treatment was performed in the same manner as in 1, and the glycol recovery rate, organic acid recovery rate, decomposition rate, and formation rate of compound [1] were calculated. The results are shown in Table 1.
  • Decomposition treatment was carried out in the same manner as in Example 1 except that the reaction tube 1 was immersed in a constant temperature bath 2 at 20 ° C. and subjected to decomposition treatment for 20 minutes, and the glycol recovery rate, organic acid recovery rate, decomposition rate, The production rate of compound [1] was calculated. The results are shown in Table 1.
  • glycols and organic acids monomers recovered in the above Examples were propylene glycol and fumaric acid, respectively.
  • Compound [1] precipitated by neutralizing the recovered water-soluble component was a styrene-fumaric acid copolymer represented by [Chemical Formula 1].
  • FIG. 3 shows the result of introducing the chromate form solution in Comparative Example 1 into a gas chromatograph mass spectrometer and analyzing the components in the solution. As is evident from the analysis results, a number of components were detected and identified in the above solution, but compounds having various structural formulas were obtained. Therefore, it can be said that the thermal decomposition reaction is dominant in the decomposition treatment under these conditions, which impedes the high-quality recovery of valuable resources.
  • thermosetting resin containing a polyester and a crosslinked portion thereof is converted at a temperature lower than the thermal decomposition temperature of the thermosetting resin.
  • styrene-fumal which is a compound (compound [1]) containing acid residues derived from polyester and residues derived from the cross-linking part, is heated to glycols and organic acids. It was possible to recover the acid copolymer.
  • the processing time of Examples 13 to 13 is longer than that of Comparative Examples 1 and 2.
  • Glycols and organic acids can be obtained by processing at a force temperature of 360 to 230 ° C. It was confirmed that the recovery rate of wastewater was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、プラスチックを再度同様なプラスチックの原料として再利用できるように分解することができるプラスチックの分解方法、詳細には、ポリエステルとその架橋部を含んでなる熱硬化性樹脂を、該熱硬化性樹脂の熱分解温度未満の温度の亜臨界水で処理することを含む方法を提供する。本発明によれば、熱硬化性樹脂をランダムに分解せずに、多価アルコール、多塩基酸、及びポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物に分解することができる。

