WO2005077632A1 - Rtm成形方法および装置 - Google Patents

Rtm成形方法および装置 Download PDF

Info

Publication number
WO2005077632A1
WO2005077632A1 PCT/JP2005/002314 JP2005002314W WO2005077632A1 WO 2005077632 A1 WO2005077632 A1 WO 2005077632A1 JP 2005002314 W JP2005002314 W JP 2005002314W WO 2005077632 A1 WO2005077632 A1 WO 2005077632A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
rtm molding
rtm
molding method
Prior art date
Application number
PCT/JP2005/002314
Other languages
English (en)
French (fr)
Inventor
Toshihide Sekido
Shigeo Iwasawa
Tatsuya Senba
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004039882A external-priority patent/JP4378687B2/ja
Priority claimed from JP2004063777A external-priority patent/JP4442256B2/ja
Priority claimed from JP2004281611A external-priority patent/JP2006095727A/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to KR1020067019054A priority Critical patent/KR101151966B1/ko
Priority to US10/589,589 priority patent/US7943078B2/en
Priority to AU2005213807A priority patent/AU2005213807A1/en
Priority to EP05719166.0A priority patent/EP1721719B1/en
Priority to CN2005800052113A priority patent/CN1921996B/zh
Publication of WO2005077632A1 publication Critical patent/WO2005077632A1/ja
Priority to US13/078,455 priority patent/US20110192531A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0061Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel
    • B29C33/0066Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel with a subdivided channel for feeding the material to a plurality of locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/081Combinations of fibres of continuous or substantial length and short fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/10Moulds or cores; Details thereof or accessories therefor with incorporated venting means

Definitions

  • the present invention provides an RTM (Resin Resin) for forming a relatively large FRP (fiber reinforced resin).
  • the present invention relates to a transfer molding method and apparatus, and more particularly, to an RTM method and apparatus capable of high-speed molding and improving surface quality.
  • FRP especially CFRP (carbon fiber reinforced resin) is lightweight and high! ⁇ ⁇ It is used in various fields as a composite material having mechanical properties.
  • a reinforcing fiber base material such as a laminated base material of a reinforcing fiber fabric is placed on a mold, and after closing the mold, the inside of the mold is depressurized, a liquid resin is injected, and the mixture is cured by heating.
  • RTM molding methods are known.
  • a certain shape is formed on a reinforcing fiber base material before being arranged in a molding die by sandwiching the reinforcing fiber base between the upper and lower molding dies (for example, , Patent Document 1).
  • Patent Document 2 As a method of impregnating even a relatively complicated and large-sized molded product, for example, there is a method described in Patent Document 2.
  • a matrix resin carrier in which a sponge material is impregnated with a molten resin is used in place of the resin film of the RFI method.
  • a method of impregnating with pressure by a simple method a method is used in which the entire molded body is covered with a pagging film and the inside of the molded body is depressurized. There is such a problem that it is not possible to completely impregnate thick materials and details.
  • None of these methods is a method of impregnating a reinforcing fiber base material while flowing a matrix resin that has been initially molten by force, so that the cause of generation of an unimpregnated portion remains.
  • a method of injecting resin under pressure from one injection line is also known.
  • resin injection is performed with one side force directed toward the other side (for example, Patent Documents 3 and 4).
  • the resin flows reliably while impregnating the reinforcing fiber base sequentially with one side force directed toward the opposite side.
  • the resin flows. This requires a lot of time, and in some cases, the resin reaches the gelling time during the flow, which causes a problem that the flow stops before the resin is completely impregnated.
  • RTM molds which usually have a relatively large mold force, require a great deal of time for molding. There is a major problem of low productivity.
  • the setting of the reinforcing fiber base on the mold surface is relatively easy and the setting time can be shortened.
  • the resin is injected at a pressure of OMPa and the flow rate is not controlled, the resin flows into the mold at a flow rate corresponding to the pressure, and the flow time is relatively short.
  • the mold is filled with resin, but the reinforcing fiber substrate is disturbed by the resin flow, and the flow velocity is high and uneven flow occurs, and many voids and pinholes are generated on the surface of the molded product. is there.
  • the resin is injected at a high pressure of 0.5 MPa or more (accordingly, at a high speed).
  • a high pressure of 0.5 MPa or more
  • the weaving structure of the reinforced fiber base material especially plain woven fabric
  • the resin flows at high speed in the mold
  • the cavities in the mold especially thickness unevenness
  • the flow resistance varies within the flow area due to differences in the composition of the base material due to uneven thickness and overlap between the base materials, and the uniform flow cannot be maintained. May cause large voids.
  • the resin actually flows into the base portion, the flow is so fast that, for example, the gas that has been in the weave of the woven fabric stays in the gap without escaping. May occur.
  • high-speed injection is performed to reduce molding time while performing high-speed injection to reduce molding time. It is difficult to ensure high surface quality. As the size of the molded product becomes larger, high-speed resin injection is inevitable, and such defects in appearance quality are more likely to occur.
  • the density of the reinforcing fiber base material that is, the basis weight is also an important factor. That means
  • the basis weight of the reinforcing fiber per layer affects the flow resistance of the resin and the ease with which air bubbles escape, it is necessary to set the basis weight appropriate for the resin flow conditions.
  • the adjustment of the basis weight must be set from the viewpoint of the workability of the preform, the strength utilization rate, etc., which is simply achieved by the surface force of the surface quality.
  • the basis weight is too large and the rigidity of the base material is high, it is difficult for the reinforcing fiber base material to follow the mold surface, and it is difficult to shape the base material into a three-dimensional shape. In some cases, it may take a long time, and at that time, the base material may be disturbed, and the mechanical properties of the FRP molded product may be degraded. That is, for efficient production, there is a weight per unit area that matches production conditions (molding size, shape, molding conditions, etc.).
  • the influence of the temperature and the resin injection pressure on the surface quality is particularly high.
  • the temperature of the injected resin itself or the temperature of the resin heated by the mold is high, the resin viscosity decreases and the fluidity increases, and the resin impregnation into the base material is good, but the viscosity increase rate is low.
  • the flow of the resin may be slowed down in the middle of the process, resulting in non-impregnation. Even if the resin flows into the entire area, voids and pinholes may occur frequently in the area where the viscosity is high even if the resin is not impregnated.
  • the temperature of the mold becomes uneven or changes during molding, it will remain in the mold! The extremely small bubbles come into contact with each other and grow into large bubbles that develop into voids and pinholes.
  • the pressure is appropriate. That is, if the resin flow rate is too high, the resin flow velocity becomes high, disturbing the woven structure of the base material, expanding the volume in the cavity to generate air bubbles, or being too low, the remaining air bubbles cannot be reduced to a small size.
  • a reactive gas is generated during the curing process from the reactive resin, or a fine gas (bubbles) already included in the resin grows with time and grows to grow into a void-pinhole. Since the resin may be impregnated with the resin, it is better to cure the resin as quickly as possible after impregnation.
  • the degree of influence of the material properties of the reactive resin on the molding yield is extremely high.
  • the reaction rate becomes maximum at the beginning of the reaction of the resin, and time elapses. Therefore, the reaction rate may be reduced, which may increase the time required for curing.
  • the temperature of the mold is raised to shorten the curing time, the initial viscosity rise will be excessive, and the viscosity will increase excessively during the injection and flow of the resin, eventually causing a gelling. In some cases, the molding is stopped halfway and unimpregnated parts are formed.
  • a random mat layer may be provided on the upper surface of the surface substrate. Because this random mat layer is the outermost layer, it is also called “surface mat”, and it is sometimes applied particularly to the pre-predeer Z-autoclave hardening method, RFI (Risin Film Infosion) and hand lay-up method.
  • the configuration is a substrate configuration in which the surface layer substrate and the random mat layer are completely replaced, as compared with an embodiment according to the present invention described later.
  • the random mat as described above is used as a surface mat, and placed on the outermost layer and subjected to FRP molding by RTM molding or vacuum molding, the random mat in a dry substrate state is pressed against the mold surface, Since the low-weight random mat has low bulkiness, the gap between the mold surface and the random mat is very small. As a result, the flow of the resin into the gap is poor, and consequently, voids and pinholes are likely to occur at the location. As described above, particularly in the case of the RTM molding method and the vacuum molding method, even if the random mat layer is provided on the outermost layer (the design surface of the surface layer), generation of voids and pinholes cannot be prevented.
  • Patent Document 1 JP 2003-305719
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-234078
  • Patent Document 3 JP-A-8-58008
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-11136
  • a first object of the present invention is to provide a molding process from impregnation to hardening even with a relatively large three-dimensional planar body. Faster than conventional RTM molding methods and equipment without creating areas where no grease flows, thereby reducing molding time, increasing production speed, increasing production, and in particular increasing production per die It is another object of the present invention to provide an RTM molding method and apparatus capable of reducing the manufacturing cost.
  • a second object of the present invention relatively large, i.e., substantially projected area Te Contact ⁇ the RTM molding for molding a lm 2 or more fiber reinforced ⁇ products, such void from such ⁇ An object of the present invention is to provide an RTM molding method and apparatus capable of efficiently molding a high-quality molded product in a short time.
  • a third object of the present invention is to easily and surely spread the injected resin satisfactorily over the entire desired range in the step of injecting the resin.
  • An object of the present invention is to provide an RTM molding method capable of producing a fiber-reinforced resin that has improved the surface quality without causing voids and pinholes.
  • the RTM molding method arranges a reinforcing fiber base material in a cavity of a molding die composed of a plurality of dies, closes the mold, and injects resin.
  • the divided regions are assumed with respect to the surface direction of the reinforcing fiber base material.
  • the injected resin spreads over the entire surface of the region and is substantially in the thickness direction of the base material.
  • the method is characterized by forming a resin introduction path for introducing the injected resin into each of the assumed divided regions into each of the assumed divided regions.
  • the RTM molding apparatus is an RTM molding apparatus that arranges a reinforcing fiber base material in a cavity of a mold composed of a plurality of molds, clamps the mold, injects resin, and molds.
  • each divided region is a divided region in which the injected resin spreads over the entire surface of the region and can be substantially uniformly impregnated in the substrate thickness direction.
  • This RTM molding apparatus may be configured to have a means for vacuum suction from the resin discharge line for a predetermined time from at least after clamping the mold to the start of resin injection.
  • a divided region of an appropriate size is assumed for a reinforcing fiber base material having a relatively large area.
  • a resin introduction path for introducing the injection resin into each of the divided regions and injecting the resin through the resin introduction path, as a result, the entire area of the reinforcing fiber base material is formed. Over time, the resin is impregnated quickly and uniformly.
  • the number of divisions of the divided areas may be a plurality of countable numbers as shown in the first and second aspects described later, or a substantially infinite number of divided areas as shown in a third aspect described later.
  • an intermediate member having a resin flow path penetrating in a thickness direction is provided between dies constituting the forming die.
  • an RTM molding method in which resin is injected into the reinforcing fiber base material from a plurality of locations almost simultaneously via a member (method according to the first embodiment).
  • the present invention has a resin flow path penetrating in a thickness direction between the molds constituting the molding die, and the resin is supplied to the reinforcing fiber base through the resin flow path.
  • a resin discharge groove extending substantially all around the reinforcing fiber base is formed in one of the molds. It can be. Further, the intermediate member may have a configuration in which a resin discharge groove extending substantially all around the reinforcing fiber base is formed. [0030] The intermediate member has a resin channel groove formed on one surface thereof, and a through-hole that communicates with the groove and penetrates to a surface on the reinforcing fiber base material disposition side opposite to the surface. May be provided.
  • the intermediate member any of metal and resin can be used.
  • the resin injection member for example, a resin injection pipe
  • the resin discharging member for example, a resin discharging pipe
  • the intermediate member may be sealed by pressing the intermediate member and the mold facing the intermediate member.
  • the intermediate member a perforated plate having a plurality of through holes or a resin film may be used.
  • a perforated plate having a plurality of through holes or a resin film may be used as the intermediate member.
  • a gap may be formed between the intermediate member and the mold facing the intermediate member, and the gap may be set within a range of 110 mm.
  • a tube for resin injecting is used.
  • Z or a discharge tube is sandwiched between the mold mating surfaces, and a structure is employed in which the tube and the mold are sealed via an elastic body (sealing elastic body).
  • the above-described sealing property improving structure may be configured such that an end of an O-ring that seals the cavity of the molding die at the mold-matching surface portion is built in the elastic body for sealing.
  • the resin is placed in the molding die. It is possible to adopt a configuration in which the gas and the excess resin in the mold are intermittently discharged while the pressure is injected.
  • the pressure of the resin is in the range of 0.2 to 0.8 MPa, and the resin is heated at a heating temperature of 60 to 160 ° C at a constant temperature of 3 to 30. A configuration that cures in minutes can be adopted.
  • the RTM molding method and apparatus according to the first aspect as described above solve the above-described problems based on the following basic idea. That is, the number of resin inlets is increased, and the resin flow area per inlet is reduced. Then, before impregnating the resin into the reinforcing fiber base material, the resin is allowed to flow on the surface of the base material so as to accumulate the resin, and the pressure is applied to the resin so that the entire area is immediately flown and impregnated. At this time, the substantial flow of the resin is set to be equal to the thickness of the base material. In other words, the resin is caused to flow in the surface direction over a sufficiently wide area in advance, and the force is caused to flow and impregnate at a stretch in the thickness direction of the base material. Thus, the resin will be injected into the entire area of the substrate (rather than from the periphery) and the resin will be impregnated very quickly. It is preferable to perform peripheral (or, in some cases, full circumference) forces for resin discharge.
  • one mold for example, upper mold
  • another mold for example, lower mold
  • An intermediate member for example, an intermediate plate for a resin injection multi-boat
  • the resin is allowed to flow at the same time as the resin, and the resin is flowed almost uniformly over the entire area of the substrate.
  • an injection opening area is small, and an intermediate plate (a resin flow resistance is large! A perforated plate or a perforated film, etc.) It is also possible to maintain a small gap between the intermediate plate and the upper mold (for example, the above-mentioned gap in the range of 110 mm), and to flow resin into the gap. Because of the low flow resistance, before the hole force of the intermediate plate flows, it spreads over a sufficiently large area, the resin is accumulated, and is then injected substantially at once through the through hole toward the reinforcing fiber substrate. Therefore, in this case as well, a plurality of local forces can be injected almost simultaneously and evenly.
  • the present invention provides a method of injecting resin into a resin injection line, which is arranged on an outer periphery of the cavity, and discharges the resin into a resin discharge line.
  • the present invention also relates to a resin injection line disposed on the outer periphery of the cavity, a resin injection line for injecting a resin into a resin discharge line, impregnating the reinforcing fiber base material with the resin, and then heating and curing.
  • An RTM molding apparatus wherein the resin injection line is divided and formed into a plurality of pieces (RTM molding apparatus according to a second aspect).
  • the resin injection line and the resin discharge line are formed substantially over the entire outer periphery of the cavity. Further, regarding the resin injection line and the resin discharge line, it is preferable that the length of the resin injection line is twice or more the length of the resin discharge line.
  • Such a resin injection line and a Z or resin discharge line can be configured by grooves (recessed grooves) formed in a molding die.
  • the molding die is composed of an upper die and a lower die, it is preferable that all of the above-mentioned grooves are formed in the lower die.
  • the resin discharge line may be divided into a plurality of parts.
  • the resin injection of the resin injection line force divided into a plurality of portions is sequentially performed from the resin injection line on the side substantially away from the resin discharge line force. It is also possible to switch from the resin discharge line to the resin injection line after a predetermined time to perform the resin injection. It is possible.
  • the core material is formed by reinforcing fibers from both sides.
  • a sandwich structure sandwiched between base materials can be employed.
  • a resin injection tube is used.
  • Z or a discharge tube is sandwiched between the mold mating surfaces, and a structure is employed in which the tube and the mold are sealed via an elastic body (sealing elastic body).
  • an end of an O-ring for sealing the cavity of the molding die at the mating surface portion may be built in the elastic body for sealing.
  • the resin is filled in the molding die. It is possible to adopt a configuration in which the gas and the excess resin in the mold are intermittently discharged while the pressure is injected.
  • the pressure of the resin is in the range of 0.2 to 0.8 MPa, and the resin is heated at a constant temperature in the range of 60 to 160 ° C. A configuration that cures in minutes can be adopted.
  • the present invention particularly has a structure in which at least one surface layer of the reinforcing fiber base is a continuous fiber layer, and a layer directly below the surface layer is a random mat layer.
  • An RTM molding method is provided (method according to the third embodiment).
  • the random mat layer has a low fiber resistance since the fiber orientation is random and has a low basis weight, the provision of this random mat layer allows the resin flow path in which the resin flows relatively easily. It can be formed.
  • this random mat layer immediately below the continuous fiber base material on at least one surface layer, during resin injection, a good resin flow, especially in the vicinity of the surface layer, especially in the direction along the surface layer surface. A good resin flow can be formed, and the generation of defective resin impregnation which becomes voids can be prevented, and the surface of the molded product can be improved.
  • the surface layer is formed of three or less continuous fiber layers. If the continuous fiber base material is too thick, it becomes difficult for the resin to reach the random mat layer through the base material, and the resin that has flowed well in the random mat layer is contained in the surface continuous fiber base material. It is preferable that the continuous fiber base material of the surface layer is laminated in three or less layers because the impregnation may be difficult.
  • the total basis weight of the continuous fiber layer forming the surface layer is preferably 700 gZm 2 or less, and it is preferable that the fabric strength of plain weave, twill weave, waxy weave or the like is also obtained from the viewpoint of surface design.
  • air bubbles that cause pinholes tend to stay on the weave of these fabrics, but by arranging the random mat layer directly below the surface substrate as described above, the air bubbles can flow out and generate pinholes. Can be prevented.
  • This surface layer can also comprise, for example, carbon fiber fabric strength.
  • the reinforcing fiber can be used as the reinforcing fiber, and carbon fiber and glass fiber are particularly preferable.
  • the reinforcing fibers of the surface layer are made of carbon fiber fabric.
  • the random mat layer is particularly suitable for resin flow, impregnation.
  • it since it is mainly arranged to form a resin flow path having a small resistance, it is preferably 150 gZm 2 or less, which is lower than the surface layer substrate and the reinforcing fiber layer substrate.
  • This random mat layer significantly improves the fluidity and impregnation of the matrix resin by lowering the flow resistance of the matrix resin than the reinforcing fiber layer, prevents the generation of voids and pinholes, and improves the surface quality. It plays the role of improving.
  • carbon fiber peramide fiber may be used for the random mat layer! /, but relatively inexpensive glass fiber can be used, which is more preferable.
  • the core material is laminated on the reinforcing fiber base material, typically, the core material is sandwiched between the reinforcing fiber base materials from both sides.
  • a sandwich structure can be employed.
  • the RTM molding method according to the third aspect makes it possible to easily and surely spread the injected resin satisfactorily throughout the desired range in the step of injecting the resin, and particularly to the surface, A fiber-reinforced resin with improved surface quality can be obtained by preventing voids and pinholes from being generated on the surface side.
  • the RTM molding method according to the third aspect can be used particularly in combination with the RTM molding method according to the second aspect, and in that case, the effect of the random mat layer can be more favorably exhibited.
  • the injection resin is injected into each divided region.
  • the resin can be impregnated in a desired state over the entire region, and the surface quality of the molded article can be improved.
  • the intermediate member is used to carry out the method.
  • the resin was allowed to flow so as to spread over a sufficiently wide area, and then the resin was injected into the reinforcing fiber base material from multiple locations almost simultaneously and evenly.
  • the molding time can be significantly reduced, the production speed and production volume can be increased, and the production cost per mold can be increased to reduce production costs.
  • even for a large molded product it is possible to easily prevent the generation of the resin-unimpregnated portion, and it is possible to improve the quality of the molded product.
  • a relatively large FRP molded product which has been difficult with conventional RTM molding, is free from defects such as voids.
  • molding can be performed efficiently and stably in a short time. That is, mass production can be performed at a high cycle.
  • a random mat layer having a lower unit weight than the surface layer base material / reinforced fiber layer base material is provided immediately below the continuous fiber base material on at least one surface layer.
  • FIG. 1 is an exploded perspective view of an apparatus used for an RTM molding method according to a first embodiment of the present invention.
  • FIG. 2A is a plan view of an upper mold of the apparatus in FIG. 1, and FIG. 2B is a front view thereof.
  • FIG. 3A is a plan view of an intermediate member of the apparatus of FIG. 1, and FIG. 3B is a cross-sectional view taken along line CC of FIG. 3A.
  • FIG. 4A is a plan view of a lower die of the apparatus of FIG. 1, and FIG. 4B is a cross-sectional view taken along line CC of FIG. 4A.
  • FIG. 5 is an apparatus used for an RTM forming method according to another embodiment different from the first embodiment of the present invention.
  • FIG. 6 is a bottom view of the upper die of the device of FIG. 5.
  • FIG. 7 is a plan view of a lower mold of the device of FIG. 5.
  • FIG. 8 is a perspective view showing an example of a molding die used for an RTM molding method and apparatus according to a second embodiment of the present invention.
  • FIG. 9 is a plan view of a lower die of the molding die shown in FIG. 8.
  • FIG. 10 is a longitudinal sectional view of the lower die of FIG. 9.
  • FIG. 11 is a schematic overall configuration diagram of an RTM molding system using an RTM molding method and apparatus according to a second embodiment of the present invention.
  • FIG. 12 is a characteristic diagram of the resin used in the example of the present invention.
  • FIG. 13 is a partial cross-sectional view showing a configuration of a preform base material of a fiber-reinforced resin molded by an RTM molding method according to a third embodiment of the present invention.
  • FIG. 14 is a partial cross-sectional view showing a state when resin is injected and impregnated into the base material of FIG. [15]
  • FIG. 15 is a partial cross-sectional view showing a configuration of a fiber reinforced resin preform base material formed by an RTM forming method according to another embodiment different from the third embodiment of the present invention.
  • FIG. 16 is a partial cross-sectional view showing a state when resin is injected and impregnated into the base material of FIG.
  • FIG. 17A is a partial cross-sectional view of a surface layer base material of the preform base material of FIG. 13, and FIG. 17B is a plan view thereof.
  • FIGS. 18A to 18C are schematic configuration diagrams illustrating a molding method usable in the third embodiment of the present invention.
  • FIG. 19 is a partial cross-sectional view showing a configuration of a fiber-reinforced resin according to still another embodiment from FIG.
  • FIG. 20 is a schematic exploded perspective view of a molding die showing an example of a sealability improving structure in the RTM molding method and apparatus according to the present invention.
  • FIG. 21 is a vertical cross-sectional view of a molding die showing another example of the sealing property improving structure.
  • FIG. 22 is a perspective view of a resin injection / discharge tube used for a mating surface of a molding die.
  • FIGS. 23A to 23F are structural configuration diagrams showing examples of various sealing forms of a resin injection / discharge tube section provided on a molding die mating surface. Explanation of reference numerals
  • the reinforcing fibers in the present invention carbon fibers, glass fibers, aramide fibers, gold Metal fibers, boron fibers, alumina fibers, silicon carbide high-strength synthetic fibers, and the like can be used, and carbon fibers are particularly preferable.
  • the form of the reinforcing fiber base is not particularly limited, and a unidirectional sheet or a woven fabric can be adopted. Usually, a plurality of these are laminated to form a reinforcing fiber base and, if necessary, shaped in advance. It is used in the form of a preform.
  • the resin used in the RTM molding method and apparatus according to the present invention is a resin for RIM (Resin Injection) which forms a thermosetting resin or a thermoplastic resin which has a low viscosity and can be easily impregnated into reinforcing fibers. Molding) monomers are preferred.
  • the thermosetting resin include epoxy resin, unsaturated polyester resin, polyvinyl ester resin, phenol resin, guanamine resin, polyimide resin such as bismaleide triazine resin, and furan resin. , Polyurethane resin, polydiaryl phthalate resin, melamine resin, urea resin amino resin, and the like.
  • polyamides such as nylon 6, nylon 66, and nylon 11, or copolymer polyamides of these polyamides, polyesters such as polyethylene terephthalate and polybutylene terephthalate, copolymer polyesters of these polyesters, and polycarbonates , Polyamide imide, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyolefin, etc., and also heat represented by polyester elastomer, polyamide elastomer, etc. And plastic elastomers.
  • thermosetting resin thermoplastic resin
  • rubber thermosetting resin
  • epoxy resin is preferable as the resin from the viewpoint of suppressing heat shrinkage at the time of molding which affects the design of the outer panel member for automobile.
  • the epoxy resin for composite materials bisphenol A type epoxy resin, phenol novolak type epoxy resin, and glycidylamine type epoxy resin are used as main ingredients.
  • a curing agent a curing agent system in which dicyandiamide is combined with dichloromouth dimethyl urea is suitably used because of its excellent balance of workability and physical properties.
  • diaminodifluorosulfone, aromatic diamine, and acid anhydride polyamide which are not particularly limited can also be used.
  • the ratio of resin to the above-mentioned reinforcing fiber The weight ratio is preferably in the range of 20: 80-70: 30 in terms of weight ratio from the viewpoint of maintaining appropriate rigidity as the outer plate.
  • modified epoxy resin, epoxy resin or thermoplastic resin, rubber component, etc., and nylon resin can be used to reduce the thermal shrinkage of the FRP structure and suppress the occurrence of cracks.
  • Dicyclopentadiene resin is more suitable.
  • the present invention can also be applied to molding a fiber-reinforced resin structure having a laminated structure of a fiber-reinforced resin and a core material.
  • a sandwich structure in which a fiber-reinforced resin layer is arranged on both sides of a core material can be given.
  • the core material an elastic body, a foamed material, or a cam material can be used, and a foamed material-a non-cam material is preferable for light weight.
  • the material of the foam material is not particularly limited, and for example, a foam material of a polymer material such as polyurethane, acrylic, polystyrene, polyimide, vinyl chloride, and phenol can be used.
  • the material of the honeycomb material is not particularly limited, and for example, aluminum alloy, paper, aramide paper and the like can be used.
  • FIG. 1 to FIG. 4 show an RTM molding method and apparatus according to a first embodiment of the present invention.
  • a molding die 1 is composed of a plurality of dies, and in this embodiment, has a steel upper die 2 as one die and a lower die 4 of the same material as the other die.
  • an intermediate plate 3 made of resin (for example, polyethylene) is provided as an intermediate member.
  • the upper mold 2 and the intermediate plate 3 form a resin injection channel and an injection boat for the base material.
  • the intermediate plate 3 is formed with a resin channel groove 5 communicating with the resin injection member 8, and an injection boat through hole 6 is formed (perforated) at an end of each groove 5.
  • the resin injection member 8 is made of a metal pipe or a resin tube, and is sealed to the mold and the intermediate plate 3 that constitute the upper mold 2 with a sealing material 10a that also has elasticity such as rubber. It has been done.
  • the peripheral portions of the upper mold 2 and the intermediate plate 3 are sealed by an O-ring 7, and the O-ring 7 is connected to the sealing material 10a.
  • guide guides 13 for connecting to the intermediate plate 3 and the lower die 4 are provided.
  • a reinforcing fiber base material 9 is disposed in the cavity portion of the lower mold 4, and a resin discharge groove 12 (runner) is processed on the outer peripheral side of the base material 9. Excess resin is discharged out of the mold from the resin discharge tube 11 inserted into a part of the groove 12.
  • An O-ring 14 for sealing is provided around the groove 12, and a seal having an elastic force and the like for sealing the tube 11 and the mold 4. Combined with material 10b.
  • FIG. 2 shows the upper mold 2
  • FIG. 2A is a plan view thereof
  • FIG. 2B is a front view thereof.
  • a resin injection channel 15 is formed in the upper mold 2, and the upper half of the resin injection member 8 is accommodated in the inlet.
  • FIG. 3 shows the intermediate plate 3, FIG. 3A is a plan view thereof, and FIG. 3B is a cross-sectional view taken along the line CC of FIG. 3A.
  • the dimensions of the intermediate plate 3 in this example are 1800 mm in width, 2000 mm in length, and 12 mm in thickness.
  • the intermediate plate 3 is formed with a resin flow channel groove 5 communicating with a metal pipe or resin tube resin injection member 8 so as to extend radially.
  • the groove dimension is 5 mm in width and 4 mm in depth, and the length of the radially extending flow path is 540 mm.
  • the periphery is sealed with an O-ring 7 and connected to the elastic body 10a.
  • FIG. 4 shows the lower mold 4, FIG. 4A is a plan view thereof, and FIG. 4B is a cross-sectional view along CC in FIG. 4A.
  • a reinforcing fiber base material 9 for example, 6 ply of Toray Co., Ltd. Toray Co., Ltd. T300 plain fabric C06644B (basis weight; 300 gZm 2 )
  • a resin discharge groove 12 is impregnated with the resin. Excess resin is discharged out of the mold from a resin discharge tube 11 having an outer diameter of 12 mm and an inner diameter of 1 Omm inserted into a part of the groove 12.
  • the resin is injected from the resin injecting member 8.
  • the resin first flows rapidly in the direction along the surface of the intermediate plate 3 and spreads over a wide area.
  • the resin is injected into the reinforcing fiber base material 9 substantially simultaneously from a plurality of locations through appropriately provided through holes 6, so that the resin can be satisfactorily and quickly spread over a wide area of the reinforcing fiber base material 9. It is impregnated.
  • FIGS. 5 to 7 show an RTM forming method and apparatus according to another embodiment different from the first embodiment.
  • a perforated plate or an intermediate member 24 (in this embodiment, a perforated plate) which also has a perforated film force is set between the upper die 21 and the lower die 22 of the molding die 20.
  • the upper die 21 is formed with grooves 36a and 36b (FIG. 6) for resin flow channels so as to cover the entire area.
  • a clearance 25 is formed between the perforated plate 24 and the upper die 21, and in this embodiment, a slight (about 0.5 to lmm) clearance 25 is formed.
  • the positions of the holes in the perforated plate or the perforated film are matched with the positions of the grooves formed in the upper die, it is possible to more efficiently perform impregnation with the resin fluid.
  • the surplus resin after the impregnation flows into the film gate Z runner provided around the cavity 31 and is discharged from the discharge tube 27 to the outside.
  • the discharge tube 27 is closed, and heat curing is performed while maintaining the resin pressure.
  • the upper die 21 is raised, and the molded product is taken out of the lower die 22 together with the perforated plate 24 and separated from the perforated plate 24.
  • a release cloth polypropylene or polyethylene (Woven fabric: also called peel ply).
  • the perforated plate 24 may not be provided, and only the release cloth may be provided.
  • FIG. 6 shows the upper mold 21, in which resin flow grooves 36a and 36b for distributing the resin are formed throughout the molding surface side.
  • resin flow grooves 36a and 36b for distributing the resin are formed throughout the molding surface side.
  • grooves 32, 33 for disposing the resin injection tube 26, the resin discharge tube 27, and the seal members 28, 29 between the die and the die are formed in the die.
  • FIG. 7 shows a lower mold 22, in which a molding cavity 31 is processed on almost the entire surface of the mold. The film gate and the runner 30 connected to the cavity 31 are also processed on the resin discharge side.
  • the resin injection tube 26, the resin discharge tube 27 and the seal members 28, 29 for the mold and the grooves 34, 35 for arranging them, and the O-ring groove 37 for the seal are attached to the mold. It has been
  • the resin flows quickly in the clearance 25 in the direction along the surface of the porous plate 24.
  • the fat fills a large area.
  • the forces at a plurality of locations are substantially simultaneously injected into the reinforcing fiber base material 23, so that the resin is good over a wide area of the reinforcing fiber base material 23.
  • the time for injecting and impregnating the resin is significantly reduced, thereby achieving high-speed molding.
  • the size of the mold is 1500 mm ⁇ 1200 mm ⁇ 3 mm in depth on the molding surface (cavity surface).
  • Toray Co., Ltd. 30 (300gZm 2 ) 8ply laminated and used as resin high-speed curing type epoxy resin (base resin: "Epicord, 828 (Epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.), curing agent; Toray Co., Ltd.
  • base resin "Epicord, 828 (Epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.)
  • TR-C35H an imidazole derivative
  • FIGS. 8 to 12 show an RTM molding method and apparatus according to a second embodiment of the present invention.
  • FIG. 11 is a schematic configuration diagram showing an example of a molding system 54 using the RTM molding device according to the present invention.
  • the RTM forming die 41 is composed of an upper die 42 and a lower die 43, and is attached to a die elevating device 55 which is raised and lowered by a die elevating hydraulic device 56 having an upper die 42 force hydraulic pump 68 and a hydraulic cylinder 66.
  • Mold material is FR P, steel, structural carbon steel, aluminum alloys, zinc alloys, nickel electrodes, and copper electrodes.
  • structural carbon steel is also suitable for its rigidity, heat resistance and workability.
  • the molding die 41 is provided with a plurality of resin injection pipes 46, 47, 48 connected to the resin injection runner, and one discharge pipe 49 connected to the discharge runner.
  • Each of the resin injection pipes 46, 47, 48 and the outlet pipe 49 are connected to a resin injection flow path 65 and a discharge flow path 67, respectively, via a boiler vanoreb 46b, 47b, 48b, and a discharge noleb 49b.
  • the resin injection channel 65 is connected to a resin injection device 57.
  • the resin injection device 57 contains a main agent and a curing agent in a main agent tank 61a and a curing agent tank 61b, respectively, and each tank has a mechanism capable of heating and vacuum defoaming.
  • the pressurizing device 62 uses syringe pumps 62a and 62b as an example, and it is preferable for the resin to be hardened by mixing two liquids to ensure quantitativeness by simultaneously extruding the syringe pumps.
  • the extruded main agent and curing agent are mixed in the mixing unit 63 and reach the resin injection flow path 65.
  • the discharge channel 67 is connected to a resin trap 59 to prevent resin from flowing into the vacuum pump 58.
  • the number and positions of the resin injection pipes vary depending on the shape and dimensions of the molding die, the number of molded articles formed simultaneously in one mold, and the like. It is preferable that the number of injection pipes be as small as possible in order to prevent the injection work from becoming complicated due to an increase in the number of places where the 65 is connected to the resin injection pipes 46, 47, and 48. However, in order to form a relatively large molded product at high speed, simultaneous or sequential resin injection using multiple resin injection tubes is required, compared to resin injection using a single injection tube. The resin flow and impregnation can be performed efficiently at several times the speed.
  • FIG. 9 is a plan view of an RTM mold for forming a flat plate having curvature at four corners at a high speed, in particular, a plan view of a lower mold 43.
  • the upper die 42 and the lower die 43 are aligned by inserting the pin 52 of the upper die 42 into the pin hole 51 of the lower die 43, and a die seal 45 is interposed therebetween. Then, the mold is closed in a sealed state.
  • FIG. 10 shows a vertical cross section of the molding die shown in FIG.
  • the conventional RTM molding method as the method for molding the flat plate includes a resin injection line 46c and a resin injection runner 46c which constitute a resin injection line on one side of the outer side of the molding cavity 50.
  • the fat is discharged from the injection pipe 46 communicating with the injection film gate 46d.
  • the resin flows into the discharge film gate 49d and the discharge runner 49c which constitute the resin discharge line on one side of the molding cavity 50 which is injected under pressure and communicates with the discharge pipe 49 provided on the opposite side.
  • Impregnated into a reinforcing fiber substrate That is, a single resin injection line (consisting of a resin injection runner 46c and a resin injection film gate 46d communicating with the resin injection pipe 46) formed on one side of the outer periphery of the molding cavity 50 is formed.
  • a relatively small molded product that is, a distance from the resin injection line to the discharge line is short!
  • molding can be performed in a relatively short time, and mass production is possible.
  • the distance from the large molded product, that is, the resin injection line to the discharge line is long, the resin flow will be attenuated in a higher-order function, and the resin flow time will be longer, and in some cases, the resin gel In some cases, the impregnation is not completed by the dagger time.
  • low-viscosity resin may be used, or the pressure of the resin may be increased to inject the resin at a high speed.However, the reinforcing fibers may be disturbed by the fluid pressure of the resin, or the size and shape of the molded product may change. Nevertheless, there is a limit to the impregnation of the entire molded product.
  • the resin injection line is connected to the outer periphery of the molding cavity 50 as shown in Fig. 9.
  • the problem can be solved by providing a plurality of locations, not just one side.
  • the resin injection line was connected to the resin discharge line 49, and resin injection pipes 47 and 48 were added.
  • the resin injection runner 46c and the resin injection film gate were added.
  • a resin injection line, a resin injection runner 48c and a resin consisting of a resin injection film gate 48d Injection line force
  • the resin injection line and the resin discharge line are provided so as to extend over substantially the entire outer periphery of the molded article (that is, the entire fiber-reinforced base material).
  • a particularly effective method is to provide a resin injection line at least half of the outer circumference, and more desirably, to provide a resin injection line at least twice as large as the resin discharge line. Fast molding becomes possible.
  • reference numerals 46a, 47a, 48a, and 49a in FIG. 9 denote sealing rubber members, respectively.
  • the resin injection line from the resin injection pipe 46 is also initially set as the resin discharge line, and the flow of the resin injected from the resin injection line from the resin injection pipes 47 and 48. It is also effective to separate the left and right sides and impregnate them efficiently.
  • Resin injection flow path 65 For the material of the resin injection pipes 46, 47, and 48, consider ensuring a sufficient flow rate and compatibility with the resin (heat resistance, solvent resistance, pressure resistance, etc.). There is a need.
  • Injection channel Use a 5-30mm diameter injection tube to withstand resin injection pressure 1. Withstand pressure of OMPa or more and 100 ° C or more to withstand temperature during resin curing Heat resistance is required.
  • a tube made of "Teflon” (registered trademark) having a thickness of about 2 mm is suitable.
  • Teflon registered trademark
  • a relatively inexpensive polyethylene tube / nylon tube, or a metal tube of steel, aluminum, copper or the like may be used.
  • the number and position of the resin discharge pipes 9 are determined by the shape and dimensions of the molding die and molded simultaneously in one mold.
  • the number of resin outlets is preferably as small as possible, because the resin flow is stable and the resin flow control operation is simple, although it depends on the number of molded articles to be formed.
  • the material of the resin discharge flow path is, as with the resin injection flow path 65, etc., to ensure a sufficient flow rate and compatibility with the resin (heat resistance, solvent resistance, pressure resistance). Etc.) must be considered.
  • the resin discharge channel 67 may be a metal tube such as steel or aluminum, or a plastic tube such as polyethylene or "Teflon” (registered trademark). "Teflon” with a diameter of 5-10 mm and a thickness of 1-2 mm (Registered trademark) tube is more suitable for workability
  • the resin injection passages 46-48 and the injection valve 46b-48b installed in the resin discharge passage 49 at the time of resin injection can be directly operated by the operator using a vise grip or the like.
  • the entire area can be opened and closed and the diameter can be changed by sandwiching the flow path.
  • the resin discharge valve 49b can also change the diameter of the flow path (adjustment of the opening of the ball valve), which is not a mere binary value for opening and closing.
  • the pressurization of the resin can be quantitatively obtained by a pressurization method using a syringe pump or the like.
  • the injection pressure of the resin is preferably in the range of 0.1 to OMPa.
  • the resin injection pressure refers to the maximum pressure applied by the pressurizing device 62.
  • the resin is completely impregnated into the reinforcing fiber base in the mold, and when the resin reaches the resin discharge pipe 49 and the resin discharge flow path 67, the discharge valve 49b is closed, and then the resin is pressurized for a while. After the pressure in the mold is maintained by the injection pressure applied by the device 62, the resin injection knurls 46b-48b are also closed to end the resin injection.
  • the mold is heated by a heat medium circulation type temperature controller 60, thereby curing the resin.
  • the heat medium water, steam, mineral oil, or the like is used.
  • RTM molding is performed by the RTM molding equipment (molding system) 54 as described above, and a high-quality FRP molded product having excellent appearance quality without defects such as voids and predetermined mechanical characteristics is obtained.
  • the preparation conditions such as cutting, laminating, preforming, and laying on the mold of the reinforcing fiber base material should be optimized, and the molding conditions until resin injection, impregnation, and curing should be extremely high. is important. In particular, it is necessary to properly set production conditions that take productivity (production efficiency) into account.
  • the "resin injection pressure”, the "molding temperature”, the “resin flow rate”, the “resin temperature characteristics”, etc. are sufficiently considered in consideration of the characteristics of the reactive resin. After that, it must be set to an appropriate value corresponding to the molding dimensions.
  • this patent has good fluidity in consideration of production efficiency, but is intended for a reactive resin material that gels in a short time and cures quickly, so high-speed fluid impregnation is required.
  • the molding die comprises upper and lower double-sided dies, and while the pressurized resin flows in through a resin injection rocker, the resin is discharged from the resin discharge port.
  • the exhaust port is closed and the resin in the mold is not pressurized.
  • RTM molding method in which resin is injected with vacuum suction or exhaustion or after almost exhaustion, and then the suction port is closed and pressure is injected and hardened, and furthermore, the mold is bagged on one side with a cavity on a film. It also includes a vacuum RTM molding method in which a bag is filled with a material, and the cavity is vacuum-suctioned, then pressurized by vacuum pressure, and resin is injected into the cavity and molded.
  • a large flat plate (length 1600 mm ⁇ width 700 mm ⁇ height (thickness) 2 mm) is molded.
  • Figs. 8 and 9 show the overall views of the RTM molding die 1 used in this example
  • Fig. 12A and Fig. 12B show the relationship between the temperature and viscosity of the resin used for molding and the one-hour resin curing degree characteristics at the molding temperature.
  • the resin injection line provided in the lower mold 43 communicates with the resin injection flow path 65 via a branch pipe 64 (for example, at the position of the resin injection pipe 46).
  • the resin injection pipe 46 through the injection valve 46 b and the resin injected under pressure from the resin injection pipe are temporarily stored in a line.
  • the resin injection runner 46 c and the runner 46 c communicate with the runner 46 c in the cavity. ⁇ Consists of a resin injection film gate 46d (clearance with the upper mold; 0.5mm) for injecting the resin.
  • the resin injection line is provided with another pair of resin injection pipes 47 and 48 on the left and right.
  • the resin discharge line communicates with the resin discharge passage 67, and the resin discharge pipe 49 through the resin discharge valve 49b and the resin discharge pipe on the way. It is composed of a resin discharge runner 49c to be stored and a resin discharge film gate 49d (clearance with the upper die; 0.5 mm) that communicates with the runner 49c and discharges the resin and fat together with gas etc. from inside the cavity. It is provided on one side.
  • the resin injection line and the resin discharge line substantially surround substantially the entire periphery of the cavity.
  • the resin injection line is nearly five times as long as the resin discharge line.
  • a tube made of "Teflon” (registered trademark) having a diameter of 12 mm and a thickness of 1.5 mm was used for both the resin injection channel 65 and the resin injection tubes 46 to 48 shown in FIG.
  • a tube made of “Teflon” (registered trademark) having a diameter of 16 mm and a thickness of 2 mm was used for both the discharge channel 67 and the discharge tube 49.
  • a resin trap 59 is provided in the discharge channel 67 on the way to prevent the resin from flowing into the vacuum pump 58.
  • rubber members 46a-49a for sealing are used to seal the mold between the upper and lower molds.
  • Materials (O-rings) 45 are arranged on the outer periphery of the cavity surface.
  • the inside of the mold (cavity portion) is discharged from the resin discharge port 49 by the vacuum pump 58.
  • the vacuum pressure gauge (not shown) that the pressure in the mold had decreased to 0.1 OlMPa or less
  • the epoxy pressurized by a resin injection device 57 having a pressurizing device 62 was used. Start infusing fat.
  • the pressurizing device 62 uses syringe pumps 62a and 62b, and is configured to prevent the backflow of the resin to the tank side during the resin injection.
  • the resin used was Epikod '828 (epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.) as the main agent, and the curing agent was a liquid epoxy resin obtained by mixing TR-C35H (imidazole derivative) from Toray Blend.
  • TR-C35H imidazole derivative
  • the viscosity-time characteristics of this epoxy resin at a mold temperature, that is, a molding temperature of 100 ° C, specifically, the change in the viscosity of the epoxy resin composition is determined by the cure index value used as an index for tracking the curing profile of the resin. It is shown in Fig. 12 A. From this graph, the cure index of this resin exceeds 90% in about 6 minutes, and the resin is ready for demolding.
  • the main agent 61a and the curing agent 6 lb are heated at 60 ° C while being stirred in advance, lowered to a predetermined viscosity, and defoamed by the vacuum pump 58.
  • the air in the resin mixing unit to be agitated enters the mold in the hose for the resin injection flow path.
  • the resin mixed with air was discarded, and after confirming that no air was mixed in the resin, pressurized resin was injected into the mold.
  • the discharge conditions of the syringe pumps 62a and 62b of the pressurizing device were set to 50 OccZ strokes.
  • the injection pressure (0.6 MPa) is checked with an injection pressure gauge (not shown) installed in the resin injection channel 65, and the injection valve 46b is opened. Inject resin inside.
  • the discharge valve 49b of the discharge pipe 49 was opened.
  • valve 47b of the resin injection tube 47 was opened, and the resin injection from the resin injection tube 47 was started. Then, after a further elapse of one minute, the valve 48b of the resin injection tube 48 was opened, and the resin injection from the resin injection tube 48 was started.
  • the discharge valve 49b was opened and closed four times as an operation to promote impregnation of the resin into the reinforcing fiber base material and to efficiently remove a small amount of air bubbles contained in the base material. This was performed using a Neuss Drip.
  • Example 2 was a single-plate structure made of a fiber-reinforced resin, but as another example, a carbon fiber-reinforced sandwich structure including a foam core (thickness 10 mm, apparent specific gravity 0.1) inside (the above-described example) was used. Even when the above-mentioned carbon fiber “Treiki” cloth was laminated on the upper and lower surfaces of the foam core by 3 ply each), almost the same molded products having excellent surface quality were obtained. Incidentally, the impregnation time was about 4.5 minutes, which was short as described above.
  • a resin injection port 85 and a suction port 86 are provided in a double-sided upper die 83.
  • the lower mold 84 has a resin injection runner 88 and a suction runner 89, and a seal groove 90 is formed around the cavity.
  • Both upper and lower dies 83 and 84 are heated to a predetermined temperature.
  • the upper mold 83 is lowered and set in the cavity formed with the lower mold 84.
  • a random mat layer is provided immediately below the surface continuous fiber base material as shown in FIG. 13 and FIG. 15 as defined in the present invention.
  • the resin injection path 93 connected to the resin tank 91 is closed by the valve 92, and the suction path 96 connected to the vacuum pump 94 is opened by the valve 95. So Then, the inside of the cavity is suctioned through the suction port 86 and the suction runner 89 leading to the suction path 96. After that, while the valve 95 of the suction path is open, the valve 92 of the resin injection path 93 is opened, and the matrix resin in the resin tank 91 is pumped while the matrix resin is injected through the resin injection path 93. And injected under pressure from the resin injection runner 88 into the cavity.
  • the resin flows throughout the cavity and impregnates the entire area of the reinforcing fiber base material 87, and the excess resin passes through the suction port 86 along with the air bubbles remaining in the cavity, especially the reinforcing fiber base material, to the suction path 96.
  • the valve 92 of the resin injection path 93 is closed, and the heated state is maintained for a predetermined time to cure the resin.
  • the method for producing a fiber-reinforced resin according to the present invention is also applicable to a vacuum forming method, a pre-preda Z autoclave curing method, RFI (Resin Film Infosion), a semi-preda Z oven heat curing method, and the like.
  • the fiber-reinforced resin according to the present invention was produced as described below by the production method described above.
  • CFRP carbon fiber reinforced resin
  • Fig. 14 is an enlarged view of part A in Fig. 18B. It will be described based on the following.
  • the epoxy resin 75 discharged from the resin tank 91 passes through a resin injection port 85 and is filled into a resin injection runner 88 provided in a lower mold. Thereafter, the space between the runner 88 and the cavity and the runner 88 is supplied. It flows into the cavity through the film gate, which is the formed gap (around 1 mm). At this time, the resin flows from the entire area in the thickness direction of the base material 87, but since the area of the glass fiber random mat layer 73 is coarser than the base material, the flow resistance is lower.
  • the residual air bubbles 82 that have been forced out are likely to stay at the crossing point of the warp 72c and the weft 72d constituting the woven fabric 72. Such air bubbles were discharged out of the cavity together with the resin flow, and the generation of voids and pinholes was prevented.
  • Example 4 described above the design surface was only on one side, but a fiber-reinforced resin 76 as shown in FIG. 15 was molded. That is, even when a plurality of surfaces (upper and lower surfaces in FIG. 15) are design surfaces and high surface quality is required for both surfaces, the basis weight is just below the reinforcing fiber substrate (72a, 72b) on the surface to be the design surface as described above. It is preferable to provide a random mat layer (73a, 73b) made of a glass fiber mat of 30 gZm 2 and inject resin under the same conditions as described above. As shown in Fig. 16, which shows part A of Fig.
  • the flow from the stream lines 75a to 75b and the flow from the stream line 75c to the force 75d cause the base material 72a for the surface layer and the upper die 83, and the surface layer for the opposite surface.
  • the resin that has flowed through the random mat layers 73a and 73b efficiently flows into the gaps between the base material 72b and the lower mold 84, and flows without gaps.
  • the oil was filled and impregnated. Therefore, air bubbles were discharged to the outside of the cavity together with the resin flow on both the front and back surfaces, and generation of voids and pinholes was prevented.
  • Example 6 As shown in FIG. 19, a polyurethane foam core 101 is provided at the center, and Toray Co., Ltd. Toray Co., Ltd. T300 fabric C06644B (basis weight: 300 gZm 2 ) is laminated on both sides as a reinforcing layer 74a, 74b, Further, glass fiber random mat layers 73a and 73b (basis weight; 50 g / m 2 ) are respectively arranged thereon, and Toray Co., Ltd. Toray Co., Ltd. T300 fabric C06343B (1 strand; 3K series) is provided on each outermost layer.
  • T300 fabric C06644B (basis weight: 300 gZm 2 ) is laminated on both sides as a reinforcing layer 74a, 74b, Further, glass fiber random mat layers 73a and 73b (basis weight; 50 g / m 2 ) are respectively arranged thereon, and Toray Co., Ltd. Toray Co., Ltd. T300
  • the sandwich structure having a basis weight of 200 gZm 2 was formed into a fiber-reinforced resin 100 by the RTM molding method shown in FIGS. 18A to 18C.
  • the temperature of the mold (upper die 83, lower die 84) was set at 85 ° C. 77a and 77b in the figure indicate the poured, impregnated and cured epoxy resin.
  • an FRP structure having a sandwich structure was formed with particularly good surface (both sides) quality.
  • the random mat layer 73 having a glass fiber strength disposed under the surface layer 72 in Example 4 was extracted, and the fiber structure of the other surface layer and the reinforcing fiber layer was all the same. Also, the RTM molding was performed under exactly the same molding conditions as in Example 4 for the FRP molding method.
  • a resin injection tube and a Z or discharge tube are sandwiched and provided on the mold mating surface, and the tube and the mold are sealed with an elastic body therebetween.
  • the sealing elastic body has a built-in end of an o-ring for sealing the cavity of the molding die at the mold mating surface.
  • the cleaning operation can be significantly reduced, which leads to cost reduction by reducing the amount of operation.
  • the use of elastic sealing material ensures the vacuum in the cavity and ensures the vacuum holding force during molding, and at the same time prevents resin leakage, so that high quality products without voids and pinholes can be obtained. Obtainable.
  • FIG. 20 is a perspective view of the upper and lower dies 111 and 112
  • FIG. 21 is an enlarged sectional view of the lower die
  • FIG. 22 is a resin injection / discharge tube mounted between the upper and lower dies of FIG. 30 are shown respectively.
  • a reinforcing fiber base 122 formed in advance into a product shape is formed on a lower mold 112 in which an O-ring 121 is provided around an outer periphery of a forming cavity 113 formed on the upper surface of the lower mold 112. Placed inside cavity 113.
  • a metal pipe 142 is inserted, and a resin injecting member 140 around which a sealing tape 153 is wound around the distal end is provided.
  • the upper mold 111 is closed, and the upper mold 111 is pressed toward the lower mold 112 to narrow the resin injection member 140. In this state, the entire mold is heated by flowing hot water through a pipe (not shown) provided in the mold.
  • the interior of the cavity 113 is evacuated through a resin discharge tube 117 connected to a vacuum trap (not shown) connected to a vacuum pump, and then the resin injection tube 116 is placed in the cavity 113.
  • the resin is injected under pressure.
  • the resin injection tube 116 and the resin discharge tube 117 are closed, and thereafter, for a predetermined time.
  • the mold is opened and demolded to obtain an FRP product.
  • another example of the structure for improving the sealing performance is to strengthen the sandwich structure in which the outer periphery of the reinforcing fiber base material 125 is coated with a core material 124 which is also processed into a product shape and also has a foam strength.
  • the fiber preform body 123 is composed of an upper die 131 and a lower die 132 provided with sealing elastic members 136 and 137 communicating with an O-ring (not shown) provided on the outer periphery of the cavity 133.
  • the resin injection tube 134 and the resin discharge tube 135 which are arranged in the molding cavity 133 and communicate with the resin injection runner 138 and the resin discharge runner 139 are connected to the sealing elastic members 136 and 137.
  • the upper and lower dies are pressed to seal by contact.
  • the resin injection tube 134 and the resin discharge tube 135, for example, metal tubes are used.
  • the mold is heated by flowing hot water into a pipe (not shown) provided in the mold.
  • the interior of the cavity 133 is evacuated via a resin discharge tube 135 connected to a vacuum trap connected to a vacuum pump, and then the resin 133 is filled into the cavity 133.
  • inject resin under pressure through tube 134.
  • the resin flows through the injection film gate 126 into the cavity 133 in which the reinforcing fiber preform body 123 is disposed, The reinforcing fibers of the reinforcing fiber preform body 123 are impregnated.
  • the excess resin fills the resin discharge runner 139 through the discharge film gate 127, and then flows out to the vacuum trap through the discharge tube 135.
  • the resin injection tube 134 and the resin discharge tube 135 are closed, and in this state, the resin is heated for a predetermined time to cure the resin, and then the mold is opened. To obtain a hat-shaped high-rigidity FRP sandwich structure.
  • FIG. 22 shows a structural example of the resin injection tube 116 and the resin discharge tube 117 used in the above example.
  • a resin injection tube made of resin A metal tube 142 is inserted inside the tip of a resin discharge tube, and a seal tape 143 is applied to the outer surface.
  • the metal tube 142 closes the upper mold 111 and the lower mold 112 and closes the resin injection tube (denoted as 31).
  • lower mold and sea Grooves (R smaller than the radius of curvature of each of the above tubes) formed into semicircular shapes on the elastic bodies 118 and 119 for the pipes. It has the effect of maintaining the circular cross-sectional shape and smoothing the vacuum suction in the cavity and the smooth flow of the resin.
  • the seal tape 143 is formed with the sealing elastic body.
  • the contact makes it possible to enhance the sealing effect of the sealing elastic body and stably enhance the vacuum holding property in the cavity. If the sealing elastic body is provided in both the upper mold and the lower mold, it can be omitted.
  • plastic tubes made of fluororesin such as nylon, polyethylene, polypropylene and "Teflon” (registered trademark) can be used.
  • Metal tubes such as brass, copper, and stainless steel can also be used.
  • each of the tubes has a thickness of 0.5 mm or more.
  • a sealing tape 143 applied to the outer surface of the tip of the resin injection tube and the resin discharge tube includes fluorine resin such as "Teflon” (registered trademark), nylon, polyester, and polypropylene resin. Strong tape is applicable. When a sealing body is used on both sides of the upper and lower molds, it can be omitted.
  • Figs. 23A to 23F are cross-sectional views showing several examples of the relationship between a resin injection tube, a resin discharge tube, and a sealing elastic body.
  • a resin injection tube a resin injection tube
  • a resin discharge tube a resin discharge tube
  • a sealing elastic body a resin injection tube
  • a resin discharge tube a resin discharge tube
  • a sealing elastic body a resin injection tube
  • a resin discharge tube a resin discharge tube
  • a sealing elastic body As the O-ring 154 and the elastic member 153 for sealing, silicon, NBR, fluorine resin such as “Teflon” (registered trademark) or the like can be used, and a solid or hollow one is used. In addition, it is preferable to use a foam made of the above resin.
  • Elastic body 1 for sealing provided on either force or both of upper die 151 and lower die 152 53 is slightly protruded from the surface of the provided die, and when the upper die 151 is closed and the sealing elastic 153 is pressed and compressed on the die surface of the upper die 151, the sealing elastic 153 and the upper die 151 and The resin injection tube 150 (or the resin discharge tube) generates a reaction force against each other to ensure the sealing performance.
  • a groove having the same curvature as that of the resin injection tube 150 (or the resin discharge tube) or a curved surface having a smaller curvature than the resin injection tube 150 is formed.
  • the sealing elastic body 153 is disposed in the upper mold 151 and the Z or the lower mold 152 in which the sealing elastic body 153 on the O-ring 154 is engraved in the shape of the sealing elastic body. ⁇ Cut the installation part of the grease discharging tube 150 at the center of the 0-ring 154, and install the sealing elastic body 153 in the upper mold 151 and Z or the lower mold 152 engraved in the shape of the sealing elastic body.
  • the sealing elastic body 153 and the upper mold 151 having the same curvature as the above-described tube 150 or a groove having a smaller curvature than the tube 150 are connected to the sealing elastic body 153 on the O-ring 154.
  • the body 153 is placed in the lower mold 152 engraved in the shape of the elastic body 153 for sealing, and the O-ring is placed on the O-ring 1 54 where the resin injection tube or resin discharge tube 150 is installed.
  • the closed loop is cut, and the sealing elastic body 153 is disposed in the lower mold 152 engraved in the shape of the sealing elastic body. Sandwich the tube 150.
  • the end of the O-ring 154 is built into the sealing elastic body 153 to maintain the vacuum in the cavity and prevent resin leakage. Stop.
  • the resin injection tube and the resin discharge tube 150 are provided in the upper die 151 or the lower die 152 in which a groove having the same curvature as the above-mentioned tube 150 or a groove having a smaller curvature than the above-mentioned tube is formed. Cut the closed loop of the O-ring on the O-ring 154 in the portion where the O-ring is also arranged, and secure the vacuum retention in the cavity by bringing the cut part of the O-ring 154 into contact with the used tube to prevent resin leakage. To prevent.
  • an upper die 151 having the same curvature as that of the tube 150 or a groove having a smaller curvature than the tube 150, an O-ring 154, and a continuous elastic body 153 are arranged. Then, the resin injection tube and Z or resin discharge tube 150 are sandwiched between the upper die 151 and the lower die 152 to secure vacuum retention in the cavity and prevent resin leakage.
  • the continuous 0-ring 154 spans the groove for disposing the grease discharge tube 150 and has the same curvature as the grease injection tube or grease discharge tube 150, or the grease injection tube or grease discharge tube It is arranged along a curvature smaller than the tube 150, and the resin injection tube or the resin discharge tube 150 is arranged on the 0-ring 154, and is sandwiched between the upper die 151 and the lower die 152, so that the inside of the cavity is reduced. Vacuum retention and prevent resin leakage
  • FIG. 23F In the structure shown in Fig. 23F, there is no upper mold in Figs. 23A and 23B, and it is a plan view showing the relationship between the sealing body 153 and the O-ring 154, as well as the force on the mating surface. .
  • the flow rate can also be controlled, and the resin flow rate can be controlled by adjusting the diameter of the outlet for discharging the resin.
  • the adjustment of the diameter of the discharge port and the timing of the adjustment are stored, and the resin flow rate is automatically controlled based on the stored information.
  • a reinforcing fiber base material is disposed in a molding die in advance, the mold is closed, and a discharge path leading to a discharge knob opened with the injection valve closed is provided. Then, the inside of the mold is evacuated with a vacuum pump to reduce the resin pressure Pm to preferably 0.1 OlMPa or less. Then, with the discharge valve closed, the injection valve is opened to open the mold from the injection flow path. Molding was carried out under pressure until the fat was completely filled in the mold.
  • the in-mold pressure Pm drops at a stroke according to the opening and closing speed, and the remaining gas expands rapidly.
  • the flow of resin occurs due to the pressure difference and the change in the volume of the gas, and the gas that has accumulated at the corners of the reinforcing fiber base between the reinforcing fibers and the like is trapped by the rapid flow of the resin. And discharge from the outlet.
  • the faster the rate of decrease of the pressure Pm in the mold the faster the change in the gas volume, and the more the gas around the gas is subjected to a shocking flow, so that the remaining gas is easily released from the retention location. Once released, the gas is discharged together with the directional flow to the discharge path. Next, close the discharge valve and supply the resin with the injection valve force.
  • the method of instantaneously changing the pressure in the mold to Pi or the negative pressure can also be realized by, for example, instantaneously switching between a vacuum pump and a pneumatic pump connected to a resin trap. . Further, by controlling the rate of change of the in-mold resin pressure Pm by adjusting the degree of opening of the discharge valve installed in the discharge path, more efficient air bubble discharge is possible.
  • the opening / closing cycle is input (stored) in advance in a computer, for example, and is operated based on that information. Can be solved.
  • the following method can be employed in order to efficiently mold a molded product having a high surface design in a short time.
  • the vertical cracking type (many in the injection molding type) has a bubble inside the mold where the flow of resin tends to be constant due to the effect of gravity.
  • a horizontal crack type that is, a configuration in which the molding die is an upper and lower type, has an advantage that the setting of the reinforcing fiber base on the mold surface is relatively easy and the setting time can be shortened, but a general type is used.
  • Resin injection method that is, 0.2-1.
  • the occurrence of such voids and pits related to the design properties is largely influenced by the flow state of the resin, and the density of the reinforcing fiber base material, that is, the basis weight is also an important factor.
  • the basis weight of the reinforcing fiber per layer it is necessary to set an appropriate basis weight in accordance with the resin flow conditions, since it affects the flow resistance of the resin and the ease with which bubbles are released.
  • the basis weight is too large and the rigidity of the base material is high, it is difficult for the reinforcing fiber base material to follow the mold surface, and it is difficult to shape the base material into a three-dimensional shape. At this time, the base material may be disturbed, and the mechanical properties of the FRP molded product may be reduced. That is, for efficient production, there is a basis weight suitable for production conditions (molding size, molding conditions, etc.).
  • the influence of the temperature and the resin injection pressure on the surface quality is particularly large. If the temperature of the resin to be injected is high, the viscosity decreases and the fluidity increases, and the resin impregnation into the base material is good, but the fluidity sharply deteriorates as the viscosity increase rate increases, and the molded product becomes poor. If it is too large, the flow of the resin may slow down midway, leading to unimpregnation. Even if the resin flows somewhere in the entire region, in the region where the viscosity is high, void-pits may occur frequently even if the resin does not impregnate.
  • the small bubbles remaining in the mold may come into contact with each other and grow into large bubbles that develop into voids and pits. Also, the pressure needs to be moderate. If it is too high, the volume may expand in the cavity to generate air bubbles, or if it is too low, the remaining air bubbles may be too small to be compressed.
  • a reactive gas is generated from the reactive resin during the curing process, or a fine gas (bubbles) already included in the resin grows with time and grows to grow into a void / pit. Therefore, it is better to cure as soon as possible after impregnating the base material with the resin.
  • the effect of the material properties of the reactive resin on the molding efficiency is very high.For example, depending on the type of the curing agent, the reaction rate is maximized at the beginning of the resin reaction, and the reaction rate increases with time. The curing time may be prolonged.
  • the pressure of the resin is within the range of 0.2-0.8 MPa.
  • the heating temperature is 3 to 30 minutes at a constant temperature of 60 to 160 ° C. , which is preferably cured in.
  • the RTM molding method and apparatus according to the present invention can be applied to any RTM molding where high-speed molding is desired.
  • a molded article having a relatively large and relatively complex shape can be efficiently and efficiently obtained in a short time. It is useful for molding into a particularly excellent design surface with excellent surface quality.
  • the present invention product size lm 2 or more relatively large general industrial F It is suitable for RP panel members, especially for automobile outer panel members and structural materials, and is particularly suitable for RTM molding of FRP members used as outer panel members with high design requirements.
  • the vehicle outer panel member is a so-called panel member such as a door panel, a hood, a roof, a trunk lid, a fender, a spoiler, a side skirt, a front skirt, a mudguard, and a door inner panel in a car or truck.
  • FRP panel components include aircraft components

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 複数の型からなる成形型のキャビティ内に強化繊維基材を配置し、型締めした後、樹脂を注入して成形するRTM成形方法において、強化繊維基材の面方向に関して分割領域を想定し、それぞれの分割領域は、注入樹脂が領域内の全面にわたって広がりかつ基材厚み方向に実質的に均一に含浸可能な分割領域であり、想定された各分割領域のそれぞれに対し該分割領域内まで注入樹脂を導入する樹脂導入路を形成することを特徴とするRTM成形方法、およびRTM成形装置。比較的大きな成形品を成形するに際し、樹脂注入から含浸・硬化までの成形工程を、樹脂が流れない領域が生じさせることなく、高速で実施でき、成形時間の短縮、生産速度、生産量の増加、ボイド等のない高品質の成形品の製造を可能とする。

Description

明 細 書
RTM成形方法および装置
技術分野
[0001] 本発明は、比較的大型の FRP (繊維強化榭脂)を成形するための RTM(Resin
Transfer Molding)成形方法および装置に関し、特に、高速成形および表面品位の向 上を可能にする RTM成形方法および装置に関する。
背景技術
[0002] FRP、特に CFRP (炭素繊維強化榭脂)は軽量、かつ高!ヽ機械的性質を有する複 合材料として様々な分野で利用されている。 FRP成形方法の一つとして、型に強化 繊維織物の積層基材等からなる強化繊維基材を載置し、型閉めの後、型内を減圧し て液状榭脂を注入し、加熱硬化させる RTM成形方法が知られている。また、このよう な従来の成形において、上下の賦形型で挟み込むことで、成形型に配設する前に事 前に強化繊維基材にある程度の形状賦形することも提案されている (たとえば、特許 文献 1)。
[0003] 従来の RTM成形方法においては、一般的には、 1つの注入ロカ 榭脂を加圧注 入する。そして、場合によっては、複数の榭脂排出口を設けている。しかし、このよう な従来方法では、流動する榭脂量を大きく設定することが困難であること、榭脂注入 ロカ^つであることから、大型品の RTM成形が困難であるという問題がある。すなわ ち、榭脂を流動させている内に、榭脂がゲルィ匕が進み (榭脂粘度が上がり)、成形品 の全域に榭脂が流れないことがある。また、榭脂に遅延剤を添加してゲルィ匕時間を 延ばすと、時間が掛カりながらも全域に榭脂を流動させることは可能であるが、所定 の榭脂流動に時間がかかり、生産速度、生産量が低下する。さらに、大型品、特に比 較的大きな三次元面状体を成形するに際し 1つの注入ロカ 榭脂流動させると、形 状によっては榭脂が流れない領域が生じることがある。榭脂排出口を複数設けて榭 脂流動を制御しても、良好に成形可能な複雑な構造には限界がある。
[0004] 一方、榭脂注入を成形体の全面から一斉に行う方法として、 RFKResin Film
Infosion)法がある。この方法は、未含浸の強化繊維基材に半硬化の榭脂フィルムを 貼り合わせた状態で加熱し、溶融した榭脂をホットプレスなどで加圧し含浸させる方 法であるが、複雑な形状の成形が難しぐ強化繊維基材の一部分に未含浸部分が生 じ易いなどの問題がある。
[0005] ある程度複雑で且つ大型成形品でも含浸させる方法として例えば、特許文献 2に 記載の方法などがある。この方法では、前記 RFI法の榭脂フィルムの代わりに例えば スポンジ材に溶融榭脂を含浸させたマトリックス榭脂の担持体を用いる方法であり、 改善された方法ではあるが、大型品を安価で簡易的手法で加圧含浸させる方法とし て被成形体全体をパギングフィルムで覆った状態でその中を減圧する方法を採って いるため、最大でも 0. IMPaの加圧力し力発生しないため、厚物や細部まで完全に 含浸できな 、等の問題がある。
[0006] これらの方法は、いずれも最初力 溶融したマトリックス榭脂を流動させながら強化 繊維基材に含浸させていく方法ではないことから、未含浸部発生の原因が残されて いる。
[0007] また、従来の RTM成形方法として、 1つの注入ラインから榭脂を加圧注入する方法 も知られている。例えば、成形品が多角形の形状 (複数辺)からなる場合、榭脂注入 は 1辺力も対向する他の辺に向力つて注入される(例えば、特許文献 3,特許文献 4) 。しかし、この様な方法では 1辺力も対向辺に向力つて榭脂は確実に順次強化繊維 基材に含浸しながら流動していくが、成形品が比較的大型になってくると榭脂流動に 多大の時間を要し、場合によっては樹脂が流動中にゲルィ匕時間に達してしまい完全 に含浸する前に流動が停止するという問題がある。そこで、前記特許文献 3の様に、 榭脂注入ラインを成形品の複数箇所に設けて順次注入して!/ヽく方法が提案されて!ヽ る力 この方法は成形品の成形領域内から榭脂注入するため、コアを用い該コアの 両面に強化繊維基材を配置するサンドイッチ成形品に対しては成形型面側からの注 入ができず適用できない。また、サンドイッチ成形品でない場合でも、両面型でしかも 表面に高い意匠性を要求される成形品の成形には適用できない。この様に、上記の ような従来の RTM成形方法では、比較的大型の成形品を効率良く成形することが困 難であった。
[0008] 通常、比較的多くの型力 なる RTM成形型には、成形に多大の時間を要すること 力 生産性が低いという大きな問題がある。一方、成形型が上下型の構成では、前 記の強化繊維基材の型面へのセットは比較的容易でかつセット時間も短時間ででき る利点がある反面、一般的な榭脂の注入方法、即ち 0. 2-1. OMPaの圧力で加圧 し、格別流速をコントロールしないで樹脂注入した場合は、榭脂が圧力に応じた流速 で型内に流入して行き、比較的短時間で型内に樹脂が充填されるものの、強化繊維 基材が榭脂流れで乱れたり、流速が速くて不均一な流れが生じて成形品の表面にボ イドやピンホールが多数発生することがある。
[0009] 特に、成形時間を短縮したり大面積の成形品を短時間で成形するために、榭脂の 吐出圧力が 0. 5MPa以上の高圧で (従って、高速で)榭脂注入する場合は、強化繊 維基材 (特に、平織物)の織り組織の乱れが生じ易ぐまた高速で榭脂が型内を流動 するため、型内のキヤビティ寸法斑 (特に、厚み斑)や基材の微妙な厚み斑や基材同 士のオーバーラップなどによる部分的な基材構成の違いによって流動抵抗が流動領 域内でばらつくため、均一な流れを保てないことから、局所的に「流れの先回り」など が生じて大きなボイドが発生することがある。更にまた、実際に該基材部分に榭脂は 流れて来てはいるが、流れが速いことから例えば織物の織り目にあった気体が抜ける 間が無く滞留してしまい、ピンホールとして表面に欠陥を発生させる場合がある。この 様な基材乱れゃボイド、ピンホールなどの意匠性に係わる外観品位の低下をもたら す従来の成形条件や成形プロセスでは、成形時間の短縮ィヒのための高速注入を行 いながら、高い表面品位を確保することは困難である。成形品のサイズが大きくなれ ばなるほど、どうしても高速榭脂注入することから、この様な外観品位上の欠陥は発 生しやすい。
[0010] この様な意匠性に係わるボイドゃピンホールの発生には、榭脂の流動状態が大きく 影響することから、強化繊維基材の密度、つまり目付量も重要な因子になる。つまり、
1層当たりの強化繊維の目付量は榭脂の流動抵抗や気泡の抜け易さに影響を与え るため、榭脂流動条件に応じた適正な目付量に設定する必要がある。この目付の適 正化は単に表面品位の面ば力りでなぐプリフォームの作業性や強度利用率等の観 点からも設定する必要がある。即ち、目付が大きすぎて基材の剛性が高くなると型面 に強化繊維基材が沿い難くて立体形状への賦形が難しくなり、プリフォーム化に多大 の作業時間が掛カつたり、その際に基材乱れを生じて FRP成形品の力学特性が低 下する事態を招くことがある。即ち、効率的な生産を行うためには、生産条件 (成形サ ィズ '形状、成形条件など)に合った目付量が存在する。
[0011] また、成形条件の中で、特に温度ゃ榭脂注入圧力が表面品位に与える影響度は 高い。注入される榭脂自体の温度や、金型で加熱される榭脂温度が高い場合、榭脂 粘度が下がって流動性が上がり、基材への榭脂含浸性は良いが、粘度上昇率が高く なって急激に流動性が悪ィ匕し、成形品が大きい場合は榭脂の流動が途中から減速 し、未含浸をもたらす場合がある。どうにか全域に榭脂流動しても、粘度が高くなつた 領域では、未含浸には至らなくてもボイドゃピンホールが多発することがある。一方、 金型温度に斑があったり、成形中に変化したりすると型内に残つて!、た極微小な気 泡同士が接触して、ボイドゃピンホールに発展する大きな気泡に成長することがある
[0012] また、圧力も適度であることが重要である。つまり、高過ぎて榭脂流速が速くなり、基 材の織り組織を乱したり、キヤビティ内で体積膨張して気泡を発生させたり、低過ぎて 残存気泡を小さく圧縮できな ヽ場合がある。
[0013] また、反応性榭脂から硬化過程で反応ガスが生じたり、既に榭脂中に内包していた 微細なガス (気泡)が時間と共に成長して大きくなり、ボイドゃピンホールに成長する こともあるので、榭脂が基材に含浸した後はできるだけ早ぐ速やかに硬化する方が よい。
[0014] 該反応性榭脂の材料特性が成形収率に与える影響度は非常に高ぐ例えば硬化 剤の種類によっては榭脂の反応の初期に反応速度が最大となり、時間が経過する。 従って反応速度が低下し、そのために硬化に要する時間が長くなる場合がある。これ に対して、成形型の温度を上昇させて硬化時間を短縮しょうとすると、今度は初期の 粘度上昇が過大となり、榭脂注入 ·流動時に粘度が過度に上昇して、果てはゲルイ匕 してしま ヽ、成形が途中で停止して未含浸部分を生じる場合もある。
[0015] この様に、 FRP成形 (特に、 RTM成形)では、成形サイズ (面積)に応じた適正な成 形条件や材料特性が存在し、適正な条件で成形しないと品質面、特に表面品位の 点で問題を生じ易いと言える。 [0016] さらに、成形品の表面品位を向上させることを目的の一つとして、 RTM成形に先立 ち、上下の賦形型で挟み込むことで、成形型に配設する前に事前に強化繊維基材 にある程度の形状賦形して、そのまま強化繊維基材だけを成形面に直接配置する方 法が提案されている (たとえば、前述の特許文献 1)。
[0017] ところが上記のような従来の成形法においては、注入、硬化される榭脂が、十分に 行き渡って強化繊維基材に隅々まで含浸されて ヽな 、と、ボイドゃピンホール発生 の原因となり、成形品の機械的特性を低下させたり、表面品位の低下を招くことにな る。特に表面に、中でも意匠面側にボイドゃピンホールが現れると、通常、榭脂を補 充する等の補修を行っているが、この補修に手間がかかり、製造工程全体の効率を 低下させることとなっている。
[0018] このような意匠面の表面品位を損なうボイドゃピンホールの発生を防止する対策と して表層基材の上面にランダムマット層を設ける場合がある。このランダムマット層が 最外層になるため「サーフェスマット」と呼ばれる由縁でもあり、特にプリプレダ Zォー トクレーブ硬化法、 RFI (Risin Film Infosion)及びハンドレイアップ法などでは、時折 適用されている。ところがその構成としては、後述する本発明に係る態様に比べ、表 層基材とランダムマット層が全く入れ替つた基材構成となっている。
[0019] このような基材構成で RTM成形や真空成形等のように、ドライの基材に榭脂流体 を注入し、流動させて含浸させていく成形方法では、榭脂の流動によって気泡も流 出させる必要があり、どうしても榭脂流動性が低い箇所にはボイドが発生したり、気泡 が残留したままでピンホールとなり易 、。
[0020] 上述のようなランダムマットをサーフェスマットとして用い、最外層に配置して RTM 成形や真空成形方法で FRP成形した場合、ドライ基材の状態であるランダムマットが 金型面に押し付けられ、低目付のランダムマットは、嵩高性が低いため金型面とラン ダムマット間の隙間が非常に小さい。そのために、その隙間への榭脂流動が悪ぐ結 果的にその箇所にボイドゃピンホールが発生しやすい。このように、特に RTM成形 方法や真空成形方法においては、最外層(表層の意匠面)にランダムマット層を設け てもボイドやピンホールの発生を防止することはできない。
特許文献 1:特開 2003— 305719号公報 特許文献 2:特開 2002— 234078号公報
特許文献 3:特開平 8— 58008号公報
特許文献 4:特開 2003— 11136号公報
発明の開示
発明が解決しょうとする課題
[0021] そこで本発明の第 1の課題は、上記のような現状に鑑み、比較的大きな三次元面 状体に対しても、榭脂注入力ゝら含浸,硬化までの成形工程を、榭脂が流れない領域 が生じさせることなぐ従来の RTM成形方法や装置に対して高速で実施でき、それ によって、成形時間の短縮、生産速度、生産量の増加、特に 1型当たりの生産量を 増加して、製造コストの低減をはカゝることが可能な RTM成形方法および装置を提供 することにある。
[0022] また、本発明の第 2の課題は、比較的大型、つまり、実質的に投影面積が lm2以上 の繊維強化榭脂製品を成形する RTM成形にお ヽて、ボイド等のな ヽ高品質の成形 品を効率よく短時間で成形可能な RTM成形方法および装置を提供することにある。
[0023] さらに、本発明の第 3の課題は、榭脂を注入する工程で容易にかつ確実に注入榭 脂を所望の範囲全体にわたって良好に行き渡らせ、特に表面に、中でも意匠面側に 、ボイドゃピンホールが生じな 、ようにして表面品位の向上をは力つた繊維強化榭脂 を製造できる RTM成形方法を提供することにある。
課題を解決するための手段
[0024] 上記課題を解決するために、本発明に係る RTM成形方法は、複数の型からなる成 形型のキヤビティ内に強化繊維基材を配置し、型締めした後、榭脂を注入して成形 する RTM成形方法にお ヽて、前記強化繊維基材の面方向に関して分割領域を想 定し、それぞれの分割領域は、注入樹脂が領域内の全面にわたって広がりかつ基材 厚み方向に実質的に均一に含浸可能な分割領域であり、想定された各分割領域の それぞれに対し該分割領域内まで注入榭脂を導入する榭脂導入路を形成することを 特徴とする方法からなる。この RTM成形方法においては、少なくとも型締めした後か ら榭脂注入開始まで、所定の時間の間榭脂排出ラインより真空吸引することもできる [0025] また、本発明に係る RTM成形装置は、複数の型からなる成形型のキヤビティ内に 強化繊維基材を配置し、型締めした後、榭脂を注入して成形する RTM成形装置に おいて、前記強化繊維基材の面方向に関して分割領域を想定し、それぞれの分割 領域は、注入樹脂が領域内の全面にわたって広がりかつ基材厚み方向に実質的に 均一に含浸可能な分割領域であり、想定された各分割領域のそれぞれに対し該分 割領域内まで注入榭脂を導入する榭脂導入路を形成することを特徴とするものから なる。この RTM成形装置においては、少なくとも型締めした後から榭脂注入開始ま で、所定の時間の間榭脂排出ラインより真空吸引する手段を有する構成とすることも できる。
[0026] 上記のような本発明に係る RTM成形方法および装置にぉ 、ては、比較的広 、面 積を有する強化繊維基材に対し、適切なサイズの分割領域を想定し、各分割領域の それぞれに対し該分割領域内まで注入榭脂を導入する榭脂導入路を形成して、該 榭脂導入路を介して榭脂を注入することにより、結果として、強化繊維基材の全域に わたって、迅速且つ均一に榭脂を含浸させるようにしている。分割領域の分割数は、 後述の第 1、第 2の態様に示すように、複数の数えられる数としてもよぐ後述の第 3の 態様に示すように、実質的に無数の分割領域数としてもよ!、。
[0027] そして本発明は、とくに上記第 1の課題を解決するために、前記成形型を構成する 型間に、厚み方向に貫通する榭脂流路を有する中間部材を配設し、該中間部材を 介して、榭脂を前記強化繊維基材に対して複数の箇所からほぼ同時に注入する RT M成形方法を提供する (第 1の態様に係る方法)。
[0028] また、本発明は、前記成形型を構成する型間に、厚み方向に貫通する榭脂流路を 有し、該榭脂流路を介して榭脂を前記強化繊維基材に対して複数の箇所カゝらほぼ 同時に注入可能な中間部材が設けられている RTM成形装置を提供する(第 1の態 様に係る装置)。
[0029] この第 1の態様に係る RTM成形方法および装置においては、いずれかの型に、強 化繊維基材に対して実質的に全周にわたって延びる榭脂排出用溝が形成されてい る構成とすることができる。また、上記中間部材に、強化繊維基材に対して実質的に 全周にわたつて延びる榭脂排出用溝が形成されて ヽる構成とすることもできる。 [0030] 上記中間部材は、その一面側に形成された榭脂流路用溝と、該溝に連通し前記面 とは反対面である強化繊維基材配置側の面へと貫通する貫通孔が設けられている 構成とすることができる。
[0031] 上記中間部材としては、金属製または榭脂製のいずれのものも使用可能である。ま た、榭脂注入用部材 (たとえば、榭脂注入用パイプ)を上記中間部材とそれに対向す る型で挟圧してシールする構成とすることができる。また、榭脂排出用部材 (たとえば 、榭脂排出用パイプ)を上記中間部材と強化繊維基材を介して前記中間部材に対向 する型で挟圧してシールする構成とすることもできる。
[0032] また、上記中間部材として、複数の貫通孔を設けた多孔板や榭脂製フィルムを使用 することもできる。この場合、中間部材に対向する型に榭脂通路用の溝が設けられて いる構成とすることができる。また、上記中間部材とそれに対向する型との間に隙間 を形成し、該隙間が 1一 10mmの範囲内に設定されて!ヽる構成とすることもできる。
[0033] また、上記強化繊維基材にコア材が積層されている構成、代表的には、コア材を両 側から強化繊維基材で挟んだサンドイッチ構造を採用することができる。
[0034] また、成形型の型合わせ面部におけるシール性、とくに、榭脂注入部や排出部に おけるシール性を向上して、 RTM成形サイクルタイムを短くするために、榭脂の注入 用のチューブおよび Zまたは排出用のチューブを型合わせ面部に挟圧して設け、該 チューブと型との間を弾性体 (シール用弾性体)を介してシールする構造を採用する ことちでさる。
[0035] 上記シール性向上構造にぉ ヽては、シール用弾性体に、成形型のキヤビティを型 合わせ面部でシールする O—リングの端部が内蔵されて 、る構成とすることができる。
[0036] また、榭脂注入中に発生する榭脂中の溶存気体の蒸発による気泡や、型の角部に 滞留する微少な気泡を排出可能とするために、上記成形型内に榭脂を加圧注入し ながら成形型内の気体と余剰榭脂を間欠的に排出する構成とすることができる。
[0037] この場合、加圧注入された榭脂の前記成形型内での榭脂圧力を Pm、榭脂を注入 する注入口での榭脂吐出圧力を Piとしたとき、選択的に Pm=Pi、 Pmく Piとして、成 形型内に流入している樹脂の流量を制御することができる。また、成形型内に流入し ている榭脂の流量を、榭脂を排出する排出口の口径の調節によって制御することも できる。排出口の口径の調節と、その調節のタイミングとを記憶し、その記憶情報に 基づ 、て成形型内の榭脂流量を自動的に制御するようにすることもできる。
[0038] また、成形型のキヤビティ内に榭脂を加圧注入するとき、榭脂の単位時間流量 (Q : ccZmin)とキヤビティの投影面積(S: m )との比(QZS: ccZ min ' m ) 、
50く QZSく 600
の範囲内である構成とすることができる。
[0039] この場合、上記比(QZS: cc/min · m2)と榭脂の加圧力(P: MPa)との積((QZS)
X P: ccMPa/min · m2)力
20≤ (QZS) X P≤400
の範囲内である構成とすることもできる。
[0040] また、上記榭脂の加圧力が 0. 2-0. 8MPaの範囲内である構成、上記樹脂が、加 熱温度が 60— 160°Cの範囲の一定温度下で、 3— 30分で硬化される構成を採用す ることがでさる。
[0041] 上記のような第 1の態様に係る RTM成形方法および装置は、次のような基本思想 に基づいて、前述の課題の解決をはカゝつたものである。すなわち、とにかく榭脂注入 口を増やし、一つの注入口当たりの榭脂流動領域を小さくする。そして、榭脂を強化 繊維基材に含浸する前に、一且基材表面に流して榭脂を溜めるようにし、その榭脂 に圧力をけけて一気に全域に榭脂流動させて含浸させる。このとき、実質的な榭脂 流動は、基材の厚み分になるようにする。つまり、事前に榭脂を十分に広い領域にわ たって面方向に流動させておき、そこ力も一気に基材の厚み方向に流動、含浸させ るのである。したがって、榭脂は基材の全域 (周辺からではなく)カゝら基材に注入され ることになり、極めて迅速に基材に含浸される。榭脂排出は、周辺(場合によっては、 全周)力も行うことが好ま 、。
[0042] このような榭脂流動動作を行わせるために、上記 RTM成形方法および装置では、 型間に、たとえば、一方の型 (たとえば、上型)と他方の型 (たとえば、下型)の間に、 榭脂流路を形成する中間部材 (たとえば、榭脂注入マルチボート用の中間プレート) を配設し、該中間部材を介して、榭脂を強化繊維基材に対して複数の箇所からほぼ 同時に注入する。たとえば、中間部材に設けた複数の注入口から、強化繊維基材に 対しほほ同時に榭脂を流し、基材の全域にほぼ均等に榭脂を流す。
[0043] また、強化繊維基材と上型 (一方の型)の間に、中間部材として、注入開口面積の 小さ 、中間プレート (榭脂流動抵抗が大き!、多孔板や穴開きフィルムなど)を設け、 該中間プレートと上型の間に微小隙間(たとえば、上記の 1一 10mmの範囲の隙間) を保って、その隙間に榭脂を流すこともできる。流動抵抗が低いため、中間プレート の穴力 流れる前に、十分に広い領域に広がり、榭脂が溜められ、それから実質的 に一気に貫通孔を通して強化繊維基材方向に注入される。したがって、この場合に も、複数の箇所力もほぼ同時に、均等に榭脂注入することができる。
[0044] また、本発明は、とくに前記第 2の課題を解決するために、前記キヤビティの外周に 配置された榭脂注入ライン力ゝら榭脂排出ラインに向けて榭脂を注入して前記強化繊 維基材に榭脂含浸後、加熱硬化させる RTM成形方法であって、前記榭脂注入ライ ンが複数に分割形成されて!、る RTM成形方法を提供する(第 2の態様に係る方法)
[0045] また、本発明は、前記キヤビティの外周に配置された榭脂注入ライン力ゝら榭脂排出 ラインに向けて榭脂を注入して前記強化繊維基材に榭脂含浸後、加熱硬化させる R TM成形装置であって、前記榭脂注入ラインが複数に分割形成されて!、る RTM成 形装置を提供する (第 2の態様に係る装置)。
[0046] この第 2の態様に係る RTM成形方法および装置においては、上記榭脂注入ライン と榭脂排出ラインとが、上記キヤビティの実質的に外周全域に渡って形成されている ことが好ましい。また、上記榭脂注入ラインと榭脂排出ラインに関し、榭脂注入ライン の長さが前記榭脂排出ラインの長さの 2倍以上であることが好ましい。
[0047] このような榭脂注入ラインおよび Zまたは榭脂排出ラインは、成形型に加工された 溝 (凹部状の溝)から構成することができる。成形型が上型と下型とからなる場合、上 記溝は総て下型にカ卩ェされて 、ることが好ま 、。
[0048] また、上記榭脂排出ラインも複数に分割形成されて ヽる構成とすることができる。
[0049] 複数に分割形成されてなる榭脂注入ライン力 の榭脂注入は、榭脂排出ライン力 実質的に遠い側の榭脂注入ラインより順次行うことが好ましい。また、榭脂排出ライン からも、所定の時間後に榭脂注入ラインに切り換えて榭脂注入を行うようにすることも 可能である。
[0050] また、この第 2の態様に係る RTM成形方法および装置にぉ ヽても、上記強化繊維 基材にコア材が積層されている構成、代表的には、コア材を両側から強化繊維基材 で挟んだサンドイッチ構造を採用することができる。
[0051] また、成形型の型合わせ面部におけるシール性、とくに、榭脂注入部や排出部に おけるシール性を向上して、 RTM成形サイクルタイムを短くするために、榭脂の注入 用のチューブおよび Zまたは排出用のチューブを型合わせ面部に挟圧して設け、該 チューブと型との間を弾性体 (シール用弾性体)を介してシールする構造を採用する ことちでさる。
[0052] 上記シール性向上構造にぉ ヽては、シール用弾性体に、成形型のキヤビティを型 合わせ面部でシールする O—リングの端部が内蔵されて 、る構成とすることができる。
[0053] また、榭脂注入中に発生する榭脂中の溶存気体の蒸発による気泡や、型の角部に 滞留する微少な気泡を排出可能とするために、上記成形型内に榭脂を加圧注入し ながら成形型内の気体と余剰榭脂を間欠的に排出する構成とすることができる。
[0054] この場合、加圧注入された榭脂の前記成形型内での榭脂圧力を Pm、榭脂を注入 する注入口での榭脂吐出圧力を Piとしたとき、選択的に Pm= Pi、 Pmく Piとして、成 形型内に流入している樹脂の流量を制御することができる。また、成形型内に流入し ている榭脂の流量を、榭脂を排出する排出口の口径の調節によって制御することも できる。排出口の口径の調節と、その調節のタイミングとを記憶し、その記憶情報に 基づ 、て成形型内の榭脂流量を自動的に制御するようにすることもできる。
[0055] また、成形型のキヤビティ内に榭脂を加圧注入するとき、榭脂の単位時間流量 (Q : ccZmin)とキヤビティの投影面積(S: m )との比(QZS: ccZ min ' m ) 、
50く QZSく 600
の範囲内である構成とすることができる。
[0056] この場合、上記比(QZS: cc/min · m2)と榭脂の加圧力(P: MPa)との積((QZS)
X P: ccMPa/min · m2)が、
20≤ (Q/S) X P≤400
の範囲内である構成とすることもできる。 [0057] また、上記榭脂の加圧力が 0. 2-0. 8MPaの範囲内である構成、上記樹脂が、加 熱温度が 60— 160°Cの範囲の一定温度下で、 3— 30分で硬化される構成を採用す ることがでさる。
[0058] また、本発明は、とくに前記第 3の課題を解決するために、前記強化繊維基材の少 なくとも片側の表層が連続繊維層からなり、該表層の真下の層がランダムマット層か らなる RTM成形方法を提供する (第 3の態様に係る方法)。
[0059] ランダムマット層は繊維配向がランダムで且つ低目付であることから榭脂の流動抵 抗が低いため、このランダムマット層を設けることにより、比較的榭脂が流れやすい榭 脂流路を形成することが可能となる。そして、このランダムマット層を少なくとも片側の 表層の連続繊維基材の真下に配置することにより、榭脂注入の際に、とくにその表層 近傍で良好な榭脂流れ、中でも表層の面に沿う方向の良好な榭脂流れを形成でき、 ボイドとなる榭脂含浸不良部分の発生を防止して、成形品の表面を向上することがで きる。
[0060] この第 3の態様に係る RTM成形方法においては、上記表層は 3層以下の連続繊 維層から形成されていることが好ましい。あまり厚い連続繊維基材とすると、該基材を 通してランダムマット層に樹脂が到達しにくくなつたり、また、ランダムマット層中を良 好に流動した榭脂が表層の連続繊維基材中に含浸されにくくなつたりするおそれが あるので、表層の連続繊維基材の積層形態を 3層以下とすることが好ましい。
[0061] また、表層を形成する連続繊維層の総目付が 700gZm2以下であることが好ましく 、表面意匠性の点から平織や綾織、糯子織などの織物力もなることが好ましい。また 、これら織物の織り目にはピンホールの原因となる気泡が滞留し易いが、上述のよう に表面基材の真下にランダムマット層を配置することによって気泡を流出させ、ピンホ ールの発生を防ぐことができる。この表層は、例えば、炭素繊維織物力も構成できる
。但し、強化繊維としては、炭素繊維、ガラス繊維、ァラミド繊維、金属繊維、ボロン繊 維、アルミナ繊維、炭化ケィ素高強度合成繊維等を用いることができるが、とくに、炭 素繊維やガラス繊維が好ましい。中でも、上記表層の強化繊維が炭素繊維織物から なることが好ましい。
[0062] 上記ランダムマット層の総目付としては、ランダムマット層が、とくに榭脂流動、含浸 の際抵抗の小さい榭脂流路を形成するのを主目的に配置されるため、表層基材ゃ 強化繊維層基材より低い 150gZm2以下であることが好ましい。このランダムマット層 は、強化繊維層よりマトリックス榭脂の流動抵抗を低くすることによって該榭脂の流動 性や含浸性を大幅に改善させ、ボイドゃピンホールの発生を防止して表面品位を向 上する役目を果たすものである。したがって、この目的を達成できる限り、 FRPの強 度や剛性等の機械的特性維持の面からは、殆ど強化繊維とはならな 、ランダムマット 層は多すぎることは好ましくなぐ上記の如く総目付を 150gZm2以下にすることが好 ましい。
[0063] また、このランダムマット層には炭素繊維ゃァラミド繊維でもよ!/、が、比較的安価な ガラス繊維を用いることができ、より好ましい。
[0064] また、この第 3の態様に係る RTM成形方法においても、上記強化繊維基材にコア 材が積層されている構成、代表的には、コア材を両側から強化繊維基材で挟んだサ ンドイッチ構造を採用することができる。
[0065] このような第 3の態様に係る RTM成形方法により、榭脂を注入する工程で容易にか つ確実に注入榭脂を所望の範囲全体にわたって良好に行き渡らせ、特に表面に、 中でも意匠面側に、ボイドゃピンホールが生じないようにして表面品位の向上をはか つた繊維強化樹脂が得られる。この第 3の態様に係る RTM成形方法は、とくに前記 第 2の態様に係る RTM成形方法と組み合わせて用いることができ、その場合にラン ダムマット層による効果をより良好に発揮することができる。
発明の効果
[0066] 本発明に係る RTM成形方法および装置によれば、比較的広 ヽ面積の強化繊維基 材を用いる場合にあっても、適切な分割領域を想定して各分割領域に対し注入榭脂 が十分に行き渡りかつ良好に含浸できるようにしたので、榭脂注入力 含浸 ·硬化ま での成形工程を、榭脂が流れない領域が生じさせることなぐ高速で実施でき、成形 時間の短縮、生産速度、生産量の増加、製造コストの低減をは力ることができる。また 、全域にわたって榭脂を望ましい状態で含浸できるようになり、成形品の表面品位の 向上をは力ることができるようになる。
[0067] とくに上記第 1の態様に係る RTM成形方法および装置によれば、中間部材を介し て先に榭脂を十分に広い領域に広がるように流動させ、しかる後に、強化繊維基材 に対し、複数の箇所からほぼ同時に、均等に榭脂注入するようにしたので、比較的大 きな三次元面状体に対しても、榭脂が流れない領域が生じさせることなぐ高速で成 形を実施できるようになる。その結果、成形時間を大幅に短縮することができ、生産 速度、生産量を増加することが可能になり、 1型当たりの生産量を増加して製造コスト の低減をは力ることが可能になる。また、大型成形品に対しても、容易に榭脂未含浸 部の発生を防止することが可能になり、成形品の品質の向上をは力ることもできる。
[0068] また、上記第 2の態様に係る RTM成形方法および装置によれば、従来の RTM成 形では困難であった比較的大型の FRP成形品をボイドなどの欠陥が発生することの ない状態で、効率よく短時間で安定的に成形できる。即ち、高サイクルで量産が可能 となる。
[0069] また、上記第 3の態様に係る RTM成形方法によれば、少なくとも片側の表層の連 続繊維基材の真下に該表層基材ゃ強化繊維層基材より低目付のランダムマット層を 配置したことにより、強化繊維基材に榭脂を注入、含浸する際に、流動抵抗の小さな 、榭脂が流れやすい榭脂流路が形成され、且つ、繊維配向がランダムであることから 注入樹脂が良好に隅々にまで行き渡って、ボイドゃピンホール等の榭脂含浸不良に 起因する欠陥の発生が防止される。とくに、表層直下にランダムマット層が配置される ことにより、成形品の表面にこのような欠陥が発生することが効率よく防止され、成形 品の表面品位、とくに意匠面の品位が効果的に向上される。
図面の簡単な説明
[0070] [図 1]本発明の第 1実施態様に係る RTM成形方法に用いる装置の分解斜視図であ る。
[図 2]図 2Aは、図 1の装置の上型の平面図、図 2Bは、その正面図である。
[図 3]図 3Aは、図 1の装置の中間部材の平面図、図 3Bは、図 3Aの C C線に沿う断 面図である。
[図 4]図 4Aは、図 1の装置の下型の平面図、図 4Bは、図 4Aの C C線に沿う断面図 である。
[図 5]本発明の第 1実施態様とは別の実施態様に係る RTM成形方法に用いる装置 の断面図である。
[図 6]図 5の装置の上型の底面図である。
[図 7]図 5の装置の下型の平面図である。
圆 8]本発明の第 2実施態様に係る RTM成形方法および装置に用いる成形型の一 例を示す斜視図である。
[図 9]図 8の成形型の下型の平面図である。
[図 10]図 9の下型の縦断面図である。
圆 11]本発明の第 2実施態様に係る RTM成形方法および装置を用いた RTM成形 システムの概略全体構成図である。
圆 12]本発明の実施例に用いた榭脂の特性図である。
[図 13]本発明に第 3実施態様に係る RTM成形方法により成形される繊維強化榭脂 のプリフォーム基材の構成を示す部分断面図である。
圆 14]図 13の基材に榭脂を注入、含浸する際の様子を示した部分断面図である。 圆 15]本発明の第 3実施態様とは別の実施態様に係る RTM成形方法により成形さ れる繊維強化樹脂のプリフォーム基材の構成を示す部分断面図である。
圆 16]図 15の基材に榭脂を注入、含浸する際の様子を示した部分断面図である。
[図 17]図 17Aは、図 13のプリフォーム基材の表層基材の部分断面図、図 17Bは、そ の平面図である。
圆 18]図 18A— Cは、本発明の第 3実施態様で使用可能な成形方法を示す概略構 成図である。
圆 19]図 13とはさらに別の実施態様に係る繊維強化樹脂の構成を示す部分断面図 である。
[図 20]本発明に係る RTM成形方法および装置におけるシール性向上構造の一例 を示す成形型の概略分解斜視図である。
圆 21]別のシール性向上構造例を示す成形型の縦断面図である。
[図 22]成形型の合わせ面に用いられる榭脂注入'排出用チューブの斜視図である。
[図 23]図 23A— Fは、成形型合わせ面に配設された榭脂注入'排出用チューブ部の 各種シール形態の例を示す構造構成図である。 符号の説明
1、 20 成形型
2、 21 上型
3、 24 中間部材
4、 22 下型
5 樹脂注入流路用溝
6、 24a 貫通孔
8, 26 榭脂注入部材
9、 23 強化繊維基材
11、 27 樹脂排出部材
25 隙間(クリアランス)
41 RTM成形型
2 上型
3 下型
4 プリフォーム基材 (強化繊維基材) 5 型シール材
6、 47、 48 榭脂注入管
6a、 47a, 48a シール用ゴム部材 6b、 47b, 48b 樹月旨注入バルブ 6c、 47c, 48c 榭脂注入ランナー 6d、 47d、 48d 榭脂注入フィルムゲート 9 樹脂排出管
9a シール用ゴム部材
9b 榭脂排出バルブ
9c 樹脂排出ランナー
9d 樹脂排出フィルムゲート
0 キヤビティ
1 ピン孑し ピン
RTM成形システム
金型昇降装置
金型昇降用油圧装置
榭脂注入装置
真空ポンプ
榭脂トラップ
温調機
a 主剤タンク
b 硬化剤タンク
加圧装置
混合ユニット
分岐管
榭脂注入流路
油圧シリンダー
排出流路
油圧ポンプ
、 76、 100 繊維強化榭脂
、 72a, 72b 表層基材
、 73a, 73b ランダムマツ卜層
、 74a, 74b 強化層を構成する強化繊維基材a、 75b、 75c、 75d 樹脂流れの流線 、 77a, 77b 樹脂
、 79、 82 気泡
上型
下型
榭脂注入 PI
吸引口 87 プリフォーム基材
88 樹脂注入用ランナー
89 吸引用ランナー
90 シール溝
91 榭脂タンク
92、 95 /くノレブ
93 榭脂注入経路
94 真空ポンプ
96 吸引経路
97 成形品
101 コア材
111、 131、 151 上型
112、 132、 152 下型
113、 133 キヤビティ
114、 138 樹脂注入用ランナー
115、 139 榭脂排出用ランナー
116、 134 榭脂注入用チューブ
117、 135 榭脂排出用チューブ
118、 119、 136、 137、 153 シール用弾性体
121、 154 O—リング
122 強化繊維基材
123 強化繊維プリフォーム体
124 コア材
125 強化繊維基材
126、 127 ゲー卜
発明を実施するための最良の形態
以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。 まず、本発明における強化繊維としては、炭素繊維、ガラス繊維、ァラミド繊維、金 属繊維、ボロン繊維、アルミナ繊維、炭化ケィ素高強度合成繊維等を用いることがで き、とくに、炭素繊維が好ましい。強化繊維基材の形態は特に限定されず、一方向シ ートゃ織物等を採用でき、通常、これらを複数枚積層して強化繊維基材を形成し、必 要に応じて事前に賦形したプリフォームの形態で用いる。
[0073] 本発明に係る RTM成形方法および装置で使用する榭脂としては、粘度が低く強 化繊維への含浸が容易な熱硬化性榭脂または熱可塑性榭脂を形成する RIM用 (Resin Injection Molding)モノマーなどが好適である。熱硬化性榭脂としては、たとえ ば、エポキシ榭脂、不飽和ポリエステル榭脂、ポリビニルエステル榭脂、フエノール榭 脂、グアナミン榭脂、また、ビスマレイド'トリアジン榭脂等のポリイミド榭脂、フラン榭脂 、ポリウレタン榭脂、ポリジァリルフタレート榭脂、さらにメラミン榭脂ゃユリア榭脂ゃァ ミノ榭脂等が挙げられる。
[0074] また、ナイロン 6、ナイロン 66、ナイロン 11などのポリアミド、またはこれらポリアミドの 共重合ポリアミド、また、ポリエチレンテレフタラート、ポリブチレンテレフタラートなどの ポリエステル、またはこれらポリエステルの共重合ポリエステル、さらにポリカーボネー ト、ポリアミドイミド、ポリフエ-レンスルファイド、ポリフエ-レンォキシド、ポリスルホン、 ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリオレフィ ンなど、更にまた、ポリエステルエラストマ一、ポリアミドエラストマ一などに代表される 熱可塑性エラストマ一等が挙げられる。
[0075] また、上記の熱硬化性榭脂、熱可塑性榭脂、ゴム力 選ばれた複数をブレンドした 榭脂を用いることもできる。
[0076] 中でも好ま 、榭脂として、 自動車用外板部材の意匠性に影響を与える成形時の 熱収縮を抑える観点から、エポキシ榭脂が挙げられる。
[0077] 一般的に複合材料用エポキシ榭脂としては、主剤として、ビスフエノール A型ェポキ シ榭脂、フエノールノボラック型エポキシ榭脂、グリシジルァミン型エポキシ榭脂が用 いられる。一方、硬化剤としては、ジシアンジアミドにジクロ口フエ-ルジメチル尿素を 組み合わせた硬化剤系が作業性、物性等のバランスに優れている点で好適に使用 されている。し力し、特に限定されるものではなぐジアミノジフヱ-ルスルホン、芳香 族ジァミン、酸無水物ポリアミドなども使用できる。また、榭脂と前述の強化繊維の比 率は、重量比率で 20 : 80— 70 : 30の範囲内が外板として適当な剛性を保持する点 で好ましい。その中でも、 FRP構造体の熱収縮を低減させ、クラックの発生を抑えると V、う点から、エポキシ榭脂または熱可塑性榭脂ゃゴム成分などを配合した変性ェポ キシ榭脂、ナイロン榭脂、ジシクロペンタジェン榭脂がより適している。
[0078] また、本発明にお ヽては、繊維強化樹脂とコア材との積層構造を有する繊維強化 榭脂構造体を成形する際にも適用できる。たとえば、コア材の両側に繊維強化榭脂 層を配置したサンドイッチ構造を挙げることができる。コア材としては、弾性体や発泡 材、ハ-カム材の使用が可能であり、軽量ィ匕のためには発泡材ゃノヽ-カム材が好ま しい。発泡材の材質としては特に限定されず、たとえば、ポリウレタンやアクリル、ポリ スチレン、ポリイミド、塩化ビニル、フエノールなどの高分子材料のフォーム材などを使 用できる。ハ-カム材の材質としては特に限定されず、たとえば、アルミニウム合金、 紙、ァラミドペーパー等を使用することができる。
[0079] 図 1一図 4は、本発明の第 1実施態様に係る RTM成形方法および装置について示 したものである。図 1において、成形型 1は、複数の型からなり、本実施態様では、一 方の型としてのスチール製の上型 2と、他方の型としての同じ材質の下型 4を有し、間 に、中間部材として榭脂製 (例えば、ポリエチレン)の中間プレート 3を有する。この上 型 2と中間プレート 3によって、榭脂注入流路と基材への注入ボートを形成する。中間 プレート 3には、榭脂注入部材 8と連通する榭脂流路用溝 5が加工されており、各溝 5 の端部には注入ボート用貫通孔 6が加工 (穿孔)されている。榭脂注入部材 8は、金 属製パイプまたは榭脂製チューブ力 構成されており、上型 2を構成する金型および 中間プレート 3に対して、ゴムなどの弾性体力もなるシール材 10aでシールされてい る。上型 2および中間プレート 3の周辺部は O—リング 7でシールされており、 O—リング 7はシール材 10aと結合されている。上型 2の四隅には、中間プレート 3や下型 4と連 結するための案内ガイド 13が設けられている。
[0080] 下型 4のキヤビティ部位には強化繊維基材 9が配置され、基材 9の外周側には榭脂 排出用溝 12 (ランナー)が加工されている。その溝 12の一部に差し込まれた榭脂排 出チューブ 11から、余剰樹脂が型外に排出される。該溝 12の周囲にはシール用 O— リング 14が配設され、チューブ 11と金型 4とのシールを行う弾性体等力もなるシール 材 10bと結合されている。
[0081] 図 2は上型 2を示しており、図 2Aはその平面図、図 2Bは正面図である。上型 2には 、榭脂注入流路 15が形成されており、その入口には榭脂注入部材 8の上半分が収ま るようになっている。
[0082] 図 3は中間プレート 3を示しており、図 3Aはその平面図、図 3Bは図 3Aの C C線に 沿う断面図である。本例の中間プレート 3の寸法は、幅 1800mm、長さ 2000mm、 厚さ 12mmである。中間プレート 3には、金属パイプまたは榭脂チューブ製の榭脂注 入部材 8と連通する榭脂流路用溝 5が放射状に延びるように加工されており、その溝 5の中間や端部には直径 5mmの注入ボート用貫通孔 6が穿孔されている。本例では 、溝寸法が幅 5mm、深さ 4mmで、放射状に延びた流路長は各々 540mmである。 周辺は O リング 7でシールされ、上記弾性体 10aと結合されて 、る。
[0083] 図 4は下型 4を示しており、図 4Aはその平面図、図 4Bは図 4Aの C Cに沿う断面 図である。成形面の中央キヤビティ部には強化繊維基材 9 (例えば、東レ (株)製トレ 力 T300平織物 C06644B (目付; 300gZm2 )を 6ply)がレイアップされて!/、る。その 基材外周側には、榭脂含浸後の榭脂排出用溝 12 (ランナー:寸法は幅が 12mm、深 さが 5mm)が加工されている。その溝 12の一部に差し込まれた外径 12mm、内径 1 Ommの榭脂排出チューブ 11から、余剰樹脂が型外に排出される。
[0084] このように構成された上下型 2、 4および中間プレート 3を用いた成形では、中間プ レート 3により複数の榭脂流路が形成されているので、榭脂注入部材 8から注入され た榭脂は、まず、中間プレート 3の面に沿う方向に迅速に流動し、広い領域にわたつ て行き渡る。そして、適当に複数設けられた貫通孔 6を通して、複数箇所から実質的 にほぼ同時に強化繊維基材 9に注入されるので、強化繊維基材 9の広い領域にわた つて樹脂が良好にかつ迅速に含浸されていく。すなわち、貫通孔 6の流動抵抗は榭 脂流路よりも高いので、注入榭脂は一旦中間プレート 3の面上に溜められ、そこから 複数の貫通孔 6を通して一気に強化繊維基材 9に含浸されていく。実際にエポキシ 榭脂を用いて、金型温度 90°Cで成形した結果、榭脂が行き渡らない部分の発生が 防止されるとともに、榭脂注入、含浸時間が従来の 1Z10以下に大幅に短縮され、 高速成形が達成される。 [0085] 図 5—図 7は、上記第 1実施態様とは別の実施態様に係る RTM成形方法および装 置について示したものである。図 5においては、成形型 20の上型 21と下型 22の間に 、多孔板または穴あきフィルム力もなる中間部材 24 (本実施態様では多孔板)がセッ トされる。上型 21には榭脂流路用の溝 36a、 36b (図 6)が全域に行き渡るように加工 されている。多孔板 24と上型 21の間には、クリアランス 25が、本実施態様では僅か な(0. 5— lmm程度)のクリアランス 25が形成されている。また、多孔板や穴あきフィ ルムの穴の位置と上型に加工された溝の位置を合致させると、より効率的に榭脂流 動'含浸が可能となる。シール部材 28 (たとえば、ゴム製ブロック)でシールされた榭 脂注入部材 26から流入した榭脂は上記クリアランス 25に殆どが流れ、そのクリアラン ス 25のスペースに充満する。多孔板 24には微小な貫通孔 24a (直径が 0. 5-3. 5 mm程度)が全域にわたって 3— 8mmピッチで開けられている。その為、榭脂の流動 抵抗は上記クリアランス 25へ流れるよりもはるかに大きい。キヤビティ 31に強化繊維 基材 23をセットし、上型 21を締めて、シール部材 29でシールされた排出部材 27より 真空吸引する。上記クリアランス 25に充填されていた榭脂を加圧し、多孔板 24の孔 2 4aから一気に、且つ全域にわたって加圧注入する。含浸後の余剰樹脂の排出は、キ ャビティ 31の周辺に設けたフィルムゲート Zランナーに流れ、排出チューブ 27より外 部に排出される。全域に含浸したら、排出チューブ 27を閉鎖し、榭脂圧を保圧しなが ら加熱硬化する。脱型は上型 21を上昇させ、成形品を多孔板 24と共に下型 22より 取り出し、多孔板 24と分離する。多孔板 24との分離や、成形品に榭脂突起が付着し 後加工に手間取る場合は、予め多孔板 24と強化繊維基材 23との間に、離型用クロ ス (ポリプロピレンやポリエチレン製の織物:ピールプライとも呼ぶ)を配設しておくとよ い。また、場合によっては、多孔板 24は配設せず、離型用クロスだけを配設してもよ い。
[0086] 図 6は、上型 21を示しており、成形面側の全域に榭脂を分配するための榭脂流路 用溝 36a、 36bが加工されている。一例として、中央にメイン流路(幅 8mm X深さ m5 m)があり、その両側にピッチ 10mmの間隔でサブ流路(幅 3mm X深さ 3mm)が殆ど 末端まで加工されている。また、榭脂注入チューブ 26ゃ榭脂排出チューブ 27と金型 とのシール部材 28、 29配置用の溝 32、 33が金型に加工されている。 [0087] 図 7は、下型 22を示しており、型のほぼ全面に成型用キヤビティ 31が加工されてい る。榭脂排出側にはキヤビティ 31に繋がるフィルムゲートとランナー 30も加工されて いる。上型 21と一致する位置に、榭脂注入チューブ 26ゃ榭脂排出チューブ 27と金 型とのシール部材 28、 29配置用の溝 34、 35、およびシール用 O—リング溝 37が金 型に加工されている。
[0088] このように構成された上下型 21、 22および中間部材としての多孔板 24を用いた成 形では、クリアランス 25内を多孔板 24の面に沿う方向に迅速に榭脂流動され、榭脂 は広い領域にわたって充満する。そして、多数設けられた多孔板 24の貫通孔 24aを 通して、複数箇所力も実質的にほぼ同時に強化繊維基材 23に注入されるので、強 化繊維基材 23の広い領域にわたって榭脂が良好にかつ迅速に含浸されていく。し たがって、本実施態様においても、榭脂が行き渡らない部分の発生が防止されるとと もに、榭脂注入、含浸時間が大幅に短縮され、高速成形が達成される。
[0089] 実施例 1
上記の各実施態様にお!、て、金型のサイズを成形面(キヤビティ面)で 1500mm X 1200mm X深さ 3mmとし、強化繊維基材として、東レ(株)製トレ力 T700クロス BT7 0-30 (300gZm2 ) 8plyを積層したものを用い、榭脂として、高速硬化型エポキシ榭 脂(主剤; "ェピコード, 828 (油化シェルエポキシ社製エポキシ榭脂)、硬化剤;東レ( 株)ブレンド TR-C35H (イミダゾール誘導体))を用いて成形したところ、比較的大型 の成形品でありながら、良好にかつ迅速に成形することができた。なお、基材への榭 脂含浸完了時間は、いずれも、榭脂注入圧力が 0. 7MPaで、 5分以下であり、従来 方法の 1Z5— 1Z10以下に短縮できた。
[0090] 図 8—図 12は、本発明の第 2実施態様に係る RTM成形方法および装置について 示したものである。図 11は、本発明に係る RTM成形装置を用いた成形システム 54 の一例を示す概略構成図である。 RTM成形金型 41は上型 42と下型 43からなり、上 型 42力 油圧ポンプ 68、油圧シリンダ 66を有する金型昇降用油圧装置 56によって 昇降される金型昇降装置 55に取り付けられる。下型 43に直接強化繊維基材を、また は事前に成形型に収まりやすいように強化繊維基材を製品形状に賦形したプリフォ 一ム基材 44 (強化繊維基材)を設置し、上型 42を閉じる。成形型の材質としては FR P、铸鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電铸、銅電铸が挙 げられる。量産には、剛性、耐熱性、作業性の面力も構造用炭素鋼が好適である。
[0091] 成形金型 41には、榭脂注入ランナーに繋がる複数の榭脂注入管 46、 47、 48、排 出ランナーに繋がる一つの排出管 49が設けられている。そして、各榭脂注入管 46、 47、 48及び 出管 49は各々注人バノレブ 46b、 47b、 48b、 出ノ ノレブ 49bを介して 榭脂注入流路 65、排出流路 67に接続されている。榭脂注入流路 65は榭脂注入装 置 57に接続されている。榭脂注入装置 57は主剤タンク 61a、硬化剤タンク 61bにそ れぞれ主剤、硬化剤を収容し、それぞれのタンクは加温、真空脱泡できる機構を備 えている。榭脂注入時にはそれぞれのタンクから加圧装置 62により榭脂を榭脂注入 流路 65に向かって押し流す。該加圧装置 62は、一例としてシリンジポンプ 62a、 62b を用いており、該シリンジポンプを同時に押し出すことで定量性も確保することが 2液 混合により硬化する榭脂には好ましい。押し出された主剤、硬化剤は、混合ユニット 6 3で混合され、榭脂注入流路 65に至る。排出流路 67は真空ポンプ 58への樹脂の流 入を防ぐために、榭脂トラップ 59に接続されている。
[0092] なお、榭脂注入管の数や位置は、成形型の形状や寸法や一つの型内で同時に成 形する成形品の数量などによって異なる力 榭脂注入装置 57からの注入用流路 65 を榭脂注入管 46、 47、 48に接続する箇所が増えて注入作業が繁雑になることを防 ぐため、注入管はできるだけ少ないことが好ましい。しかし、比較的大型の成形品を 高速に成形するためには、複数の榭脂注入管を用いて同時又は順次榭脂注入を行 うことによって、単一の注入管による榭脂注入の場合より、数倍の速度で効率的に榭 脂流動、含浸を行うことができる。
[0093] 図 9は、四隅に曲率を有する平板を高速成形する RTM成形型の平面図、とくに下 型 43の平面図である。上型 42と下型 43は、図 8に示すように、下型 43側のピン孔 5 1に上型 42側のピン 52が挿入されることにより位置合わせされ、間に型シール 45を 介在させて密閉された状態で型閉じされる。図 10は、図 9に示した成形型の縦断面 を示している。図 9を参照して説明するに、該平板の成形方法としての従来の RTM 成形方法は、成形キヤビティ 50の外辺の 1辺にある榭脂注入ラインを構成する榭脂 注入ランナー 46cと榭脂注入フィルムゲート 46dに連通する注入管 46から榭脂がカロ 圧注入され、対面に設けられた排出管 49に連通する成形キヤビティ 50の外辺の 1辺 にある榭脂排出ラインを構成する排出フィルムゲート 49dと排出ランナー 49cに向か つて樹脂が流動して、強化繊維基材に含浸される。即ち、成形キヤビティ 50の外辺 の 1辺カゝらなる単一の榭脂注入ライン (榭脂注入管 46に連通した榭脂注入ランナー 4 6cと榭脂注入フィルムゲート 46dから構成)から、成形キヤビティの外辺の 1辺からな る単一の榭脂排出ライン (榭脂排出管 49に連通した榭脂排出フィルムゲート 49dと榭 脂排出ランナー 49cから構成)に向かって、榭脂注入ラインから加圧された榭脂を成 形キヤビティ内の強化繊維基材に流動し、含浸させる成形方法である。
[0094] この方法では、比較的小型の成形品、即ち榭脂注入ライン力 排出ラインまでの距 離が短!、成形品を成形する場合は比較的短時間で成形でき、量産可能であるが、 大型成形品、即ち榭脂注入ラインカゝら排出ラインまでの距離が長い場合、榭脂流動 が高次関数的に減衰していくため、榭脂流動時間も長くなり、場合によっては樹脂の ゲルィ匕時間までに含浸が終了しない場合がある。この様な場合は、低粘度の榭脂を 用いたり、榭脂の圧力を上げて高速注入する方法が採られるが、強化繊維が榭脂流 動圧力で乱れたり、成形品のサイズや形状によってはそれでも成形品全域の含浸に 限界がある。
[0095] 上述の様に、成形品が大型なため従来の RTM成形方法では高速成形が困難で、 量産が難しい場合、図 9に示すように、榭脂注入ラインを成形キヤビティ 50の外辺の 一辺だけではなぐ複数箇所設けることで解決できる。即ち、榭脂注入ラインを従来 の榭脂注入ライン 46以外に、榭脂排出ライン 49側に向カゝつて榭脂注入管 47, 48を 追加し、榭脂注入ランナー 46cと榭脂注入フィルムゲート 46dから構成される榭脂注 入ライン、榭脂注入ランナー 47cと榭脂注入フィルムゲート 47dから構成される榭脂 注入ライン、榭脂注入ランナー 48cと榭脂注入フィルムゲート 48dから構成される榭 脂注入ライン力 同時又は順次榭脂注入することによって、高次関数的に減衰する 榭脂流動を解消することができる。つまり、榭脂注入ラインと榭脂排出ラインが成形品 (即ち、繊維強化基材全体)の外周の実質的に全域にわたる様に設けることである。 特に有効な方法は、榭脂注入ラインを該外周の半分以上設けること、更に望ましくは 榭脂注入ラインが榭脂排出ラインの 2倍以上となるように設けると極めて効率的で高 速成形が可能となる。なお、図 9における 46a、 47a、 48a、 49aは、シール用ゴム部 材をそれぞれ示している。
[0096] 榭脂注入管 46からの榭脂注入を補填する榭脂注入管 47、 48からの榭脂注入の 可否や注入タイミングは、成形品のサイズや形状によって決める必要がある。また、 その場合、補填する榭脂注入ライン 47、 48からの榭脂が基材中央より側辺部の方に 先回りし易いことから、榭脂排出ラインの長さを 1辺より極端に短くしたり、榭脂排出管 49の位置を変えるなどの修正を必要とする場合がある。
[0097] 更にまた、成形品が図 8、図 9に示す平板のような比較的左右対称な形状や LZD ( 長さと幅の比)が比較的大きい場合、例えば 2倍以上のような場合は、榭脂排出ライ ン 49以外に、榭脂注入管 46からの榭脂注入ラインを最初力も榭脂排出ラインにして 、榭脂注入管 47、 48からの榭脂注入ラインからの注入樹脂の流れを左右に分けて、 効率良く含浸させる方法も有効である。
[0098] また、榭脂が強化繊維基材のほぼ全域に注入される頃、或 ヽは注入途中で、榭脂 排出ラインを切り替えて榭脂注入ラインにすることも有効である。即ち、榭脂流動が悪 ぐ榭脂排出ラインに榭脂が流出してくることを待っていても、どうしても榭脂が該排出 ラインに到達しない場合、逆に該榭脂排出ライン力 榭脂を注入することによって、 榭脂の未含浸を防ぐことができる。
[0099] 例えば、榭脂の流動状況を榭脂検知センサーを型内に配置しておき、榭脂排出ラ インに到達する前に樹脂のゲルィ匕が始まって流れが滞留する場合などに、榭脂排出 ライン力もの榭脂注入を行うと未含浸防止に効果的である。
[0100] 榭脂注入流路 65ゃ榭脂注入管 46、 47、 48の材料は、十分な流量の確保と榭脂と の適合性 (耐熱温度ゃ耐溶剤性、耐圧力等)を考慮する必要がある。該注入流路ゃ 注入管には口径 5— 30mmのものを用い、榭脂の注入圧力に耐えるために 1. OMP a以上の耐圧性と榭脂硬化時の温度に耐えるために 100°C以上の耐熱性が必要で ある。その為には、例えば厚みが 2mm程度の"テフロン"(登録商標)製チューブが 好適である。但し、 "テフロン"(登録商標)以外にも、比較的安価なポリエチレンチュ ーブゃナイロンチューブ、更にスチール、アルミや銅等の金属管であってもよい。
[0101] 尚、榭脂排出管 9の数や位置は成形型の形状や寸法、一つの型内で同時に成形 する成形品の数量などによって異なるが、榭脂排出口もできるだけ少ない方が、榭脂 流動が安定的で榭脂流動コントロール操作も簡単なことから好ましい。
[0102] 榭脂排出管ゃ榭脂排出流路の材料も、榭脂注入流路 65等と同様に、十分な流量 の確保と榭脂との適合性 (耐熱温度ゃ耐溶剤性、耐圧力等)を考慮する必要がある。 榭脂排出流路 67としてはスチール、アルミ等の金属管、あるいはポリエチレン、 "テフ ロン"(登録商標)等のプラスチック製のチューブが挙げられる力 直径 5— 10mm、 厚み 1一 2mmの"テフロン"(登録商標)製チューブが作業性の面力 より好適である
[0103] 榭脂注入時の榭脂注入流路 46— 48、榭脂排出路 49の途中に設置する注入バル ブ 46b— 48bゃ榭脂排出バルブ 49bは、バイスグリップ等により、直接作業者により 流路を挟むことで全域開閉や口径を変化させることができる。また、バイスグリップの ハンドル部分にァクチユエータを設置して自動化することや、またバイスグリップの代 わりに電磁バルブやエアーオペレーションバルブを用いる等したバルブ開閉装置を 適用することが出来る。そして、このバルブ開閉装置と事前にバルブの開度情報を入 力した記憶装置を接続することで、より精度の高い開閉を行うことも好適である。さら に、榭脂排出バルブ 49bは、単なる開閉の 2値ではなぐ流路の径を変化 (ボールバ ルブの開度調節)させることも可能である。
[0104] 榭脂の加圧は、シリンジポンプなどによる加圧方法によれば定量性も得られる。榭 脂の注入圧は 0. 1-1. OMPaの範囲で用いるのが好ましい。ここで榭脂の注入圧と は、加圧装置 62により加圧される最大圧力を指して 、る。
[0105] 最終的に榭脂が型内の強化繊維基材に完全に含浸され、榭脂排出管 49ゃ榭脂 排出流路 67にまで到達したら排出バルブ 49bを閉じ、その後暫く榭脂加圧装置 62 によって加圧された注入圧で型内を保圧した後、榭脂注入用ノ レブ 46b— 48bも閉 じて榭脂注入を終了する。成形型は熱媒循環式の温調機 60によって加熱されており 、これにより榭脂を硬化させる。熱媒としては、水、スチームや鉱物油などが用いられ る。
[0106] 上述の様な RTM成形設備(成形システム) 54によって RTM成形を行 、、ボイドな どの欠陥がなく外観品位に優れ、所定の力学特性を有する高品質の FRP成形品を 安定的に得るためには、強化繊維基材の裁断、積層、プリフォーム化、型へのレイァ ップなどの事前準備の適正化と共に、榭脂注入、含浸、硬化までの成形条件が非常 に重要である。特に、生産性 (生産の効率化)を考慮した製造条件を適正に設定する 必要がある。
[0107] その為には、既に指摘したような「榭脂注入圧力」、「成形温度」や「榭脂流速」、「榭 脂の温度特性」等が、反応性榭脂の特性を十分考慮した上で、成形寸法に相応した 適正な値に設定される必要がある。特に、本特許では生産効率を考慮して流動性が 良い反面、短時間でゲルイ匕し、直ぐに硬化する反応性榭脂材料を対象としているた め、高速流動含浸が必要となる。
[0108] しかし、榭脂圧力を上げ、流速を早めて注入すると、先に述べたように基材の乱れ や表層にボイドゃピットが生じやすい。従って、単純に流速を早めては前述のような 外観品位に問題を生じるため、被含浸基材に対する適正な榭脂流速、即ち該基材 の面積に相応した流量を設定する必要がある。
[0109] なお、本実施態様に係る RTM成形方法および装置には、成形型が上下の両面型 からなり、加圧榭脂を榭脂注入ロカゝら流入しながら榭脂排出口で榭脂を型内の空気 と共に排出し、空気を排気し終えた時点で排出口を閉鎖して型内の榭脂を加圧しな 力 硬化する一般的な RTM成形方法ば力りでなぐ型内の空気を真空吸引し排気し ながら、或いは殆ど排気した後に榭脂注入して、やがては吸引口を閉鎖して加圧注 入硬化する RTM成形方法、更には成形型が片面でキヤビティ部をフィルムなどのバ ギング材でバッグし、キヤビティ部を真空吸引した後、真空圧によって加圧してキヤビ ティ部内に榭脂注入し成形する真空 RTM成形方法も含む。
[0110] 実施例 2
図 11に示す本実施態様に係る RTM成形システム 54にお ヽて、本発明の成形条 件で成形する一例として、大型平板 (長さ 1600mm X幅 700mm X高さ(厚み) 2m m)を成形した例を説明する。本例で用いた RTM成形金型 1の全体図を図 8、図 9に 、成形に用いた榭脂の温度と粘度の関係及び成形温度における榭脂硬化度一時間 特性を図 12Aおよび図 12Bに示す。榭脂注入管 46— 48、排出管 49を有する成形 型 41 (上型 42、下型 43共に長さ 2000mm、幅 1000mm、高さ 350mm)の下型 43 に設けられた成形キヤビティ 50部に、東レ (株)製炭素繊維"トレ力"クロス (C06343 B :T300B— 3K、 目付: 192gZm2 )を 8ply(OZ90° 配向基材; 4ply、 ±45° 配向 基材; 4ply)積層し、予め平板形状に賦形されたプリフォーム基材 44を配置し、金型 昇降装置 55にて上型 42を閉じて完全密閉した。上型 42は金型昇降機 55によって 2 00トンで加圧されている。また、上型 42、下型 43共に温調機 60 (図 12)によって 10 0°Cにほぼ一様且つ一定に加温されている。
[0111] 図 10に示すように、下型 43に設けられた榭脂注入ラインは (例えば榭脂注入管 46 の位置では)分岐管 64を介して榭脂注入用流路 65に連通し、途中に注入バルブ 46 bを介する榭脂注入管 46と該榭脂注入管より加圧注入された榭脂をライン状に一旦 貯留させる榭脂注入ランナー 46c及び該ランナー 46cと連通してキヤビテー内に榭 脂を注入する榭脂注入フィルムゲート 46d (上型とのクリアランス;0. 5mm)で構成さ れる。同様の構成で、図 9に示す様に榭脂注入ラインは他にも左右で一対となる榭脂 注入管 47、 48が設けられている。また、榭脂排出ラインは榭脂排出流路 67に連通し 、途中に榭脂排出バルブ 49bを介する榭脂排出管 49と該榭脂排出管に連通し、排 出榭脂をライン状に一且貯留させる榭脂排出ランナー 49c及び該ランナー 49cと連 通してキヤビテー内からガスなどと共に榭脂榭脂が排出される榭脂排出フィルムゲー ト 49d (上型とのクリアランス; 0. 5mm)で構成され、 1辺に設けられている。
[0112] 結局、榭脂注入ラインと榭脂排出ラインによって、実質的にキヤビティのほぼ全周が 囲まれている。また、榭脂注入ラインは榭脂排出ラインの 5倍近い長さである。
[0113] 図 11に示す榭脂注入流路 65及び榭脂注入管 46— 48共に直径 12mm、厚さ 1. 5 mmの"テフロン"(登録商標)製チューブを使用した。一方、排出流路 67及び排出管 49ともに直径 16mm、厚さ 2mmの"テフロン"(登録商標)製チューブを使用した。排 出流路 67には榭脂が真空ポンプ 58まで流入するのを防ぐため、途中に榭脂トラップ 59を設けた。
[0114] また、榭脂注入管 46— 48や排出管 49と下型 43とのシールを行うために、シール 用ゴム部材 46a— 49aが、上、下型間の密閉を保っために型シール材 (O—リング) 4 5をキヤビティ面の外周に、それぞれ配設されている。
[0115] 上記成形装置において、榭脂排出口 49から真空ポンプ 58で型内(キヤビティ部) の空気を排出し、型内圧力を 0. OlMPa以下となったことを真空圧力計 (記載略)に より確認した後、加圧装置 62を有する榭脂注入装置 57により加圧されたエポキシ榭 脂の注入を開始する。尚、加圧装置 62は、シリンジポンプ 62a、 62bを用いており、 榭脂注入時にはタンク側への榭脂の逆流を防ぐように構成されて ヽる。用いた榭脂 は、主剤として"ェピコード' 828 (油化シェルエポキシ社製エポキシ榭脂)、硬化剤は 東レ (株)ブレンドの TR— C35H (イミダゾール誘導体)を混合して得た液状エポキシ 榭脂である。金型温度、即ち成形温度が 100°Cにおけるこのエポキシ榭脂の粘度 時間特性、詳しくはエポキシ榭脂組成物の粘度変化を榭脂の硬化プロファイル追跡 の指標として用いられるキュアインデックス値を図 12Aに示す。グラフよりこの榭脂は 約 6分でキュアインデックスが 90%を上回り、脱型が可能な状態に達する。
[0116] 榭脂注入装置 57では、事前に主剤 61a、硬化剤 6 lbを撹拌しながら 60°Cで加温し 、所定の粘度まで降下させ、かつ真空ポンプ 58で脱泡を行っている。
[0117] 榭脂注入の初期は、撹拌される榭脂混合ユニット内の空気ゃ榭脂注入流路用ホー ス内の空気が型内に入るため、型内には流さずに図示しない分岐路力 空気を混入 した榭脂を廃棄し、その後榭脂内に空気が混入していないことを確認してから、加圧 榭脂を型内に注入した。また、加圧装置のシリンジポンプ 62a、 62bの吐出条件は 50 OccZストロークに設定した。最初のガスを混入した榭脂を廃棄した後、榭脂注入流 路 65に設置した注入圧力計(図示略)によって注入榭脂圧 (0. 6MPa)を確認して 注入バルブ 46bを開き、型内に榭脂を注入する。注入開始時は、排出管 49の排出 バルブ 49bは開口状態とした。
[0118] 榭脂注入管 46から榭脂注入を開始してから 1分 30秒後に榭脂注入管 47のバルブ 47bを開放して、榭脂注入管 47からの榭脂注入を開始した。その後、更に 1分経過 後、榭脂注入管 48のバルブを 48bを開放して、榭脂注入管 48からの榭脂注入を開 始した。
[0119] その間、榭脂の強化繊維基材への含浸促進と、該基材内に内蔵している微量の気 泡を効率的に除去するための操作として、排出バルブ 49bの開閉を 4回、ノイスダリ ップを用いて行った。
[0120] 榭脂注入管 46より榭脂注入を開始してから、 3分 30秒後に排出管 49に榭脂が流 出してきた。その後、そのまま約 30秒間榭脂を流出させた後、排出管 49のバルブ 49 bを閉じた。榭脂注入開始から約 4分であった。
[0121] 完全に榭脂注入含浸が終了した上記の状態で、その後 30秒間榭脂圧 0. 6MPa で保圧した後、 12分間加熱保持し、金型から成形品を取り出した。
[0122] 成形品の全域の外観を評価したが、ボイドゃピンホールが全くなぐ極めて意匠性 に富む良品であった。
[0123] 比較例 1
比較例 1として、上記成形装置及び条件下で、榭脂注入管 47, 48からは一切榭脂 注入せず(ランナー 47c、 48cおよびフィルムゲート 47d、 48dを封鎖)、榭脂注入管 4 6からだけで成形した場合、榭脂注入含浸に約 11分を要し、且つ排出部近辺に約 4 00cm2の未含浸部が発生した。
[0124] 実施例 3
また、上記実施例 2は繊維強化樹脂の単板構造であつたが、他の実施例として内 部にフォームコア (厚さ 10mm、見掛け比重 0. 1)を含む炭素繊維強化サンドイッチ 構造体 (前記フォームコアの上下面に上述の炭素繊維"トレ力"クロスを 3plyずつ積層 )でも、殆ど同様の表面品位に優れた成形品が得られた。因みに、含浸時間は約 4. 5分で、上述同様に短時間であった。
[0125] 次に、本発明の第 3実施態様に係る RTM成形方法について説明する。まず、この RTM成形方法による、繊維強化樹脂の製造について図 18を参照して説明する。図 18Aに示すように、両面型の上型 83には榭脂注入口 85と吸引口 86が設けられてい る。下型 84は、榭脂注入用ランナー 88と吸引用ランナー 89を有し、キヤビティの周 囲にはシール溝 90が形成されている。これら上下型 83、 84共に所定の温度までカロ 熱されている。下型 84のキヤビティ面に繊維強化基材としてのプリフォーム基材 87を 配置した後、上型 83を降下して下型 84と形成されるキヤビティにセットする。このプリ フォーム基材の構成として、本発明で規定したように、図 13や図 15に示すように表層 の連続繊維基材の真下にランダムマット層を配設しておく。
[0126] その状態で、図 18Bに示すように、榭脂タンク 91に連通した榭脂注入経路 93をバ ルブ 92で閉鎖し、真空ポンプ 94に連通する吸引経路 96をバルブ 95で開放する。そ して、吸引経路 96に通じる吸引口 86、吸引用ランナー 89を通してキヤビティ内を真 空吸引する。その後、吸引経路のバルブ 95は開放した状態で、榭脂注入経路 93の バルブ 92を開放して、榭脂タンク 91内のマトリックス榭脂をポンプで加圧しながら榭 脂注入経路 93を通して注入口 85に注入し、榭脂注入用ランナー 88からキヤビティ 内に加圧注入させる。榭脂がキヤビティ全域に流動して、強化繊維基材 87の全域に 含浸し、余剰樹脂がキヤビティ内、特に強化繊維基材内に残存していた気泡と共に 吸引口 86を通って吸引経路 96に流出してきたら、吸引経路 96のバルブ 95を閉鎖し て、榭脂圧 (静圧)を暫く密閉されたキヤビティ内の樹脂にかけて、含浸を確実にする 。そして、榭脂注入経路 93のバルブ 92を閉鎖して所定の時間の間、加熱状態を保 持して榭脂を硬化させる。
[0127] その後、図 18Cに示すように、上型 83を上昇させて、下型 84上に残された成形品 97を脱型する。なお、本発明に係る繊維強化樹脂の製造方法は、他にも真空成形 法、プリプレダ Zオートクレーブ硬化法、 RFI (Resin Film Infosion)、セミプレダ Zォ ーブン加熱硬化法などにも適用可能である。
[0128] 上記のような製造方法により、本発明に係る繊維強化榭脂を以下のように製造した 実施例 4
図 13に示すように、繊維強化榭脂 71を製造するに際し、意匠用として用いる東レ( 株)製トレ力 T300織物 C06343B (目付; 200gZm2 )の lplyを表層 72 (連続繊維 基材)に配置し、その真下の層としてガラス繊維力もなるランダムマット層 73 (目付; 7 OgZm2 )を配置した。その下には、強化層としての 3層構成の強化繊維基材 74 (東 レ (株)製トレ力 T700織物 BT70— 30 ;目付 300g/m2 )を配置して、プリフォーム基 材 87を構成した。このプリフォーム基材 87を用いて、図 18A—図 18Cに示した RTM 成形方法で CFRP (炭素繊維強化榭脂)を成形した。このときの、金型 (上型 83と下 型 84で構成)の温度は 95°Cで、 60°Cに保温されたエポキシ榭脂 75を真空脱泡機 能を有する榭脂タンク 91より榭指圧 0. 6MPaに加圧し注入して成形した。尚、榭脂 タンク 91は、主剤のエポキシ榭脂用タンクと硬化剤用タンクカゝら構成されている。
[0129] 上記 RTM成形における榭脂流動状況を図 18Bの A部を拡大した図である図 14に 基づいて説明する。榭脂タンク 91より流出されたエポキシ榭脂 75は、榭脂注入口 85 を通って下型に設けられた榭脂注入用ランナー 88に充填され、その後該ランナー 8 8からキヤビティとランナー 88間に形成された隙間(1mm前後)であるフィルムゲート を経てキヤビティ内に流入していく。この時、榭脂は基材 87の厚み方向の全域から 流れ込むが、炭素繊維織物で構成される部位よりもガラス繊維のランダムマット層 73 の領域が基材より粗の状態であることから流動抵抗が低いため、ランダムマット層 73 の層を主体に流れ始める。そこで、意匠用基材として配置した炭素繊維織物 72は上 型 83に直接押しつけられるため、該織物 72と上型 83との隙間が殆ど無いため、注 入された榭脂はその隙間よりも殆どがランダムマット層 73から流動してきた樹脂が上 型 83方向に流れ込み、前記織物 72と上型 83との隙間へ流入していく。それによつ て、キヤビティ内を真空吸引しても該織物 72の織り目ゃ該織物 72と上型 83との隙間 に残存して 、た気泡 78が流線 75aから 75bに至る流れによって、キヤビティの外に排 出された。特に、図 17A、 Bに示す様に、織物 72を構成する経糸 72cと緯糸 72dとの 交織点に抜けきらな力つた残存気泡 82が滞留しやすい。このような気泡が上記榭脂 流れとともにキヤビティ外に排出され、ボイドゃピンホールの発生が防止された。
[0130] 実施例 5
上述の実施例 4は意匠面が片側だけの場合であつたが、図 15に示す様な繊維強 化榭脂 76を成形した。すなわち、複数面(図 15では上下面)が意匠面であり共に高 い表面品位を求められる場合でも、上述と同様に意匠面となる表面の強化繊維基材 (72a, 72b)の真下に目付が 30gZm2のガラス繊維マットからなるランダムマット層( 73a, 73b)を配設して、上述と同様な条件で榭脂注入すると良い。図 18Bの A部を 示す図である図 16の通り、流線 75aから 75bに至る流れや、流線 75c力 75dに至る 流れによって、表層用基材 72aと上型 83、反対面の表層用基材 72bと下型 84とのそ れぞれの隙間に効率よくランダムマット層 73aや 73bを流動してきた樹脂が流れ込み 、隙間無く流れては滞留していた気泡 78、 79を排出しながら全体に榭脂が充満して 含浸していった。したがって、表裏両面に対して、気泡が上記榭脂流れとともにキヤ ビティ外に排出され、ボイドゃピンホールの発生が防止された。
[0131] 実施例 6 図 19に示すように、中央にポリウレタン製フォームコア 101を有し、その両面に東レ (株)製トレ力 T300織物 C06644B (目付; 300gZm2 )を複数層、強化層 74a、 74b として積層し、更にその上にガラス繊維のランダムマット層 73a、 73b (目付; 50g/m2 )をそれぞれ配置し、最外層となる各表層に東レ (株)製トレ力 T300織物 C06343B ( 1ストランド; 3K系、 目付; 200gZm2 )をそれぞれ配置した構成のサンドイッチ構造 体を、図 18 A—図 18Cに示した RTM成形方法によって繊維強化榭脂 100を成形し た。金型(上型 83、下型 84)の温度は 85°Cに設定した。図における 77a、 77bは注 入、含浸、硬化されたエポキシ榭脂を示している。結果、サンドイッチ構造を有する F RP構造体が、とくに良好な表面 (両面)品位をもって成形できた。
[0132] 比較例 2
上記実施例との対比として、実施例 4で表層 72の真下に配置したガラス繊維力もな るランダムマット層 73を抜き取り、その他の表層及び強化繊維層の繊維構成は総て 同一構成とした。また、 FRP成形方法も実施例 4と全く同一の成形条件で RTM成形 した。
[0133] 成形結果は、榭脂流動抵抗が小さいランダムマット層が無いため、榭脂注入開始 後、余剰樹脂が吸引口 86に流出して来るまでの時間力 実施例 4に比べて、 1. 38 倍長くかかった力 成形品は得られた。しかし、実施例 4では見られな力つたピンホー ル 82が図 17Bに示すように織り目や経糸と緯糸の交織点に数多く発生し、表面意匠 '性としては不良品であった。
[0134] 上記のような本発明に係る RTM成形方法および装置にぉ 、ては、榭脂注入部お よび Zまたは榭脂排出部におけるシール性を向上するために、以下のような構成を 採用することができる。なお、本発明は前述の分割領域を想定することを前提として いるが、以下の説明は、図 20—図 23を参照し、単純な成形モデルについて説明す る。この図 20—図 23を参照して説明するシール構造力 本発明に係る RTM成形方 法および装置に、特に前述の第 1および第 2の態様に係る RTM成形方法および装 置に適用できる。
[0135] すなわち、榭脂注入用のチューブおよび Zまたは排出用のチューブを型合わせ面 部に挟圧して設け、該チューブと型との間を弾性体を介してシールする構造であり、 好ましくは、シール用弾性体に、成形型のキヤビティを型合わせ面部でシールする o リングの端部が内蔵されている構造である。榭脂注入用チューブおよび Zまたは榭 脂排出用チューブを挟んで固定することにより、例えば成形型に穿孔された榭脂注 入用貫通穴やスリーブなどを用いることなぐ榭脂注入部材ゃ榭脂排出部材を容易 にセッティングしたり、クリーニングしたりすることができ、結果的に成形サイクルの短 縮をは力ることができ、より効率的な成形が可能となる。また、該チューブに安価な榭 脂製チューブなどを用いて、成形後該チューブをそのまま廃棄処理することによって 、クリーニング作業が大幅に削減でき、作業量削減によるコスト低減にも繋がる。さら に、シール用弾性体を用いることによりキヤビティ内の真空確保と成形中の真空保持 力 り確実となり、同時に榭脂漏れも防止することができるため、ボイドゃピンホール のない高品質な製品を得ることができる。
[0136] 図 20は、上下型 111、 112の斜視図で、図 21はその下型の拡大断面図であり、図 22は図 20の上下型間に装着される榭脂注入'排出用チューブ 30を、それぞれ示し ている。図 20に示すように、予め製品形状に賦形された強化繊維基材 122を、下型 112の上面に形成された成形キヤビティ 113の外周に O リング 121を配設した下型 112の該成形キヤビティ 113内に配置する。次に榭脂注入用ライナー 114および榭 脂排出用ランナー 115に連通する榭脂注入用チューブ 116および榭脂排出用チュ ーブ 117の半断面形状の溝 120と該溝 120の途中に設けたラバー製 (例えば、 NBR 製)シール用弾性体 118、 119および前記溝 120に連通する該シール用弾性体 118 に設けた溝に、図 22に示すような該溝に接触するチューブ 141の先端部に金属製 の管 142が挿入されるとともに、先端外周にシールテープ 153が巻き付けられた榭脂 注入部材 140を配設する。そして、上型 111を閉じて上型 111を下型 112に向けて 加圧し、上記榭脂注入部材 140を狭圧する。その状態で成形型内に設けた配管(図 示せず)に温水を流すことによって成形型全体を昇温する。
[0137] その後、真空ポンプに連通する真空トラップ(図示せず)に接続された榭脂排出用 チューブ 117を介してキヤビティ 113内を真空にした後、該キヤビティ 113内に榭脂 注入用チューブ 116を介して榭脂を加圧注入する。そして、榭脂注入完了後、榭脂 注入用チューブ 116および榭脂排出用チューブ 117を閉鎖し、その後、所定の時間 の間成形型によって加熱され榭脂が硬化した後、成形型を開け、脱型して FRP製品 を得るものである。
[0138] また、別のシール性向上構造例を図 21に示すように、強化繊維基材 125の外周に 製品形状に加工された発泡体力もなるコア材 124を被覆してなるサンドイッチ構造の 強化繊維プリフォーム体 123を、キヤビティ 133の外周に配設された O—リング(図示 せず)に連通するシール用弾性体 136、 137を配設した上型 131、下型 132から構 成される成形キヤビティ 133内に配置し、榭脂注入用ランナー 138および榭脂排出 用ランナー 139に連通する榭脂注入用チューブ 134、および榭脂排出用チューブ 1 35を、前記シール用弾性体 136、 137に接触させることによってシールするために、 上下型を挟圧する。
[0139] 上記榭脂注入用チューブ 134および榭脂排出用チューブ 135には、例えば金属 製のチューブを用いる。その状態で成形型内に設けた配管(図示せず)内に温水を 流すことによって成形型を昇温する。その後、図 20に示した例と同様に真空ポンプ に連通する真空トラップに接続された榭脂排出用チューブ 135を介してキヤビティ 13 3内を真空にした後、該キヤビティ 133内に榭脂注入用チューブ 134を介して榭脂を 加圧注入する。加圧された榭脂は榭脂注入用ランナー 138に充満した後、注入用フ イルムゲート 126を通って榭脂は前記強化繊維プリフォーム体 123が配設されている キヤビティ 133内に流動して、該強化繊維プリフォーム体 123の強化繊維に含浸され る。その間、余剰榭脂は排出用フィルムゲート 127を通って榭脂排出用ランナー 139 に充満した後、排出用チューブ 135を通って真空トラップへ流出する。そして、榭脂 注入が完了した後、榭脂注入用チューブ 134及び榭脂排出用チューブ 135を閉鎖 し、その状態で所定の時間の間加熱して榭脂を硬化させた後、成形型を開けてハツ ト状の高剛性 FRPサンドイッチ構造体を得るものである。
[0140] 図 22は前記例に用いた榭脂注入用チューブ 116ゃ榭脂排出用チューブ 117の構 造例を示している。榭脂製の榭脂注入用チューブゃ榭脂排出用チューブの先端内 部に金属製の管 142を挿入し、外面にシールテープ 143を施した構造である。金属 製の管 142は、上型 111と下型 112を閉じて榭脂注入用チューブ (符号 31として記 載)ゃ榭脂排出用チューブが上型と下型で挟圧されたとき、上型と下型およびシー ル用弾性体 118、 119に半円形状に加工された溝 (前記各チューブの曲率半径より も小さい R) 10、 10' に潰されず、榭脂注入用チューブ 116ゃ榭脂排出用チューブ 117の円形断面形状を保持してキヤビティ内の真空吸引および樹脂の円滑な流動を 円滑にする効果を奏する。
[0141] また、シールテープ 143は、上型と下型を閉じて榭脂注入用チューブゃ榭脂排出 用チューブが上型と下型に挟まれたとき、シールテープ 143をシール用弾性体と接 触させることによりシール用弾性体のシール効果を高め、キヤビティ内の真空保持性 を安定して高めることができる。シール用弾性体を上型と下型の両方に配設した場合 には省略することも可能である。
[0142] 榭脂注入用チューブおよび榭脂排出用チューブには、ナイロン、ポリエチレン、ポリ プロピレン、 「テフロン」(登録商標)などのフッ素榭脂等のプラスチック製チューブが 使用できるが、鉄、アルミ、真鍮、銅、ステンレス等の金属製チューブを用いることもで きる。
[0143] また、榭脂注入用チューブゃ榭脂排出用チューブの先端内部に挿入されている金 属製の管 142には鉄、アルミ、真鍮、銅、ステンレスが用いられる。さらにまた、 ABS、 ポリエチレン、ポリプロピレン、ナイロン、塩化ビュル、アクリル等のプラスチック製の管 を使用することも可能である。いずれの管においても 0. 5mm以上の肉厚があること が好ましい。
[0144] さらに、榭脂注入用チューブゃ榭脂排出用チューブの先端外面に施されたシール テープ 143には、「テフロン」(登録商標)などのフッ素榭脂、ナイロン、ポリエステル、 ポリプロピレン榭脂等力 なるテープが適用可能である。上下型両面にシール用弹 性体を用いた場合は、省略することも可能である。
[0145] 図 23A— Fは、榭脂注入用チューブおよび榭脂排出用チューブとシール用弾性体 の関係例を断面図で数種類示したものである。 O—リング 154およびシール用弾性体 153には、シリコン、 NBR、「テフロン」(登録商標)などのフッ素榭脂等が使用でき、 中実または中空のものが使用される。また、上記樹脂で構成される発泡体を使用す ることちでさる。
[0146] 上型 151および下型 152のいずれ力、または両方に配設されるシール用弾性体 1 53は、配設された型表面より少し突き出しておき、上型 151を閉じて上型 151の型表 面でシール用弾性体 153を押しつけ圧縮した時に、シール用弾性体 153と上型 151 および榭脂注入用チューブ 150 (または榭脂排出用チューブ)がお互いに対して反 力が発生することによってシール性を確保している。
[0147] さらにまた、 O リング 154の端部をシール用弾性体 153に内蔵することにより、上 型 151を閉じた時に圧縮されたシール用弾性体 153および 0-リング 154に発生す る反力でシール用弾性体 153と O—リング 154が押し付け合い、シール(O—リング)の 連続性を保ちながらキヤビティ内の真空性を確保している。
[0148] 以下、図 23A— Fを用いて榭脂注入用チューブゃ榭脂排出用チューブのシール 方法を説明する。
図 23Aに示した構造では、上記榭脂注入用チューブ 150 (または榭脂排出用チュ ーブ)と同じ曲率、または該榭脂注入用チューブ 150よりも小さい曲率で曲面形状を なす溝を形成したシール用弾性体 153を、 O—リング 154上のシール用弾性体 153 をシール用弾性体の形状に彫り込まれた上型 151および Zまたは下型 152内に配 設し、榭脂注入用チューブまたは榭脂排出用チューブ 150の配設部を 0-リング 154 の中心で切断し、シール用弾性体 153をシール用弾性体の形状に彫り込まれた上 型 151および Zまたは下型 152内に配設した状態で上型 151と下型 152で榭脂注 入用チューブまたは榭脂排出用チューブ 150を挟んだ状態を示している。この時シ ール用弾性体 153中に O リング 154端部を内蔵することによりキヤビティ内の真空 保持性を確保し、かつ榭脂漏れを防止している。
[0149] 図 23Bに示した構造では、上記チューブ 150と同じ曲率、または該チューブよりも 小さ 、曲率の溝を形成したシール用弾性体 153および上型 151を、 O リング 154上 のシール用弾性体 153をシール用弾性体 153の形状に彫り込まれた下型 152内に 配設し、榭脂注入用チューブまたは榭脂排出用チューブ 150の配設部の O リング 1 54上で O—リングの閉ループを切断し、シール用弾性体 153をシール用弾性体の形 状に彫り込まれた下型 152内に配設した状態で、上型 151と下型 152で榭脂注入用 チューブおよび榭脂排出用チューブ 150を挟む。この時シール用弾性体 153中に O リング 154の端部を内蔵することによりキヤビティ内の真空を保持し、榭脂漏れを防 止する。
[0150] 図 23Cに示した構造では、上記チューブ 150と同じ曲率、または上記チューブより も小さい曲率の溝を形成した上型 151または下型 152に榭脂注入用チューブおよび 榭脂排出用チューブ 150も配設した部分の O—リング 154上で O—リングの閉ループ を切断し、 O—リング 154の切断部を使用チューブに接触させることによりキヤビティ内 の真空保持性を確保し、榭脂漏れを防止する。
[0151] 図 23Dに示した構造では、上記チューブ 150と同じ曲率、または上記チューブより も小さ 、曲率の溝を形成した上型 151および O—リング 154と連続体のシール用弾性 体 153を配設し、榭脂注入用チューブおよび Zまたは榭脂排出用チューブ 150を上 型 151と下型 152で挟圧し、キヤビティ内の真空保持性を確保し、榭脂漏れを防止 する。
[0152] 図 23Eに示した構造では、上記チューブ 150と同じ曲率、または上記チューブより も小さ ヽ曲率の溝を形成した上型 151と下型 152に加工した榭脂注入用チューブま たは榭脂排出用チューブ 150を配設用溝を跨いで連続体の 0-リング 154が榭脂注 入用チューブまたは榭脂排出用チューブ 150と同じ曲率、または榭脂注入用チュー ブまたは榭脂排出用チューブ 150よりも小さい曲率に沿って配置され、該 0-リング 1 54上に榭脂注入用チューブまたは榭脂排出用チューブ 150を配設して上型 151と 下型 152で挟むことによりキヤビティ内の真空保持性を確保し、榭脂漏れを防止する
[0153] 図 23Fに示した構造では、図 23Aや図 23Bの上型がない状態であり、シール用弹 性体 153と O—リング 154の関係を型合わせ面上力も見た平面図である。
[0154] このように、榭脂注入用チューブゃ榭脂排出用チューブ部分について、各種のシ ール性向上構造を採ることができる。
[0155] また、前述した本発明に係る RTM成形方法および装置にぉ 、ては、基材の隙間 などの存在する小さな気泡や、榭脂注入中に減圧することにより発生する榭脂中の 溶存気体の蒸発による気泡や、また型の角部に滞留する微少な気泡を排出すること を可能とするために、以下のような構成を採用することができる。すなわち、成形型内 に榭脂を加圧注入しながら成形型内の気体と余剰榭脂を間欠的に排出するようにし た構成であり、これによつて樹脂の流動を適切に脈動させ榭脂中の気泡の排出を促 進することが可能となる。この構成においては、成形型内での榭脂圧力 Pm、注入口 での榭脂吐出圧力 Piとについて、選択的に Pm=Pi、 Pmく Piとして、成形型内に流 入している樹脂の流量を制御することもでき、榭脂流量は、榭脂を排出する排出口の 口径の調節によって制御することができる。また、排出口の口径の調節と、その調節 のタイミングとを記憶しておき、その記憶情報に基づ 、て榭脂流量を自動制御するこ とちでさる。
[0156] より具体的に説明すると、従来の方法では、成形型内に予め強化繊維基材を配設 して型を閉じ、注入バルブを閉鎖した状態で開口した排出ノ レブに通じる排出路か ら真空ポンプで型内を真空吸引し、型内榭脂圧 Pmを好ましくは 0. OlMPa以下の 減圧状態にし、続いて排出バルブを閉鎖した状態で注入バルブを開口して注入用 流路から榭脂が型内に完全に充填されるまで加圧注入して成形していた。しかし、こ の方法では榭脂注入中に排出バルブを閉鎖したままであるため、強化繊維基材とし ての織物基材の織り目に残っていた気泡や、強化繊維基材の積層間に残る気泡、さ らにまた型内に注入された榭脂に溶存している気体が加熱成形プロセス過程で蒸発 することにより生じた気泡などが排出されず、そのまま成形されて小さな気泡が成形 品に残ることにより、製品の大きな品質劣化を招くことがあった。特に、それらの気泡 が表面にボイドゃピットとして顕在化した場合、意匠性を重要視される製品では不良 品となっていた。これらの製品の品質劣化や不良品を招く問題を解決するためには、 榭脂注入過程でも型内に残存および蒸発発生する気体 (気泡)を型内より適宜排出 する必要がある。
[0157] そこで、上記方法では、注入口から加圧された榭脂を注入しながら、例えば、排出 路に設置される排出バルブを開閉、あるいは口径を変化させることにより、型内の滞 留気泡と余剰榭脂を間欠的に効率よく排出するようにしている。例えば、注入バルブ を開いて榭脂を注入しながら排出バルブを完全に閉じた場合、注入圧 Pi=型内榭 脂圧 Pmとなり、成形型内に流入している樹脂の圧力が高いため強化繊維への含浸 が容易となる反面、滞留している気泡も榭脂圧とほぼ同圧力の状態まで圧縮されて 榭脂中に混在している。この状態で排出ノ レブを開くと、榭脂注入圧 Pi>型内榭脂 圧 Pmの関係となり、排出ロカ 型内の滞留気泡と加圧された余剰樹脂が同時に排 出される。
[0158] ここで、排出バルブの開閉速度を、望ましくは 1秒以内で実施することで、型内圧力 Pmが開閉速度に従って一気に降下し、残留しているガスが急激に膨張する。そして 、圧力差によるとともにそのガスの体積の変化に併せて榭脂の流れが発生し、強化 繊維基材間ゃ型の角部などに滞留していたガスがこの急激な榭脂の流れにより留ま ることができなくなり、排出口より排出される。型内圧力 Pmの降下速度が速いほど、 ガス体積の変化が速くなり、そのガスの周囲の榭脂に衝撃的な流れを与えることで、 残存しているガスが滞留場所力 離脱しやすくなる。一旦離脱したガスは、排出路へ 向力 流れと一体となり排出される。次に、排出バルブを閉じて注入バルブ力も榭脂 を供給する。
[0159] このような、排出バルブの間欠的な開閉(必ずしも全開、全閉とは限らない)を繰り 返すことによって、型内に滞留する気泡 (ガス)を徐々に排出しながら、最終的には完 全に排出した状態で排出バルブを全閉し、暫ぐ注入榭脂圧を掛けた状態を保持した 後、注入バルブも全閉して型内に充満した榭脂を加熱硬化させる。ここでの形態で は、榭脂を加圧することとしているが、注入圧力 Piを大気圧として、型内を負圧とする ことでも同様の効果が得られる。
[0160] このように瞬間的に型内の圧力を Piあるいは負圧力 変化させる方法は、例えば、 榭脂トラップに接続される真空ポンプと圧空ポンプの瞬間的な切り替えによっても実 現することができる。また、排出路に設置する排出バルブの開度を調節することで、 型内榭脂圧 Pmの変化速度を制御することによって、より効率のよい気泡排出が可能 である。
[0161] また。上記排出バルブについては、予め開閉の周期を、例えばコンピュータに入力 しておき (記憶させておき)、その情報をもとに動作させることで、作業工数の増加の 必要もなく従来の成形の問題を解決できる。
[0162] さらに、コンピュータに予め榭脂注入条件ゃ榭脂流動状況に応じた最適な排出バ ルブの開閉条件を事前に入力しておくことで、環境 (大気温度など)の変化などにも 対応した最適な榭脂流動を実現できる。 [0163] このような方法により、従来方法では困難であった表面意匠性に係わるボイドゃピッ トのない、または極めて少ない FRP成形品を得られるようになる。このことにより、常に 安定して所望の機械的性質を満たすことができ、優れた表面品位が安定して得られ 、従来方法よりも歩留まりよく生産できる。
[0164] さらに、前述した本発明に係る RTM成形方法および装置においては、表面意匠性 の高い成形品を効率よく短時間で成形するために、以下のような方法を採用すること ができる。すなわち、 RTM成形型には縦割れ型と横割れ型があるが、縦割れ型 (射 出成形型に多い)は、重力の影響で榭脂の流れが一定ィ匕し易ぐ型内の気泡は上昇 して抜けやすいことから、成形品の表面品位上問題となるボイドゃピットの発生が非 常に少ないと言う利点がある反面、成形型内への強化繊維基材のセット、即ち成形 型のキヤビティ面への基材の乱れ無き配置と型面への固定が難しぐ且つ多大の時 間を要することから生産性が低いという大きな問題がある。一方、横割れ型、即ち成 形型が上下型の構成では、前記の強化繊維基材の型面へのセットは比較的容易で 且つセット時間も短時間でできる利点がある反面、一般的な榭脂の注入方法、即ち 0 . 2-1. OMPaの圧力で加圧し、格別流速をコントロールしないで樹脂注入した場合 は、榭脂が圧力に応じた流速で型内に流入して行き、比較的短時間で型内に榭脂 が充填されるものの、強化繊維基材が榭脂流れで乱れたり、流速が速くて不均一な 流れが生じ、成形品の表面にボイドゃピットが多数発生することがある。特に、成形時 間を短縮したり大面積の成形品を短時間で成形するために、榭脂の吐出圧力が 0. 5MPa以上の高圧で (従って、高速で)榭脂注入する場合は、基材 (特に、平織物) の織り組織の乱れが生じ易ぐまた高速で榭脂が型内を流動するため基材の微妙な 厚み斑や構成の違いにより流動抵抗が流動領域内でばらつくため、均一な流れを保 てな 、ことから、部分的に「流れの先回り」などが生じて大きなボイドが発生することが ある。更にまた、実際に基材部分に榭脂は流れて来てはいる力 流れが速いことから 例えば織物の織り目にあった気体が抜ける間が無く滞留してしまい、ピットとして表面 に欠点を発生させる場合がある。このような意匠性に関わる外観品位の低下をもたら す従来の成形条件や成形プロセスでは、成形時間の短縮ィヒのための高速注入を行 いながら、高い表面品位を確保することはできない。成形品のサイズが大きくなれば なるほど、どうしても高速榭脂注入することから、このような外観品位上の欠点は発生 しゃすい。
[0165] このような意匠性に関わるボイドゃピットの発生には、榭脂の流動状態が大きく影響 すること力 、強化繊維基材の密度、つまり目付量も重要な因子にになる。つまり、 1 層当たりの強化繊維の目付量としては、榭脂の流動抵抗や気泡の抜け易さに影響を 与えるため、榭脂流動条件に応じた適正な目付量を設定する必要がある。この目付 の適正化には単に表面品位の面ば力りでなぐプリフォームの作業性や強度利用率 等の観点からも設定する必要がある。即ち、目付が大きすぎて基材の剛性が高くなる と型面に強化繊維基材が沿い難くて立体形状への賦形が難しくなり、プリフォーム化 に多大の作業時間が掛カつたり、その際に基材乱れを生じて FRP成形品の力学特 性が低下する事態を招くことがある。即ち、効率的な生産を行うためには、生産条件( 成形サイズ、成形条件など)に合った目付量がある。
[0166] また、成形条件の中で、特に温度ゃ榭脂注入圧力も表面品位に与える影響度は大 きい。注入する榭脂温度は高いと粘度が下がって流動性が上がり、基材への榭脂含 浸性は良いが、粘度上昇率が高くなつて急激に流動性が悪ィ匕し、成形品が大きい場 合は榭脂の流動が途中から減速し、未含浸をもたらす場合がある。どうにか全域に榭 脂流動しても、粘度が高くなつた領域では、未含浸には至らなくてもボイドゃピットが 多発することがある。一方、成形型の温度に斑があったり、成形中に変化したりすると 型内に残っていた微小な気泡同士が接触して、ボイドゃピットに発展する大きな気泡 に成長することがある。また、圧力も適度であることが必要である。高過ぎてキヤビティ 内で体積膨張して気泡を発生させたり、低過ぎて残存気泡を小さく圧縮できない場 合がある。
[0167] また、反応性榭脂から硬化過程で反応ガスが生じたり、既に榭脂中に内包していた 微細なガス (気泡)が時間と共に成長して大きくなり、ボイドゃピットに成長することも あるので、榭脂が基材に含浸した後は出来るだけ早ぐ速やかに硬化する方がよい。 該反応性榭脂の材料特性が成形効率に与える影響度は非常に高ぐ例えば硬化剤 の種類によっては榭脂の反応の初期に反応速度が最大となり、時間が経過するに従 つて反応速度が低下し、その為に硬化に要する時間が長くなる場合がある。これに 対して、成形型の温度を上昇させて硬化時間を短縮しょうとすると、今度は初期の粘 度上昇が過大となり、榭脂注入 ·流動時に粘度が過度に上昇して、果てはゲル化し てしまい、成形が途中で停止して未含浸部分を生じる場合もある。
[0168] このように、 FRP成形 (特に、 RTM成形方法)では、成形サイズ (面積)に応じた成 形条件や材料特性が存在し、適正な条件で成形しないと品質面、特に表面品位の 点で問題を生じ易いと言える。
[0169] そこで、本発明に係る RTM成形方法および装置にぉ 、ては、特に、ボイドゃピット が殆ど生じて 、な 、表面意匠性の高 、成形品を効率よく短時間で成形するために、 成形型のキヤビティ内に榭脂を加圧注入するとき、榭脂の単位時間流量 (Q: ccZ min)とキヤビティの投影面積 (S: m2)との比(Q/S: ccz min'm )を、
50く QZSく 600
の範囲内とする方法を採用することができる。
[0170] この方法においては、上記比(QZS : ccZmin'm2)と榭脂の加圧力(P : MPa)との 積((QZS) X P: ccMPa/min · m2)を、
20≤ (Q/S) X P≤400
の範囲内とすることが好ましい。また、榭脂の加圧力を 0. 2-0. 8MPaの範囲内とす ることが好ましぐ榭脂は、加熱温度が 60— 160°Cの範囲の一定温度下で、 3— 30 分で硬化されることが好まし 、。
[0171] このような RTM成形条件とすることにより、従来の RTM成形条件では困難であつ た意匠面である表面にボイドゃピットなどの欠陥が発生することのない成形品を、効 率よく短時間で安定的に成形できるようになり、表面品位の高!ヽ成形品を高サイクル で量産できるようになる。
産業上の利用可能性
[0172] 本発明に係る RTM成形方法および装置は、高速成形が望まれるあらゆる RTM成 形に適用でき、特に、比較的大型かつ比較的複雑な形状の成形品を短時間のうち に効率よく優れた表面品位をもって、特に優れた意匠面に成形するために有用であ る。
[0173] より具体的には、本発明は、製品サイズが lm2以上の比較的大型な一般産業用 F RPパネル部材、特に、自動車用外板部材ゃ構造材に好適であり、中でも意匠性の 要求が高い外板部材として使用される FRP部材の RTM成形に好適なものである。 尚、自動車用外板部材とは、乗用車やトラックにおけるドアパネルやフード、ルーフ、 トランクリツド、フェンダー、スポイラ一、サイドスカート、フロントスカート、マッドガード、 ドアインナーパネル等のいわゆるパネル部材である。特に、意匠性が求められる比較 的大型のパネル部材に好適である。その他の FRPパネル部材としては、航空機部材
、鉄道車両におけるドア、サイドパネル、内装パネルなどの各種パネル類、クレーン などの建設機械のカバー類、建築における仕切板、パーティシャン、ドアパネル、遮 蔽板等であり、またスポーツにおけるサーフィンボード、スケートボード、自転車部品 などの外表面パネルが該当する。

Claims

請求の範囲
[I] 複数の型力 なる成形型のキヤビティ内に強化繊維基材を配置し、型締めした後、 榭脂を注入して成形する RTM成形方法にお ヽて、前記強化繊維基材の面方向に 関して分割領域を想定し、それぞれの分割領域は、注入樹脂が領域内の全面にわ たって広がりかつ基材厚み方向に実質的に均一に含浸可能な分割領域であり、想 定された各分割領域のそれぞれに対し該分割領域内まで注入榭脂を導入する榭脂 導入路を形成することを特徴とする RTM成形方法。
[2] 少なくとも型締めした後力も榭脂注入開始まで、所定の時間の間榭脂排出ラインよ り真空吸引する、請求項 1に記載の RTM成形方法。
[3] 前記成形型を構成する型間に、厚み方向に貫通する榭脂流路を有する中間部材 を配設し、該中間部材を介して、榭脂を前記強化繊維基材に対して複数の箇所から ほぼ同時に注入する、請求項 1に記載の RTM成形方法。
[4] いずれ力の型に、強化繊維基材に対して実質的に全周にわたって延びる榭脂排 出用溝が形成されて ヽる、請求項 3に記載の RTM成形方法。
[5] 前記中間部材に、強化繊維基材に対して実質的に全周にわたって延びる榭脂排 出用溝が形成されて ヽる、請求項 3に記載の RTM成形方法。
[6] 前記中間部材に、その一面側に形成された榭脂流路用溝と、該溝に連通し前記面 とは反対面である強化繊維基材配置側の面へと貫通する貫通孔が設けられている、 請求項 3に記載の RTM成形方法。
[7] 前記中間部材が金属製または榭脂製である、請求項 3に記載の RTM成形方法。
[8] 榭脂注入用部材を前記中間部材とそれに対向する型で挟圧してシールする、請求 項 3に記載の RTM成形方法。
[9] 榭脂排出用部材を前記中間部材と強化繊維基材を介して前記中間部材に対向す る型で挟圧してシールする、請求項 3に記載の RTM成形方法。
[10] 前記中間部材が複数の貫通孔を設けた多孔板または榭脂製フィルム力もなる、請 求項 3に記載の RTM成形方法。
[II] 前記中間部材に対向する型に榭脂通路用の溝が設けられている、請求項 10に記 載の RTM成形方法。
[12] 前記中間部材とそれに対向する型との間に隙間を形成し、該隙間カ^ー 10mmの 範囲内に設定されている、請求項 10に記載の RTM成形方法。
[13] 前記強化繊維基材にコア材が積層されている、請求項 3に記載の RTM成形方法。
[14] 前記榭脂の注入用のチューブおよび Zまたは排出用のチューブを型合わせ面部 に挟圧して設け、該チューブと型との間を弾性体を介してシールする、請求項 3に記 載の RTM成形方法。
[15] 前記シール用弾性体に、成形型のキヤビティを型合わせ面部でシールする O—リン グの端部が内蔵されている、請求項 14に記載の RTM成形方法。
[16] 前記成形型内に榭脂を加圧注入しながら成形型内の気体と余剰榭脂を間欠的に 排出する、請求項 3に記載の RTM成形方法。
[17] 加圧注入された榭脂の前記成形型内での榭脂圧力を Pm、榭脂を注入する注入口 での榭脂吐出圧力を Piとしたとき、選択的に Pm=Pi、 Pmく Piとして、成形型内に流 入して 、る榭脂の流量を制御する、請求項 16に記載の RTM成形方法。
[18] 前記成形型内に流入している樹脂の流量を、榭脂を排出する排出口の口径の調 節によって制御する、請求項 16に記載の RTM成形方法。
[19] 前記排出口の口径の調節と、その調節のタイミングとを記憶し、その記憶情報に基 づいて成形型内の榭脂流量を自動的に制御する、請求項 18に記載の RTM成形方 法。
[20] 前記成形型のキヤビティ内に榭脂を加圧注入するとき、榭脂の単位時間流量 (Q: ccZmin)とキヤビティの投影面積(S: m )との比(QZS: ccZ min'm ) 、
50く QZSく 600
の範囲内である、請求項 3に記載の RTM成形方法。
[21] 前記比(QZS : ccZmin'm2)と榭脂の加圧力(P : MPa)との積((QZS) X P : ccM
PaZ min · m2) f>ゝヽ
20≤ (QZS) X P≤400
の範囲内である、請求項 20に記載の RTM成形方法。
[22] 前記樹脂の加圧力が 0. 2-0. 8MPaの範囲内である、請求項 20に記載の RTM 成形方法。
[23] 前記榭脂が、加熱温度が 60— 160°Cの範囲の一定温度下で、 3— 30分で硬化さ れる、請求項 20に記載の RTM成形方法。
[24] 前記キヤビティの外周に配置された榭脂注入ライン力ゝら榭脂排出ラインに向けて榭 脂を注入して前記強化繊維基材に榭脂含浸後、加熱硬化させる RTM成形方法であ つて、前記榭脂注入ラインが複数に分割形成されている、請求項 1に記載の RTM成 形方法。
[25] 前記榭脂注入ラインと榭脂排出ラインとが、前記キヤビティの実質的に外周全域に 渡って形成されて ヽる、請求項 24に記載の RTM成形方法。
[26] 前記榭脂注入ラインの長さが前記榭脂排出ラインの長さの 2倍以上である、請求項
24に記載の RTM成形方法。
[27] 前記榭脂注入ラインおよび Zまたは榭脂排出ラインが成形型に加工された溝から なる、請求項 24に記載の RTM成形方法。
[28] 前記成形型が上型と下型とからなり、前記溝が総て下型に加工されている、請求項
27に記載の RTM成形方法。
[29] 前記榭脂排出ラインも複数に分割形成されて ヽる、請求項 24に記載の RTM成形 方法。
[30] 前記複数に分割形成されてなる榭脂注入ラインカゝらの榭脂注入を、榭脂排出ライン 力 実質的に遠 、側の榭脂注入ラインより順次行う、請求項 24に記載の RTM成形 方法。
[31] 前記榭脂排出ラインカゝらも、所定の時間後に榭脂注入ラインに切り換えて榭脂注入 を行う、請求項 24に記載の RTM成形方法。
[32] 前記強化繊維基材にコア材が積層されている、請求項 24に記載の RTM成形方法
[33] 前記榭脂の注入用のチューブおよび Zまたは排出用のチューブを型合わせ面部 に挟圧して設け、該チューブと型との間を弾性体を介してシールする、請求項 24に 記載の RTM成形方法。
[34] 前記シール用弾性体に、成形型のキヤビティを型合わせ面部でシールする O—リン グの端部が内蔵されている、請求項 33に記載の RTM成形方法。
[35] 前記成形型内に榭脂を加圧注入しながら成形型内の気体と余剰榭脂を間欠的に 排出する、請求項 24に記載の RTM成形方法。
[36] 加圧注入された榭脂の前記成形型内での榭脂圧力を Pm、榭脂を注入する注入口 での榭脂吐出圧力を Piとしたとき、選択的に Pm= Pi、 Pmく Piとして、成形型内に流 入して 、る榭脂の流量を制御する、請求項 35に記載の RTM成形方法。
[37] 前記成形型内に流入している樹脂の流量を、榭脂を排出する排出口の口径の調 節によって制御する、請求項 35に記載の RTM成形方法。
[38] 前記排出口の口径の調節と、その調節のタイミングとを記憶し、その記憶情報に基 づ 、て成形型内の榭脂流量を自動的に制御する、請求項 37に記載の RTM成形方 法。
[39] 前記成形型のキヤビティ内に榭脂を加圧注入するとき、榭脂の単位時間流量 (Q: ccZmin)とキヤビティの投影面積(S: m )との比(QZS: ccZ min ' m ) 、
50く QZSく 600
の範囲内である、請求項 24に記載の RTM成形方法。
[40] 前記比(QZS: cc/min · m2)と榭脂の加圧力(P: MPa)との積((QZS) X P: ccM
PaZ min . m2) 、
20≤ (QZS) X P≤400
の範囲内である、請求項 39に記載の RTM成形方法。
[41] 前記樹脂の加圧力が 0. 2-0. 8MPaの範囲内である、請求項 39に記載の RTM 成形方法。
[42] 前記榭脂が、加熱温度が 60— 160°Cの範囲の一定温度下で、 3— 30分で硬化さ れる、請求項 39に記載の RTM成形方法。
[43] 前記強化繊維基材の少なくとも片側の表層が連続繊維層からなり、該表層の真下 の層がランダムマット層力もなる、請求項 1に記載の RTM成形方法。
[44] 前記表層が 3層以下の連続繊維層カゝら形成されている、請求項 43に記載の RTM 成形方法。
[45] 前記表層を形成する連続繊維層の総目付が 700gZm2以下である、請求項 43に 記載の RTM成形方法。
[46] 前記表層の強化繊維が炭素繊維織物からなる、請求項 43に記載の RTM成形方 法。
[47] 前記ランダムマット層の総目付が 150gZm2以下である、請求項 43に記載の RTM 成形方法。
[48] 前記ランダムマット層がガラス繊維力もなる、請求項 43に記載の RTM成形方法。
[49] 前記強化繊維基材にコア材が積層されている、請求項 43に記載の RTM成形方法
[50] 複数の型力 なる成形型のキヤビティ内に強化繊維基材を配置し、型締めした後、 榭脂を注入して成形する RTM成形装置にお ヽて、前記強化繊維基材の面方向に 関して分割領域を想定し、それぞれの分割領域は、注入樹脂が領域内の全面にわ たって広がりかつ基材厚み方向に実質的に均一に含浸可能な分割領域であり、想 定された各分割領域のそれぞれに対し該分割領域内まで注入榭脂を導入する榭脂 導入路を形成することを特徴とする RTM成形装置。
[51] 少なくとも型締めした後力も榭脂注入開始まで、所定の時間の間榭脂排出ラインよ り真空吸引する手段を有する、請求項 50に記載の RTM成形装置。
[52] 前記成形型を構成する型間に、厚み方向に貫通する榭脂流路を有し、該榭脂流 路を介して榭脂を前記強化繊維基材に対して複数の箇所力 ほぼ同時に注入可能 な中間部材が設けられて 、る、請求項 50に記載の RTM成形装置。
[53] いずれ力の型に、強化繊維基材に対して実質的に全周にわたって延びる榭脂排 出用溝が形成されて ヽる、請求項 52に記載の RTM成形装置。
[54] 前記中間部材に、強化繊維基材に対して実質的に全周にわたって延びる榭脂排 出用溝が形成されて ヽる、請求項 52に記載の RTM成形装置。
[55] 前記中間部材に、その一面側に形成された榭脂流路用溝と、該溝に連通し前記面 とは反対面である強化繊維基材配置側の面へと貫通する貫通孔が設けられている、 請求項 52に記載の RTM成形装置。
[56] 前記中間部材が金属製または榭脂製である、請求項 52に記載の RTM成形装置。
[57] 前記中間部材とそれに対向する型で挟圧してシールされる榭脂注入用部材が設け られている、請求項 52に記載の RTM成形装置。
[58] 前記中間部材と強化繊維基材を介して前記中間部材に対向する型で挟圧してシ ールされる榭脂排出用部材が設けられて 、る、請求項 52に記載の RTM成形装置。
[59] 前記中間部材が複数の貫通孔を設けた多孔板または榭脂製フィルム力もなる、請 求項 52に記載の RTM成形装置。
[60] 前記中間部材に対向する型に榭脂通路用の溝が設けられている、請求項 59に記 載の RTM成形装置。
[61] 前記中間部材とそれに対向する型との間に隙間が形成され、該隙間カ^ー 10mm の範囲内に設定されて 、る、請求項 59に記載の RTM成形装置。
[62] 前記強化繊維基材にコア材が積層されている、請求項 52に記載の RTM成形装置
[63] 前記榭脂の注入用のチューブおよび Zまたは排出用のチューブが型合わせ面部 に挟圧されて設けられており、該チューブと型との間にシール用弾性体が介在されて いる、請求項 52に記載の RTM成形装置。
[64] 前記シール用弾性体に、成形型のキヤビティを型合わせ面部でシールする O—リン グの端部が内蔵されている、請求項 63に記載の RTM成形装置。
[65] 前記成形型内に榭脂を加圧注入しながら成形型内の気体と余剰榭脂を間欠的に 排出する手段を有する、請求項 52に記載の RTM成形装置。
[66] 加圧注入された榭脂の前記成形型内での榭脂圧力を Pm、榭脂を注入する注入口 での榭脂吐出圧力を Piとしたとき、選択的に Pm=Pi、 Pmく Piとして、成形型内に流 入して 、る榭脂の流量を制御する手段を有する、請求項 65に記載の RTM成形装置
[67] 前記成形型内に流入している樹脂の流量を、榭脂を排出する排出口の口径の調 節によって制御する手段を有する、請求項 65に記載の RTM成形装置。
[68] 前記排出口の口径の調節と、その調節のタイミングとを記憶し、その記憶情報に基 づいて成形型内の榭脂流量を自動的に制御する手段を有する、請求項 67に記載の RTM成形装置。
[69] 前記排出口の口径を調節する手段が、バルブ開閉装置力もなる、請求項 67に記 載の RTM成形装置。
[70] 前記キヤビティの外周に配置された榭脂注入ライン力ゝら榭脂排出ラインに向けて榭 脂を注入して前記強化繊維基材に榭脂含浸後、加熱硬化させる RTM成形装置であ つて、前記榭脂注入ラインが複数に分割形成されている、請求項 50に記載の RTM 成形装置。
[71] 前記榭脂注入ラインと榭脂排出ラインとが、前記キヤビティの実質的に外周全域に 渡って形成されて ヽる、請求項 70に記載の RTM成形装置。
[72] 前記榭脂注入ラインの長さが前記榭脂排出ラインの長さの 2倍以上である、請求項
70に記載の RTM成形装置。
[73] 前記榭脂注入ラインおよび Zまたは榭脂排出ラインが成形型に加工された溝から なる、請求項 70に記載の RTM成形装置。
[74] 前記成形型が上型と下型とからなり、前記溝が総て下型に加工されている、請求項
73に記載の RTM成形装置。
[75] 前記榭脂排出ラインも複数に分割形成されて ヽる、請求項 70に記載の RTM成形 装置。
[76] 前記複数に分割形成されてなる榭脂注入ラインカゝらの榭脂注入が、榭脂排出ライ ン力 実質的に遠 、側の榭脂注入ラインより順次行われる、請求項 70に記載の RT M成形装置。
[77] 前記榭脂排出ラインカゝらも、所定の時間後に榭脂注入ラインに切り換えて榭脂注入 が行われる、請求項 70に記載の RTM成形装置。
[78] 前記強化繊維基材にコア材が積層されている、請求項 70に記載の RTM成形装置
[79] 前記榭脂の注入用のチューブおよび Zまたは排出用のチューブが型合わせ面部 に挟圧されて設けられており、該チューブと型との間にシール用弾性体が介在されて いる、請求項 70に記載の RTM成形装置。
[80] 前記シール用弾性体に、成形型のキヤビティを型合わせ面部でシールする O—リン グの端部が内蔵されている、請求項 79に記載の RTM成形装置。
[81] 前記成形型内に榭脂を加圧注入しながら成形型内の気体と余剰榭脂を間欠的に 排出する手段を有する、請求項 70に記載の RTM成形装置。
[82] 加圧注入された榭脂の前記成形型内での榭脂圧力を Pm、榭脂を注入する注入口 での榭脂吐出圧力を Piとしたとき、選択的に Pm=Pi、 Pmく Piとして、成形型内に流 入して 、る榭脂の流量を制御する手段を有する、請求項 81に記載の RTM成形装置
[83] 前記成形型内に流入している樹脂の流量を、榭脂を排出する排出口の口径の調 節によって制御する手段を有する、請求項 81に記載の RTM成形装置。
[84] 前記排出口の口径の調節と、その調節のタイミングとを記憶し、その記憶情報に基 づいて成形型内の榭脂流量を自動的に制御する手段を有する、請求項 83に記載の RTM成形装置。
[85] 前記排出口の口径を調節する手段が、バルブ開閉装置力もなる、請求項 83に記 載の RTM成形装置。
PCT/JP2005/002314 2004-02-17 2005-02-16 Rtm成形方法および装置 WO2005077632A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067019054A KR101151966B1 (ko) 2004-02-17 2005-02-16 Rtm 성형방법 및 장치
US10/589,589 US7943078B2 (en) 2004-02-17 2005-02-16 RTM molding method and device
AU2005213807A AU2005213807A1 (en) 2004-02-17 2005-02-16 RTM molding method and device
EP05719166.0A EP1721719B1 (en) 2004-02-17 2005-02-16 Rtm molding method and device
CN2005800052113A CN1921996B (zh) 2004-02-17 2005-02-16 Rtm成型方法及装置
US13/078,455 US20110192531A1 (en) 2004-02-17 2011-04-01 Rtm molding method and device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004039882A JP4378687B2 (ja) 2004-02-17 2004-02-17 繊維強化樹脂およびその製造方法
JP2004-039882 2004-02-17
JP2004-063777 2004-03-08
JP2004063777A JP4442256B2 (ja) 2004-03-08 2004-03-08 Rtm成形方法
JP2004281611A JP2006095727A (ja) 2004-09-28 2004-09-28 Rtm成形装置および方法
JP2004-281611 2004-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/078,455 Division US20110192531A1 (en) 2004-02-17 2011-04-01 Rtm molding method and device

Publications (1)

Publication Number Publication Date
WO2005077632A1 true WO2005077632A1 (ja) 2005-08-25

Family

ID=34864933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002314 WO2005077632A1 (ja) 2004-02-17 2005-02-16 Rtm成形方法および装置

Country Status (5)

Country Link
US (2) US7943078B2 (ja)
EP (3) EP1721719B1 (ja)
KR (1) KR101151966B1 (ja)
AU (1) AU2005213807A1 (ja)
WO (1) WO2005077632A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087361A1 (ja) * 2009-01-29 2010-08-05 東レ株式会社 Rtm成形方法、および、繊維強化樹脂成形体の製造方法
JP2012192542A (ja) * 2011-03-15 2012-10-11 Toray Ind Inc Rtm成形装置および成形方法
US20130171409A1 (en) * 2008-03-07 2013-07-04 Giuseppe Meli Device for the production of cellular materials
DE102016221510A1 (de) 2016-11-03 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Partielle Faserhalbzeugfixierung und Faserverwerfungsaufnahme im RTM-Prozess
CN114131961A (zh) * 2021-11-29 2022-03-04 飞荣达科技(江苏)有限公司 一种hp-rtm样件模具平台及模具组件

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743117B (zh) * 2007-02-28 2015-02-18 空中客车西班牙运营有限责任公司 用复合材料制造飞机框架的模具和方法
FR2926241B1 (fr) * 2008-01-16 2013-03-15 Eads Europ Aeronautic Defence Procede et dispositif de moulage d'une piece en materiau composite
DE602008006013D1 (de) 2008-02-22 2011-05-19 Lm Glasfiber As Verfahren, Vorrichtung und System zur Entdeckung eines Lecks in einem VARTM-Prozess
US20090309260A1 (en) * 2008-06-12 2009-12-17 Kenneth Herbert Keuchel Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
JP5374519B2 (ja) 2008-11-18 2013-12-25 三菱重工業株式会社 複合材料製造装置および複合材料製造方法
US8298473B2 (en) * 2009-05-15 2012-10-30 The Boeing Company Method of making a cure tool with integrated edge breather
CN101920546A (zh) * 2009-06-10 2010-12-22 鸿富锦精密工业(深圳)有限公司 导光板成型模具
EP2295235B1 (en) * 2009-08-20 2013-07-03 Siemens Aktiengesellschaft Fiber reinforced plastic-structure and a method to produce the fiber reinforced plastic-structure
EP2335908A1 (en) * 2009-12-18 2011-06-22 Siemens Aktiengesellschaft Arrangement to build up a blade
FI20105048A (fi) * 2010-01-21 2011-07-22 Runtech Systems Oy Menetelmä radiaalikompressorin juoksupyörän valmistamiseksi
EP2353826A1 (en) * 2010-01-28 2011-08-10 Siemens Aktiengesellschaft Method and arrangement to improve the production of a blade
IT1410977B1 (it) * 2010-06-14 2014-10-03 Automobili Lamborghini Spa Processo e dispositivi per fabbricare prodotti in materiali compositi
KR100986727B1 (ko) * 2010-06-22 2010-10-08 주식회사 엠티마스타 섬유보강재 진공함침장치 및 방법
FR2961740B1 (fr) * 2010-06-25 2014-03-07 Snecma Procede de fabrication d'un article en materiau composite
CN103339021B (zh) 2011-02-03 2016-03-23 帝人株式会社 车辆底板结构
CN103339022B (zh) 2011-02-03 2016-11-02 帝人株式会社 车体结构
WO2012115067A1 (ja) * 2011-02-25 2012-08-30 東レ株式会社 Frpの製造方法
DE102011013742A1 (de) * 2011-03-11 2012-09-13 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Formkörpern aus faserverstärkten Verbundwerkstoffen
BR112013024886A2 (pt) 2011-03-30 2017-08-01 Toray Industries pré-impregnado, material compósito reforçado com fibra e método para fabricação de um material compósito reforçado com fibra
WO2012150480A1 (es) * 2011-05-03 2012-11-08 Go-Composites S.A.S Máquina para embobinado giroscópico, proceso para la fabricación de conectores dieléctricos no metálicos y conectores obtenidos mediante los mismos
FR2981000B1 (fr) * 2011-10-06 2013-11-29 Snecma Dispositif pour la fabrication d'une piece en materiau composite
DE102011055547A1 (de) * 2011-11-21 2013-05-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Formwerkzeug zur Herstellung eines Faserverbundbauteils
FR2986179B1 (fr) * 2012-01-31 2014-10-10 Techni Modul Engineering Dispositif et procede de fabrication d'une piece moulee en un materiau composite
US9662812B2 (en) * 2012-02-14 2017-05-30 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for molding integrated circuits
JP5963059B2 (ja) * 2012-02-22 2016-08-03 東レ株式会社 Rtm方法
US8951037B2 (en) 2012-03-02 2015-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer-level underfill and over-molding
US9802349B2 (en) 2012-03-02 2017-10-31 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level transfer molding and apparatus for performing the same
WO2013160739A2 (en) * 2012-04-27 2013-10-31 Atlas Copco Airpower, N.V. Method of composing a sleeve assembly for containment purposes in high centrifugal applications
DK2877337T3 (en) 2012-07-05 2017-09-11 Lm Wp Patent Holding As Method and molding system for producing a fiber-reinforced polymer blank via a feedback flow control system
KR101447133B1 (ko) * 2013-03-27 2014-10-07 (주)에이티씨 댐핑포켓과 슬릿채널이 부설되어 있는 진공함침 수지이송성형방식에 의한 섬유강화플라스틱 성형몰드
EP2789444B1 (en) * 2013-04-11 2017-05-31 Airbus Operations GmbH Method and apparatus for producing a fiber-reinforced plastics casting
TWI675313B (zh) * 2013-05-15 2019-10-21 芬蘭商塔克圖科技有限公司 用於具有外殼整合式功能之電子裝置的致能配置及方法
CN105531829B (zh) 2013-09-10 2018-08-14 赫普塔冈微光有限公司 紧凑光电模块以及用于这样的模块的制造方法
US11247415B2 (en) 2013-12-03 2022-02-15 Continental Structural Plastics, Inc. Resin transfer molding with rapid cycle time
CA2931030C (en) * 2013-12-03 2022-02-15 Continental Structural Plastics, Inc. Resin transfer molding with rapid cycle time
CN104708833A (zh) * 2013-12-17 2015-06-17 宁波华翔汽车零部件研发有限公司 碳纤维汽车零部件的聚氨酯快速成型hp-rtm工艺
DE102013226827A1 (de) * 2013-12-20 2015-06-25 Bayerische Motoren Werke Aktiengesellschaft Werkzeug zur Herstellung von Faserverbundbauteilen
JP5971234B2 (ja) * 2013-12-25 2016-08-17 トヨタ自動車株式会社 樹脂パネル構造
WO2015107903A1 (ja) * 2014-01-17 2015-07-23 東レ株式会社 被覆繊維強化樹脂成形品およびその製造方法
DE102014007869B4 (de) 2014-06-03 2016-02-11 Airbus Defence and Space GmbH Vorrichtung und Verfahren zum Infiltrieren von Fasermaterial mit Harz zur Herstellung eines Faserverbundbauteils
KR101648623B1 (ko) * 2014-06-16 2016-08-17 사단법인 캠틱종합기술원 수지의 고속 함침 기능을 강화한 rtm 금형 구조체
KR101603492B1 (ko) 2014-06-24 2016-03-17 서울대학교산학협력단 Dcpd 수지를 기지재로 한 섬유 복합소재의 제조방법
DE102014215792A1 (de) * 2014-08-08 2016-02-11 Ako - Kunststoffe Alfred Kolb Gmbh Vorrichtung und Verfahren zur Herstellung eines Faserverbund-Bauteils
JP6627756B2 (ja) * 2015-02-27 2020-01-08 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
KR101587977B1 (ko) * 2015-03-27 2016-01-27 한국철도기술연구원 복합소재 성형장치
US9950456B2 (en) * 2015-04-28 2018-04-24 Kabushiki Kaisha Toshiba Housing and method of forming the same
KR102347729B1 (ko) * 2015-06-26 2022-01-06 (주)동성티씨에스 매트릭스 수지의 고속 함침을 위한 rtm 금형 구조체
KR101641719B1 (ko) 2015-07-16 2016-07-21 주식회사 와이제이엠게임즈 수지 이송 성형을 이용한 섬유강화플라스틱 성형 방법 및 성형 장치
GB201512690D0 (en) 2015-07-20 2015-08-26 Blade Dynamics Ltd A method of moulding a composite article and mould
KR101836584B1 (ko) * 2015-12-10 2018-03-09 현대자동차주식회사 관통홀이 형성된 복합재 및 제조방법
IL245768A0 (en) * 2016-05-22 2016-08-31 Travel Smart Ltd Method and system for panel injection and injected panel
FR3050682B1 (fr) * 2016-05-02 2018-12-07 Nimitech Innovation Procede de realisation de structure composite auto-raidie, equipement de mise en oeuvre et piece monobloc correspondante.
US9944063B1 (en) * 2016-05-23 2018-04-17 Boral Ip Holdings (Australia) Pty Limited Method of producing reinforced substrate
US10960588B2 (en) * 2016-06-08 2021-03-30 Bayou Holdco, Inc. System and method for applying moldable material to a pipe
DE102016124882A1 (de) 2016-09-25 2018-03-29 Murtfeldt Kunststoffe Gmbh & Co. Kg RTM-Werkzeug zur Injektion eines niedrig viskosen Harzreaktionsgemisches zu einem vorgeformten Bauteil
KR102487003B1 (ko) * 2016-10-27 2023-01-10 주식회사 성우하이텍 복합소재 성형장치
KR101866088B1 (ko) 2016-11-10 2018-07-16 현대자동차주식회사 주름방지 기능을 갖는 후드 프리폼 성형장치 및 이를 이용한 후드 프리폼 제조방법
CN110023064B (zh) * 2016-12-01 2022-05-10 Lm风力发电国际技术有限公司 制造用于风力涡轮机叶片的抗剪腹板的方法和系统
JP6481778B2 (ja) 2016-12-22 2019-03-13 東レ株式会社 複合構造体およびその製造方法
CA3048409A1 (en) 2016-12-27 2018-07-05 Continental Structural Plastics, Inc. Continuous channel resin transfer molding with rapid cycle time
KR20180097184A (ko) 2017-02-22 2018-08-31 한국기계연구원 섬유강화 플라스틱 제조방법
EP3616902A4 (en) 2017-04-28 2021-01-06 Kuraray Co., Ltd. MULTI-LAYER COMPOSITE AND METHOD FOR MANUFACTURING THEREOF
GB2562718B (en) * 2017-05-15 2021-12-22 Mclaren Automotive Ltd Multi-stage resin delivery
US10807324B2 (en) * 2017-11-21 2020-10-20 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
US10759124B2 (en) 2017-11-21 2020-09-01 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
DE102017220927A1 (de) * 2017-11-23 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Werkzeug zur Herstellung eines faserverstärkten Kunststoff-Hohlbauteils, Hohlkern zur Verwendung in dem Werkzeug sowie Verfahren
GB2570104B (en) * 2017-12-18 2021-12-29 Composite Integration Ltd Improved system and method for resin transfer moulding
KR102191724B1 (ko) * 2018-03-28 2020-12-16 가부시키가이샤 에나테크 도포 장치 및 도포 방법
EP3860837A1 (de) * 2018-10-02 2021-08-11 Covestro Intellectual Property GmbH & Co. KG Infusionsvorrichtung und verfahren zur herstellung von faserverstärkten verbundbauteilen
WO2020245079A1 (en) * 2019-06-05 2020-12-10 Covestro Intellectual Property Gmbh & Co. Kg A method for preparing a polyurethane composite by a vacuum infusion process
EP3763514A1 (en) * 2019-07-11 2021-01-13 Covestro Deutschland AG A method for preparing a polyurethane composite by a vacuum infusion process
US11623416B2 (en) * 2019-06-19 2023-04-11 Arris Composites Inc. Multi-part molds and methods for forming complex fiber-composite parts
CN110435187B (zh) * 2019-08-12 2021-04-30 山东双一科技股份有限公司 一种lrtm模具及其制作方法
IT201900017420A1 (it) * 2019-09-27 2021-03-27 Leonardo Spa Metodo e attrezzo per la fabbricazione di un telaio in materiale composito di una finestra di un velivolo
KR102396494B1 (ko) * 2020-09-24 2022-05-09 창원대학교 산학협력단 천연 섬유 복합재료의 표면 난연화 방법 및 이에 의해 제조된 천연 섬유 복합재료
US11999089B2 (en) 2020-10-20 2024-06-04 Bayou Holdco, Inc. Transportable molding system for forming insulation on long pipes and related methods
CN113386374B (zh) * 2021-05-14 2022-08-23 中国航发北京航空材料研究院 一种改善液态成型复合材料内部质量模具及控制方法
CN113386373B (zh) * 2021-05-28 2023-03-21 上纬(天津)风电材料有限公司 一种应用于风电叶片制造的一体式树脂灌注方法及系统
CN115431445A (zh) * 2021-06-02 2022-12-06 惠阳航空螺旋桨有限责任公司 一种用于复合材料rtm层合板的成型模具及成型质量提升方法
CN114536796B (zh) * 2022-03-22 2022-10-18 宁波卡奔密封科技有限公司 一种用于密封件生产的棒材的处理工艺
CN114589943B (zh) * 2022-03-23 2023-08-04 成都飞机工业(集团)有限责任公司 一种树脂传递模塑用t形筋注胶模具
KR20240028757A (ko) 2022-08-25 2024-03-05 울산과학기술원 Rtm 공정을 이용한 섬유강화복합재의 제조 방법 및 이에 의해 제조된 섬유강화복합재

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123423A (en) * 1979-03-16 1980-09-22 Nitto Boseki Co Ltd Forming of fiber-reinforced plastic product
JPS62282912A (ja) * 1986-02-26 1987-12-08 ザ・バツド・コムパニ− 繊維強化構造体の成形方法
JPS6322618A (ja) * 1986-04-21 1988-01-30 ザ・バツド・コムパニ− 異なる方向に延長する部分を有する強化複合成形体の製造方法
US4942013A (en) 1989-03-27 1990-07-17 Mcdonnell Douglas Corporation Vacuum resin impregnation process
US4952135A (en) 1988-05-23 1990-08-28 Shell Oil Company Apparatus for reduction of mold cycle time
US5052906A (en) * 1989-03-30 1991-10-01 Seemann Composite Systems, Inc. Plastic transfer molding apparatus for the production of fiber reinforced plastic structures
JPH0858008A (ja) 1994-08-25 1996-03-05 Sawai Seisakusho:Kk 繊維強化成形体及びその製造方法
US5565162A (en) * 1994-09-30 1996-10-15 Composite Manufacturing & Research Inc. Method for manufacturing a fiber reinforced composite article
JPH09272131A (ja) * 1996-04-03 1997-10-21 Toray Ind Inc Frp製ラケットの製造方法およびそれに用いる金型
DE19850462A1 (de) 1998-11-02 2000-05-04 Fritzmeier Composite Gmbh & Co Verfahren zum Herstellen eines Kunststofformteils, Werkzeug zur Durchführung des Verfahrens und hiermit hergestelltes Formteil
JP2001018230A (ja) * 1999-07-12 2001-01-23 Fjc:Kk 成形型、装置並びに成形方法
JP2002127220A (ja) * 2000-10-19 2002-05-08 Yoshino Kogyosho Co Ltd 多数個取り金型におけるゲート加熱制御方法
JP2002234078A (ja) 2001-02-14 2002-08-20 Toyota Motor Corp 繊維強化複合材料の製造方法および繊維強化複合材料付き成形体
JP2002347084A (ja) * 2001-05-23 2002-12-04 Esuipi Kk 射出成形用ホットランナ金型装置
JP2003011136A (ja) 2001-06-28 2003-01-15 Toray Ind Inc Frp製大型面状体の製造方法
JP2003039455A (ja) * 2001-08-01 2003-02-13 Toray Ind Inc Rtm成形法
JP2003053744A (ja) * 2001-08-20 2003-02-26 Toray Ind Inc Rtm成形方法
JP2003305719A (ja) 2002-04-17 2003-10-28 Toray Ind Inc Frpのプリフォーム製造方法および製造装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309096A (en) * 1964-02-26 1967-03-14 Inka Egons Split circular sealing element
US4132755A (en) * 1977-07-22 1979-01-02 Jay Johnson Process for manufacturing resin-impregnated, reinforced articles without the presence of resin fumes
US4743323A (en) * 1986-11-04 1988-05-10 Siebolt Hettinga Method of molding a composite article
US5248467A (en) * 1992-07-27 1993-09-28 Cushman William B Injection of molding material into molds that may contain cores and/or fibers
US5439635A (en) * 1993-02-18 1995-08-08 Scrimp Systems, Llc Unitary vacuum bag for forming fiber reinforced composite articles and process for making same
US5369192A (en) * 1993-06-28 1994-11-29 Minnesota Mining And Manufacturing Company Binder resin for resin transfer molding preforms
US5741450A (en) * 1996-01-16 1998-04-21 Hudson Products Corporation Method of and apparatus for molding a hollow fan blade
US6203749B1 (en) * 1996-02-15 2001-03-20 David Loving Process for fiberglass molding using a vacuum
US5921754A (en) * 1996-08-26 1999-07-13 Foster-Miller, Inc. Composite turbine rotor
JP4491968B2 (ja) * 1999-03-23 2010-06-30 東レ株式会社 複合炭素繊維基材、プリフォームおよび炭素繊維強化プラスチックの製造方法
US6319447B1 (en) * 1999-04-09 2001-11-20 The Boeing Company Resin transfer molding process
JP4106826B2 (ja) 1999-08-25 2008-06-25 東レ株式会社 繊維強化樹脂構造体およびその製造方法
DE60018455T3 (de) * 1999-12-07 2009-02-19 The Boeing Company, Seattle Doppelfolien vakuuminjektionsverfahren zur herstellung eines verbundwerkstoffes und damit hergestellter verbundwerkstoff
JP4806866B2 (ja) 2001-07-16 2011-11-02 東レ株式会社 真空rtm成形方法
JP3832727B2 (ja) 2001-10-10 2006-10-11 東レ株式会社 Frp構造体およびその製造方法
US7517481B2 (en) * 2003-02-05 2009-04-14 University Of Delaware Molding systems and processes
US20040219855A1 (en) * 2003-05-02 2004-11-04 Tsotsis Thomas K. Highly porous interlayers to toughen liquid-molded fabric-based composites

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123423A (en) * 1979-03-16 1980-09-22 Nitto Boseki Co Ltd Forming of fiber-reinforced plastic product
JPS62282912A (ja) * 1986-02-26 1987-12-08 ザ・バツド・コムパニ− 繊維強化構造体の成形方法
JPS6322618A (ja) * 1986-04-21 1988-01-30 ザ・バツド・コムパニ− 異なる方向に延長する部分を有する強化複合成形体の製造方法
US4952135A (en) 1988-05-23 1990-08-28 Shell Oil Company Apparatus for reduction of mold cycle time
US4942013A (en) 1989-03-27 1990-07-17 Mcdonnell Douglas Corporation Vacuum resin impregnation process
US5052906A (en) * 1989-03-30 1991-10-01 Seemann Composite Systems, Inc. Plastic transfer molding apparatus for the production of fiber reinforced plastic structures
JPH0858008A (ja) 1994-08-25 1996-03-05 Sawai Seisakusho:Kk 繊維強化成形体及びその製造方法
US5565162A (en) * 1994-09-30 1996-10-15 Composite Manufacturing & Research Inc. Method for manufacturing a fiber reinforced composite article
JPH09272131A (ja) * 1996-04-03 1997-10-21 Toray Ind Inc Frp製ラケットの製造方法およびそれに用いる金型
DE19850462A1 (de) 1998-11-02 2000-05-04 Fritzmeier Composite Gmbh & Co Verfahren zum Herstellen eines Kunststofformteils, Werkzeug zur Durchführung des Verfahrens und hiermit hergestelltes Formteil
JP2001018230A (ja) * 1999-07-12 2001-01-23 Fjc:Kk 成形型、装置並びに成形方法
JP2002127220A (ja) * 2000-10-19 2002-05-08 Yoshino Kogyosho Co Ltd 多数個取り金型におけるゲート加熱制御方法
JP2002234078A (ja) 2001-02-14 2002-08-20 Toyota Motor Corp 繊維強化複合材料の製造方法および繊維強化複合材料付き成形体
JP2002347084A (ja) * 2001-05-23 2002-12-04 Esuipi Kk 射出成形用ホットランナ金型装置
JP2003011136A (ja) 2001-06-28 2003-01-15 Toray Ind Inc Frp製大型面状体の製造方法
JP2003039455A (ja) * 2001-08-01 2003-02-13 Toray Ind Inc Rtm成形法
JP2003053744A (ja) * 2001-08-20 2003-02-26 Toray Ind Inc Rtm成形方法
JP2003305719A (ja) 2002-04-17 2003-10-28 Toray Ind Inc Frpのプリフォーム製造方法および製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1721719A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171409A1 (en) * 2008-03-07 2013-07-04 Giuseppe Meli Device for the production of cellular materials
WO2010087361A1 (ja) * 2009-01-29 2010-08-05 東レ株式会社 Rtm成形方法、および、繊維強化樹脂成形体の製造方法
US8574484B2 (en) 2009-01-29 2013-11-05 Toray Industries, Inc. RTM method and method for manufacturing fiber-reinforced resin molded body
JP2012192542A (ja) * 2011-03-15 2012-10-11 Toray Ind Inc Rtm成形装置および成形方法
DE102016221510A1 (de) 2016-11-03 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Partielle Faserhalbzeugfixierung und Faserverwerfungsaufnahme im RTM-Prozess
CN114131961A (zh) * 2021-11-29 2022-03-04 飞荣达科技(江苏)有限公司 一种hp-rtm样件模具平台及模具组件

Also Published As

Publication number Publication date
US20110192531A1 (en) 2011-08-11
EP1721719A4 (en) 2010-04-21
AU2005213807A1 (en) 2005-08-25
KR101151966B1 (ko) 2012-06-01
KR20060134105A (ko) 2006-12-27
US7943078B2 (en) 2011-05-17
EP1721719A1 (en) 2006-11-15
EP2565019A1 (en) 2013-03-06
EP2565007A1 (en) 2013-03-06
EP1721719B1 (en) 2014-10-01
US20070182071A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
WO2005077632A1 (ja) Rtm成形方法および装置
US8574484B2 (en) RTM method and method for manufacturing fiber-reinforced resin molded body
CN1921996B (zh) Rtm成型方法及装置
KR101256688B1 (ko) 성형 전구체, 섬유 강화 수지 성형체의 제조 방법 및 섬유강화 수지 성형체
US8337740B2 (en) Reinforced internal composite structures
CN1758012B (zh) 一种防弹材料及其成型方法
KR20120099692A (ko) 복합재료 생산방법
JP5440049B2 (ja) Rtm成形方法
JP2005193587A (ja) Rtm成形方法
JP5018210B2 (ja) 繊維強化樹脂の製造方法
JP4442256B2 (ja) Rtm成形方法
JP2006095727A (ja) Rtm成形装置および方法
JP4292971B2 (ja) Frpの製造方法および製造装置
JP4730637B2 (ja) Rtm成形法
JP4706244B2 (ja) Frp中空構造体の成形方法
JP2009090646A (ja) Rtm成形方法
JP2006036057A (ja) 自動車用整流板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005213807

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10589589

Country of ref document: US

Ref document number: 2007182071

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580005211.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005213807

Country of ref document: AU

Date of ref document: 20050216

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005213807

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005719166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067019054

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005719166

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019054

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10589589

Country of ref document: US