WO2009119742A1 - 熱硬化性樹脂の分解および分解生成物の回収方法 - Google Patents

熱硬化性樹脂の分解および分解生成物の回収方法 Download PDF

Info

Publication number
WO2009119742A1
WO2009119742A1 PCT/JP2009/056129 JP2009056129W WO2009119742A1 WO 2009119742 A1 WO2009119742 A1 WO 2009119742A1 JP 2009056129 W JP2009056129 W JP 2009056129W WO 2009119742 A1 WO2009119742 A1 WO 2009119742A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
water
polyester
residue derived
thermosetting resin
Prior art date
Application number
PCT/JP2009/056129
Other languages
English (en)
French (fr)
Inventor
卓見 泉谷
中川 尚治
優 日高
柴田 圭史
絢子 松井
Original Assignee
パナソニック電工株式会社
財団法人国際環境技術移転研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社, 財団法人国際環境技術移転研究センター filed Critical パナソニック電工株式会社
Priority to US12/934,390 priority Critical patent/US8653150B2/en
Priority to CN2009801108701A priority patent/CN101981103B/zh
Priority to EP20090724716 priority patent/EP2258756B1/en
Priority to JP2009532471A priority patent/JP5148617B2/ja
Publication of WO2009119742A1 publication Critical patent/WO2009119742A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for recovering a reusable decomposition product (for example, a styrene-fumaric acid copolymer) by decomposing a thermosetting resin with subcritical water.
  • a reusable decomposition product for example, a styrene-fumaric acid copolymer
  • landfill disposal has problems such as difficulty in securing a landfill site and destabilization of the ground after landfilling, while incineration disposal causes furnace damage, generation of organic gases and odors, CO 2. There was a problem such as the occurrence of.
  • thermosetting resin obtained by crosslinking a polyester composed of a polyhydric alcohol and a polybasic acid with a crosslinking agent is decomposed using subcritical water below the thermal decomposition temperature of the thermosetting resin.
  • a technique for obtaining a copolymer of a crosslinking agent and a polybasic acid (for example, a styrene-fumaric acid copolymer) together with a monomer that can be reused as a raw material for a thermosetting resin has been proposed (see Patent Document 6). .
  • JP-T 56-501205 Japanese Patent Laid-Open No. 57-4225 Japanese Patent Laid-Open No. 5-31000 JP-A-6-279762 Japanese Patent Laid-Open No. 10-67991 International Publication WO2005 / 092962 Pamphlet
  • thermosetting resin is decomposed with subcritical water containing a water-soluble alkali such as potassium hydroxide or sodium hydroxide. Therefore, the styrene-fumaric acid copolymer produced by the decomposition reaction is obtained as a salt dissolved in an aqueous solution. Therefore, when plastics containing inorganic fillers such as calcium carbonate and aluminum hydroxide and inorganic substances such as glass fibers are decomposed with subcritical water, the resulting aqueous solution containing styrene-fumaric acid copolymer and inorganic substances are separated into solid and liquid.
  • inorganic fillers such as calcium carbonate and aluminum hydroxide and inorganic substances such as glass fibers
  • a step for recovering the separation liquid is required.
  • the styrene-fumaric acid copolymer contained in the separation liquid is lost during the separation step, and further, an acid is added to the separation liquid to add a styrene-fumaric acid copolymer.
  • a step of depositing a polymer and separating it into solid and liquid to recover the solid content is required, but there is a problem that the styrene-fumaric acid copolymer is lost in the separation step, The recovery rate of the produced styrene-fumaric acid copolymer was not sufficient.
  • the present invention has been made in view of the circumstances as described above, and is a compound comprising a reusable polyester-derived acid residue and a cross-linked portion-derived residue from a decomposition product of a thermosetting resin.
  • An object of the present invention is to provide a method capable of efficiently recovering (for example, a styrene-fumaric acid copolymer) and a modified product thereof.
  • the present invention includes the following preferred embodiments: [1] A method for recovering a compound comprising an acid residue derived from a polyester and a residue derived from a crosslinked part by subjecting a thermosetting resin containing the polyester part and the crosslinked part to subcritical water decomposition, (I) subcritical water decomposition of the thermosetting resin; (II) a step of dissolving a solid content containing a compound comprising an acid residue derived from a polyester and a residue derived from a cross-linking portion in an organic solvent in which the solubility of the compound is higher than water; (III) recovering the compound dissolved in the solvent. [2] The method according to [1] above, wherein the subcritical water splitting is performed with water substantially free of alkali.
  • thermosetting resin containing the polyester portion and the cross-linked portion thereof does not contain calcium carbonate.
  • the subcritical water decomposition is performed with water containing calcium hydroxide, and before the step (II), a compound comprising an acid residue derived from the polyester and a residue derived from a cross-linked portion is added.
  • the organic solvent comprises an alcohol that is liquid at normal temperature, and the polyester-derived acid residue of the compound that includes the acid residue derived from the polyester and the residue derived from a cross-linking moiety is esterified with the alcohol.
  • the alcohol comprises an alcohol having a boiling point of water or higher.
  • the method further comprises the step of dehydrating the acid residue derived from the polyester of the compound comprising the acid residue derived from the polyester and the residue derived from the cross-linking part to hydrophobize the compound, The method according to any one of [1] to [4] above.
  • an acid residue derived from a polyester such as a styrene-fumaric acid copolymer produced by subcritical water decomposition of a thermosetting resin containing a polyester part and a crosslinked part thereof and a residue derived from a crosslinked part are obtained. It is further necessary by adding an organic solvent in which the solubility of compound X is higher than that of water to a solid containing the compound (hereinafter referred to as “compound X”), and dissolving compound X in the solvent. Accordingly, the compound X and a modified product thereof (hereinafter referred to as “modified compound X”) can be efficiently recovered.
  • the compound X when the compound X is recovered in a state where the compound X is dissolved in the aqueous solution after the subcritical water decomposition, the loss of the compound X is large and the recovery rate is not sufficient. Since the solvent is brought into contact with the solid content containing the compound X and the compound X is dissolved and recovered in the solvent, the loss of the compound X can be suppressed and the recovery rate of the compound X can be improved. Further, according to the present invention, the modified compound X can be easily obtained by dissolving the compound X from the recovered solid content in an organic solvent in which the solubility of the compound X is higher than that of water and hydrophobizing it.
  • the compound X and the modified compound X recovered by the present invention can be reused as a resin raw material, for example, a raw material for an unsaturated polyester resin molded product as a low shrinkage material.
  • FIG. 2 is a diagram showing a styrene-fumaric acid carboxylate and a state after an acid is added thereto.
  • thermosetting resin to be decomposed is obtained by crosslinking polyester, and is composed of a polyester part and its crosslinked part, and is a cured product (molded product).
  • the polyester part is derived from a polyester in which a polyhydric alcohol residue and a polybasic acid residue are connected to each other through an ester bond by polycondensation of a polyhydric alcohol and a polybasic acid.
  • the polyester part may contain a double bond derived from an unsaturated polybasic acid.
  • the cross-linked part is a part that cross-links the polyester part.
  • crosslinking part is a part originating in a crosslinking agent, for example, it is not specifically limited.
  • the cross-linked part may be a part derived from one cross-linking agent, or may be a part derived from an oligomer or polymer obtained by polymerizing a plurality of cross-linking agents. Further, the bonding position and bonding mode between the crosslinked part and the polyester part are not particularly limited.
  • thermosetting resin including a polyester part and a cross-linked part thereof means a reticulated thermosetting resin (a reticulated polyester resin) in which a polyester obtained from a polyhydric alcohol and a polybasic acid is cross-linked via a cross-linked part. It is.
  • a thermosetting resin may be any form of resin as long as the above-described effects can be obtained when the present invention is applied. That is, there are no restrictions on the type and structure of the resin, the type, amount, and degree of crosslinking of the crosslinking part (crosslinking agent).
  • thermosetting resin to which the present invention is applied is a resin that is cured (crosslinked) mainly by heating or the like. However, if the above-described effects can be obtained when the present invention is applied, by heating or the like. It may be an uncured resin that progresses in curing (crosslinking) or a partially cured resin.
  • thermosetting resin to which the present invention is suitably applied examples include a reticulated polyester resin in which an unsaturated polyester composed of a polyhydric alcohol and an unsaturated polybasic acid is crosslinked with a crosslinking agent.
  • polyhydric alcohol that is a raw material for the polyester part
  • glycols such as ethylene glycol, propylene glycol, neopentyl glycol, diethylene glycol, and dipropylene glycol. These can be used alone or in combination of two or more.
  • polybasic acid that is a raw material for the polyester part
  • polybasic acid that is a raw material for the polyester part
  • aliphatic unsaturated dibasic acids such as maleic anhydride, maleic acid, and fumaric acid. These can be used alone or in combination of two or more.
  • a saturated polybasic acid such as phthalic anhydride may be used in combination with the unsaturated polybasic acid.
  • the cross-linking agent that crosslinks the polyester which is a copolymer of polyhydric alcohol and polybasic acid, contains styrene as an essential component, but also uses other cross-linking agents such as polymerizable vinyl monomers such as methyl methacrylate. May be.
  • thermosetting resin In addition to the thermosetting resin, the present invention includes inorganic fillers such as calcium carbonate and aluminum hydroxide, glass fibers such as chopped strands obtained by cutting rovings, reinforcing fibers such as carbon fibers, and other components.
  • inorganic fillers such as calcium carbonate and aluminum hydroxide
  • glass fibers such as chopped strands obtained by cutting rovings
  • reinforcing fibers such as carbon fibers
  • the thermosetting resin composition containing is also subject to subcritical water decomposition.
  • the thermosetting resin is decomposed by the following steps (I) to (III), and includes a residue derived from polyester and a residue derived from a cross-linked portion, which are recyclable decomposition products.
  • the compound (compound X) or a modified product thereof (modified compound X) is recovered.
  • the thermosetting resin is obtained using fumaric acid or maleic acid as a polybasic acid and using styrene as a cross-linking agent, as compound X or modified compound X, styrene-fumaric acid
  • the copolymer or modified styrene-fumaric acid copolymer is recovered.
  • thermosetting resin containing polyester and its crosslinked part is performed (step (I)).
  • the thermosetting resin may contain an inorganic filler such as calcium carbonate, a reinforcing fiber such as glass fiber or carbon fiber, and other components.
  • the subcritical water decomposition is preferably carried out using water that does not substantially contain an alkali in order to make the decomposition product compound X into a water-insoluble salt.
  • substantially free of alkali means that an alkali such as an alkali metal hydroxide (for example, sodium hydroxide, potassium hydroxide) that acts as a catalyst for the decomposition reaction is at least an effective amount as a catalyst.
  • an alkali such as an alkali metal hydroxide (for example, sodium hydroxide, potassium hydroxide) that acts as a catalyst for the decomposition reaction is at least an effective amount as a catalyst.
  • Compound X exists as a water-insoluble salt (compound X (carboxylic acid)) in which the fumaric acid structure of compound X is a carboxylic acid when subcritical water decomposition is performed using water containing substantially no alkali. To do.
  • Subcritical water decomposition is also preferably performed using water containing a divalent or higher hydroxyl group-containing inorganic compound.
  • the “hydroxyl group-containing inorganic compound” is a catalyst that acts as a catalyst for the decomposition reaction, so that the compound X obtained by the decomposition does not dissolve in water as a carboxylate but is generated as a solid. That is, a hydroxyl group-containing inorganic compound is a compound that does not take into account its own solubility in water, but reacts with the carboxylic acid of Compound X to produce a water-insoluble substance.
  • Such a hydroxyl group-containing inorganic compound is required to be a hydroxyl group-containing inorganic compound having a bivalent, trivalent or higher valence.
  • a tetravalent (Sn) inorganic compound can be considered as the maximum valence.
  • divalent alkaline earth metal hydroxides such as calcium hydroxide, barium hydroxide, strontium hydroxide and the like can be exemplified as suitable ones.
  • the two carboxylic acids of compound X are ring-closed via a Ca atom, or, as shown in FIG. The compound X is hardly dissolved in water because it is bonded to form a ring.
  • the addition amount of such a hydroxyl group-containing inorganic compound is at least equimolar, preferably at least 2 molar equivalents relative to the theoretical number of moles of acid residues contained in compound X obtained by decomposing the thermosetting resin. It can be. In this case, since the hydrolysis reaction of subcritical water decomposition is promoted, it is possible to promote the reduction of the treatment temperature and the shortening of the treatment time.
  • the subcritical water decomposition of the thermosetting resin is performed by adding water containing substantially no alkali to the thermosetting resin or water containing a divalent or higher hydroxyl group-containing inorganic compound (for example, calcium hydroxide). The pressure is increased to bring the water into a subcritical state and decompose the thermosetting resin.
  • the amount of water added to the thermosetting resin is preferably in the range of 200 to 500 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the decomposition treatment of plastic with subcritical water generally occurs by a thermal decomposition reaction and a hydrolysis reaction, and the same applies to thermosetting plastics produced from raw materials containing polyhydric alcohols and polybasic acids.
  • the hydrolysis reaction becomes dominant.
  • a hydrolysis reaction occurs selectively, and the polyhydric alcohol and polybasic acid monomers or oligomers in which a plurality of these are combined are decomposed.
  • thermosetting resin can be decomposed into a polyhydric alcohol, a polybasic acid and a compound X by contacting with the subcritical water.
  • Monomers and oligomers obtained by decomposition can be recovered and reused as raw materials for producing plastics.
  • “subcritical water” means that the temperature of water is not more than the critical temperature of water (374.4 ° C.) and the temperature is not less than 140 ° C., and the pressure at that time is 0.36 MPa (140 ° C. (Saturated vapor pressure) of water in the above range.
  • the ion product is about 100 to 1000 times that of water at normal temperature and pressure.
  • the dielectric constant of the subcritical water is reduced to the same level as the organic solvent, the wettability of the subcritical water to the thermosetting resin surface is improved. Hydrolysis is promoted by these effects, and the thermosetting resin can be monomerized and / or oligomerized.
  • the temperature of the subcritical water at the time of the decomposition reaction is lower than the thermal decomposition temperature of the thermosetting resin to be decomposed, preferably a temperature at which a polyhydric alcohol monomer is obtained after decomposition, more preferably Is a temperature in the range of 180-300 ° C. If the temperature during the decomposition reaction is less than 180 ° C., the decomposition process requires a lot of time, so that the processing cost may increase, and the yield of compound X tends to decrease.
