JP4278273B2 - フィルム被覆シームレス缶 - Google Patents

フィルム被覆シームレス缶 Download PDF

Info

Publication number
JP4278273B2
JP4278273B2 JP2000079585A JP2000079585A JP4278273B2 JP 4278273 B2 JP4278273 B2 JP 4278273B2 JP 2000079585 A JP2000079585 A JP 2000079585A JP 2000079585 A JP2000079585 A JP 2000079585A JP 4278273 B2 JP4278273 B2 JP 4278273B2
Authority
JP
Japan
Prior art keywords
resin film
polyester resin
film
thickness
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079585A
Other languages
English (en)
Other versions
JP2001260277A (ja
Inventor
知彦 林
稔 兼原
和弘 辻本
博一 横矢
茂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Nippon Steel Corp
Original Assignee
Daiwa Can Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd, Nippon Steel Corp filed Critical Daiwa Can Co Ltd
Priority to JP2000079585A priority Critical patent/JP4278273B2/ja
Publication of JP2001260277A publication Critical patent/JP2001260277A/ja
Application granted granted Critical
Publication of JP4278273B2 publication Critical patent/JP4278273B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スチールを素材としたポリエステル樹脂被覆シームレス缶に関するものである。
【0002】
【従来の技術】
スチールやアルミニウムを素材とした金属缶・容器は、その形状からスリーピース缶とツーピース缶とに大別される。スリーピース缶は、地蓋、缶胴、天蓋から成るためスリーピース缶と呼ばれており、製胴方法が現在はシーム溶接や接着が主であることから、価格の安いスチールが使用されている。
一方、ツーピース缶は、地蓋と缶胴とが一体となったもので、それに天蓋とから成るためツーピース缶、又は、缶胴部に接合部がないことからシームレス缶とも呼ばれ、スチールとアルミニウムが使用されている。金属缶の場合、缶内面側には耐食性を確保するために塗装が施されたものが使用されているが、近年、熱可塑性樹脂フィルムを積層した、ラミネート缶が開発され市場に出回っている。ラミネート缶は、金属素材に熱可塑性樹脂フィルムを被覆させたものから、缶体成形加工を行うものが主であり、特にシームレス缶を得るには高度な成形加工技術を必要とする。
【0003】
かかる意味から、シームレスのラミネート缶に関わる技術は、例えば特開平7−2241号公報、特開平7−195619号公報、特開平8−244750号公報等数多く提案され、開示されている。ラミネート缶のメリットは、消費者側から見た場合、適用する熱可塑性樹脂フィルムにもよるが、耐内容物性、特に内容物の味、風味と言ったフレーバー性に優れている点が第一に上げられている。
一方、デメリットとしては、今度は製缶メーカー側からであるが、前述したようにツーピース缶の場合、熱可塑性樹脂フィルム被覆金属板の加工度(又は変形度合)が大きいので、成形時に缶内面側の樹脂フィルムに傷が入ったりした場合、缶内面の品質確保ができなくなるため、缶体の品質検査を厳重に行う必要があることと、製品歩留まりが現行の塗装缶に比べて劣るといった点が上げられる。特に、スチール素材を用いたラミネートシームレス缶の場合、上記の傾向が大きい。
【0004】
こうしたラミネート缶の内面側の樹脂フィルムの皮膜欠陥は、前述したように缶成形加工時に入るものであり、この欠陥を最小限に抑えることは、品質、製品歩留まりの点から重要な技術課題であることは言うまでもない。
一方、トータル缶コストの低減化の観点から、使用金属板の板厚の低減化や缶蓋である開口容易缶蓋(イージーオープンエンド、通称EOE)の径を小さくすることが進められている。開口容易缶蓋について述べれば、例えば、缶胴が350mlのビール缶の場合、通称211と呼ばれ、缶胴内径は約65.9mmであり、当然巻締める缶蓋も211用であるが、現在この缶胴に使用される缶蓋は206用のものや204用のものとなっており、更に202用のものを使用する試みが進められている。
【0005】
このことは、必然的に缶胴の開口部をより小さい径に絞る、いわゆる縮径化となり、従って缶胴に用いられている金属は勿論、その表面に被覆されている樹脂フィルムにとっても厳しい加工を受けることになる。
しかし、しごき加工を伴うツーピース缶成形加工の、特に高加工率の場合には内面の熱可塑性樹脂フィルムは剥離や傷その他の欠陥が入り難く、また高縮径化のためのネック加工やフランジ加工で樹脂フィルムを剥離することなく、また傷その他の欠陥を入れることなく成形加工できる、適切なフィルムラミネート材が見い出されていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、こうした実状に鑑みなされたもので、皮膜欠陥のない高耐食性、高品質な樹脂被覆スチールシームレス缶を歩留まりよく提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、缶の内面に当たる鋼板面には、厚み10〜45μmで融点(Tm−A)が215〜245℃、冷結晶化熱(Hc)が8.5〜35.0J/g、極限粘度が0.60以上のポリエステル樹脂フィルム(A)と、厚みが5〜20μmで融点(Tm−B)が235〜260℃のポリエステル樹脂フィルム(B)で構成された総厚みが15〜50μmの二層ポリエステル樹脂フィルムで、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)の平均密度が1.36g/cm3 未満であり、ポリエステル樹脂フィルム(A)が鋼板と接するように被覆されており、また缶の外面に当たる鋼板面には鋼板と接する側から、融点(Tm−C)が225℃以上で厚みが10〜15μm、10〜30重量%の酸化チタンの白色顔料を含有するポリエステル樹脂フィルム(C)と、その上層には厚みが2〜10μmで融点(Tm−D)が235〜260℃、0〜5重量%の酸化チタンの白色顔料を含有するポリエステル樹脂フィルム(D)からなる総厚みが12〜20μmの二層のポリエステル樹脂フィルムで、ポリエステル樹脂フィルム(C)が鋼板と接するように被覆され、かつ、缶の内外面に当たる鋼板両面のポリエステル樹脂フィルムは共に非晶質化されているポリエステル樹脂フィルムのラミネート鋼板から、缶壁部鋼板の最も薄い部位の板厚(Tw)が、缶底部の鋼板板厚(Tb)との関係における板厚減少率(加工度)として、下記式(1)の範囲にあるように絞り−しごき加工され、更に成形加工後の缶体を、少なくとも前記の内面のポリエステル樹脂フィルムの融点以上に加熱・急冷し、少なくとも缶内面側に被覆されているポリエステル樹脂フィルムが非晶質化されているフィルム被覆シームレス缶である。
{(Tb−Tw)/Tb}×100=50〜70% …… (1)
前記ポリエステル樹脂フィルムを被覆する前の前記鋼板の表面には、片面付着量として20〜2000mg/m2 のNiめっき層、その上層に片面の付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜を形成しておく。
【0008】
【発明の実施の形態】
以下、本発明のツーピース缶の実施形態について詳細に説明する。
まず、本発明における鋼板について述べる。
本発明における鋼板は、両面に片面の付着量として20〜2000mg/m2 のNiめっき層、その上層に片面付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層を有するものである。
Niめっきおよび化成処理前の鋼板は特に限定されるものではなく、通常製缶用鋼板として使用されているものが適用される。しかし、選定する際には缶体の強度、特にボトム耐圧強度には留意する必要があり、ビール缶においてはボトム耐圧は最大で618kPa以上、コーラ等の炭酸飲料缶においてはボトム耐圧686kPa以上でないと缶底部のドーム外方へ突出するといった現象が起こる。
この現象を回避するには、使用鋼板の硬度やボトム形状との関係もあるが、現状では鋼板板厚が0.15mm以下では難しい。一方、鋼板板厚が0.22mmあれば使用鋼板の硬度が低くても缶底部のドーム外方へ突出するといった現象は起こらない。従って、鋼板の板厚は0.15〜0.22mmとするのが好ましいる。
【0009】
次に、鋼板の表面に施されているNiめっきや化成処理皮膜の表面処理について述べる。
本発明において、鋼板表面にまずNiを付着させる理由について述べる。
本発明のような樹脂フィルムを被覆した鋼板を絞り−しごき加工して得るツーピース缶の場合、鋼板表面に形成させた金属めっき皮膜や化成処理皮膜は、その加工程度に応じて破壊され、加工前の特性は減じるものである。
本発明のように樹脂フィルムを積層させた鋼板から成形加工する場合の鋼板の表面処理として、鋼板に金属クロム、その上層に水和酸化クロムを形成させる電解クロム酸処理が施されたTFS−CT(ティンフリースチールクロミウムタイプ)が良く知られているが、こうした表面処理皮膜でも例外でなく、絞り−しごき成形加工後には、表面処理皮膜の一部は破壊される。その結果、缶の開口部といった鉄が露出している箇所を起点として糸状腐食が起こる場合がある。糸状腐食が起こった缶は当然商品としての価値は消失してしまい、問題である。
【0010】
糸状腐食は、腐食箇所が糸状に成長することから名付けられたが、鉄やアルミニウムで起こりその腐食の成長は酸素の還元反応を駆動力としている。前述した鋼板に施される電解クロム酸処理皮膜はこの酸素の還元反応が起こり難い皮膜であるため、皮膜が健全な場合は糸状腐食は極めて起こり難い。しかし、絞り−しごき成形加工後には、表面処理皮膜の一部は破壊されるため、糸状腐食は起こってしまう。Niは糸状腐食が起こらない金属として知られており、こうした金属で鉄素地を被覆することは、鋼板の糸状腐食の防止に有効であるが、前述した電解クロム酸処理皮膜同様、絞り−しごき成形加工後には皮膜の健全性は確保されなくなるため、本発明ではNiめっきの付着量は、片面の付着量として20〜2000mg/m2 とする。
【0011】
下限値の20mg/m2 未満では、本発明の缶の板厚減少率の最小値である50%でも、糸状腐食が発生するため好ましくない。また、前述した204(内径約54.9mm)や202(内径約52.4mm)等の高縮径ネック加工において、被覆ポリエステル樹脂フィルムの剥離する場合があり、好ましくない。
さらに、Niが付着量が下限値の20mg/m2 未満では、万が一缶内面側の被覆フィルムに欠陥が発生した場合、内容物によっては素地の鉄が溶解し穿孔缶となる危険性もあり好ましくない。