Description

プラスチックの分解方法
技術分野
[0001] 本特許出願は、日本国特許出願第 2004— 093363号について優先権を主張する ものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるもの とする。
本発明は、プラスチック、特に廃棄物のプラスチック力 有価物を回収するためのプ ラスチックの分解方法に関するものである。
背景技術
[0002] 従来、プラスチックの廃棄物はその殆どが埋立処分あるいは焼却処理されており、 資源として有効活用されていない。また、埋立処分では埋立用地の確保の困難性や 埋立後の地盤の不安定ィ匕という問題がある。また、焼却処分では炉の損傷、有害ガ スゃ悪臭の発生、 CO排出といった問題がある。このため、 日本国においては、容器
2
包装リサイクル法が 1995年に制定され、プラスチックの回収再利用が義務付けられ るようになった。さらに、各種リサイクル法の施行に伴ってプラスチックを含む製品の 回収リサイクルの流れは加速する傾向にある。
[0003] これらの状況に合わせて、近年、プラスチックの廃棄物を再資源化することが試み られている。その一つとして、超臨界水を反応媒体とする反応により、プラスチック廃 棄物を分解油化し、有用な油状物を回収する方法が提案されている。また、各種構 造材料に使用されている繊維強化プラスチックについては、超臨界水又は亜臨界水 を用いてプラスチック成分を分解し、ガラス繊維や炭素繊維などの繊維を回収し、再 利用する方法が提案されている (例えば、特許文献 1、 2参照)。
[0004] これらの方法では、プラスチックは分解により低分子化した油状成分とし、これを主 に液体燃料として再利用するようにしたものである。また、高温水蒸気による加水分 解反応を利用した分解方法も提案されている。この方法では、熱可塑性プラスチック 及び熱硬化性プラスチックの有機高分子成分を一応、分解することができる。
[0005] しかし、上記の各方法では、プラスチックをランダムに分解するため、分解生成物が 多種成分からなる油状物質となる。すなわち、一定品質の分解生成物を得ることが困 難であった。このため、ゼォライトに代表される触媒を用いて油質の改質を行うことな どの後処理が必要となってコスト高になり、また、改質した生成油においても灯油や 軽油などの石油製品そのものにすることは困難であるので、実用化には至っていな い。そして、石油資源の枯渴、二酸ィ匕炭素による地球温暖化といった地球環境全体 の問題に鑑みると、プラスチックの分解及び再利用の抜本的な対策が必要であると いうのが現状である。
特許文献 1:特開平 8— 85736号公報
特許文献 2:特開 2000— 53801号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は上記の点に鑑みてなされたものであり、プラスチックを再度プラスチックの 原料として再利用できるように分解することができるプラスチックの分解方法を提供す ることを目的とするものである。
課題を解決するための手段
[0007] 本発明にお 、ては、ポリエステルとその架橋部を含んでなる熱硬化性榭脂を、該熱 硬化性榭脂の熱分解温度未満の温度の亜臨界水で処理することを特徴とする。 本発明によれば、ポリエステルとその架橋部を含んでなる熱硬化性榭脂 (プラスチッ ク)を、該熱硬化性榭脂の熱分解温度未満の温度の亜臨界水で処理することによつ て、該熱硬化性榭脂をランダムに分解することなぐ有価物である多価アルコール、 多塩基酸、及びポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物 を得ることができるよう〖こ分解することができる。また、分解生成物が多種成分からな る油状物質となるのを防止して一定品質の分解生成物を得ることができる。さらに、 分解生成物は、プラスチックの製造原料などとして再利用できる。特に、ポリエステル 由来の酸残基と架橋部由来の残基を含んでなる化合物は、熱硬化性榭脂の原料の みならず、他の樹脂に添加して低収縮剤として、あるいは界面活性剤やインク中の顔 料の分散剤などとして応用することもできる。
[0008] また、本発明は、亜臨界水がアルカリ塩 (好ましくは、アルカリ金属の水酸ィ匕物)を 含有することが好ましい。
この場合、熱硬化性榭脂の加水分解反応が促進されるため処理時間を短くするこ とができる。しかも、熱硬化性榭脂を亜臨界水で処理することにより生成される有機酸 をアルカリ塩の塩基で中和することができるので、同時に生成される多価アルコール が該有機酸の酸触媒効果により二次分解されるのを抑制して、多価アルコールを効 率よく回収することができる。
[0009] さらに、本発明は、アルカリ塩の含有量が、熱硬化性榭脂を分解して得られるポリエ ステル由来の酸残基と架橋部由来の残基を含んでなる化合物に含まれる酸残基の 理論モル数に対して、 2モル当量以上であることが好まし 、。
この場合、有機酸の中和を充分に行うことができ、有機酸による多価アルコールの 二次分解の抑制効果を高くすることができる。また、該ポリエステル由来の酸残基と 架橋部由来の残基を含んでなる化合物を収率高く得ることができる。
[0010] さらに、本発明におけるプラスチックの分解方法は、上記のように熱硬化性榭脂を 亜臨界水で分解することにより得られる、ポリエステル由来の酸残基と架橋部由来の 残基を含んでなる化合物を回収する工程を含むことが好ましい。
この場合、ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を 禾 IJ用することがでさる。
発明の効果
[0011] 本発明によれば、ポリエステルとその架橋部を含んでなる熱硬化性榭脂を、ランダ ムに分解せずに、有価物である多価アルコール、多塩基酸、及びポリエステル由来 の酸残基と架橋部由来の残基を含んでなる化合物を得ることができるように分解する ことができる。すなわち、分解生成物が多種成分からなる油状物質となるのを防止し て一定品質の分解生成物を得ることができる。得られた分解生成物は、プラスチック の製造原料などとして再利用できる。
図面の簡単な説明
[0012] [図 1]本発明の方法の一実施態様を示すフローチャートである。
[図 2]実施例における工程を示す概略図である。
[図 3]比較例 1におけるクロ口ホルム溶液の分析結果を示すチャート図である。 発明を実施するための最良の形態
[0013] 以下、本発明を実施するための最良の形態を説明する。
本発明にお ヽて分解の対象となるプラスチックは、ポリエステルとその架橋部を含 んでなる熱硬化性榭脂である。
ここで「ポリエステル」とは、多価アルコール成分と多塩基酸成分が重縮合して得ら れる、多価アルコール残基と多塩基酸残基がエステル結合を介して互いに連結した ポリマーである。該ポリエステルは、本発明の目的を達成することができる限り、特に 限定されない。また、該ポリエステルは、例えば不飽和多塩基酸に由来する、二重結 合を含んでいてもよい。
「架橋部」とは、上記ポリエステルの分子間を架橋する部分である。該架橋部は、例 えば、架橋剤に由来する部分であるが、特に限定されない。また、該架橋部は、 1個 の架橋剤に由来する部分でもよぐ複数の架橋剤が重合したオリゴマー又はポリマー (以下、「ポリマー」と総称する)に由来する部分でもよい。さらに、該分子とポリエステ ルの結合位置及び結合様式も特に限定されな ヽ。
従って、「ポリエステルとその架橋部を含んでなる熱硬化性榭脂」とは、多価アルコ ール成分と多塩基酸成分カゝら得られるポリエステルが架橋部を介して架橋された網 状熱硬化性榭脂 (網状ポリエステル榭脂)である。該榭脂としては、本発明の目的が 達成される限り、いかなる態様の樹脂であってもよい。すなわち、榭脂の種類、構造 及びその構成成分、架橋部 (架橋剤)の種類、量及び架橋度、添加物の種類及び量 などに制限はない。本発明において、該榭脂としては、好適には、多価アルコールと 不飽和多塩基酸力 なる不飽和ポリエステルが架橋剤により架橋された網状ポリエス テル樹脂が挙げられる。
尚、本発明における「熱硬化性榭脂」とは、主として加熱等により硬化 (架橋)された 榭脂を意味するが、本発明の目的が達成される限り、加熱等により硬化 (架橋)が進 行する未硬化又は部分的に硬化された榭脂も含まれる。
[0014] 上記の多価アルコールとしては、エチレングリコール、プロピレングリコール、ジェチ レンダリコール、ジプロピレングリコールなどのグリコール類を例示することができるが 、これに限定されるものではない。尚、これらは併用することができる。 また、上記の多塩基酸としては、脂肪族不飽和多塩基酸 (例えば、無水マレイン酸 、マレイン酸、フマル酸などの脂肪族不飽和二塩基酸など)などを例示することができ る力 これに限定されるものではない。尚、無水フタル酸などの飽和多塩基酸を不飽 和多塩基酸と併用してもよい。
さら〖こ、上記の架橋剤としては、スチレンゃメタクリル酸メチルなどの重合性ビニル モノマーを例示することができる力 これに限定されるものではない。
[0015] 本発明は、上記の熱硬化性榭脂を、該熱硬化性榭脂の分解温度未満の亜臨界水
(亜臨界状態の水)で処理することを特徴とする。すなわち、上記の熱硬化性榭脂( 主として熱硬化プラスチックの廃棄物)に水を加え、温度及び圧力を上昇させて水を 亜臨界状態にして熱硬化性榭脂を分解処理する。これにより、ポリエステル由来のモ ノマー(多価アルコールと多塩基酸)と、ポリエステル由来の酸残基と架橋部由来の 残基を含んでなる化合物を回収することができる。
ここで、「ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物」とは 、ポリエステルの加水分解により生じる多塩基酸と架橋部の反応生成物である。該酸 残基には、上記多塩基酸が重合したポリマー由来の残基が含まれる。例えば、ポリエ ステルがフマル酸残基を有し、架橋部がスチレンポリマーである場合、上記化合物と して、スチレンーフマル酸共重合体が得られる。
また、上記熱硬化性榭脂と水との配合割合は、特に制限されるものではないが、熱 硬化性榭脂 100質量部に対して水の添加量を 100— 500質量部の範囲にするのが 好ましい。
[0016] 本発明における「亜臨界水」とは、水の温度及び圧力が水の臨界点(臨界温度 374 . 4°C、臨界圧力 22. IMPa)以下であって、且つ、温度が 140°C以上(この場合、ィ オン積が常温の約 100倍になり、水の誘電率が常温の約 50%下がることから、加水 分解が促進されて熱硬化性榭脂をモノマー化することができる)、その時の圧力が 0. 36MPa ( 140°Cの飽和蒸気圧)以上の範囲にある状態の水を!、う。
[0017] 本発明における亜臨界水の温度は、熱硬化性榭脂の熱分解温度未満であり、好ま しくは 180— 270°Cの範囲である。分解反応時の温度が 180°C未満であると、分解 処理に多大な時間がかかり、処理コストが高くなる虞がある。一方、分解反応時の温 度が 270°Cを超えると、ポリエステルと架橋部が分解されて、ポリエステル由来の酸 残基と架橋部由来の残基を含んでなる化合物を回収することが困難になる虞がある ここで、熱硬化性榭脂の熱分解温度とは、榭脂サンプルの熱重量分析 (TG分析) で得られたチャートの榭脂成分の分解ステップの屈曲点で引いた接線と、 TG曲線の ゼロ水平線との交点に対応する温度をいう。
また、亜臨界水による処理時間は、反応温度などの条件によって異なる力 1一 4時 間程度が好ましい。この処理時間は、処理コストが少なくなるので、短い方が好ましい 。さらに、分解反応(亜臨界水での処理時)の圧力は、反応温度などの条件によって 異なるが、 2— 15MPa程度の範囲が好ましい。