  • the treatment time with subcritical water varies depending on the reaction temperature and other conditions, but is usually 1 to 8 hours.
  • the pressure during the decomposition reaction varies depending on the reaction temperature and other conditions, but is preferably in the range of 2 to 15 MPa.
  • the compound X generated by the decomposition reaction is precipitated as a water-insoluble component, and other inorganic substances contained in the thermosetting resin, such as calcium carbonate and glass fiber, are used. It is recovered as a solid (solid phase) together with the inorganic substance and undecomposed thermosetting resin.
  • the polyester-derived monomers (polyhydric alcohol and polybasic acid) produced by the decomposition reaction are separated from solid components (solid phase) such as water-insoluble salts of Compound X as water-soluble components (liquid phase). Is done.
  • the solid content (solid phase) containing the compound X produced by the decomposition reaction can be recovered by solid-liquid separation of the obtained decomposition product.
  • an aqueous solution in which polyhydric alcohol and polybasic acid as monomer components are dissolved is separated as a separated filtrate (liquid phase).
  • This separated filtrate can be reused for decomposition of other thermosetting resins as subcritical water while containing polyhydric alcohol and polybasic acid.
  • it is possible to recover the polyhydric alcohol and polybasic acid at a high concentration by sequentially reusing them and dissolving the polyhydric alcohol and polybasic acid generated in each decomposition reaction sequentially in the aqueous solution. .
  • carbonated water carbon dioxide gas and water
  • carbonated water treatment Carbonated water treatment
  • the solid content in which the inorganic substance such as calcium carbonate or glass fiber and the compound X are mixed is put in a container together with water and sealed, and carbon dioxide gas (CO 2 ) is fed into the container so that the calcium carbonate is calcium hydrogen carbonate.
  • CO 2 carbon dioxide gas
  • the container is opened, and the contents of the container are solid-liquid separated by a method such as filtration.
  • thermosetting resin containing calcium carbonate is subjected to subcritical water decomposition, or when subcritical water decomposition is performed with water containing a divalent or higher hydroxyl-containing inorganic compound such as calcium hydroxide
  • the recovered solid content As inorganic substances, calcium carbonate derived from a thermosetting resin or a divalent or higher hydroxyl group-containing inorganic compound that can be contained in subcritical water (for example, water of a divalent alkaline earth metal such as calcium hydroxide). Oxides) or polyvalent metal compounds (for example, calcium compounds) such as inorganic compounds derived therefrom.
  • the polyvalent metal compound (particularly calcium carbonate or a divalent alkaline earth metal hydroxide such as calcium hydroxide) in the solid content can be dissolved.
  • calcium carbonate and calcium hydroxide can be dissolved in carbonated water as follows. Ca (OH) 2 + 2CO 2 ⁇ CaCO 3 + H 2 O + CO 2 ⁇ Ca (HCO 3 ) 2 (dissolved)
  • thermosetting resin containing no calcium carbonate when the thermosetting resin containing no calcium carbonate is subcritically hydrolyzed with water not containing a divalent or higher hydroxyl group-containing inorganic compound, it is shown in FIG. A water-insoluble compound X as shown in the figure is generated, and it is not necessary to remove the polyvalent metal compound and the like, and therefore, a carbonated water treatment or an acid treatment described later is unnecessary.
  • an acid such as hydrochloric acid is added to the solid content recovered in the step (I) or the solid content recovered by the carbonated water treatment, and the polyvalent metal compound (for example, alkaline earth such as calcium carbonate or calcium hydroxide) is added.
  • the carboxylate of compound X can be changed to compound X.
  • the carboxylate of compound X present in the solid content recovered in the step (I) or the solid content recovered by the carbonated water treatment is a residue derived from the cross-linked portion (in FIG. 3). Styrene skeleton) and an acid residue derived from polyester (fumaric acid skeleton in FIG.
  • Examples of the acid used for the acid treatment include those capable of converting the carboxylate of compound X into compound X that can be dissolved in an organic solvent described later.
  • Examples of the compound that can dissolve a compound or the like in water include hydrochloric acid and nitric acid.
  • the acid concentration and supply amount in the acid treatment are not particularly limited, but the amount is more than an amount capable of ring-opening all carboxylic acid groups in the compound X, preferably further dissolving the polyvalent metal compound and the like. What is necessary is just to supply more than the quantity which can.
  • hydrochloric acid such as concentrated hydrochloric acid (about 35% solution) is used as the acid, it is preferable to use 70 to 150 parts by mass of concentrated hydrochloric acid with respect to 100 parts by mass of compound X.
  • the above polyvalent metal compound for example, calcium carbonate
  • the total amount of concentrated hydrochloric acid is 370 to 600 parts by mass. From the viewpoint of workability, it is preferable to dilute the acid with water to a concentration at which the solid content is immersed. However, excessive dilution is not preferable because the amount of waste water increases.
  • the acid supply in the acid treatment may be performed by adding a predetermined amount of acid to the collected solid content, or by immersing the solid content in a predetermined amount of acid. Good.
  • the filtrate (aqueous solution) separated by the acid treatment again converts the carboxylate of compound X to compound X in addition to the recovered solid content as the acid used for the acid treatment and / or water for acid dilution. Can be reused for. When the concentration of dissolved salt increases by repeated reuse, the salt is recovered by evaporating water. The evaporated water can be reused.
  • Step (I) when a thermosetting resin that does not contain calcium carbonate as an inorganic substance is subcritically hydrolyzed with water that does not contain a hydroxyl group-containing inorganic compound, the calcium carbonate or the hydroxyl group-containing inorganic compound is removed.
  • the water-insoluble compound X as shown in FIG. 3B is formed and the carboxylate of compound X is not generated, neither the carbonated water treatment nor the acid treatment is required. is there.
  • step (I) the solid content recovered after the step (I), the carbonated water treatment or the acid treatment is dissolved in an organic solvent in which the solubility of the compound X is higher than that of water (step (II)).
  • the compound X can be separated from the inorganic substance contained in the solid content, and further, the compound X can be modified to obtain the modified compound X.
  • an organic solvent in which the solubility of the compound X is higher than that of water in the solid content recovered by solid-liquid separation is 2 to 20 times by mass with respect to the theoretical mass of the compound X. And is mixed for 30 minutes or more, preferably about 2 to 20 hours to dissolve the compound X in the organic solvent.
  • the calcium carbonate that can be contained in the thermosetting resin since the calcium carbonate that can be contained in the thermosetting resin has already been removed, the calcium carbonate is firmly bonded to the compound X and does not hinder extraction into the organic solvent. Therefore, compound X can be efficiently extracted into the organic solvent.
  • theoretical mass of compound X means the ratio of the number of molecules of acid residues derived from polyester and residues derived from crosslinks obtained by analyzing compound X obtained by decomposition by NMR. (Molar ratio) and the mass calculated
  • crosslinking part formation material for example, vinyl monomers, such as styrene
  • it can be calculated as follows.
  • the molar ratio with the “residue derived from the crosslinking portion” can be calculated.
  • the mass of the compound X can be calculated from this value (molar ratio) and the mass of the crosslinked part forming material used for crosslinking of the thermosetting resin.
  • maleic acid is used as the polybasic acid of polyester
  • styrene is used as the cross-linking part forming material
  • the compound X may be dissolved in an organic solvent by heating to a temperature lower than the thermal decomposition of the compound X under a pressure of 10 atm in absolute pressure at the maximum.
  • the thermosetting resin subjected to subcritical water decomposition at 280 ° C. which is a temperature lower than the thermal decomposition of the thermosetting resin, is structurally analyzed by NMR, it can be confirmed that the carboxylic acid of Compound X is decarboxylated. Thereby, the compound X can be effectively dissolved in an organic solvent to improve the recovery rate, and the hydrophobic modification can be further promoted.
  • the organic solvent having a higher solubility of compound X used in step (II) than water is not particularly limited as long as it can dissolve compound X from the solid content of the decomposition product of the thermosetting resin,
  • a solvent in which X is dissolved by 50% by mass or more specifically, is a low-polarity solvent, such as chloroform, THF, or acetone that is an amphiphilic organic solvent.
  • examples of the organic solvent include acid anhydrides such as alcohol and acetic anhydride which are liquid at room temperature (20 ⁇ 15 ° C.) described later.
  • the amount of alcohol used for the esterification is not particularly limited, but is, for example, 2 times or more, preferably 4 to 20 times by mass with respect to the theoretical mass of compound X (see above).
  • the temperature is not higher than the boiling point of the solvent, preferably not higher than the boiling point, and is as high as possible (approximately the boiling point), and the treatment time is not particularly limited, but is, for example, 2 hours or longer, preferably 8 to 18 hours. Furthermore, it is preferable to carry out the step under normal pressure from the viewpoint that pressurization increases the flammability and ignitability of the solvent and increases the risk of fire and explosion.
  • alcohols for example, monovalent alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, and nonanol are preferable, and have 4 or more carbon atoms (preferably 6 to 8 carbon atoms). Higher alcohols are particularly preferred.
  • water generated by esterification can be removed by heating at 100 ° C. or higher.
  • the compound X is more easily dissolved by heating, but also the dehydration condensation reaction can be effectively promoted by evaporating and eliminating water.
  • acid anhydrides such as acetic anhydride
  • recovery by dissolving Compound X in acetic anhydride and hydrophobic modification in which the terminal carboxylic acid of Compound X is dehydrated by reaction with acetic anhydride are performed at the same time. It is desirable that the process can be greatly streamlined as in the case of using it.
  • the amount of acid anhydride used for the dehydration is not particularly limited, but is, for example, 2 times or more, preferably 4 to 20 times the mass of the theoretically existing mass of compound X (see above).
  • the treatment temperature is not particularly limited, but is, for example, 20 to 140 ° C., preferably 60 to 120 ° C.
  • the treatment time is not particularly limited, but is, for example, 2 hours or more, preferably 4 ⁇ 20 hours.
  • the reaction formula of Compound X and acetic anhydride when Compound X is a styrene-fumaric acid copolymer is as follows.
  • n in the formula is a numerical value of 1 to 3
  • n is a numerical value of 3 to 300
  • both ends are generally hydrogen.
  • acetic anhydride In addition to acetic anhydride, acid anhydrides such as succinic anhydride, maleic anhydride, benzoic anhydride and the like can be exemplified, but in view of the solubility of Compound X, acetic anhydride is preferable.
  • Hydrophobic modification of compound X can also be performed by a heat dehydration reaction.
  • chloroform, THF, acetone or the like can be used as the organic solvent.
  • the heating temperature at this time is in the range of 100 to 250 ° C. depending on the boiling point of the organic solvent, but in an inert atmosphere so as not to cause thermal degradation.
  • two carboxylic acid groups (not limited to those on the same molecule) of the acid residue (for example, the fumaric acid structure) of compound X are dehydrated by a condensation reaction to obtain a modified compound X that has been hydrophobically modified. be able to.
  • the heat dehydration reaction of Compound X when Compound X is a styrene-fumaric acid copolymer is as shown in the following formula.
  • n in the formula is a numerical value of 1 to 3
  • n is a numerical value of 3 to 300
  • both ends are generally hydrogen.
  • hydrophobic solvent in which the solubility of the compound X is higher than that of water and is hydrophobic is separated from the solid content (solid phase) containing the compound X that is not solid-liquid separated. ) And a liquid phase (which may contain water, acid, inorganic salt, etc.) and heating, the compound X of solid content can be dissolved in the solvent and recovered. Thereby, the process of solid-liquid separation of the mixture can be omitted.
  • a hydrophobic solvent is supplied to the mixture of the solid content and the liquid phase in an amount that is twice or more by mass with respect to the theoretically existing mass of compound X (see above), and water does not evaporate.
  • the compound X By heating at a temperature, for example, 50 ° C. to 90 ° C., the compound X can be dissolved in the hydrophobic solvent. As a result, the mixture is phase-separated into an aqueous phase and a hydrophobic solvent phase in which Compound X is dissolved. Next, by recovering the hydrophobic solvent phase, the compound X dissolved in the hydrophobic solvent phase can be recovered.
  • the hydrophobic solvent used in the above step means a solvent having a solubility in water of 10 g / water (25 ° C.) of 100 ml or less.
  • a hydrophobic solvent the solubility of the compound X is higher than that of water.
  • the higher organic solvents octanol, chloroform and the like can be mentioned.
  • the recovered hydrophobic solvent phase is treated at a temperature below the boiling point of the hydrophobic solvent, for example, in the case of octanol, for example, 100 ° C. to 195 ° C., preferably By heating at 150 ° C. to 195 ° C., an esterified product (for example, octylated product) of Compound X is produced in the same manner as when other alcohols are used.
  • octanol for example, 100 ° C. to 195 ° C.
  • the excess hydrophobic solvent other than the hydrophobic solvent reacted with the compound X is removed, and the esterified product of the compound X can be recovered as a solid content.
  • the esterified product (for example, octylated product) of Compound X has a structure different from that of polystyrene, but has similar properties to polystyrene, and therefore can be reused as an alternative to polystyrene.
  • the removed hydrophobic solvent can be reused as a solvent in the same step.
  • solid components such as an aqueous phase and glass fibers remain.
  • the solid components can be recovered by a method such as filtration.
  • the filtrate contains an acid, it can be used again for the acid treatment.
  • the salt concentration dissolved by repeated reuse becomes too high, the salt can be recovered by evaporating water. Further, the evaporated water can be reused.
  • the compound X or the modified compound X dissolved in the organic solvent is separated from inorganic substances such as glass fibers in the solid content and undecomposed thermosetting resin by a solid-liquid separation method such as vacuum filtration, pressure filtration, and filter press.
  • the compound X or the modified compound X can be recovered by separating and removing the liquid organic solvent by distillation or the like (step (III)).
  • step (III) by heating the organic solvent in the range of 100 to 250 ° C., the modified compound X can be recovered by removing the organic solvent while dehydrating the compound X by the heat dehydration reaction described above.
  • the modified compound X obtained as described above can be reused, for example, as a low shrinkage material during molding of an unsaturated polyester resin.