【0012】
一方、上限値である2000mg/m2 超では本発明の缶の板厚減少率の最大値である70%でも糸状腐食の発生や密着性の確保等の効果は飽和する。従って、Ni付着量は20mg/m2 以上は必要で、Niの効果を十分に発揮させるには片面の付着量として100mg/m2 以上のNiめっきを施すことが望ましいまた、Ni缶外面の鋼板面に存在することで、白さが若干向上し、缶の外面側を被覆するポリエステル樹脂フィルム中に混入される白色顔料の混入量や印刷・塗装時に行われる白色塗装や白インキの塗布量を低減出来るといった経済的効果もある。こうしたことを総合的に勘案すると、Ni付着量は20〜2000mg/m2 が最適な範囲であり、好ましくは100〜2000mg/m2 が好適である。鋼板へのNi付着方法としては周知の電気めっきや無電解めっき方法が適用できる。
【0013】
次に、化成処理皮膜について述べる。
本発明の鋼板は、Niめっきの上層に有機樹脂を主体とする化成処理皮膜を有するものである。有機樹脂を主体とする化成処理皮膜は、乾燥時に高分子化が起こり、Niめっき面を一様に覆うため、第一にその上層に積層させるポリエステル樹脂皮膜との密着性を強固にすることができる。第二に前述した糸状腐食の駆動力となる酸素の還元反応を抑制することができるため、糸状腐食が防止される等の優れた性能を示す。
また、有機樹脂を主体とする化成処理皮膜層は、特にポリエステル樹脂フィルムとの密着性が良好であるため、高加工度の絞り−しごき加工を受けても、密着性が不十分によって起こるフィルム剥離(通称デラミ)や、激しいデラミを起因とする破胴といったことはなく、良好な缶体が得られる。
【0014】
化成処理皮膜の付着量は、C量として、例えば(株)島津製作所製のTOTAL ORGANIC CARBON ANALYZER TOC−5000で測定した値で、1〜100mg/m2 である。
下限値である1mg/m2 未満では被覆性が劣り、防食作用および密着性が共に不十分となる。また、本発明の缶の板厚減少率の最小値である50%でも成形加工後に樹脂フィルムが局部的に剥離する、いわゆるデラミが起こったり成形加工後の缶体には開口部から糸状腐食が発生し、好ましくない。しかし、有機樹脂を主体とする化成処理皮膜をC量として1mg/m2 以上施すことにより密着性は向上し、5mg/m2 以上で十分な密着性が確保される。
【0015】
一方、上限値の100mg/m2 を超えると、糸状腐食の発生はないが、本発明の缶の板厚減少率の最大値である70%の成形加工で化成処理皮膜自身の凝集破壊によるものと思われる密着性低下がやはり起こる場合があり、好ましくない。有機樹脂を主体とする化成処理皮膜をC量として100mg/m2 以下にすることで、成形加工での密着性低下を防止することが可能となる。従って、有機樹脂を主体とする化成処理皮膜量は、C量として1〜100mg/m2 の範囲であるが、工業製品としての安定生産性を考慮すると、C量として5〜50mg/m2 の範囲が好ましく最適である。
【0016】
鋼板への処理方法としては、例えばリン酸及びその塩、縮合リン酸及びその塩、リン酸ジルコニウム、リン酸チタニウムのようなリン酸系化合物や、例えばビニルエトキシシラン、アミノプロピルトリエトキシシラン等のシランカップリング剤のような有機ケイ素化合物と、例えば水溶性フェノール樹脂、水溶性アクリル樹脂等のような水溶性有機樹脂を主体とする水溶液を、前記処理液をNiめっき鋼板にスプレー塗布し絞りロールで付着量を調整した後、乾燥し硬化させる方法、処理液にNiめっき鋼板を浸漬し絞りロールで付着量を調整した後、乾燥し硬化させる方法、等が適宜適用できる。乾燥硬化方法としては熱風での乾燥、電気炉での乾燥等の方法が適用でき、温度は150〜250℃で乾燥時間は10秒〜2分程度である。
【0017】
次に、本発明の方法に適用される樹脂フィルムについて説明するが、その前に樹脂フィルムラミネート金属板から絞り−しごき加工して得るラミネートツーピース缶の技術的問題点について述べる。
前述したようにツーピースのラミネート缶のデメリットとしては、熱可塑性樹脂フィルム被覆金属板の加工度(又は変形度合)が大きい場合、成形時に缶内面側の樹脂フィルムに傷が入ったりした場合、缶内面の品質確保ができなくなるため、缶体の品質検査を厳重に行う必要があることと、製品歩留まりが現行の塗装缶に比べて劣るといった点が上げられる。
【0018】
特に、スチール素材を用いたラミネートシームレス缶の場合、上記の傾向が大きい。こうしたラミネート缶の内面側の樹脂フィルムの皮膜欠陥は缶成形加工時に入り、この欠陥を最小限に抑えることは、品質、製品歩留まりの点から重要な技術課題であることは言うまでもない。
この、成形加工時に起こる樹脂フィルムの欠陥は特にしごき加工時に起こり易いことは、発明者等の研究から明らかになっており、その原因はほぼ次の二点に集約されると考えられる。
【0019】
即ち、成形加工の際に金属の加工熱が発生し、樹脂フィルムの特性を大きく変化させるためで、熱による樹脂フィルムの特性変化は、(1)樹脂フィルムの軟化、(2)樹脂フィルムの結晶化等がある。
(1)の樹脂フィルムの軟化は、しごき加工時に樹脂フィルムがパンチに付着してしまい、パンチが抜け難くなる、いわゆる離型性不良が起こり、内面側の樹脂フィルムに傷を付ける原因となる。
また、離型性不良がひどい場合は、缶体の開口部近傍が座屈し、正規の缶体高さが得られない事態が起こる場合もある。
【0020】
(2)の樹脂フィルムの結晶化は、しごき加工時の発熱と延伸加工により、樹脂フィルムは配向結晶化が起こり、その結果、高加工に耐えられなくなり、樹脂フィルムに亀裂が入る原因となる。いずれにしても、内外面フィルムの欠陥発生につながり好ましくい。このしごき加工時に起こる欠陥の二つの原因は、ポリエステル樹脂フィルムの熱的特性から見た場合、基本的には相反関係にあるため、どうバランスをとるかが技術的課題となる。本発明では缶の内外面共、鋼板を被覆する樹脂フィルムは、熱可塑性ポリエステル樹脂フィルムが適用される。
【0021】
本発明において、被覆する樹脂フィルムを熱可塑性ポリエステル樹脂フィルムに限定した理由は、▲1▼耐熱性が良い、▲2▼缶内面用としては内容物のフレーバーが確保される、と言った、例えばポリエチレンやポリプロピレンなどのポリオレフィン系樹脂フィルムにない、缶用途としての適した特性を有しているからである。本発明では缶の内外面共、被覆されるポリエステル樹脂としては酸成分としてテレフタル酸、イソフタル酸、アジピン酸、セバシン酸等の酸成分と、エチレングリコール、ブチレングリコール等のアルコール成分からなるポリエステル樹脂で、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート(PEI)のようなホモポリマーや、例えばエチレンテレフタレートとエチレンイソフタレートとの共重合樹脂であるコーポリマーや、またこうしたホモポリマー同士のブレンド、ホモポリマーとコーポリマーのブレンドコーポリマー同士のブレンドといったブレンド樹脂等が適用される。樹脂フィルムの融点(Tm)や冷結晶化熱(Hc)は、こうした酸成分とアルコール成分の選定、コーポリマーの程度、ホモポリマーのブレンド樹脂の選定およびそのブレンド比等適宜選定することで得ることができる。
【0022】
缶内面側に被覆されるポリエステル樹脂フィルムについて述べる。
まず、ポリエステル樹脂の融点についてであるが、本発明では缶内面側に被覆されているポリエステル樹脂フィルムの最表層にあるポリエステル樹脂フィルム(B)は、融点(Tm−B)が235〜260℃の樹脂フィルムである。ポリエステル樹脂フィルム(B)は、前記の(1)の樹脂フィルムの軟化による離型性不良による内面の樹脂フィルムの傷つき防止や離型性不良がひど場合に起こる缶体の開口部近傍が座屈し正規の缶体高さが得られない事態を防止する役割を担うものである。従って、ポリエステル樹脂フィルム(B)の融点(Tm−B)は高い方が良く235〜260℃とする。樹脂フィルムの融点(Tm−B)が235℃未満の場合はこの離型性不良が起こり、内面フィルムを傷付け耐食性低下に繋がり、激しい場合は成形加工ができないことがあり、好ましくない。一方、上限値の260℃超では、高融点化に伴う離型性の更なる効果は期待できず飽和する。
【0023】
缶内面のポリエステル樹脂フィルム(B)の融点(Tm−B)は、上記の離型性から限定したものであるが、しごき加工時の発熱量は後述する加工度との関係もあり、樹脂フィルムの融点だけで離型性の良否を決められるものではないが、基本的には融点は高い方が有利であり、好ましくは240〜255℃、更に好ましくは245〜255℃が好適である。
ポリエステル樹脂フィルム(B)の厚みは5〜20μmである。ポリエステル樹脂フィルム(B)の役割は、前述したように離型性確保にあり、発明者等の検討では最低5μmは必要であることが分かった。5μm未満では、特に、高加工度の場合はポリエステル樹脂フィルム(B)の結晶化による欠陥が発生した場合、パンチ表面がポリエステル樹脂フィルム(A)に食い込み、離型性が劣るといった現象が見られ好ましくない。
【0024】
一方、ポリエステル樹脂フィルム(B)の厚みが20μm超の場合、高加工度でも離型性は良好であるが、ポリエステル樹脂フィルム(B)の結晶化による欠陥がポリエステル樹脂フィルム(A)に伝播し亀裂が入り、缶体の耐食性が劣るといった現象が見られる場合があり、好ましくない。
本発明の加工度である板厚減少率が50〜70%の範囲では、ポリエステル樹脂フィルム(B)の厚みは5〜20μmの範囲が最適である。
鋼板と接するポリエステル樹脂フィルム(A)は、前記の(2)樹脂フィルムの結晶化による欠陥発生を抑制する役割を担うものであり、そのためには結晶性の低いポリエステル樹脂が好ましい。
【0025】
冷結晶化熱(Hc)は、樹脂フィルムの結晶性を示す指標であり、熱量が大きいほど結晶性の高い樹脂フィルムであることを指す。
結晶性の樹脂フィルムの場合、前述したようにしごき加工時の発熱と延伸加工により、樹脂フィルムは配向結晶化が起こり、その結果高い加工度には耐えられくなり亀裂が入る要因となる。しかし、例えば、非結晶性の即ち非晶質ポリエステル樹脂フィルムではフィルム自体にいわゆる腰の強さがなく、本発明のようにしごき加工を行う成形加工の場合、パンチとしごきダイスの間に加工熱を伴った高い局圧がかかるため、その強度に耐えられず被覆フィルムに欠陥を発生させる原因となる。従って、こうした現象を回避するためにはポリエステル樹脂フィルム(A)は、適度な結晶性が必要となる。かかる意味においてポリエステル樹脂フィルム(A)の冷結晶化熱(Hc)が8.5〜35.0J/gの範囲のポリエステル樹脂フィルムとする。
【0026】
冷結晶化熱(Hc)が8.5J/g未満の場合は、しごき加工に耐えられず、成形加工の際にフィルム欠陥を発生させ、得られる缶体の品質をかえって低下させるため、好ましくない。一方、冷結晶化熱(Hc)が35.0J/gを超えると、加工度との関係もあるが、結晶性が高すぎて成形加工で樹脂フィルムの亀裂欠陥が発生する場合があり好ましくない。特に、高加工度の成形加工では、亀裂状に欠陥が発生する危険性が高い。成形加工における、主にしごき加工時の樹脂フィルムの配向結晶化の程度は、後述する成形加工の条件にも関係があるが、基本的には樹脂固有の結晶性に依るところが大きく、本発明の加工度である板厚減少率が50〜70%の範囲では、冷結晶化熱(Hc)が8.5〜35.0J/gの範囲のポリエステル樹脂フィルムであれば、樹脂フィルムに亀裂状の欠陥が発生することなく良好な缶体が得られる。更に、本発明においては、少なくともポリエステル樹脂フィルム(A)の極限粘度(通称IV)は0.60以上である。
【0027】
極限粘度(IV)は、樹脂の平均分子量を示す指標であるが、極限粘度が0.60未満では樹脂フィルムの衝撃強度が小さく、内容物が充填された缶体を落とした場合、その部位に衝撃が加わり材料が変形するばかりでなく、同時にその衝撃と変形で樹脂フィルムにクラックが入り、激しい場合はそこが缶体金属の腐食起点となる。こうした状況に対する特性を耐デント性と呼ぶが、腐食の激しい内容物の場合穿孔缶となることもあり、耐デント性が劣ることは、重大な問題となる要因を有しており好ましくない。
耐デント性は極限粘度が高い程良好であるが、0.60以上であれば多くの場合実用上問題のない品質が確保されるが、腐食性の強い内容物に対しては高い方が安心であり、好ましくは0.65以上、更に好ましくは0.70以上が良い。
【0028】
ポリエステル樹脂フィルム(A)の融点(Tm−A)は215〜245℃である。前述したように、ポリエステル樹脂フィルム(A)と接する鋼板表面には、密着性の良好な有機樹脂を含有する化成処理皮膜が存在しているが、ポリエステル樹脂フィルムを被覆する際に樹脂フィルムは十分に溶融してラミネートする必要があり、基本的には密着性確保には融点(Tm)は低い方が有利である。
しかし、ポリエステル樹脂フィルム(A)の融点(Tm−A)が215℃未満では、しごき加工時の加工熱によりポリエステル樹脂フィルム(A)の軟化が激しく、その上層にポリエステル樹脂フィルム(B)が存在していてもパンチの離型性が劣る場合があり、好ましくない。
【0029】
また、ポリエステル樹脂フィルム(A)の融点(Tm−A)が245℃超では結晶性も高くなることから、高加工度ではポリエステル樹脂フィルム(B)の結晶化による欠陥がきっかけとなり、ポリエステル樹脂フィルム(A)まで亀裂を発生させ、大きな欠陥となってしまうことがあり、耐食性の点で問題となり好ましくない。ポリエステル樹脂フィルム(A)の融点(Tm−A)は本発明の加工度である板厚減少率が50〜70%の範囲では220〜235℃が好適である。
【0030】
ポリエステル樹脂フィルム(A)の厚みは10〜45μmである。ポリエステル樹脂フィルム(A)の厚みは基本的には厚い方が成形加工後の樹脂フィルムの健全性からは有利であるが、前述したようにしごき加工時の加工熱によりポリエステル樹脂フィルム(A)の軟化によるパンチの離型性が劣る場合があり、この現象は相対的にしごき加工が高加工度な程、ポリエステル樹脂フィルム(A)が厚い程、起こり易くなる。従って、ポリエステル樹脂フィルム(A)の厚みが45μm超では、パンチの離型性が劣る現象が見られ、好ましくない。
【0031】
一方、10μm未満ではパンチの離型性は良好であるが、高加工度ではポリエステル樹脂フィルム(B)の結晶化による欠陥がきっかけとなり、ポリエステル樹脂フィルム(A)まで亀裂を発生させ、しかもポリエステル樹脂フィルム(A)の厚みが薄すぎるため鋼板素地に達してしまう危険性が大きく、好ましくない。樹脂フィルムの厚みについては、本発明ではポリエステル樹脂フィルムの総厚みは15〜50μmである。
【0032】
缶の内面に当たる鋼板面に被覆されるフィルム厚みは、缶内面の耐食性の点から限定されるものであり、15μm以下では缶の成形加工後で充填する内容物にもよるが、十分な耐食性を確保するのは難しい場合がある。
一方、50μmを超えると、ほとんど内容物に対し耐食性は十分確保されるが、実質的に過剰品質となり、経済的でない。フィルム厚みとしては、18〜40μmが品質および経済性からは好ましい範囲である。
また、本発明を実施する際フィルム厚の選定は、後述する缶壁部の薄肉化の加工度との関係があることも選定の際の重要な要素である。
【0033】
即ち、加工度が高い場合は、当然その加工度に応じてフィルムの厚みも薄くなるため、その結果として、缶内面の防食性能は低下する。従って、加工度が高い場合は予め厚手のフィルムを適用することが望ましいし、一方、加工度が低い場合はそれに応じて予め薄手のフィルムを適用することが可能となる。
また、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)のフィルム厚みの比は、ポリエステル樹脂フィルム(A):ポリエステル樹脂フィルム(B)=1:1〜9:1が好ましく、ポリエステル樹脂フィルム(A)のフィルム厚みよりポリエステル樹脂フィルム(B)のフィルム厚みの方が厚い、といったことが望ましい。本発明に適用されるポリエステル樹脂フィルムの密度は、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)との平均密度、即ち二層フィルムとして1.36g/cm3 未満である。
【0034】
密度は樹脂の結晶状態を示す指標となり、例えば、延伸された樹脂フィルム等の結晶化度が高い場合は、密度は大きくなる。
密度が1.36g/cm3 未満であると言うことは、ポリエステル樹脂フィルムの結晶状態としては実質的に非晶質であることを示す。
まず、ラミネート板に被覆した樹脂フィルムを非晶質にする理由は、その後行うカップの絞り加工、カップの再絞り加工、更にしごき加工において、樹脂フィルムの加工性を十分に確保することを目的にしたもので、密度が1.36g/cm3 を超えると、結晶性の低いポリエステル樹脂フィルムでも、成形加工にフィルムが耐えられずフィルムに亀裂欠陥が激しく起こる場合があり好ましくない。
【0035】
特に、加工度が大きい時は、しごき加工時の発熱と併せて引き延ばし加工により、樹脂フィルムが配向結晶化が一層進み、その結果加工に追随し難くなり、上記の挙動が顕著に現れ、缶体の耐食性が十分に確保できない場合がしばしば起こる。従って、密度が大きい、結晶化した状態からの成形加工は、特に高加工度に対しては極めて難しく不適である。
更に、本発明では、カップの絞り加工、カップの再絞り加工、更にしごき加工の缶成形加工を施した後、得られた缶体を加熱・冷却し再度樹脂フィルムの密度を1.36g/cm3 未満にした後、ネック加工およびフランジ加工を行う。カップの絞り加工、カップの再絞り加工、更にしごき加工を経て得られる缶体は、この時の加工により、樹脂フィルムの密着性は著しく低下しており、この状態でネック加工およびフランジ加工を行うと、樹脂フィルムは剥離し易い。
【0036】
そこで、本発明では、缶体を加熱・冷却し再度樹脂フィルムの密度を1.36g/cm3 未満にした後、ネック加工およびフランジ加工に供するものである。樹脂フィルムの密度を1.36g/cm3 未満にすることで、樹脂フィルムは剥離やクラックが発生することなくネック加工およびフランジ加工を行うことができる。特に、ネック加工率が高い、高縮径化への対応については、樹脂フィルムの高加工密着性が一層必要となり、この場合樹脂フィルムの密度は低い方が非晶質化度が高いため、良好となる。密度を1.36g/cm3 未満と限定した理由は上記の理由からで、特に、第1工程の絞り加工前やネック加工およびフランジ加工前の状態として、好ましくは1.35g/cm3 未満が好適である。
【0037】
次に缶外面側のポリエステル樹脂フィルムについて述べる。
本発明では、外面に当たる鋼板面には鋼板と接する側から、厚みが10〜15μmで10〜30重量%の酸化チタンの白色顔料を含有するポリエステル樹脂フィルム(C)、その上層には融点(Tm−D)が235〜260℃、厚みが2〜10μmで0〜5重量%の酸化チタンの白色顔料を含有するポリエステル樹脂フィルム(D)からなる総厚みが12〜20μmの二層のポリエステル樹脂フィルムが被覆されている。ポリエステル樹脂フィルムに酸化チタン顔料を添加して白色化する理由は、現行の鋼板のツーピース缶は外面の缶胴部に対しては印刷の色調を鮮明にするために白色塗装もしくは白色インキ、またはその併用を行っており、また、缶底部には耐錆性の点からスプレーでボトム塗装を行っており、その工程省略を狙いとするものである。
【0038】
しかし、缶外面はしごき加工の際、缶内面と異なり、カップの側壁は直接しごきダイスのしごき作用部に接触し、極圧をうけながらダイスを通過し板厚が薄くなるため、缶外面のポリエステル樹脂フィルムは缶高さ方向への削られたような傷が入り易くなる。
こうした削られたような傷が入る現象は「かじり」と言われ、樹脂フィルム表面の擦過傷程度の軽微なものから、激しいものでは缶高さ方向に直線的にえぐれたような傷が入る場合がある。また、「かじり」は成形加工時の破胴の原因にもなる。
【0039】
従って、缶外面フィルムの「かじり」による傷が入った場合は、その後施される印刷の仕上がり外観を損ねることになるだけでなく、こうした「かじり」は破胴の原因にもなるため、単なる製品のロスだけでなく、生産上のトラブルになり、好ましくない。こうした「かじり」は、▲1▼酸化チタン顔料含有量が多いほど、▲2▼ポリエステル樹脂フィルムの融点(Tm)が低いほど、▲3▼ポリエステル樹脂フィルムの表面の滑り性が劣るほど、▲4▼しごき加工率が大きいほど、発生し易いことが、発明者等の検討で分かり、解決の施策を鋭意検討した結果、本発明に至ったものである。
【0040】
本発明におけるポリエステル樹脂フィルムの二側フィルムは、白さの確保を上記のフィルム起因の「かじり」原因を、二層フィルムにすることで役割を分担させた、いわゆる機能分離することで解決したものである。
まず、缶外面側に適用されるポリエステル樹脂フィルムは、樹脂としては缶内面のものと基本的には同じで、酸成分としてテレフタル酸、イソフタル酸、アジピン酸、セバシン酸等の酸成分と、エチレングリコール、ブチレングリコール等のアルコール成分からなるポリエステル樹脂で、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、(PBT)、ポリエチレンイソフタレート(PEI)のようなホモポリマーや、例えばエチレンテレフタレートとエチレンイソフタレートとの共重合樹脂であるコーポリマーや、またこうしたホモポリマー同士のブレンド、ホモポリマーとコーポリマーのブレンド、コーポリマー同士のブレンドといったブレンド樹脂等が適用される。樹脂フィルムの融点(Tm)や、冷結晶化熱(Hc)は、こうした酸成分とアルコール成分の選定、コーポリマーの程度、ブレンド樹脂の選定およびそのブレンド比等適宜選定することで得ることができる。
【0041】
まず、缶外面側の最上層にあるポリエステル樹脂フィルム()について説明する。
ポリエステル樹脂フィルム(D)は融点(Tm−D)が235〜260℃、厚みが2〜10μmで0〜5重量%の酸化チタンの白色顔料を含有するものである。融点(Tm−D)を235〜260℃に限定した理由は、前述した(2)ポリエステル樹脂フィルムの融点(Tm)が低いほど「かじり」が起こりやすいことによるもので、下限値の235℃未満では、しごき加工時の加工熱でフィルムが軟化し、「かじり」を抑えることは出来ない。一方、上限値の260℃を超えても「かじり」の発生抑制の更なる効果は見られない。
【0042】
ポリエステル樹脂フィルム(D)の融点(Tm−D)は基本的には高い方が有利であるが、本発明の缶壁部の加工度(板厚減少率)である50〜70%の範囲内では、ポリエステル樹脂フィルム(D)の融点(Tm−D)は、好ましくは240〜255℃、更に好ましくは245〜255℃が良い。
ポリエステル樹脂フィルム(D)に含有させる酸化チタンの白色顔料は0〜5重量%である。酸化チタン白色顔料の含有量を0〜5重量%に限定した理由は、前述した▲1▼酸化チタン顔料含有量が多いほど「かじり」が起こりやすいことによるもので、上限値の5重量%未満であれば、本発明の缶壁部の加工度(板厚減少率)である50〜70%の範囲内では「かじり」の発生は見られない。
【0043】
フィルムの厚みは2〜10μmである。ポリエステル樹脂フィルム(D)は前述したように、「かじり」防止の役割を持つものであるから、「かじり」が発生しない最低限の厚みを有していれば良い。本発明の缶壁部の加工度(板厚減少率)である50〜70%の範囲内では、ポリエステル樹脂フィルム(C)に含有されている酸化チタンの白色顔料が30重量%であっても、70%の加工度の場合、上限値が5μmあれば、「かじり」は見られない。一方、50%の加工度の場合は、下限値が2μmあれば「かじり」は見られない。フィルム厚みは、勿論10μm超でも「かじり」は見られないが、白さが低下する傾向にあり、白さ確保と「かじり」の防止の兼備からは3〜8μmが最適である。
【0044】
次に、鋼板と接する側のポリエステル樹脂フィルム(C)について説明する。
ポリエステル樹脂フィルム(C)は、厚みが10〜15μmで10〜30重量%の酸化チタンの白色顔料を含有するものである。
ポリエステル樹脂フィルム(C)の役割は、白さの確保である。従って基本的には酸化チタンの含有量が多い、厚いフィルムの方が白さの確保には有利であることは明白であるが、フィルム特性の低下やコスト高となるため、そのバランスがポイントとなる。まず、ポリエステル樹脂フィルム(C)の酸化チタンの白色顔料の含有量は10〜30重量%である。酸化チタンの白色顔料の含有量は、多いほど白さの確保には有利であるが、白色顔料の含有量が多くなるほどフィルム自身の凝集力が低下し、高加工に耐えられない場合が生じる。
【0045】
本発明の上限値の30重量%を超えると、隠蔽率としては一層高くなるので白さの確保からは有利であるが、缶壁部の加工度(板厚減少率)が大きい場合、フィルム自身の凝集力低下によるフィルム自身の缶高さ方向に平行なマイクロクラックを発生し、外観を損ねるため好ましくない。
一方、下限値の10重量%未満では、前記のポリエステル樹脂フィルム(D)に含有させる酸化チタン5重量%との組み合わせでも白さは不十分で、外面印刷時に補色せざるを得ず、工程省略が出来ず経済的ではない。ポリエステル樹脂フィルム(C)の酸化チタンの白色顔料の含有量は、15〜30重量%が最適である。
【0046】
ポリエステル樹脂フィルム(C)の厚みは、10〜15μmである。フィルム厚みは厚い方が隠蔽率としては高くなるため、白さの確保と言った点からは有利であるが、15μmを超えても隠蔽率の向上効果は大きく期待できず、むしろコスト高となってしまい経済的でない。一方、10μm未満では酸化チタンの白色顔料を30重量%含有させた場合でも、本発明の缶壁部の加工度(板厚減少率)である70%程度の高加工度の場合は、隠蔽率は劣り白さは不十分で、外面印刷時に補色せざるを得ず、工程省略が出来ず経済的ではない。
【0047】
本発明のポリエステル樹脂フィルム(C)の融点(Tm−C)は、直接加工金型に接触するものではないため、特に限定するものではないが、缶内面に積層されるポリエステル樹脂フィルム(A)とのラミネート温度が大きく異なると、ラミネートし難い点もあることから、なるべくポリエステル樹脂フィルム(A)の融点と近いものが望ましい。かかる意味から、ポリエステル樹脂フイルムの融点(Tm−C)は215℃以上が好ましい。
【0048】
また、上層にあるポリエステル樹脂フィルム(D)の融点(Tm−D)との差が大きいと、ポリエステル樹脂フィルム(C)とポリエステル樹脂フィルム(D)の層間密着力が低下するため、成形加工時に思わぬ密着不良が発生したり、また、ラミネート時や更にはその後の熱を受ける工程でフィルムずれが発生したりすることがあるので、理想的にはポリエステル樹脂フィルム(C)とポリエステル樹脂フィルム(D)とは同一樹脂組成のものが良いが、何らかの理由から異なる樹脂組成にする場合は、ポリエステル樹脂フィルム(C)とポリエステル樹脂フィルム(D)の融点差は35℃以下に、出来るなら30℃以下にすることが望ましい。
【0049】
更に、本発明では、缶外面に被覆されるポリエステル樹脂フィルム(C)とその上層ポリエステル樹脂フィルム(D)の総厚みは12〜20μmである。
前述したように「かじり」は、フィルム厚みが厚いほど起こり易く、かかる意味において、缶外面側の樹脂フィルムの総厚みは12〜20μmが「かじり」防止効果と経済性からは最適である。
また、本発明では缶外面側のポリエステル樹脂フィルムも非晶質のものが適用される。非晶質にする理由は前述した缶内面側フィルムの場合と同じで、しごき加工やネック加工、フランジ加工に対し良好な加工性を付与するためである。
【0050】
なお、ポリエステル樹脂フィルム被覆ラミネート鋼板の製造方法としては、加熱された鋼板の表面に樹脂フィルムを供給してロール間で熱圧着し被覆させた後、直ちに急冷して、非晶質にする方法や、溶融した樹脂を押し出し、鋼板に供給し被覆させ、直ちに急冷して、非晶質にする方法や、例えば二軸延伸されたフィルムを適用する場合は、一度被覆したポリエステル樹脂を、必要に応じ更に樹脂の融点以上に加熱した後、直ちに急冷して非晶質にする方法等が適用できる。
鋼板の加熱方法としては、電気炉中で加熱する方法、熱風による加熱方法、加熱ロールに接触させて加熱する方法、高周波で誘導加熱する方法等の加熱方法が採用できる。
【0051】
次に、本発明の缶体の加工度、即ち缶壁部の板厚減少率について述べる。
本発明の缶体の加工度は、下記に示した式(1)から求められる値として、50〜70%である。
加工度(%)={(Tb−Tw)/Tb}× 100 …… (1)
Tb;缶底部の鋼板の板厚 Tw:缶壁部の鋼板の最も薄い部位の板厚
加工度としては、現在スチール素材やアルミニウム素材から製造されているDI缶の範疇のもので特別なものではないが、加工度が50%未満では、被覆された内外面のポリエステル樹脂フィルムの加工による損傷は全くなく、良好な缶体が得られるが、特に、鋼板の元板厚(缶底部の鋼板厚みに相当)が厚い場合は、缶重量が重くなり経済的ではない。
【0052】
一方、加工度が70%を超えると、内面はポリエステル樹脂フィルムとパンチの離型性が劣り、樹脂フィルムの傷付きにより耐食性を確保するのが難しくなる場合が多々起こり易くなる。また、外面のポリエステル樹脂フィルムも「かじり」易くなり、好ましくない。更に、特に、鋼板の元板厚(缶底部の鋼板厚みに相当)が薄い場合は、後述するネック加工でしわが入ったり、フランジ加工で缶体の開口部が割れる、いわゆるフランジ割れが起こったりして好ましくない。加工度の限定は上記の理由によるもので、50〜70%が最適である。
【0053】
次に、本発明の缶体の成形加工方法について述べる。
本発明の缶体は、ポリエステル樹脂フィルムで被覆されたラミネート鋼板を、絞り加工にてカップ状に成形する第1工程と、次いで第1工程で得たカップを更に再絞り加工し、第1工程で得たカップより缶径が小さく、缶高さの高いカップを成形する第2工程と、次いでこのカップの缶壁部をパンチとしごきダイスの間に通し、缶壁を薄く延ばすいわゆるしごき加工を行う第3工程と、次いで缶底部のドーム成形を行う第4工程、次いで第4工程で得た缶体を正規な缶高さに切断するトリミングを行った後、缶開口部を縮径にするネック加工と天蓋を巻き締めるに必要なフランジ加工を行う第5工程から成っている。
【0054】
前記の成形加工方法における、第1工程の絞り加工、第2工程の再絞り加工、第3工程のしごき加工は、いずれも缶壁部の板厚の増減を伴った加工であるが、第4工程の缶底部のドーム成形加工および第5工程のネック加工/フランジ加工は事実上板厚の増減を伴わない加工である。従って、シームレス缶として成形加工されたものは、第3工程後の缶体が最終缶体となる。
本発明の缶体を得る加工方法としては、現在スチール素材やアルミニウム素材から製造されているDI缶の加工方法と特別大きく変わるものではないが、本発明の缶体の性能を十分に確保するためには、次の手段を採用することが望ましい。
【0055】
即ち、第1工程の絞り加工および第2工程の再絞り加工は、ラミネート鋼板やカップの温度または金型の温度を被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲で行うのが、カップ底部コーナーの樹脂フィルムの健全性を確保するためには望ましい。
更に、第1工程の絞り加工および第2工程の再絞り加工では、第3工程で行うしごき加工での被覆された樹脂フィルムの負荷を軽減するために、ストレッチ加工や軽度なしごき加工を付加して絞り加工や再絞り加工するのが望ましい。
【0056】
第3工程のしごき加工は、第2工程の再絞り加工で得たカップの温度を50℃以下にした後、加工金型の温度を100℃以下、できることなら缶内面に被覆されている樹脂フィルムのガラス転移温度(Tg)以下に保持して行うのが、樹脂フィルムの結晶化による欠陥発生を抑制し、またパンチとの離型性もよいことから望ましい。
なお、しごき加工はしごきダイスを1枚で行う1段しごき加工や、2枚乃至は3枚で行う多段しごき加工などが適用出来るが、加工時の熱の蓄積を考慮するとしごきダイスは少ない方が良く、しごきダイスを1枚で行う1段しごき加工が望ましい。
【0057】
【実施例】
以下、実施例にて、本発明の方法の効果を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、本実施例で行った評価法は以下の通りである。
(1)樹脂フィルムの密度は、密度勾配管法にて測定した。
(2)樹脂フィルムの冷結晶化熱(Hc)、融点(Tm)は示差走査熱量計(DSC)で、10℃/分の昇温速度で測定し、冷結晶化熱(Tc)ピークの面積を冷結晶化熱、また融点(Tm)は、ピーク温度を融点とした。
(3)樹脂フィルムの極限粘度(IV)は、ウベローデ粘度計でフェノールとテトラクロロエタンの重量比6:4の溶液に樹脂フィルムを0.100±0.003g溶解し、30.0±0.1℃で測定した。
【0058】
(4)カップの絞り加工後の缶底部コーナーのマイクロクラックについては、光学顕微鏡で観察しその程度を評価した。
評価は次のように評価基準を設定し行った。
○:クラックなく良好
□:軽微なクラック発生
△:明確なクラック発生
×:激しいクラック発生
【0059】
(5)フィルムと加工パンチの離型性は、成形缶上部に起こる缶体の座屈程度を観察し評価した。
離型性の評価は、次のように評価基準を設定し行った。
○:缶開口部の座屈なく良好
□:軽微な缶開口部の座屈あり
△:開口部円周の1/3程度座屈
×:開口部円周の1/3以上座屈
【0060】
(6)ネック加工およびフランジ加工での樹脂フィルムの状態については、剥離状況やクラック発生状況を肉眼観察や光学顕微鏡で観察し評価した。
剥離状況やクラック発生状況の評価は、次のように評価基準を設定し行った。
○:剥離やクラックなく良好
□:軽微な剥離および微細なクラック発生
△:一部剥離やクラック発生
×:剥離発生
(7)缶内面の樹脂フィルムの傷付き程度については、1.0%食塩水に界面活性剤を0.1%添加した電解液で、缶体を陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性を評価した。
(以降、この評価法をQTV試験と称する)
【0061】
(8)缶外面の耐かじり性は、成形した缶体胴壁部外面のかじり発生程度を観察して評価した。
○:かじりなく良好
□:軽微なかじり発生
△:外面の1/3未満にかじり発生
×:外面の1/3以上に激しいかじり発生
【0062】
