WO2005054301A1 - 架橋多糖微粒子およびその製造方法 - Google Patents

架橋多糖微粒子およびその製造方法 Download PDF

Info

Publication number
WO2005054301A1
WO2005054301A1 PCT/JP2004/016948 JP2004016948W WO2005054301A1 WO 2005054301 A1 WO2005054301 A1 WO 2005054301A1 JP 2004016948 W JP2004016948 W JP 2004016948W WO 2005054301 A1 WO2005054301 A1 WO 2005054301A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
drug
reaction
fine particles
solution
Prior art date
Application number
PCT/JP2004/016948
Other languages
English (en)
French (fr)
Inventor
Sei Kwang Hahn
Tsuyoshi Shimoboji
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to EP04819749.5A priority Critical patent/EP1683812B1/en
Priority to KR1020067009249A priority patent/KR101233564B1/ko
Priority to JP2005515894A priority patent/JP4745826B2/ja
Priority to US10/579,032 priority patent/US8575332B2/en
Publication of WO2005054301A1 publication Critical patent/WO2005054301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to a crosslinked polysaccharide drug sustained release microparticle carrier for sustained release of a drug, particularly a protein or peptide having a medicinal effect, and a method for producing the same.
  • a sustained-release preparation of a protein or peptide having a medicinal effect is a major obstacle to the practical use of the ability to reduce the recovery rate due to denaturation or aggregation of the protein or peptide during preparation of the preparation or during sustained release.
  • Attempts have been made to produce sustained-release preparations based on biodegradable polymers such as polylactic acid-polyglycolic acid copolymer (PLGA), but this is due to the hydrophobicity of the substrate, the drying process, and a decrease in pH. Denaturation and aggregation of proteins have been reported (see Non-Patent Documents 1 and 2).
  • sustained-release preparation using a hydrophilic hide-mouth gel as a base material that reduces such problems has been reported, but has not yet been put to practical use.
  • the material used as the sustained-release base material must be non-antigenic, non-mutagenic, non-toxic, and biodegradable. It is difficult to achieve a sustained-release formulation that has reached the practical level in all aspects and safety.
  • HA hyaluronic acid
  • HA is a biomaterial (polysaccharide) isolated from the vitreous of bovine eyes by K. Meyer in 1934, and has long been known as a major component of the extracellular matrix. I have.
  • HA is a type of darcosamide dalican consisting of a disaccharide unit composed of D-glucuronic acid and N-acetyldarcosamine linked by a ⁇ (1 ⁇ 3) glycosidic bond.
  • HA has no metabolic system even in humans with no difference in chemical and physical structure, and is one of the safest biomaterials in terms of immunity and toxicity.
  • large-scale production of high molecular weight HA by microorganisms has become possible, and has been put to practical use in the fields of therapeutic agents for deformable cartilage and cosmetics.
  • the method of performing in situ cross-linking in the presence of a protein or peptide has the advantage that a protein or peptide can be supported at a high encapsulation rate.
  • a preparation for encapsulating a protein or peptide in an HA gel by such in situ cross-linking and sustained release see, for example, Patent Document 4.
  • sustained-release preparations obtained by cross-linking HA in situ in the presence of proteins or peptides using such a method have problems in terms of recovery.
  • the denatured protein or peptide remaining in the gel has a problem in that the biological activity is reduced and rather causes antigenic expression. Although it is an essential condition for pharmaceuticals to release encapsulated drugs with high recovery, there is no known method for cross-linking or gelling HA without reacting proteins or peptides. . In addition, as a method for encapsulating protein peptides at a high recovery rate, there is a report that an unsaturated functional group is cross-linked by nucleophilic addition reaction using polyethylene glycol (PEG) as a base material (see Patent Document 6). ⁇ PEG fragment There are remaining issues.
  • PEG polyethylene glycol
  • Non-Patent Document 6 There is also a report that a chitosan cross-linking reaction is carried out during spray drying to encapsulate a low-molecular-weight drug (see Non-Patent Document 6), but the release period is as short as a few minutes. Since it has high reactivity with the group, it cannot be used for proteins, peptides, and other low molecular drugs having a functional group such as an amino group.
  • Patent document 1 International publication WO94Z02517 pamphlet
  • Patent Document 2 JP-A-61-138601
  • Patent Document 3 JP-A-5-140201
  • Patent document 4 U.S. Pat.No.5827937 specification
  • Patent Document 5 International Publication W095Z15168 pamphlet
  • Patent Document 6 International Publication WO00Z44808 pamphlet
  • Patent Document 7 Patent No. 3445283
  • Patent Document 8 International Publication W096Z18647 pamphlet
  • Non-Patent Document 1 Pharm. Sci. Vol. 88, pp. 166-173, 1999
  • Non-patent document 2 J. Microencapsulation Volume 15, 699-713, 1998
  • Non-patent document 3 Int.J. Pharm. 233, 227-237, 2002
  • Non-patent document 4 J. Control.Rel. 91, 385-394, 2003
  • Non-Patent Document 5 Biotech, and Bioeng. 60, 301-309, 1998
  • Non-Patent Document 6 Int. J. Pharm. 187, 53-65, 1999
  • the present inventor has conducted intensive studies in order to solve such a problem, and found that a solution of a hyaluronic acid derivative having a functional group capable of forming a cross-linking reaction and a drug is used to slowly cross-link the reaction.
  • a cross-linking reaction occurs between the HAs during the enrichment, and by encapsulating the drug in a cross-linked hyaluronic acid, the biodegradation of the drug such as a protein or peptide can be achieved. They have found that they can be efficiently encapsulated while maintaining their activity.
  • crosslinked hyaluronic acid microparticles obtained by this method were injectable and were most suitable as a biodegradable and safe long-term drug sustained release microparticle carrier for encapsulating drugs such as proteins or peptides. Completed the invention.
  • the present invention relates to an injectable protein encapsulated in a gel, which is obtained by cross-linking, forming microparticles, and drying a drug such as a protein or peptide while maintaining the biological activity thereof in situ.
  • the present invention also relates to a sustained-release drug preparation such as a peptide and a method for producing the same.
  • a method for producing crosslinked polysaccharide fine particles comprising the steps of: a) preparing a dilute solution containing a polysaccharide derivative having a crosslinkable functional group; Dispersing into liquid droplets; and
  • step (b) is a step of dispersing the solution into fine droplets by spraying the solution.
  • crosslinked polysaccharide fine particles which can be prepared by the production method.
  • the polysaccharide derivative used in the present invention is not particularly limited as long as it is a polysaccharide derivative having a functional group capable of performing a cross-linking reaction.
  • glycosamide darican acid mucopolysaccharide;
  • a derivative of a derivative of hyaluronic acid, chondroitin, chondroitin tetrasulfate, chondroitin 6-sulfate, dermatan sulfate, heparin, heparan sulfate, keratan sulfate, etc. having a functional group capable of cross-linking reaction is particularly preferable.
  • a hyaluronic acid derivative having a crosslinkable functional group is particularly preferable.
  • the above-mentioned production method comprises a step of proceeding a crosslinking reaction of the hyaluronic acid derivative by concentrating a solution contained in the droplet.
  • the step b) is a step of dispersing the solution into fine droplets by spraying the solution.
  • crosslinked hyaluronic acid fine particles which can be prepared by the above-mentioned production method.
  • the dilute solution in step a) of the present invention is a solution containing a substrate, a reagent, and the like necessary for the crosslinking reaction, but the reaction does not progress or progresses very slowly because it is highly diluted with a solvent. It is a solution, and its concentration is not particularly limited, but is, for example, 0.1% to 5%, particularly 0.2% to 3%.
  • the solvent used in the present invention may be a solvent or a mixture thereof, which is commonly used in the art, and is not particularly limited. Examples thereof include water, DMSO, ethanol, and N-methylpyrrolidone. And supercritical carbonic acid.
  • the method of dispersing the dilute solution into fine droplets in step b) of the present invention is not particularly limited as long as it is a method generally used in the art, but a method of spraying the dilute solution, A method of forming an emulsion by mixing the diluted solution with another liquid is included.
  • the fine droplets are not particularly limited, but may have an average particle diameter of, for example, 0.04 ⁇ m-1.5 mm, preferably 0.1 ⁇ m-500 ⁇ m.
  • the method of concentrating the solution in step c) of the present invention is not particularly limited as long as it is a means capable of concentrating the solution to a concentration that accelerates the progress of the crosslinking reaction.
  • concentration For example, a state in which a solvent that allows the cross-linking reaction to proceed as a solid-phase reaction may be completely removed.
  • Steps b) and c) may be performed as a series of steps. Specifically, the above steps b) and c) can be performed as a series of steps by a spray drying method, a drying method in an emulsion liquid, a solvent diffusion method, or the like. Among them, it is preferable to perform the steps b) and c) as a series of steps by spray drying!
  • the crosslinked polysaccharide fine particles of the present invention are obtained by concentrating a solution containing a polysaccharide derivative having a functional group capable of performing a crosslink reaction to a concentration at which the progress of the crosslink reaction is slow and the crosslink reaction proceeds from a dilute state. And by crosslinking the polysaccharide derivative during concentration.
  • a solution containing a polysaccharide derivative having a crosslinkable functional group and a drug is concentrated from a dilute state in which the cross-linking reaction progresses slowly to a concentration at which the cross-linking reaction proceeds, whereby the cross-linking reaction occurs during the concentration.
  • the cross-linking reaction and drying are performed simultaneously to obtain drug-loaded fine particles in which a drug is encapsulated in a crosslinked polysaccharide.
  • the production method provided by the present invention and the crosslinked polysaccharide fine particles such as crosslinked hyaluronic acid fine particles obtained by the production method preferably have the following characteristics.
  • the distance between crosslink points can be made extremely small (for example, in the case of HA, grafting at 33 mol% per glucuronic acid is about 3 nm). Yes, it is advantageous in achieving long-term sustained release.
  • Micronization, drying, and cross-linking can be performed in one manufacturing process.
  • the cross-linking or chemical cross-linking referred to in the present invention includes an inter-molecular or intra-molecular cross-link by a covalent bond, and may have an inter-molecular or intra-molecular cross-link at the same time.
  • the cross-linking reaction used in the present invention is not particularly limited as long as it is a cross-linking formation method which does not denature the drug even if the cross-link is formed in the coexistence of a drug, for example, a protein or peptide. Yes.
  • a reaction include formation of a disulfide bond between mercapto groups, addition reaction between a mercapto group and an unsaturated bond, and reaction between a hydrazide group and an active carboxylic acid ester.
  • the pH at the time of crosslinking is not particularly limited, but is preferably a pH that promotes bridge formation without denaturing the protein or peptide and prevents reaction with amino groups contained in drugs such as proteins or peptides.
  • Such pH can be appropriately selected by those skilled in the art, and is, for example, pH 3.0 to pH 9.0, preferably pH 4.5 to pH 9.0.
  • the polysaccharide derivative used in the present invention is not particularly limited as long as it can undergo the above-mentioned crosslinking reaction.
  • a hyaluronic acid derivative (HA) having a crosslinkable functional group introduced into HA is specifically used.
  • the crosslinkable functional group used in the present invention is not particularly limited, and includes, for example, a mercapto group, a group having an unsaturated bond (e.g., a methacryl group, an acryl group, a butyl sulfone group, an acetylene carbonyl group). Etc.), a hydrazide group (HZ group) and the like.
  • a cross-link can be formed using only a polysaccharide derivative such as an HA derivative into which a mercapto group is introduced, or a cross-linking agent can be used as the Crosslinking can also be formed by adding a compound having two or more mercapto groups (eg, dithiothreitol (DTT), butanedithiol, polyethylene glycol dithiol, a peptide containing two or more cysteines).
  • DTT dithiothreitol
  • butanedithiol polyethylene glycol dithiol
  • compounds such as sodium tetrathionate (STT), dipyridyl disulfide, and Ellman's reagent (DT NB) may be added.
  • STT sodium tetrathionate
  • DT NB Ellman's reagent
  • these compounds are added to reactive mercapto groups at a concentration of 0. It is preferred to add 1 to 12 moles, more preferably 0.5 to 1.5 moles.
  • a method for preparing a polysaccharide derivative having a mercapto group introduced therein is not particularly limited!
  • HA is converted into a tertiary ammonium salt and dissolved in a polar organic solvent such as DMSO to form a coupling agent.
  • It can be prepared by a method of reacting with an amine or hydrazide having a mercapto group in the presence.
  • the amine having a mercapto group is not particularly limited, for example, Examples thereof include 2-aminoethane 1-thiol, 3-aminopropane 1-thiol, and thioglycolic acid hydrazide.
  • a method in which an amino group ⁇ ⁇ hydrazide group is first introduced, and then a mercapto group is introduced into the amino group ⁇ hydrazide group is also preferable.