  • FIG. 1> a modified styrene-fumaric acid copolymer is produced from a thermosetting resin obtained by using fumaric acid or maleic acid as a polybasic acid and styrene as a crosslinking agent as the thermosetting resin. The process to perform is shown.
  • thermosetting resin composition containing polyester and a thermosetting resin containing a crosslinked portion thereof, calcium carbonate, and glass fiber is subcritically hydrolyzed (step (I)).
  • subcritical water decomposition is performed using water or calcium hydroxide aqueous solution which does not substantially contain alkali.
  • the styrene-fumaric acid copolymer produced by subcritical water splitting in this embodiment exists as a Ca salt (water-insoluble salt) because calcium carbonate is contained in the thermosetting resin composition.
  • Ca salt water-insoluble salt
  • two carboxylic acids in the fumaric acid structure part of the styrene-fumaric acid copolymer obtained by decomposition are mediated by Ca atoms.
  • Ring closure, or a carboxylic acid in the fumaric acid structure of another styrene-fumaric acid copolymer is bonded via a Ca atom to form a ring, which makes it difficult to dissolve in water as a Ca salt ( (See FIG. 3 (a)).
  • the styrene-fumaric acid copolymer produced by the decomposition reaction precipitates as a water-insoluble component, and other inorganic substances contained in the thermosetting resin such as calcium carbonate and glass It is recovered as a solid (solid phase) together with inorganic materials such as fibers and undecomposed thermosetting resin.
  • the polyester-derived monomers (polyhydric alcohol and polybasic acid) produced by the decomposition reaction are separated from solid components (solid phase) such as styrene-fumaric acid copolymer as water-soluble components (liquid phase). .
  • thermosetting resin composition containing calcium carbonate when the thermosetting resin composition containing calcium carbonate is subjected to subcritical water decomposition, calcium carbonate is contained as an inorganic substance in the recovered solid content.
  • the recovered solid content is subjected to an acid treatment such as contacting hydrochloric acid to dissolve calcium carbonate as calcium chloride. And this is solid-liquid separated and solid content is collect
  • the solid content recovered after the acid treatment does not contain calcium carbonate.
  • a water-insoluble salt (styrene—) in which the fumaric acid structure of the styrene-fumaric acid copolymer (Ca salt) in the solid content recovered by subcritical water decomposition is changed to carboxylic acid.
  • a fumaric acid copolymer (carboxylic acid)) is obtained.
  • a water-insoluble salt styrene-fumaric acid copolymer (carboxylic acid)
  • a modified styrene-fumaric acid copolymer can be obtained in the subsequent step (II).
  • the recovered solid content is brought into contact with an organic solvent for recovery / modification where the solubility of the styrene-fumaric acid copolymer is higher than that of water, and dissolved therein to recover the styrene-fumaric acid copolymer.
  • hydrophobization modification esterification, dehydration, etc.
  • the styrene-fumaric acid copolymer is dissolved and recovered in an organic solvent for recovery and modification, and then separated into solid and liquid, and the styrene-fumaric acid copolymer contained in the liquid phase is hydrophobized and then the organic solvent is removed. As a result, the modified styrene-fumaric acid copolymer modified by hydrophobization is isolated.
  • FIG. 2 Another preferred embodiment of the present invention will be described in the order of steps with reference to the flowchart of FIG.
  • a modified styrene-fumaric acid copolymer is produced from a thermosetting resin obtained by using fumaric acid or maleic acid as a polybasic acid and styrene as a crosslinking agent as the thermosetting resin. The process to perform is shown.
  • thermosetting resin composition containing a polyester portion and a crosslinked portion thereof, and a thermosetting resin composition containing calcium carbonate and glass fibers as inorganic substances is subjected to subcritical water decomposition (step (A)).
  • subcritical water decomposition is performed with water containing a hydroxyl group-containing inorganic compound having a valence of 2 or more.
  • the carboxylate of the styrene-fumaric acid copolymer produced by the decomposition reaction is It is precipitated as a water-insoluble component and recovered as a solid content together with other inorganic substances contained in the thermosetting resin composition and undecomposed thermosetting resin.
  • the polyester-derived monomer (polyhydric alcohol and polybasic acid) produced by the decomposition reaction is separated from a solid component such as a carboxylate of a styrene-fumaric acid copolymer as a water-soluble component.
  • FIG. 2 illustrates subcritical water decomposition of a thermosetting resin composition containing a polyester part and a thermosetting resin containing a crosslinked part thereof, calcium carbonate, and glass fibers.
  • the process of the process (C) mentioned later is also unnecessary. Therefore, the process of the process (E) mentioned later can be performed after a process (A).
  • step (B) the obtained decomposition product is subjected to solid-liquid separation to recover a solid content containing a styrene-fumaric acid copolymer carboxylate.
  • the contents of the vessel are separated into solid and liquid by a method such as filtration.
  • the carboxylate of the styrene-fumaric acid copolymer can be used for other inorganic substances contained in the thermosetting resin composition, such as inorganic substances such as calcium carbonate and glass fiber, undecomposed thermosetting resin, etc. And separated as a solid content.
  • an aqueous solution in which polyhydric alcohol and polybasic acid as monomer components are dissolved is separated as a separation filtrate.
  • the separated filtrate can be reused for decomposition of other thermosetting resins as subcritical water while containing polyhydric alcohol and polybasic acid.
  • it is possible to recover the polyhydric alcohol and polybasic acid at a high concentration by sequentially reusing them and dissolving the polyhydric alcohol and polybasic acid generated in each decomposition reaction sequentially in the aqueous solution. .
  • step (C) carbonated water (carbon dioxide gas and water) is added to the solid content recovered in the step (B) to dissolve calcium carbonate in the solid content, and the styrene-fumaric acid copolymer is dissolved.
  • the solid content containing the carboxylate is recovered (step (C)).
  • a solid content of a mixture of an inorganic substance such as calcium carbonate or glass fiber and a styrene-fumaric acid copolymer is put in a container together with water and sealed, and carbon dioxide gas (CO 2 ) is fed into the container to produce carbonic acid.
  • CO 2 carbon dioxide gas
  • Calcium dissolves in water as calcium bicarbonate.
  • the container is opened, and the contents of the container are solid-liquid separated by a method such as filtration.
  • the solid content containing the glass fiber and the carboxylate of the styrene-fumaric acid copolymer is separated into the calcium bicarbonate-containing water produced by dissolving the calcium carbonate.
  • step (A) when the thermosetting resin composition containing calcium carbonate as an inorganic substance is subcritically hydrolyzed with water containing a divalent or higher hydroxyl-containing inorganic compound such as calcium hydroxide, the step (A)
  • the solid content recovered in B) contains a divalent or higher hydroxyl-containing inorganic compound.
  • step (C) carbonated water (carbon dioxide gas and water) is added to the solid content recovered in step (B) to dissolve calcium carbonate in the solid content, and the inorganic compound containing the hydroxyl group is also dissolved.
  • thermosetting resin composition not containing calcium carbonate as an inorganic substance when subcritically hydrolyzed with water containing a divalent or higher hydroxyl-containing inorganic compound such as calcium hydroxide,
  • the solid content recovered in the step (B) contains a divalent or higher hydroxyl-containing inorganic compound.
  • calcium carbonate is not contained in the solid content recovered in the step (B), but a divalent or higher hydroxyl group-containing inorganic compound is contained, so it is necessary to add carbonated water to dissolve it. .
  • step (C) a mixture of an acid such as hydrochloric acid and water is added to the solid content recovered in step (C), and the carboxylic acid salt of the styrene-fumaric acid copolymer is added to the styrene-fumaric acid copolymer.
  • step (D) Change to a polymer
  • the styrene-fumaric acid copolymer carboxylate present in the solid content recovered in step (C) has a styrene skeleton and a fumaric acid skeleton, as shown in FIG.
  • the metal M is present in a bonded state (—COO—M—OOC—). This is water-insoluble and is difficult to dissolve in a solvent described later. Therefore, an acid such as hydrochloric acid is added to ring-open the carboxylic acid group of the styrene-fumaric acid copolymer closed via the metal M having a valence of 2 or more. As shown in FIG. A styrene-fumaric acid copolymer capable of being dissolved.
  • step (E) in the mixture of the solid content containing the styrene-fumaric acid copolymer obtained in the step (D) and water, a solvent in which the solubility of the styrene-fumaric acid copolymer is higher than water and is hydrophobic is added. In addition, heating is performed, and the solid styrene-fumaric acid copolymer is dissolved in the solvent and recovered (step (E)).
  • octanol is supplied to a mixture of the solid content and water (including acid) and heated at a temperature at which water does not evaporate, for example, 50 ° C. to 90 ° C. -Dissolve the fumaric acid copolymer in octanol.
  • octanol is hydrophobic, when octanol is supplied to the mixture of the solid content and water, the octanol phase and the aqueous phase are separated, and the styrene-fumaric acid copolymer is dissolved in the octanol phase. Therefore, by recovering this octanol phase, it is possible to recover the styrene-fumaric acid copolymer dissolved therein.
  • the recovered octanol phase is heated at a temperature lower than the boiling point of octanol, for example, 100 ° C. to 195 ° C., preferably 150 ° C. to 195 ° C., thereby producing an octylated product of a styrene-fumaric acid copolymer.
  • step (E) after recovering the octanol phase in which the styrene-fumaric acid copolymer is dissolved, the solid content such as the aqueous phase and glass fiber remains, and this is recovered by a method such as filtration. Can do.
  • the filtrate was again mixed with the styrene-fumaric acid copolymer carboxylate as a mixture of acid and water used in step (D) (acid aqueous solution) in addition to the solids recovered in step (C). It can be reused to change to a fumaric acid copolymer.
  • the concentration of dissolved salt increases by repeated reuse, the salt is recovered by evaporating water. The evaporated water can be reused.
  • Example 1 4 g of the thermosetting resin obtained in Production Example 1 and 16 g of pure water were charged into a reaction tube, immersed in a constant temperature bath at 260 ° C., left in a subcritical state for 4 hours, and decomposed. Processed. Thereafter, the reaction tube was taken out of the thermostatic bath and immersed in a cooling bath, and the reaction tube was rapidly cooled to room temperature.
  • the contents of the reaction tube after the decomposition treatment are a water-insoluble resin containing water-soluble components, a styrene-fumaric acid copolymer, glass fibers, and calcium carbonate. By filtering the contents, an aqueous solution and a solid content are obtained. Was separated and recovered from the reaction tube.
  • 1-octanol (boiling point 195 ° C.), which is 20 times the theoretical amount of styrene-fumaric acid copolymer contained in the thermosetting resin, is added and stirred at 195 ° C. for 8 hours. (20 times the amount is about 14 g). Thereafter, solid-liquid separation was performed, excess octanol was volatilized to obtain a modified styrene-fumaric acid copolymer, and the mass was measured. The yield was obtained from the following formula.
  • Yield (%) (Amount of styrene-fumaric acid copolymer dissolved in solvent (after volatilization)) / (Theoretical amount of styrene-fumaric acid copolymer contained in thermosetting resin) ⁇ 100
  • thermosetting resin “theoretical amount of styrene-fumaric acid copolymer contained in the thermosetting resin” was calculated as follows.
  • the solid content recovered by subcritical water decomposition of the thermosetting resin is treated with hydrochloric acid to dissolve calcium carbonate, and acetone is added to the residue obtained by solid-liquid separation to add styrene-fumaric acid copolymer.
  • the structure (terminal carboxylic acid) was extracted, and the styrene-fumaric acid copolymer (terminal carboxylic acid) obtained by volatilizing acetone at room temperature from the filtrate obtained by solid-liquid separation was subjected to structural analysis by NMR.
  • the varnish / styrene / calcium carbonate blending system obtained by adding almost equivalent styrene to the unsaturated polyester resin varnish used for the thermosetting resin used for subcritical water decomposition and adding calcium carbonate is used. And after mix
  • Example 2 In Example 1, 16 g of an aqueous calcium hydroxide solution (1 mol / l) was blended in place of 4 g of thermosetting resin instead of pure water, and subcritical water decomposition was performed under the same conditions as in Example 1. A modified styrene-fumaric acid copolymer was obtained. As in Example 1, this was used as a low shrinkage material and molded with the same composition to obtain a cured product.
  • Example 3 In Example 1, instead of adding 1-octanol to the residue after the hydrochloric acid treatment, acetone was added, and this was stirred at room temperature for 8 hours for solid-liquid separation. Acetone was forcibly volatilized from the solid content separated by solid-liquid separation to promote dehydration to obtain a modified styrene-fumaric acid copolymer. As in Example 1, this was used as a low shrinkage material and molded with the same composition to obtain a cured product.
  • Example 4 In Example 1, 1-octanol was added to the residue after treatment with hydrochloric acid, and then placed in a pressure vessel, and pressure dissolution and reforming reaction were promoted under the condition of 170 ° C. (0.7 MPa) for 4 hours. Octanol was volatilized to obtain a modified styrene-fumaric acid copolymer. As in Example 1, this was used as a low shrinkage material and molded with the same composition to obtain a cured product.
  • Example 1 The varnish / styrene / calcium carbonate blending system of Example 1 was used in the same manner, and this blending system was cured without adding a low shrinkage material to obtain a cured product.
  • the shrinkage rate was measured as follows, and evaluation was performed including observation of the visual appearance of the cured product.
  • the shrinkage rate was calculated from the dimensions after the compounded resin was poured into a 100 mm square mold and cured. The obtained results are shown in Table 1.
  • the modified styrene-fumaric acid copolymer obtained by decomposing the thermosetting resin can be reused for resin molding as a low shrinkage material.
  • Unsaturated polyester was synthesized by polycondensation of glycols composed of propylene glycol, neopentyl glycol and dipropylene glycol with maleic anhydride in equimolar amounts. 165 parts by mass of calcium carbonate and 90 parts by mass of glass fiber are blended in 100 parts by mass of a liquid resin in which an equimolar amount of styrene as a crosslinking agent is blended in this unsaturated polyester varnish (no solvent added), and this is cured and cured. A saturated polyester resin molded product (hereinafter referred to as “thermosetting resin”) was obtained.
  • thermosetting resin obtained in Production Example 2 16 g of pure water, and 0.95 g of calcium hydroxide were charged into a reaction tube and immersed in a constant temperature bath at 260 ° C. to bring the pure water in the reaction tube into a subcritical state. For 4 hours, and the thermosetting resin was decomposed.
  • reaction tube was taken out of the thermostatic bath and immersed in a cooling bath, and the reaction tube was rapidly cooled to room temperature.
  • the contents of the reaction tube after the decomposition treatment were a water-soluble component, an undissolved resin residue, calcium carbonate, and glass fiber, and 3.6 g of a solid content was separated and recovered by filtering the contents.
  • octanol is heated at 180 ° C. to produce a styrene-fumaric acid copolymer octylation product.
  • a solid material of the styrene-fumaric acid copolymer octylation product is recovered. did.

Abstract

 本発明は、ポリエステル部とその架橋部を含む熱硬化性樹脂を亜臨界水分解してポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を効率よく回収する方法、より詳細には、(I)前記熱硬化性樹脂を亜臨界水分解する工程と、(II)得られたポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を、前記化合物の溶解度が水よりも高い有機溶媒に溶解させる工程と、(III)前記溶媒に溶解した前記化合物を回収する工程とを含むことを特徴とする方法に関する。

Description

熱硬化性樹脂の分解および分解生成物の回収方法
 本特許出願は、日本国特許出願第2008-081962号(出願日:2008年3月26日)および日本国特許出願第2008-114481号(出願日:2008年4月24日)について優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、熱硬化性樹脂を亜臨界水で分解して再利用可能な分解生成物(例えばスチレン-フマル酸共重合体)を回収する方法に関するものである。
 従来、プラスチック廃棄物はそのほとんどが埋立処分あるいは焼却処分されており、資源として有効活用されていなかった。また、埋立処分では、埋立用地の確保が困難であることや埋立後の地盤が不安定化するといった問題点があり、一方、焼却処分では、炉の損傷、有機ガスや悪臭の発生、COの発生といった問題点があった。
 そのため、平成7年に容器包装廃棄法が制定され、プラスチックの回収再利用が義務付けられるようになった。さらに、各種リサイクル法の施行にともない、プラスチックを含む製品の回収リサイクルの流れは加速する傾向にある。
 これらの状況に合わせて、近年、プラスチック廃棄物を再資源化することが試みられており、その一つとして、超臨界水または亜臨界水を反応媒体としてプラスチックを分解・回収する方法が提案されている(特許文献1~5参照)。
 しかしながら、これらの方法ではプラスチックをランダムに分解するために、一定品質の分解生成物を得ることが困難であった。
 この問題点を解決する技術として、多価アルコールと多塩基酸からなるポリエステルを架橋剤で架橋した熱硬化性樹脂を、亜臨界水を用いて熱硬化性樹脂の熱分解温度未満で分解させることで、熱硬化性樹脂の原料として再利用できるモノマーとともに、架橋剤と多塩基酸の共重合体(例えば、スチレン-フマル酸共重合体)を得る技術が提案されている(特許文献6参照)。
特表昭56-501205号公報 特開昭57-4225号公報 特開平5-31000号公報 特開平6-279762号公報 特開平10-67991号公報 国際公開WO2005/092962号パンフレット
 しかしながら、特許文献6に記載の方法ではスチレン-フマル酸共重合体を得ることはできるものの、水酸化カリウムや水酸化ナトリウム等の水溶性のアルカリを含有する亜臨界水で熱硬化性樹脂を分解しているため、分解反応により生成したスチレン-フマル酸共重合体は塩として水溶液中に溶解した状態で得る。そのため、炭酸カルシウムや水酸化アルミニウム等の無機充填材やガラス繊維等の無機物を含むプラスチックを亜臨界水で分解した場合、生成したスチレン-フマル酸共重合体を含む水溶液と無機物とを固液分離して分離液を回収する工程が必要になるが、その分離工程時に分離液に含まれるスチレン-フマル酸共重合体がロスすること、さらにその後、分離液に酸を加えてスチレン-フマル酸共重合体を析出させてこれを固液分離して固形分を回収する工程が必要になるが、その分離工程の際にもスチレン-フマル酸共重合体がロスすること、等の問題があり、生成したスチレン-フマル酸共重合体の回収率が十分とはいえなかった。
 本発明は、以上の通りの事情に鑑みてなされたものであり、熱硬化性樹脂の分解生成物から、再利用可能なポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物(例えばスチレン-フマル酸共重合体)およびその変性物を効率よく回収することができる方法を提供することを課題としている。
 本発明には、以下の好適な実施態様が含まれる:
〔1〕 ポリエステル部とその架橋部を含む熱硬化性樹脂を亜臨界水分解してポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を回収する方法であって、
(I)前記熱硬化性樹脂を亜臨界水分解する工程と、
(II)得られたポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を、前記化合物の溶解度が水よりも高い有機溶媒に溶解させる工程と、
(III)前記溶媒に溶解した前記化合物を回収する工程と
を含むことを特徴とする、方法。
〔2〕 前記亜臨界水分解を、実質的にアルカリを含有しない水で行うことを特徴とする、上記〔1〕に記載の方法。
〔3〕 ポリエステル部とその架橋部を含む熱硬化性樹脂が、炭酸カルシウムを含有しないことを特徴とする、上記〔2〕に記載の方法。
〔4〕 前記亜臨界水分解を、水酸化カルシウムを含有する水で行い、および
前記工程(II)の前に、前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を酸処理する工程をさらに含むことを特徴とする、上記〔1〕に記載の方法。
〔5〕 前記有機溶媒が、常温で液体のアルコールを含んでなり、および
前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物のポリエステル由来の酸残基を前記アルコールでエステル化して、前記化合物を疎水化する工程をさらに含むことを特徴とする、上記〔1〕乃至〔4〕のいずれか一項に記載の方法。
〔6〕 前記アルコールが、水の沸点以上のアルコールを含んでなることを特徴とする、上記〔5〕に記載の方法。
〔7〕 前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物のポリエステル由来の酸残基を無水化して、前記化合物を疎水化する工程をさらに含むことを特徴とする、上記〔1〕乃至〔4〕のいずれか一項に記載の方法。
〔8〕 前記無水化を、前記化合物のカルボキシル基を加熱脱水反応させることにより行うことを特徴とする、上記〔7〕に記載の方法。
〔9〕 前記無水化を、前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物のカルボキシル基と無水酢酸とを反応させることにより行うことを特徴とする、上記〔7〕に記載の方法。
〔10〕 ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を、最大で絶対圧10気圧の圧力下、前記化合物の熱分解未満の温度まで加熱して、前記化合物を前記有機溶媒に溶解させることを特徴とする、上記〔1〕乃至〔9〕のいずれか一項に記載の方法。
 本発明によれば、ポリエステル部とその架橋部を含む熱硬化性樹脂を亜臨界水分解して生成したスチレン-フマル酸共重合体等のポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物(以下、「化合物X」と称する。)を含有する固形分に、化合物Xの溶解度が水よりも高い有機溶媒を加えて、化合物Xを当該溶媒に溶解することによって、さらに必要に応じて疎水化改質することによって、化合物Xおよびその変性物(以下、「変性化合物X」と称する。)を効率よく回収することができる。
 従来、亜臨界水分解後に水溶液中に化合物Xが溶解した状態で化合物Xの回収を行うと、化合物Xのロスが多く回収率が十分でなかったが、本発明によれば、固形物として得た化合物Xを含む固形分に前記溶媒を接触させこれに化合物Xを溶解して回収しているので、化合物Xのロスを抑えることができ、化合物Xの回収率を向上させることができる。
 また、本発明によれば、回収した固形分から化合物Xを、化合物Xの溶解度が水よりも高い有機溶媒に溶解し、疎水化改質することによって、簡便に変性化合物Xを得ることができる。
 本発明により回収される化合物Xおよび変性化合物Xは、樹脂原料、例えば、低収縮材として不飽和ポリエステル樹脂成形品の原料として再利用できる。
本発明の方法の好適な一実施形態を工程順に示したフローチャートである。 本発明の方法の別の好適な一実施形態を工程順に示したフローチャートである。 スチレン-フマル酸のカルボン酸塩と、これに酸を加えた後の状態を示した図である。
 本発明において分解対象となる熱硬化性樹脂は、ポリエステルを架橋して得られたものであり、ポリエステル部とその架橋部よりなるものであって、硬化物(成形品)である。
 ポリエステル部は、多価アルコールと多塩基酸とを重縮合させることにより多価アルコール残基と多塩基酸残基とがエステル結合を介して互いに連結したポリエステルに由来する。ポリエステル部は、不飽和多塩基酸に由来する二重結合を含んでいてもよい。
 架橋部は、ポリエステル部を架橋する部分である。架橋部は、例えば架橋剤に由来する部分であるが、特に限定されない。架橋部は、1個の架橋剤に由来する部分であってもよく、複数の架橋剤が重合したオリゴマーまたはポリマーに由来する部分であってもよい。また、架橋部とポリエステル部の結合位置および結合様式も特に限定されない。
 したがって、「ポリエステル部とその架橋部を含む熱硬化性樹脂」とは、多価アルコールと多塩基酸から得られるポリエステルが架橋部を介して架橋された網状の熱硬化性樹脂(網状ポリエステル樹脂)である。このような熱硬化性樹脂としては、本発明を適用したときに上記した効果を得ることができるものであれば、いかなる態様の樹脂であってもよい。すなわち、樹脂の種類と構造、架橋部(架橋剤)の種類、量および架橋度などに制限はない。
 本発明が適用される熱硬化性樹脂は、主として加熱等により硬化(架橋)された樹脂であるが、本発明を適用したときに上記した効果を得ることができるものであれば、加熱等により硬化(架橋)が進行する未硬化の樹脂または部分的に硬化された樹脂であってもよい。
 本発明が好適に適用される熱硬化性樹脂としては、多価アルコールと不飽和多塩基酸からなる不飽和ポリエステルが架橋剤により架橋された網状ポリエステル樹脂が挙げられる。
 ポリエステル部の原料である多価アルコールの具体例としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール等のグリコール類などが挙げられる。これらは1種単独で、あるいは2種以上を併用して用いることができる。
 ポリエステル部の原料である多塩基酸の具体例としては、無水マレイン酸、マレイン酸、フマル酸等の脂肪族不飽和二塩基酸などが挙げられる。これらは1種単独で、あるいは2種以上を併用して用いることができる。また、無水フタル酸などの飽和多塩基酸を不飽和多塩基酸と併用してもよい。
 多価アルコールと多塩基酸の共重合体であるポリエステルを架橋する架橋剤には、スチレンが必須成分として含まれるが、その他、メタクリル酸メチル等の重合性ビニルモノマーなど、他の架橋剤を併用してもよい。
 また本発明は、上記熱硬化性樹脂とともに、無機物として例えば、炭酸カルシウムや水酸化アルミニウム等の無機充填材、ロービングを切断したチョップドストランド等のガラス繊維や炭素繊維等の補強繊維、さらにその他の成分を含有する熱硬化性樹脂組成物も亜臨界水分解の対象にしている。
 本発明では、以下の工程(I)~(III)により、上記の熱硬化性樹脂を分解し、再利用可能な分解生成物であるポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物(化合物X)またはその変性物(変性化合物X)を回収する。
 例えば、熱硬化性樹脂がフマル酸やマレイン酸を多塩基酸として使用し、且つ、スチレンを架橋剤として使用して得られたものである場合、化合物Xまたは変性化合物Xとして、スチレン-フマル酸共重合体または変性スチレン-フマル酸共重合体が回収される。
 まず、ポリエステルとその架橋部を含む熱硬化性樹脂を、亜臨界水分解する(工程(I))。ここで、熱硬化性樹脂は、上記のように、炭酸カルシウム等の無機充填材、ガラス繊維や炭素繊維等の補強繊維、さらにその他の成分を含有していてもよい。
 亜臨界水分解は、分解生成物である化合物Xを非水溶性の塩とするために、実質的にアルカリを含有しない水を用いて行うことが好ましい。
 ここで、「実質的にアルカリを含有しない」とは、分解反応の触媒として作用するアルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)等のアルカリを、少なくとも触媒としての有効量を超えて含有しないことを意味し、分解により得られる化合物Xが塩として水中に溶解せずにそのほぼ全てが非水溶性の塩として存在する条件を意味する。したがって、熱硬化性樹脂に由来して溶出される可能性のあるごく微量のアルカリの存在等は許容される。
 実質的にアルカリを含有しない水を用いて亜臨界水分解した場合には、化合物Xは化合物Xのフマル酸構造部がカルボン酸である非水溶性の塩(化合物X(カルボン酸))として存在する。
 また、亜臨界水分解は、2価以上の水酸基含有の無機化合物を含む水を用いて行うことも好ましい。
 ここで「水酸基含有の無機化合物」とは、分解反応の触媒として作用し、分解によって得られる化合物Xがカルボン酸塩として水中に溶解せず、固体として生成させるための触媒である。すなわち、水酸基含有の無機化合物は、それ自身の水への溶解性は加味せず、化合物Xのカルボン酸と反応して非水溶性の物質を生成させる化合物である。このような水酸基含有の無機化合物としては、2価または3価あるいはそれ以上の価数の水酸基含有の無機化合物であることを要する。単原子イオンで考えた場合、最大の価数として4価(Sn)の無機化合物を考慮することができる。具体的には、2価のアルカリ土類金属の水酸化物、例えば、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム等が好適なものとして例示することができる。
 例えば、水酸化カルシウムを用いた場合、化合物Xの2つのカルボン酸がCa原子を介して閉環したり、後述する図3(a)に示すように、別の化合物Xのカルボン酸とCa原子を介して結合して環が形成されるため、化合物Xは水に溶けにくい状態になる。このような、水酸基含有の無機化合物の添加量は、熱硬化性樹脂を分解して得られる化合物Xに含まれる酸残基の理論モル数に対して、等モル以上、好ましくは2モル当量以上とすることができる。この場合、亜臨界水分解の加水分解反応が促進されるため、処理温度の低下、処理時間の短時間化を促すことが可能となる。
 熱硬化性樹脂の亜臨界水分解は、熱硬化性樹脂に実質的にアルカリを含有しない水や、2価以上の水酸基含有の無機化合物(例えば、水酸化カルシウム)を含む水等を加え、温度と圧力を上昇させて水を亜臨界状態にして熱硬化性樹脂を分解する。熱硬化性樹脂に対する水の添加量は、熱硬化性樹脂100質量部に対して、好ましくは200~500質量部の範囲である。
 亜臨界水によるプラスチックの分解処理は、一般的に熱分解反応および加水分解反応によって起こるものであり、多価アルコールと多塩基酸を含む原料により製造された熱硬化性のプラスチックにおいても同様であるが、加水分解反応が支配的になる。亜臨界水の温度や圧力を適切な条件とすることにより、選択的に加水分解反応が起こり、多価アルコールと多塩基酸のモノマーあるいはこれらが複数個結合したオリゴマーに分解される。
 したがって、本発明においても、上記の熱硬化性樹脂を亜臨界水に接触させて処理することにより、多価アルコールと多塩基酸および化合物Xに分解することができる。分解して得られたモノマーやオリゴマーは、回収してプラスチックの製造原料として再利用することができる。
 本発明において「亜臨界水」とは、水の温度が水の臨界温度(374.4℃)以下であって、且つ、温度が140℃以上であり、その時の圧力が0.36MPa(140℃の飽和蒸気圧)以上の範囲にある状態の水をいう。この場合、イオン積が常温常圧の水の約100~1000倍になる。また、亜臨界水の誘電率は有機溶剤並みに下がることから、亜臨界水の熱硬化性樹脂表面に対する濡れ性が向上する。これらの効果によって加水分解が促進され、熱硬化性樹脂をモノマー化および/またはオリゴマー化することができる。
 本発明において、分解反応時における亜臨界水の温度は、分解の対象である熱硬化性樹脂の熱分解温度未満であり、好ましくは分解後に多価アルコールのモノマーが得られる温度であり、より好ましくは180~300℃の範囲の温度である。分解反応時の温度が180℃未満であると、分解処理に多大な時間を要するため処理コストが高くなる場合があり、さらに化合物Xの収率が低くなる傾向がある。分解反応時の温度が300℃を超えると、化合物Xの熱分解が著しくなり、化合物Xが低分子化されて多種多様なスチレン誘導体が生成され、化合物Xとして回収することが困難になる傾向がある。
 亜臨界水による処理時間は、反応温度などの条件によって異なるが、通常は1~8時間である。分解反応時における圧力は、反応温度などの条件によって異なるが、好ましくは2~15MPaの範囲である。
 以上のように、熱硬化性樹脂を分解することで、分解反応により生成した化合物Xは、水不溶成分として析出し、熱硬化性樹脂に含まれる他の無機物、例えば炭酸カルシウムやガラス繊維等の無機物や未分解の熱硬化性樹脂とともに固形分(固相)として回収される。一方、分解反応により生成したポリエステル由来のモノマー(多価アルコールと多塩基酸)は、水可溶成分(液相)として、化合物Xの非水溶性の塩等の固形分(固相)と分離される。
 分解反応により生成した化合物Xを含有する固形分(固相)は、得られた分解生成物を固液分離して回収することができる。
 具体的には、亜臨界水と分解生成物を含む反応容器を冷却した後、減圧濾過、加圧濾過、フィルタープレス等の方法で容器の内容物を固液分離する。これにより、化合物Xは、熱硬化性樹脂に含まれていた炭酸カルシウムやガラス繊維等の無機物や、未分解の熱硬化性樹脂とともに、固形分(固相)として分離される。
 一方、モノマー成分である多価アルコールと多塩基酸を溶解している水溶液が分離濾液(液相)として分離される。この分離濾液は、多価アルコールと多塩基酸を含有したまま亜臨界水として他の熱硬化性樹脂の分解に再利用することができる。しかも、繰り返し再利用することで、それぞれの分解反応時に生成する多価アルコールと多塩基酸を順次水溶液中に溶解させて、多価アルコールと多塩基酸を高濃度で回収することも可能である。
 次いで、工程(I)で回収した固形分に、炭酸水(炭酸ガスおよび水)を加えて固形分中の炭酸カルシウムを溶解させ、化合物Xのカルボン酸塩を含む固形分を回収することができる(炭酸水処理)。
 具体的には、炭酸カルシウムやガラス繊維等の無機物と化合物Xが混合した固形分を水とともに容器に入れて密閉し、そこに炭酸ガス(CO)を送り込むことで、炭酸カルシウムが炭酸水素カルシウムとして水に溶解する。その後、容器を開放して濾過等の方法で容器の内容物を固液分離する。これにより、ガラス繊維と化合物Xのカルボン酸塩を含む固形分と、炭酸カルシウムが溶解して生成した炭酸水素カルシウム含有水とに分離される。そして、この炭酸水素カルシウム含有水を加熱することで、二酸化炭素(CO)を分離するとともに、析出した炭酸カルシウムを水と分離する。炭酸カルシウムは再度無機充填材として再利用することができ、また、二酸化炭素と水は、当該工程の炭酸水として繰り返し再利用することができる。
 ここで、炭酸カルシウムを含有する熱硬化性樹脂を亜臨界水分解した場合や、水酸化カルシウム等の2価以上の水酸基含有の無機化合物を含む水で亜臨界水分解した場合、回収した固形分には無機物として、熱硬化性樹脂由来の炭酸カルシウムや、亜臨界水に含有させることができる2価以上の水酸基含有の無機化合物(例えば、水酸化カルシウム等の2価のアルカリ土類金属の水酸化物)またはそれに由来する無機化合物等の、多価金属化合物(例えば、カルシウム化合物等)等が含まれる。化合物Xを高純度で含む固形分を回収するためには、上記多価金属化合物等を溶解させることが好ましい。
 上記炭酸水処理によって、固形分中の上記多価金属化合物(特に炭酸カルシウムや、水酸化カルシウム等の2価のアルカリ土類金属の水酸化物)等を溶解させることができる。例えば、炭酸カルシウムおよび水酸化カルシウムは、炭酸水によって以下のように溶解させることができる。
Ca(OH)+2CO→CaCO+HO+CO→Ca(HCO)  (溶解)
 なお、工程(I)において、炭酸カルシウムを含有しない熱硬化性樹脂を、2価以上の水酸基含有の無機化合物を含まない水で亜臨界水分解した場合には、後述する図3(b)に示すような非水溶性の化合物Xが生成し、上記多価金属化合物等を除去する必要がないため、炭酸水処理や後述する酸処理は不要である。
 また、工程(I)で回収した固形分または上記炭酸水処理で回収した固形分に、塩酸等の酸を加えて、上記多価金属化合物(例えば、炭酸カルシウムや、水酸化カルシウム等のアルカリ土類金属の水酸化物)等を、水に溶解させるとともに、化合物Xのカルボン酸塩を、化合物Xへ変化させることもできる。
 工程(I)で回収した固形分または炭酸水処理で回収した固形分中に存在する化合物Xのカルボン酸塩は、図3(a)に示すように、架橋部由来の残基(図3中のスチレン骨格)とポリエステル由来の酸残基(図3中のフマル酸骨格)とを有し、酸残基のカルボキシル基に金属M(ここで、Mは、熱硬化性樹脂および上記水酸基含有の無機化合物に由来するカルシウム等を示す。)が結合した状態(-COO-M-OOC-)で存在している。化合物Xのカルボン酸塩は非水溶性であり、且つ後述する溶媒への溶解も困難である。そこで、塩酸等の酸を加えて2価以上の金属Mを介して閉環している化合物Xのカルボン酸基を開環させ、図3(b)に示すように、溶媒への溶解が可能な化合物Xとする。
 上記酸処理に使用する酸としては、化合物Xのカルボン酸塩を後述する有機溶媒への溶解が可能な化合物Xに変換することができるものが挙げられ、好ましくは、それに加えて上記多価金属化合物等を水に溶解させることができるものが挙げられ、例えば、塩酸、硝酸等が挙げられる。
 上記酸処理における酸の濃度および供給量は、特に制限されないが、化合物X中のカルボン酸基をすべて開環させることができる量以上、好ましくは、さらに上記多価金属化合物等を溶解させることができる量以上を供給すればよい。酸として塩酸、例えば、濃塩酸(約35%溶液)を使用する場合、化合物X100質量部に対して、濃塩酸70~150質量部使用することが好ましく、上記多価金属化合物(例えば、炭酸カルシウム、水酸化カルシウム等)100質量部に対して、濃塩酸300~450質量部使用することが好ましい。つまり化合物X、上記多価金属化合物がともに100質量部の場合、濃塩酸の総量は370~600質量部となる。なお、作業性の点から、固形分が浸漬する濃度まで酸を水で希釈することが好ましいが、希釈しすぎると廃水が多くなるため好ましくない。
 また、上記酸処理における酸の供給は、回収した固形分に、所定量の酸を添加することで行ってもよく、あるいは、当該固形分を、所定量の酸に浸漬させることで行ってもよい。
 上記酸処理で分離した濾液(水溶液)は、再度、上記酸処理に用いられる酸および/または酸希釈用の水として、回収した固形分に加えて化合物Xのカルボン酸塩を化合物Xへ変化させるために再利用することができる。繰り返し再利用して溶解している塩濃度が高くなった場合には、水を蒸発させて塩を回収する。蒸発させた水は再利用することができる。
 なお、工程(I)において、無機物として炭酸カルシウムを含有しない熱硬化性樹脂を、水酸基含有の無機化合物を含まない水で亜臨界水分解した場合には、炭酸カルシウムや水酸基含有の無機化合物を除去する必要がなく、また、図3(b)に示すような非水溶性の化合物Xが生成し、化合物Xのカルボン酸塩が生成されないため、上記炭酸水処理および上記酸処理のいずれも不要である。
 次いで、工程(I)、上記炭酸水処理または上記酸処理の後に回収した固形分を、化合物Xの溶解度が水よりも高い有機溶媒に溶解させる(工程(II))。これにより、化合物Xを固形分中に含まれる無機物等から分離することができ、さらには、化合物Xを改質して変性化合物Xとすることができる。
 工程(II)は、具体的には、固液分離して回収した固形分に化合物Xの溶解度が水よりも高い有機溶媒を、化合物Xの理論存在質量に対して、質量で2~20倍となる量で供給し、これを30分以上、好ましくは2時間~20時間程度混合して固形分の化合物Xを前記有機溶媒に溶解させる。ここでは、熱硬化性樹脂に含まれ得る炭酸カルシウムが既に除去されているため、炭酸カルシウムが化合物Xに強固に結合して前記有機溶媒への抽出が妨げられることはない。したがって、化合物Xを前記有機溶媒に効率よく抽出することができる。
 本発明における「化合物Xの理論存在質量」とは、分解して得られた化合物XをNMRで分析して得られたポリエステル由来の酸残基と架橋部由来の残基の分子の数の比率(モル比)と、用いた架橋部形成材料(例えば、スチレン等のビニルモノマー)の質量より求められる質量を意味する。
 具体的には、以下のように算出することができる。
 熱硬化性樹脂を分解して得られた化合物XをNMRで構造分析することにより、化合物X中のポリエステル由来の「酸残基」と、架橋部形成材料(例えば、スチレン等のビニルモノマー)由来する「架橋部由来の残基」とのモル比を算出することができる。次いで、この値(モル比)と熱硬化性樹脂の架橋に使用した架橋部形成材料の質量から、化合物Xの質量を算出することができる。
 例えば、ポリエステルの多塩基酸としてマレイン酸を使用し、架橋部形成材料としてスチレンを使用し、熱硬化性樹脂を分解して得られた化合物XのNMR構造分析によるフマル酸残基とスチレン残基との比が1:2であり、当該熱硬化性樹脂の架橋に使用したスチレンの使用量が100質量部である場合、それぞれの分子量は、スチレン=104、マレイン酸=116であるので、
化合物Xの理論存在質量=100+116×(100/104)×(1/2)=155.8
となる。すなわち、この場合の熱硬化性樹脂に含まれる化合物Xの理論存在質量は、155.8重量部である。
 さらに、工程(II)は、最大でも絶対圧で10気圧の圧力下、化合物Xの熱分解未満の温度まで加熱して化合物Xを有機溶媒に溶解するようにしてもよい。ここで、熱硬化性樹脂の熱分解未満の温度である280℃で亜臨界水分解した熱硬化性樹脂をNMRで構造分析すると、化合物Xのカルボン酸が脱炭酸することを確認できる。これにより、化合物Xを有機溶媒に効果的に溶解させて回収率を向上させることができるとともに、疎水化改質をより一層促進させることができる。
 工程(II)に使用される化合物Xの溶解度が水よりも高い有機溶媒としては、熱硬化性樹脂の分解生成物の固形分から化合物Xを溶解させることができるものであれば特に限定されないが、例えば、常温(20±15℃)で液体の有機溶媒、好ましくは、常温(20±15℃)にて、化合物Xと溶媒とを化合物X:溶媒=1:4の比率で混合した場合、化合物Xが50質量%以上溶解する溶媒、具体的には、主に低極性溶媒であり、クロロホルム、THF、あるいは両親媒性有機溶媒であるアセトンを例示することができる。また、当該有機溶媒としては、後述する常温(20±15℃)で液体のアルコール、無水酢酸等の酸無水物も例示することができる。
 また、有機溶媒として、常温(20±15℃)で液体のアルコールを用いることにより、化合物Xのアルコールへの溶解による回収と、化合物Xの末端カルボン酸とアルコールのOH基との脱水縮合反応が起こってエステル化する疎水化改質とが同時に行われるため、工程の大幅な合理化が実現でき望ましい。
 このエステル化のためのアルコールの使用量は、特に限定されないが、化合物Xの理論存在質量(上記参照)に対して、例えば、質量で2倍以上、好ましくは4倍~20倍であり、処理温度は、溶媒の沸点以下であり、好ましくは沸点以下で、且つ、可能な限り高温(ほぼ沸点)であり、処理時間は、特に限定されないが、例えば、2時間以上であり、好ましくは8~18時間である。
 さらに、当該工程は、加圧により、溶媒の引火性、発火性が高まり、出火および爆発の危険性が増す点から、常圧下で行うことが好ましい。
 アルコールの種類としては、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール等の1価のアルコールが好適であり、炭素数4以上(好ましくは炭素数6~8)の高級アルコールが特に好ましい。
 この場合、エステル化によって発生した水を100℃以上の加温によって除去することができる。また、加温によって化合物Xがより溶解しやすくなるだけでなく、蒸発して水分がなくなることにより脱水縮合反応を効果的に促進させることができる。
 また、有機溶媒として、無水酢酸等の酸無水物を用いてもよい。例えば、無水酢酸を用いた場合、化合物Xの無水酢酸への溶解による回収と、化合物Xの末端カルボン酸が無水酢酸との反応により無水化する疎水化改質とが同時に行われるため、アルコールを用いた場合と同様に工程を大幅に合理化することができ望ましい。
 この無水化のための酸無水物の使用量は、特に限定されないが、化合物Xの理論存在質量(上記参照)に対して、例えば、質量で2倍以上、好ましくは4倍~20倍の量であり、処理温度は、特に限定されないが、例えば、20~140℃であり、好ましくは60~120℃であり、処理時間は、特に限定されないが、例えば、2時間以上であり、好ましくは4~20時間である。
 化合物Xがスチレン-フマル酸共重合体である場合の化合物Xと無水酢酸との反応式は下記のとおりである。
Figure JPOXMLDOC01-appb-C000001
 ここで、式中のmは1~3の数値であり、nは3~300の数値であり、両末端は一般に水素である。
 なお、無水酢酸以外にも、無水コハク酸、無水マレイン酸、安息香酸無水物等の酸無水物を例示することができるが、化合物Xの溶解性を考慮すると無水酢酸が好ましい。
 化合物Xの疎水化改質は、加熱脱水反応によっても行うことができる。この場合の有機溶媒としては、クロロホルム、THF、アセトン等を用いることができる。この際の加熱温度は、有機溶媒の沸点にもよるが100~250℃の範囲で行い、熱劣化が起こらないように不活性雰囲気下で行う。これによって、化合物Xの酸残基(例えば、フマル酸構造部)の2つのカルボン酸基(同一分子上のものに限定されない)が縮合反応によって無水化し、疎水化改質した変性化合物Xを得ることができる。化合物Xがスチレン-フマル酸共重合体である場合の化合物Xの加熱脱水反応は下記式のとおりである。
Figure JPOXMLDOC01-appb-C000002
 ここで、式中のmは1~3の数値であり、nは3~300の数値であり、両末端は一般に水素である。
 また、化合物Xの溶解度が水よりも高く、且つ疎水性である有機溶媒(以下、「疎水性溶媒」と略する。)を、固液分離していない化合物Xを含有する固形分(固相)と液相(水、酸、無機塩等を含み得る)との混合物に加えて加熱することで、固形分の化合物Xを当該溶媒に溶解させて回収することもできる。これにより上記混合物を固液分離する工程を省略することができる。
 具体的には、上記固形分と液相との混合物に疎水性溶媒を、化合物Xの理論存在質量(上記参照)に対して、質量で2倍以上となる量で供給し、水が蒸発しない温度、例えば50℃~90℃で加熱することで、化合物Xを疎水性溶媒に溶解させることができる。その結果、当該混合物は、水相と、化合物Xが溶解した疎水性溶媒相とに相分離する。次いで、この疎水性溶媒相を回収することにより、これに溶解した化合物Xを回収することができる。
 上記工程に使用される疎水性溶媒とは、水に対する溶解度が、10g/水(25℃)100ml以下である溶媒を意味し、このような疎水性溶媒としては、上記化合物Xの溶解度が水よりも高い有機溶媒のうち、オクタノール、クロロホルム等を挙げることができる。
 また、疎水性溶媒としてオクタノール等のアルコールを使用した場合、回収した疎水性溶媒相について、これを疎水性溶媒の沸点以下の温度、例えば、オクタノールの場合、例えば、100℃~195℃、好ましくは150℃~195℃で加熱することで、他のアルコールを使用した場合と同様に、化合物Xのエステル化物(例えば、オクチル化物)が生成する。さらに疎水性溶媒の沸点以上の温度で加熱することで、化合物Xと反応した疎水性溶媒以外の余分な疎水性溶媒が除去されて、化合物Xのエステル化物を固形分として回収することができる。
 化合物Xのエステル化物(例えば、オクチル化物)は、ポリスチレンと構造は異なるが、性状がポリスチレンと類似していることから、ポリスチレンの代替品として再利用することができる。また除去した疎水性溶媒は、同工程の溶媒として再利用できる。
 上記工程において、化合物Xが溶解した疎水性溶媒相を回収した後は、水相とガラス繊維等の固形分が残るが、これを濾過等の方法によって固形分を回収することができる。また、濾液は、酸を含有している場合、再度、酸処理に用いることができる。なお、繰り返し再利用して溶解している塩濃度が高くなり過ぎた場合には、水を蒸発させて塩を回収することができる。また、蒸発させた水は再利用することができる。
 次いで、有機溶媒中に溶解した化合物Xまたは変性化合物Xを、減圧濾過、加圧濾過、フィルタープレス等の固液分離方法で固形分中のガラス繊維等の無機物や未分解の熱硬化性樹脂から分離し、さらには液相の有機溶媒を留去等により除去することで、化合物Xまたは変性化合物Xを回収することができる(工程(III))。
 また、この際、100~250℃の範囲で有機溶媒を加温することで、上述した加熱脱水反応により化合物Xを無水化しつつ、有機溶媒を除去して変性化合物Xを回収することもできる。
 以上のようにして得られた変性化合物Xは、例えば不飽和ポリエステル樹脂成形時の低収縮材として再利用できる。
<本発明の好適な一実施形態:図1>
 以下、本発明の好適な一実施形態を、図1のフローチャートを参照しながら工程順に説明する。当該実施形態では、熱硬化性樹脂として、フマル酸やマレイン酸を多塩基酸として、且つ、スチレンを架橋剤として使用して得られる熱硬化性樹脂から、変性スチレン-フマル酸共重合体を製造する工程を示す。
 最初に、ポリエステルとその架橋部を含む熱硬化性樹脂、炭酸カルシウム、ガラス繊維を含む熱硬化性樹脂組成物を亜臨界水分解する(工程(I))。ここでは、実質的にアルカリを含有しない水又は水酸化カルシウム水溶液を用いて亜臨界水分解する。
 本実施形態における亜臨界水分解で生成したスチレン-フマル酸共重合体は、熱硬化性樹脂組成物に炭酸カルシウムを含んでいることからCa塩(非水溶性の塩)として存在している。
 また、実質的にアルカリを含有しない水を用いる代わりに、水酸化カルシウム水溶液を用いた場合、分解により得られるスチレン-フマル酸共重合体のフマル酸構造部における2つのカルボン酸がCa原子を介して閉環したり、別のスチレン-フマル酸共重合体のフマル酸構造部におけるカルボン酸とCa原子を介して結合して環が形成されたりして、Ca塩として水に溶けにくい状態になる(図3(a)参照)。
 熱硬化性樹脂を亜臨界水分解することで、分解反応により生成したスチレン-フマル酸共重合体は、水不溶成分として析出し、熱硬化性樹脂に含まれる他の無機物、例えば炭酸カルシウムやガラス繊維等の無機物や未分解の熱硬化性樹脂とともに固形分(固相)として回収される。一方、分解反応により生成したポリエステル由来のモノマー(多価アルコールと多塩基酸)は、水可溶成分(液相)としてスチレン-フマル酸共重合体等の固形分(固相)と分離される。
 本実施形態において、炭酸カルシウムを含む熱硬化性樹脂組成物を亜臨界水分解すると、その回収した固形分中には無機物として炭酸カルシウムが含まれる。このため回収した固形分に塩酸を接触させる等の酸処理を施して炭酸カルシウムを塩化カルシウムとして溶解させる。そしてこれを固液分離して固形分を回収する。酸処理後に回収した固形分には炭酸カルシウムは含まれていない。また、この酸処理によって、亜臨界水分解して回収した固形分中のスチレン-フマル酸共重合体(Ca塩)のフマル酸構造部をカルボン酸に変化させた非水溶性の塩(スチレン-フマル酸共重合体(カルボン酸))を得る。このような非水溶性の塩(スチレン-フマル酸共重合体(カルボン酸))を得ることよって、後工程である工程(II)において変性スチレン-フマル酸共重合体を得ることができる。
 次に、回収した固形分を、スチレン-フマル酸共重合体の溶解度が水よりも高い回収・変性用有機溶媒に接触させ、これに溶解させることによりスチレン-フマル酸共重合体を回収するとともに、スチレン-フマル酸共重合体の疎水化改質(エステル化、無水化等)を促す(工程(II))。
 スチレン-フマル酸共重合体を回収・変性用有機溶媒に溶解回収後、固液分離し、液相部に含まれるスチレン-フマル酸共重合体を疎水化改質した後、有機溶媒を除去することにより、疎水化改質した変性スチレン-フマル酸共重合体を単離する。
<本発明の好適な一実施形態:図2>
 また、本発明の別の好適な一実施形態を、図2のフローチャートを参照しながら工程順に説明する。当該実施形態では、熱硬化性樹脂として、フマル酸やマレイン酸を多塩基酸として、且つ、スチレンを架橋剤として使用して得られる熱硬化性樹脂から、変性スチレン-フマル酸共重合体を製造する工程を示す。
 最初に、ポリエステル部とその架橋部を含む熱硬化性樹脂と、無機物として炭酸カルシウムとガラス繊維とを含む熱硬化性樹脂組成物を亜臨界水分解する(工程(A))。このとき、2価以上の水酸基含有の無機化合物を含む水で亜臨界水分解する。
 以上のように、2価以上の水酸基含有の無機化合物を含む水で熱硬化性樹脂組成物を亜臨界水分解することで、分解反応により生成したスチレン-フマル酸共重合体のカルボン酸塩は、水不溶成分として析出し、熱硬化性樹脂組成物に含まれる他の無機物や、未分解の熱硬化性樹脂とともに固形分として回収される。一方、分解反応により生成したポリエステル由来のモノマー(多価アルコールと多塩基酸)は、水可溶成分としてスチレン-フマル酸共重合体のカルボン酸塩等の固形分と分離される。
 図2ではポリエステル部とその架橋部を含む熱硬化性樹脂と炭酸カルシウムとガラス繊維とを含む熱硬化性樹脂組成物の亜臨界水分解について説明している。ところで、無機物として炭酸カルシウムを含有しない熱硬化性樹脂組成物を、水酸基含有の無機化合物を含まない水で亜臨界水分解した場合には、後述する図3(b)に示すような非水溶性のスチレン-フマル酸共重合体が生成される。この場合には後述する工程(D)の処理は不要である。また後述する工程(B)において回収する固形分中に炭酸カルシウムや水酸基含有の無機化合物を含んでいないため、後述する工程(C)の処理も不要である。したがって、工程(A)の後、後述する工程(E)の処理を行うことができる。
 次に、図2にも示すように、得られた分解生成物を固液分離して、スチレン-フマル酸共重合体のカルボン酸塩を含有する固形分を回収する(工程(B))。
 具体的には、亜臨界水と分解生成物を含む反応容器を冷却した後、ろ過等の方法で容器の内容物を固液分離する。これにより、スチレン-フマル酸共重合体のカルボン酸塩は、熱硬化性樹脂組成物に含まれていた他の無機物、例えば炭酸カルシウムやガラス繊維等の無機物や、未分解の熱硬化性樹脂等と共に固形分として分離される。
 一方、モノマー成分である多価アルコールと多塩基酸を溶解している水溶液が分離ろ液として分離される。この分離ろ液は、多価アルコールと多塩基酸を含有したまま亜臨界水として他の熱硬化性樹脂の分解に再利用することができる。しかも、繰り返し再利用することで、それぞれの分解反応時に生成する多価アルコールと多塩基酸を順次水溶液中に溶解させて、多価アルコールと多塩基酸を高濃度で回収することも可能である。
 次に、図2にも示すように、工程(B)で回収した固形分に炭酸水(炭酸ガスと水)を加えて固形分中の炭酸カルシウムを溶解させ、スチレン-フマル酸共重合体のカルボン酸塩を含む固形分を回収する(工程(C))。
 具体的には、炭酸カルシウムやガラス繊維等の無機物とスチレン-フマル酸共重合体が混合した固形分を水とともに容器に入れて密閉し、そこに炭酸ガス(CO)を送り込むことで、炭酸カルシウムが炭酸水素カルシウムとして水に溶解する。その後、容器を開放してろ過等の方法で容器の内容物を固液分離する。これにより、ガラス繊維とスチレン-フマル酸共重合体のカルボン酸塩を含む固形分と、炭酸カルシウムが溶解して生成した炭酸水素カルシウム含有水とに分離される。そして、この炭酸水素カルシウム含有水を加熱することで、二酸化炭素(CO)を分離するとともに、析出した炭酸カルシウムを水と分離する。炭酸カルシウムは再度無機充填材として再利用することができ、二酸化炭素と水は、工程(C)の炭酸水として繰り返し再利用することができる。
 ここで工程(A)において、無機物として炭酸カルシウムを含有する熱硬化性樹脂組成物を、水酸化カルシウム等の2価以上の水酸基含有の無機化合物を含む水で亜臨界水分解した場合、工程(B)で回収した固形分には2価以上の水酸基含有の無機化合物が含まれる。スチレン-フマル酸共重合体のカルボン酸塩を含む固形分を回収するためには、前記水酸基含有の無機化合物を溶解させる必要がある。工程(C)は、工程(B)で回収した固形分に炭酸水(炭酸ガスと水)を加えて固形分中の炭酸カルシウムを溶解しているが、併せて前記水酸基含有の無機化合物を溶解することができる。また、工程(A)において、無機物として炭酸カルシウムを含有しない熱硬化性樹脂組成物を、水酸化カルシウム等の2価以上の水酸基含有の無機化合物を含む水で亜臨界水分解した場合にも、工程(B)で回収した固形分には2価以上の水酸基含有の無機化合物が含まれる。この場合、工程(B)で回収した固形分に炭酸カルシウムが含まれていないが2価以上の水酸基含有の無機化合物が含まれているため、これを溶解するために炭酸水を加える必要がある。
 次に、図2にも示すように、工程(C)で回収した固形分に塩酸等の酸と水の混合物を加えて、スチレン-フマル酸共重合体のカルボン酸塩をスチレン-フマル酸共重合体へ変化させる(工程(D))。
 工程(C)で回収した固形分中に存在するスチレン-フマル酸共重合体のカルボン酸塩は、図3(a)に示すように、スチレン骨格とフマル酸骨格とを有し、カルボキシル基に金属Mが結合した状態(-COO-M-OOC-)で存在している。このものは非水溶性であり、且つ後述する溶媒への溶解も困難である。そこで、塩酸等の酸を加えて2価以上の金属Mを介して閉環しているスチレン-フマル酸共重合体のカルボン酸基を開環させ、図3(b)に示すように、溶媒への溶解が可能なスチレン-フマル酸共重合体とする。
 次に、工程(D)で得たスチレン-フマル酸共重合体を含有する固形分と水との混合物に、スチレン-フマル酸共重合体の溶解度が水よりも高く、疎水性である溶媒を加えて加熱し、固形物のスチレン-フマル酸共重合体を当該溶媒に溶解して回収する(工程(E))。
 具体的には、図2にも示すように、オクタノールを上記固形分と水(酸を含む)の混合物に供給し、水が蒸発しない温度、例えば50℃~90℃で加熱することで、スチレン-フマル酸共重合体をオクタノールに溶解させる。ここでオクタノールは疎水性であるため、上記固形分と水の混合物にオクタノールを供給するとオクタノール相と水相に相分離し、オクタノール相にスチレン-フマル酸共重合体が溶解する。したがって、このオクタノール相を回収することにより、これに溶解したスチレン-フマル酸共重合体を回収することができる。
 次に回収したオクタノール相について、これをオクタノールの沸点以下の温度、例えば100℃~195℃、好ましくは150℃~195℃で加熱することでスチレン-フマル酸共重合体のオクチル化物が生成する。さらにオクタノールの沸点以上の温度で加熱することで、スチレン-フマル酸共重合体と反応したオクタノール以外の余分なオクタノールが除去されて、スチレン-フマル酸共重合体オクチル化物を固形分として回収することができる。このスチレン-フマル酸共重合体オクチル化物は、ポリスチレンと構造は異なるが、性状がポリスチレンと類似していることから、ポリスチレンの代替品として再利用することができる。また除去されたオクタノールは、工程(E)の溶媒として再利用できる。
 工程(E)において、スチレン-フマル酸共重合体が溶解したオクタノール相を回収した後は、水相とガラス繊維等の固形分が残るが、これをろ過等の方法によって固形分を回収することができる。ろ液は、再度、工程(D)に用いられる酸と水の混合物(酸水溶液)として、工程(C)で回収した固形分に加えてスチレン-フマル酸共重合体のカルボン酸塩をスチレン-フマル酸共重合体へ変化させるために再利用することができる。繰り返し再利用して溶解している塩濃度が高くなった場合には、水を蒸発させて塩を回収する。蒸発させた水は再利用することができる。
 以下に、実施例により本発明をさらに詳しく説明するが、本発明はこの実施例に何ら限定されるものではない。
<製造例1>
 プロピレングリコール、ネオペンチルグリコール、およびジプロピレングリコールからなるグリコール類と、無水マレイン酸とを等モル量で重縮合させて不飽和ポリエステル樹脂を合成した。この不飽和ポリエステルのワニス(溶剤未添加)に架橋剤のスチレンを等モル量配合した液状樹脂100質量部に、炭酸カルシウム165質量部とガラス繊維90質量部を配合し、これを硬化させて不飽和ポリエステル樹脂成形品(以下、「熱硬化性樹脂」という。)を得た。さらに、この熱硬化性樹脂を2mmアンダー程度に粉砕した。
<実施例1>
 製造例1で得られた熱硬化性樹脂4gと純水16gを反応管に仕込み、260℃の恒温槽に浸漬し、亜臨界状態にして4時間浸漬したまま放置し、熱硬化性樹脂の分解処理を行った。
 その後、反応管を恒温槽から取り出して冷却槽に浸漬し、反応管を急冷して室温まで戻した。分解処理後の反応管の内容物は、水可溶成分とスチレン-フマル酸共重合体を含む水未溶解樹脂とガラス繊維と炭酸カルシウムであり、この内容物を濾過することにより水溶液と固形分を分離して反応管から回収した。
 次に、回収した固形分3.6gに対し、1mol/lの塩酸を40ml(HCl量で1.46g)添加して、含有している炭酸カルシウムを完全に溶解し、充分に洗浄しながら固液分離して残渣を得た(熱硬化性樹脂中の炭酸カルシウムを完全に溶解するのに必要なHCl量は1.36gである)。
 この残渣に対して、熱硬化性樹脂に含まれる理論上のスチレン-フマル酸共重合体量の20倍量の1-オクタノール(沸点195℃)を加えて、195℃で8時間加熱攪拌を行った(20倍量は約14g)。
 その後、固液分離を行い、余分なオクタノールを揮発させて変性スチレン-フマル酸共重合体を得て、質量を測定した。
 収率は下記式より求めた。
収率(%)=(溶媒に溶解したスチレン-フマル酸共重合体の量(揮発後))/(熱硬化性樹脂に含有される理論上のスチレン-フマル酸共重合体の量)×100
 式中、「熱硬化性樹脂に含有される理論上のスチレン-フマル酸共重合体の量」は、以下のように算出した。
 熱硬化性樹脂を亜臨界水分解して回収した固形分を、塩酸で酸処理を施して炭酸カルシウムを溶解させ、固液分離して得られた残渣にアセトンを加えてスチレン-フマル酸共重合体(末端カルボン酸)を抽出し、固液分離したろ液からアセトンを常温で揮発させて得たスチレン-フマル酸共重合体(末端カルボン酸)をNMRで構造分析することにより、分解物のスチレン残基とフマル酸残基のモル比を算出する。このモル比と熱硬化性樹脂中に含まれるスチレン架橋部の原材料の重量から、上記「化合物Xの理論存在質量」の計算方法にしたがって、理論上のスチレン-フマル酸共重合体の量を計算することができる。
 例えば、実施例1の場合、熱硬化性樹脂4g中に含まれるスチレン量は、0.48gであり、スチレン-フマル酸共重合体中のスチレンとフマル酸とのモル比は、スチレン:フマル酸=2.2:1であることから、この場合の熱硬化性樹脂に含有される理論上のスチレン-フマル酸共重合体の量は、0.72gである。
 上記の作業を繰り返して、得られた変性スチレン-フマル酸共重合体30gをスチレン70gに溶解させ、この30%希釈液を低収縮材とした。
 次に、亜臨界水分解用に用いる熱硬化性樹脂に用いた不飽和ポリエステル樹脂のワニスにスチレンをほぼ当量配合し、炭酸カルシウムを添加して得られたワニス/スチレン/炭酸カルシウム配合系を用い、この配合系に対して、上記低収縮材が10質量部となるように配合した後、成型し硬化物とした。
<実施例2>
 実施例1において、熱硬化性樹脂4gに対し、純水の代わりに水酸化カルシウム水溶液(1mol/l)を16g配合して同条件で亜臨界水分解した以外は、実施例1と同様にして変性スチレン-フマル酸共重合体を得た。
 実施例1と同様、これを低収縮材として、同配合にて成型し硬化物とした。
<実施例3>
 実施例1において、塩酸処理した後の残渣に対して1-オクタノールを加える代わりにアセトンを加え、これを常温で8時間攪拌して固液分離した。固液分離した固形分からアセトンを強制揮発させて無水化を促し、変性スチレン-フマル酸共重合体を得た。
 実施例1と同様、これを低収縮材として、同配合にて成型し硬化物とした。
<実施例4>
 実施例1において、塩酸処理した後の残渣に1-オクタノールを加えた後、加圧容器に入れ、170℃(0.7MPa)4時間の条件で加圧溶解および改質反応を促し、未反応オクタノールを揮発させて変性スチレン-フマル酸共重合体を得た。
 実施例1と同様、これを低収縮材として、同配合にて成型し硬化物とした。
<参考例1>
 上記実施例1のワニス/スチレン/炭酸カルシウム配合系を同様に用い、この配合系に対して、低収縮材を加えずに硬化させて、硬化物とした。
<参考例2>
 上記実施例1のワニス/スチレン/炭酸カルシウム配合系を同様に用い、この配合系に対して、市販低収縮材(ポリスチレン)のスチレン30%希釈液が10質量部となるように配合した後、成型し硬化物とした。
 上記実施例1~4、参考例1および2から得られた各硬化物に対し、以下のように収縮率を測定し、硬化物の外観の目視状態の観察を含めて評価した。
 収縮率は、100mm角の型に配合樹脂を流し込み、硬化させた後の寸法から算出した。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1の結果より、実施例1~4では、変性スチレン-フマル酸共重合体の収率に差は見られるものの、外観評価に問題はなく、収縮率も市販品の低収縮材を用いた参考例2と大差なく機能していることが確認できた。一方、参考例1では、外観評価において、表面にダマが見られ収縮率も4.0%と高く、樹脂を硬化させるときに収縮してしまうことから、低収縮材を含まないこの例は樹脂の特性が低下していると考えられる。
 以上より、熱硬化性樹脂を分解して得た変性スチレン-フマル酸共重合体は、低収縮材として樹脂成形に再利用できることが確認できた。
<製造例2>
 プロピレングリコール、ネオペンチルグリコール、およびジプロピレングリコールからなるグリコール類と、無水マレイン酸とを等モル量で重縮合させて不飽和ポリエステルを合成した。この不飽和ポリエステルのワニス(溶剤未添加)に架橋剤のスチレンを等モル量配合した液状樹脂100質量部に、炭酸カルシウム165質量部とガラス繊維90質量部を配合し、これを硬化させて不飽和ポリエステル樹脂成形品(以下、「熱硬化性樹脂」という)を得た。
<実施例5>
 製造例2で得られた熱硬化性樹脂4gと、純水16gと、水酸化カルシウム0.95gを反応管に仕込み、260℃の恒温槽に浸漬し、反応管内の純水を亜臨界状態にして4時間浸漬したまま放置し、熱硬化性樹脂の分解処理を行った。
 その後、反応管を恒温槽から取り出して冷却槽に浸漬し、反応管を急冷して室温まで戻した。分解処理後の反応管の内容物は、水可溶成分と未溶解樹脂残渣と炭酸カルシウムとガラス繊維であり、この内容物をろ過することにより固形分3.6gを分離して回収した。
 そして、この固形分に1.0規定の塩酸40mlを加えて未溶解残渣中のスチレン-フマル酸共重合体のカルボン酸基を閉環しているカルシウムと反応して開環させた後、オクタノール10mlを加えて60℃で加熱し、オクタノールに固体のスチレン-フマル酸共重合体を溶解させ、さらにオクタノールを水と固形分から分離した。
 その後、オクタノールを180℃で加熱することによりスチレン-フマル酸共重合体オクチル化物が生成し、さらに加熱温度を上昇させることで、スチレン-フマル酸共重合体オクチル化物の固形物1.1gを回収した。

Claims (10)

  1.  ポリエステル部とその架橋部を含む熱硬化性樹脂を亜臨界水分解してポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を回収する方法であって、
    (I)前記熱硬化性樹脂を亜臨界水分解する工程と、
    (II)得られたポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を、前記化合物の溶解度が水よりも高い有機溶媒に溶解させる工程と、
    (III)前記溶媒に溶解した前記化合物を回収する工程と
    を含むことを特徴とする、方法。
  2.  前記亜臨界水分解を、実質的にアルカリを含有しない水で行うことを特徴とする、請求項1に記載の方法。
  3.  ポリエステル部とその架橋部を含む熱硬化性樹脂が、炭酸カルシウムを含有しないことを特徴とする、請求項2に記載の方法。
  4.  前記亜臨界水分解を、水酸化カルシウムを含有する水で行い、および
    前記工程(II)の前に、前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を酸処理する工程をさらに含むことを特徴とする、請求項1に記載の方法。
  5.  前記有機溶媒が、常温で液体のアルコールを含んでなり、および
    前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物のポリエステル由来の酸残基を前記アルコールでエステル化して、前記化合物を疎水化する工程をさらに含むことを特徴とする、請求項1乃至4のいずれか一項に記載の方法。
  6.  前記アルコールが、水の沸点以上のアルコールを含んでなることを特徴とする、請求項5に記載の方法。
  7.  前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物のポリエステル由来の酸残基を無水化して、前記化合物を疎水化する工程をさらに含むことを特徴とする、請求項1乃至4のいずれか一項に記載の方法。
  8.  前記無水化を、前記化合物のカルボキシル基を加熱脱水反応させることにより行うことを特徴とする、請求項7に記載の方法。
  9.  前記無水化を、前記ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物のカルボキシル基と無水酢酸とを反応させることにより行うことを特徴とする、請求項7に記載の方法。
  10.  ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物を含有する固形分を、最大で絶対圧10気圧の圧力下、前記化合物の熱分解未満の温度まで加熱して、前記化合物を前記有機溶媒に溶解させることを特徴とする、請求項1乃至9のいずれか一項に記載の方法。
PCT/JP2009/056129 2008-03-26 2009-03-26 熱硬化性樹脂の分解および分解生成物の回収方法 WO2009119742A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/934,390 US8653150B2 (en) 2008-03-26 2009-03-26 Method for decomposing thermoset resin and recovering decomposition product
CN2009801108701A CN101981103B (zh) 2008-03-26 2009-03-26 用于分解热固性树脂以提供将被收集的分解产物的方法
EP20090724716 EP2258756B1 (en) 2008-03-26 2009-03-26 Method for decomposing thermoset resin and recovering decomposition product
JP2009532471A JP5148617B2 (ja) 2008-03-26 2009-03-26 熱硬化性樹脂の分解および分解生成物の回収方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-081962 2008-03-26
JP2008081962 2008-03-26
JP2008-114481 2008-04-24
JP2008114481 2008-04-24

Publications (1)

Publication Number Publication Date
WO2009119742A1 true WO2009119742A1 (ja) 2009-10-01

Family

ID=41113930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056129 WO2009119742A1 (ja) 2008-03-26 2009-03-26 熱硬化性樹脂の分解および分解生成物の回収方法

Country Status (5)

Country Link
US (1) US8653150B2 (ja)
EP (1) EP2258756B1 (ja)
JP (1) JP5148617B2 (ja)
CN (1) CN101981103B (ja)
WO (1) WO2009119742A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127082A (ja) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd スチレン−フマル酸共重合体の回収方法
JP2011246578A (ja) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd ビニルモノマー−多塩基酸エステル共重合体の製造方法
JP2013142100A (ja) * 2012-01-10 2013-07-22 Teikyo Univ 高温・高圧メタノールによる磁気テープのケミカルリサイクル方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911396B (zh) * 2012-10-22 2015-08-26 广东树业环保科技股份有限公司 一种废旧pet材料的回收工艺
JP6693522B2 (ja) * 2016-03-08 2020-05-13 日立化成株式会社 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501205A (ja) 1979-09-27 1981-08-27
JPS574225A (en) 1980-05-08 1982-01-09 Modaa Inc Oxidizing treating method for organic matter in super critical water
JPH0531000A (ja) 1990-09-08 1993-02-09 Kobe Steel Ltd 天然又は合成高分子化合物の選択的加水分解及び/又は熱分解方法
JPH06279762A (ja) 1993-03-30 1994-10-04 Heiji Enomoto ポリオレフィンの油化方法
JPH1024274A (ja) * 1996-07-12 1998-01-27 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解方法及びリサイクル方法
JPH1067991A (ja) 1996-08-28 1998-03-10 Mitsubishi Heavy Ind Ltd プラスチック廃棄物の油化方法及び装置
JPH11140224A (ja) * 1997-11-07 1999-05-25 Hitachi Ltd 熱硬化性廃プラスチック処理方法
WO2005092962A1 (ja) 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. プラスチックの分解方法
JP2006008984A (ja) * 2004-05-26 2006-01-12 Matsushita Electric Works Ltd プラスチックの分解・分離方法
JP2006008985A (ja) * 2004-05-26 2006-01-12 Matsushita Electric Works Ltd プラスチックの分解・分離方法
JP2006213873A (ja) * 2005-02-04 2006-08-17 Osaka Industrial Promotion Organization 熱硬化性樹脂の分解方法、分解生成物およびリサイクル方法
JP2006232942A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd プラスチックの分解方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4297112B2 (ja) * 2002-11-07 2009-07-15 パナソニック電工株式会社 ポリマーの分解方法
CN100336852C (zh) * 2002-11-07 2007-09-12 松下电工株式会社 聚合物的分解方法
JP4116948B2 (ja) * 2003-07-28 2008-07-09 松下電工株式会社 不飽和ポリエステル樹脂の分解・回収方法
US8044148B2 (en) * 2004-11-25 2011-10-25 Panasonic Electric Works Co., Ltd. Modified styrene-maleic acid copolymer and use thereof
JP4754237B2 (ja) * 2005-02-23 2011-08-24 パナソニック電工株式会社 プラスチックの分解方法
JP2006241380A (ja) * 2005-03-04 2006-09-14 Matsushita Electric Works Ltd プラスチックの分解方法
JP4699785B2 (ja) * 2005-03-28 2011-06-15 パナソニック電工株式会社 プラスチックの再生方法
JP5001017B2 (ja) * 2006-06-27 2012-08-15 パナソニック株式会社 熱硬化性樹脂の回収・再利用方法および変性スチレン−フマル酸共重合体の製造方法
JP4735474B2 (ja) * 2006-08-25 2011-07-27 パナソニック電工株式会社 プラスチックの亜臨界水分解液からの固形物分離洗浄方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501205A (ja) 1979-09-27 1981-08-27
JPS574225A (en) 1980-05-08 1982-01-09 Modaa Inc Oxidizing treating method for organic matter in super critical water
JPH0531000A (ja) 1990-09-08 1993-02-09 Kobe Steel Ltd 天然又は合成高分子化合物の選択的加水分解及び/又は熱分解方法
JPH06279762A (ja) 1993-03-30 1994-10-04 Heiji Enomoto ポリオレフィンの油化方法
JPH1024274A (ja) * 1996-07-12 1998-01-27 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解方法及びリサイクル方法
JPH1067991A (ja) 1996-08-28 1998-03-10 Mitsubishi Heavy Ind Ltd プラスチック廃棄物の油化方法及び装置
JPH11140224A (ja) * 1997-11-07 1999-05-25 Hitachi Ltd 熱硬化性廃プラスチック処理方法
WO2005092962A1 (ja) 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. プラスチックの分解方法
JP2006008984A (ja) * 2004-05-26 2006-01-12 Matsushita Electric Works Ltd プラスチックの分解・分離方法
JP2006008985A (ja) * 2004-05-26 2006-01-12 Matsushita Electric Works Ltd プラスチックの分解・分離方法
JP2006213873A (ja) * 2005-02-04 2006-08-17 Osaka Industrial Promotion Organization 熱硬化性樹脂の分解方法、分解生成物およびリサイクル方法
JP2006232942A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd プラスチックの分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258756A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127082A (ja) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd スチレン−フマル酸共重合体の回収方法
JP2011246578A (ja) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd ビニルモノマー−多塩基酸エステル共重合体の製造方法
JP2013142100A (ja) * 2012-01-10 2013-07-22 Teikyo Univ 高温・高圧メタノールによる磁気テープのケミカルリサイクル方法

Also Published As

Publication number Publication date
US8653150B2 (en) 2014-02-18
EP2258756B1 (en) 2013-09-25
CN101981103B (zh) 2012-08-08
JPWO2009119742A1 (ja) 2011-07-28
CN101981103A (zh) 2011-02-23
EP2258756A1 (en) 2010-12-08
JP5148617B2 (ja) 2013-02-20
EP2258756A4 (en) 2012-02-01
US20110086930A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP4473268B2 (ja) プラスチックの分解方法
JP5148617B2 (ja) 熱硬化性樹脂の分解および分解生成物の回収方法
JP2002509962A (ja) 汚染されたポリエチレンテレフタレートを汚染除去されたポリブチレンテレフタレートに転化するための改良された方法
JP4495628B2 (ja) プラスチックの分解・分離方法
JP4979753B2 (ja) 熱硬化性樹脂の分解および分解生成物の回収方法
JP4495629B2 (ja) プラスチックの分解・分離方法
JP4806758B2 (ja) 熱硬化性樹脂の分解・回収方法
JP2007186549A (ja) 繊維補強不飽和ポリエステル樹脂の分解方法、燃料、再合成不飽和ポリエステル樹脂および再生不飽和ポリエステル樹脂の製造方法
JP5508025B2 (ja) 熱硬化性樹脂の分解および分解生成物の回収方法
JP4806757B2 (ja) 熱硬化性樹脂の分解・回収方法
JP5270871B2 (ja) プラスチック用低収縮材とそれを用いたプラスチック成形品、プラスチック用低収縮材の製造方法、並びにプラスチックの回収・再利用方法
JP4979568B2 (ja) 熱硬化性樹脂の分解・回収方法
JP2011111502A (ja) プラスチックの分解方法
JP5243464B2 (ja) プラスチックの分解・回収方法
JP4971124B2 (ja) 熱硬化性樹脂の分解・回収方法
WO2010110434A1 (ja) 熱硬化性樹脂の分解・回収方法
JP2007217196A (ja) 水酸化カルシウムの回収方法および炭酸カルシウムの回収方法
JP4720739B2 (ja) プラスチックからの水酸化アルミニウムの回収・再利用方法
WO2010123093A1 (ja) 熱硬化性樹脂の分解・回収方法
JP2011006580A (ja) プラスチックの分解・回収方法
JP2009263492A (ja) プラスチックからの無機物回収方法およびプラスチック成形品
JP2011184607A (ja) 高分子材料の分解処理方法と再生樹脂
JP2011127081A (ja) 熱硬化性樹脂分解物の再利用方法および熱硬化性樹脂成形品用低収縮剤
JP2011202102A (ja) 多塩基酸ビニルモノマー共重合体塩の分離方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110870.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009532471

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009724716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12934390

Country of ref document: US