WO2005058520A1 - 合成樹脂被覆金属缶体の製造方法及び装置 - Google Patents

合成樹脂被覆金属缶体の製造方法及び装置 Download PDF

Info

Publication number
WO2005058520A1
WO2005058520A1 PCT/JP2004/018126 JP2004018126W WO2005058520A1 WO 2005058520 A1 WO2005058520 A1 WO 2005058520A1 JP 2004018126 W JP2004018126 W JP 2004018126W WO 2005058520 A1 WO2005058520 A1 WO 2005058520A1
Authority
WO
WIPO (PCT)
Prior art keywords
ironing
metal
die
ironing die
thickness
Prior art date
Application number
PCT/JP2004/018126
Other languages
English (en)
French (fr)
Inventor
Mitsuhiko Aoyagi
Norihito Saiki
Hidekazu Tomaru
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to EP04820517A priority Critical patent/EP1695772B1/en
Priority to JP2005516289A priority patent/JP4962698B2/ja
Priority to DE602004024444T priority patent/DE602004024444D1/de
Priority to US10/582,939 priority patent/US7337646B2/en
Publication of WO2005058520A1 publication Critical patent/WO2005058520A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/04Blank holders; Mounting means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D45/00Ejecting or stripping-off devices arranged in machines or tools dealt with in this subclass
    • B21D45/06Stripping-off devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D45/00Ejecting or stripping-off devices arranged in machines or tools dealt with in this subclass
    • B21D45/06Stripping-off devices
    • B21D45/065Stripping-off devices for deep-drawn cans, e.g. using stripping fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a synthetic resin-coated metal can by performing drawing and ironing on a metal plate using a punch or an ironing die.
  • a can body and a can bottom are integrally formed by drawing and ironing, and thereafter, a two-piece aluminum or steel two-piece can is formed by, for example, winding a lid around an opening of the can body.
  • drawn and ironed metal cans are widely distributed.
  • the metal cans for these two-piece cans are formed by deep drawing a disk punched from a flat plate made of aluminum or steel to form a cup with a bottom integrated with the side wall. It is manufactured by ironing the side walls. By ironing the side wall, the thickness of the side wall of the cup body is reduced, and a drawn and ironed metal can is formed with a reduced amount of metal material used.
  • This processing is called dry forming, and simplification of the manufacturing process and high-speed siding are achieved by not using a cooling lubricant.
  • this processing method can be said to be an environmentally friendly manufacturing method because the burden on the environment is reduced.
  • appropriate printing is possible without the printing ink being repelled by the lubricant film.
  • continuous cans By performing ironing in a dry state and with one stroke in cooperation with, continuous cans can be made at high speed as seamless cans.
  • the heating liquid Before the start of continuous can-making, the heating liquid is circulated in the punch and ring die, and immediately before or immediately after the start of the continuous can-making, the cooling liquid flows in the punch and ring die to reduce the surface temperature of the punch. It has also been proposed to maintain an appropriate temperature and at the same time prevent excessive temperature rise of the can with the start of deep drawing 'ironing to enable continuous ironing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-178048 (paragraphs [0028]-[0035], FIGS. 3-6)
  • a conventional method of manufacturing a metal can by deep drawing and ironing a metal plate such as aluminum.
  • FIG. 3 shows an example and an example of an outline of the manufacturing apparatus.
  • the deep drawing ironing device 50 shown in FIG. 3 includes a cylindrical punch 11, a cylindrical blank holder 12 into which the punch 11 can be fitted, and an annular
  • the red ironing die 13, the first ironing die 54, the second ironing die 55, the third ironing die 56, and the third ironing die 56 which are sequentially arranged at intervals on the leading side of the redillow die 13.
  • the stripper 17 is equipped.
  • the punch 11, blank holder 12, each ironing die 54-56, and stripper 17 are arranged side by side on the same central axis.
  • the metal plate is usually formed into a shallow cup-shaped cup C by a cutting press (not shown) (not shown) and supplied to a deep drawing and ironing apparatus 50.
  • a cutting press not shown
  • the cup C which has been held between the blank holder 12 and the lid die 13 in a ring shape by drawing, is formed into a lid die process can 60 by drawing.
  • the first and third ironing processes are sequentially performed on the side wall of the canister 60 by the first ironing die 54 and the third ironing die 56, respectively.
  • the distance La between the lidro die 13 and the first ironing die 54 is set in consideration of the length (length of the side wall portion) of the lidro process can 60, and the distance La between the first ironing die 54 and the second ironing die 55.
  • the distance Lb between the second ironing die 55 and the distance Lc between the second ironing die 55 and the third ironing die 56 are respectively the length of the first process can 61 obtained by the first ironing, or the second ironing.
  • the length of the second process can 62 both side wall length obtained by processing It is set with consideration.
  • aluminum is a metal material that is inferior to steel in mechanical properties such as strength, r-value, limit drawing ratio, and the like. A breakage phenomenon of breaking easily occurs. Therefore, when drawing and ironing aluminum plates, it is necessary to limit the amount of processing and the speed of the kneading process, and to manufacture aluminum two-piece cans, reduce the speed and gauge down of the material. There are also restrictions.
  • the thickness reduction rate of the original plate thickness of the side wall is 60-80%.
  • the ironing rate per ironing operation with one ironing die must be reduced to 40% or less in order to keep the breakage rate of the side wall portion at lOppm or less. Therefore, as described above, it is necessary to perform the ironing in multiple stages by sequentially passing the canister (cup body) 60 in the ironing die sequentially arranged in the punch stroke direction, thereby increasing the punch stroke length. There is.
  • An object of the present invention is to reduce the cutting conditions for ironing a metal plate by utilizing the presence of a resin coating layer in the manufacture of a resin-coated can, and to iron without causing a collapse phenomenon. Processing can be performed with a large amount of iron, reducing ironing energy and shortening ironing processing time, enabling high-speed can-making, shortening punch stroke, and drawing and ironing.
  • An object of the present invention is to provide a method and an apparatus for manufacturing a synthetic resin-coated metal can that can reduce the size of a processing apparatus.
  • a metal plate coated with thermoplastic resin on both sides is drawn into a cup body, and then a punch and a plurality of ironing dies are used to iron the side wall of the cup body to produce a metal can body.
  • the ironing is performed by the first ironing die on the side wall portion of the cup body with a processing amount such that a reduction in the thickness from the original thickness is within a range of 35 to 55%.
  • the second ironing die is applied to the side wall portion on which the first ironing has been performed, with the second ironing die having an amount of reduction in the thickness from the original thickness in the range of 60-75%.
  • drawing may include redrawing.
  • the base plate thickness is a thickness of a flat plate before drawing a metal plate into a cup body, and is a thickness including a thermoplastic resin coating.
  • a cup body formed of a metal plate covered with a thermoplastic resin on both sides is subjected to ironing to obtain a synthetic resin-coated metal can body.
  • the first ironing process which is performed in cooperation with the punch on the side wall of the cup body whose inner and outer surfaces are coated with thermoplastic resin, the thickness of the original sheet is increased by the first ironing die.
  • the ironing force is applied at the amount of processing in which the thickness reduction rate is within the range of 35-55%.
  • the second ironing process is performed on the side wall portion on which the first ironing process has been performed by the second ironing die with a processing amount such that the thickness reduction rate from the original plate thickness is in the range of 60 to 75%. Since the thermoplastic resin coating layer acts in the direction of preventing the side wall of the cup body, which is the metal body, from breaking (breaking), the ironing process conditions are relaxed and the thickness reduction rate is large. Even when ironing is performed with the processing amount, the ladder whose quality was maintained without causing the cup body to break. Processing becomes possible.
  • the apparatus for producing a synthetic resin-coated metal can comprises a punch and a plurality of ironing dies on a side wall of a cup obtained by drawing and forming a metal plate coated on both sides with a thermoplastic resin.
  • the plurality of ironing dies may have a first plate thickness and a sheet thickness reduction ratio of 35 to 55% within a range of 35 to 55%.
  • a first ironing die for ironing, and a length of the metal can body obtained by the first ironing from the first ironing die or a distance slightly exceeding the length thereof, and the first ironing die described above.
  • a second ironing die for performing a second ironing operation on the processed side wall portion with a processing amount in which a thickness reduction rate from the original thickness is within a range of 60-75%.
  • the length of the metal can body means the length of the side wall part of the can body not including the tapered portion (chime portion) connecting the can bottom and the side wall portion.
  • the distance between the two dies means the distance between the two dies at the position of the straight portion of the die to be ironed.
  • a cup body formed of a metal plate covered with a thermoplastic resin on both sides is subjected to ironing to obtain a synthetic resin-coated metal can body.
  • the first ironing process which is performed in cooperation with the punch on the side wall of the cup body whose inner and outer surfaces are coated with thermoplastic resin, the thickness of the original sheet is increased by the first ironing die.
  • the ironing force is applied at the amount of processing in which the thickness reduction rate is within the range of 35-55%.
  • the metal can body immediately after passing through the first ironing die
  • the second ironing die starts passing through the second ironing die, and the reduction rate of the thickness from the original thickness by the second ironing die is within the range of 60-75%.
  • a second ironing caloe is performed with a certain amount of processing.
  • the coating layer of thermoplastic resin works in the direction of preventing the side wall of the cup body, which is the metal body, from being damaged (same as in the same month), so that the ironing process conditions are eased and the thickness reduction rate is reduced. Large!
  • the ironing dies comprise first and second ironing dies, and both dies are arranged at a distance slightly exceeding the length of the metal can body obtained by the first ironing. Therefore, it is not possible to iron both the tip and the back of the can at the same time for both cans. Is less likely to occur. In addition, the distance between both ironing dies is reduced to a minimum, and the space required for disposing the apparatus, the processing speed, and the like are improved.
  • the first ironing die and the second ironing die may be each a single ironing die.
  • the first ironing die consists of a single ironing die that performs ironing independently, that is, one ring-shaped ironing die.
  • the first ironing die has a thickness reduction ratio of 35 to 55% from the original plate thickness. Perform the first ironing process with the inner working amount. Since the amount of addition by the second ironing die is smaller than the amount of addition by the first ironing die, when the first ironing die is used as a single ironing die, the second ironing die is also configured as a single ironing die. be able to.
  • the method and apparatus for producing a synthetic resin-coated metal can, at least the first ironing die of the first ironing die and the second ironing die is arranged in the ironing direction.
  • a combined ironing die consisting of the preceding ironing die and the subsequent ironing die can be obtained.
  • the amount of processing performed by the first ironing die is the same as that of the second ironing die, since the reduction rate of the original sheet thickness is 35-55% and the amount of processing is larger than the amount of processing performed by the second ironing die.
  • the second ironing die can be a composite ironing die as in the case of the first ironing die, but since the processing amount is smaller than that of the first ironing die, it can be a single ironing die.
  • the ironing of the side wall by the preceding ironing die is carried out by reducing the thickness of the original sheet by 18 to 40%. Run with the processing amount within the range! (4)
  • the ironing of the side wall by the subsequent ironing die can be performed with a processing amount such that a reduction rate of the thickness from the original thickness is in the range of 35 to 55%.
  • the amount of processing can be increased for thicker metal plates and resin coating layers before the thickness is reduced. It is preferable that the processing amount by the ironing die be at least half of the processing amount by the subsequent ironing die.
  • the metal plate may be an aluminum plate.
  • the effect of improving the formability of the synthetic resin coating layer on the metal layer is particularly effective for aluminum, which has poorer mechanical properties than steel. is there.
  • the thermoplastic resin has a tensile modulus of 1.45 to 11.8 GPa.
  • the tensile modulus of the thermoplastic resin is out of the range, the rate of occurrence of fracture will increase, and partial peeling of the thermoplastic resin layer and metal exposure on the inner surface of the can will be observed.
  • the thermoplastic resin may be a polyester resin.
  • the thermoplastic resin is preferably a polyester resin in consideration of the above properties and reinforcing effect, but other resins such as polypropylene and nylon can also be used.
  • the thermoplastic resin is 5 to 50 m from the metal plate on the inner surface side of the metal can body. It is preferable that the metal can body is covered with a thickness of 3 to 50 m on the outer surface side of the metal can body. When the thickness of the thermoplastic resin is out of the above range, partial or large peeling of the thermoplastic resin from the metal surface is observed.
  • the method and apparatus for manufacturing a synthetic resin-coated metal can according to the present invention are configured as described above, so that the inner and outer surfaces are coated with a thermoplastic resin so that the side wall of the cup can be formed.
  • the first ironing die is used to reduce the thickness from the original thickness to within the range of 35-55%.
  • Shigaki power In the second ironing process using a second ironing die, the thickness of the stripped side wall is reduced within the range of 60 to 75% from the original thickness.
  • the coating layer of thermoplastic resin acts in the direction of preventing the side wall of the cup body, which is the metal body, from being damaged (fractured), so the rate of reduction in sheet thickness is large.
  • FIG. 1 shows an example of a process for producing a synthetic resin-coated metal can according to the method for producing a synthetic resin-coated metal can according to the present invention, and an example of an apparatus for producing a synthetic resin-coated metal can according to the present invention.
  • FIG. 2 is a view showing another embodiment of a method and an apparatus for producing the synthetic resin-coated metal can body.