[0018] 一般に、亜臨界水によるプラスチックの分解処理は、熱分解反応及び加水分解反 応〖こよって起こる。これは、多価アルコール及び有機酸を含む原料により製造された 熱硬化性のプラスチック (榭脂)においても同様である。し力しながら、本発明におい ては、上記の熱硬化性榭脂を、該榭脂の熱分解温度未満の温度の亜臨界水に接触 させて処理することにより、選択的に加水分解反応を起こすことができる。その結果、 有価物である多価アルコール、多塩基酸、及びポリエステル由来の酸残基と架橋部 由来の残基を含んでなる化合物を得ることができる。そして、これらの分解生成物を 回収してプラスチックの製造原料などとして再利用することができる。
[0019] 本発明にお 、ては、亜臨界水がアルカリ塩を含有することが好まし 、。アルカリ塩 により熱硬化性榭脂の加水分解反応が促進されるので、処理時間を短くすることが でき、処理コストを低くすることができる。また、超臨界状態に近い高温域の亜臨界水 で熱硬化性榭脂を処理する場合、分解生成物である多価アルコールが、同時に生 成される有機酸の酸触媒効果により二次分解される虞がある。アルカリ塩を亜臨界水 に含有させた場合、アルカリ塩の塩基によって当該有機酸を中和することができるの で、上記二次分解を抑制することができる。
ここで、「アルカリ塩」とは、酸と反応して塩基性の性質を示すアルカリ金属やアル力 リ土類金属の塩を意味し、例えば、水酸ィ匕カリウム (KOH)や水酸ィ匕ナトリウム(NaO H)などのアルカリ金属の水酸ィ匕物、炭酸カルシウム、炭酸バリウム、水酸化カルシゥ ム、炭酸マグネシウムなどが挙げられる力 これに限定されるものではない。なかでも 、アルカリ金属の水酸化物が特に好ましい。
[0020] 上記亜臨界水中のアルカリ塩の含有量は、特に限定されるものではないが、熱硬 化性榭脂を分解して得られるポリエステル由来の酸残基と架橋部由来の残基を含ん でなる化合物に含まれる酸残基の理論モル数に対して、 2モル当量以上であることが 好ましい。アルカリ塩の含有量が 2モル当量未満であると、前記化合物を回収しにくく なる虞がある。尚、亜臨界水中のアルカリ塩の含有量の上限は、特に限定はされな いが、 10モル当量以下であること力 コスト面など力も好ましい。
また、「ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物に含ま れる酸残基の理論モル数」とは、分解して得られた該化合物を NMRで分析して得ら れた酸残基と架橋部由来の残基の分子の数の比率と、用いた架橋部形成材料の量 より求めた、前記化合物中に存在する酸残基の推定含有モル数を表す。
[0021] 以下、図 1を参照して本発明をさらに説明する。
図 1は、亜臨界水を用 、てポリエステルとその架橋部を含んでなる熱硬化性榭脂を 分解し、多価アルコール、多塩基酸、ポリエステル由来の酸残基と架橋部由来の残 基を含んでなる化合物、及び該榭脂中に含まれた無機フィラーを回収する工程を示 すフローチャートである。
[0022] まず、分解処理の対象となる熱硬化性榭脂と水及びアルカリ金属の水酸化物など の添加物とを混合し、これを加熱加圧することにより、該熱硬化性榭脂の分解温度未 満の亜臨界水で該熱硬化性榭脂を分解処理する。次に、分解処理物を冷却した後 、濾過などでの方法で固液分離する。ここで、熱硬化性榭脂に含まれていたガラス繊 維や炭酸カルシウムなどの無機フイラ一は固形分として得られる。また、水及びこれ に溶解されている水可溶成分は、液分として得られる。尚、上記固形分中に熱硬化 性榭脂の未反応残渣などが含まれている場合は、必要に応じて、固形分をクロロホ ルムなどの溶剤と混合する。これにより、溶剤に可溶な成分 (熱硬化性榭脂の未反応 残渣)と溶剤に不溶な無機フィラーとを分離することができる。その結果、無機フイラ 一を高純度で回収することができる。
[0023] 一方、固液分離で得られた液分に塩酸などの酸性溶液を添加して中和するあるい は酸性にすることにより、沈殿を生じさせる。次に、濾過などの方法により水相と沈殿 物とに分離する。そして、この沈殿物を回収することにより、ポリエステル由来の酸残 基と架橋部由来の残基を含んでなる化合物(例えば、スチレンーフマル酸共重合物( スチレンフマレート)やスチレン マレイン酸共重合物)を得ることができる。得られたス チレンフマレートなどは、他の樹脂に添加して、低収縮剤として、あるいは界面活性 剤やインク中の顔料の分散剤などとして再利用することができる。また、上記で得られ た水相を蒸留することにより、水とダリコールなどの多価アルコールと有機酸とをそれ ぞれ別々に回収することができる。これらは、プラスチックの製造原料 (モノマー)など として再利用できる。尚、蒸留で得られた水は、再度、亜臨界水を生成するための水 として禾 IJ用することができる。
実施例
以下、本発明を実施例によってさらに説明する。
尚、実施例及び比較例において、熱硬化性榭脂の熱分解温度、グリコール回収率 、有機酸回収率、分解率及びポリエステル由来の酸残基と架橋部由来の残基を含ん でなる化合物(以下、「化合物 [ 1 ]」とも称する)の生成率を以下のように求めた。 〔熱硬化性榭脂の熱分解温度〕
榭脂サンプルの熱重量分析 (TG分析)で得られたチャートの榭脂成分の分解ステ ップの屈曲点で引いた接線と、 TG曲線のゼロ水平線との交点に対応する温度を求 めて熱分解温度とした。
〔グリコール回収率〕
グリコール回収率は、以下の式より算出した。
グリコール回収率(%) =グリコールモノマー成分の定量結果 Z熱硬化性榭脂のダリ コールモノマー成分の推定含有量 X 100
〔有機酸回収率〕
有機酸回収率は、以下の式より算出した。
有機酸回収率 (%) =有機酸モノマー成分の定量結果 Z熱硬化性榭脂の有機酸モ ノマー成分の推定含有量 X 100
〔分解率〕 分解率は、以下の式より算出した。
分解率 (%) = (熱硬化性榭脂の榭脂量 -未反応榭脂残渣) Z熱硬化性榭脂の榭脂 量 X 100
〔ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物 (化合物 [ 1 ] ) の生成率〕
化合物 [1]の生成率は、以下の式より算出した。
化合物 [1]の生成率(%) = (分解処理後の水可溶成分に塩酸を加えて pH約 4に調 整して生じさせた沈殿物の乾燥重量) / (分解して得られた化合物を NMRで分析し て得られた酸残基と架橋部由来の残基の分子の数の比率と、用いた架橋部形成材 料の量より求めた、化合物 [1]の推定含有量) X 100
[0025] (実施例 1)
試験用の熱硬化性榭脂 (不飽和ポリエステル榭脂)を作製した。まず、多価アルコ ールであるグリコール類のプロピレングリコール 50wt%と、不飽和有機酸である無水 マレイン酸 50wt%を配合してワニスを合成した。次いで、架橋剤としてスチレンをヮ ニスとほぼ当量配合した。その後、ワニスとスチレンの混合物 50wt%と炭酸カルシゥ ム 50wt%を配合して、硬化させることにより上記熱硬化性榭脂を得た。尚、この熱硬 化性榭脂の熱分解温度は 320°Cであった。
[0026] 次に、上記の熱硬化性榭脂 3gと純水 15gとを取り、これらを反応管に仕込んだ後、 反応管内をアルゴンガスで置換封入した。
次に、図 2に示すように、熱硬化性榭脂と純水とを仕込んだ反応管 1を 230°Cの恒 温槽 2に浸漬し、反応管 1内の純水を亜臨界状態にし、浸漬したまま放置することに より熱硬化性榭脂の分解処理を 4時間行なった。その後、反応管 1を恒温槽 2から取 り出して冷却槽 3に浸漬し、反応管 1を急冷して室温にまで戻した。
[0027] 上記分解処理後の反応管 1の内容物は、水可溶成分と未反応榭脂残渣と炭酸力 ルシゥムであった。この内容物を濾過することにより固形分を分離して反応管 1から回 収した。次いで、水可溶成分と未反応榭脂残渣を分析した。水可溶成分からガスクロ マトグラフィー分析 (GC分析)によりグリコールモノマー成分を定量してグリコール回 収率を算出した。イオン交換クロマトグラフィー分析 (IC分析)により有機酸モノマー 成分を定量して有機酸回収率を算出した。未反応榭脂残渣から分解率を算出した。 結果を表 1に示す。
[0028] 次に、水可溶成分を塩酸で中和させて生じた沈殿物を回収して、赤外分光分析 (I
R分析)と核磁気共鳴分光分析 (NMR分析)により定性分析を行なった。また、上記 の沈殿物を乾燥させて質量を測定し、反応管 1に仕込んだ熱硬化性榭脂の質量との 比較 ·計算により、ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合 物 (化合物 [1])の生成率を算出した。結果を表 1に示す。
[0029] (実施例 2)
純水の代わりに、濃度 0. 2モル Zリットルの KOH水溶液を用いた以外は、実施例
1と同様にして分解処理を行なうと共に、グリコール回収率、有機酸回収率、分解率、 化合物 [1]の生成率を算出した。結果を表 1に示す。
[0030] (実施例 3)
純水の代わりに、濃度 0. 5モル Zリットルの KOH水溶液を用いた以外は、実施例
1と同様にして分解処理を行なうと共に、グリコール回収率、有機酸回収率、分解率、 化合物 [1]の生成率を算出した。結果を表 1に示す。
[0031] (実施例 4)
純水の代わりに、濃度 1. 0モル Zリットルの KOH水溶液を用いた以外は、実施例
1と同様にして分解処理を行なうと共に、グリコール回収率、有機酸回収率、分解率、 化合物 [1]の生成率を算出した。結果を表 1に示す。
[0032] (比較例 1)
230°Cの恒温槽 2に反応管 1を浸漬して 4時間の分解処理を行なう代わりに、 360
°Cの恒温槽 2に反応管 1を浸漬して 20分間の分解処理を行なった以外は、実施例 1 と同様にして分解処理を行なうと共に、グリコール回収率、有機酸回収率、分解率、 化合物 [1]の生成率を算出した。結果を表 1に示す。
[0033] (比較例 2)
純水の代わりに、濃度 1. 0モル Zリットルの KOH水溶液を用いた以外は、比較例
1と同様にして分解処理を行なうと共に、グリコール回収率、有機酸回収率、分解率、 化合物 [1]の生成率を算出した。結果を表 1に示す。 [0034] [表 1]
Figure imgf000013_0002
[0035] 上記の実施例で回収されるグリコール類、有機酸類モノマーは、それぞれプロピレ ングリコール、フマル酸であった。また、回収した水可溶成分を中和することにより沈 殿した化合物 [1]は、 [化 1]に代表されるスチレンーフマル酸共重合体であった。
[0036] [化 1]
Figure imgf000013_0001
[0037] 〔式中、 m及び nは、 1より大きい整数である〕
[0038] 実施例 1一 3では、亜臨界水による分解処理後の成分は、無機フィラー (炭酸カル シゥム)以外は全て水にて処理することが可能であった。比較例 1及び 2では、分解 生成物のうち、水に不溶な成分は、無機フィラーと分離するためにクロ口ホルムを用 いる必要があった。このうち、比較例 1におけるクロ口ホルム溶液をガスクロマトグラフ 質量分析計に導入して、溶液中の成分分析を行なった結果を図 3に示す。この分析 結果から明らかなように、上記溶液中に数多くの成分が検出され、同定されただけで も、様々な構造式を持つ化合物が得られていた。したがって、この条件における分解 処理は、熱分解反応が支配的といえ、有価物の高品質な回収を阻害しているといえ る。
一方、実施例 1一 3における本発明のプラスチックの分解方法によれば、ポリエステ ルとその架橋部を含んでなる熱硬化性榭脂を、該熱硬化性榭脂の熱分解温度未満 の温度である 230°Cの亜臨界水で処理することで、グリコール類及び有機酸類にカロ え、ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物 (化合物 [ 1 ] )であるスチレンーフマル酸共重合体を回収することが可能であった。また、表 1から 明らかなように、実施例 1一 3は比較例 1及び 2よりも処理時間は長くなる力 温度を 3 60°Cから 230°Cとして処理することで、グリコール類及び有機酸類の回収率を向上さ せることが確認された。

Claims

請求の範囲
[1] ポリエステルとその架橋部を含んでなる熱硬化性榭脂を、該熱硬化性榭脂の熱分 解温度未満の温度の亜臨界水で処理することを含む、プラスチックの分解方法。
[2] 亜臨界水がアルカリ塩を含有する、請求項 1に記載の方法。
[3] アルカリ塩がアルカリ金属の水酸化物である、請求項 2に記載の方法。
[4] アルカリ塩の含有量が、熱硬化性榭脂を分解して得られるポリエステル由来の酸残 基と架橋部由来の残基を含んでなる化合物に含まれる酸残基の理論モル数に対し て、 2モル当量以上である、請求項 2に記載の方法。
[5] (a)ポリエステルとその架橋部を含んでなる熱硬化性榭脂を、該熱硬化性榭脂の熱 分解温度未満の温度の亜臨界水で処理する工程と、
(b)工程 (a)で得られたポリエステル由来の酸残基と架橋部由来の残基を含んでなる 化合物を回収する工程
を含む、プラスチックの分解方法。
PCT/JP2005/005366 2004-03-26 2005-03-24 プラスチックの分解方法 WO2005092962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006511493A JP4473268B2 (ja) 2004-03-26 2005-03-24 プラスチックの分解方法
US10/593,081 US7601760B2 (en) 2004-03-26 2005-03-24 Method of decomposing plastic
EP20050721380 EP1731557B1 (en) 2004-03-26 2005-03-24 Method of decomposing plastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-093363 2004-03-26
JP2004093363 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005092962A1 true WO2005092962A1 (ja) 2005-10-06

Family

ID=35056152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005366 WO2005092962A1 (ja) 2004-03-26 2005-03-24 プラスチックの分解方法

Country Status (5)

Country Link
US (1) US7601760B2 (ja)
EP (1) EP1731557B1 (ja)
JP (2) JP4473268B2 (ja)
CN (1) CN100519638C (ja)
WO (1) WO2005092962A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001896A (ja) * 2005-06-22 2007-01-11 Matsushita Electric Works Ltd グリコールの分離方法
JP2007224081A (ja) * 2006-02-21 2007-09-06 Matsushita Electric Works Ltd スチレンマレイン酸共重合体の回収方法
JP2008050491A (ja) * 2006-08-25 2008-03-06 Matsushita Electric Works Ltd プラスチックの亜臨界水分解液からの固形物分離洗浄方法
JP2008156171A (ja) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd 無機成形品
JP2008231394A (ja) * 2007-02-23 2008-10-02 Matsushita Electric Works Ltd 熱硬化性樹脂の分解・回収方法
JP2009029917A (ja) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd プラスチック用低収縮材とそれを用いたプラスチック成形品、プラスチック用低収縮材の製造方法、並びにプラスチックの回収・再利用方法
WO2009081974A1 (ja) 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. 熱硬化性樹脂の分解および分解生成物の回収方法
JP2009149818A (ja) * 2007-12-21 2009-07-09 Panasonic Electric Works Co Ltd 熱硬化性樹脂の分解・回収方法
WO2009119742A1 (ja) 2008-03-26 2009-10-01 パナソニック電工株式会社 熱硬化性樹脂の分解および分解生成物の回収方法
WO2010050442A1 (ja) * 2008-10-27 2010-05-06 国立大学法人静岡大学 熱硬化エポキシ樹脂の再生成方法及び熱硬化樹脂再生成用組成物
JP2010189636A (ja) * 2009-01-26 2010-09-02 Panasonic Electric Works Co Ltd プラスチックの分解・回収方法
KR101863276B1 (ko) 2017-01-12 2018-05-31 한국과학기술연구원 용해 공정을 이용한 복합 재료 리페어 방법 및 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601760B2 (en) * 2004-03-26 2009-10-13 Matsushita Electric Works, Ltd. Method of decomposing plastic
JP5508025B2 (ja) * 2007-12-26 2014-05-28 パナソニック株式会社 熱硬化性樹脂の分解および分解生成物の回収方法
CN102464805A (zh) * 2010-11-16 2012-05-23 湖州瑞赛科碳化学有限公司 一种不饱和聚酯材料的回收方法
CN102464806A (zh) * 2010-11-16 2012-05-23 湖州瑞赛科碳化学有限公司 一种不饱和聚酯纽扣树脂材料的回收方法
CN103910904A (zh) * 2013-01-04 2014-07-09 杨晓林 一种不饱和聚酯材料的回收方法
IT202000014629A1 (it) * 2020-06-18 2021-12-18 Eni Spa Composizione di materiale plastico e procedimento per il trattamento di materie plastiche per formare detta composizione.
CN113831588B (zh) * 2021-09-17 2024-03-22 中国科学院山西煤炭化学研究所 一种水相体系降解不饱和聚酯树脂材料制化学品的方法
CN113787083A (zh) * 2021-09-18 2021-12-14 成都市环美科达化工科技有限公司 一种垃圾回收处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024274A (ja) * 1996-07-12 1998-01-27 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解方法及びリサイクル方法
JPH11140224A (ja) * 1997-11-07 1999-05-25 Hitachi Ltd 熱硬化性廃プラスチック処理方法
JP2002226871A (ja) * 2001-01-31 2002-08-14 Tokyo Electric Power Co Inc:The プラスチックのガス化方法およびガス化装置
WO2004041917A1 (ja) * 2002-11-07 2004-05-21 Matsushita Electric Works, Ltd. ポリマーの分解方法
JP2004155964A (ja) * 2002-11-07 2004-06-03 Matsushita Electric Works Ltd プラスチックの分解方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US271013A (en) * 1883-01-23 Stove
US295431A (en) * 1884-03-18 End-gate
JP3421438B2 (ja) 1994-09-16 2003-06-30 株式会社東芝 熱硬化性樹脂の熱分解方法及び装置
JP3850149B2 (ja) 1998-08-05 2006-11-29 旭化成ケミカルズ株式会社 芳香族ジカルボン酸の回収方法
JP2003096233A (ja) * 2001-09-21 2003-04-03 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解処理方法およびリサイクル方法
US7601760B2 (en) * 2004-03-26 2009-10-13 Matsushita Electric Works, Ltd. Method of decomposing plastic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024274A (ja) * 1996-07-12 1998-01-27 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解方法及びリサイクル方法
JPH11140224A (ja) * 1997-11-07 1999-05-25 Hitachi Ltd 熱硬化性廃プラスチック処理方法
JP2002226871A (ja) * 2001-01-31 2002-08-14 Tokyo Electric Power Co Inc:The プラスチックのガス化方法およびガス化装置
WO2004041917A1 (ja) * 2002-11-07 2004-05-21 Matsushita Electric Works, Ltd. ポリマーの分解方法
JP2004155964A (ja) * 2002-11-07 2004-06-03 Matsushita Electric Works Ltd プラスチックの分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731557A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001896A (ja) * 2005-06-22 2007-01-11 Matsushita Electric Works Ltd グリコールの分離方法
JP2007224081A (ja) * 2006-02-21 2007-09-06 Matsushita Electric Works Ltd スチレンマレイン酸共重合体の回収方法
JP2008050491A (ja) * 2006-08-25 2008-03-06 Matsushita Electric Works Ltd プラスチックの亜臨界水分解液からの固形物分離洗浄方法
JP4735474B2 (ja) * 2006-08-25 2011-07-27 パナソニック電工株式会社 プラスチックの亜臨界水分解液からの固形物分離洗浄方法
JP2008156171A (ja) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd 無機成形品
JP2008231394A (ja) * 2007-02-23 2008-10-02 Matsushita Electric Works Ltd 熱硬化性樹脂の分解・回収方法
JP2009029917A (ja) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd プラスチック用低収縮材とそれを用いたプラスチック成形品、プラスチック用低収縮材の製造方法、並びにプラスチックの回収・再利用方法
JP2009149818A (ja) * 2007-12-21 2009-07-09 Panasonic Electric Works Co Ltd 熱硬化性樹脂の分解・回収方法
JPWO2009081974A1 (ja) * 2007-12-25 2011-05-06 パナソニック電工株式会社 熱硬化性樹脂の分解および分解生成物の回収方法
WO2009081974A1 (ja) 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. 熱硬化性樹脂の分解および分解生成物の回収方法
JP2010043273A (ja) * 2007-12-25 2010-02-25 Panasonic Electric Works Co Ltd 熱硬化性樹脂の分解および分解生成物の回収方法
JP4440337B2 (ja) * 2007-12-25 2010-03-24 パナソニック電工株式会社 熱硬化性樹脂の分解および分解生成物の回収方法
WO2009119742A1 (ja) 2008-03-26 2009-10-01 パナソニック電工株式会社 熱硬化性樹脂の分解および分解生成物の回収方法
US8653150B2 (en) 2008-03-26 2014-02-18 Panasonic Corporation Method for decomposing thermoset resin and recovering decomposition product
WO2010050442A1 (ja) * 2008-10-27 2010-05-06 国立大学法人静岡大学 熱硬化エポキシ樹脂の再生成方法及び熱硬化樹脂再生成用組成物
JP2010189636A (ja) * 2009-01-26 2010-09-02 Panasonic Electric Works Co Ltd プラスチックの分解・回収方法
KR101863276B1 (ko) 2017-01-12 2018-05-31 한국과학기술연구원 용해 공정을 이용한 복합 재료 리페어 방법 및 장치

Also Published As

Publication number Publication date
JP2010007074A (ja) 2010-01-14
US20070197669A1 (en) 2007-08-23
EP1731557B1 (en) 2014-07-09
EP1731557A1 (en) 2006-12-13
US7601760B2 (en) 2009-10-13
CN100519638C (zh) 2009-07-29
CN1934177A (zh) 2007-03-21
EP1731557A4 (en) 2012-12-26
JPWO2005092962A1 (ja) 2008-02-14
JP4473268B2 (ja) 2010-06-02

Similar Documents

Publication Publication Date Title
WO2005092962A1 (ja) プラスチックの分解方法
JP4495628B2 (ja) プラスチックの分解・分離方法
JP4495629B2 (ja) プラスチックの分解・分離方法
JP2010168560A (ja) 複合材料の分解方法
JP4720463B2 (ja) 樹脂硬化物の分解処理方法
JP4806758B2 (ja) 熱硬化性樹脂の分解・回収方法
JP4775211B2 (ja) 熱硬化性樹脂の分解回収方法
JP4699785B2 (ja) プラスチックの再生方法
JP4718868B2 (ja) 熱硬化性樹脂の分解方法
JP4291126B2 (ja) プラスチックの分解方法
JP2007224081A (ja) スチレンマレイン酸共重合体の回収方法
JP4116948B2 (ja) 不飽和ポリエステル樹脂の分解・回収方法
JP4971124B2 (ja) 熱硬化性樹脂の分解・回収方法
JP5508025B2 (ja) 熱硬化性樹脂の分解および分解生成物の回収方法
JP4754246B2 (ja) プラスチックの分解方法
JP4806757B2 (ja) 熱硬化性樹脂の分解・回収方法
JP2012036261A (ja) 多塩基酸ビニルモノマー共重合体の製造方法
JP2010163620A (ja) プラスチックの分解・分離方法
JP5243464B2 (ja) プラスチックの分解・回収方法
WO2010110434A1 (ja) 熱硬化性樹脂の分解・回収方法
JP2011111502A (ja) プラスチックの分解方法
JP2008156532A (ja) プラスチックの再利用方法及び無機充填材
JP2011006580A (ja) プラスチックの分解・回収方法
JP2005048053A (ja) 不飽和ポリエステル樹脂の分解・回収方法
JP2008081548A (ja) 樹脂組成物、シートモールディングコンパウンド、及び無機充填材を含有する熱硬化性樹脂の再利用方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511493

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005721380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593081

Country of ref document: US

Ref document number: 2007197669

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580009279.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005721380

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10593081

Country of ref document: US