  • the carboxylic acid of HA is condensed with an adipic acid dihydrazide (ADH) or a divalent HZ such as ethylenediamine or ethylenedioxybisethylamine or an amino group-containing conjugate with a coupling agent to form a hydrazide group.
  • ADH adipic acid dihydrazide
  • HZ such as ethylenediamine or ethylenedioxybisethylamine
  • HA-HZ an introduced HA derivative
  • HA-amino group an amino group-introduced HA derivative
  • SPDP N-succinimidyl 3- [2-pyridyldithio] propionate
  • Trout's Reagent 2-merinothiolane
  • Examples of the coupling agent include benzotriazole-1-yloxytris (dimethylamino) phospho-dimethylhexafluorophosphate (BOP) and benzotriazole-1-yloxytotrispiroli.
  • the crosslinkable functional group in the present invention includes, for example, a carboxyl group contained in the molecule of the polysaccharide as an ester group or a substituted amide group containing a mercapto group, unsaturated bond, amino group or hydrazyl group as described below. Can be introduced by converting to:
  • R is a hydrogen atom, a linear or branched C alkyl group, a linear or branched C
  • Y is a single bond, N (— R) CO N (— R) — CO—, or CH CO—,
  • Y is a single bond, CON (— R) —, or N (— R) —,
  • Q is a straight-chain or branched C-hydroxyalkylene group
  • R R and R are each independently a hydrogen atom, a linear or branched C alkyl group, a polyalkylene oxide group, a polypeptide group, or a polyester group.
  • a peptide group or a polyester group A peptide group or a polyester group
  • Y is a single bond, CO—CO—CH—CH (OH) —, or CONH—,
  • Q is a straight-chain or branched C-hydroxyalkylene group
  • Q is a linear or branched C alkyl group, or a linear or branched C alkyl group.
  • polysaccharide derivative into which a mercapto group has been introduced are preferably those represented by the formula (I):
  • R represents a hydrogen atom, a linear or branched C alkyl group, a linear or branched C hydroxy group,
  • RRRR and R are each independently a hydrogen atom, a linear or branched C a2 a3 a4 a5 ao 1-6 alkyl group, a linear or branched C alkenyl group, a linear or branched C alkyl group,
  • Y is a single bond, N (—R) CO N (—R) —CO—, or CH CO—,
  • Y is a single bond, CON (— R) —, or N (— R);
  • Q is a straight-chain or branched C-hydroxyalkylene group
  • R R and R are each independently a hydrogen atom, a linear or branched C alkyl group, a polyalkylene oxide group, a polypeptide group, or a polyester group.
  • Y is a single bond, CO—CO—CH—CH (OH) —, or CONH—,
  • Q is a straight-chain or branched C-hydroxyalkylene group
  • the polyalkylene oxide group is-(CH (-R) CH O) H (wherein R
  • n is an integer of 120.
  • the polypeptide group is not particularly limited, but preferably has as many as 120 amino acids.
  • the polyester group is not particularly limited, but is preferably a polyglycolic acid group or a polylactic acid group.
  • R is preferably a hydrogen atom
  • X is preferably Y—Q
  • is preferably a single bond
  • ⁇ (—R), ⁇ is preferably a single bond, and Q is preferably straight-chain or
  • R and R are preferably
  • An anoalkylene group is an anoalkylene group.
  • a polysaccharide derivative such as an HA derivative into which a group having an unsaturated bond is introduced and a compound having two or more mercapto groups
  • a compound having two or more mercapto groups For example, dithiothreitol (DTT), butanedithiol, polyethylene glycol dithiol, a peptide containing two or more cysteines, a mercapto group-introduced HA derivative, etc.
  • DTT dithiothreitol
  • butanedithiol polyethylene glycol dithiol
  • a peptide containing two or more cysteines a mercapto group-introduced HA derivative, etc.
  • Compounds having two or more groups having an unsaturated bond with a modified polysaccharide derivative for example, ethylene glycol dimethacrylate, ethylene bisacrylamide, tris-2-maleimidoethylamine, 1,8 bismaleimide triethylene glycol, 1,4 bismaleimidyl) — 2,3-dihydroxybutane, HA derivatives with unsaturated bonds, etc.
  • a modified polysaccharide derivative for example, ethylene glycol dimethacrylate, ethylene bisacrylamide, tris-2-maleimidoethylamine, 1,8 bismaleimide triethylene glycol, 1,4 bismaleimidyl) — 2,3-dihydroxybutane, HA derivatives with unsaturated bonds, etc.
  • triethanolamine is used to improve the stability of the protein or peptide during the crosslinking reaction and to increase the reaction rate.
  • a basic compound such as In this case, a preferable concentration is 10 / z L / mL-20 / z
  • the method for preparing a polysaccharide derivative having an unsaturated group introduced is not particularly limited !, for example, a method in which glycidyl ether methacrylate or methacrylic anhydride is directly reacted with the hydroxyl group of HA (J. Biomed Mat. Res. 54, 115—121, 2001) makes it difficult to obtain a high introduction rate. This is probably because HA forms a higher-order structure in aqueous solution due to hydrogen bonding and hydrophobic interaction, and the reactivity of functional groups such as hydroxyl group and carboxylic acid group is low. A high crosslink density is desirable to extend the sustained release period of the protein or peptide.
  • HA is converted to a tertiary ammonium salt, dissolved in a polar organic solvent such as DMSO, and is dissolved in 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), benzotriazole-1-yloxy-tris.
  • a substituent for example, HA is converted to a tertiary ammonium salt, dissolved in a polar organic solvent such as DMSO, and is dissolved in 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), benzotriazole-1-yloxy-tris.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • a coupling agent such as (dimethylamino) phospho-dimethylhexafluorophosphate (BOP), benzotriazole-lu-1-yloxycitrispyrrolidinophospho-dimethylhexafluorophosphate (PyBOP), It can be prepared by a method of reacting with amine or hydrazide having a saturated bond.
  • the amine having an unsaturated bond is not particularly limited, and examples thereof include arylamine, diarylamine, 4-amino-1-butene, acrylic hydrazide, and methacrylhydrazide.
  • a hydrazide group-modified HA derivative (HA-HZ) or an amino group-modified HA derivative (HA-amino group) is synthesized, and a carboxylic acid derivative having an unsaturated bond such as R— COOH acid anhydride or activated ester (where R is linear or branched
  • a branched C alkenyl group preferably methacrylic anhydride, N-hydroxysuccinimide (NHS)
  • N-hydroxysuccinimide A method of reacting acrylic acid or methacrylic acid or the like.
  • the ratio of the mercapto group to the group having an unsaturated bond is not particularly limited, and may be appropriately selected by those skilled in the art.
  • Examples of the polysaccharide derivative into which a group having an unsaturated bond has been introduced are preferably those represented by the formula ( ⁇ ):
  • R represents a hydrogen atom, a linear or branched C alkyl group, a linear or branched C hydroxy group,
  • R, R, R, R and R are each independently a hydrogen atom, a linear or branched C a2 a3 a4 a5 a6 l-o alkyl group, a linear or branched C alkenyl group, a linear or branched C alkyl group,
  • a carbonyl group a linear or branched C alkynylcarbonyl group, or SO OH;
  • Y is a single bond, N (— R) CO N (— R) —CO—, or —CH CO—,
  • Y is a single bond, CON (— R) —, or N (— R);
  • Y is a single bond, CO—, or —CH CO—
  • Q is a straight-chain or branched C-hydroxyalkylene group
  • R and R each independently represent a hydrogen atom, a linear or branched C alkyl 3 4 1-10 group, a linear or branched C hydroxyalkyl group, a polyalkylene oxide group,
  • a peptide group or a polyester group A peptide group or a polyester group
  • Q is a linear or branched C alkyl group, or a linear or branched C alkyl group.
  • a hyaluronic acid derivative having at least one or more repeating structures in the molecule.
  • the polyalkylene oxide group is-(CH (-R) CH O) H (wherein
  • R is a hydrogen atom or a C alkyl group), preferably a polyethylene
  • An oxide group or a polypropylene oxide group and preferably n is an integer of 120.
  • the polypeptide group is not particularly limited, but preferably has as many as 20 amino acids per amino acid.
  • the polyester group is not particularly limited, but is preferably a polyglycolic acid group or a polylactic acid group.
  • R is preferably a hydrogen atom
  • X is preferably Y—
  • is preferably a single bond
  • 33 3 Y is preferably a single bond, CON (—R), more preferably CON (—R)
  • Y is preferably a single bond, CO—, or N (—R), more preferably
  • Q is preferably a linear or branched C alkyl.
  • R and R are preferably hydrogen atoms, and Q is preferably linear or
  • Examples of the polysaccharide derivative into which a mercapto group is introduced include a hyaluronic acid derivative having at least one repeating structure represented by the above formula (I) in the molecule.
  • a reaction between a polysaccharide derivative such as an HA acid derivative having a hydrazide group introduced therein and active carboxylic acid can also be used.
  • Introduction of a hydrazide group into a polysaccharide can be carried out by a method known to those skilled in the art.
  • a carboxyl group of hyaluronic acid and a divalent hydrazide-containing conjugate can be introduced using a condensing agent. It can be synthesized by condensation.
  • dihydrazide conjugate examples include succinic dihydrazide, daltaric dihydrazide, adipic dihydrazide and pimelic dihydrazide.
  • condensing agent examples include 1,3-dicyclohexylcarbodiimide, 1,3-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, and the like.
  • the carboxylic acid of hyaluronic acid and adipic dihydrazide are condensed with 1-ethyl-3- (3-dimethylaminopropyl) carboimide (EDC) to synthesize hyaluronic acid (HA HZ) modified with hydrazide groups.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carboimide
  • HA HZ hyaluronic acid
  • the cross-linking agent is not particularly limited as long as it is a functional group capable of reacting with the HZ group.
  • the cross-linking agent include an ester group activated with NHS, a pentafluoro-opened phenoxycarbol group, and a p-ditrophenoxycarboxy-group.
  • crosslinking agent examples include bis [sulfosuccinimidyl] suberate, disuccinimidyl glutarate, disuccinimidyl tartrate, ethylene glycol bis [succinimidyl succinate], and the like.
  • the pH at the time of the bridge pH 3.0 to pH 6.0, is preferred! / ⁇ . More preferably, ⁇ 4.0 ⁇ 6.0.
  • the buffer used is preferably one having low volatility, such as citric acid.
  • the compound functional group that reacts with the hydrazide group in the cross-linking agent is preferably at most 40 mol%, more preferably at most 20 mol%, particularly preferably at most 10 mol%, based on the hydrazide group in the gel preparation. It is.
  • the rate of introduction of a functional group capable of cross-linking into HA is not particularly limited !, but is preferably 5 mol% or more per HA glucuronic acid in order to obtain a gel that is not flowable in a living body. Particularly preferred is at least 10 mol%. Further, since the sustained release performance of a drug largely depends on the cross-linking density of a cross-linked HA derivative, controlling the introduction rate can control the sustained release period of the drug.
  • polysaccharide acid derivative having a hydrazide group introduced therein examples include a compound represented by the formula ( ⁇ ):
  • R is a hydrogen atom, a linear or branched C alkyl group, a linear or branched C
  • X is Y-QY-NHNH
  • RRRR and R are each independently a hydrogen atom, a linear or branched C a2 a3 a4 a5 a6 l-o alkyl group, a linear or branched C alkenyl group, a linear or branched C alkyl group,
  • a carbonyl group a linear or branched C alkynylcarbonyl group, or SO OH;
  • Y is a single bond, N (—R) CO N (—R) —CO—, or CH CO—,
  • Q is a single bond, a linear or branched C alkylene group, a linear or branched C hydroxy group, Alkylene group, polyalkylene oxide group, polypeptide group, polyester group,
  • Y is a single bond, N (—R) CO or -CHCO—,
  • R and R are each independently a hydrogen atom, a linear or branched C alkyl group,
  • a hyaluronic acid derivative having at least one or more repeating structures in the molecule.
  • R is preferably a hydrogen atom
  • R and a5 and R are preferably a hydrogen atom
  • Y is preferably a single bond or —CO— and a61
  • Q is preferably a linear or branched C alkylene group
  • Y is preferably a single bond
  • R is preferably a hydrogen atom, and R is preferably a hydrogen atom.
  • the polyalkylene oxide group is-(CH (-R) CH O) OH (wherein
  • R is a hydrogen atom or a group represented by a linear or branched C alkyl group), and is preferably
  • n is preferably an integer of 120.
  • the polypeptide group is not particularly limited, but is preferably one comprising 120 amino acids.
  • the polyester group is not particularly limited, but is preferably a polyglycolic acid group or a polylactic acid group.
  • any method may be used as long as drying and cross-linking reaction of fine particles by solvent evaporation proceed simultaneously.
  • a solution containing a hyaluronic acid derivative having a functional group capable of cross-linking reaction and a drug is spray-dried using a spray dryer that spray-drys a liquid, so that the hyaluronic acid derivative is bridged during concentration drying.
  • the drying temperature is preferably 100 ° C or lower to prevent denaturation of the drug.
  • a cross-linkable HA derivative (tetrabutylammonium salt) and a drug are dissolved in a polar organic solvent such as DMS O, and a supercritical liquid such as carbon dioxide is added to extract DMSO.
  • a polar organic solvent such as DMS O
  • a supercritical liquid such as carbon dioxide
  • the recovery rate of the generated microparticles can be increased by adding a surfactant (about 1% to 2%) with a surfactant such as Tween_20 or Tween_80.
  • a surfactant such as Tween_20 or Tween_80.
  • the introduction rate of the crosslinkable functional group is 5 mol% to 70 mol%, and the molecular weight of hyaluronic acid is 10,000.
  • the dalton is 2,000,000 daltons and the concentration of hyaluronic acid is 0.1% to 5%.
  • an aqueous solution containing a hyaluronic acid derivative having a crosslinkable functional group and a drug is emulsified into a dehydrating liquid (eg, polyethylene glycol having a molecular weight of 400 daltons).
  • a dehydrating liquid eg, polyethylene glycol having a molecular weight of 400 daltons.
  • the moisture content is further reduced by performing a heat treatment after the formation of the fine particles to complete the crosslinking reaction.
  • the crosslink density is increased, and the extended release period can be expected.
  • the temperature of the heat treatment is not particularly limited, but may be, for example, 30 to 110 ° C, preferably 30 to 60 ° C.
  • the particle diameter after drying may be optimized depending on the application, but is usually 0.01 01 to 150 111, preferably 1, in order to make it injectable.
  • 0.1 to 1.5 ⁇ m is preferred for intravenous administration, which is preferable in terms of inhalation efficiency. It is preferable from the viewpoint of metabolism.
  • the HA used in the present invention is derived from HA extracted from animal tissues, HA obtained by fermentation, HA obtained by chemical synthesis, etc. Is not limited. Further, the HA may be subjected to a further treatment such as a hydrolysis treatment.
  • the HA of the present invention also includes modified HA modified by various methods, and alkali metal salts such as sodium, potassium, and lithium. HA is often modified with a carboxyl group and a hydroxyl group at the hydroxyl group, but in the present invention, modified HA may be modified at any part.
  • the modified HA is not particularly limited, and may be modified in any way.
  • HA (W095Z25751), N-sulfated HA (W098Z45335), esterified HA (EP0216453, WO98 / 08876, EP0341745), periodate-oxidized HA, amide-modified HA, etc. be able to.
  • the molecular weight of the raw material HA used in the present invention is not particularly limited, and a force capable of using any molecular weight of HA is usually 5000 daltons to 3.5 million daltons, preferably 10,000 daltons to 1 million daltons. Can be used. Further, since the molecular weight and concentration of HA affect the particle size after production, they may be selected according to the target particle size.
  • Proteins and peptides having a pharmacological effect are not particularly limited.
  • EPO erythrobotine
  • G-CSF dala-urocytoco-oral stimulator
  • interferon a ⁇ , ⁇ , (INF- ⁇ , j8, ⁇ )
  • serially-eutrophic factor-1
  • CNTF tumer necrosis factor binding protein
  • TNFbp tumer necrosis factor binding protein
  • IL-10 interleukin 10
  • FMS-like tyrosine kinase Fit-3)
  • Growth hormone GH
  • insulin insulin-like growth factor 1
  • IGF-1 platelet-derived growth factor
  • PDFG interleukin 1 receptor antagonist
  • BDNF brain-derived single-mouth trophy factor
  • KGF keratinocyte growth factor
  • SCF stem cell factor
  • MDF megakaryocyte growth factor
  • leptin Thyroid hormone
  • PTH basic fibroblast growth factor
  • the sustained-release drug carrier of the present invention can also be used as a drug for low-molecular-weight conjugates.
  • Small molecule drugs include anticancer drugs (eg, alkylating agents, antimetabolites, alkaloids), immunosuppressants, anti-inflammatory drugs (eg, steroids, nonsteroidal anti-inflammatory drugs), antirheumatic drugs, antibacterial drugs (Eg,
  • anticancer drugs eg, alkylating agents, antimetabolites, alkaloids
  • immunosuppressants eg, anti-inflammatory drugs (eg, steroids, nonsteroidal anti-inflammatory drugs), antirheumatic drugs, antibacterial drugs (Eg,
  • the sustained release carrier of the present invention comprises one or more pharmaceutically acceptable diluents, wetting agents, emulsifiers, dispersants, adjuvants, preservatives, buffers, binders, stabilizers and the like.
  • the pharmaceutical composition can be administered in any suitable form depending on the intended route of administration. Wear.
  • the administration route may be a parenteral route or an oral route.
  • FIG. 1 is an example of a photograph taken by a microscope of crosslinked HA-SH microhide mouth gel fine particles.
  • FIG. 2 is an example of a micrograph of crosslinked HA-SH microhide mouth gel particles after swelling in PBS.
  • FIG. 3 is an example of the results of thermogravimetric analysis of crosslinked HA-SH microhydrogels containing EPO.
  • FIG. 4 is a graph showing an example of the results of RP-HPLC analysis showing the amount of EPO recovered from the crosslinked HA—SH microhide mouth gel microparticles obtained in Example 14; 7 shows fine particles obtained in Examples 1, 2, 3, and 4.
  • FIG. 4 is a graph showing an example of the results of RP-HPLC analysis showing the amount of EPO recovered from the crosslinked HA—SH microhide mouth gel microparticles obtained in Example 14; 7 shows fine particles obtained in Examples 1, 2, 3, and 4.
  • FIG. 5 is a graph showing the release properties of EPO from the HA gel power obtained in Example 3 and Comparative Example 1.
  • FIG. 6 is an example of the 1 H-NMR measurement results of the hyaluronic acid derivative (HA-HZ) obtained in Example 91.
  • FIG. 7 is an example of the 1 H-NMR measurement results of the hyaluronic acid derivative (HA—HZ—SH) obtained in Example 92.
  • FIG. 8 is an example of the 1 H-NMR measurement results of the hyaluronic acid derivative (HA—HZ—MA) obtained in Example 10.
  • FIG. 9 is an example of a 1 H-NMR measurement result of the hyaluronic acid derivative (HA-AM) obtained in Example 11-1.
  • FIG. 10 is an example of the 1 H-NMR measurement results of the hyaluronic acid derivative (HA-AM-SH) obtained in Example 11-2.
  • FIG. 11 is an example of the 1 H-NMR measurement results of the hyaluronic acid derivative (HA-AM-MA) obtained in Example 11-1.
  • FIG. 12 is a graph showing a change in water content due to curing of particles obtained in Example 12.
  • FIG. 13 shows the effect of suppressing swelling of particles obtained in Example 12 by curing.
  • the NMR measurement was performed using a nuclear magnetic resonance apparatus JNM-ECA500 (manufactured by JEOL Ltd.) using heavy water (D O) as a solvent.
  • the introduction ratio of the substituent is determined by the introduced substitution.
  • HA-HZ Dissolve 200 mg of hyaluronic acid (HA) (manufactured by Denki Kagaku Kogyo Co., Ltd.) at a molecular weight of 1.9 x 10 5 daltons in distilled water at a concentration of 0.5%, and adjust the pH to 4.7-4 with 5N hydrochloric acid. .8.
  • HA hyaluronic acid
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • ADH adipic dihydrazide
  • Spray dryer Buch, mini spray dryer B—191
  • Feed solution concentration 10 mg / mL
  • Atomizing air flow rate 650 L / hr
  • Example 4 In the experiment procedure of Example 1-3, and 200mg certain HA-SH in the introduction rate of SH groups Roh Tutsi 3 56 mole 0/0, sodium tetrathionate (Sodium tetrathionate: STT) to 62. 4 mg (SH group EPO-encapsulated crosslinked hyaluronic acid microparticles were prepared in the same manner as in Example 13 except that 1 mol of 1 mol was used. [Example 4]
  • Example 1-3 In the experiment procedure of Example 1-3, and 200mg certain HA-SH in the introduction rate of SH groups Roh Tutsi 3 56 mole 0/0, 0.7 mol times of sodium tetrathionate respect SH group (Sodium (tetrathionate: STT) Except that 38.9 mg was used, EPO-enclosed crosslinked hyaluronic acid fine particles were prepared in the same manner as in Example 1-3.
  • Example 1-3 In the experiment procedure of Example 1-3, and 200mg certain HA-SH in the introduction rate of SH groups Roh Tutsi 3 56 mole 0/0, 0.5 mol times of sodium tetrathionate respect SH group (Sodium (tetrathionate: STT) Except that 27.8 mg was used, EPO-enclosed crosslinked hyaluronic acid fine particles were prepared in the same manner as in Example 1-3.
  • EPO-encapsulated crosslinked hyaluronic acid microparticles were prepared in the same manner as in Example 3 except that 4 mg of Tween-80 was used instead of 4 mg of Tween-20 in the experimental procedure of Example 3.
  • EPO-encapsulated crosslinked hyaluronic acid fine particles were prepared in the same manner as in Example 3 except that Tween-20 was used without caulking in the experimental operation of Example 3.
  • EPO-encapsulated crosslinked hyaluronic acid microparticles were prepared in the same manner as in Example 3 except that the STT was not added in the experimental operation of Example 3.
  • Example 2 EPO-encapsulated HA microparticles were prepared in the same manner as in Example 8 except that HA was used instead of HA-SH in Example 8.
  • FIG. 2 shows a microphotograph ( ⁇ 3000) of the microparticles dispersed in PBS.
  • the particle diameter of the fine particles when dried was about 1.2 m, and the particle diameter when swelled in water was about 1.8 m.
  • the sample solution was subjected to reverse phase chromatography (RP-HPLC) measurement, and the EPO concentration in the sample solution was calculated from the peak area ratio of the standard solution to the sample solution using 0.1 mgZmL of the EPO aqueous solution as a standard solution.
  • the amount of EPO obtained by RP-HPLC with respect to the amount of EPO added was calculated as the recovery rate.
  • High-performance liquid chromatography (RP-HPLC) analysis using a reversed-phase column was performed using a Waters600S controller, a 717plus autosampler, and a 486 infrared light absorption measurement device (manufactured by Waters) under the following measurement conditions.
  • Fig. 1 shows the release of EPO from the gel when the amount of EPO decomposed and recovered with hyal-mouth enzyme immediately after gel preparation is set to 100%.
  • HAse hyal-mouth-dase
  • the EPO in the gel is not denatured, and the gel of Comparative Example 1 has a low cross-linking density, so that EPO is released quickly.
  • the microgel of Example 3 has a high cross-linking density. It shows that 40% of EPO is released by enzymatic degradation without being released by diffusion.
  • drug-loaded microparticles in which a drug is encapsulated in a crosslinked product of hyaluronic acid as exemplified in the above example, these can be crosslinked in situ while maintaining the biological activity of the drug such as protein or peptide. It is possible to prepare an injectable drug sustained-release preparation which is dried over a long period of time and releases proteins or peptides encapsulated in the gel fine particles.
  • HA-HZ HA with a molecular weight of 2 ⁇ 10 5 Dalton (manufactured by Denki Kagaku Kogyo Co., Ltd.) 76.
  • EDC 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • ADH adipic acid dihydrazide
  • HZ group -introduced hyaluronic acid (HA-HZ) 57. Omg was obtained.
  • the introduction rate of the HZ group in the obtained HA-HZ was quantified by the proton NMR method as the ADH introduction rate (HA: N-acetyl group (1.85 ppm), and four methylenes derived from HZ: ADH (1.5, 2.1 and 2.25 ppm).
  • the HZ introduction rate was 47%.
  • HA-HZ (the carboxylic acid of HA was converted to 63% HZ) was synthesized in the same manner as in batch 3 of Example 1-1, except that the molecular weight of HA was 2 ⁇ 10 4 daltons.
  • a 1 M phosphate buffer (pH 8.8) was added thereto to prepare a 0.1 M phosphate buffer having an HA concentration of 50 mg / mL.
  • Methacrylic anhydride was added dropwise at 20 equivalents of HZ, and reacted overnight at room temperature with stirring. After precipitation with tetrahydrofuran, it was recovered and dried. Precipitate in distilled water After dissolving, precipitating with tetrahydrofuran and drying again, the dried product was dissolved in distilled water and freeze-dried to obtain the title HA-HZ-MA.
  • the introduction rate of the amino group was calculated by proton NMR (HA: methylproton of N-acetyl group (1.8-1.9 ppm), AM: methylene proton of ethylenediamine moiety (2.9-3. Lp pm). )). The introduction rate was 88.5% for each.
  • HA-AM obtained above was added to a phosphate buffer solution (pH 7) at lOmg? After dissolution in mL, methacrylic acid activated with 1-ethyl- 3- ( 3 -dimethylaminopropyl) carbodiimide (EDC) was added in 0.5, 1.0, and 2.0 equivalents to the HA unit. The reaction was performed for 2 hours at room temperature. After the reaction, the solution was dialyzed in the order of 0.3M sodium chloride aqueous solution and distilled water (Spectrapore 4, molecular weight cut off (MWCO): 12k-14k Dalton), and purified. Thereafter, lyophilization was performed to obtain the above polymer.
  • MWCO molecular weight cut off
  • DN-42 constant temperature bath
  • Example 4 The water content of the particles of each sample sampled in Example 12 was measured by TGA. The results are shown in FIG. In addition, 30 particles of each sample were randomly selected by image analysis using a microscope, and the diameter of each ferret was measured (particle size when dried). Further, the sampled particles were swollen by adding a PBS solution containing Tween-80 (0.05%), and the particles were swelled, and the particle size of the wet particles was measured in the same manner. The result is shown in FIG. As a result, it was confirmed that the swelling rate was suppressed by incubation for 24 hours. This is thought to be due to an increase in intra-particle cross-linking after incubation at 50 ° C for 24 hours.
  • Example 10 1 mg of HA—HZ—MAlOOmg synthesized in Example 10 was dissolved in 6 mL of distilled water, and 1 mL of lOOmg phosphate buffer pH8.5 (PB) in which 1 mg of DTT and 32.5 L of TEA were dissolved was added thereto. In addition, 3 mL of distilled water was further added and mixed. This solution was spray-dried under the same conditions as in Example 12 (exhaust temperature: 65 ° C.) to obtain fine particles. The fine particles were cured in a 50 ° C constant temperature bath (Yamato Chemical DN-42) for about 72 hours to obtain particles.
  • PB lOOmg phosphate buffer pH8.5
  • Example 13 The particles obtained in Example 13 were placed on a preparation, a PBS solution of pH 7 was added thereto, and the state of the particles was observed with a microscope. As a result, the particles did not dissolve in the PBS solution. From these observation results, it was confirmed that the fine particles obtained in Example 13 formed a cross-link by an addition reaction between the mercapto group and the unsaturated bond.
  • the sustained-release drug carrier of the present invention can maintain the biological activity of a drug such as a protein or a peptide while maintaining the biological activity of the drug in situ by chemical cross-linking, drying, and encapsulation in an HA gel.
  • a drug such as a protein or a peptide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 タンパク質、ペプチド等の薬物の生物活性を阻害せずに高封入率で封入でき、インジェクタブルで、完全に生分解性で安全なタンパク質またはペプチド等の薬物の長期徐放製剤を提供する。  架橋反応可能な官能基を有するヒアルロン酸などの多糖誘導体またはその塩と薬物との溶液を微粒子状態で架橋反応の進行の遅い希薄な状態から架橋反応が進行する濃度に脱水することで、濃縮中に架橋反応を起こし、薬物を多糖架橋体中に封入した薬物担持微粒子にすることで、タンパク質、ペプチド等の薬物の生物活性を維持したままこれらを効率よく封入、長期間徐放できるインジェクタブルな徐放製剤を実現できる。                                                                                 

Description

明 細 書
架橋多糖微粒子およびその製造方法
技術分野
[0001] 本発明は、薬物、特に薬効を有するタンパク質またはペプチドを徐放する架橋多糖 薬物徐放微粒子担体、及びその製造方法に関する。
背景技術
[0002] 近年、薬効を持つタンパク質、ペプチドの製剤が盛んに実用化されているが、一般 にこうした薬物は血中半減期が短ぐまたその大部分が頻回投与の注射剤であるた め、薬剤投与における患者の負担は過大なものとなっている。したがって、できるだ け少量で薬効を発揮させ且つ投与回数も少なくできる、タンパク質またはペプチド薬 剤の実用的な徐放型製剤が望まれている。
[0003] 薬効を持つタンパク質またはペプチドの徐放製剤においては、製剤調製時または 徐放中の、タンパク質またはペプチドの変性あるいは凝集による回収率低下力 実 用化への大きな障害となって 、る。ポリ乳酸ーポリグリコール酸共重合体 (PLGA)等 の生分解性高分子を基材にした徐放製剤が試みられているが、基材の疎水性、乾 燥工程、 pHの低下に起因するタンパク質の変性、凝集が報告されている (非特許文 献 1および 2を参照)。一方、こうした問題が低減される親水性のハイド口ゲルを基材 に用いた徐放製剤も報告されているが、やはり実用化には至っていない。また、安全 性の面力もは、徐放基材として用いる素材は、非抗原性、非変異原性、無毒性、生 分解性を併せ持つものでなければならず、タンパク質またはペプチドの封入率、回収 率および安全性の全てにおいて、実用化レベルに達している徐放型製剤の実現は 難しい。
[0004] 近年、多糖を薬物担体の基材として用いるという報告もある。その中でも、ヒアルロ ン酸 (HA)は、 1934年、 K. Meyerによって牛の眼の硝子体から単離された生体材 料(多糖)であり、細胞外マトリックスの主成分として古くから知られている。 HAは、 D ーグルクロン酸と N—ァセチルダルコサミンとが β (1→3)グリコシド結合により連結され た二糖単位力 成るダルコサミドダリカンの一種である。 [0005] HAは、化学的、物理的構造に種差が無ぐヒトも代謝系を持っており、免疫性、毒 性といった面でも最も安全な医用生体材料 (Biomaterial)の一つである。近年、微 生物による高分子量 HAの大量生産が可能となり、変形性軟骨治療薬、化粧品等の 分野でも実用化されている。
[0006] HAを基材に用いた架橋方法、 HAゲルからのタンパク質やペプチド薬物の徐放も 多数報告されている。 HAをィ匕学架橋でゲルイ匕させる方法としては、カルポジイミド法 (特許文献 1参照)、ジビニルスルフォン法 (特許文献 2参照)、グリシジルエーテル法 (特許文献 3参照)等が知られている。一般に、ゲル中にタンパク質またはペプチドを 封入する場合は、架橋後にタンパク質またはペプチドを導入する方法では、 HAとタ ンパク質またはペプチドとの相溶性、静電反発等の問題でその導入率は低い。一方 でタンパク質またはペプチド存在下で、 in situ架橋を行う方法には、高封入率でタ ンパク質またはペプチドを担持させられる利点がある。こうした in situ架橋により、 H Aゲル中にタンパク質またはペプチドを封入し、徐放させる製剤につ!ヽて報告されて いる(例えば、特許文献 4参照)。しかし、こうした方法を用いてタンパク質またはぺプ チド存在下で HAを in situ架橋することにより得られる徐放型製剤は、回収率の点 で問題を有して 、る。例えば、ヒドラジド基 (HZ)を導入した HA誘導体 (HA— HZ)を N—ハイドロキシスクシンイミド (NHS)からなる架橋剤で架橋する方法 (特許文献 5参 照)が報告されており、ここでは生理条件下での in situ架橋を目的として pH7.4— p H8. 5で架橋形成反応を行っているが、この方法で得られる HAゲル力 のタンパク 質またはペプチドの回収率もやはり低いことが本発明者らの検討により確認されてい る。この原因は、架橋反応中にタンパク質またはペプチドの一部(主にアミノ基)が架 橋剤と反応し、タンパク質が架橋してしまう点にある。またゲル中に残った変性したタ ンパク質またはペプチドは生物活性が低下しており、むしろ抗原性発現の原因にな る等の問題がある。封入した薬物が高回収率で放出されることは、医薬品として必須 の条件であるにもかかわらず、タンパク質またはペプチドを反応させずに HAをィ匕学 架橋、ゲルイ匕させる方法は知られていない。また、高回収率でタンパク質ペプチドを 封入する方法として、ポリエチレングリコール (PEG)を基材に不飽和官能基を求核 付加反応で架橋する報告もあるが (特許文献 6参照)、生分解性でな ヽ PEG断片が 残存する問題がある。
[0007] また、実際、こうした薬物徐放性物質を注射可能な製剤とするには、これを微粒子 化する必要がある。こうした検討にスプレードライヤーは広く使用されており、インシュ リン (非特許文献 3、非特許文献 4参照)、 rh抗 IgE抗体 (非特許文献 5参照)を微粒 子化した報告、ヒアルロン酸の微粒子中に薬物を封入した報告 (特許文献 7参照、特 許文献 8)はあるが、共に短時間に皮下で溶解してしまうため薬物徐放期間は非常に 短ぐ徐放目的としての実用性は低い。また、スプレードライ中にキトサンの架橋反応 を行い、低分子薬物を封入する報告 (非特許文献 6参照)もあるが、放出期間は数分 と短ぐ架橋剤に用いるアルデヒドがアミノ基などの官能基と高い反応性を有するため 、タンパク質、ペプチド、その他のアミノ基などの官能基を有する低分子薬物には使 用することができない。
特許文献 1:国際公開 WO94Z02517号パンフレット
特許文献 2 :特開昭 61—138601号公報
特許文献 3:特開平 5— 140201号公報
特許文献 4:米国特許第 5827937号明細書
特許文献 5:国際公開 W095Z15168号パンフレット
特許文献 6:国際公開 WO00Z44808号パンフレット
特許文献 7:特許第 3445283号公報
特許文献 8:国際公開 W096Z18647号パンフレット
非特許文献 1 : Pharm. Sci. 第 88卷、第 166— 173頁、 1999年
非特許文献 2 :J. Microencapsulation 第 15卷、第 699— 713頁、 1998年 非特許文献 3 : Int. J. Pharm. 233, 227-237, 2002年
非特許文献 4 :J. Control. Rel. 91, 385—394, 2003年
非特許文献 5 : Biotech, and Bioeng. 60, 301—309, 1998年
非特許文献 6 :Int. J. Pharm. 187, 53—65, 1999年
発明の開示
発明が解決しょうとする課題
[0008] 上述した如ぐタンパク質またはペプチド等の薬物の生物活性を維持したまま in si tUで化学架橋、乾燥、微粒子化し、薬物を封入することで、高封入率、高回収率、安 全性を満たすインジェクタブルな生分解性ゲル微粒子の調製方法、これを用いたタ ンパク質またはペプチド等の長期薬物徐放製剤は知られて 、な!、。
課題を解決するための手段
[0009] 本発明者は、カゝかる課題を解決する為に鋭意研究を進めたところ、架橋形成反応 が可能な官能基を有するヒアルロン酸誘導体と薬物との溶液を、架橋反応の進行の 遅い希薄な状態から架橋反応が進行する濃度に濃縮することで、濃縮中に HA間に 架橋反応を起こさせ、薬物をヒアルロン酸架橋体中に封入することで、タンパク質また はペプチド等の薬物の生物活性を維持したままこれらを効率よく封入できることを見 出した。また、この方法により得られた架橋ヒアルロン酸微粒子はインジェクタブルで あり、生分解性で安全な長期薬物徐放微粒子担体としてタンパク質またはペプチド 等の薬物を封入するのに最適であることを見出し、本発明を完成させた。
[0010] すなわち、本発明は、タンパク質またはペプチド等の薬物の生物活性を維持したま まこれらを in situで架橋、微粒子形成、および乾燥することにより得られる、ゲル中 に封入したインジェクタブルなタンパク質またはペプチド等の薬物徐放製剤、及びそ の製造方法に関する。
[0011] すなわち本発明の一つの側面によれば、架橋多糖微粒子の製造方法であって、 a)架橋可能な官能基を有する多糖誘導体を含む希薄溶液を調製する工程; b)当該溶液を微粒子状の液滴に分散する工程;および
c)当該液滴に含まれる溶液の濃縮により当該多糖誘導体の架橋反応を進行させる 工程を含む前記製造方法が提供される。さらに本発明の別の側面によれば、前記ェ 程 b)が、前記溶液を噴霧することにより微粒子状の液滴に分散する工程である、前 記製造方法が提供される。
[0012] 本発明のさらにその他の側面によれば、前記製造方法により調製することができる 架橋多糖微粒子もまた提供される。
[0013] 以下、本発明を更に具体的に説明する。
[0014] 本発明で用いられる多糖誘導体は、架橋反応可能な官能基を有する多糖誘導体 であれば特に制限されないが、好ましくは、グリコサミドダリカン (酸性ムコ多糖;例え ば、ヒアルロン酸、コンドロイチン、コンドロイチン 4 硫酸、コンドロイチン 6—硫酸、デ ルマタン硫酸、へパリン、へパラン硫酸、ケラタン硫酸など)の誘導体のうち架橋反応 可能な官能基を有するものであり、特に好ましくは、架橋反応可能な官能基を有する ヒアルロン酸誘導体である。
[0015] 従って、本発明のさらに別の側面によれば、架橋ヒアルロン酸微粒子の製造方法で あって、
a)架橋可能な官能基を有するヒアルロン酸誘導体を含む希薄溶液を調製する工程 b)当該溶液を微粒子状の液滴に分散する工程;および
c)当該液滴に含まれる溶液の濃縮により当該ヒアルロン酸誘導体の架橋反応を進 行させる工程を含む前記製造方法が提供される。さらに本発明の別の側面によれば 、前記工程 b)力 前記溶液を噴霧することにより微粒子状の液滴に分散する工程で ある、前記製造方法が提供される。また、本発明のさらにその他の側面によれば、前 記製造方法により調製することができる架橋ヒアルロン酸微粒子もまた提供される。
[0016] 本発明の工程 a)における希薄溶液は、架橋反応に必要な基質および試薬などを 含む溶液であるが溶媒により高度に希釈されているために反応の進行しないかまた は進行が極めて遅い溶液であり、その濃度は特に限定はされないが、例えば 0. 1 % 一 5%、特に 0. 2%— 3%である。また本発明に用いる溶媒としては、当該技術分野 にお 、て通常用いられて 、る溶媒またはそれらの混合物を用いることができ、特に限 定はされないが、例えば水、 DMSO、エタノール、 N メチルピロリドン、超臨界炭酸 液などである。
[0017] 本発明の工程 b)における希薄溶液を微粒子状の液滴に分散する方法には、当該 技術分野で通常用いられる方法であれば特に限定されないが、当該希薄溶液を噴 霧する方法、当該希薄溶液を別の液体と混合することによりェマルジヨンを形成する 方法などが含まれる。ここで微粒子状の液滴は、特に限定されないが例えば 0. 04 μ m— 1. 5mm、好ましくは 0. 1 μ m— 500 μ mの平均粒子径を有することができる。
[0018] 本発明の工程 c)における溶液の濃縮の方法は、架橋反応の進行をより早める濃度 まで濃縮することができる手段であれば特に限定されない。また当該濃縮には、例え ば、当該架橋反応が固相反応として進行するような溶媒が完全に除去された状態も 含まれる。
[0019] なお、前記工程 b)及び c)は一連の工程として行ってもよい。具体的には、前記ェ 程 b)及び c)を一連の工程として、スプレードライ、エマルシヨン液中乾燥法、溶媒拡 散法などにより行うことができる。この中でも、前記工程 b)及び c)を一連の工程として スプレードライにより行うのが好まし!/、。
[0020] 本発明の架橋多糖微粒子は、架橋反応可能な官能基を有する多糖誘導体を含む 溶液を、架橋反応の進行の遅!、希薄な状態から架橋反応が進行する濃度に濃縮す ることで、濃縮中に多糖誘導体を架橋することにより製造することができる。また、架 橋反応可能な官能基を有する多糖誘導体と薬物とを含む溶液を、架橋反応の進行 の遅い希薄な状態から架橋反応が進行する濃度に濃縮することで、濃縮中に架橋 反応を起こさせ、架橋反応と乾燥を同時に行うことで薬物を多糖架橋体中に封入し た薬物担持微粒子とすることを特徴とする。
[0021] 本発明により提供される、製造方法および当該製造方法により得られた、例えば架 橋ヒアルロン酸微粒子などの架橋多糖微粒子は、好ましくは以下に示す特徴を有し ている。
1.完全生分解性であり、生体に対する高い安全性を確保できる。
2. HAなどの多糖に架橋形成が可能な官能基をグラフトすることで、架橋点間距離 を非常に小さく(例えば HAの場合、グルクロン酸当たり 33モル%グラフトで約 3nm) することが可能であり、長期徐放を実現する上で有利である。
3.高架橋密度である。
4.タンパク質を薬剤として用いる場合、タンパク質の変性を防ぐことができる。
5.微粒子化、乾燥化、架橋化を一製造工程で行える。
[0022] 本発明でいう架橋または化学架橋とは、共有結合による、分子間または分子内架 橋結合を含むものであり、同時に分子間および分子内架橋結合を有する場合もある
[0023] 本発明で使用される架橋反応は、薬物、例えば、タンパク質やペプチドの共存下で 架橋を形成しても薬物を変性させない架橋結合形成方法であれば特に限定されな い。こうした反応としては、例えば、メルカプト基間のジスルフイド結合形成、メルカプト 基と不飽和結合との間の付加反応、ヒドラジド基と活性カルボン酸エステル間の反応 等が挙げられる。
[0024] 架橋時の pHは特に限定されないが、タンパク質またはペプチドを変性させずに架 橋形成の促進し、タンパク質またはペプチド等の薬物の含有アミノ基との反応を防ぐ pHが好ましい。そのような pHは当業者が適宜選択することが可能であるが、例えば pH3. 0— pH9. 0、好ましくは pH4. 5— pH9. 0である。
[0025] 本発明に用いる多糖誘導体は、上記したような架橋反応が可能なものであれば特 に限定されないが、具体的には HAに架橋可能な官能基を導入したヒアルロン酸誘 導体 (HA誘導体)が挙げられる。本発明にお 、て用いられる架橋可能な官能基は、 特に限定されないが、例えば、メルカプト基、不飽和結合を有する基 (例えば、メタク リル基、アクリル基、ビュルスルフォン基、アセチレンカルボ-ル基等)、ヒドラジド基( HZ基)等が挙げられる。
[0026] 架橋反応が、メルカプト基同士のジスルフイド結合形成に由来する場合は、例えば メルカプト基を導入した HA誘導体などの多糖誘導体のみを用いて架橋を形成する ことができ、もしくはこれに架橋剤としてメルカプト基を 2つ以上有する化合物(例えば 、ジチオトレイトール(DTT)、ブタンジチオール、ポリエチレングリコールジチオール 、システィンを 2つ以上含むペプチド等)を添加して架橋を形成することもできる。また 、架橋反応速度を高める目的で、テトラチオン酸ナトリウム(Sodium tetrathionate: ST T)、ジピリジルジスルヒド(Dipyridyl disulfide)、エルマン試薬(Ellman's reagent : DT NB)等の化合物を添加しても良い。この際、未反応のメルカプト基がゲル中に残存 するとタンパク質やペプチドの変性に繋がる可能性があるため、反応効率をできるだ け上げるためにこれら化合物を反応性を有するメルカプト基に対して 0. 1モル倍一 2 モル倍、さらに好ましくは 0. 5モル倍一 1. 5モル倍添カ卩するのが好ましい。
[0027] メルカプト基を導入した多糖誘導体の調製方法は、特に限定されな!、が、例えば、 HAを 3級アンモ-ゥム塩にして、 DMSO等の極性有機溶媒に溶解し、カップリング 剤存在下、メルカプト基を有するァミンまたはヒドラジドと反応させる方法などにより、 調製することができる。メルカプト基を有するアミンは、特に限定されないが、例えば、 2 アミノエタン 1ーチオール、 3—ァミノプロパン 1ーチオール、チォグリコール酸ヒド ラジド、などを挙げることができる。
[0028] また、 HAにメルカプト基を導入する場合、まずアミノ基ゃヒドラジド基を導入し、そ の後このアミノ基ゃヒドラジド基にメルカプト基を導入する方法も好ま 、。例えば HA のカルボン酸と、アジピン酸ジヒドラジド(ADH)またはエチレンジァミン、エチレンジ ォキシビスェチルァミン等の 2価の HZまたはアミノ基含有ィ匕合物とをカップリング剤 で縮合させ、ヒドラジド基を導入した HA誘導体 (HA— HZ)またはアミノ基を導入した HA誘導体 (HA-アミノ基)を合成し、これに例えば N-スクシンィミジル 3— [2—ピリ ジルジチォ]プロピオネート(SPDP)を反応させ、 DTT等の還元剤で還元、メルカプ ト基とする方法、あるいは 2—イミノチオラン (Trout's Reagent)をヒドラジド基、あるいは ァミノ基と反応させる方法などが挙げられる。