(9)耐デント性の評価については、350ml缶に水を充填し、125℃で30分レトルト処理を行った後、5℃で1日冷やし、高さ80cmの位置から角度60°で缶底部を下に落下させ、開缶乾燥した後、衝撃変形部以外を絶縁塗料でシールし、衝撃変形部の樹脂フィルムの欠陥発生程度をQTV試験に用いる電解液で、サンプルを陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性の評価した。
(以降、耐デント性はこの手法による評価結果を示す。)
【0063】
(10)糸状腐食
糸状腐食性の評価については、缶体の缶胴部にカッターで素地鋼板に達するクロスカットを入れた後、塩水噴霧試験(JIS−Z−2371)を1時間行った後、30℃、85%RHの環境で2週間暴露し、糸状腐食の発生状況を観察して評価した。
○:糸状腐食の発生なく良好
□:糸状腐食僅かに発生
△:糸状腐食の発生中程度
×:糸状腐食の発生大
【0064】
(実施例1)
板厚0.21 mmの鋼板の両面に、片面のNi付着量として10mg/m2 (No.1)、40mg/m2 (No.2)、220mg/m2 (No.3)、450mg/m2 (No.4)、800mg/m2 (No.5)、1700mg/m2 (No.6)のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として13mg/m2 となるようにNo.1からNo.6のNiめっき鋼板に化成処理を施し、表面処理鋼板を作成した。
【0065】
次いで、上記No.1〜No.6の表面処理鋼板をジャッケトロールで加熱し板温が248℃の時点で、缶の内面に相当する鋼板表面に、厚みが20μmで融点が234℃、冷結晶化熱が23.4J/g、極限粘度0.68のポリエステル樹脂フィルム(A)とその上層に厚みが5μmで融点が248℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面に相当する鋼板表面に、融点が232℃で酸化チタン含有量が20重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が252℃で酸化チタン含有量が3重量%の厚み3μmのポリエステル樹脂フィルム(D)との二層フィルムを、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように被覆した後、更に鋼板を265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。
【0066】
こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度35℃に保持し最終加工度が67%のしごき加工を行い,350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、265℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。
こうして得た、正規の缶体について、外面の耐かじり性、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0067】
実施例1に用いたラミネート鋼板の内容を表1に、またその評価結果を表2に示した。
表2から分かるように、本発明例の1〜5(No.2〜No.6)は、糸状腐食の発生も殆どまたは全くなく、また、内外面フィルムの密着性も良好でネック加工やフランジ加工でのフィルム剥離は殆ど見られない。更に内面フィルムの耐デント性や他の性能についても良好であり、バランスのとれた良好な性能を示す。それに対し、比較例1(No.1)は糸状腐食の発生、内外面フィルムのネック加工やフランジ加工でのフィルム剥離、耐デント性等、本発明例に比べ劣ることが分かる。
【0068】
【表1】
Figure 0004278273
【0069】
【表2】
Figure 0004278273
【0070】
(実施例2)
板厚0.21mmの鋼板の両面に、片面のNi付着量として470mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂とアミノプロピルトリエトキシシランを含有する化成処理液を塗布・乾燥し、片面のC付着量として0.6mg/m2 (No.7)、2mg/m2 (No.8)、10mg/m2 (No.9)、35mg/m2 (No.10)、90mg/m2 (No.11)、115mg/m2 (No.12)の表面処理鋼板を作成した。
次いで、上記No.7〜No.12の表面処理鋼板を実施例1で用いた内面用および外面用の二層のポリエステル樹脂フィルムを、実施例1と同じ条件で鋼板に両面被覆し、ラミネート鋼板を作成した。
【0071】
こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度35℃に保持し最終加工度が67%のしごき加工を行い、350mmlビール缶サイズの缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性を調べた。
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260℃に加熱後直ちに急冷しポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、外面の耐かじり性、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0072】
実施例2に用いたラミネート鋼板の内容を表3に、またその評価結果は表4に示した。表4から、本発明例の6〜9(No.8〜No.11)は、糸状腐食の発生も殆どまたは全くなく良好である。また、内外面フィルムの密着性も良好でネック加工やフランジ加工でのフィルム剥離は殆ど見られず、更にその他の特性も良く、バランスのとれた良好な性能を有していることか分かる。
それに対し、比較例2(No.7)は糸状腐食の発生が起こり、しかも内外面フイルムがネック加工やフランジ加工で剥離を起こしており、また、比較例3(No.12)は内外面フィルムがネック加工やフランジ加工でフィルム剥離を起こすなど、比較例は本発明例に比べ劣ることが分かる。
【0073】
【表3】
Figure 0004278273
【0074】
【表4】
Figure 0004278273
【0075】
(実施例3)
板厚0.17mmの鋼板の両面に、片面のNi付着量として550mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 となるように化成処理を施し、表面処理鋼板を作成した。
次いで、上記の表面処理鋼板をジャッケトロールで加熱し板温が230℃の時点で、缶の内面に相当する鋼板表面に、厚みが30μmで融点が210℃、冷結晶化熱が12.3J/g、極限粘度0.71のポリエステル樹脂フィルム(A)とその上層に厚みが15μmで融点が228℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面に相当する鋼板表面に、融点が218℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が232℃で酸化チタン含有量が5重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルムを、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を250℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。(No.13)。
【0076】
同様に、板温が245℃の時点で、缶の内面に相当する鋼板表面に、厚みが30μmて融点が222℃、冷結晶化熱が15.8J/g、極限粘度0.70のポリエステル樹脂フィルム(A)とその上層に厚みが15μmで融点が237℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面に相当する鋼板表面に、融点が227℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が237℃で酸化チタン含有量が5重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルムをポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を255℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した(No.14)。
【0077】
同様に、板温が250℃の時点で、缶の内面に相当する鋼板表面に、厚みが30μmで融点が232℃、冷結晶化熱が24.1J/g、極限粘度0.72のポリエステル樹脂フィルム(A)とその上層に厚みが15μmで融点が248℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面に相当する鋼板表面に、融点が235℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が248℃で酸化チタン含有量が5重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルムを、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した(No.15)。
【0078】
同様に、板温が255℃の時点で、缶の内面に相当する鋼板表面に、厚みが30μmで融点が241℃、冷結晶化熱が28.3J/g、極限粘度0.70のポリエステル樹脂フィルム(A)とその上層に厚みが15μmで融点が248℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面に相当する鋼板表面に、融点が241℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が252℃で酸化チタン含有量が5重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルムを、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した(No.16)。
【0080】
同様に、板温が265℃の時点で、缶の内面に相当する鋼板表面に、厚みが30μmで融点が252℃、冷結晶化熱が38.5J/g、極限粘度0.71のポリエステル樹脂フィルム(A)とその上層に厚みが15μmで融点が255℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面に相当する鋼板表面に、融点が252℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が255℃で酸化チタン含有量が5重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルムを、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した(No18)。
【0081】
こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が56%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、前述した各Noのラミネート鋼板を製造する際に被覆フィルムを非晶質化した時のそれぞれの温度に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。
こうして得た、正規の缶体について、外面の耐かじり性、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0082】
実施例3に用いたラミネート鋼板の内容は表5に、またその評価結果は表6に示した。表6から、本発明例の10〜12(No.14〜No.16)は、カップ缶底コーナー部のフィルムクラックもなく、またネック/フランジ加工でもフィルム剥離はなく良好であることが分かる。また糸状腐食もなく、缶体のQTV値や耐デント性も低い値を示し、バランスのとれた良好な性能を有していることが分かる。それに対し、比較例4(No.13)は内面の金型離型性や外面の耐かじり性に劣り、また得られた缶体のQTV値も高い値を示した。また、比較例5(No.18)は、得られた缶体のQTV値や耐デント性が高い値を示すことが分かる。
【0083】
【表5】
Figure 0004278273
【0084】
【表6】
Figure 0004278273
【0085】
(実施例4)
板厚0.19mmの鋼板の両面に、片面のNi付着量として550mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として10mg/m2 となるよう化成処理を施し、表面処理鋼板を作成した。
次いで、前記表面処理鋼板をジャッケトロールで250℃に加熱し、内面用には上層のポリエステル樹脂フィルム(B)は厚みが7μmで、融点が241℃と同一にし、下層のポリエステル樹脂フィルム(A)は厚みが7μmで、融点が232℃、冷結晶化熱が24.7J/g、極限粘度が0.65である二層フィルム(No.19)、下層のポリエステル樹脂フィルム(A)は厚みが10μmで、融点が232℃、冷結晶化熱が25.0J/g、極限粘度が0.67である二層フィルム(No.20)、下層のポリエステル樹脂フィルム(A)は厚みが20μmで、融点が232℃、冷結晶化熱が24.0J/g、極限粘度が0.67である二層フィルム(No.21)、下層のポリエステル樹脂フィルム(A)は厚みが30μmで、融点が232℃、冷結晶化熱が23.8J/g、極限粘度が0.66である二層フィルム(No.22)、下層のポリエステル樹脂フィルム(A)は厚みが40μmで、融点が232℃、冷結晶化熱が24.3J/g、極限粘度が0.68である二層フィルム(No.23)、下層のポリエステル樹脂フィルム(A)の厚みが50μmで、融点が232℃、冷結晶化熱が24.8J/、極限粘度が0.65である二層フィルム(No.24)を、また上記19〜24の外面用には、融点が232℃で酸化チタン含有量が20重量%の厚みが15μmのポリエステル樹脂フィルム(C)とその上層に融点が241℃で酸化チタン含有量が0重量%の厚み2μmのポリエステル樹脂フィルム(D)との二層フィルムを用い、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を255℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。
【0086】
こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が63%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、255℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。
こうして得た、正規の缶体について、外面の耐かじり性、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0087】
実施例4に用いたラミネート鋼板の内容は表7に、またその評価結果は表8に示した。表8から、本発明例の14〜17(No.20〜No.23)は、カップ缶底コーナー部のフィルムクラックもなく、またネック/フランジ加工でもフィルム剥離はなく良好であることが分かる。また糸状腐食も比較的良く、缶体のQTV値や耐デント性も低い値を示し、バランスのとれた良好な性能を有していることが分かる。それに対し、比較例6(No.19)は糸状腐食の発生が見られ、また得られた缶体のQTV値や耐デント性も高い値を示した。また、比較例7(No.24)は、内面の金型離型性や外面の耐かじり性に劣ることが分かる。
【0088】
【表7】
Figure 0004278273
【0089】
【表8】
Figure 0004278273
【0090】
(実施例5)
実施例4で用いた表面処理鋼板をジャッケトロールで250℃に加熱し、内面用には上層のポリエステル樹脂フィルム(B)は厚みが15μmで融点が248℃と同一にし、下層のポリエステル樹脂フィルム(A)は厚み15μmで、融点が232℃、冷結晶化熱が23.2J/g、極限粘度が0.53である二層フィルム(No.25)、下層のポリエステル樹脂フィルム(A)は厚みが15μmで、融点が232℃、冷結晶化熱が23.0J/g、極限粘度が0.62である二層フィルム(No.26)、下層のポリエステル樹脂フィルム(A)は厚みが15μmで、融点が232℃、冷結晶化熱が23.7J/g、極限粘度が0.75である二層フィルム(No.27)、下層のポリエステル樹脂フィルム(A)は厚みが15μmで、融点が232℃、冷結晶化熱が23.8J/g、極限粘度が0.89である二層フィルム(No.28)、下層のポリエステル樹脂フィルム(A)は厚みが15μmで、融点が232℃、冷結晶化熱が22.9J/g、極限粘度が1.05である二層フィルム(No.29)を、また外面用には、融点が232℃で酸化チタン含有量が10重量%の厚み10μmのポリエステル樹脂フィルム(C)とその上層に融点が252℃で酸化チタン含有量が5重量%の厚み8μmのポリエステル樹脂フィルム(D)との二層フィルムを用い、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を260℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。
【0091】
こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度40℃に保持し最終加工度が63%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、外面の耐かじり性、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質について調べた。
【0092】
実施例5に用いたラミネート鋼板の内容は表9に、またその評価結果は表10に示した。表10から、本発明例の18〜21(No.26〜No.29)は、カップ缶底コーナー部のフィルムクラックも殆ど、または全くなく、また得られた缶体のQTV値や耐デント性も低い値を示し、バランスのとれた良好な性能を有していることが分かる。それに対し、比較例8(No.25)はカップ缶底コーナー部のフィルムクラックが見られ、また得られた缶体のQTV値も高い値を示していることが分かる。
【0093】
【表9】
Figure 0004278273
【0094】
【表10】
Figure 0004278273
【0095】
(実施例6)
板厚0.21mmの鋼板の両面に、片面のNi付着量として550mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として10mg/m2 となるように化成処理を施し、表面処理鋼板を作成した。
次いで、上記の表面処理鋼板をジャッケトロールで加熱し板温が250℃の時点で、缶の内面用として厚みが30μmで融点が232℃、冷結晶化熱が23.4J/g、極限粘度0.75のポリエステル樹脂フィルム(A)とその上層に厚みが20μmで融点が248℃のポリエステル樹脂フィルム(B)から成る二層フィルムを、また外面用フィルムには、融点が232℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(No.30)、融点が232℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が248℃で酸化チタン含有量が0重量%の厚み3μmのポリエステル樹脂フィルム(D)との二層フィルム(No.31)、融点が232℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が248℃で酸化チタン含有量が5重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルム(No.32)、融点が232℃で酸化チタン含有量が30重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が248℃で酸化チタン含有量が7重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルム(No.33)、融点が232℃で酸化チタン含有量が35重量%の厚み15μmのポリエステル樹脂フィルム(C)とその上層に融点が248℃で酸化チタン含有量が0重量%の厚み5μmのポリエステル樹脂フィルム(D)との二層フィルム(No.34)を用い、ポリエステル樹脂フィルム(A)およびポリエステル樹脂フィルム(C)が鋼板に接するように熱圧着して被覆した後、更に鋼板を265℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。
【0096】
こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。次いで、絞り加工で得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度50℃に保持し最終加工度が67%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、缶外面の耐かじり性を調べた。更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、260℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、ネック/フランジ加工部のフィルム剥離状況を調べた。
【0097】
実施例6に用いたラミネート鋼板の内容は表11に、またその評価結果は表12に示した。表12から、本発明例の22、23(No.31〜No.32)は、外面の耐かじり性およびネック/フランジ加工でもフィルム剥離はなく良好であることが分かる。一方、比較例9(No30)および比較例10(No.33)は、外面の耐かじり性が劣り、また比較例11(No.34)はネック/フランジ加工で外面のフィルム剥離が見られた。更に比較例11(No.34)の場合は、缶胴部の外面フィルムに微細なクラックも観察され、比較例は発明例に比べ成形加工性に劣ることが分かる。
【0098】
【表11】
Figure 0004278273
【0099】
【表12】
Figure 0004278273
【0100】
【発明の効果】
以上、説明したように、本発明を実施することで、得られる缶体内面のポリエステル樹脂フィルムは優れた皮膜健全性を有していることから、高耐食性のフィルムラミネートツーピース缶が得られる。
従って、種々の内容物を充填することが可能であることから、品種の統一化に安心して対応出来ることから、経済的に有利となり、その社会的意義は大きいものがある。

Claims (1)

  1. フィルムラミネート金属板を絞り−しごき加工して得るツーピース缶において、鋼板の両面に、片面の付着量として20〜2000mg/m2 のNiのめっき層、その上層に片面付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層、更に、缶の内面に当たる鋼板面には、前記化成処理皮膜の上層に厚み10〜45μmで融点(Tm−A)が215〜245℃、冷結晶化熱(Hc)が8.5〜35.0J/g、極限粘度が0.60以上のポリエステル樹脂フィルム(A)と、厚みが5〜20μmで融点(Tm−B)が235〜260℃のポリエステル樹脂フィルム(B)で構成された総厚みが15〜50μmの二層ポリエステル樹脂フィルムで、ポリエステル樹脂フィルム(A)とポリエステル樹脂フィルム(B)の平均密度が1.36g/cm3 未満であり、ポリエステル樹脂フィルム(A)が鋼板と接するように被覆されており、また缶の外面に当たる鋼板面には鋼板と接する側から、融点(Tm−C)が225℃以上で厚みが10〜15μm、10〜30重量%の酸化チタンの白色顔料を含有するポリエステル樹脂フィルム(C)と、その上層には厚みが2〜10μmで融点(Tm−D)が235〜260℃、0〜5重量%の酸化チタンの白色顔料を含有するポリエステル樹脂フィルム(D)からなる総厚みが12〜20μmの二層のポリエステル樹脂フィルムで、ポリエステル樹脂フイルム(C)が鋼板と接するように被覆され、かつ、缶の内外面に当たる両面のポリエステル樹脂フィルムは共に非晶質化されているポリエステル樹脂フィルムのラミネート鋼板から、缶壁部鋼板の最も薄い部位の板厚(Tw)が、缶底部の鋼板板厚(Tb)との関係における板厚減少率(加工度)として、下記式(1)の範囲にあるように絞り−しごき加工され、更に成形加工後の缶体を、少なくとも前記の内面のポリエステル樹脂フィルムの融点以上に加熱・急冷し、少なくとも缶内面のポリエステル樹脂フィルムが非晶質化されていることを特徴とするフィルム被覆シームレス缶。
    {(Tb−Tw)/Tb}×100=50〜70% …… (1)
JP2000079585A 2000-03-22 2000-03-22 フィルム被覆シームレス缶 Expired - Fee Related JP4278273B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079585A JP4278273B2 (ja) 2000-03-22 2000-03-22 フィルム被覆シームレス缶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079585A JP4278273B2 (ja) 2000-03-22 2000-03-22 フィルム被覆シームレス缶

Publications (2)

Publication Number Publication Date
JP2001260277A JP2001260277A (ja) 2001-09-25
JP4278273B2 true JP4278273B2 (ja) 2009-06-10

Family

ID=18596818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079585A Expired - Fee Related JP4278273B2 (ja) 2000-03-22 2000-03-22 フィルム被覆シームレス缶

Country Status (1)

Country Link
JP (1) JP4278273B2 (ja)

Also Published As

Publication number Publication date
JP2001260277A (ja) 2001-09-25

Similar Documents

Publication Publication Date Title
JP4278271B2 (ja) ラミネートシームレス缶
JP4631111B2 (ja) アルミニウム製缶材料、缶及び缶蓋
JP4278272B2 (ja) フィルム被覆ツーピース缶
JP2803854B2 (ja) 絞りしごき缶成形性に優れた複合鋼板
JP4278273B2 (ja) フィルム被覆シームレス缶
US7666487B2 (en) Easy-open end and laminated steel sheet
JP4278270B2 (ja) フィルムラミネートツーピース缶
JP3986170B2 (ja) ポリエステル樹脂被覆アルミニウムシームレス缶およびその製造方法
JP4103974B2 (ja) ポリエステル樹脂被覆アルミニウムシームレス缶およびその製造方法
JP4445787B2 (ja) ポリエステル樹脂フィルム被覆金属板及びポリエステル樹脂フィルム被覆金属缶
JP3949283B2 (ja) シームレス缶用ポリエステル樹脂被覆アルミニウム板およびシームレス缶の製造方法
JP4226103B2 (ja) 樹脂被覆アルミニウムシームレス缶の製造方法
JP2803837B2 (ja) ポリエステル樹脂フィルム積層鋼板の製造方法
JPH0631362A (ja) 密着性の優れたラミネート鋼板製多段絞り缶の製造方法
JP3826450B2 (ja) 製缶加工用フィルム被覆金属板の製造方法及び印刷缶の製造方法
JP3858140B2 (ja) 金属板ラミネート用樹脂フィルムおよびラミネート金属板並びにその製造方法
JP4405300B2 (ja) 耐デント性に優れたポリエステルフィルム被覆金属板及びポリエステルフィルム被覆金属缶
JP4297779B2 (ja) ポリエステルフィルム被覆金属板の製造方法
JP2790647B2 (ja) Di成形性に優れた複合被覆鋼板およびその製造方法
JPH04105931A (ja) Eoe用複合鋼板及び製造法
JP2003277886A (ja) 絞りしごき缶用樹脂被覆鋼板、絞りしごき缶用樹脂被覆鋼板の製造方法およびそれを用いて作製した絞りしごき缶
JP3282994B2 (ja) 鋼板の表面処理方法、表面処理鋼板、および表面処理鋼板を用いた熱可塑性樹脂被覆鋼板
JPH11302898A (ja) 鋼板の表面処理方法、表面処理鋼板、および表面処理鋼板を用いた熱可塑性樹脂被覆鋼板
JP3056349B2 (ja) 樹脂被覆金属板およびその製造方法
JP4226104B2 (ja) 樹脂被覆アルミニウムシームレス缶の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4278273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees