JP4278271B2 - ラミネートシームレス缶 - Google Patents

ラミネートシームレス缶 Download PDF

Info

Publication number
JP4278271B2
JP4278271B2 JP2000079583A JP2000079583A JP4278271B2 JP 4278271 B2 JP4278271 B2 JP 4278271B2 JP 2000079583 A JP2000079583 A JP 2000079583A JP 2000079583 A JP2000079583 A JP 2000079583A JP 4278271 B2 JP4278271 B2 JP 4278271B2
Authority
JP
Japan
Prior art keywords
resin film
polyester resin
film
thickness
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079583A
Other languages
English (en)
Other versions
JP2001262371A (ja
Inventor
知彦 林
秀紀 宇都宮
和弘 辻本
博一 横矢
茂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Nippon Steel Corp
Original Assignee
Daiwa Can Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd, Nippon Steel Corp filed Critical Daiwa Can Co Ltd
Priority to JP2000079583A priority Critical patent/JP4278271B2/ja
Publication of JP2001262371A publication Critical patent/JP2001262371A/ja
Application granted granted Critical
Publication of JP4278271B2 publication Critical patent/JP4278271B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Description

【0001】
【発明の属する技術分野】
本発明は、スチールを素材としたポリエステル樹脂被覆シームレス缶に関するものである。
【0002】
【従来の技術】
スチールやアルミニウムを素材とした金属缶・容器は、その形状からスリーピース缶とツーピース缶とに大別される。スリーピース缶は、地蓋、缶胴、天蓋から成るためスリーピース缶と呼ばれており、製胴方法が現在はシーム溶接や接着が主であることから、価格の安いスチールが使用されている。
一方、ツーピース缶は、地蓋と缶胴とが一体となったもので、それに天蓋とから成るためツーピース缶、又は、缶胴部に接合部がないことからシームレス缶とも呼ばれ、スチールとアルミニウムが使用されている。
金属缶の場合、缶内面には耐食性を確保するために塗装が施されたものが使用されているが、近年、熱可塑性樹脂フィルムを積層した、ラミネート缶が開発され市場に出回っている。ラミネート缶は、金属素材に熱可塑性樹脂フィルムを被覆させたものから、缶体成形加工を行うものが主であり、特にシームレス缶を得るには高度な成形加工技術を必要とする。
【0003】
かかる意味から、シームレスのラミネート缶に関わる技術は、例えば特開平7−2241号公報、特開平7−195619号公報、特開平8−244750号公報等、数多く提案され開示されている。ラミネート缶のメリットは、消費者側から見た場合、適用する熱可塑性樹脂フィルムにもよるが、耐内容物性、特に内容物の味、風味と言ったフレーバー性に優れている点が第一に上げられている。一方、デメリットとしては、今度は製缶メーカー側からであるが、前述したようにツーピース缶の場合、熱可塑性樹脂フィルム被覆金属板の加工度(又は変形度合)が大きいので、成形時に缶内面側の樹脂フィルムに傷が入ったりした場合、缶内面の品質確保ができなくなるため、缶体の品質検査を厳重に行う必要があることと、製品歩留まりが現行の塗装缶に比べて劣るといった点が上げられる。特に、スチール素材を用いたラミネートシームレス缶の場合、上記の傾向が大きい。
【0004】
こうしたラミネート缶の内面側の樹脂フィルムの皮膜欠陥は、前述したように缶成形加工時に入るものであり、この欠陥を最小限に抑えることは、品質、製品歩留まりの点から重要な技術課題であることは言うまでもない。
一方、トータル缶コストの低減化から、使用金属板の低減化や缶蓋である開口容易缶蓋(イージーオープンエンド、通称EOE)の径を小さくすることが進められている。開口容易缶蓋について言えば、例えば、缶胴が350mlのビール缶の場合、通称211と呼ばれ、缶胴内径は約65.9mmであり、当然巻締める缶蓋も211用のものであるが、現在この缶胴に使用する缶蓋は206用のものや204用のものとなっており、更に202用のものを使用する試みが進められている。
【0005】
このことは、必然的に缶胴の開口部をより小さい径に絞る、いわゆる縮径化となり、従って缶胴に用いられている金属は勿論、その表面に被覆されている樹脂フィルムにとっても厳しい加工をうけることになる。
しかし、しごき加工を伴うツーピース缶成形加工の、特に高加工率の場合の内面側の熱可塑性樹脂フィルムの剥離や傷その他の欠陥が入り難く、また高縮径化のためのネック加工やフランジ加工で樹脂フィルムを剥離することなく、また傷その他の欠陥を入れることなく成形加工できる、適切なフィルムラミネート材が見い出されていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、こうした実状に鑑みなされたもので、皮膜欠陥のない高耐食性、高品質な樹脂被覆スチールツーピース缶を歩留まりよく提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、鋼板の両面に、片面付着量として20〜2000mg/m2 のNiめっき層、その上層に片面の付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層、その上層に少なくとも缶内面となる側にはポリエステル樹脂フィルムが、厚み10〜45μmで融点(ATm)が215〜245℃のポリエステル樹脂フィルム(A)と厚みが5〜20μmで融点(BTm)が235〜260℃のポリエステル樹脂フィルム(B)で構成され、かつポリエステル樹脂フィルム(A)の融点(ATm)とポリエステル樹脂フィルム(B)の融点(BTm)との関係がATm<BTmの関係を満たしている、総厚みが15〜50μmの二層ポリエステル樹脂フィルムで、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)の平均密度が1.36g/cm3 未満であり、ポリエステル樹脂フィルム(A)が鋼板と接するように被覆されているポリエステル樹脂フィルムのラミネート鋼板から絞り−しごき加工され、更に成形加工後の缶体を前記ポリエステル樹脂フィルムの融点以上に加熱・急冷し、ポリエステル樹脂フィルムが非晶質化されているラミネートシームレス缶である。
更に好ましくは、缶壁部の板厚は、缶底部の板厚(元板厚)に対し50〜70%の板厚減少率を有し、更に成形加工後の缶体を前記ポリエステル樹脂フィルムの融点以上に加熱・急冷し、被覆されたポリエステル樹脂フィルムの平均密度が1.36g/cm3 未満と、非晶質化されているラミネートシームレス缶である。
【0008】
【発明の実施の形態】
以下、本発明のラミネートシームレス缶の実施形態について詳細に説明する。
まず、本発明における鋼板について述べる。
本発明における鋼板は、両面に片面の付着量として20〜2000mg/m2 のNiめっき層、その上層に片面付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層を有するものである。
Niめっきおよび化成処理前の鋼板は特に限定されるものではなく、通常製缶用鋼板として使用されているものが適用される。しかし、選定する際には缶体の強度、特にボトム耐圧強度には留意する必要があり、ビール缶においてはボトム耐圧は最大で618kPa以上、コーラ等の炭酸飲料缶においてはボトム耐圧686kPa以上でないと缶底部のドーム外方へ突出するといった現象が起こる。
【0009】