[0029] カップリング剤としては、例えば、ベンゾトリァゾールー 1ーィルォキシートリス(ジメチル ァミノ)ホスホ-ゥム へキサフルォロホスフェート(BOP)、ベンゾトリァゾールー 1ーィ ルォキシートリスピロリジノホスホ-ゥム へキサフルォロホスフェート(PyBOP)、 N, N '一カルボ-ルジイミダゾール(CDI)、 N, N'—ジシクロへキシルカルボジイミド(DCC) 、 1ーェチルー 3—(3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC)、 EDCZ 3, 4ージヒドロ一 3—ヒドロキシー 4 ォキソ 1, 2, 3—べンゾトリアジン(HODhbt)、 N— エトキシカルボ-ルー 2 エトキシー 1, 2—ジヒドロキノリン(EEDQ)、 4— (4, 6—ジメトキ シ— 1, 3, 5—トリアジンー 2 ィル) 4 メチルモルホリウム クロリド n—水和物(DMT — MM)、 2— (1H—ベンゾトリアゾール 1 ィル) 1, 1, 3, 3—テトラメチルゥ口-ゥム テトラフルォロボレート (TBTU)等を挙げることができる。
[0030] 本発明における架橋可能な官能基は、例えば多糖の分子内に含まれるカルボキシ ル基を以下のようなメルカプト基、不飽和結合、アミノ基またはヒドラジル基を含むェ ステル基もしくは置換アミド基に変換することにより導入することができる:
-CO-N (-R )— Y— Q— Y— N (-R )— Y— Q— SH;
1 1 1 2 2 3 2
-CO-N (-R )— N (-R )— Y— Q -SH;
1 2 3 2
-CO-N (-R )— Y— Q— Y— N (-R )— Y— Q ;
1 1 1 2 2 3 4
-CO-N (一 R ) N (— R )-Y -Q;または -CO-N (— R )— Y— Q— Y— NH;
1 1 1 2 2
(式中、 Rは、水素原子、直鎖または分枝 C アルキル基、直鎖または分枝 C ヒド
1 1-10 1-10 ロキシアルキル基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル 基であり、
Yは、単結合、 N (— R ) CO N (— R ) — CO—、または CH CO—であり、
1 3 3 2
Yは、単結合、 CON (— R )—、または N (— R )—、であり、
2 4 4
Qは、直鎖または分枝 C ァノレキレン基、直鎖または分枝 C ヒドロキシァノレキレ
1 1-10 1-10
ン基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基であり、 R Rおよび Rは、それぞれ独立して、水素原子、直鎖または分枝 C アルキル
2 3 4 1-10 基、直鎖または分枝 C ヒドロキシアルキル基、ポリアルキレンオキサイド基、ポリべ
1-10
プチド基、またはポリエステル基であり、
Yは、単結合、 CO— CO -CH— CH (OH)—、または CONH—であり、
3 2 2
Qは、直鎖または分枝 C ァノレキレン基、直鎖または分枝 C ヒドロキシァノレキレ
2 1-10 1-10
ン基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基であり、 Qは、直鎖もしくは分枝 C ァルケ-ル基、または、直鎖もしくは分枝 C アルキ-
4 2-10 2-10 ル基である。 ) o
メルカプト基を導入した多糖誘導体の例には、好ましくは式 (I):
[化 1]
Figure imgf000012_0001
(式中、 Xは、 Y Q Y— N (-R )— Y Q SH、または— N (― R )— Y Q SH
2 1 1 2 2 3 2 2 3 2 であり、
Rは、水素原子、直鎖または分枝 C アルキル基、直鎖または分枝 C ヒドロキシ
1 1-10 1-10 アルキル基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基であ り、
R R R R および R は、それぞれ独立して、水素原子、直鎖または分枝 C a2 a3 a4 a5 ao 1-6 アルキル基、直鎖または分枝 C アルケニル基、直鎖または分枝 C アルキ-ル基、
1-6 1-6
直鎖または分枝 C アルキルカルボ-ル基、直鎖または分枝 C アルケニルカルボ
1-6 1-6 ニル基、直鎖または分枝 C アルキニルカルボニル基、または SO OHであり、
1-6 2
Yは、単結合、 N (— R ) CO N (— R ) —CO—、または CH CO—であり、
1 3 3 2
Yは、単結合、 CON (— R )—、または N (— R ) であり、
2 4 4
Qは、直鎖または分枝 C ァノレキレン基、直鎖または分枝 C ヒドロキシァノレキレ
1 1-10 1-10
ン基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基であり、 R Rおよび Rは、それぞれ独立して、水素原子、直鎖または分枝 C アルキル
2 3 4 1-10 基、直鎖または分枝 C ヒドロキシアルキル基、ポリアルキレンオキサイド基、ポリべ プチド基、またはポリエステル基である。
[0034] Yは、単結合、 CO— CO -CH— CH (OH)—、または CONH—であり、
3 2 2
Qは、直鎖または分枝 C ァノレキレン基、直鎖または分枝 C ヒドロキシァノレキレ
2 1-10 1-10
ン基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基である。 ) で示される繰り返し構造を、少なくとも 1以上分子内に有するヒアルロン酸誘導体が含 まれる。
[0035] また式 (I)中、ポリアルキレンオキサイド基とは、 -(CH (-R) CH O) H (式中、 R
2 n
は水素原子、または c アルキル基)で示される基であり、好ましくは、ポリエチレンォ
1-5
キサイド基、ポリプロピレンオキサイド基であり、また好ましくは nは、 1一 20の整数で ある。またポリペプチド基は、特に限定されるものではないが、好ましくはアミノ酸 1一 20個力もなるものである。またポリエステル基は、特に限定されるものではないが、好 ましくはポリグリコール酸基、ポリ乳酸基である。
[0036] さらに、式 (I)において、 Rは、好ましくは水素原子であり、 Xは、好ましくは Y— Q
1 2 1 Y— N (— R )-Y Q SHである。さらに式(II)において、 Υは、好ましくは単結合
1 2 2 3 2 1
または、 Ν (— R ) であり、 Υは、好ましくは単結合であり、 Qは、好ましくは直鎖ま
3 2 1
たは分枝 C アルキレン基である。さらに式 (Π)において、 Rおよび Rは、好ましくは
1-4 2 3
水素原子であり、 Υは、好ましくは CO—であり、好ましくは Qは、直鎖または分枝 C
3 2
ァノレキレン基である。
1-4
[0037] メルカプト基と不飽和結合との間の付加反応を架橋反応として利用する場合は、不 飽和結合を有する基を導入した HA誘導体などの多糖誘導体とメルカプト基を 2っ以 上有する化合物(例えば、ジチオトレイトール(DTT)、ブタンジチオール、ポリエチレ ングリコールジチオール、システィンを 2つ以上含むペプチド、メルカプト基を導入し た HA誘導体等)を混和してもよいし、逆に、メルカプト基を導入した多糖誘導体と不 飽和結合を有する基を 2つ以上有する化合物(例えば、エチレングリコールジメタタリ レート、エチレンビスアクリルアミド、トリス— 2 マレイミドエチルァミン、 1, 8 ビスマレ イミドトリエチレングリコール、 1, 4 ビスマレイミジル— 2, 3—ジヒドロキシブタン、不飽 和結合を導入した HA誘導体等)を混和してもよい。また、この場合、架橋反応時のタ ンパク質またはペプチドの安定性向上、反応速度の向上の為にトリエタノールァミン 等の塩基性ィ匕合物を添加することが好ましい。この際好ましい濃度としては、 10 /z L/ mL— 20 /z L/mLである。メルカプト基を 2つ以上有する化合物には、例えば、直鎖 または分枝鎖の C アルキレンジチオール (ここでアルキレン部分は 1以上の酸素原
2-10
子が挿入されて 、てもよく、および Zまたは 1以上の水酸基で置換されて 、てもよ 、) も含まれる。
[0038] 不飽和基を導入した多糖誘導体の調製方法は、特に限定されな!、が、例えば、メタ クリル酸グリシジルエーテルや、無水メタクリル酸等を HAの水酸基に直接反応させる 方法 (J. Biomed. Mat. Res. 54, 115— 121, 2001)では高い導入率は得難い。こ れは、 HAが水溶液中で水素結合、疎水性相互作用による高次構造を形成し、ヒドロ キシル基、カルボン酸基等の官能基の反応性が低いためと考えられる。タンパク質や ペプチドの徐放期間を延ばすには、高い架橋密度が望ましい。このためには、ダルク ロン酸部分のカルボキシル基に置換基を導入するのが望ましい。例えば、 HAを 3級 アンモ-ゥム塩にして、 DMSO等の極性有機溶媒に溶解し、 1ーェチルー 3— (3—ジメ チルァミノプロピル)カルボジイミド(EDC)、ベンゾトリァゾールー 1 ィルォキシ—トリス (ジメチルァミノ)ホスホ-ゥム へキサフルォロホスフェート(BOP)、ベンゾトリァゾー ルー 1ーィルォキシートリスピロリジノホスホ-ゥム へキサフルォロホスフェート(PyBO P)等のカップリング剤存在下、不飽和結合を有するァミンまたはヒドラジドと反応させ る方法などにより、調製することができる。不飽和結合を有するアミンは、特に限定さ れないが、例えば、ァリルァミン、ジァリルァミン、 4—ァミノ— 1ーブテン、アクリルヒドラ ジド、メタクリルヒドラジド等を挙げることができる。
[0039] また上述の、アミノ基ゃヒドラジド基を導入し、その後、このアミノ基ゃヒドラジド基に 不飽和結合を有する基を導入する方法も好ましい。例えば HAのカルボン酸と、アジ ピン酸ジヒドラジド(ADH)またはエチレンジァミン、エチレンジォキシビスェチルアミ ン等の 2価の HZまたはアミノ基含有ィ匕合物とを、 EDC、 BOP、 PyBOP等の縮合剤 で縮合させ、ヒドラジド基修飾された HA誘導体 (HA— HZ)またはアミノ基修飾された HA誘導体 (HA—ァミノ基)を合成し、これに不飽和結合を有するカルボン酸誘導体 、例えば R — COOHの酸無水物または活性ィ匕エステル (ここで、 R は直鎖または分
10 10
枝 C アルケニル基である)、好ましくは無水メタクリル酸、 N—ヒドロキシスクシンイミド (NHS)活性ィ匕アクリル酸またはメタクリル酸等を反応させる方法などが挙げられる。
[0040] HAなどの多糖に不飽和結合を有する基を導入後、メルカプト基で架橋する場合、 メルカプト基の不飽和結合を有する基に対する比率は特に限定されず、当業者が適 宜選択することが可能である力 タンパク質、ペプチドとの反応を最小にし、且つ、不 飽和基のゲル中の残存を防ぎ、且つ、速やかに反応させるため、メルカプト基:不飽 和結合を有する基 =3:1— 1:2が好ましい。更に好ましくは、 2:1— 1:1である。
[0041] HAにメルカプト基を導入後、不飽和結合を有する基で架橋する場合、不飽和結合 を有する基のメルカプト基に対する比率は特に限定されず、当業者が適宜選択する ことが可能であるが、タンパク質、ペプチドとの反応を最小にし、且つ、不飽和基のゲ ル中の残存を防ぎ、且つ、速やかに反応させるため、不飽和結合を有する基:メルカ プト基 =3:1— 1:2が好ましい。更に好ましくは、 2:1— 1:1である。
[0042] 不飽和結合を有する基を導入した多糖誘導体の例には、好ましくは式 (Π):
[0043] [化 2]
Figure imgf000015_0001
(式中、 Xは、 Y Q Y— N (— R )-Y Q、または Ν (— R )-Υ Qであり、
3 1 1 2 2 3 4 2 3 4
Rは、水素原子、直鎖または分枝 C アルキル基、直鎖または分枝 C ヒドロキシ
1 1-10 1-10 アルキル基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基であ り、 R、 R、 R、 R および R は、それぞれ独立して、水素原子、直鎖または分枝 C a2 a3 a4 a5 a6 l~o アルキル基、直鎖または分枝 C アルケニル基、直鎖または分枝 C アルキ-ル基、
1-6 1-6
直鎖または分枝 C アルキルカルボ-ル基、直鎖または分枝 C アルケニルカルボ
1-6 1-6
ニル基、直鎖または分枝 C アルキニルカルボニル基、または SO OHであり、
1-6 2
Yは、単結合、 N (— R ) CO N (— R ) —CO—、または、 -CH CO—であり、
1 3 3 2
Yは、単結合、 CON (— R )—、または N (— R ) であり、
2 4 4
Yは、単結合、 CO—、または、 -CH CO—であり、
3 2
Qは、直鎖または分枝 C ァノレキレン基、直鎖または分枝 C ヒドロキシァノレキレ
1 1-10 1-10
ン基、ポリアルキレンオキサイド基、ポリペプチド基、またはポリエステル基であり、 R
2、 Rおよび Rは、それぞれ独立して、水素原子、直鎖または分枝 C アルキル 3 4 1-10 基、直鎖または分枝 C ヒドロキシアルキル基、ポリアルキレンオキサイド基、ポリべ
1-10
プチド基、またはポリエステル基であり、
Qは、直鎖もしくは分枝 C ァルケ-ル基、または、直鎖もしくは分枝 C アルキ-
4 2-10 2-10 ル基である。 )
で示される繰り返し構造を、少なくとも 1以上分子内に有するヒアルロン酸誘導体など が含まれる。
[0045] ここで式 (Π)中、ポリアルキレンオキサイド基とは、 -(CH (-R) CH O) H (式中、
2 n
Rは水素原子、または C アルキル基)で示される基であり、好ましくは、ポリエチレン
1-5
オキサイド基、ポリプロピレンオキサイド基であり、また好ましくは nは、 1一 20の整数 である。またポリペプチド基は、特に限定されるものではないが、好ましくはアミノ酸 1 個一 20個力もなるものである。またポリエステル基は、特に限定されるものではない 力 好ましくはポリグリコール酸基、ポリ乳酸基である。
[0046] さらに、式 (Π)において、 Rは、好ましくは水素原子であり、 Xは、好ましくは Y—
1 3 1
Q -Y -N (-R )-Y -Qである。さらに式 (Π)において、 Υは、好ましくは単結合、 -
1 2 2 3 4 1
Ν (— R ) CO—、または、 N (— R ) であり、さらに好ましくは N (— R ) CO—である。
3 3 3 また Yは、好ましくは単結合、 CON (— R ) であり、さらに好ましくは CON (— R )
2 3 3 一であり、 Yは好ましくは単結合、 CO—、または、 N (— R ) であり、さらに好ましく
3 3
は、 CO—である。さらに式 (Π)において、 Qは好ましくは直鎖または分枝 C アルキ レン基であり、 Rおよび Rは、好ましくは水素原子であり、 Qは好ましくは直鎖または
2 3 4
分枝 C アルケニル基である。
2-10
[0047] また、メルカプト基を導入した多糖誘導体の例には、上述の式 (I)で示される繰り返 し構造を、少なくとも 1以上分子内に有するヒアルロン酸誘導体などが含まれる。
[0048] 架橋反応に、ヒドラジド基を導入した HA酸誘導体などの多糖誘導体と活性カルボ ン酸の反応を利用することもできる。多糖へのヒドラジド基の導入は当業者に公知の 方法で行うことができ、例えばヒアルロン酸のカルボキシル基と 2価のヒドラジド含有ィ匕 合物 (ジヒドラジドィ匕合物)を、縮合剤を用いて縮合させることにより合成することがで きる。ジヒドラジドィ匕合物としては、コハク酸ジヒドラジド、ダルタル酸ジヒドラジド、アジ ピン酸ジヒドラジド、ピメリン酸ジヒドラジドが挙げられる。また、縮合剤としては、 1, 3- ジシクロへキシルカルボジイミド、 1, 3—ジイソプロピルカルボジイミド、 1ーェチルー 3— (3—ジメチルァミノプロピル)カルボジイミドなどが挙げられる。例えば、ヒアルロン酸の カルボン酸とアジピン酸ジヒドラジド (ADH)を 1ーェチルー 3— (3—ジメチルァミノプロ ピル)カルポジイミド (EDC)で縮合させ、ヒドラジド基で修飾されたヒアルロン酸 (HA HZ)を合成することが可能である。架橋剤としては、 HZ基と反応しうる官能基であ れば特に限定されないが、例えば、 NHSで活性ィ匕されたエステル基、ペンタフルォ 口フエノキシカルボ-ル基、 p—二トロフヱノキシカルボ-ル基、イミダゾリルカルボ-ル 基、イソチオシアナト基、スルホユルクロリド基、スルホ-ルフルオリド基、ホルミル基、 ビニルスルホニル基、酸無水物、 4一二トロフエニルホルメート基等の官能基を同一分 子内に 2つ以上持つ分子が挙げられる。当該架橋剤の例には、ビス [スルホスクシン ィミジル]スべレート、ジスクシンィミジルグルタレート、ジスクシンィミジルタルトレート、 エチレングリコールビス [スクシンイミジルスクシネート]などが含まれる。
[0049] アミノ基に対する HZ基との選択的反応性、タンパク質の変性等を考慮すれば、架 橋時の pHiま、 pH3. 0— pH6. 0力 ^好まし!/ヽ。さらに好ましく ίま、 ρΗ4.0— ρΗ6. 0で ある。架橋反応中の ρΗをこの範囲に保っため、用いるバッファ一は揮発性の低いも の、例えばクェン酸等が好ましい。架橋剤中のヒドラジド基と反応する化合物官能基 は、ゲル調製液中のヒドラジド基に対して 40モル%以下であることが好ましぐさらに 好ましくは 20モル%以下、特に好ましくは 10モル%以下である。 [0050] 架橋反応可能な官能基の HAへの導入率は、特に限定されな!、が、生体内で流動 性のな 、ゲルを得るために HAのグルクロン酸当たり 5モル%以上が好ましぐ 10モ ル%以上が特に好ましい。また、薬物の徐放性能は架橋された HA誘導体の架橋密 度に大きく依存するため、この導入率を制御することで薬物の徐放期間を制御するこ とがでさる。
[0051] ヒドラジド基が導入された多糖酸誘導体の例には、式 (ΠΙ):
[0052] [化 3]
Figure imgf000018_0001
[0053] (式中、 Rは、水素原子、直鎖または分枝 C アルキル基、直鎖または分枝 C ヒド
1 1-10 1-10 ロキシアルキル基、ポリアルキレンオキサイド基、ポリペプチド基、ポリエステル基であ り、
Xは、 Y -Q Y -NHNHであり、
1 1 1 2 2
R R R R および R は、それぞれ独立して、水素原子、直鎖または分枝 C a2 a3 a4 a5 a6 l~o アルキル基、直鎖または分枝 C アルケニル基、直鎖または分枝 C アルキ-ル基、
1-6 1-6
直鎖または分枝 C アルキルカルボ-ル基、直鎖または分枝 C アルケニルカルボ
1-6 1-6
ニル基、直鎖または分枝 C アルキニルカルボニル基、または SO OHであり、
1-6 2
Yは、単結合、 N (— R ) CO N (— R ) —CO—、または CH CO—であり、
1 3 3 2
Qは、単結合、直鎖または分枝 C アルキレン基、直鎖または分枝 C ヒドロキシ アルキレン基、ポリアルキレンオキサイド基、ポリペプチド基、ポリエステル基であり、
Yは、単結合、 N (— R ) CO または、 -CH CO—であり、
2 4 —、— CO—、
2
Rおよび Rは、それぞれ独立して、水素原子、直鎖または分枝 C アルキル基、
3 4 1-10
直鎖または分枝 C ヒドロキシアルキル基、ポリアルキレンオキサイド基、ポリべプチ
1-10
ド基、ポリエステル基である。 )
で示される繰り返し構造を、少なくとも 1以上分子内に有するヒアルロン酸誘導体が含 まれる。
[0054] さらに、式 (ΠΙ)において、 Rは、好ましくは水素原子であり、 R
1 a2、R
a3、R
a4、R およ a5 び R は、好ましくは水素原子であり、 Yは、好ましくは単結合、または、—CO—であり a6 1
、 Qは、好ましくは直鎖または分枝 C アルキレン基であり、 Yは、好ましくは、単結
1 1-10 2
合、または、 CO—であり、 Rは、好ましくは水素原子であり、 Rは、好ましくは水素原
3 4
子である。
[0055] また式 (III)中、ポリアルキレンオキサイド基とは、 -(CH (-R) CH O) OH (式中、
2 n
Rは水素原子、または直鎖または分枝 C アルキル基)で示される基であり、好ましく
1-5
は、ポリエチレンオキサイド基、ポリプロピレンオキサイド基であり、また nは、好ましく は 1一 20の整数である。またポリペプチド基は、特に限定されるものではないが、好ま しくはアミノ酸 1一 20個からなるものである。またポリエステル基は、特に限定されるも のではないが、好ましくはポリグリコール酸基、ポリ乳酸基である。
[0056] 本発明の架橋ヒアルロン酸微粒子の製造方法としては、微粒子の溶媒留去による 乾燥と架橋反応が同時に進行する製造方法であれば良い。例えば、液体を噴霧乾 燥するスプレードライヤーを用い、架橋反応可能な官能基を有するヒアルロン酸誘導 体と薬物とを含む溶液を噴霧乾燥することで、濃縮乾燥中にヒアルロン酸誘導体を架 橋し、薬物をヒアルロン酸架橋体中に封入した薬物担持微粒子を得ればよい。スプレ 一ドライを用いる場合は、薬物の変性を防ぐために、乾燥温度は 100°C以下であるこ とが好ましい。
[0057] あるいは、架橋反応可能な HA誘導体 (テトラプチルアンモ -ゥム塩)と薬物を DMS O等の極性有機溶媒に溶力しておき、二酸化炭素等の超臨界液体を添加、 DMSO を抽出することでヒアルロン酸濃縮中に架橋反応を起こさせ、微粒子を得ても良い。 これらの微粒子化方法を用いる時は、 Tween_20、 Tween_80等の界面活性剤を添カロ (1%— 2%程度)することで、生成された微粒子の回収率を上げることができる。また 、これらの製造方法を取る場合、濃縮前の架橋反応を起こさない調製液を用いる必 要がある。架橋剤混合から濃縮までの時間、架橋性官能基の導入率、ヒアルロン酸 分子量、濃度によって異なるが、架橋性官能基の導入率は、 5モル%—70モル%、 ヒアルロン酸分子量は、 1万ダルトン一 200万ダルトン、ヒアルロン酸濃度は、 0. 1% 一 5%が好ましい。
[0058] また、別法としては、架橋反応可能な官能基を有するヒアルロン酸誘導体と薬物と を含む水溶液を脱水性を有する液体 (例えば、分子量 400ダルトンのポリエチレング リコール等)の中にェマルジヨンィ匕することで、脱水濃縮中にヒアルロン酸を架橋し、 薬物をヒアルロン酸架橋体中に封入した薬物担持微粒子を得ることもできる。この方 法を用いる時は、封入効率を上げるため、カチオン性カゾ-オン性の薬物が好ましい
[0059] また、微粒子形成後に熱処理をすることでさらに含水率を低下させ、架橋反応を完 全に終了させたほうが好ましい。この場合、架橋密度も上がり、徐放期間の延長も期 待できる。ここで、熱処理の温度は特に限定はされないが、例えば 30— 110°C、好ま しくは 30— 60°Cで行うことができる。
[0060] 乾燥後の微粒子径は、用途によって最適化すればよいが、インジ クタブルにする ために通常、 0. 01 111ー150 111カ好まし1、。経鼻、経月巿投与の時 ίま、 0. Ol ^ m 一 5 μ mが吸入効率の点で好ましぐ静注投与の時には、 0. 01 μ m— 0. 2 μ m程度 が血中動態の点から好ましい。
[0061] 本発明に用いられる HAは、どのようにして得られた HAでもよぐ動物組織から抽 出された HA、発酵法で得られた HA、化学合成で得られた HAなど、その由来は限 定されない。さらに、加水分解処理など、 HAにさらなる処理を行ってもよい。本発明 の HAには、様々な方法で修飾された修飾 HAや、ナトリウム、カリウム、リチウムなど のアルカリ金属塩なども含有される。 HAはカルボキシル基とハイド口キシル基が修飾 されることが多!、が、本発明にお 、て修飾 HAはどの部分が修飾されて 、てもよ 、。 修飾 HAは特に限定されず、どのような修飾がされていてもよいが、例えば、硫酸化さ れた HA (W095Z25751)、 N 硫酸化された HA (W098Z45335)、エステル化 された HA (EP0216453、 WO98/08876, EP0341745)、過沃素酸酸ィ匕された HA、アミド修飾された HAなどを挙げることができる。
[0062] 本発明に用いられる原料 HAの分子量は特に限定されず、いかなる分子量の HA でも使用することが可能である力 通常 5000ダルトン一 350万ダルトン、好ましくは 1 万ダルトン一 100万ダルトンの HAを用いることができる。また、 HAの分子量と濃度 は、製造後の粒子径に影響するため、 目的とする粒子径に応じて選択すればよい。
[0063] 薬効を持つタンパク質、ペプチドとしては特に限定されないが、例えば、エリスロボ ェチン(EPO)、ダラ-ュロサイトコ口-一刺激因子(G— CSF)、インターフェロン a、 β、 γ、 (INF— α、 j8、 γ )、トロンボポェチン(ΤΡΟ)、シリアリー-ユートロフイクファ クタ一(CNTF)、チューマーネクローシスファクター結合タンパク質(TNFbp)、イン ターロイキン 10 (IL-10)、 FMS類似チロシンカイネース(Fit— 3)、成長ホルモン( GH)、インシュリン、インシュリン類似成長因子 1 (IGF-1)、血小板由来成長因子( PDFG)、インターロイキン 1レセプターアンタゴ-スト(IL Ira)、ブレイン由来-ュ 一口トロフイクファクター (BDNF)、ケラチノサイト成長因子 (KGF)、幹細胞因子(SC F)、メガカリオサイト成長分ィ匕因子 (MGDF)、ォステオプロテゲリン (OPG)、レプチ ン、副甲状腺ホルモン (PTH)、塩基性フイブロブラスト成長因子 (b— FGF)、骨形成 タンパク質 (BMP)、心房性ナトリウム利尿ペプチド (ANP)、脳性ナトリウム利尿ぺプ チド(BNP)、 C型ナトリウム利尿ペプチド(CNP)、グルカゴン様ペプチド 1 (GLP— 1)、抗体、ダイアポディー等が挙げられる。また本発明の薬物徐放担体は、低分子 量ィ匕合物の薬剤にも使用することができる。低分子薬剤としては、制癌剤 (例えば、 アルキル化剤、代謝拮抗剤、アルカロイド)、免疫抑制剤、抗炎症剤 (例えば、ステロ イド剤、非ステロイド剤系抗炎症剤)、抗リウマチ剤、抗菌剤 (例えば、 |8—ラタタム系 抗生物質、アミノグリコシド系抗生物質、マクロライド系抗生物質、テトラサイクリン系 抗生物質、新キノロン系抗生物質、サルファ剤)などを挙げることができる。
[0064] 本発明の徐放担体は、 1種もしくはそれ以上の薬学的に許容し得る希釈剤、湿潤 剤、乳化剤、分散剤、補助剤、防腐剤、緩衝剤、結合剤、安定剤等を含む薬学的組 成物として、 目的とする投与経路に応じ、適当な任意の形態にして投与することがで きる。投与経路は非経口的経路であっても経口的経路であってもよ 、。
図面の簡単な説明
[図 1]架橋 HA— SH マイクロハイド口ゲル微粒子を顕微鏡で撮影した写真の一例で ある。
[図 2]PBS中での膨潤後の架橋 HA— SH マイクロハイド口ゲル微粒子を顕微鏡で撮 影した写真の一例である。
[図 3]EPOを封入した架橋 HA— SH マイクロヒドロゲル〖こつ 、て熱重量分析を行つ た結果の一例である。
[図 4]実施例 1 4にお 、て得られた架橋 HA— SH マイクロハイド口ゲル微粒子から 回収された EPOの量を示す RP— HPLC分析の結果の一例を示すグラフであり、下 からそれぞれ実施例 1、実施例 2、実施例 3、実施例 4で得られて微粒子を示すもの である。
[図 5]実施例 3と比較例 1で得られた HAゲル力ゝらの EPOの放出性を示すグラフであ る。
[図 6]実施例 9 1で得られたヒアルロン酸誘導体 (HA— HZ)の1 H— NMRの測定結 果の一例である。
[図 7]実施例 9 2で得られたヒアルロン酸誘導体(HA— HZ— SH)の1 H— NMRの測 定結果の一例である。
[図 8]実施例 10で得られたヒアルロン酸誘導体(HA— HZ— MA)の1 H— NMRの測定 結果の一例である。
[図 9]実施例 11—1で得られたヒアルロン酸誘導体 (HA— AM)の1 H— NMRの測定結 果の一例である。
[図 10]実施例 11—2で得られたヒアルロン酸誘導体(HA— AM— SH)の1 H— NMRの 測定結果の一例である。
[図 11]実施例 11—1で得られたヒアルロン酸誘導体(HA— AM— MA)の1 H— NMRの 測定結果の一例である。
[図 12]実施例 12により得られた粒子のキュアリングによる水分量の変化を示すグラフ である。 [図 13]実施例 12により得られた粒子のキュアリングによる膨潤抑制効果を示すもので ある。
実施例
[0066] EPO封入架橋ヒアルロン酸微粒子の調製
以下、本発明の好適な実施例についてさらに詳細に説明する力 本発明はこれら の実施例に限定されるものではない。
[0067] NMR測定は、核磁気共鳴装置 JNM— ECA500 (日本電子株式会社製)を用い て重水 (D O)を溶媒に用いて測定した。また置換基の導入率の決定は、導入した置
2
換基特有のピークとヒアルロン酸由来のピークの積分比より決定した。
[実施例 1]
〔実施例 1-1〕 ヒドラジド基 (HZ基)が導入されたヒアルロン酸誘導体 (HA-HZ)の 合成
[0068] [化 4]
Figure imgf000023_0001
HA-HZ 分子量 1. 9 X 105ダルトンのヒアルロン酸 (HA) (電気化学工業株式会社製) 200 mgを 0. 5%濃度で蒸留水に溶解し、 5N塩酸で pHを 4. 7-4. 8に調製した。 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド (EDC)とアジピン酸ジヒドラジド ( ADH)を、 HA:EDC :ADH= 1 : 0. 3 :40 (バッチ 1—1)、 1: 1 :40 (バッチ 1— 2)、 1 : 5 :40 (バッチ 1—3)モル比になるよう添カ卩し、 5N塩酸で pHを 4. 7-4. 8に保ちなが ら室温で攪拌下 2時間反応させた。 lOOmM塩化ナトリウム溶液、 25%エタノール溶 液で透析 (スぺクトラポア 7、分画分子量 (MWCO) : 12k-14kダルトン)し、凍結乾 燥して標題の HA— HZを得た。
[0070] 得られた HA— HZ中の HZ基導入率をプロトン NMR法で定量したところ、それぞれ 、 HAのカルボン酸の 26% (バッチ 1—1)、 46% (バッチ 1—2)、69% (バッチ 1—3)が HZ化されていた(HAおよび HA— HZの N—ァセチル基(1. 9ppm、 3H)、 HA— HZ のアジピン酸由来部分のメチレン基(1. 6ppm、 2. 3ppm、各 2H)を比較)。
〔実施例 1—2〕 メルカプト基 (SH)が導入されたヒアルロン酸誘導体 (HA-SH)の合 成
[0071] [化 5]
HA-HZ
Figure imgf000024_0001
[0072] 実施例 1—1のバッチ 1一 3の HA— HZ、各々 lOOmgを 5mLの lOOmMリン酸バッフ ァー pH8に溶かし(HA— HZ: 2%w/v)、イミノチオラン(ITL)を添加し(HZZlTL = 1Z2モル比)、室温で攪拌下 2— 4時間反応させた。エタノールで沈殿、 3回洗 浄し、乾燥させた。また、得られた HA— SH中の SH基導入率をプロトン NMR法で定 量した結果を表 1に示す。(HAおよび HA— SHの N—ァセチル基(1. 9ppm、 3H)、 HA— SHの ITL由来部分のメチレン基(2. lppmと 2. 7ppm、各 2H)を比較)。
[0073] [表 1] 表 1
対照 バッチ 1 バッチ 2 バツチ 3
HZ基の導入率 0% 26% 46% 69%
SH基の導入率 0% 20% 35% 56%
〔実施例 1 3〕 EPO封入架橋ヒアルロン酸微粒子の調製
実施例 1—2のバッチ 1の、 SH基の導入率が 20モル0 /0である HA— SH200mgと、 エリスロポエチン(EPO) 2mgを 20mLの 10mMリン酸バッファー pH8 (PB)に溶かし た(室温、 1時間攪拌)。これに、 4mgの Tween— 20、 SH基に対して 1モル倍のテトラ チオン酸ナトリウム(Sodium tetrathionate : STT) 22. 3mgをカ卩えた。この溶液を以下 の条件でスプレードライし、微粒子を得た。
スプレードライヤー:ビュッヒ社製、ミニスプレードライヤー B—191
solution feed rate: 1.5 mL/min (Tygon tuoe, Pump speed = 15%)
Feed solution concentration: 10 mg/mL
Atomizing air flow rate: 650 L/hr
Drying air flow rate: 40 kL/hr (Aspiration speed = 65%)
Inlet temperature: 85一 95°C
Outlet temperature: 50一 60°C
[実施例 2]
実施例 1—3の実験操作において、ノ ツチ 2の SH基の導入率が 35モル0 /0である H A— SHを 200mgと、テトラチオン酸ナトリウム(Sodium tetrathionate: STT) 39.0mg ( SH基に対して 1モル倍)を使用したこと以外は実施例 1 3と同様の方法で EPO封入 架橋ヒアルロン酸微粒子を調製した。
[実施例 3]
実施例 1—3の実験操作において、ノ ツチ 3の SH基の導入率が 56モル0 /0である H A— SHを 200mgと、テトラチオン酸ナトリウム(Sodium tetrathionate : STT) 62. 4mg (SH基に対して 1モル倍)を使用したこと以外は実施例 1 3と同様の方法で EPO封 入架橋ヒアルロン酸微粒子を調製した。 [実施例 4]
実施例 1—3の実験操作において、ノ ツチ 3の SH基の導入率が 56モル0 /0である H A— SHを 200mgと、 SH基に対して 0. 7モル倍のテトラチオン酸ナトリウム(Sodium tetrathionate: STT) 38. 9mgを使用したこと以外は実施例 1—3と同様の方法で EP O封入架橋ヒアルロン酸微粒子を調製した。
[実施例 5]
実施例 1—3の実験操作において、ノ ツチ 3の SH基の導入率が 56モル0 /0である H A— SHを 200mgと、 SH基に対して 0. 5モル倍のテトラチオン酸ナトリウム(Sodium tetrathionate: STT) 27. 8mgを使用したこと以外は実施例 1—3と同様の方法で EP O封入架橋ヒアルロン酸微粒子を調製した。
[実施例 6]
実施例 3の実験操作において、 4mgの Tween— 20の代わりに、 Tween— 80を 4m g使用したこと以外は実施例 3と同様の方法で EPO封入架橋ヒアルロン酸微粒子を 調製した。
[実施例 7]
実施例 3の実験操作にぉ ヽて、 Tween— 20をカ卩えずに行ったこと以外は実施例 3 と同様の方法で EPO封入架橋ヒアルロン酸微粒子を調製した。
[実施例 8]
実施例 3の実験操作において、 STTを加えずに行ったこと以外は実施例 3と同様 の方法で EPO封入架橋ヒアルロン酸微粒子を調製した。
[比較例 1]
実施例 1—2で調製したバッチ 3の SH基の導入率が 56モル%である HA— SH 33 mgを 690 /z Lの 10mMリン酸バッファー(pH8. 0)に溶力し、 30 Lの EPO水溶液( lOmg/mL)を添カ卩し、 10分攪拌した。これに、 SH基に対して 1モル倍の Sodium tetrathionate (STT) 9. 3mgを 30 Lの 10mMリン酸ノ ッファー pH8. 0に溶かした 溶液を加え、 250 Lを lmLシリンジに詰めて 37°Cで 5時間反応させることで、円柱 状の HAゲルを得た。
[比較例 2] 実施例 8で、 HA— SHではなく HAを使用したこと以外は実施例 8と同様の方法で E PO封入 HA微粒子を調製した。
[0075] なお、実施例 1一 8および比較例 2における各微粒子の回収率は 50%— 65%であ つた o
[試験例 1] 粒子径、粒子含水率測定
実施例 3にお 、て調製した微粒子の顕微鏡写真を図 1に示す (3000倍)。この微 粒子を PBS中に分散させた時の顕微鏡写真を図 2に示す (3000倍)。当該微粒子 の乾燥時の粒子径は約 1. 2 mであり、水膨潤時の粒子径は約 1. 8 mであった。
[0076] 熱重量分析 (TGA)を行 ヽ、実施例 3で製造した微粒子の含水率を測定した(図 3) 含水率は約 15%であった。
[試験例 2] EPO封入架橋ヒアルロン酸微粒子の EPO回収率測定
実施例 1一 8、比較例 2の微粒子 5mgを 0.5mLの PBSに分散させ、 Hyaluronidas e SD (生化学工業製: HAse) 0. 25ユニットを添加、 25°Cで 3時間、酵素処理を行 い、微粒子を完全に分解させた。また、比較例 1のゲル(0. 25mLゲル)に Hyaluro nidase SD (生化学工業製) 0. 5ユニットを含む PBSpH7. 4を 0. 75mL加え、 25 °Cで 1日、酵素処理を行い、ゲルを完全に分解させた。酵素処理後の溶液 0. 15mL を、試料溶液とした。試料溶液は、逆相クロマトグラフィー (RP— HPLC)測定を行い、 0. lmgZmLの EPO水溶液を標準溶液として、標準溶液と試料溶液のピークエリア 比から試料溶液中 EPO濃度を算出した。添加した EPO量 (0. lmgZゲル 1個)に対 して RP— HPLCより求めた EPO量を回収率として算出した。
[0077] 逆相カラムによる高速液体クロマトグラフィー(RP— HPLC)分析は、 Waters600S コントローラ、 717plusオートサンプラー、 486赤外光吸収測定器 (Waters社製)を 用い、以下の測定条件より行った。
カラム: C4 (粒子径 、サイズ 4. 6 X 250mm)
移動相:
A:水 Zァセトニトリル Zトリフルォロ酢酸 =400Zl00Zl
Β:水 Ζァセトニトリル Ζトリフルォロ酢酸 = 100/400/1
流速: lmLZ分、移動相 AZB = 65Z35— 0Z100のグラジェント溶出 カラム温度:室温付近
サンプル温度: 4°C
検出波長: UV 280nm
解析ソフト: Millenium32ver. 3. 21
上記方法で測定された EPOを仕込みに対する回収率は、以下のとおりであった。 実施例 1一 4: 90%— 95%
実施例 5および 6: 80% - 85%
実施例 7および 8: 75% - 80%
比較例 1および 2: 90% - 95%
以上の結果より、 STT、界面活性剤を添加することで回収率が改善されることが確 f*i¾ れ 。
[試験例 3] EPO封入 HAヒドロゲル調製からの EPO徐放
実施例 3のマイクロハイド口ゲル 20mgと比較例 1のバルタゲル(250 μ L)を 2mLの PBS中、 37°Cでインキュベートし、経時的に 200 Lサンプリングした。 RP— HPLC でバッファ一中に放出された EPOを定量した。
[0078] ゲル調製直後にヒアル口-ダーゼで分解、回収された EPOを 100%とした時のゲ ルからの EPO放出性を図 1に示す。尚、 9日後にヒアル口-ダーゼ(HAse)を添カロし た。
[0079] ゲル内の EPOは変性せず、比較例 1のゲルは、架橋密度が低い為 EPOの放出が 早ぐ実施例 3のマイクロゲルは架橋密度が高い為、 30%程度が 5日程度で徐放さ れ、 40%の EPOが拡散では放出されずに酵素分解によって初めて放出されることが 分かる。
[0080] 上記実施例に例示された、薬物をヒアルロン酸架橋体中に封入した薬物担持微粒 子を用いることで、タンパク質またはペプチド等の薬物の生物活性を維持したままこ れらを in situ架橋、乾燥し、ゲル微粒子の中に封入したタンパク質またはペプチド 等を長期間放出するインジヱクタブルな薬物徐放製剤を調製することが可能である。
[実施例 9]
〔実施例 9-1〕 ヒドラジド基 (HZ)が導入されたヒアルロン酸誘導体 HA-HZの合成 ( 混合溶媒法)
[化 6]
Figure imgf000029_0001
HA-HZ 分子量 2 X 105ダルトンの HA (電気化学工業株式会社製) 76. Omgを、 0. 1%濃 度で蒸留水 ZEtOH = 50Z50に溶解し、 5N塩酸で pHを 4. 7-4. 8に調整した。 1—ェチルー 3— (3—ジメチルァミノプロピル)カルボジイミド(EDC)とアジピン酸ジヒド ラジド (ADH)を、 HAのユニット(1ユニット =繰り返し単位である N—ァセチルダルコ サミンーグルクロン酸) ^0じ:八011= 1 :4 :40モル比になるょぅ添カ卩し、 5N塩酸で p Hを 4. 7-4. 8に保ちながら室温で 2時間反応させた。大過剰量の lOOmM塩化ナ トリウム溶液、 25%エタノール溶液、蒸留水に対して順に透析 (スぺクトラポア 7、分画 分子量 (MWCO) : 12k-14kダルトン)し、凍結乾燥して標題のヒドラジド基 (HZ基) が導入されたヒアルロン酸(HA— HZ) 57. Omgを得た。得られた HA— HZ中の HZ基 導入率を ADH導入率としてプロトン NMR法で定量した (HA: N—ァセチル基(1. 8 5ppm)、 HZ :ADH由来の 4つのメチレン(1. 5、 2. 1および 2. 25ppm)を比較)。 H Z導入率は 47%であった。
〔実施例 9-2〕 メルカプト基 (SH)が導入されたヒアルロン酸誘導体 HA-HZ-SHの 合成 [0083] [ィ匕 7]
HA-HZ —
Figure imgf000030_0001
[0084] 実施例 9—1と同様の方法で合成した HA— HZ、 lOOmgを 5mLの lOOmMリン酸バ ッファー(PH8)に溶かし(HA— HZ: 2%w/v)、イミノチオラン(ITL)を添加し (HZ ZlTL= lZ2モル比)、室温で攪拌下 2時間反応させた。エタノールで沈殿、 3回洗 浄し、乾燥させた。得られた HA— HZ—SH中の SH基導入率をプロトン NMR法で定 量した結果、 SH導入率は 37. 5モル%であった。 (HAおよび HA— HZ— SHの N—ァ セチル基(1. 9ppm、 3H)、 HA— HZ— SHの ITL由来部分のメチレン基(2. Ippmと 2. 7ppm、各 2H)を比較)。
[実施例 10] メタクリロイル基 (MA)が導入されたヒアルロン酸誘導体 HA— HZ— M Aの合成
[0085] [化 8]
HA-HZ ——
Figure imgf000030_0002
[0086] HAの分子量を 2 X 104ダルトンとしたこと以外は、実施例 1—1のバッチ 3と同様の方 法で合成された HA— HZ (HAのカルボン酸が 63%HZ化)を蒸留水に溶解した後に 、 1Mリン酸緩衝液 (pH8. 8)を添カ卩し、 HA濃度 50mg/mLの 0. 1Mリン酸緩衝液 を調製した。メタクリル酸無水物を HZの 20倍当量を滴下して添加し、室温で攪拌下 一晩反応させた。テトラヒドロフランで沈殿後、回収し乾燥させた。沈殿物を蒸留水に 溶解し、再びテトラヒドロフランで沈殿、乾燥させた後、乾燥物を蒸留水に溶解し、凍 結乾燥して標題の HA— HZ— MAを得た。
[0087] メタクリロイル基の導入率はプロトン NMRにより算出した (HA:N—ァセチル基のメ チルプロトン(1. 8—1. 9ppm)、 MA:メタクリロイル基の CH = (5. 5—6. lppm)を
2
比較)。 MA導入率は 22%であった。
[実施例 11]
〔実施例 11—1〕 アミノ基 (AM)が導入されたヒアルロン酸誘導体 HA— AMの合成 [0088] [化 9]
Figure imgf000031_0001
Figure imgf000031_0002
HA-AM
[0089] 分子量 2. 0 X 105ダルトンのヒアルロン酸ナトリウム (HA) (電気化学工業株式会社 製)をテトラプチルアンモ -ゥムハイド口オキサイド (シグマ一アルドリッチ社)によりテト ラブチルアンモ -ゥム(TBA)塩化した DOWEX 50WX8-400 (シグマ一アルドリツ チ社)を用いて TBA塩化を行った。
[0090] ヒアルロン酸テトラブチルアンモ-ゥム塩(HA— TBA)を 2. OmgZmL濃度となるよ う DMSO (和光純薬株式会社)に溶解後、 HAユニット ZBOP (和光純薬株式会社) Zエチレンジァミン(EDA) (シグマ アルドリッチ社) = 1Z2. 5/50 (mol/mol/ mol)の当量比で EDA、 BOPの順で添カ卩し、室温下でー晚反応させた。その後 1M 塩ィ匕ナトリウム水溶液を反応溶液の 1Z2量カ卩えた後、 5N HC1をカ卩えて pHを 3ま で低下させ、さらに 2N NaOHにて中和を行った。大過剰量の 0. 3M 塩化ナトリウ ム水溶液、蒸留水の順に透析精製し (スぺクトラポア 4、分画分子量 (MWCO) : 12k —14kダルトン)、限外ろ過後、凍結乾燥して標題のァミノ基が導入されたヒアルロン 酸 (HA— AM)を得た。
[0091] ァミノ基の導入率はプロトン NMRにより算出した(HA:N—ァセチル基のメチルプロ トン(1. 8—1. 9ppm)、 AM :エチレンジァミン部分のメチレンプロトン(2. 9—3. lp pm)を比較)。導入率はそれぞれ 88. 5%であった。
〔実施例 11—2〕 メルカプト基 (SH)が導入されたヒアルロン酸誘導体 HA-AM-SH の合成
[0092] [化 10]
HA-AM
Figure imgf000032_0001
HA-AM-SH
[0093] 上記で得られた HA— AMを炭酸緩衝溶液 (pH9)に 2mg? mLで溶解させた後、ィ ミノチオラン (ピアス社)を HAユニットに対して 0. 5、もしくは 1倍等量カ卩え、 45分間室 温で反応させた。反応後、 0. 005N HC1水溶液で平衡ィ匕した PD-10カラム (アム シャム'バイオサイエンス株式会社)にて精製を行った。その後凍結乾燥により溶媒を 除 、た後、得られたポリマーを過剰のエタノールで洗浄し減圧乾燥を行 、HA— AM — SHを得た。
[0094] メルカプト基の導入率は還元剤であるトリス(2—カルボキシェチルホスフィン)塩酸 塩 (TCEP)を含んだ状態でのプロトン NMRにより算出した (HA: N—ァセチル基のメ チルプロトン(1. 8—1. 9ppm)、 SH :メルカプト基の隣のメチレンプロトン(2. 4—2. 7ppm)を比較)。導入率はそれぞれ 16. 5%、 23. 5%であった。 〔実施例 11—3〕 メタクリロイル基 (MA)が導入されたヒアルロン酸誘導体 HA— AM MAの合成
[化 11]
HA-AM -
Figure imgf000033_0001
HA-AM- A
[0096] 上記で得られた HA— AMをリン酸緩衝溶液 (pH7)に lOmg? mLで溶解させた後 、 1ーェチルー 3— (3—ジメチルァミノプロピル)カルボジイミド (EDC)で活性化したメタ クリル酸を HAユニットに対し 0. 5、 1. 0、 2. 0倍当量添加し 2時間室温で反応させた 。反応後、 0. 3M 塩ィ匕ナトリウム水溶液、蒸留水の順に透析を行い (スぺクトラポア 4 、分画分子量 (MWCO): 12k-14kダルトン)、精製を行った。その後、凍結乾燥を 行 、上記のポリマーを得た。
[0097] メタクリロイル基の導入率はプロトン NMRにより算出した (HA:N—ァセチル基のメ チルプロトン(1. 8—1. 9ppm)、 MA:メタクリロイル基の CH = (5. 5—6. lppm)を
2
比較)。導入率はそれぞれ 14. 8%、 31. 9%、 68. 9%であった。
[実施例 12] 微粒子の熱処理効果 (SweU抑制)
実施例 9 2で合成した SH基の導入率が 37. 5モル0 /0である HA— HZ— SHIOOm gを 8. 5mLの蒸留水に溶解した。これに、 lOOmMリン酸バッファー pH7(PB)lmL を添加し、さらに 5mgの Tween- 80を溶解し、 SH基に対して 1/10モル倍の STT2 . 3mgをカ卩えた。この溶液を実施例 1—3と同様の条件(Solution feed rate 0.5mL/min Aspiration speed = 100%)でスプレードライし、微粒子を得た。この微粒子を 50°C恒 温槽 (ャマト科学製 DN— 42)でキュアリングし 24時間後、 72時間後にサンプリング した。
[試験例 4] 実施例 12においてサンプリングした各試料の粒子の水分量を TGAにより計測した 。この結果を図 12に示す。また、顕微鏡を用いた画像解析により、各試料の 30個の 粒子をランダムに選択し、そのフェレ一径を計測した (乾燥時の粒子径)。さらに、サ ンプリングした粒子に Tween— 80 (0. 05%)を含む PBS溶液を添カ卩して膨潤させ、 湿潤時の粒子の粒子径を同様に計測した。この結果を図 13に示す。その結果、 24 時間のインキュベーションにより膨潤率が抑制されることが確認された。これは、 50°C 、 24時間のインキュベーションで粒子内の架橋が増加したことによると考えられる。
[実施例 13] HA— HZ— MA架橋マイクロゲルの調製
実施例 10で合成した HA— HZ— MAlOOmgを 6mLの蒸留水に溶解し、これに DT Tを l lmg、TEAを 32. 5 L溶解させた lOOmMリン酸バッファー pH8. 5 (PB)を 1 mL加え、さらに蒸留水 3mLを加えて混合した。この溶液を実施例 12と同様の条件( 排気温度 65°C)でスプレードライし、微粒子を得た。この微粒子を 50°C恒温槽 (ャマ ト化学 DN-42)で約 72時間キュアリングし、粒子を得た。
[試験例 5]
実施例 13により得られた粒子をプレパラート上に置き、これに pH7の PBS溶液を添 カロしてその粒子状態を顕微鏡で観察したところ、粒子は PBS溶液には溶解しなかつ た。この観察結果より、実施例 13において得られた微粒子における、メルカプト基と 不飽和結合との間の付加反応による架橋の形成が確認された。
産業上の利用可能性
本発明の薬物徐放担体は、タンパク質またはペプチド等の薬物の生物活性を維持 したままこれらを in situ化学架橋、乾燥、 HAゲル中に封入でき、優れた回収率でタ ンパク質、ペプチド等の薬物の長期徐放を可能にするインジヱクタブルな微粒子を提 供する。

Claims

請求の範囲
[I] 架橋多糖微粒子の製造方法であって、
a)架橋可能な官能基を有する多糖誘導体を含む希薄溶液を調製する工程; b)当該溶液を微粒子状の液滴に分散する工程;および
c)当該液滴に含まれる溶液の濃縮により当該多糖誘導体の架橋反応を進行させる 工程
を含む前記製造方法。
[2] 多糖がヒアルロン酸である請求項 1に記載の製造方法。
[3] 前記工程 b)が、前記溶液を噴霧することにより微粒子状の液滴に分散する工程で ある、請求項 1または 2に記載の製造方法。
[4] 得られる微粒子の平均粒子径が 0. 01 μ m— 150 μ mである、請求項 1一 3のいず れか 1項に記載の製造方法。
[5] 得られる微粒子が薬物担体である、請求項 1一 4のいずれか 1項に記載の製造方 法。
[6] 得られる微粒子が薬物徐放担体である、請求項 1一 5のいずれか 1項に記載の製 造方法。
[7] 架橋反応前の希薄溶液が薬物を含み、当該薬物が架橋反応後に得られる微粒子 中に担持されて ヽる、請求項 1一 6の ヽずれか 1項に記載の製造方法。
[8] 前記架橋反応が、薬物共存下でも薬物を変性させな!/、架橋方法である請求項 7に 記載の製造方法。
[9] 前記架橋可能な官能基がメルカプト基であり、前記架橋反応がジスルフイド結合形 成により架橋を形成する反応である、請求項 1一 8のいずれか 1項に記載の製造方法
[10] 前記架橋反応がメルカプト基と不飽和結合との間の付加反応により架橋を形成す る反応である、請求項 1一 8のいずれ力 1項に記載の製造方法。
[II] 前記架橋反応がヒドラジド基と活性カルボン酸エステルとの間の反応により架橋を 形成する反応である、請求項 1一 8のいずれ力 1項に記載の製造方法。
[12] 架橋多糖微粒子であって、 a)架橋可能な官能基を有する多糖誘導体を含む希薄溶液を調製する工程; b)当該溶液を微粒子状の液滴に分散する工程;および
c)当該液滴に含まれる溶液の濃縮により当該多糖誘導体の架橋反応を進行させる 工程
を含む製造方法により調製することができる前記架橋多糖微粒子。
[13] 多糖がヒアルロン酸である請求項 12に記載の架橋多糖微粒子。
[14] 前記工程 b)が、前記溶液を噴霧することにより微粒子状の液滴に分散する工程で ある、請求項 12または 13に記載の微粒子。
[15] 平均粒子径が、 0. 01 m— 150 /z mである請求項 12— 14のいずれ力 1項に記載 の微粒子。
[16] 薬物担体である請求項 12— 15のいずれか 1項に記載の微粒子。
[17] 薬物徐放担体である請求項 12— 16のいずれか 1項に記載の微粒子。
[18] 架橋反応前の希薄溶液が薬物を含み、当該薬物が架橋反応後に得られる微粒子 中に担持されて 、る、請求項 12— 17の 、ずれか 1項に記載の微粒子。
[19] 前記架橋反応が、薬物共存下でも薬物を変性させな!/、架橋方法である請求項 18 に記載の微粒子。
[20] 前記架橋可能な官能基がメルカプト基であり、前記架橋反応がジスルフイド結合形 成により架橋を形成する反応である、請求項 12— 19のいずれか 1項に記載の微粒 子。
[21] 前記架橋反応がメルカプト基と不飽和結合との間の付加反応により架橋を形成す る反応である、請求項 12— 19のいずれ力 1項に記載の微粒子。
[22] 前記架橋反応がヒドラジド基と活性カルボン酸エステルとの間の反応により架橋を 形成する反応である、請求項 12— 19のいずれ力 1項に記載の微粒子。
PCT/JP2004/016948 2003-11-14 2004-11-15 架橋多糖微粒子およびその製造方法 WO2005054301A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04819749.5A EP1683812B1 (en) 2003-11-14 2004-11-15 Crosslinked polysaccharide microparticles and method for their preparation
KR1020067009249A KR101233564B1 (ko) 2003-11-14 2004-11-15 가교 다당 미립자 및 그 제조 방법
JP2005515894A JP4745826B2 (ja) 2003-11-14 2004-11-15 架橋多糖微粒子およびその製造方法
US10/579,032 US8575332B2 (en) 2003-11-14 2004-11-15 Crosslinked polysaccharide microparticles and method for their preparation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-385054 2003-11-14
JP2003385054 2003-11-14
JP2003407681 2003-12-05
JP2003-407681 2003-12-05
JP2004-259157 2004-09-07
JP2004259157 2004-09-07

Publications (1)

Publication Number Publication Date
WO2005054301A1 true WO2005054301A1 (ja) 2005-06-16

Family

ID=34657729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016948 WO2005054301A1 (ja) 2003-11-14 2004-11-15 架橋多糖微粒子およびその製造方法

Country Status (6)

Country Link
US (1) US8575332B2 (ja)
EP (1) EP1683812B1 (ja)
JP (1) JP4745826B2 (ja)
KR (1) KR101233564B1 (ja)
TW (1) TW200526253A (ja)
WO (1) WO2005054301A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028110A1 (ja) * 2004-09-07 2006-03-16 Chugai Seiyaku Kabushiki Kaisha 水溶性ヒアルロン酸修飾物の製造方法
CN1317035C (zh) * 2005-10-24 2007-05-23 天津大学 基于酰肼基的微粒表面多重生物功能因子组装方法
WO2007083984A1 (en) * 2006-01-23 2007-07-26 Gwangju Institute Of Science And Technology Conjugate comprising pharmaceutical active compound covalently bound to mucoadhesive polymer and transmucosal delivery method of pharmaceutical active compound using the same
KR100766820B1 (ko) 2006-01-23 2007-10-17 광주과학기술원 단백질 또는 펩타이드의 경점막 운반 시스템
KR100818659B1 (ko) * 2006-10-31 2008-04-01 한국과학기술원 거대분자 약물을 함유한 히알루론산 나노젤 및 그 제조방법
WO2008136536A1 (ja) 2007-05-01 2008-11-13 National University Corporation Tokyo Medical And Dental University 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
WO2012118189A1 (ja) * 2011-03-03 2012-09-07 中外製薬株式会社 アミノ-カルボン酸により修飾されたヒアルロン酸誘導体
JP2014196347A (ja) * 2008-05-20 2014-10-16 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク(セ.エン.エル.エス.) ペプチドを含むナノ粒子、それを含むベクター、ならびに前記ナノ粒子および前記ベクターの薬学的使用
JP2023503896A (ja) * 2019-11-18 2023-02-01 孛朗孚(杭州)生物科技有限公司 スルフヒドリル変性高分子化合物のヒドロゲル及びその調製方法並びに用途

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352988B2 (en) * 2005-11-17 2016-05-31 Janos Borbely Pb2+-ion binding by polyacid-based nanoparticles
US7674781B2 (en) * 2006-04-28 2010-03-09 Heather Sheardown Hyaluronic acid-retaining polymers
CN101200504B (zh) 2006-12-11 2010-05-12 上海百瑞吉生物医药有限公司 高分子巯基化改性衍生物及其交联材料
JP5523338B2 (ja) * 2007-12-19 2014-06-18 エヴォニク ゴールドシュミット ゲーエムベーハー エマルジョン中の架橋ヒアルロン酸
CN101998868B (zh) * 2008-05-01 2014-06-04 泰尔茂株式会社 视认性医用处置材料
CZ2008705A3 (cs) 2008-11-06 2010-04-14 Cpn S. R. O. Zpusob prípravy DTPA sítovaných derivátu kyseliny hyaluronové a jejich modifikace
JP5775004B2 (ja) * 2009-03-03 2015-09-09 アクセス メディカル システムズ,リミティド 高感度蛍光分析のための検出システム及び方法
EP2459239A1 (en) 2009-07-30 2012-06-06 Carbylan Biosurgery, Inc. Modified hyaluronic acid polymer compositions and related methods
KR20130031296A (ko) 2010-05-21 2013-03-28 케밀리아 에이비 신규한 피리미딘 유도체
DK2688883T3 (en) 2011-03-24 2016-09-05 Noviga Res Ab pyrimidine
KR101277286B1 (ko) * 2011-09-09 2013-06-20 서울과학기술대학교 산학협력단 트리스(2-카복시에틸)포스핀이 결합된 고분자 화합물
EP3016634A2 (en) * 2013-07-05 2016-05-11 Therakine Biodelivery GmbH Drug-delivery composition for topical applications and injections and ophtalmic formulations, method for manufacturing thereof, and methods for delivery a drug-delivery composition
US11419941B2 (en) * 2017-05-30 2022-08-23 Brenda K. Mann Vaginal hydrogel
JP7221211B2 (ja) 2017-11-15 2023-02-13 中外製薬株式会社 ポリエチレングリコールにより修飾されたヒアルロン酸誘導体
US10959945B2 (en) 2018-03-21 2021-03-30 Marina Lee Gerton Vaginal hydrogel for delivery of therapeutics
JP2019104937A (ja) * 2019-04-04 2019-06-27 イビデン株式会社 ヒアルロン酸及び/又はその塩の粉末
US20220396643A1 (en) * 2019-09-25 2022-12-15 Mochida Pharmaceutical Co., Ltd. Novel crosslinked alginic acid structure
CN112812200B (zh) * 2019-11-18 2023-06-16 孛朗孚(杭州)生物科技有限公司 巯基改性高分子化合物及其制备方法和用途
CN114350035B (zh) * 2021-12-31 2023-04-25 常州百瑞吉生物医药有限公司 一种透明质酸交联活性材料及其应用
CN114166812B (zh) * 2022-02-08 2022-05-17 丹娜(天津)生物科技股份有限公司 一种羧基荧光微球表面活化方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959303A (ja) * 1995-08-22 1997-03-04 Shiseido Co Ltd 生体適合性ヒアルロン酸ゲル及びその用途
JPH10509696A (ja) * 1994-10-12 1998-09-22 フォーカル, インコーポレイテッド 生分解性ポリマーを介する標的化送達
JPH11193246A (ja) * 1997-05-19 1999-07-21 Sumitomo Pharmaceut Co Ltd 免疫増強製剤
JPH11509256A (ja) * 1995-07-17 1999-08-17 キユー・メド・アクチエボラーグ 多糖ゲル組成物
JPH11513047A (ja) * 1997-04-01 1999-11-09 株式会社エルジ化学 ヒアルロン酸の微細粒子中に封入された薬物の徐放性組成物
JPH11319066A (ja) * 1998-05-11 1999-11-24 Mitsubishi Chemical Corp 創傷被覆材
JP2000510100A (ja) * 1996-03-23 2000-08-08 ウエスト、ファルマシューティカル、サービシズ、ドラッグ、デリバリー、アンド、クリニカル、リサーチ、センター、リミテッド 医薬物質の肺送達のためのポリサッカライド微小球
JP2000248002A (ja) * 1999-02-19 2000-09-12 Denki Kagaku Kogyo Kk 自己架橋ヒアルロン酸とその製造方法及びその用途
JP2001514316A (ja) * 1997-08-29 2001-09-11 バイオテック・オーストラリア・ピーティーワイ・リミテッド 架橋粒子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US587913A (en) * 1897-08-10 bates
JPH02241547A (ja) * 1989-03-13 1990-09-26 Kanebo Ltd 架橋多孔性イオン交換セルロース微粒子およびその製造法
US5616568A (en) 1993-11-30 1997-04-01 The Research Foundation Of State University Of New York Functionalized derivatives of hyaluronic acid
IL116085A (en) 1994-12-16 1999-12-31 Ortho Pharma Corp Spray dried erythropoietin
US7276251B2 (en) * 1997-04-01 2007-10-02 Lg Life Sciences, Ltd., Inc. Sustained-release composition of drugs encapsulated in microparticles of hyaluronic acid
US6229009B1 (en) * 1997-08-29 2001-05-08 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Polycarboxylic based cross-linked copolymers
CA2359318C (en) 1999-02-01 2009-06-30 Donald Elbert Biomaterials formed by nucleophilic addition reaction to conjugated unsaturated groups
US20030211166A1 (en) * 2001-07-31 2003-11-13 Yamamoto Ronald K Microparticulate biomaterial composition for medical use
US20020177680A1 (en) * 2000-08-23 2002-11-28 Hubbell Jeffrey A. Novel polymer compounds
ATE312076T1 (de) * 2001-02-22 2005-12-15 Anika Therapeutics Inc Thiol-modifizierte hyaluronan-derivate
EP1406678B1 (en) * 2001-04-25 2009-01-14 Eidgenössische Technische Hochschule Zürich Drug delivery matrices to enhance wound healing
EP1564220A4 (en) * 2002-11-21 2010-03-17 Chugai Pharmaceutical Co Ltd EXCIPIENT FOR DELAYED RELEASE MEDICINE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509696A (ja) * 1994-10-12 1998-09-22 フォーカル, インコーポレイテッド 生分解性ポリマーを介する標的化送達
JPH11509256A (ja) * 1995-07-17 1999-08-17 キユー・メド・アクチエボラーグ 多糖ゲル組成物
JPH0959303A (ja) * 1995-08-22 1997-03-04 Shiseido Co Ltd 生体適合性ヒアルロン酸ゲル及びその用途
JP2000510100A (ja) * 1996-03-23 2000-08-08 ウエスト、ファルマシューティカル、サービシズ、ドラッグ、デリバリー、アンド、クリニカル、リサーチ、センター、リミテッド 医薬物質の肺送達のためのポリサッカライド微小球
JPH11513047A (ja) * 1997-04-01 1999-11-09 株式会社エルジ化学 ヒアルロン酸の微細粒子中に封入された薬物の徐放性組成物
JPH11193246A (ja) * 1997-05-19 1999-07-21 Sumitomo Pharmaceut Co Ltd 免疫増強製剤
JP2001514316A (ja) * 1997-08-29 2001-09-11 バイオテック・オーストラリア・ピーティーワイ・リミテッド 架橋粒子
JPH11319066A (ja) * 1998-05-11 1999-11-24 Mitsubishi Chemical Corp 創傷被覆材
JP2000248002A (ja) * 1999-02-19 2000-09-12 Denki Kagaku Kogyo Kk 自己架橋ヒアルロン酸とその製造方法及びその用途

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028110A1 (ja) * 2004-09-07 2006-03-16 Chugai Seiyaku Kabushiki Kaisha 水溶性ヒアルロン酸修飾物の製造方法
CN1317035C (zh) * 2005-10-24 2007-05-23 天津大学 基于酰肼基的微粒表面多重生物功能因子组装方法
WO2007083984A1 (en) * 2006-01-23 2007-07-26 Gwangju Institute Of Science And Technology Conjugate comprising pharmaceutical active compound covalently bound to mucoadhesive polymer and transmucosal delivery method of pharmaceutical active compound using the same
KR100766820B1 (ko) 2006-01-23 2007-10-17 광주과학기술원 단백질 또는 펩타이드의 경점막 운반 시스템
KR100818659B1 (ko) * 2006-10-31 2008-04-01 한국과학기술원 거대분자 약물을 함유한 히알루론산 나노젤 및 그 제조방법
WO2008136536A1 (ja) 2007-05-01 2008-11-13 National University Corporation Tokyo Medical And Dental University 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
JP5443976B2 (ja) * 2007-05-01 2014-03-19 国立大学法人 東京医科歯科大学 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
US8987230B2 (en) 2007-05-01 2015-03-24 National University Corporation Tokyo Medical And Dental University Hybrid gel comprising chemically crosslinked hyaluronic acid derivative and pharmaceutical composition comprising the same
JP2014196347A (ja) * 2008-05-20 2014-10-16 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク(セ.エン.エル.エス.) ペプチドを含むナノ粒子、それを含むベクター、ならびに前記ナノ粒子および前記ベクターの薬学的使用
WO2012118189A1 (ja) * 2011-03-03 2012-09-07 中外製薬株式会社 アミノ-カルボン酸により修飾されたヒアルロン酸誘導体
US9243077B2 (en) 2011-03-03 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Derivative of hyaluronic acid modified with amino-carboxylic acid
JP2023503896A (ja) * 2019-11-18 2023-02-01 孛朗孚(杭州)生物科技有限公司 スルフヒドリル変性高分子化合物のヒドロゲル及びその調製方法並びに用途

Also Published As

Publication number Publication date
US8575332B2 (en) 2013-11-05
EP1683812B1 (en) 2014-11-12
US20070134334A1 (en) 2007-06-14
TW200526253A (en) 2005-08-16
KR101233564B1 (ko) 2013-02-15
JP4745826B2 (ja) 2011-08-10
KR20060132581A (ko) 2006-12-21
EP1683812A1 (en) 2006-07-26
TWI369215B (ja) 2012-08-01
EP1683812A4 (en) 2006-12-06
JPWO2005054301A1 (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2005054301A1 (ja) 架橋多糖微粒子およびその製造方法
JP5060131B2 (ja) 水溶性ヒアルロン酸修飾物の製造方法
AU2021201321C1 (en) Preparation and/or formulation of proteins cross-linked with polysaccharides
US8759322B2 (en) Hyaluronic acid derivative and pharmaceutical composition thereof
JP4636883B2 (ja) 薬物徐放担体
JP5443976B2 (ja) 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
CN104603156B (zh) 引入有氨基酸和甾基的透明质酸衍生物
US20230066990A1 (en) Hyaluronic acid derivative, pharmaceutical composition, and hyaluronic acid derivative-drug complex
WO2004050712A1 (ja) 薬物徐放担体
JPWO2005054302A1 (ja) 薬物担体及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515894

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007134334

Country of ref document: US

Ref document number: 10579032

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067009249

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004819749

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004819749

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009249

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10579032

Country of ref document: US