  • FIG. 3 is a diagram showing an outline of an example of a conventional manufacturing process and a manufacturing apparatus for a metal can by deep drawing and ironing a metal plate such as an aluminum plate.
  • Stripper 20 Lid process can 21 First process can
  • L0 Length of the sludge process can 20
  • L1 Length of the first process can 21
  • FIG. 1 is a schematic diagram showing an example of a process for manufacturing a synthetic resin-coated metal can according to the method for manufacturing a synthetic resin-coated metal can according to the present invention, and an example of an apparatus for manufacturing a synthetic resin-coated metal can according to the present invention. is there.
  • a part (ironing process) of a process of manufacturing a so-called two-piece can body composed of a can body and a lid integrally formed with the can bottom is shown. .
  • the metal plate subjected to drawing and ironing is an aluminum plate 2 And a flat resin-coated aluminum-plate 1 composed of thermoplastic resin coatings 5 and 6 having both surfaces 3 and 4 coated.
  • the resin-coated aluminum plate 1 is usually punched by a cutting press (not shown), and is supplied to a drawing and ironing apparatus by a shallow, cup-shaped cup c ′.
  • the thermoplastic resin films 5 and 6 are preferably made of polyester resin in consideration of the moldability improving effect described later.
  • Other thermoplastic resins satisfying each condition include polyester resin, polyester elastomer, and polyester resin. Examples include polypropylene and nylon.
  • thermoplastic organic resin with a tensile modulus of 1.45 to 11.8 GPa is applied as a 5 to 50 m thick coating 5 on the side of the aluminum plate 2 that becomes the inner surface 3 of the metal can. It is applied as a 3 to 50 m thick coating 6 on the outer surface 4 of the metal can body.
  • the aluminum plate 1 is combined with the synthetic resin coatings 5 and 6, the thickness of the coating and the tensile modulus of elasticity are set within the above ranges, and when the adhesive strength with the aluminum plate is set to be 200gZl5mm width or more, the metal plate material is used. It has been found that the effect of improving the formability as a synthetic resin coating layer when ironing is particularly effective for aluminum, which has relatively poor mechanical properties. If the tensile elasticity of the thermoplastic resin and the adhesion to the aluminum plate are out of the range, the rate of fracture is high, and partial peeling of the thermoplastic resin layer and metal exposure on the inner surface of the can are observed. It is.
  • a cup C ′ obtained by drawing a resin-coated aluminum plate having thermoplastic resin coatings 5 and 6 on both sides by a press (not shown) was first manufactured from a synthetic resin-coated metal can.
  • a canister 20 is formed.
  • the manufacturing apparatus 10 applies an ironing force to the side wall portion of the canister 20 by using a punch 11 and a plurality of ironing dies 14 and 15 described later, so that the synthetic resin Manufacture coated metal can body.
  • FIG. 1 as in the case of FIG. 3, only the upper half of each process can 20-22 from the center axis is shown.
  • the manufacturing apparatus 10 shown in FIG. 1 is arranged side by side with the same central axis, and a cylindrical punch 11 and a punch 11 are formed.
  • a first ironing die 14, a second ironing die 15, and a stripper 17 are provided.
  • the first ironing die 14 is disposed at a distance from the lidro die 13 to the length (correctly, the length of the side wall) LO of the lidro process can 20, or at a distance slightly longer than that.
  • the first ironing die 14 cooperates with the punch 11 to form the cup C ′ made of the resin-coated aluminum plate 1 with a processing amount such that the reduction rate of the thickness from the original thickness is within the range of 35 to 55%. 1 Perform ironing.
  • the thickness reduction rate is defined as the reduction rate from the original thickness.
  • the first machining amount performed by the first ironing die 14 is set to a larger amount of kamenue compared to the second amount of kamenue by the second ironing die. In the embodiment shown in FIG.
  • the first ironing die 14 is provided with two ironing dies (leading ironing) arranged side by side in close contact with each other in the ironing direction, that is, the center axis direction.
  • Die 14a and trailing ironing die 14b) are configured as a composite ironing die. With this configuration, the ironing performed by the first ironing die 14 can be shared between the ironing dies 14a and 14b.
  • the thermoplastic resin coatings 5 and 6 act in a direction to prevent breakage of the body, that is, breakage of the side wall portion of the metal cap body. Therefore, even when ironing is performed with a large amount of reduction in sheet thickness, ironing can be performed while maintaining the quality without causing a collapse phenomenon in the canister 20. Relaxed
  • the distribution of the processing amount between the leading ironing die 14a and the trailing ironing die 14b depends on the original thickness of the side wall by the leading ironing die 14a.
  • the reduction rate of the thickness of the force shall be within the range of 18-40%, and the reduction rate of the side wall from the original thickness of the side wall by the ironing die 14b shall be within the range of 35-55%. be able to.
  • the processing amount can be increased for the thicker side wall portion and the resin coating layer before the thickness is reduced. It is preferable that the processing amount by the ironing die 14a be at least half the processing amount by the subsequent ironing die 14b.
  • the second ironing die 15 is disposed at a distance from the first ironing die 14 to the length L1 of the first process can 21 (more precisely, the length of the side wall portion) or a distance slightly exceeding it. Therefore, the first partial can 21 starts passing through the second ironing die 15 immediately after passing through the first ironing die 14, and the second ironing die is applied to the side wall portion on which the first ironing process has been performed. A second ironing operation is performed. Since the first ironing and the second ironing are performed simultaneously, an excessive impact load does not act on the can or the punch 11.
  • the second ironing die 15 cooperates with the punch 11 on the side wall of the first step can 21 with a second ironing amount with a reduction rate of the sheet thickness from the original sheet thickness in the range of 60 to 75%. Perform the power squeeze.
  • the second ironing die 15 has a smaller amount of processing than the first ironing die 14 and can also be used as a composite ironing die similarly to the first ironing die 14. In order to adjust the meat and maintain the product quality, it is preferable that the die is constituted as a single ironing die.
  • the amount of processing in the first ironing die 14 and the amount of processing in the second ironing die 15 are such that the side wall thickness reduction rates are within the respective ranges of 35% -55% and 60% -75%, respectively.
  • Ironing department It was actually confirmed that it could be processed. That is, it was confirmed that the presence of the synthetic resin coating layer relaxed the processing restrictions on ironing, and the occurrence of the collapse phenomenon could be avoided even when ironing was performed with a large processing amount.
  • three ironing dies 54, 55, and 56 were used for ironing. However, two unnecessary ironing dies are required: the first ironing die 14 and the second ironing die 15. Can be.
  • the manufacturing apparatus 10 As a result, a reduction in the number of ironing steps, a reduction in processing energy, a reduction in processing time, and the like are realized, and high-speed can making is possible. Further, in the manufacturing apparatus 10, the distance between the two ironing dies 14, 15 is shortened to a minimum, and the punch stroke for the nut is shortened in response to the reduction in the number of ironing steps. Therefore, the manufacturing apparatus 10 can be reduced in size, the installation area can be saved, and the processing speed can be improved.
  • FIG. 2 is a diagram showing another embodiment of the method and apparatus for manufacturing a synthetic resin-coated metal can according to the present invention.
  • the first ironing die 34 and the second ironing die 35 are each configured as one ring-shaped ironing die, that is, a single ironing die that performs ironing independently.
  • the first ironing die 34 can perform the first ironing with the first machining amount such that the reduction rate of the thickness from the original thickness is in the range of 35 to 55%.
  • the second processing amount by the second ironing die 35 is such that the reduction rate of the sheet thickness from the original sheet thickness is in the range of 60 to 75% and is smaller than the first processing amount, and is the same as the embodiment shown in FIG.
  • the second ironing die 35 is also preferably configured as a single ironing die in order to maintain the product quality by adjusting uneven thickness and the like.
  • Table 1 lists the conditions and evaluation results of a test in which ironing was performed on Example 1-16 and Comparative Example 1-12 on the production of a synthetic resin-coated metal can according to the present invention.
  • the items in the horizontal direction in Table 1 are can size, tool 'molding conditions, organic resin coating, and evaluation results.
  • the size of the can is 211 (nominal diameter)
  • the lid diameter is 204 (nominal diameter)
  • the can height is 122 mm 350 ml can and 167 mm 500 ml can.
  • the tool's molding condition items consist of the following items: punch stroke, first ironing form, thickness reduction rate by composite ironing die, and thickness reduction rate by final ironing die.
  • Items of organic resin film are type, It consists of small items of thickness, tensile elasticity, and adhesion of the inner surface resin. ⁇ Since the coated synthetic resin film coating is easily damaged and the coating damage such as pinholes is likely to occur on the resin-coated metal can, it is necessary to ensure that the coating is not damaged during manufacturing in order to ensure the quality such as corrosion resistance and flavor. Must be avoided. For this reason, the evaluation results were as follows: the rate of broken cylinders, rollback (buckling generated near the opening end when the punching force was removed from the can after molding was completed), peeling of the organic resin coating material, and exposure of metal inside the can. It is evaluated from a viewpoint.
  • the stroke length of a body maker requires 24 inches for a 35 Om1 can and 26 inches for a 500 m1 can.
  • Comparative Example 1 the first ironing die was used alone (corresponding to the embodiment shown in FIG. 2) and the thickness reduction rate (31%) was determined in the present invention. (35% -55%).
  • the occurrence of rollback which is buckling at the open end of the can, was observed, and the metal exposure on the inner surface of the can was a significant value of 0.12 mA.
  • Comparative Example 2 is an example in which the first ironing die is used alone, but the thickness reduction rate (77%) by the final ironing die is larger than the range defined in the present invention. As a result of the evaluation, a fracture rate of 100% was recognized.
  • Comparative Example 3 and Comparative Example 4 are examples in which the first ironing die was used alone and the reduction in thickness was 17% and 13%, respectively, so that it was further reduced than in Comparative Example 1. . Rollback was also observed for V and deviation, and the collapse rate was also found to be 30% in Comparative Example 4. Regarding the metal exposure on the inner surface of the can, a higher value was observed as the reduction rate of the thickness was reduced.
  • Comparative Example 5 Comparative Example 5—Comparative Example 8 is an example in which no organic resin coating was applied!
  • the first ironing die was a single ironing die, and the sheet thickness reduction rate (27%) was smaller than the range (35% -55%) specified in the present invention. This is an example.
  • the rate of collapse was 30% and rollback was also observed.
  • the first ironing die was a single ironing die, but it was an example within the conditions of the present invention except that no organic resin coating was applied.
  • it was recognized that the rate of crushing was 820 ppm.
  • the first ironing die was a composite ironing die, but it was an example within the conditions of the present invention except that no organic resin coating was applied. As a result of the evaluation, it was recognized that the rate of collapse was 71 Oppm. Further, Comparative Example 8 is an example within the conditions of the present invention, except that three existing ironing dies were used, but no organic resin coating was applied. In this case, the punch stroke length must be longer than in the embodiment of the present application. It is necessary. Regarding the evaluation results, it was recognized that the rate of occurrence of rupture was 5 ppm.
  • Comparative Example 9 In all of the comparative examples below, the first ironing die is a composite ironing die. Comparative Example 9 is an example in which the organic resin coating was an epoxy phenol coating (hereinafter abbreviated as EZP coating) (the coating thickness was 20Z20 m on the inner and outer surfaces). In this case, the evaluation results showed that the occurrence rate of fracture was 2.5%, rollback was also observed, the peeling area of the EZP paint was large, and the metal exposure on the inner surface of the can was 132 mA, the maximum value was observed. .
  • EZP coating epoxy phenol coating
  • Comparative Example 10 is an example in which the thickness reduction rate (60%) of the subsequent ironing die 14b of the composite ironing die was larger than the range (35% -55%) specified in the present invention. As a result, 0.2% of the body was exposed and 1.2mA of metal on the inside of the can was exposed. Comparative Example 11 is an example in which the sheet thickness reduction rate by the final ironing die (second ironing die) was made larger than the range specified by the present invention (77%). Occurred, and rollback was also observed.
  • Comparative Example 12 is an example in which the thickness reduction rate (27%) of the subsequent ironing die 14b of the composite ironing die was smaller than the range (35% -55%) specified in the present invention. As a result, the rate of collapse was 10%, and rollback was observed. In addition, metal exposure on the inner surface of the can was observed at 2.4 mA.
  • Example 10 is an example in which the tensile elastic modulus (12. OGPa) of the organic resin film was larger than the preferred range (1.45 GPa-11.8 GPa) determined by the present invention. In this case, the burst rate was 200 ppm, and no rollback occurred.
  • Example 11 is an example in which the adhesive strength (180 gZ15 mm width) of the inner resin of the organic resin film is smaller than the preferred range (200 gZ15 mm width) defined in the present invention.
  • exfoliation occurred in a part of the organic resin material, and metal exposure on the inner surface of the can was observed at 5 mA.
  • Examples 12 and 13 showed that the organic resin film was different between polyethylene and polypropylene.
  • the tensile modulus (0.52 GPa and 0.75 GPa, respectively) is smaller than the preferred range (1.45 GPa-11.8 GPa) defined in the present invention.
  • the occurrence rates of ruptured moons were 150 ppm and 100 ppm, respectively.
  • Example 14 and Example 16 the thickness of the organic resin film was applied on the inner surface Z and the outer surface at 3 Zl6, 16/2, 55 ⁇ 55 / ⁇ , respectively, and the preferred range (5- This is an example when 50 mZ3-50 / zm) is removed.
  • the destruction rates were 10 ppm and 20 ppm, respectively, and the metal exposure on the inner surface of the can was 5.5 mA and 3. OmA, respectively.
  • Example 16 the occurrence of a broken body of 30 ppm, slight rollback, and exposure of metal on the inner surface of the can of 0.6 mA were observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

 合成樹脂被覆金属缶体を破胴現象を生じることなく絞りしごき加工を大きい加工量で行うことを可能にする。  両面に熱可塑性樹脂被覆アルミニウム板1から絞り形成されたリドロ工程缶20の側壁部には、パンチ11の押込みに従って順次、第1しごきダイ14と第2しごきダイ15とで、それぞれ元板厚からの板厚減少率が35~55%、60~75%の範囲内となる加工量で第1及び第2のしごき加工が行われ、金属缶胴が製造される。熱可塑性樹脂の被膜層が金属胴部の破損(破胴)を防止する方向に作用するので、しごき加工の加工条件の緩和が図られ、板厚減少率が大きいしごき加工を行っても、第1工程缶21、第2工程缶22に破胴現象を生じることなく品質が維持されたしごき加工が可能となる。

Description

明 細 書
合成樹脂被覆金属缶体の製造方法及び装置
技術分野
[0001] この発明は、金属板に対してパンチやしごきダイを用いて絞り'しごき加工をすること によって合成樹脂被覆金属缶体を製造する方法及び装置に関する。
背景技術
[0002] 従来、缶本体と缶底部とが絞り'しごき加工によって一体成形され、その後、蓋体を 缶本体の開口部周囲に巻き締める等によって形成されたアルミニウム 2ピース缶又は スチール 2ピース缶のような絞りしごき金属缶が広く流通して 、る。これら 2ピース缶の ための金属缶体は、アルミニウムやスチール製の平板から打ち抜いた円板を深絞り 加工して底部が側壁部と一体になつたカップ体を形成し、その後、そのカップ体の側 壁部にしごき加工を施すことによって製造されている。側壁部にしごき加工を施すこと で、カップ体の側壁部の厚みが減少され、金属素材の使用量を少なくした絞りしごき 金属缶が形成される。
[0003] このしごき加工は、冷却 '潤滑剤すなわちクーラントを用いたウエット状態で絞りしご き加工が行われる。ウエット成形では成形した缶の洗浄設備が必要であり排水処理な どの環境対策設備も必要となる。
[0004] このような絞りしごき金属缶において、缶内面の耐食性確保のための内面塗装が不 要で、し力も内容物の風味の維持 (フレーバー性)に優れている等の理由で、金属板 の両面にポリエステルフィルム等の合成樹脂フィルムをラミネートした合成樹脂被覆 アルミニウム缶体や合成樹脂被覆スチール缶体 (以下、単に「榭脂被覆缶体」 t 、う) が提案されている (特許文献 1参照)。深絞り'しごき加工は、クーラント、即ち、冷却. 潤滑剤を用いることなぐドライ状態で行われる。この加工は、ドライ成形と称されてお り、冷却'潤滑剤を用いないことで、製造工程の簡素化や高速ィ匕が図られている。ま た、この加工法は、環境への負荷も軽減されるので、環境に配慮した製造方法と言え る。更に、缶胴表面への印刷をする場合、印刷インキが滑剤の膜で弾かれることもな ぐ適切な印刷が可能である。榭脂被覆缶体は、例えばアルミニウム板の両面に熱可 塑性ポリエステル系榭脂を被覆してなる榭脂被覆アルミニウム板を、その表面に滑剤 を塗布した後、ドライ状態で絞り加工してカップ体を形成し、そうしたカップ体をパン チとリング状しごきダイとの協働でドライ状態で且つ 1ストロークでしごき加工を行うこと により、シームレス缶体として高速で連続製缶される。連続製缶開始前にはパンチ及 びリングダイ内に加温用液体を循環させ、連続製缶開始直前又は直後にパンチ及 びリングダイ内に冷却用液体を流すことによって、パンチの表面温度を適宜の温度 に保ち、また同時に深絞り'しごき加工の開始に伴う缶の過度の温度上昇を防止して 、連続したしごき加工を可能にすることも提案されて 、る。
特許文献 1:特開 2002— 178048号公報(段落 [0028]— [0035]、図 3—図 6) 従来の、アルミニウム等の金属板を深絞り ·しごき加工することによる金属缶の製造 工程の一例、及び製造装置の概要の一例が、図 3に示されている。図 3に示す深絞り 'しごき加工装置 50は、円筒状のパンチ 11、パンチ 11が嵌入可能な円筒状のブラン クホルダー 12、ブランクホルダー 12の加工方向先側に近接して配設された環状のリ ドロダイ 13、該リドロダイ 13の先側に順次間隔を置 、て配置された第 1しごきダイ 54 、第 2しごきダイ 55及び第 3しごきダイ 56、並びに第 3しごきダイ 56の先側に配置され ているストリッパー 17を備えている。これらパンチ 11、ブランクホルダー 12、各しごき ダイ 54— 56及びストリッパー 17は、それぞれが同じ中心軸線上に並べて配設されて いる。金属板は通常、図示されていないカツビングプレス (カッパ一)によって、浅い力 ップ状のカップ Cに成形されて、深絞り'しごき加工装置 50に供給される。パンチ 11 は、リドロダイ 13を貫通して押し込まれるときに、ブランクホルダー 12とリドロダイ 13と によって環状に挟まれて保持されていたカップ Cを絞り成形によってリドロ工程缶 60 に成形する。パンチ 11の更なる押込みによって、リドロ工程缶 60の側壁部には第 1し ごきダイ 54—第 3しごきダイ 56によって順次に第 1一第 3のしごき加工が施され、それ ぞれ第 1工程缶 61—第 3工程缶 63に成形される。リドロダイ 13と第 1しごきダイ 54と の間の距離 Laはリドロ工程缶 60の長さ (側壁部の長さ)を考慮して設定されており、 第 1しごきダイ 54と第 2しごきダイ 55との間の距離 Lb、及び第 2しごきダイ 55と第 3し ごきダイ 56との間の距離 Lcは、それぞれ、第 1しごき加工で得られる第 1工程缶 61の 長さ、又は第 2しごき加工で得られる第 2工程缶 62の長さ (共に側壁部の長さ)を考 慮して設定される。
[0006] ところで、アルミニウムは、スチールと比較して強度や r値、限界絞り比等の機械的 特性が劣る金属素材であるため、大きな変形を伴う絞り'しごき加工の際には、胴部 が破断する破胴現象が生し易い。したがって、アルミニウム板の絞り'しごき加工にお Vヽては加工量やカ卩ェ速度を制限せざるを得ず、アルミニウム 2ピース缶の製造にお V、て、その速度及び素材のゲージダウン等にも制約が生じて 、る。
[0007] カップ Cの一部断面を拡大して示すように、榭脂被覆のな!ヽアルミニウム板製カップ Cを用いて側壁部の元板厚力もの板厚減少率が 60— 80%となる絞りしごき缶を成形 する場合、側壁部の破断率を lOppm以下に抑えるには、 1個のしごきダイによる 1回 のしごき加工当たりのしごき率を 40%以下に抑えなければならない。したがって、上 記のようにリドロ工程缶 (カップ体) 60をパンチストローク方向に順に並べたしごきダイ に順次通すことによって多段にしごき加工を行うことが必要となり、パンチストローク長 さが長くなるという傾向がある。例えば、 500ml缶の場合、 3個のしごきダイを 295. 5 mm以上の配置長さに保つことが必要であり、その結果、パンチストローク長さは 668 mm程度に長くなつている。ストロークが長くなると、製缶マシン可動部に生じる慣性 力や衝撃力が増大するために機械部品の破損が生じ易くなるので、製缶スピードを 速くすることが難しい。また、長いストロークはパンチの振れの増大の原因になるため 、偏肉等を含めて製缶精度が低下することに繋がり、缶の品質にも悪影響が及ぶ。 上記問題点を解決するため、ストローク長さを短くし、複数のしごきダイで同時にしご き加工を行うことも考えられるが、缶の側壁部の破断が起こるので、この方法は採用 困難である。
発明の開示
発明が解決しょうとする課題
[0008] 両面に被膜層が存在して ヽる榭脂被覆金属板、或いはそれから成形された内外両 側に被膜層が存在して 、る榭脂被覆カップ体にぉ 、ては、金属板のしごき加工の際 に、榭脂被膜層が金属板の成形性向上に寄与するという現象が生じていることが見 い出された。そこで、榭脂被覆缶体の製造において、榭脂被膜層の成形性への貢献 を考慮して、金属板のしごき加工の加工条件の緩和を図る点で解決すべき課題があ る。
[0009] この発明の目的は、榭脂被覆缶体の製造において、榭脂被膜層の存在を利用して 金属板のしごき加工の加工条件の緩和を図りつつ、破胴現象を生じることなくしごき 加工を大き 、力卩ェ量で行うことを可能にし、しごきカ卩ェエネルギーの削減及びしごき 加工時間の短縮等を実現し、高速製缶を可能にし、更にパンチのストロークを短縮し 、絞りしごき加工装置の小型化を図ることができる合成樹脂被覆金属缶体の製造方 法及び装置を提供することである。
課題を解決するための手段
[0010] 上記の課題を解決するため、この発明による合成樹脂被覆金属缶体の製造方法は
、両面に熱可塑性榭脂を被覆した金属板をカップ体に絞り成形した後、パンチと複 数のしごきダイを用いて前記カップ体の側壁部にしごき加工を施すことにより金属缶 胴を製造する方法において、前記しごき加工は、前記カップ体の前記側壁部に対し て第 1しごきダイによって元板厚からの板厚減少率が 35— 55%の範囲内となる加工 量で行われる第 1しごき加工と、前記第 1しごき加工が行われた前記側壁部に対して 第 2しごきダイによって前記元板厚からの板厚減少率が 60— 75%の範囲内となる加 ェ量で行われる第 2しごき加工とから成ることを特徴として 、る。ここで絞り成形には、 再絞り成形を含んでもよい。また、元板厚は、金属板をカップ体に絞り成形する前の 平板での厚さで、熱可塑性榭脂被覆を含む厚さである。
[0011] この合成樹脂被覆金属缶体の製造方法によれば、両面に熱可塑性榭脂を被覆し た金属板カゝら形成されたカップ体にしごき加工を施して合成樹脂被覆金属缶体が製 造される力 内外両面に熱可塑性榭脂が被覆されているカップ体の側壁部に対して パンチと協働して施される第 1しごき加ェでは、第 1しごきダイによって元板厚力もの 板厚減少率が 35— 55%の範囲内となる加工量でしごき力卩ェが行われる。その後、 第 1しごき加工が行われた側壁部に対して第 2しごきダイによって元板厚からの板厚 減少率が 60— 75%の範囲内となる加工量で第 2しごき加工が行われる。熱可塑性 榭脂の被膜層が金属胴部であるカップ体の側壁部の破損 (破胴)を防止する方向に 作用するので、しごき加工の加工条件の緩和が図られ、板厚減少率が大きい加工量 でしごき加工を行っても、カップ体に破胴現象を生じることなく品質が維持されたしご き加工が可能となる。
[0012] また、この発明による合成樹脂被覆金属缶体の製造装置は、両面に熱可塑性榭脂 を被覆した金属板を絞り成形して得られたカップ体の側壁部をパンチと複数のしごき ダイを用いてしごき加工を施すことにより金属缶胴を製造する装置において、前記複 数のしごきダイは、元板厚力もの板厚減少率が 35— 55%の範囲内となる加工量で 第 1しごき加工を行う第 1しごきダイと、前記第 1しごきダイから前記第 1しごき加工で 得られる金属缶胴の長さ又はその長さを僅かに超える距離を置いて配置され且つ前 記第 1しごき加工が行われた前記側壁部に対して前記元板厚からの板厚減少率が 6 0— 75%の範囲内となる加工量で第 2しごき加工を行う第 2しごきダイとから成ることを 特徴としている。なお、ここでの金属缶胴の長さは、缶底と側壁部をつなぐテーパ部 分 (チャイム部)を含まない缶胴の側壁部の長さを意味する。また、両ダイの距離は、 しごき加工を行うダイ'ストレート部位置での両ダイの距離を意味する。
[0013] この合成樹脂被覆金属缶体の製造装置によれば、両面に熱可塑性榭脂を被覆し た金属板カゝら形成されたカップ体にしごき加工を施して合成樹脂被覆金属缶体が製 造される力 内外両面に熱可塑性榭脂が被覆されているカップ体の側壁部に対して パンチと協働して施される第 1しごき加ェでは、第 1しごきダイによって元板厚力もの 板厚減少率が 35— 55%の範囲内となる加工量でしごき力卩ェが行われる。第 2しごき ダイは第 1しごきダイ力 第 1しごき加工で得られる金属缶胴の長さを僅かに超える距 離を置いて配置されているので、金属缶胴は第 1しごきダイを通過した直後に第 2し ごきダイを通過開始し、第 1しごき加工が行われた側壁部に対して第 2しごきダイによ つて元板厚からの板厚減少率が 60— 75%の範囲内となる加工量で第 2しごきカロェ が行われる。熱可塑性榭脂の被膜層が金属胴部であるカップ体の側壁部の破損 (破 月同)を防止する方向に作用するので、しごき加工の加工条件の緩和が図られ、板厚 減少率が大き!/ヽ加工量でしごき加工を行っても、カップ体に破胴現象を生じることな く品質が維持されたしごき加工が可能となる。前述のようにしごきダイは、第 1及び第 2のしごきダイカゝらなり、両ダイは第 1しごき加工で得られる金属缶胴の長さを僅かに 超える距離を置いて配置させる。よって、両ダイがある缶月同について缶の先端と後方 とを同時にしごき加工をするということがなぐダイとパンチの芯ズレによる偏肉や破月同 の虞が少ない。また、両しごきダイ間の距離も最小限に短縮化され、装置の配置に要 するスペース、加工速度等において改善が図られる。
[0014] この合成樹脂被覆金属缶体の製造方法及び装置にお!ヽて、前記第 1しごきダイ及 び前記第 2しごきダイは、それぞれ単独しごきダイとすることができる。第 1しごきダイ は、しごき加工を単独で行うしごきダイ、即ち、 1つのリング状のしごきダイで構成し、 第 1しごきダイは、元板厚からの板厚減少率が 35— 55%の範囲内となる加工量で第 1しごき加ェを行う。第 2しごきダイ〖こよる加ェ量は第 1しごきダイ〖こよる加ェ量よりも少 ないので、第 1しごきダイを単独しごきダイとするときには、第 2しごきダイも単独しごき ダイとして構成することができる。
[0015] この合成樹脂被覆金属缶体の製造方法及び装置にお!ヽて、前記第 1しごきダイ及 び前記第 2しごきダイのうち、少なくとも前記第 1しごきダイは、しごき加工方向に並設 された先行側しごきダイと後続側しごきダイとから成る複合しごきダイとすることができ る。第 1しごきダイが行う加工量は、元板厚力もの板厚減少率が 35— 55%であって、 第 2しごきダイによる加工量と比較して大きな加工量であるので、第 1しごきダイを先 行側しごきダイと後続側しごきダイとがしごき加工方向に並んで配置した複合しごきダ ィとすることで、しごき加工を各しごきダイに分担させることが好ましい。複合しごきダ ィの先行側しごきダイと後続側しごきダイは隣接配置することが、偏肉やパンチのぶ れ防止やパンチストロークの短縮ィ匕に最も有効であるが、それらのダイの間隔を、そ れらのダイで同時にしごき力卩ェが行われる範囲にすることもできる。その場合、先行 側しごきダイと後続側しごきダイの間隔は、先行側しごきダイのみで加工した場合の 缶月同側壁長さの半分以下の間隔であることが、偏肉やパンチのぶれ防止の面力 好 ましい。第 2しごきダイは、第 1しごきダイと同様に複合しごきダイとすることもできるが、 その加工量は第 1しごきダイによる加工量よりも少ないので、単独しごきダイとすること ができる。
[0016] この合成樹脂被覆金属缶体の製造方法及び装置にお!ヽて、前記先行側しごきダイ による前記側壁部のしごき加工を前記元板厚力もの板厚減少率が 18— 40%の範囲 内となる加工量で行!ヽ、前記後続側しごきダイによる前記側壁部のしごき加工を前記 元板厚からの板厚減少率が 35— 55%の範囲内となる加工量で行うことができる。複 合しごきダイとして構成されている第 1しごきダイにおいては、厚肉が減少する前のよ り肉厚の金属板及び榭脂被膜層につ ヽては加工量を大きくできるので、先行側しご きダイによる加工量を後続側しごきダイによる加工量の半分以上とするのが好ましい
[0017] この合成樹脂被覆金属缶体の製造方法及び装置にお!、て、前記金属板は、アルミ ニゥム板とすることができる。表面に合成樹脂が被覆された金属板をしごき加工する ときの、その金属層に対する合成樹脂被覆層の成形性向上作用は、スチールと比較 して機械的特性が劣るアルミニウムに対して特に効果的である。
[0018] この合成樹脂被覆金属缶体の製造方法及び装置にお!ヽて、前記熱可塑性榭脂は 、 1. 45— 11. 8GPaの引張り弾性率を有することが好ましい。熱可塑性榭脂の引張 り弾性率を上記の範囲に定めることにより、しごき加工を受ける金属層に対する合成 榭脂被覆層の補強作用を十分に発揮させることができる。熱可塑性榭脂の引張り弾 性率が範囲外であると、破胴発生率が高くなり、熱可塑性榭脂層に一部剥離や缶内 面における金属露出が観察される。
[0019] この合成樹脂被覆金属缶体の製造方法及び装置にお!ヽて、前記熱可塑性榭脂は 、ポリエステル榭脂とすることができる。熱可塑性榭脂は、上記の特性や補強作用を 考慮すると、ポリエステル榭脂が好ましいが、その他の榭脂として、ポリプロピレンや ナイロンとすることもできる。
[0020] この合成樹脂被覆金属缶体の製造方法及び装置にお!ヽて、前記熱可塑性榭脂は 、前記金属板に対して、前記金属缶胴の内面側となる側で 5— 50 m厚で、且つ前 記金属缶胴の外面側となる側で 3— 50 m厚で被覆されていることが好ましい。熱 可塑性榭脂の膜厚が上記の範囲外である場合には、熱可塑性榭脂に金属面からの 一部又は大きな剥離が観察される。
発明の効果
[0021] この発明による合成樹脂被覆金属缶体の製造方法及び装置は、上記のように構成 されて 、るので、内外両面に熱可塑性榭脂が被覆されて 、るカップ体の側壁部に対 してパンチと協働して施される第 1しごき加ェでは、第 1しごきダイによって元板厚か らの板厚減少率が 35— 55%の範囲内となる加工量で、その後、第 1しごき力卩ェが行 われた側壁部に対して第 2しごきダイによる第 2しごき加工では、元板厚からの板厚 減少率が 60— 75%の範囲内となる加工量で行われる。熱可塑性榭脂の被膜層が 金属胴部であるカップ体の側壁部の破損 (破胴)を防止する方向に作用するので、 板厚減少率が大き ヽ加工量でしごき加工を行っても、カップ体に破胴現象が発生す るのを回避することができ良品質を維持するしごき加工が可能であり、良品質が維持 された脂被覆金属缶体を得ることができる。したがって、しごき加工に対する加工制 限が緩和されると共に、しごき力卩ェの段数が減少するので、加工エネルギーの削減、 加工時間の短縮等が実現され、高速製缶を可能にすることができる。更に、製造装 置においては、しごき力卩ェの段数が減少することに対応して、しごき加工用のパンチ のストロークを短縮することができるので、絞りしごき加工装置の小型ィ匕、省スペース の効果が得られる。
図面の簡単な説明
[0022] [図 1]この発明による合成樹脂被覆金属缶体の製造方法によって合成樹脂被覆金属 缶体を製造する工程の一例、及びこの発明による合成樹脂被覆金属缶体の製造装 置の一例を示す概略図である。
[図 2]この合成樹脂被覆金属缶体の製造方法及び装置の別の実施の態様を示す図 である。
[図 3]従来の、アルミニウム板等の金属板を深絞り'しごき加工することによる金属缶の 製造工程及び製造装置の一例の概要を示す図である。
符号の説明
[0023] 1 榭脂被覆アルミニウム板 2 アルミニウム板
3 アルミニウム板 2の内面 4 アルミニウム板 2の外面
5, 6 熱可塑性榭脂被膜
10 合成樹脂被覆金属缶体の製造装置 11 パンチ
12 ブランクホルダー 13 リドロダイ
14, 34 第 1しごきダイ
14a 先行側しごきダイ 14b 後続側しごきダイ
15, 35 第 2しごきダイ 17 ストリッパー 20 リドロ工程缶 21 第 1工程缶
22 第 2工程缶
C, C カップ
L0 リドロ工程缶 20の長さ L1 第 1工程缶 21の長さ
発明を実施するための最良の形態
[0024] 以下、添付した図面に基づいて、この発明による合成樹脂被覆金属缶体の製造方 法及び装置の実施の形態を説明する。図 1はこの発明による合成樹脂被覆金属缶 体の製造方法によって合成樹脂被覆金属缶体を製造する工程の一例、及びこの発 明による合成樹脂被覆金属缶体の製造装置の一例を示す概略図である。図 1に示 す実施の態様では、缶底と一体に形成された缶本体及び蓋体から成る所謂 2ピース 缶の缶本体を製造する工程の一部(しごき加工工程)が示されて 、る。
[0025] 図 1に示す合成樹脂被覆金属缶体の製造装置にお!ヽて、絞り ·しごき加工を受ける 金属板は、カップ C'の一部断面を拡大して示すように、アルミニウム板 2と、その両面 3, 4に被膜処理が施された熱可塑性榭脂被膜 5, 6とから成る平らな榭脂被覆アルミ -ゥム板 1である。榭脂被覆アルミニウム板 1は、通常、図示しないカツビングプレスで 打ち抜 、た浅 、カップ形状のカップ c 'で絞り ·しごき加工装置に供給される。熱可塑 性榭脂被膜 5, 6は、後述する成形性向上作用を考慮するとポリエステル榭脂とする ことが好ましいが、各条件を満たすその他の熱可塑性榭脂として、ポリエステル榭脂 、ポリエステルエラストマ一、ポリプロピレン、ナイロン等が挙げられる。引っ張り弾性 率が 1. 45— 11. 8GPaである熱可塑性有機榭脂は、アルミニウム板 2に対して金属 缶月同の内面 3となる側で、 5— 50 m厚の被膜 5として施されており、金属缶胴の外 面 4となる側で、 3— 50 m厚の被膜 6として施されている。アルミニウム板 1と合成榭 脂被膜 5, 6との組み合わせる際に、被膜厚さと引張り弾性率を上記の範囲に定め、 アルミニウム板との密着力を 200gZl5mm幅以上となるように設けるときには、金属 板材料をしごき加工するときの合成樹脂被膜層としての成形性向上作用は、機械的 特性が比較的に劣るアルミニウムに対して特に効果的であることが判明している。熱 可塑性榭脂の引張り弾性率やアルミニウム板との密着力が範囲外であると、破胴発 生率が高くなり、熱可塑性榭脂層に一部剥離や缶内面における金属露出が観察さ れる。
[0026] 図 1に示すように、両面に熱可塑性榭脂被膜 5, 6を有する榭脂被覆アルミニウム板 を図示しないプレスで絞り成形したカップ C'は、先ず、合成樹脂被覆金属缶体の製 造装置(以下、単に「製造装置」と略す) 10によって絞り加工を施すことにより、リドロ 缶体 20に形成される。その後、製造装置 10は、後述するパンチ 11と複数のしごきダ ィ 14, 15を用いてリドロ缶体 20の側壁部にしごき力卩ェを施すことにより、 1ストローク で且つドライ状態で、合成樹脂被覆金属缶胴を製造する。図 1においては、図 3の場 合と同様に、各工程缶 20— 22をその中心軸線より上半分のみを示す。
[0027] 図 1に示す製造装置 10は、図 3に示した従来の製造装置と同様に、それぞれが中 心軸線を同じにして並べて配設されて 、る円筒状のパンチ 11、パンチ 11が嵌入可 能な円筒状のブランクホルダー 12、ブランクホルダー 12に加工方向先方側に近接し て配設された環状のリドロダイ 13、リドロダイ 13の加工方向先方側に向かって間隔を 置いて順次配置された第 1しごきダイ 14、第 2しごきダイ 15及びストリッパー 17を備え ている。パンチ 11は、ブランクホルダー 12及びリドロダイ 13を貫通して前進するとき に、ブランクホルダー 12とリドロダイ 13とによって環状に挟まれて保持された榭脂被 覆アルミニウム板 1 (カップ C' )を (再)絞り成形することで、リドロ工程缶 20に成形する 。リドロ工程缶 20をパンチ 11で押し込んでいくときに、リドロ工程缶 20の側壁部は第 1しごきダイ 14、及び第 2しごきダイ 15によって順次しごき加工が施され、それぞれ、 榭脂被覆とともに金属肉が延ばされて順次、薄肉化と缶長さを長くした第 1工程缶 21 、第 2工程缶 22 (金属缶胴)に成形される。
[0028] 第 1しごきダイ 14は、リドロダイ 13からリドロ工程缶 20の長さ(正確には側壁部の長 さ) LO、又はそれよりも僅かに長い距離を置いて配置されている。第 1しごきダイ 14は 、パンチ 11と協働して、榭脂被覆アルミニウム板 1からなるカップ C'を元板厚からの 板厚減少率が 35— 55%の範囲内となる加工量で第 1しごき加工を行う。ここでは、 板厚減少率は元板厚からの減少率として定義されている。第 1しごきダイ 14が行う第 1加工量は、第 2しごきダイによる第 2カ卩ェ量と比較して大きなカ卩ェ量に設定されて ヽ る。図 1に示す実施の形態においては、第 1しごきダイ 14は、しごき加工方向、即ち、 中心軸線方向に互いに密着して並んで配置された二つのしごきダイ (先行側しごき ダイ 14a、後続側しごきダイ 14b)カゝら成る複合しごきダイとして構成されている。この 構成によって、第 1しごきダイ 14が行うしごき加工を各しごきダイ 14a、 14bに分担さ せることができる。このとき、熱可塑性榭脂被膜 5, 6が破胴、即ち、金属胴部である力 ップ体の側壁部の破損を防止する方向に作用する。したがって、板厚減少率が大き い加工量でしごき加工を行っても、リドロ工程缶 20に破胴現象を生じることなく品質 が維持されたしごき加工が可能となるので、しごき加工の加工条件の緩和が図られる
[0029] 図 1に示す実施の態様にぉ 、て、先行側しごきダイ 14aと後続側しごきダイ 14bとの 加工量の配分にっ 、ては、先行側しごきダイ 14aによる側壁部の元板厚力 の板厚 減少率を 18— 40%の範囲内の加工量とし、後続側しごきダイ 14bによる側壁部の元 板厚からの板厚減少率を 35— 55%の範囲内の加工量とすることができる。複合しご きダイとして構成されている第 1しごきダイ 14においては、厚肉が減少する前のより肉 厚の側壁部及び榭脂被膜層につ 、ては加工量を大きくできるので、先行側しごきダ ィ 14aによる加工量を後続側しごきダイ 14bによる加工量の半分以上とするのが好ま しい。
[0030] 第 2しごきダイ 15は、第 1しごきダイ 14から第 1工程缶 21の長さ(正確には側壁部の 長さ) L1又はそれを僅かに超える距離を置いて配置されている。したがって、第 1ェ 程缶 21は第 1しごきダイ 14を通過した直後に先頭部分力も第 2しごきダイ 15を通過 開始し、第 1しごき加工が行われた側壁部に対して第 2しごきダイによって第 2しごき 加工が行われる。第 1しごき加工と第 2しごき加工とが同時に行われることはなぐ過 大な衝撃荷重が缶やパンチ 11に作用することはない。第 2しごきダイ 15は、第 1工程 缶 21の側壁部に対して、パンチ 11と協働して元板厚からの板厚減少率が 60— 75 %の範囲内の加工量で第 2しごき力卩ェを行う。第 2しごきダイ 15については、第 1しご きダイ 14と同様に複合しごきダイとすることもできる力 第 1しごきダイ 14による加工量 よりも少ない加工量を持ち、また、金属缶体の偏肉等を調整し製品品質を維持する ためにも、単独しごきダイとして構成するのが好ましい。
[0031] 第 1しごきダイ 14における加工量と、第 2しごきダイ 15による加工量は、それぞれ板 厚減少率として 35%— 55%、 60%— 75%の各範囲内になるように、側壁部をしごき 加工できることが、実際にも確認された。即ち、合成樹脂被膜層が存在していることに よって、しごき加工に対する加工制限が緩和され、大きい加工量でしごき加工を行つ ても破胴現象の発生を回避できることが確認された。従来はしごき加工に 3個のしご きダイ 54, 55, 56 (図 3参照)を用いていたが、必要なしごきダイを第 1しごきダイ 14と 第 2しごきダイ 15の 2個とすることができる。その結果、しごき加工段数の減少、加工 エネルギーの削減、加工時間の短縮等が実現され、高速製缶が可能となる。更に、 製造装置 10においては、両しごきダイ 14, 15間の距離が最小限に短縮ィ匕されると 共にしごき加工の段数が減少することに対応してカ卩ェ用のパンチのストロークを短縮 することができるので、製造装置 10を小型化し、設置面積を省スペース化し、加工速 度等にお 、ても高速ィ匕を図ることができる。
[0032] 図 2は、この発明による合成樹脂被覆金属缶体の製造方法及び装置についての別 の実施の態様を示す図である。図 2に示す実施の態様は、第 1しごきダイの構成が異 なる以外、格別の構成上の相違がないので、同じ機能を奏する構成要素には同じ符 号を付して重複する説明を省略する。図 2に示す実施の態様では、第 1しごきダイ 34 及び第 2しごきダイ 35は、それぞれ、 1つのリング状のしごきダイ、即ち、しごき加工を 単独で行う単独しごきダイとして構成されている。第 1しごきダイ 34は、元板厚からの 板厚減少率が 35— 55%の範囲内となる第 1加工量で第 1しごき加工を行うことがで きる。第 2しごきダイ 35による第 2加工量は、元板厚からの板厚減少率が 60— 75% の範囲内であって第 1加工量よりも少なぐまた図 1に示す実施の態様と同様、偏肉 等を調整し製品品質を維持するため、第 2しごきダイ 35も単独しごきダイとして構成 することが好ましい。
[0033] 表 1には、この発明による合成樹脂被覆金属缶体の製造についての実施例 1一 16 と比較例 1一 12とについてしごき加工を行った試験の条件と評価結果とが掲載され ている。表 1の横方向の項目は、缶サイズ、ツール'成形条件、有機榭脂被膜及び評 価結果である。缶サイズは缶径が 211 (呼び径)、蓋径が 204 (呼び径)、缶ハイトが 1 22mmの 350ml缶、及び 167mmの 500ml缶である。ツール'成形条件の項目は、 パンチストローク、 1番目のしごき形態、複合しごきダイによる各板厚減少率、及び最 終しごきダイによる板厚減少率の小項目から成る。有機榭脂被膜の項目は、種類、 厚み、引張り弾性及び内面樹脂の密着力の小項目から成る。榭脂被覆の金属缶体 は、被覆された合成樹脂フィルム被膜が傷ついたり、ピンホール等の被膜損傷が生 じ易いので、耐食性、フレーバー性等の品質を確保するには、製造中に被膜損傷が 生じないようにする必要がある。そのため、評価結果については、破胴発生率、ロー ルバック (成形終了後の缶をパンチ力も抜く際に開口端近傍に発生する座屈)、有機 榭脂被覆材の剥離、及び缶内面金属露出の観点で評価がなされている。
[表 1]
合成樹脂被覆金属缶体の製造試験の条件と評価結果
Figure imgf000016_0002
通常、 単独しごきを実施する場合, ボディメーカのストローク長さは 3 5 O m 1缶で 2 4インチ, 500 m 1缶で 2 6インチを必要とする。
Figure imgf000016_0001
きした例である。その他、上記項目について、表 1に掲載のとおりであって本発明で 定められている範囲内の数値である。各実施例についての評価結果に関しては、破 胴発生率はいずれの例もゼロであり、ロールバックの発生は無いか、発生していても 微小な状態であり、有機榭脂被覆材の剥離についてはその発生が認められず、缶内 面金属露出においてもエナメルレーター測定で 0. OOmAと観察可能以下となってい る。
[0035] これに対して、比較例 1は、 1番目のしごきダイが単独(図 2に示す実施の態様に相 当)で板厚減少率 (31%)を本発明で定められている範囲(35%— 55%)よりも小さく した例である。評価結果では缶の開口端部での座屈であるロールバックの発生が認 められ、缶内面金属露出も 0. 12mAとあるように有意の値が認められた。
比較例 2は、 1番目のしごきダイが単独であるが、最終しごきダイによる板厚減少率 ( 77%)が本発明で定められている範囲よりも大きい場合の例である。評価結果では 1 00%の破胴発生率が認められた。
比較例 3及び比較例 4は、 1番目のしごきダイが単独で且つ板厚減少率を 17%、 1 3%とされて 、るように比較例 1よりも更に低下させた場合の例である。 V、ずれもロー ルバックの発生が認められ、破胴発生率につ 、ても比較例 4で 30%と認められた。 缶内面金属露出については、板厚減少率を下げるほど高い数値として観察された。
[0036] 比較例 5—比較例 8は、有機榭脂被覆を施さな!/、場合の例である。比較例 5にお ヽ ては、更に、 1番目のしごきダイが単独しごきダイであり且つ板厚減少率(27%)を本 発明で定められている範囲(35%— 55%)よりも小さくした例である。評価結果につ いては、破胴発生率が 30%であり、且つロールバックの発生も認められた。比較例 6 においては、 1番目のしごきダイが単独しごきダイであるが、有機榭脂被覆を施さない 以外は本発明の条件内の例である。評価結果については、破胴発生率が 820ppm であると認められた。また、比較例 7においては、 1番目のしごきダイを複合しごきダイ としているが、有機榭脂被覆を施さない以外は本発明の条件内の例である。評価結 果については、破胴発生率が 71 Oppmであると認められた。更に、比較例 8は、現行 の 3つの単独しごきダイを用いているが、有機榭脂被覆を施さない以外は本発明の 条件内の例である。この場合、パンチストローク長さを本願の実施例よりも長くする必 要がある。評価結果については、破胴発生率が 5ppmであると認められた。
[0037] 比較例 9以下の比較例にすべてにぉ 、て、 1番目のしごきダイは複合しごきダイとさ れている。比較例 9は有機榭脂被膜をエポキシフエノール塗料 (以下、 EZP塗料と 略記する)(内外面に被膜厚み 20Z20 m)とした場合の例である。この場合の評価 結果は、破胴発生率が 2. 5%であり、ロールバックの発生も認められ、 EZP塗料の 剥離面積も大きぐ缶内面の金属露出も 132mAと最大の値が観察された。
比較例 10は、複合しごきダイのうち後続側しごきダイ 14bによる板厚減少率 (60%) を本発明で定められている範囲(35%— 55%)よりも大きくした例であるが、評価結 果においては、 0. 2%の破胴発生率、 1. 2mAの缶内面金属露出が認められた。 比較例 11は、最終しごきダイ (第 2しごきダイ)による板厚減少率を本発明で定められ ている範囲よりも大きくした (77%)例であるが、評価結果においては、破胴発生率が 100%発生し、ロールバックの発生も認められた。
比較例 12は、複合しごきダイのうち後続側しごきダイ 14bによる板厚減少率(27%) を本発明で定められている範囲(35%— 55%)よりも小さくした例であるが、評価結 果においては、破胴発生率が 10%発生し、ロールバックの発生も認められた。また、 2. 4mAの缶内面金属露出が認められた。
[0038] 実施例 10は、有機榭脂被膜の引張り弾性率(12. OGPa)を本発明で定められて いる好適範囲(1. 45GPa— 11. 8GPa)よりも大きくした例である。この場合、破月同発 生率力 S200ppmであり、ロールバックは発生しなかった。
実施例 11は、有機榭脂被膜の内面樹脂の密着力(180gZl5mm幅)を本発明で 定められている好適範囲(200gZl5mm幅)よりも小さくした例である。この場合、有 機榭脂材料の一部に剥離が発生しており、 5mAの缶内面の金属露出も観察された 実施例 12及び実施例 13は、有機榭脂被膜がポリエチレンとポリプロピレンとで異な る力 引張り弾性率 (それぞれ 0. 52GPa、 0. 75GPa)を本発明で定められている好 適範囲(1. 45GPa— 11. 8GPa)より小さくした場合の例である。この場合、破月同発 生率がそれぞれ 150ppm、 lOOppmであり、両例とも軽微なロールバックの発生が認 められ、缶内面の金属露出はそれぞれ 2. 5mA、 4. 4mAが観察された。 更に、実施例 14一実施例 16は、有機榭脂被膜の厚さを内面 Z外面でそれぞれ 3 Zl6、 16/2, 55Ζ55 /ζ πιで施し、本発明で定められている好適範囲(5— 50 m Z3— 50 /z m)を外した場合の例である。この場合、実施例 14及び実施例 15では破 胴発生率がそれぞれ 10ppm、 20ppmであり、缶内面の金属露出もそれぞれ 5. 5m A、 3. OmAが観察された。実施例 16では、破胴発生率 30ppm、軽微なロールバッ ク、及び 0. 6mAの缶内面金属露出が観察された。
産業上の利用可能性
この発明による実施の形態では、榭脂被覆したアルミニウム板の絞り ·しごき加工に よる製缶について説明した力 他の金属、例えば、スチール缶の場合でも同様の効 果を期待することができる。

Claims

請求の範囲
[1] 両面に熱可塑性榭脂を被覆した金属板をカップ体に絞り成形した後、パンチと複 数のしごきダイを用いて前記カップ体の側壁部にしごき加工を施すことにより金属缶 胴を製造する方法において、前記しごき加工は、前記カップ体の前記側壁部に対し て第 1しごきダイによって元板厚からの板厚減少率が 35— 55%の範囲内となる加工 量で行われる第 1しごき加工と、前記第 1しごき加工が行われた前記側壁部に対して 第 2しごきダイによって前記元板厚からの板厚減少率が 60— 75%の範囲内となる加 ェ量で行われる第 2しごき加工とから成ることを特徴とする合成樹脂被覆金属缶体の 製造方法。
[2] 前記第 1しごきダイ及び前記第 2しごきダイは、それぞれ単独しごきダイであることか ら成る請求項 1に記載の合成樹脂被覆金属缶体の製造方法。
[3] 前記第 1しごきダイ及び前記第 2しごきダイのうち、少なくとも前記第 1しごきダイは、 しごき加工方向に並設された先行側しごきダイと後続側しごきダイとから成る複合しご きダイであることから成る請求項 1に記載の合成樹脂被覆金属缶体の製造方法。
[4] 前記先行側しごきダイによる前記側壁部のしごき加工は前記元板厚からの板厚減 少率が 18— 40%の範囲内となる加工量で行われ、前記後続側しごきダイによる前 記側壁部のしごき加工は前記元板厚からの板厚減少率が 35— 55%の範囲内となる 加工量で行われることから成る請求項 3に記載の合成樹脂被覆金属缶体の製造方 法。
[5] 前記金属板は、アルミニウム板であることから成る請求項 1一 4のいずれか 1項に記 載の合成樹脂被覆金属缶体の製造方法。
[6] 前記熱可塑性榭脂は、 1. 45— 11. 8GPaの引張り弾性率を有することから成る請 求項 1一 4のいずれか 1項に記載の合成樹脂被覆金属缶体の製造方法。
[7] 前記熱可塑性榭脂は、ポリエステル榭脂であることから成る請求項 6に記載の合成 榭脂被覆金属缶体の製造方法。
[8] 前記熱可塑性榭脂は、前記金属板に対して、前記金属缶胴の内面側となる側で 5 一 50 μ m厚で、且つ前記金属缶胴の外面側となる側で 3— 50 μ m厚で被覆されて いることから成る請求項 1一 4のいずれか 1項に記載の合成樹脂被覆金属缶体の製 造方法。
[9] 両面に熱可塑性榭脂を被覆した金属板を絞り成形して得られたカップ体の側壁部 をパンチと複数のしごきダイを用いてしごき加工を施すことにより金属缶胴を製造する 装置において、前記複数のしごきダイは、元板厚からの板厚減少率が 35— 55%の 範囲内となる加工量で第 1しごき加工を行う第 1しごきダイと、前記第 1しごきダイから 前記第 1しごき加工で得られる金属缶胴の長さ又はその長さを僅かに超える距離を 置いて配置され且つ前記第 1しごき加工が行われた前記側壁部に対して前記元板 厚からの板厚減少率が 60— 75%の範囲内となる加工量で第 2しごき加工を行う第 2 しごきダイとから成ることを特徴とする合成樹脂被覆金属缶体の製造装置。
[10] 前記第 1しごきダイ及び前記第 2しごきダイは、それぞれ単独しごきダイであることか ら成る請求項 9に記載の合成樹脂被覆金属缶体の製造装置。
[11] 前記第 1しごきダイ及び前記第 2しごきダイのうち、少なくとも前記第 1しごきダイは、 しごき加工方向に並設された先行側しごきダイと後続側しごきダイとから成る複合しご きダイであることから成る請求項 9に記載の合成樹脂被覆金属缶体の製造装置。
[12] 前記先行側しごきダイによる前記側壁部のしごき加工は前記元板厚からの板厚減 少率が 18— 40%の範囲内となる加工量で行われ、前記後続側しごきダイによる前 記側壁部のしごき加工は前記元板厚からの板厚減少率が 35— 55%の範囲内となる 加工量で行われることから成る請求項 11に記載の合成樹脂被覆金属缶体の製造装 置。
[13] 前記金属板は、アルミニウム板であることから成る請求項 9一 12のいずれか 1項に 記載の合成樹脂被覆金属缶体の製造装置。
[14] 前記熱可塑性榭脂は、 1. 45— 11. 8GPaの引張り弾性率を有することから成る請 求項 9一 12のいずれか 1項に記載の合成樹脂被覆金属缶体の製造装置。
[15] 前記熱可塑性榭脂は、ポリエステル榭脂であることから成る請求項 14に記載の合 成榭脂被覆金属缶体の製造装置。
[16] 前記熱可塑性榭脂は、前記金属板に対して、前記金属缶胴の内面側となる側で 5 一 50 μ m厚で、且つ前記金属缶胴の外面側となる側で 3— 50 μ m厚で被覆されて いることから成る請求項 9一 12のいずれか 1項に記載の合成樹脂被覆金属缶体の製 造装置。
PCT/JP2004/018126 2003-12-17 2004-12-06 合成樹脂被覆金属缶体の製造方法及び装置 WO2005058520A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04820517A EP1695772B1 (en) 2003-12-17 2004-12-06 Method for manufacturing synthetic resin coated metal can body
JP2005516289A JP4962698B2 (ja) 2003-12-17 2004-12-06 合成樹脂被覆金属缶体の製造方法及び装置
DE602004024444T DE602004024444D1 (de) 2003-12-17 2004-12-06 Verfahren zur herstellung eines mit kunstharz überzogenen metalldosenkörpers
US10/582,939 US7337646B2 (en) 2003-12-17 2004-12-06 Method and device for manufacturing synthetic resin coated metal can body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003419338 2003-12-17
JP2003-419338 2003-12-17

Publications (1)

Publication Number Publication Date
WO2005058520A1 true WO2005058520A1 (ja) 2005-06-30

Family

ID=34697174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018126 WO2005058520A1 (ja) 2003-12-17 2004-12-06 合成樹脂被覆金属缶体の製造方法及び装置

Country Status (6)

Country Link
US (1) US7337646B2 (ja)
EP (1) EP1695772B1 (ja)
JP (1) JP4962698B2 (ja)
KR (1) KR101037704B1 (ja)
DE (1) DE602004024444D1 (ja)
WO (1) WO2005058520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075932A (ja) * 2008-09-24 2010-04-08 Toyo Seikan Kaisha Ltd 飲料缶の成形方法とその装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072326A1 (ja) * 2003-02-13 2004-08-26 Nippon Steel Corporation 成形安定性に優れたメタリック外観の金属帯とシームレス加工缶体およびこれらの製造方法
JP4628047B2 (ja) * 2004-09-02 2011-02-09 東洋製罐株式会社 樹脂被覆金属板の絞りしごき加工方法、およびそれを用いた樹脂被覆絞りしごき缶
JP4877538B2 (ja) * 2010-06-08 2012-02-15 東洋製罐株式会社 シームレス缶体
CN105039878B (zh) 2014-04-30 2017-11-07 美铝美国公司 具有高可成形性的铝板和所述铝板制成的铝容器
US20150343516A1 (en) * 2014-05-30 2015-12-03 Anheuser-Busch, Llc Two iron tool pack for forming tall metal bottle shaped containers
USD742251S1 (en) 2014-07-16 2015-11-03 Ball Corporation Two-piece contoured metallic container
USD758207S1 (en) 2014-08-08 2016-06-07 Ball Corporation Two-piece contoured metallic container
WO2016061336A1 (en) 2014-10-15 2016-04-21 Ball Corporation Apparatus and method for forming shoulder and neck of metallic container
US10239648B2 (en) 2014-10-28 2019-03-26 Ball Metalpack, Llc Apparatus and method for forming a cup with a reformed bottom
USD804309S1 (en) 2016-02-17 2017-12-05 Ball Corporation Metal bottle
CN108176749B (zh) * 2017-12-18 2019-07-16 广东寰球智能科技有限公司 一种基于云平台的金属包装拉伸成型机的降噪检测方法
CN108176750B (zh) * 2017-12-18 2019-07-16 广东寰球智能科技有限公司 一种基于云平台的金属包装拉伸成型机的检测方法
EP3501683A1 (en) * 2017-12-22 2019-06-26 Tata Steel IJmuiden B.V. Method of forming a metal can

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163787A (ja) * 1974-10-11 1976-06-02 American Can Co
JPH02303634A (ja) * 1989-05-17 1990-12-17 Toyo Seikan Kaisha Ltd 絞りしごき缶の製造方法
JP2002178049A (ja) * 2000-12-12 2002-06-25 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶体の製造方法
JP2003019518A (ja) * 2001-07-04 2003-01-21 Toyo Kohan Co Ltd しごき加工方法、しごき加工用ダイスおよび絞りしごき缶

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611475A (en) * 1948-10-07 1952-09-23 Remington Arms Co Inc Cup drawing apparatus
JPS5934580B2 (ja) * 1974-10-09 1984-08-23 ヨシザキ コウゾウ 側面無継目金属容器及びその製法
JPS5236565A (en) * 1975-09-18 1977-03-19 Shin Nippon Koki Co Ltd Method of cold squeezing of cylindrical body
US4541265A (en) * 1979-06-07 1985-09-17 Purolator Products Inc. Process for forming a deep drawn and ironed pressure vessel having selectively controlled side-wall thicknesses
JPH0771700B2 (ja) * 1988-02-23 1995-08-02 東洋製罐株式会社 再絞り方法
US5249447A (en) * 1989-02-16 1993-10-05 Toyo Seikan Kaisha Ltd. Process for preparation of thickness-reduced deep-draw-formed can
JPH0757390B2 (ja) * 1989-11-13 1995-06-21 東洋製罐株式会社 再絞り方法
GB2246535B (en) * 1990-07-28 1994-01-26 Cmb Foodcan Plc Method of manufacturing a wall ironed can
JP3156296B2 (ja) * 1991-09-04 2001-04-16 トヨタ自動車株式会社 オーステナイト系ステンレス鋼製素材の円筒部のしごき法
EP0664169B1 (en) * 1993-12-22 1999-03-10 TOYO KOHAN Co., Ltd method of forming a metal can
TW252961B (en) * 1994-02-15 1995-08-01 Toyo Seikan Kaisha Ltd Method of producing seamless cans
JP3329052B2 (ja) * 1994-03-02 2002-09-30 東レ株式会社 金属板ラミネート用白色ポリエステルフィルム及びその製造方法
US6857304B2 (en) * 1999-08-30 2005-02-22 Daiwa Can Company Bottle-shaped can manufacturing method
JP4278271B2 (ja) * 2000-03-22 2009-06-10 新日本製鐵株式会社 ラミネートシームレス缶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163787A (ja) * 1974-10-11 1976-06-02 American Can Co
JPH02303634A (ja) * 1989-05-17 1990-12-17 Toyo Seikan Kaisha Ltd 絞りしごき缶の製造方法
JP2002178049A (ja) * 2000-12-12 2002-06-25 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶体の製造方法
JP2003019518A (ja) * 2001-07-04 2003-01-21 Toyo Kohan Co Ltd しごき加工方法、しごき加工用ダイスおよび絞りしごき缶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1695772A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075932A (ja) * 2008-09-24 2010-04-08 Toyo Seikan Kaisha Ltd 飲料缶の成形方法とその装置

Also Published As

Publication number Publication date
KR20060134000A (ko) 2006-12-27
US7337646B2 (en) 2008-03-04
EP1695772A4 (en) 2007-04-11
KR101037704B1 (ko) 2011-05-30
DE602004024444D1 (de) 2010-01-14
JP4962698B2 (ja) 2012-06-27
JPWO2005058520A1 (ja) 2007-12-13
EP1695772A1 (en) 2006-08-30
US20070119224A1 (en) 2007-05-31
EP1695772B1 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
WO2005058520A1 (ja) 合成樹脂被覆金属缶体の製造方法及び装置
US8413478B2 (en) Method of drawing and ironing a resin film laminated metal sheet and resin film laminated drawn and ironed can using the same method
KR101029230B1 (ko) 수지 피복 금속판의 드로잉·아이어닝 가공 방법, 및 그것을이용한 수지 피복 드로잉·아이어닝 캔
TWI663044B (zh) 層疊體和成型品的製造方法
KR20080036076A (ko) 2피스 캔 및 그 제조방법, 및 2피스 캔용 강판
EP3988225B1 (en) Ironing die
JP2008057030A (ja) Di缶
JP3751792B2 (ja) ギア部品の成形方法
JP4879644B2 (ja) 樹脂被覆シームレス缶製造方法、及びその装置
KR20090077978A (ko) 에어로졸용 드로잉 가공 캔의 제조 방법 및 에어로졸용 드로잉 가공 캔
JP2023143990A (ja) 缶体
US20160243605A1 (en) Die apparatus and manufacturing method of metal product using die apparatus
JP2017136604A (ja) 缶の製造方法及び缶
JP2010179524A (ja) 免震構造体用単位積層ゴムの製造方法
JP4884127B2 (ja) 樹脂被覆金属シームレス缶の製造方法および製造装置
JP2003053438A (ja) 張出し成形加工方法および容器
JP6795281B2 (ja) Di缶の製造方法
JP2000334886A (ja) 製缶用積層体およびそれを用いたシームレス缶
JPH10272520A (ja) 飲料缶の製造方法
JP2009241102A (ja) Di缶の成形方法
JP4835066B2 (ja) 2ピース缶及びその製造方法、並びに2ピース缶用鋼板
JP2002178048A (ja) 樹脂被覆アルミニウム・シームレス缶体の製造方法
JPH0471612B2 (ja)
JP2017042806A (ja) 曲げ加工方法及びブシュの製造方法
JPH07102407B2 (ja) 円筒状ワークのプレス成形方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516289

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067011720

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007119224

Country of ref document: US

Ref document number: 10582939

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004820517

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004820517

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067011720

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10582939

Country of ref document: US