この現象を回避するには、使用鋼板の硬度やボトム形状との関係もあるが、現状では鋼板板厚が0.15mm以下のものでは難しい。一方、鋼板板厚が0.22mmであれば使用鋼板の硬度が低くても缶底部のドームが外方に突出するといった現象は起こらない。従って、鋼板の板厚は0.15〜0.22mmとするのが好ましい。
次に、鋼板の表面に施されているNiめっきや化成処理皮膜の表面処理について述べる。
【0010】
本発明において、鋼板表面にまずNiを付着させる理由について述べる。
本発明のような樹脂フィルムを被覆した鋼板を絞り−しごき加工して得るツーピース缶の場合、鋼板表面に形成させた金属めっき皮膜や化成処理皮膜は、その加工程度に応じて破壊され、加工前の特性は減じるものである。
本発明のように樹脂フィルムを積層させた鋼板から成形加工する場合の表面処理鋼板として、鋼板に金属クロム、その上層に水和酸化クロムを形成させる電解クロム酸処理が施されたTFS−CT(ティンフリースチールクロミウムタイプ)が良く知られているが、こうした表面処理鋼板でも例外なく、絞り−しごき成形加工後には、表面処理皮膜の一部は破壊される。その結果、缶の開口部といった鉄が露出している箇所を起点として糸状腐食が起こる場合がある。糸状腐食が起こった缶は当然商品としての価値は消失してしまい、問題である。
【0011】
糸状腐食は、腐食箇所が糸状に成長することから名付けられたが、鉄やアルミニウムで起こりその腐食の成長は酸素の還元反応を駆動力としている。前述した鋼板に施される電解クロム酸処理皮膜はこの酸素の還元反応が起こり難い皮膜であるため、皮膜が健全な場合は糸状腐食は極めて起こり難い。しかし、絞り−しごき成形加工後には、表面処理皮膜の一部は破壊されるため、糸状腐食は起こってしまう。Niは糸状腐食が起こらない金属として知られており、こうした金属で鉄素地を被覆することは、鋼板の糸状腐食の防止に有効であるが、前述した電解クロム酸処理皮膜同様、絞り−しごき成形加工後には皮膜の健全性は確保されなくなるため、本発明ではNiめっきの付着量は、片面の付着量として20〜2000mg/m2 とする。
【0012】
下限値の20mg/m2 未満では、本発明の缶の板厚減少率の最小値である50%でも、糸状腐食が発生するため好ましくない。また、前述した204(内径約54.9mm)や202(内径約52.4mm)等の高縮径ネック加工において、被覆ポリエステル樹脂フィルムが剥離する場合があり、好ましくない。
さらに、Ni付着量が下限値の20mg/m2 未満では、万が一缶内面側の被覆フィルムに欠陥が発生した場合、内容物によっては素地の鉄が溶解し穿孔缶となる危険性もあり好ましくない。
【0013】
一方、上限値である2000mg/m2 超では本発明の缶の板厚減少率の最大値である70%でも糸状腐食の発生や密着性の確保等の効果は飽和する。従って、Ni付着量は20mg/m2 以上は必要で、Niの効果を十分に発揮させるのは片面の付着量として100mg/m2 以上のNiめっきを施すことが望ましい。また、Niが缶外面の鋼板面に存在することで、白さが若干向上し、缶の外面側を被覆するポリエステル樹脂フィルム中に混入される白色顔料の混入量や印刷・塗装時に行われる白色塗装や白インキの塗布量を低減出来るといった経済的効果もある。こうしたことを総合的に勘案すると、Ni付着量は20〜2000mg/m2 が最適な範囲であり、好ましくは100〜2000mg/m2 が好適である。鋼板へのNi付着方法としては周知の電気めっきや無電解めっき方法が適用できる。
【0014】
次に、化成処理皮膜について述べる。
本発明の鋼板は、Niめっきの上層に有機樹脂を主体とする化成処理皮膜を有するものである。有機樹脂を主体とする化成処理皮膜は、乾燥時に高分子化が起こり、Niめっき面を一様に覆うため、第一にその上層に積層させるポリエステル樹脂皮膜との密着性を強固にすることができる。第二に前述した糸状腐食の駆動力となる酸素の還元反応を抑制することができるため、糸状腐食が防止される、等の優れた性能を示す。
また、有機樹脂を主体とする化成処理皮膜層は、特にポリエステル樹脂フィルムとの密着性が良好であるため、高加工度の絞り−しごき加工を受けても、密着性不十分によって起こるフィルム剥離(通称デラミ)や、激しいデラミを起因とする破胴といったことはなく、良好な缶体が得られる。
【0015】
化成処理皮膜の付着量は、C量として例えば、(株)島津製作所製のTOTAL ORGANIC CARBON ANALYZER TOC−5000で測定した値であり、1〜100mg/m2 である。
下限値である1mg/m2 未満では被覆性が劣り、防食作用および密着性が共に不十分となる。また、本発明の缶の板厚減少率の最小値である50%の場合でも成形加工後に樹脂フィルムが局部的に剥離する、いわゆるデラミが起こったり成形加工後の缶体には開口部から糸状腐食が発生し、好ましくない。しかし、有機樹脂を主体とする化成処理皮膜をC量として1mg/m2 以上施すことにより密着性は向上し、5mg/m2 以上で十分な密着性が確保される。
【0016】
一方、上限値の100mg/m2 を超えると、糸状腐食の発生はないが、本発明の缶の板厚減少率の最大値である70%の成形加工で化成処理皮膜自身の凝集破壊によるものと思われるフィルム剥離が起こる場合があり、好ましくない。
有機樹脂を主体とする化成処理皮膜量をC量として100mg/m2 以下とすることで、成形加工での密着性低下を防止することが可能となる。従って、有機樹脂を主体とする化成処理皮膜量をC量として1〜100mg/m2 の範囲であるが、工業製品としての安定性を考慮すると、C量としては5〜50mg/m2 の範囲が好ましく最適である。
【0017】
鋼板への処理方法としては、例えばリン酸及びその塩、縮合リン酸及びその塩、リン酸ジルコニウム、リン酸チタニウムのようなリン酸系化合物や、例えばビニルエトキシシラン、アミノプロピルトリエトキシシラン等のシランカップリング剤のような有機ケイ素化合物と例えば水溶性フェノール樹脂、水溶性アクリル樹脂等のような水溶性有機樹脂を主体とする水溶液を、前記処理液をNiめっき鋼板にスプレー塗布し絞りロールで付着量を調整した後、乾燥し硬化させる方法、処理液にNiめっき鋼板を浸漬し絞りロールで付着量を調整した後、乾燥し硬化させる方法等が適宜適用できる。乾燥硬化方法としては熱風での乾燥、電気炉での乾燥等の方法が適用でき、温度は150〜250℃で乾燥時間は10秒〜2分程度である。
【0018】
次に、本発明に適用される缶内面のポリエステル樹脂フィルムについて説明する。本発明ではポリエステル樹脂フィルムは、熱可塑性ポリエステル樹脂フィルムが適用される。本発明において、被覆する樹脂フィルムを熱可塑性ポリエステル樹脂フィルムに限定した理由は、▲1▼耐熱性が良い、▲2▼缶内面用としては内容物のフレーバーが確保される、と言った、例えばポリエチレンやポリプロピレンなどのポリオレフィン系樹脂フィルムにない、缶用途としての適した特性を有しているからである。
【0019】
被覆されるポリエステル樹脂としては、酸成分としてテレフタル酸、イソフタル酸、アジピン酸、セバシン酸等の酸成分と、エチレングリコール、ブチレングリコール等のアルコール成分からなるポリエステル樹脂で、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート(PEI)のようなホモポリマーや、例えばエチレンテレフタレートとエチレンイソフタレートとの共重合樹脂であるコーポリマーや、またこうしたホモポリマー同士のブレンド、ホモポリマーとコーポリマーのブレンド、コーポリマー同士のブレンドといったブレンド樹脂等が適用される。 樹脂フィルムの融点(Tm)や冷結晶化熱(Hc)は、こうした酸成分とアルコール成分の選定、コーポリマーの程度、ブレンド樹脂の選定およびそのブレンド比等適宜選定することでえることができる。
【0020】
本発明では、少なくとも缶内面は鋼板側から鋼板と接するように被覆されたポリエステル樹脂フィルム(A)とその上層のポリエステル樹脂フィルム(B)からなり、ポリエステル樹脂フィルム(A)は厚み10〜45μmで、融点(ATm)が215〜245℃、冷結晶化熱(Hc)が8.5〜35.0J/gがよく、ポリエステル樹脂フィルム(B)は厚みが5〜20μmで融点(BTm)が235〜260℃で、樹脂フィルムの総厚みは15〜50μmであり、かつ、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)の平均密度が1.36未満である二層構成のポリエステル樹脂フィルムが適用される。
【0021】
本発明の二層フィルムとする理由について説明する。
前述したようにシームレスのラミネート缶のデメリットとしては、熱可塑性樹脂フィルム被覆金属板の加工度(又は変形度合)が大きい場合、成形時に缶内面側樹脂フィルムに傷が入ったりした場合、缶内面の品質確保ができなくなるため、缶体の品質検査を厳重に行う必要があることと、製品歩留まりが現行の塗装缶に比べて劣るといった点が上げられる。
特に、スチール素材を用いたラミネートシームレス缶の場合、上記の傾向が大きい。こうしたラミネート缶の内面側の樹脂フィルムの皮膜欠陥は缶成形加工時に入り、この欠陥を最小限に抑えることは、品質、製品歩留まりの点から重要な技術課題であることは言うまでもない。
【0022】
この成形加工時に起こる樹脂フィルムの欠陥は、特にしごき加工時に起こり易いことは、発明者等の研究から明らかになっており、その原因はほぼ次の二点に集約されると考えられる。即ち、成形加工の際に金属の加工熱が発生し、樹脂フィルムの特性を大きく変化させるためで、熱による樹脂フィルムの特性変化は、(1)樹脂フィルムの軟化、(2)樹脂フィルムの結晶化等がある。
(1)の樹脂フィルムの軟化は、しごき加工時に樹脂フィルムがパンチに付着してしまい、パンチが抜け難くなる、いわゆる離型性不良が起こり、内面側の樹脂フィルムに傷を付ける原因となる。
【0023】
また、離型性不良がひどい場合は、缶体の開口部近傍が座屈し、正規の缶体高さが得られない事態が起こる場合もある。
(2)の樹脂フィルムの結晶化は、しごき加工時の発熱と延伸加工により、樹脂フィルムは配向結晶化が起こり、その結果高加工に耐えられなくなり、樹脂フィルムに亀裂が入る原因となる。いずれにしても、缶内外面フィルムの欠陥発生につながり好ましくない。
【0024】
このしごき加工時に起こる欠陥の二つの原因は、ポリエステル樹脂フィルムの熱的特性から見た場合、基本的には相反関係にあるため、単一の樹脂では兼備させるのは難しく、達成するためには金型形状や成形加工温度等を厳密管理する必要があり、設備投資は大きいものになり、製造コストは高いものになってしまう。そこで、本発明のように鋼板に被覆するラミネートフィルムを二層にし、前記の欠陥原因の回避を各樹脂フィルムに担わせることに成功し、本発明に至ったものである。
【0025】
従って、本発明では鋼板側から、ポリエステル樹脂フィルム(A)/ポリエステル樹脂フィルム(B)で被覆されており、被覆されたポリエステル樹脂フィルムの融点は、常にポリエステル樹脂フィルム(A)の融点(ATm)がポリエステル樹脂フィルム(B)の融点(BTm)より低く、ATm<BTmの関係を満たすものである。まず、ポリエステル樹脂フィルム(A)の上層のポリエステル樹脂フィルム(B)は、融点(BTm)が235〜260℃の樹脂フィルムである。ポリエステル樹脂フィルム(B)は、前記の(1)の樹脂フィルムの軟化による離型性不良による内面の樹脂フィルムの傷つき防止や離型性不良がひどい場合に起こる缶体の開口部近傍が座屈し正規の缶体高さが得られない事態を防止する役割を担うものである。従って、ポリエステル樹脂フィルム(B)の融点(BTm)は高い方が良く235〜260℃とする。
【0026】
樹脂フィルム(B)の融点(BTm)が235℃未満の場合はこの離型性不良が起こり、内面フィルムを傷付け耐食性低下に繋がり、激しい場合は成形加工ができないことがあり、好ましくない。
一方、上限値の260℃超では、高融点化に伴う離型性の更なる効果は期待できず飽和する。缶内面のポリエステル樹脂フィルム(B)の融点(BTm)は、上記の離型性から限定したものであるが、しごき加工時の発熱量は後述する加工度との関係もあり、樹脂フィルムの融点だけで離型性の良否を決められるものではないが、基本的には融点は高い方が有利であり、好ましくは240〜255℃、更に好ましくは245〜255℃が好適である。
【0027】
ポリエステル樹脂フィルム(B)の厚みは5〜20μmである。ポリエステル樹脂フィルム(B)の役割は、前述したように離型性確保にあり、発明者等の検討では最低5μmは必要であることが知れた。5μm未満では、特に、高加工度の場合はポリエステル樹脂フィルム(B)の結晶化による欠陥が発生した場合、パンチ表面がポリエステル樹脂フィルム(A)に食い込み、離型性が劣るといった現象が見られ好ましくない。
【0028】
一方、ポリエステル樹脂フィルム(B)の厚みが20μm超の場合、高加工度でも離型性は良好であったが、ポリエステル樹脂フィルム(B)の結晶化による欠陥がポリエステル樹脂フィルム(A)に伝播し、缶体の耐食性が劣るといった現象が見られる場合があり、好ましくない。本発明の加工度である板厚減少率が50〜70%の範囲では、ポリエステル樹脂フィルム(B)の厚みは5〜20μmの範囲が最適である。
【0029】
鋼板と接するポリエステル樹脂フィルム(A)は、前記の(2)樹脂フィルムの結晶化による欠陥発生を抑制する役割を担うものであり、そのためには結晶性の低いポリエステル樹脂が好ましい。冷却結晶化熱(Hc)は、樹脂フィルムの結晶性を示す指標であり、熱量が大きいほど結晶性の高い樹脂フィルムであることを指す。かかる意味において冷結晶化熱(Hc)は8.5〜35.0J/gの範囲のポリエステル樹脂フィルムとする。結晶性の樹脂フィルムの場合、前述したようにしごき加工時の発熱と延伸加工により、樹脂フィルムは配向結晶化が起こり、その結果高い加工度には耐えられなくなり亀裂が入る要因となる。
【0030】
かかる意味から、本発明は冷結晶化熱(Hc)を限定したものであり、もし冷結晶化熱(Hc)が8.5J/g未満の場合は、成形加工時に配向結晶化し難く、樹脂フィルムに亀裂状の欠陥が発生し難く有利であるが、逆にこうした樹脂は慨して軟質であり、たとえ、その上層にポリエステル樹脂フイルム(B)が積層されていても、離型性不良の原因となり好ましくない。
【0031】
一方、冷結晶化熱(Hc)が35.0J/gを超えると、加工度との関係もあるが、結晶性が高すぎて成形加工で樹脂フィルムの亀裂欠陥が発生する場合があり好ましくない。特に、高加工度の成形加工では、亀裂状に欠陥が発生する危険性が高い。成形加工における、主にしごき加工時の樹脂フィルムの配向結晶化の程度は、後述する成形加工の条件にも関係があるが、基本的には樹脂固有の結晶性に依るところが大きく、本発明の加工度である板厚減少率が50〜70%の範囲では、冷結晶化熱(Hc)が8.5〜35.0J/gの範囲のポリエステル樹脂フィルムであれば、樹脂フィルムに亀裂状の欠陥が発生することなく良好な缶体が得られる。
【0032】
ポリエステル樹脂フィルム(A)の融点(ATm)は215〜245℃である。前述したように、ポリエステル樹脂フィルム(A)と接する鋼板表面には、密着性の良好な有機樹脂を含有する化成処理皮膜が存在しているが、ポリエステル樹脂フィルムを被覆する際に樹脂フィルムは十分に溶融してラミネートする必要があり、基本的には密着性確保には融点(Tm)は低い方が有利である。
しかし、ポリエステル樹脂フィルム(A)の融点(ATm)が215℃未満では、しごき加工時の加工熱によりポリエステル樹脂フィルム(A)の軟化が激しく、パンチの離型性が劣る場合があり、好ましくない。
【0033】
また、ポリエステル樹脂フィルム(A)の融点(ATm)が245℃超では結晶性も高くなることから、高加工度ではポリエステル樹脂フィルム(B)の結晶化による欠陥がきっかけとなり、ポリエステル樹脂フィルム(A)まで亀裂を発生させ、大きな欠陥となってしまうことがあり、耐食性の点で問題となり好ましくない。ポリエステル樹脂フィルム(A)の融点(ATm)は、本発明の加工度である板厚減少率が50〜70%の範囲では220〜240℃が好適である。
【0034】
ポリエステル樹脂フィルム(A)の厚みは10〜45μmである。ポリエステル樹脂フィルム(A)の厚みは基本的には厚い方が成形加工後の樹脂フィルムの健全性からは有利であるが、前述したようにしごき加工時の加工熱によりポリエステル樹脂フィルム(A)の軟化によるパンチの離型性が劣る場合があり、この現象は相対的にしごき加工が高加工度な程、ポリエステル樹脂フィルム(A)が厚い程、起こり易くなる。従って、ポリエステル樹脂フィルム(A)の厚みが45μm超では、パンチの離型性が劣る現象が見られ、好ましくない。
【0035】
一方、10μm未満ではパンチの離型性は良好であるが、高加工度ではポリエステル樹脂フィルム(B)の結晶化による欠陥がきっかけとなり、ポリエステル樹脂フィルム(A)まで亀裂を発生させ、しかもポリエステル樹脂フィルム(A)の厚みが薄すぎるため鋼板素地に達してしまう危険性が大きく、好ましくない。樹脂フィルムの厚みについては、本発明ではポリエステル樹脂フィルムの総厚みは15〜50μmである。
【0036】
缶の内面に当たる鋼板面に積層されるフィルム厚みは、缶内面の耐食性の点から限定されるものであり、15μm未満では缶の成形加工後で充填する内容物にもよるが、十分な耐食性を確保するのは難しい場合がある。
一方、50μmを超えると、ほとんど内容物に対し耐食性は十分確保されるが、実質的に過剰品質となり、経済的でない。フィルム厚みとしては、18〜40μmが品質および経済性からは好ましい範囲である。
また、本発明の方法を実施する際フィルム厚の選定は、後述する缶壁部の薄肉化の加工度との関係があることも選定の際の重要な要素である。
【0037】
即ち、加工度が高い場合は、当然その加工度に応じてフィルムの厚みも薄くなるため、その結果として、缶内面の防食性能は低下する。従って、加工度が高い場合は予め厚手のフィルムを適用することが望ましいし、一方、加工度が低い場合はそれに応じて予め薄手のフィルムを適用することが可能となる。
また、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)のフィルム厚みの比は、ポリエステル樹脂フィルム(A):ポリエステル樹脂フィルム(B)=1:1〜9:1が好ましく、ポリエステル樹脂フィルム(A)のフィルム厚みよりポリエステル樹脂フィルム(B)のフィルム厚みの方が厚い、といったことは避けることが望ましい。
【0038】
本発明に適用されるポリエステル樹脂フィルムの密度は、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)との平均密度、即ち二層フィルムとして1.36未満である。密度は樹脂の結晶状態を示す指標となり、例えば、延伸された樹脂フィルム等の結晶化度が高い場合は、密度は大きくなる。密度が1.36g/cm3 未満であると言うことは、ポリエステル樹脂フィルムの結晶状態としては実質的に非晶質であることを示す。
【0039】
まず、ラミネート板に被覆した樹脂フィルムを非晶質にする理由は、その後行うカップの絞り加工、カップの再絞り加工、更にしごき加工において、樹脂フィルムの加工性を十分に確保することを目的にしたもので、密度が1.36g/cm3 を超えると、結晶性の低いポリエステル樹脂フィルムでも、成形加工にフィルムが耐えられずフィルムに亀裂欠陥が激しく起こる場合があり好ましくない。
特に、加工度が大きい時は、しごき加工時の発熱と併せて引き延ばし加工により、樹脂フィルムが配向結晶化が一層進み、その結果、加工に追随し難くなり、上記の挙動が顕著に現れ、缶体の耐食性が十分に確保できない場合がしばしば起こる。従って、密度が大きい、結晶化した状態からの成形加工は、特に高加工度に対しては極めて難しく不適である。
【0040】
更に、本発明では、カップの絞り加工、カップの再絞り加工、更にしごき加工の缶成形加工を施した後、得られた缶体を加熱・冷却し再度樹脂フィルムの密度を1.36g/cm3 未満にした後、ネック加工およびフランジ加工を行う。カップの絞り加工、カップの再絞り加工、更にしごき加工を経て得られる缶体は、この時の加工にり、樹脂フィルムの密着性は著しく低下しており、この状態でネック加工およびフランジ加工を行うと、樹脂フィルムは剥離し易い。そこで、本発明では、缶体を加熱・冷却し再度樹脂フィルムの密度を1.36g/cm3 未満にした際、ネック加工およびフランジ加工に供するものである。樹脂フィルムの密度を1.36g/cm3 未満にすることで、樹脂フィルムは剥離やクラックが発生することなく高縮径のネック加工およびフランジ加工を行うことができる。
【0041】
特に、ネック加工率が高い、高縮径化への対応については、樹脂フィルムの高加工密着性が一層必要となり、この場合樹脂フィルムの密度は低い方が非晶質化度が高いため、良好となる。密度を1.36g/cm3 未満と限定した理由は上記の理由からで、特に、第1工程の絞り加工前やネック加工およびフランジ加工前の状態として、好ましくは1.35g/cm3 未満が好適である。缶の外面側のフィルムについては、本発明で缶内面側に使用するポリエステル樹脂フィルムを適用してもよいが、外観の点からスチール特有の黒味を持つことから印刷外観が劣るため、酸化チタン等の白色顔料を含有するポリエステル樹脂フィルムを適用することが、印刷外観の確保からは望ましく、この場合は平均粒子径が0.1〜3.0μmの酸化チタン顔料を重量%として10〜20%含有するフィルム等が適用される。
【0042】
なお、ポリエステル樹脂フィルム被覆ラミネート鋼板の製造方法としては、加熱された鋼板の表面に樹脂フィルムを供給してロール間で熱圧着し被覆させた後、直ちに急冷して、非晶質にする方法や、溶融した樹脂を押し出し、鋼板に供給し被覆させ、直ちに急冷して、非晶質にする方法や、例えば二軸延伸されたフィルムを適用する場合は、一度被覆したポリエステル樹脂を、必要に応じ更に樹脂の融点以上に加熱した後、直ちに急冷して非晶質にする方法、等が適用できる。
鋼板の加熱方法としては、電気炉中で加熱する方法、熱風による加熱方法、加熱ロールに接触させて加熱する方法、高周波で誘導加熱する方法等の加熱方法が採用できる。
【0043】
次に、本発明の缶体の加工度、即ち缶壁部の板厚減少率について述べる。
本発明の缶体の加工度は、下記に示した式(1)から求められる値として、50〜70%である。
加工度(%)={(Tb−Tw)/Tb}×100 …… (1)
Tb:缶底部の鋼板の板厚 Tw:缶壁部の鋼板の最も薄い部位の板厚
加工度としては、現在スチール素材やアルミニウム素材から製造されているDI缶の範疇のもので特別なものではないが、加工度が50%未満では、被覆された内外面のポリエステル樹脂フィルムの加工による損傷は全くなく、良好な缶体が得られるが、特に、鋼板の元板厚(缶底部の鋼板厚みに相当)が厚い場合は、缶重量が重くなり経済的でない。
【0044】
一方、加工度が70%を超えると、内面はポリエステル樹脂フィルムとパンチの離型性が劣り、樹脂フィルムの傷付きにより耐食性を確保するのが難しくなる場合が多々起こり易くなる。また、外面のポリエステル樹脂フィルムも「かじり」易くなり、好ましくない。更に、特に、鋼板の元板厚(缶底部の鋼板厚みに相当)が薄い場合は、後述するネック加工でしわが入ったり、フランジ加工で缶体の開口部が割れる、いわゆるフランジ割れが起こったりして好ましくない。
加工度の限定は上記の理由によるもので、50〜70%が最適である。
【0045】
次に、本発明の缶体の成形加工方法について述べる。
本発明の缶体は、ポリエステル樹脂フィルムで被覆されたラミネート鋼板を、絞り加工にてカップ状に成形する第1工程と、次いで第1工程で得たカップを更に再絞り加工し、第1工程で得たカップより缶径が小さく、缶高さの高いカップを成形する第2工程と、次いでこのカップの缶壁部をパンチとしごきダイスの間に通し、缶壁を薄く伸ばすいわゆるしごき加工を行う第3工程と、次いで缶底部のドーム成形を行う第4工程、次いで第4工程で得た缶体を正規な缶高さに切断するトリミングを行った後、缶開口部を縮径にするネック加工と天蓋を巻き締めるに必要なフランジ加工を行う第5工程から成っている。
【0046】
前記の成形加工方法における、第1工程の絞り加工、第2工程の再絞り加工、第3工程のしごき加工は、いずれも缶壁部の板厚の増減を伴った加工であるが、第4工程の缶底部のドーム成形加工および第5工程のネック加工/フランジ加工は、事実上板厚の増減を伴わない加工である。従って、シームレス缶として成形加工されたものは、第3工程後の缶体が最終缶体となる。
本発明の缶体を得る加工方法としては、現在スチール素材やアルミニウム素材から製造されているDI缶の加工方法と特別大きく変わるものではないが、本発明の缶体の性能を十分に確保するためには、次の手段を採用することが望ましい。
【0047】
即ち、第1工程の絞り加工および第2工程の再絞り加工は、ラミネート鋼板やカップの温度または金型の温度を被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲で行うのが、カップ底部コーナーの樹脂フィルムの健全性を確保するためには望ましい。
更に、第1工程の絞り加工および第2工程の再絞り加工では、第3工程で行うしごき加工での被覆された樹脂フィルムの負荷を軽減するために、ストレッチ加工や軽度なしごき加工を付加して絞り加工や再絞り加工するのが望ましい。
【0048】
第3工程のしごき加工は、第2工程の再絞り加工で得たカップの温度を50℃以下にした後、加工金型の温度を100℃以下、できることなら缶内面に被覆されている樹脂フィルムのガラス転移温度(Tg)以下に保持して行うのが、樹脂フィルムの結晶化による欠陥発生を抑制し、またパンチとの離型性もよいことから望ましい。なお、しごき加工はしごきダイスを1枚で行う1段しごき加工や、2枚乃至は3枚で行う多段しごき加工などが適用出来るが、加工時の熱の蓄積を考慮するとしごきダイスは少ない方が良く、しごきダイスを1枚で行う1段しごき加工が望ましい。
【0049】
【実施例】
以下、実施例にて、本発明の方法の効果を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、本実施例で行った評価法は以下の通りである。
(1)樹脂フィルムの密度は、密度勾配管法にて測定した。
(2)樹脂フィルムの冷結晶化熱(Hc)、融点(Tm)は示差走査熱量計(DSC)で、10℃/分の昇温速度で測定し、冷結晶化熱(Tc)ピークの面積を冷結晶化熱、また融点(Tm)は、ピーク温度を融点とした。
(3)樹脂フィルムの極限粘度(IV)は、ウベローデ粘度計でフェノールとテトラクロロエタンの重量比6:4の溶液に樹脂フィルムを0.100±0.003g溶解し、30.0±0.1℃で測定した。
【0050】
(4)カップの絞り加工後の缶底部コーナーのマイクロクラックについては、光学顕微鏡で観察しその程度を評価した。
評価は次のように評価基準を設定し行った。
○:クラックなく良好
□:軽微なクラック発生
△:明確なクラック発生
×:激しいクラック発生
【0051】
(5)フィルムと加工パンチの離型性は、成形缶上部に起こる缶体の座屈程度を観察し評価した。
離型性の評価は、次のように評価基準を設定し行った。
○:缶開口部の座屈なく良好
□:軽微な缶開口部の座屈あり
△:開口部円周の1/3程度座屈
×:開口部円周の1/3以上座屈
【0052】
(6)ネック加工およびフランジ加工での樹脂フィルムの状態については、剥離状況やクラック発生状況を肉眼観察や光学顕微鏡で観察し評価した。
剥離状況やクラック発生状況の評価は、次のように評価基準を設定し行った。
○:剥離やクラックなく良好
□:軽微な剥離および微細なクラック発生
△:一部剥離やクラック発生
×:剥離発生
(7)缶内面の樹脂フィルムの傷付き程度については、1.0%食塩水に界面活性剤を0.1%添加した電解液で、缶体を陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性を評価とした。(以降、この評価法をQTV試験と称する)
【0053】
(8)耐デント性の評価については、350ml缶に水を充填し、125℃で30分レトルト処理を行った後、5℃で1日冷やし、高さ80cmの位置から角度60°で缶底部を下に落下させ、開缶乾燥した後、衝撃変形部以外を絶縁塗料でシールし、衝撃変形部の樹脂フィルムの欠陥発生程度をQTV試験に用いる電解液で、サンプルを陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性の評価とした。
(以降、耐デント性はこの手法による評価結果を示す)
【0054】
(9)糸状腐食
糸状腐食性の評価については、缶体の缶胴部にカッターで素地鋼板に達するクロスカットを入れた後、塩水噴霧試験(JIS−Z−2371)を1時間行った後、30℃、85%RHの環境で2週間暴露し、糸状腐食の発生状況を観察して評価した。
○:糸状腐食の発生なく良好
□:糸状腐食僅かに発生
△:糸状腐食の発生中程度
×:糸状腐食の発生大
【0055】
(実施例1)
板厚0.21mmの鋼板の両面に、片面のNi付着量として10mg/m2 (No.1)、35mg/m2 (No.2)、235mg/m2 (No.3)、420mg/m2 (No.4)、780mg/m2 (No.5)、1670mg/m2 (No.6)のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として10mg/m2 となるようにNo.1からNo.6のNiめっき鋼板に化成処理を施し、表面処理鋼板を作成した。
【0056】
次いで、上記No.1〜No.6の表面処理鋼板をジャッケトロールで加熱し板温が250℃で、缶の内面に相当する鋼板表面に厚みが15μmで融点が232℃、冷結晶化熱が23.4J/gのポリエステル樹脂フィルム(A)と厚みが10μmで融点が247℃ポリエステル樹脂フィルム(B)からなる二層フィルムを、ポリエステル樹脂フィルム(A)が鋼板と接するように被覆した後、更に鋼板を260℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。なお、缶の外面に相当する鋼板面には、融点が248℃で酸化チタン含有量10重量%のポリエステル樹脂フィルムを被覆した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0057】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が67%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0058】
実施例1に用いたラミネート鋼板の内容およびその評価結果は表1に示した。
表1から分かるように、本発明例の1〜5(No.2〜No.5)は、糸状腐食の発生も殆どまたは全くなく、また、内外面フィルムの密着性も良好でネック加工やフランジ加工でのフィルム剥離は殆ど見られない。更に内面フィルムの耐デント性や他の性能についても良好であり、バランスのとれた良好な性能を示す。それに対し、比較例1(No.1)は糸状腐食の発生、内外面フィルムのネック加工やフランジ加工でのフィルム剥離、耐デント性等、本発明例に比べ劣る。
【0059】
【表1】
Figure 0004278271
【0060】
(実施例2)
板厚0.21mmの鋼板の両面に、片面のNi付着量として530mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂とアミノプロピルトリエトキシシランを含有する化成処理液を塗布・乾燥し、片面のC付着量として0.3mg/m2 (No.7)、2mg/m2 (No.8)、8mg/m2 (No.9)、38mg/m2 (No.10)、87mg/m2 (No.11)、120mg/m2 (No.12)の表面処理鋼板を作成した。
次いで、上記No.8〜No.13の表面処理鋼板を実施例1で用いたポリエステル樹脂フィルムを、実施例1と同じ条件で鋼板に被覆し、ラミネート鋼板を作成した。なお、缶の外面に相当する鋼板面には、融点が248℃で酸化チタン含有量10重量%のポリエステル樹脂フィルムを被覆した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0061】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が68%のしごき加工を行い、350mlビール缶サイズの缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性を調べた。
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260℃に加熱後直ちに急冷しポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0062】
実施例2に用いたラミネート鋼板の内容およびその評価結果は表2に示した。
表2から、本発明例の6〜9(No.8〜No.11)は、糸状腐食の発生も全くなく良好である。また、内外面フィルムの密着性も良好でネック加工やフランジ加工でのフィルム剥離は殆ど見られず、更にその特性も良く、バランスのとれた良好な性能を有していることが分かる。それに対し、比較例2(No.7)は糸状腐食の発生が起こり、比較例3(No.12)は内外面フィルムのネック加工やフランジ加工でのフィルムが剥離するなど、比較例は本発明例に比べ劣ることが分かる。
【0063】
【表2】
Figure 0004278271
【0064】
(実施例3)
板厚0.21mmの鋼板の両面に、片面のNi付着量として455mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂とリン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。
次いで、上記の表面処理鋼板をジャッケトロールで加熱し245℃となった鋼板の両面に、融点が232℃、冷結晶化熱が23.4J/gのポリエステル樹脂フィルム(A)の、厚みが5μm(No.13)、厚みが10μm(No.14)、厚みが20μm(No.15)、厚みが30μm(No.16)、厚みが40μm(No.17)、厚みが50μm(No.18)の各フィルムと厚みが10μmで融点が247℃のポリエステル樹脂フィルム(B)とからなる二層フィルムを、ポリエステル樹脂フィルム(A)が鋼板と接するように被覆した後、更に鋼板を260〜265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0065】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が67%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260〜265℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0066】
実施例3に用いたラミネート鋼板の内容およびその評価結果は表3に示した。表3から、本発明例の10〜13(No.14〜No.17)は、カップ缶底コーナー部のフィルムクラックもなく、またネック/フランジ加工でもフィルム剥離はなく良好であることが分かる。また糸状腐食もなく、缶体のQTV値が低い値を示し、耐デント性も良く、バランスのとれた良好な性能を有していることが分かる。それに対し、比較例4(No.13)はカップ缶底コーナー部にフィルムクラックが発生し、缶体のQTV値が高く、耐デント性も悪かった。また、比較例5(No.18)は、金型離型性やネック加工やフランジ加工でのフィルムが剥離するなど、比較例は本発明例に比べ劣ることが分かる。
【0067】
【表3】
Figure 0004278271
【0068】
(実施例4)
板厚0.19mmの鋼板の両面に、片面のNi付着量として455mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。
また、被覆するフィルムとして、ポリエステル樹脂フィルム(A)は、厚みが20μmと同一で、融点が208℃、冷結晶化熱が8.7J/gのフィルム(No.19)、融点217℃、冷結晶化熱が15.8J/gのフィルム(No.20)、融点が225℃、冷結晶化熱が17.8J/gのフィルム(No.21)、融点が232℃、冷結晶化熱が22.8J/gのフィルム(No.22)、融点が243℃、冷結晶化熱が32.7J/gのフィルム(No.23)、融点が248℃、冷結晶化熱が40.0J/gのフィルム(No.24)の各フィルムと、ポリエステル樹脂フィルム(B)として、厚みが10μmで融点が252℃のフィルムを組み合わせた二層フィルムを準備し、前記表面処理鋼板をジャッケトロールで加熱し、No.19〜No.24の各ポリエステル樹脂フィルム(A)の融点より10〜15℃高い板温でポリエステル樹脂フィルム(A)が鋼板と接するように鋼板の両面に被覆した後、更に鋼板を265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0069】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が63%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、265℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0070】
実施例4に用いたラミネート鋼板の内容およびその評価結果は表4に示した。
表4から、本発明例の14〜17(No.20〜No.23)は、金型離型性や他の特性も良好で、バランスのとれた良好な性能を有していることが分かる。
それに対し、比較例6(No.19)は金型離型性が劣り、また比較例7(No.24)は、得られた缶体のQTV値および耐デント性共に本発明例に比べて劣ることが分かる。
【0071】
【表4】
Figure 0004278271
【0072】
(実施例5)
板厚0.17mmの鋼板の両面に、片面のNi付着量として455mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。
また、被覆するフィルムとして、ポリエステル樹脂フィルム(A)は、厚みが20μmで融点が238℃、冷結晶化熱が28.5J/gと同一にし、ポリエステル樹脂フィルム(B)は融点が255℃と同一で、厚みが3μmのフィルム(No.25)、厚みが6μmのフィルム(No.26)、厚みが12μmのフィルム(No.27)、厚みが18μmのフィルム(No.28)、厚みが24μmのフィルム(No.29)とそれぞれ変えて組み合わせた二層フィルムを準備し、前記表面処理鋼板をジャッケトロールで加熱し、板温が255℃でポリエステル樹脂フィルム(A)が鋼板と接するように鋼板の両面に被覆した後、更に鋼板を265〜270℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温80℃でストレッチ加工を付加した絞り加工を行った。
【0073】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を80℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が56%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。
こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0074】
実施例5に用いたラミネート鋼板の内容およびその評価結果は表5に示した。
表5から、本発明例の18〜20(No.26〜No.28)は、金型離型性や他の特性も良好で、バランスのとれた良好な性能を有していることが分かる。
それに対し、比較例8(No.25)は金型離型性および得られた缶体のQTV値や耐デント性が、また比較例9(No.29)は、得られた缶体のQTV値および耐デント性共に本発明例に比べて劣ることが分かる。
【0075】
【表5】
Figure 0004278271
【0076】
(実施例6)
板厚0.17mmの鋼板の両面に、片面のNi付着量として455mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。
また、被覆するフィルムとして、ポリエステル樹脂フィルム(A)は、厚みが20μmで融点が225℃、冷結晶化熱が17.8J/gと同一にし、ポリエステル樹脂フィルム(B)は厚みが10μmと同一で、融点が232℃のフィルム(No.30)、融点が238℃のフィルム(No.31)、融点が248℃のフィルム(No.32)、融点が252℃のフィルム(No.33)、融点が260℃のフィルム(No.34)とそれぞれ変えて組み合わせた二層フィルムを準備し、前記表面処理鋼板をジャッケトロールで加熱し、240℃となってからポリエステル樹脂フィルム(A)が鋼板と接するように鋼板の両面に被覆した後、更に鋼板をポリエステル樹脂フィルム(B)の各フィルムの融点より15℃高い温度に加熱した後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0077】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が56%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、ポリエステル樹脂フィルム(B)の各フィルムの融点より15℃高い温度に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。また、前記No.32から得た正規の350mlビール缶サイズに開口部をトリミングした缶体の、ポリエステル樹脂フィルムを非晶質にしない状態でも、204のネック加工およびフランジ加工を行った(No.35)。
【0078】
実施例6に用いたラミネート鋼板の内容およびその評価結果は表6に示した。
表6から、本発明例の21〜24(No.31〜No.33)は、金型離型性や他の特性も良好で、バランスのとれた良好な性能を有していることが分かる。
それに対し、比較例10(No.30)は、金型離型性、また比較例11(No.35)は、ネック加工やフランジ加工でのフィルムが剥離するなど、比較例は本発明例に比べ劣ることが分かる。
【0079】
【表6】
Figure 0004278271
【0080】
【発明の効果】
以上、説明したように、本発明を実施することで、得られる缶体内面のポリエステル樹脂フィルムは優れた皮膜健全性を有していることから、高耐食性のフィルムラミネートツーピース缶が得られる。従って、種々の内容物を充填することが可能であることから、品種の統一化に安心して対応出来ることから、経済的に有利となり、その社会的意義は大きいものがある。

Claims (2)

  1. フィルムラミネート金属板を絞り−しごき加工して得るシームレス缶において、鋼板の両面に、片面付着量として20〜2000mg/m2 のNiめっき、その上層に片面の付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層、その上層に少なくとも缶内面となる側にはポリエステル樹脂フィルムが、厚み10〜45μmで融点(ATm)が215〜245℃のポリエステル樹脂フィルム(A)と厚みが5〜20μmで融点(BTm)が235〜260℃のポリエステル樹脂フィルム(B)で構成され、かつ、ポリエステル樹脂フィルム(A)の融点(ATm)とポリエステル樹脂フィルム(B)の融点(BTm)との関係がATm<BTmの関係を満たしている、総厚みが15〜50μmの二層ポリエステル樹脂フィルムで、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)の平均密度が1.36g/cm3 未満であり、ポリエステル樹脂フィルム(A)が鋼板と接するように被覆されているポリエステル樹脂フィルムのラミネート鋼板から絞り−しごき加工によって、缶壁部鋼板の最も薄い部位の板厚(Tw)が、缶底部の鋼板板厚(Tb)との関係における板厚減少率(加工度)として、下記式(1)の範囲にある缶に成形され、更に成形加工後の缶体を前記ポリエステル樹脂フィルムの融点以上に加熱・急冷し、ポリエステル樹脂フィルムが非晶質化されていることを特徴とするラミネートシームレス缶。
    {(Tb−Tw)/Tb}×100=50〜70% …… (1)
  2. 前記ポリエステル樹脂フィルム(A)の冷結晶化熱(Hc)が8.5〜35.0J/gであることを特徴とする請求項1に記載のラミネートシームレス缶。
JP2000079583A 2000-03-22 2000-03-22 ラミネートシームレス缶 Expired - Fee Related JP4278271B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079583A JP4278271B2 (ja) 2000-03-22 2000-03-22 ラミネートシームレス缶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079583A JP4278271B2 (ja) 2000-03-22 2000-03-22 ラミネートシームレス缶

Publications (2)

Publication Number Publication Date
JP2001262371A JP2001262371A (ja) 2001-09-26
JP4278271B2 true JP4278271B2 (ja) 2009-06-10

Family

ID=18596816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079583A Expired - Fee Related JP4278271B2 (ja) 2000-03-22 2000-03-22 ラミネートシームレス缶

Country Status (1)

Country Link
JP (1) JP4278271B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775988B2 (ja) * 2001-07-30 2011-09-21 大和製罐株式会社 樹脂被覆シームレス缶およびその製造方法
DE602004024444D1 (de) * 2003-12-17 2010-01-14 Toyo Seikan Kaisha Ltd Verfahren zur herstellung eines mit kunstharz überzogenen metalldosenkörpers
JP2005297380A (ja) * 2004-04-13 2005-10-27 Toyobo Co Ltd 金属板被覆用積層ポリエステル系フィルム及びその製造方法、積層ポリエステル系フィルム被覆金属板及びその製造方法、及び積層ポリエステル系フィルム被覆金属缶。
JP2005297379A (ja) * 2004-04-13 2005-10-27 Toyobo Co Ltd 金属板被覆用積層ポリエステル系フィルム及びその製造方法、積層ポリエステル系フィルム被覆金属板及びその製造方法、及び積層ポリエステル系フィルム被覆金属缶
JP2005298688A (ja) * 2004-04-13 2005-10-27 Toyobo Co Ltd 金属板被覆用ポリエステル系フィルム及びその製造方法、ポリエステル系フィルム被覆金属板及びその製造方法、ポリステル系フィルム被覆金属缶。
JP2009046754A (ja) 2007-08-23 2009-03-05 Toyo Seikan Kaisha Ltd 溶接缶用表面処理錫めっき鋼板及びこれから成る溶接缶
JP4458136B2 (ja) * 2007-09-06 2010-04-28 オムロン株式会社 有機デバイス、及び有機デバイスの製造方法
JP5099043B2 (ja) * 2009-02-26 2012-12-12 Jfeスチール株式会社 容器用樹脂被覆金属板
JP5885345B2 (ja) * 2012-05-29 2016-03-15 東洋鋼鈑株式会社 樹脂との加工密着性に優れる容器用表面処理鋼板、その製造方法および缶
JP7154784B2 (ja) * 2018-03-16 2022-10-18 大和製罐株式会社 ツーピース缶の製造方法及び缶胴
EP4029797A4 (en) * 2019-09-13 2023-06-14 Daiwa Can Company METHOD OF MAKING A TWO-PART CAN, CAN DRUM AND METAL SHEET

Also Published As

Publication number Publication date
JP2001262371A (ja) 2001-09-26

Similar Documents

Publication Publication Date Title
JPH07106394B2 (ja) 絞りしごき缶の製造方法
JP4487651B2 (ja) 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、金属蓋
JP4278271B2 (ja) ラミネートシームレス缶
JPH05139436A (ja) 薄肉化絞り缶
CN102470952A (zh) 拉深减薄的铝罐及其生产方法
JP4631111B2 (ja) アルミニウム製缶材料、缶及び缶蓋
JP4278272B2 (ja) フィルム被覆ツーピース缶
JP2803854B2 (ja) 絞りしごき缶成形性に優れた複合鋼板
JP4278270B2 (ja) フィルムラミネートツーピース缶
JP4103974B2 (ja) ポリエステル樹脂被覆アルミニウムシームレス缶およびその製造方法
JP4445787B2 (ja) ポリエステル樹脂フィルム被覆金属板及びポリエステル樹脂フィルム被覆金属缶
JP4278273B2 (ja) フィルム被覆シームレス缶
JP3986170B2 (ja) ポリエステル樹脂被覆アルミニウムシームレス缶およびその製造方法
JP4226103B2 (ja) 樹脂被覆アルミニウムシームレス缶の製造方法
JP3949283B2 (ja) シームレス缶用ポリエステル樹脂被覆アルミニウム板およびシームレス缶の製造方法
JP2803837B2 (ja) ポリエステル樹脂フィルム積層鋼板の製造方法
JPH0631362A (ja) 密着性の優れたラミネート鋼板製多段絞り缶の製造方法
JP2790647B2 (ja) Di成形性に優れた複合被覆鋼板およびその製造方法
JP2003277886A (ja) 絞りしごき缶用樹脂被覆鋼板、絞りしごき缶用樹脂被覆鋼板の製造方法およびそれを用いて作製した絞りしごき缶
JP3858140B2 (ja) 金属板ラミネート用樹脂フィルムおよびラミネート金属板並びにその製造方法
JP4226104B2 (ja) 樹脂被覆アルミニウムシームレス缶の製造方法
JP4297779B2 (ja) ポリエステルフィルム被覆金属板の製造方法
JP4405301B2 (ja) 耐カジリ性に優れたポリエステル樹脂フィルム被覆金属板
JP4405300B2 (ja) 耐デント性に優れたポリエステルフィルム被覆金属板及びポリエステルフィルム被覆金属缶
JP4405299B2 (ja) 耐デント性に優れた金属缶成形加工用ポリエステル樹脂フィルム被覆金属板及び金属缶

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4278271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees