WO2005050038A1 - 複列自動調心ころ軸受および風力発電機主軸支持装置 - Google Patents

複列自動調心ころ軸受および風力発電機主軸支持装置 Download PDF

Info

Publication number
WO2005050038A1
WO2005050038A1 PCT/JP2004/016977 JP2004016977W WO2005050038A1 WO 2005050038 A1 WO2005050038 A1 WO 2005050038A1 JP 2004016977 W JP2004016977 W JP 2004016977W WO 2005050038 A1 WO2005050038 A1 WO 2005050038A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
roller
bearing
double
rollers
Prior art date
Application number
PCT/JP2004/016977
Other languages
English (en)
French (fr)
Inventor
Naoki Nakagawa
Masaharu Hori
Takeshi Maeda
Souichi Yagi
Mitsuo Sasabe
Nobuyuki Mori
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34623900&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005050038(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2003388314A external-priority patent/JP4163596B2/ja
Priority claimed from JP2004015341A external-priority patent/JP2005207517A/ja
Priority claimed from JP2004273030A external-priority patent/JP2006090346A/ja
Priority claimed from JP2004273029A external-priority patent/JP2006090345A/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to ES04818890.8T priority Critical patent/ES2339457T5/es
Priority to DE602004025042T priority patent/DE602004025042D1/de
Priority to US10/579,567 priority patent/US7918649B2/en
Priority to EP04818890.8A priority patent/EP1705392B2/en
Publication of WO2005050038A1 publication Critical patent/WO2005050038A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • F16C2240/34Contact angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Double row spherical roller bearing and wind power generator spindle support device Double row spherical roller bearing and wind power generator spindle support device
  • the present invention relates to a double row self-aligning roller bearing applied to an application in which an uneven load is applied to the left and right rows of spherical rollers, for example, a bearing that supports the main shaft of a wind power generator, and the like.
  • the present invention relates to a wind turbine main shaft support device provided with the above.
  • a self-aligning roller bearing suitable for rotatably supporting a main shaft of a wind power generator is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-11737.
  • a large double row self-aligning roller bearing 51 as shown in FIG. 15 is often used as a main shaft bearing in a large wind power generator.
  • the main shaft 50 is a shaft to which the blades 49 are attached.
  • the main shaft 50 is rotated by receiving wind power, and the rotation is increased by a speed increaser (not shown) to rotate the generator to generate electric power.
  • the spindle 50 that supports the blade 49 is loaded with axial load (bearing thrust load) and radial load (bearing radial load) due to the wind force applied to the blade 49.
  • the double-row spherical roller bearing 51 can simultaneously apply radial load and thrust load, and has alignment, so it can absorb the accuracy error of the bearing housing 48 and the inclination of the spindle 50 due to mounting error. And it can absorb the stagnation of the main spindle 50 during operation. Therefore, it is a suitable bearing for wind turbine main shaft bearings and is used (for example, NTN catalog “New Generation Wind Turbine Bearing” A65. CAT. No. 8404/04 / JE, May 2003 Issued on the 1st).
  • the thrust load in one direction is larger than the radial load.
  • the roller 54 force that receives the thrust load exclusively applies the radial load and the thrust load at the same time. Therefore, the rolling fatigue life is shortened.
  • the load on the opposite side is light and the roller 55 slips on the raceway surfaces 52a, 53a of the inner and outer rings 52, 53, causing surface damage and wear. Therefore, it can be dealt with by using a bearing with a large bearing size or improving lubricity, but the margin is too large on the light load side, which is uneconomical.
  • it is desirable that the wind turbine main shaft bearing installed at a high place because it is operated unattended or because the blades 49 are large in size is simple in terms of lubrication in order to be maintenance-free. It is.
  • the object of the present invention is that when used in an application in which an asymmetric load acts on the left and right rows, proper support according to the load can be provided in each row, and the real life can be extended.
  • Another object of the present invention is to provide an economical double-row self-aligning roller bearing that does not waste material, processing, or processing.
  • a double-row spherical roller bearing according to the first configuration of the present invention is a double-row spherical roller bearing in which spherical rollers are arranged in a double row between an inner ring and an outer ring.
  • the load capacities at the bearings are different from each other.
  • the load capacities different from each other may be any load capacities for radial loads and thrust loads, or both.
  • the left and right rows of rollers may be different in size and shape from each other.
  • the rollers in the left and right rows may have different roller lengths.
  • either the left or right row of rollers may be hollow rollers having a hole in the center.
  • the left and right rollers may have different radial dimensions.
  • the contact angles of the left and right rows may be made different from each other.
  • the rollers in the left and right rows may have different roller lengths, and the contact angles in the left and right rows may be different from each other!
  • This double row self-aligning roller bearing is used in places where the loads acting on the left and right rows are different from each other. For example, in a row where a thrust load is applied, the contact angle is increased and the roller saw is used. The filter length is increased, the contact angle is decreased in the opposite row, and the roller length of the roller is decreased.
  • the asymmetric load acts on the left and right rows. If so, each row can provide proper support according to the load. As a result, it is possible to prevent material from being wasted due to excessive load capacity margin in the light load side row, and it is difficult to cause roller slippage due to light load, resulting in surface damage and wear. Is unlikely to occur. As a result, the overall life of the bearing is improved.
  • the inner and outer rings are of the conventional symmetrical type. It is the same, and it is easier to design and manufacture.
  • the outer ring may be divided into two divided outer rings arranged in the axial direction.
  • the outer ring Since the outer ring has a split structure, it is only necessary to manufacture the two split outer rings individually, which makes it easy to manufacture an asymmetric outer ring.
  • a gap is provided between the two split outer rings.
  • a preload may be applied between these divided outer rings.
  • the preload is preferably applied by the side force of the smaller roller train.
  • a self-aligning roller bearing according to a second configuration of the present invention is a double-row self-aligning roller bearing in which spherical rollers are arranged in a double row between an inner ring and an outer ring.
  • the bearing is divided into a bearing divided body for each of the left and right rows each having a divided inner ring, a divided outer ring, and a single row of rollers, and the components related to the load or life in the left and right bearing divided bodies are divided. Different from each other.
  • the structural elements related to the load or life that are different from each other between the left and right rows of the bearing divisions are one or more of materials, surface modification treatment, and surface roughness. Also good.
  • the light load side is made of high carbon chrome steel used for ordinary bearings
  • the heavy load side is made of a carburized material or the like. Use normal high carbon chrome steel on the light load side. And the material cost is low.
  • the surface modification treatment there is a treatment for increasing the surface hardness, for example, nitriding treatment, and the treatment is performed only on the heavy load side.
  • the cost can be reduced.
  • the surface roughness the surface roughness on the heavy load side is reduced.
  • the lubricity is improved and the service life is extended.
  • machining costs are reduced by making the surface roughness about the standard of bearings.
  • the bearing divided bodies in the left and right rows may have the same dimensions. That is, the dimensions of the split inner ring, the split outer ring, and the rollers may be the same between the left and right rows of the bearing split bodies. Even if the left and right rows of bearing divisions have the same dimensions, if any one of the materials, surface modification treatment, surface roughness, etc. is different as described above, proper support according to the load can be obtained. It can be done in each row, and the real life can be extended.
  • the axial dimensions of the left and right bearing divisions and the axial dimensions of the rollers are different. Also good.
  • each row can provide proper support according to the load.
  • the light load side row it is possible not only to prevent waste of materials and the like due to excessive load capacity and life, but it is also difficult to cause roller slippage due to light load. In particular, the actual life of the bearing is improved.
  • the bearing Since the bearing has a split structure, it is only necessary to individually manufacture the split inner ring and the split outer ring in each row, so that an asymmetric spherical roller bearing can be easily manufactured.
  • a gap may be provided between two divided outer rings, and a preload may be applied between these divided outer rings. Preload is applied to the side load of the light load roller train. It is preferable.
  • the self-aligning roller bearing set according to the third configuration of the present invention includes two single-row self-aligning roller bearings arranged side by side in the axial direction. The components related to life are different from each other.
  • a roller length of a spherical roller in one row is Ll
  • a roller length of a spherical roller in the other row is L2
  • a roller length in one row is L1.
  • the roller length of the spherical roller on the light load side is made larger than the major axis of the contact ellipse generated on the contact surface between the spherical roller and the race.
  • a spherical roller having a roller length larger than the major axis of the contact ellipse can sufficiently withstand the load during use and has a long life.
  • the spherical roller may be a symmetric roller in which the position of the maximum diameter of the roller is located in the center of the roller length V, and the position of the maximum diameter of the roller is also asymmetrical in which the central force of the roller length is removed. But! /
  • the radius of curvature of the ridgeline of the spherical roller in one row is Rl
  • the radius of curvature of the ridgeline of the spherical roller in the other row is R2
  • the radius of curvature of the inner ring raceway surface in contact with the spherical rollers in the row is N1
  • the radius of curvature of the inner ring raceway surface in contact with the other row of spherical rollers is N2
  • the curvature radius N of the inner ring raceway surface is usually larger than the curvature radius R of the ridgeline of the spherical roller.
  • the NZR ratio is relatively small and close to 1, the size of the contact ellipse during operation increases and the maximum load stress at the contact portion decreases.
  • the ratio of NZR is relatively large, the size of the contact ellipse decreases, and the maximum load stress at the contact portion increases. Therefore, if the NZR ratios of the left and right columns are made different as described above, it is possible to perform appropriate surface pressure control according to the load in each column.
  • the edge stress near both ends of the self-aligning center increases, causing problems of premature wear and delamination in this part. there is a possibility. Therefore, the edge stress is reduced by relatively increasing the NZR ratio in the high load side row.
  • the radii of curvature of the ridgelines of the left and right rows of spherical rollers may be varied, or the radii of curvature of the inner ring raceway surfaces of the left and right rows may be varied. Both the radius of curvature of the ridgeline of the spherical surface and the radius of curvature of the inner ring raceway surface may be different. Therefore, in one embodiment, the radius of curvature R1 of the spherical roller in one row is made larger than the radius of curvature R2 of the spherical roller in the other row.
  • the radius of curvature N1 of the inner ring raceway surface in contact with one row of spherical rollers is made smaller than the radius of curvature N2 of the inner ring raceway surface in contact with the other row of spherical rollers.
  • the spherical roller in one row with a radius of curvature R1 has a smaller roller length than the spherical roller in the other row with a radius of curvature R2.
  • any of the double-row spherical roller bearings having the above-described configurations according to the present invention may be used as a main shaft support bearing that supports a main shaft to which a blade of a wind power generator is attached.
  • the main shaft support bearing of the wind power generator is a wind pressure acting on the blade mounted on the main shaft, and the thrust load is biased on one row as described above.
  • the effect of the bearing is effectively exhibited, and the effect of improving the actual bearing life is obtained.
  • a wind power generator main shaft support device supports a main shaft to which a blade is attached by one or a plurality of bearings installed in a housing, and any one or a plurality of the above-mentioned bearings are supported by the main shaft.
  • the double-row self-aligning roller bearing having any one of the configurations described above is provided. In that case, the bearing part in the row farther from the blades should have a larger load capacity or a longer rated life than the closer bearing part.
  • FIG. 1 is a partial cross-sectional view of a double row self-aligning roller bearing according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view showing an installation state of a double row self-aligning roller bearing according to a second embodiment of the present invention.
  • FIG. 3 is a view showing an installation state of a double row self-aligning roller bearing according to a third embodiment of the present invention.
  • FIG. 4 is a partial sectional view of a double row spherical roller bearing according to a modification of the third embodiment.
  • FIG. 5 is a partial cross-sectional view of a self-aligning roller bearing that works according to a fourth embodiment of the present invention.
  • FIG. 6 is a partial sectional view showing an installed state of the self-aligning roller bearing.
  • FIG. 7 is a partial cross-sectional view of a self-aligning roller bearing forcing a fifth embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view of a self-aligning roller bearing ⁇ a according to Modification 1 of the fifth embodiment.
  • FIG. 9 is a partial cross section of a self-aligning roller bearing set according to Modification 2 of the fifth embodiment.
  • FIG. 10 is a cross-sectional view showing a double-row self-aligning roller bearing according to a sixth embodiment of the present invention.
  • FIG. 11 is an illustrative view showing a contact ellipse generated on a contact surface between a spherical roller having a small roller length and an inner ring raceway surface.
  • FIG. 12 is a view for explaining the relationship between the spherical roller in each row and the inner ring raceway surface in a self-aligning roller bearing that is applied to the seventh embodiment of the present invention.
  • (B) shows the contact ellipse generated at the contact portion between the spherical roller and the inner ring raceway surface, and
  • (c) shows the load at both ends of the spherical roller. Distribution is shown.
  • FIG. 13 is a cutaway perspective view of a main shaft support device for a wind power generator using a self-aligning roller bearing according to the first to seventh embodiments of the present invention.
  • FIG. 14 is a cutaway side view of the wind turbine main shaft support device.
  • FIG. 15 is a sectional view of a conventional example.
  • FIG. 1 A first embodiment of the present invention will be described with reference to FIG.
  • spherical rollers 4 and 5 are interposed between an inner ring 2 and an outer ring 3 in a double row.
  • Each row of rollers 4 and 5 is held by a cage 6.
  • the cage 6 is provided separately for each row.
  • the raceway surface 3a of the outer ring 3 has a spherical roller shape, and the outer peripheral surfaces of the rollers 4 and 5 in each row have a cross-sectional shape along the raceway surface 3a of the outer ring 3, that is, a circular arc along the raceway surface 3a. It is a rotating curved surface rotated around C2.
  • the outer ring 3 has an oil groove 7 in the middle between both rows on the outer diameter surface, and an oil hole 8 penetrating from the oil groove 7 to the inner diameter surface is provided at one or more locations in the circumferential direction.
  • Inner ring 2 has a cross-sectional shape along the outer peripheral surface of each row of rollers 4, 5
  • the double-row raceway surfaces 2a and 2b are provided between the raceway surfaces 2a and 2b and at both ends, respectively.
  • Inner ring 2 may be one without wrinkles.
  • the roller lengths 4, 5 on the left and right rows have different roller lengths LI, L2 along the center lines CI, C2, and the bearing portions la, lb on the left and right rows have contact angles with each other. 0 1, 0 2 are different.
  • the contact angle ⁇ 2 of the bearing portion lb corresponding to the row of rollers 5 with a large roller length is set to be larger than the contact angle ⁇ 1 of the bearing portion la of the row of rollers 4 with a small roller length.
  • the outer diameters of the rollers 4 and 5 in both rows are, for example, the same maximum diameter.
  • the outer diameters of the rows 4 and 5 may be different from each other.
  • the roller 5 having a large roller length may have a larger outer diameter than the roller 5 having a small roller length.
  • the double-row spherical roller bearing 1 having this configuration is used in applications where asymmetric loads act on the left and right rows, for example, one row receives a thrust load and a radial load, and the other row is almost radial. Used for applications that receive only the Al load. Specifically, it is used for spindle support bearings for wind power generators.
  • the row to which the thrust load is applied is the row of rollers 5 having a large contact angle ⁇ 2 and a large contact roller length L2.
  • the shapes of the rollers 4 and 5 themselves in each row may be asymmetrical rollers or not asymmetrical rollers.
  • FIG. 2 shows a second embodiment of the present invention.
  • This double-row self-aligning roller bearing 1A is the same as the double-row self-aligning roller bearing 1 of the first embodiment shown in Fig. 1, but the outer ring 3 is divided into two split outer rings 3A, 3B that are arranged in the axial direction. It is divided between the columns.
  • Both split outer rings 3A, 3B are provided in a natural state, that is, in a state where the spherical raceway surfaces 3Aa, 3Ba of both split outer rings 3A, 3B are located on the same spherical surface, so that a gap d is formed between them.
  • This double row self-aligning roller bearing 1A is installed in the bearing housing 20 and is preloaded by the preload applying means 21. Preload is applied so that the gap d between the split outer rings 3A and 3B on the side is reduced.
  • the preload applying means 21 is a spring member or a tightening screw. When the spring member is used, for example, it is a compression spring that is arranged at a plurality of locations in the circumferential direction and contacts the end surface of the outer ring 3. It is preferable that the preload applying means 21 is applied to the outer ring divided body 3A force on the smaller roller 4 side.
  • the outer ring 3 has a split structure, the asymmetric outer ring 3 can be easily manufactured.
  • preload as the outer ring 3 as a divided structure, it is possible to positively suppress the sliding of the rollers 4.
  • the inner ring 2 is also aligned in the axial direction as in a double-row self-aligning roller bearing 1B shown as a modification in FIG. It may be divided into two divided inner rings 2A and 2B. When the inner ring 2 is divided, it becomes easy to manufacture the inner ring 2 that is asymmetrical.
  • FIG. 4 shows a third embodiment of the present invention.
  • one row of rollers 4 is a hollow roller having a hole 4b in the center.
  • the contact angles 0 1, 0 2 of the left and right rows are the same, and the roller lengths and outer diameters of the rollers 4 and 5 in both rows are the same.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • the material of the rollers 4 is saved by making the rollers 4 in one row into hollow rollers. Even if the load acting on the rollers 4 in this row is small, slippage is reduced by reducing the weight of the rollers 4, and wear and surface damage are reduced.
  • This self-aligning roller bearing 1D is a double-row self-aligning roller bearing, and the entire bearing 1D is divided into left and right row bearing division IDA, 1DB, and left and right bearing division IDA, The components related to the load or life in 1DB are different from each other.
  • rollers 4 are interposed in a double row between an inner ring 2 and an outer ring 3, the raceway surface 3a of the outer ring 3 is spherical, and the outer peripheral surface of the roller 4 is the outer ring 3.
  • This is a double row bearing with a shape along the raceway surface.
  • Inner ring 2 and outer ring 3 are divided into left and right divided inner rings 2A and 2B and divided outer rings 3A and 3B, respectively. It has split inner rings 2A, 2B, divided outer rings 3A, 3B, and single row rollers 4.
  • the rollers 4 in each row are held in pockets 15a of annular cages 15 provided in the respective bearing division bodies IDA, 1DB.
  • the inner ring 2 has flanges 2b and 2c between both ends and the rollers 4 in both rows.
  • the center flange 2c is formed by combining the divided flanges 2ca and 2cb provided on the respective divided inner rings 2A and 2B. It is configured.
  • the left and right bearing divided bodies IDA, 1DB have the same shape and dimensions.
  • the components related to load or life that differ from each other are either material, surface modification treatment, or surface roughness, one or more of which are different It is said.
  • the light load side uses an inexpensive material generally used as a bearing, for example, high carbon chrome steel CFIS standard SUJ material.
  • high carbon chrome steel CFIS standard SUJ material For the heavy load side, use a material with a hardness or rolling fatigue life superior to that of the light load side.
  • the high load side uses, for example, high cleanliness steel (VP material), high speed steel (M50 material), or the following steel materials (1) 2). These materials can be applied to any of inner ring 2, outer ring 3, and roller 4.
  • the above steel materials (1) 2) are all disclosed in Japanese Patent Application Laid-Open No. 2000-204444, and have excellent rolling fatigue life even in a foreign matter mixed environment or a high temperature environment.
  • the composition of steel (1) has an alloy element content of mass%, C is 0.6% or more and 1.3% or less, Si is 0.3% or more and 3.0% or less, and Mn is 0.2. % Or more 1.5% or less, P 0.03% or less, S 0 03% or less, Cr 0.3% to 5.0%, Ni 0.1% to 3.0%, A1 0.0 50% or less, Ti 0.003% or less, O 0. 0015% or less, N containing 0.015% or less, the balance being Fe and inevitable impurities.
  • This steel material (1) has a structure that has been tempered after quenching or carburizing and nitriding, has a hardness after the tempering of not less than HRC58, and has a maximum carbide dimension of not more than 8 m. It is preferable.
  • the steel material (1) may further contain at least one of Mo of 0.05% or more and less than 0.25% and V of 0.05% or more and 1.0% or less by mass%. .
  • the composition of the steel material (2) has an alloy element content of mass%, C is not less than 0.6% and not more than 1.3%, Si is not less than 0.3% and not more than 3.0%, and Mn is 0.2% or more 1.5% or less, P 0.03% or less, S 0.03% or less, Cr 0.3% or more 5.0% or less, Ni 0.1% or more 3.0 %, A1 is 0.050% or less, Ti is 0.003% or less, O is 0.0015% or less, N is 0.0015% or less, and at least each element is contained, with the balance being Fe.
  • This steel (2) has a structure that has been tempered after quenching or carburizing and nitriding, has a hardness after the tempering of at least HRC58, and has a maximum carbide dimension of 8 ⁇ m or less. Preferably there is.
  • the light load side is subjected to a general heat treatment such as quenching, or is not subjected to any particular surface treatment.
  • the heavy load side is subjected to surface modification treatment to increase the surface hardness than the light load side.
  • nitriding treatment, shot peening, diamond carbon treatment (DLC treatment) and the like can be employed as the treatment for increasing the surface hardness. Shot peening is performed after heat treatment, but the hardness can be increased by applying compressive residual stress.
  • the light load side is, for example, about RaO.2-2—0.25
  • the heavy load side is RaO.16 or less, preferably RaO.10 or less, or RaO.05 or less.
  • RaO. 1 0—0.13 or RaO. 13—0.
  • This range of surface roughness can be applied to any of the heavy load side split inner ring 2B, the raceway surface of the split outer ring 3B, and the rolling surface of the roller 4. If the surface roughness is reduced, the processing is laborious, but the lubricity is improved and the durability is improved.
  • Both split outer rings 3A, 3B are provided in a natural state, that is, in a state where the spherical raceway surfaces 3a of both split outer rings 3A, 3B are located on the same spherical surface, so that a gap d is formed between them. It is done. This With the self-aligning roller bearing ID installed in the bearing housing 20 as shown in FIG. 6, the preload is applied by the preloading means 21 so that the gap d between the split outer rings 3A and 3B on both sides is narrowed.
  • a spring member, a tightening screw or the like is used for the preload applying means 21 a spring member, a tightening screw or the like is used.
  • the spring member When the spring member is used, for example, it is a compression spring disposed at a plurality of locations in the circumferential direction and in contact with the end face of the outer ring 3.
  • the preload applying means 21 is preferably applied from the outer ring divided body 3A on the light load side. When the preload is applied in this way, it is possible to positively suppress the slipping of the roller 4.
  • the left and right rows are asymmetrical.
  • Appropriate support according to the load can be provided in each row when it is used in applications where the load is applied.
  • the bearing 1D is divided into the left and right bearing divisions IDA and 1DB, it is easy to make the components related to load or life different in the left and right rows.
  • FIG. 7 shows a fifth embodiment of the present invention.
  • one of the components related to the load or life that is different between the left and right rows of the bearing divisions 1EA, 1EB is the right and left bearing divisions 1EA, 1EB axial dimension and roller 4 axial dimension.
  • the axial width of the split inner ring 2B and split outer ring 3B on the heavy load side is longer than that of the split inner ring 2A and split outer ring 3A on the light load side, and the length of the roller 4 on the heavy load side is It is longer than the roller 4 on the light load side.
  • the bearing divisions 1EA and 1EB in the left and right rows have different contact angles 0a and 0b.
  • the contact angle ⁇ b of the bearing split 1EB corresponding to the row of rollers 4 with a large roller length is larger than the contact angle ⁇ a of the bearing split 1EA of the row of rollers 4 with a small roller length.
  • the outer diameters of the rollers 4 in both rows are, for example, the same maximum diameter.
  • the outer diameters of the rollers 4 in both rows may be different from each other. For example, the roller 4 with a larger roller length has a larger outer diameter than the roller 4 with a smaller roller length.
  • the material, surface modification treatment, and surface roughness of the left and right bearing divisions 1EA and 1EB may be the same as each other. It may be superior to the bearing division 1EA on the side.
  • Other configurations in the fifth embodiment are the same as those in the fourth embodiment.
  • the real life of the double row spherical roller bearing 1E which becomes a wind power generator main shaft support bearing and the like, is improved overall. If any of the material, surface modification treatment, and surface roughness of the left and right bearing divided bodies 1EA and 1EB is varied as described above, the actual life of the self-aligning roller bearing 1E is further improved.
  • the self-aligning roller bearing 1E is divided into two bearing divided bodies 1EA and 1EB, such a right and left non-target self-aligning roller bearing 1E can be easily manufactured, Also, since only the heavy load side bearing split 1EB is required to have a large roller length, material is not wasted and costs can be reduced compared to the case where the entire bearing is large.
  • Variation 1 in FIG. 8 shows that single-row spherical roller bearings IOC, 10D on both sides are either made of a material whose dimensions are equal to each other, surface modification treatment, or surface roughness. Different between each other It's a fake thing. How the material, surface modification treatment, and surface roughness are different is the same as in the fourth embodiment shown in FIGS.
  • Variation 2 in FIG. 9 is a case where single-row spherical roller bearings 10E and 10F on both sides are different from each other in the axial dimensions of inner and outer rings 2, 3 and the axial dimension of roller 4. It is a thing.
  • Double-row self-aligning roller bearing 1F includes inner ring 22, outer ring 26, spherical rollers 12, 13 arranged in a double row between both race rings, and a cage for holding these rollers 12, 13. 14 and.
  • the cage 14 is provided separately for each row.
  • the raceway surface 26 a of the outer ring 26 is formed in a spherical shape, and the outer peripheral surfaces of the rollers 12 and 13 in each row have a spherical shape along the raceway surface 26 a of the outer ring 26.
  • the outer ring 26 has an oil groove 7A at an intermediate position on the outer diameter surface thereof, and further has an oil hole 8A penetrating from the oil groove 7A to the inner diameter surface.
  • the oil holes 8A are provided at one place or a plurality of places in the circumferential direction.
  • the inner ring 22 in the illustrated embodiment has outer flanges 24, 25 at both ends in the width direction, and has a middle flange 23 in the middle.
  • the inner ring 22 has double-row raceway surfaces 22a and 22b having a cross-sectional shape along the outer peripheral surfaces of the rollers 12 and 13 in each row.
  • the length dimension L2 of the right side roller 13 in the figure is the length of the left side roller 12. It is larger than dimension L1.
  • the left and right rows of bearing portions 10a and 10b have different contact angles 0 1 and 0 2 from each other. In this case, it corresponds to the row of rollers 13 with a large length.
  • the contact angle ⁇ 2 of the bearing portion 10b is set to be larger than the contact angle ⁇ 1 of the bearing portion 10a of the row of rollers 12 having a small length dimension.
  • the outer diameters of the rollers 12 and 13 in both rows are, for example, the same maximum diameter.
  • the outer diameters of the rollers 12 and 13 in both rows may be different from each other.
  • the roller 13 having a larger length may have a larger outer diameter than the roller 12 having a smaller length.
  • the roller may be a symmetric roller whose maximum diameter is located at the center of the roller length! /, And the maximum roller position may be the roller length. It may be asymmetric.
  • FIG. 11 schematically shows a state where the roller 12 having a small roller length dimension L 1 is positioned on the raceway surface 22 a of the inner ring 22.
  • the contact surface is elastically deformed, and an elliptical contact surface, that is, a contact ellipse 27a is formed around the contact point.
  • a similar contact ellipse is also formed on the contact surface between the roller 13 and the raceway surface 26a of the outer ring 26.
  • the roller length dimension L1 of the roller 12 is made larger than the major axis A of the contact ellipse 27a.
  • the double-row spherical roller bearing 1F having the above-described configuration is used in applications where an asymmetric load acts on the left and right rows, for example, one row receives a thrust load and a radial load, and the other row is exclusively a Used for applications that only receive a dial load.
  • an asymmetric load acts on the left and right rows, for example, one row receives a thrust load and a radial load
  • the other row is exclusively a Used for applications that only receive a dial load.
  • use a roller 13 with a large roller length on the high load train side that receives thrust and radial loads and use a roller 12 with a small roller length on the light load train that receives only the radial load.
  • the roller 13 having a large roller length is arranged in the high load side row, and the roller 12 having a small roller length is arranged in the light load side row.
  • Appropriate support can be provided. That is, since the load capacity is increased in the high load side row, the rolling fatigue life is improved. In the light load side row, the contact stress between the roller 12 having a small roller length and the raceway surfaces 26a and 22a is increased, and the weight of the roller is reduced, so that the slip is reduced.
  • FIG. 12 is a view for explaining the relationship between each row and the inner ring raceway surface in contact with the self-aligning roller bearing according to the seventh embodiment of the present invention.
  • A schematically shows a state where the roller is in contact with the inner ring raceway surface
  • (b) shows a contact ellipse generated at a contact portion between the roller and the inner ring raceway surface
  • (c) shows The load distribution at both ends of the roller is shown.
  • the curvature radii of the ridgelines of the rollers 12 and 13 in the left and right rows are made different.
  • the curvature radius R1 of the roller 12 in the left row with a small roller length is made larger than the curvature radius R2 of the roller 13 in the right row with a large roller length.
  • the size of the contact ellipse 27a generated at the contact portion between the roller 13 in the right row having the large roller length and the inner ring raceway surface 22b in the right row is relatively large. Become smaller. If the size of the contact ellipse 27a decreases, the contact pressure distribution shown in Fig. 12 (c) is applied to both ends of the roller 13. Reduced edge load.
  • the size of the contact ellipse 27a generated at the contact portion between the roller 12 in the left row with a small roller length and the inner ring raceway surface 22a in the left row is relatively large. If the size of the contact ellipse 27a is increased, the driving force of the roller transmitted from the inner ring is increased, so that the posture of the roller is easily stabilized. In addition, since the part that becomes the rotation axis of the skew is wide, the skew is suppressed by the frictional resistance. As shown in Fig. 12 (c), the force that increases the edge stress is not a problem because the applied load is small.
  • the double-row self-aligning roller bearing 1F having the above configuration is used in applications where an asymmetric load acts on the left and right rows, for example, one row receives a thrust load and a radial load, and the other row is exclusively a Used for applications that only receive a dial load.
  • a roller 13 with a large roller length is used on the side of the high load train that receives the thrust load and radial load
  • a roller 12 with a small roller length is used on the light load side row that receives only the radial load.
  • the roller 13 having a large roller length is arranged in the high load side row and the roller 12 having a small roller length is arranged in the light load side row, so that the load state of each row can be adjusted.
  • Appropriate support can be provided. That is, since the load capacity is increased in the high load side row, the rolling fatigue life is improved. Further, in the light load side row, the contact area between the roller 12 having a small roller length and the raceway surfaces 22a and 26a is increased, and the weight of the roller is reduced, so that the slip is reduced.
  • the radius of curvature N1 of the inner ring raceway surface 22a is the contact ellipse with a relatively small ratio N1ZR1 to the radius of curvature R1 of the 12 ridgelines Since the frictional resistance against skew is increased by increasing the size of the skew, the skew can be effectively suppressed.
  • the present invention can be advantageously used for a double-row self-aligning roller bearing rod in which an uneven load is applied to the left and right rows of rollers and a main shaft support structure of a wind power generator equipped with such a bearing.
  • FIG. 13 and FIG. 14 show an example of a wind power generator main shaft support device using a double-row self-aligning roller bearing according to the first to seventh embodiments of the present invention.
  • Swivel bearing 32 on support 31 (Fig. 14 )
  • the casing 33a of the nacelle 33 is installed so as to be pivotable horizontally!
  • a main shaft 36 is rotatably installed via a main shaft support bearing 35 installed in a bearing housing 34, and a blade that serves as a swirl blade is formed on a portion of the main shaft 36 that protrudes outside the casing 33a. 37 is installed.
  • the other end of the main shaft 36 is connected to a gearbox 38, and the output shaft of the gearbox 38 is coupled to the rotor shaft of the generator 39.
  • the nacelle 33 is turned at an arbitrary angle by the turning motor 40 via the speed reducer 41.
  • two main shaft support bearings 35 are arranged side by side, but may be one.
  • the double-row self-aligning roller bearing 1, 1A, IB, 1C, ID, IE, 1F of any of the first to seventh embodiments is used.
  • a roller having a large roller length is used. Since only the radial load is mainly applied to the roller in the row closer to the blade 37, a roller having a small roller length is used.
  • the radius of curvature of the ridge line of the roller closer to the blade 37 is R 1
  • the radius of curvature of the ridge line of the roller farther from the blade 37 is R 2
  • the design is made so that the following dimensional relationship is established.
  • roller lengths of the left and right rows of rollers are different from each other.
  • the roller lengths of the left and right rows of rollers may be the same.
  • the present invention can be advantageously used for a double-row self-aligning roller bearing rod in which an uneven load is applied to the left and right rows of rollers and a main shaft support structure of a wind power generator having such a bearing.
  • the double row self-aligning roller bearing 1D of the above embodiment is applied to the main shaft support bearing 35 of the wind power generator, for example, the row farther from the blade 37 is the thrust load load row. It becomes. For this reason, the double-row spherical roller bearing 1D is installed on the thrust load load train side so that the bearing split body 1DB having a large load capacity or a long rated life is disposed.
  • a single-row spherical roller bearing 10 shown in Figs. 8, 9, etc. may be used as the main spindle support bearing 35.
  • Spherical roller bearing set 10 in which OC, 10D or 10E, 10F are arranged side by side may be used. good.

Abstract

 片方の列でスラスト荷重を受ける用途、例えば、風力発電機主軸支持装置等に適用される。その場合に、負荷に応じた適正な支持が各列で行えて、実質寿命を延長することができ、また材料に無駄のない経済的な複列自動調心ころ軸受を提供する。内輪2と外輪3との間に複列にころ4,5を介在させる。外輪3の軌道面3aを球面状とし、ころ4,5の外径面を外輪3の軌道面3aに沿う形状とする。左右の列のころ4,5を、互いにころ長さL1,L2が異なるものとする。また、左右の列の接触角θ1,θ2を互いに異ならせる。

Description

明 細 書
複列自動調心ころ軸受および風力発電機主軸支持装置
技術分野
[0001] この発明は、左右両列の球面ころに不均等な荷重が負荷される用途、例えば風 力発電機の主軸を支持する軸受等に適用される複列自動調心ころ軸受、およびそ れを備えた風力発電機主軸支持装置に関する。
背景技術
[0002] 近年、クリーンで無尽蔵なエネルギを利用できる風力発電が注目されて 、る。大型 の風力発電設備では、風車を備えた発電機本体が地上力 数十 mの高さに設置さ れているので、風車のブレードの主軸を支持する軸受の保守には大変な労力と危険 が伴う。そのため、風力発電機の主軸を支持する軸受には、高い信頼性と耐久寿命 が要求される。
[0003] 風力発電機の主軸を回転自在に支持するのに好適な自動調心ころ軸受は、例え ば特開 2004— 11737号公報に開示されて 、る。この公報に開示されて 、るように、 大型の風力発電機における主軸用軸受には、図 15に示すような大型の複列自動調 心ころ軸受 51が用いられることが多い。主軸 50は、ブレード 49が取付けられた軸で あり、風力を受けることによって回転し、その回転を増速機(図示せず)で増速して発 電機を回転させ、発電する。
[0004] 風を受けて発電している際に、ブレード 49を支える主軸 50は、ブレード 49にかかる 風力による軸方向荷重 (軸受スラスト荷重)と、径方向荷重 (軸受ラジアル荷重)が負 荷される。複列自動調心ころ軸受 51は、ラジアル荷重とスラスト荷重を同時に負荷す ることができ、かつ調心性を持っため、軸受ハウジング 48の精度誤差や、取付誤差 による主軸 50の傾きを吸収でき、かつ運転中の主軸 50の橈みを吸収できる。そのた め、風力発電機主軸用軸受に適した軸受であり、利用されている(例えば、 NTN社 カタログ「新世代風車用軸受」 A65. CAT. No. 8404/04/JE, 2003年 5月 1日 発行)。
[0005] しかしながら、風車においては、ラジアル荷重に比べて一方向のスラスト荷重が大き く、複列のころ 54, 55のうち、スラスト荷重を受ける列のころ 54力 もっぱらラジアル 荷重とスラスト荷重を同時に負荷することになる。そのため、転がり疲労寿命が短くな る。カロえて、反対側の列では軽負荷となり、ころ 55が内外輪 52, 53の軌道面 52a, 5 3aで滑りを生じ、表面損傷や摩耗を生じるという問題がある。そのため、軸受サイズ が大きなものを用いたり、潤滑性を高めることで対処されるが、軽負荷側では余裕が 大きくなり過ぎて、不経済である。また、無人で運転されたり、ブレード 49が大型とな るために高所に設置される風力発電機主軸用軸受では、メンテナンスフリー等のた めに、潤滑面でも簡易なものとすることが望まれる。
発明の開示
[0006] この発明の目的は、左右の列に非対称の負荷が作用する用途に用いられた場合 に、負荷に応じた適正な支持が各列で行えて、実質寿命を延長することができ、また 材料、処理、または加工等に無駄のない経済的な複列自動調心ころ軸受を提供する ことである。
[0007] この発明の第 1構成に係る複列自動調心ころ軸受は、内輪と外輪との間に複列に 球面ころを配置した複列自動調心ころ軸受であって、左右の列の軸受部分における 負荷容量を互いに異ならせている。この互いに異ならせる負荷容量は、ラジアル負 荷およびスラスト負荷に対するいずれの負荷容量であっても、また両方であっても良 い。
[0008] 左右の列の軸受部分における負荷容量を互いに異ならせる構成としては、左右の 列のころを、互いに寸法および形状の少なくとも片方が異なるものとしても良い。例え ば、寸法を異ならせる例としては、左右の列のころを、互いにころ長さが異なるものと しても良い。また、形状を異ならせる例としては、左右いずれか片方の列のころを、中 心に孔を有する中空ころとしても良い。左右のころを、径方向寸法が異なるものとして も良い。左右の列の軸受部分における負荷容量を互いに異ならせる構成として、この 他に、左右の列の接触角を互いに異ならせても良い。左右の列のころを、互いにころ 長さが異なるものとし、かつ左右の列の接触角を互いに異ならせても良!、。
なお、この複列自動調心ころ軸受は、左右の列に作用する負荷が互いに異なる箇 所に使用され、例えばスラスト荷重が負荷される列では、接触角は大きくし、ころのこ ろ長さは大きくし、反対側の列では接触角は小さくし、ころのころ長さは小さくする。
[0009] 上記のように、左右の列のころのころ長さを異ならせことなどで、左右の列の負荷容 量を互いに異ならせると、左右の列に非対称の負荷が作用する用途に用いられた場 合に、負荷に応じた適正な支持が各列で行える。これにより、軽負荷側の列で、負荷 容量の余裕が大きくなり過ぎて材料の無駄が生じることが防止でき、また軽負荷のた めに生じるころの滑りが発生し難くなり、表面損傷や摩耗が生じ難い。これらにより、 総合的に軸受の実質寿命が向上する。
[0010] 詳しくは、ころのころ長さまたは外径等の寸法を異ならせた場合は、寸法の大きいこ ろ列の負荷容量が増大する。また、寸法の小さいころ列では、ころの自重が軽くなる ことで、滑りが軽減され、摩耗、表面損傷が軽減される。片方のころ列のころを中空こ ろとした場合も、その列のころの自重が軽くなることで、滑りが軽減され、摩耗、表面 損傷が軽減される。
[0011] 接触角につ 、ては、接触角が大きくなるに従 、、ラジアル負荷に対してスラスト負荷 の支持力の割合が増大する。そのため、接触角を大きくした列のスラスト支持力が大 きくなる。接触角を小さくした方のころ列では、ころと軌道面との接触応力が大きくなり 、これによつて滑りが軽減され、摩耗、表面損傷が軽減される。
[0012] 左右の列の負荷容量を異ならせる構成として、ころのころ長さを異ならせる場合や、 接触角を異ならせる場合は、ころ径を異ならせる場合に比べて、内外輪の肉厚確保 のための内外輪の径方向寸法の設計変更が僅かで済み、あるいは設計変更が不要 となり、左右列が非対称であっても設計,製造が容易である。
左右の列のころの自重を異ならせ滑りを軽減させる構成として、左右いずれか片方 の列のころを、中心に孔を有する中空ころとする場合は、内外輪については従来の 対称型のものと同じで済み、より設計,製造が容易である。
[0013] この発明における上記各構成の複列自動調心ころ軸受は、いずれも、外輪を軸方 向に並ぶ 2つの分割外輪に分割しても良 、。
外輪を分割構造とすることで、 2つの分割外輪を個々に製造すれば良いため、非対 称の外輪の製造が容易となる。
[0014] 上記のように外輪を分割構造とする場合に、 2つの分割外輪の間に隙間を設け、こ れら分割外輪間に予圧を負荷しても良い。予圧は、小さい方のころ列の側力 負荷 することが好ましい。
このように予圧を負荷することにより、ころの滑りを積極的に抑制することができる。 したがって外輪を分割構造として製造の容易を図りながら、上記滑りの抑制が得られ る。
[0015] この発明の第 2構成に係る自動調心ころ軸受は、内輪と外輪との間に複列に球面こ ろを配置した複列の自動調心ころ軸受であって、自動調心ころ軸受は、軸受の全体 を、それぞれ分割内輪、分割外輪、および単列のころを有する左右の列毎の軸受分 割体に分割し、左右の軸受分割体における負荷または寿命に関係する構成要素を 互いに異ならせている。
[0016] このように、左右の列の軸受分割体における負荷または寿命に関係する構成要素 を互いに異ならせると、左右の列に非対称の負荷が作用する用途に用いられた場合 に、負荷に応じた適正な支持が各列で行える。これにより、軽負荷側の列で、負荷容 量や定格寿命の余裕が大きくなり過ぎて材料ゃ改質処理,加工等の無駄が生じるこ とが防止できる。軸受を左右の軸受分割体に分割するため、このような左右の列で互 いに負荷または寿命に関係する構成要素を異ならせることが簡単に行える。また、重 負荷側の軸受分割体のみに、負荷容量,寿命を高めるための措置を施したものとす れば良 、ため、軸受の全体にこれらの措置を施す場合に比べて製造コストが低減さ れる。
[0017] 左右の列の軸受分割体の相互間で互いに異ならせる負荷または寿命に関係する 構成要素としては、材質、表面改質処理、および表面粗さのいずれか一つまたは複 数であっても良い。
[0018] これら材質、表面改質処理、および表面粗さの 、ずれかを異ならせる場合に、分割 内輪、分割外輪、およびころのうちの少なくとも一つについて異ならせる。表面改質 処理および表面粗さについては、分割内輪および分割外輪の場合は軌道面、ころの 場合は転動面にっ 、て、表面改質処理または表面粗さを異ならせる。
[0019] 材質を異ならせる場合、例えば軽負荷側を通常の軸受に用いられる高炭素クロム 鋼とし、重負荷側を浸炭材等とする。軽負荷側は通常の高炭素クロム鋼等を用いるこ とで、材料コストが安くて済む。
表面改質処理としては、表面硬度を高める処理、例えば窒化処理等があり、重負 荷側のみに処理を施す。軽負荷側は表面改質処理を省くことで、コスト低下が図れる 表面粗さについては、重負荷側の表面粗さを小さくする。表面粗さが小さくなると、 潤滑性が向上し、長寿命となる。軽負荷側は、表面粗さを軸受の標準程度とすること で、加工コストが軽減される。
[0020] 左右の列の軸受分割体は、互いに寸法が同じであっても良い。すなわち、左右の 列の軸受分割体の相互間で、分割内輪、分割外輪、およびころの寸法が同じであつ ても良い。左右の列の軸受分割体の寸法が同じであっても、上記のように材質、表面 改質処理、および表面粗さ等のいずれか一つが異なっておれば、負荷に応じた適正 な支持が各列で行えて、実質寿命を延長することができる。
[0021] 左右の列の軸受分割体の相互間で互いに異ならせる負荷または寿命に関係する 構成要素の一つとして、左右の軸受分割体の軸方向寸法、およびころの軸方向寸法 を異ならせても良い。
左右の列のころの軸方向寸法を異ならせると、左右の列の負荷容量が変わる。この 場合は、負荷に応じた適正な支持が各列で行える。これにより、軽負荷側の列で、負 荷容量や寿命の余裕が大きくなり過ぎて材料等の無駄が生じることが防止できるだけ でなぐ軽負荷のために生じるころの滑りが発生し難くなり、総合的に軸受の実質寿 命が向上する。
軸受を分割構造とするため、各列の分割内輪や分割外輪を個々に製造すれば良 いため、非対称の自動調心ころ軸受が容易に製造できる。
[0022] 左右の軸受分割体の軸方向寸法を異ならせた場合も、さらに、互いに異ならせる負 荷または寿命に関係する構成要素として、材質、軌道面またはころ表面の表面改質 処理、軌道面またはころ転動面の表面粗さの 、ずれか一つ以上を異ならせても良!ヽ
[0023] この発明の上記各構成の自動調心ころ軸受は、 2つの分割外輪の間に隙間を設け 、これら分割外輪間に予圧を負荷しても良い。予圧は、軽負荷ころ列の側力 負荷す ることが好ましい。
このように予圧を負荷することにより、ころの滑りを積極的に抑制することができる。 したがって軸受分割構造として製造の容易を図りながら、上記滑りの抑制が得られる
[0024] この発明の第 3構成に係る自動調心ころ軸受組は、単列の自動調心ころ軸受を軸 方向に 2個並べて設けてなり、両側の単列自動調心ころ軸受における負荷または寿 命に関係する構成要素を互いに異ならせたものである。
この第 3構成では上記各例のような 2つの軸受分割体を合わせて一つの軸受とした ものの代わりに、単独で機能する単列の自動調心ころ軸受を 2個並べて設け、その 2 個の単列自動調心ころ軸受を、負荷または寿命に関係する構成要素が互いに異な らせている。この構成の場合も、左右の列の非対称負荷に対して、負荷に応じた適 正な支持が各列で行えて、実質寿命を延長することができ、また材料に無駄のない 経済的なものにできるという効果が得られる。
[0025] この発明のさらに他の実施形態に係る複列自動調心ころ軸受は、一方列の球面こ ろのころ長さを Ll、他方列の球面ころのころ長さを L2、一方列の球面ころと軌道輪と の接触面に生ずる接触だ円の長径を Aとしたとき、次の寸法関係が成立する。
[0026] LKL2
L1 >A
上記のように、左右の列の球面ころのころ長さを異ならせるようにすれば、それぞれ の球面ころの負荷容量が異なったものとなる。従って、負荷容量が大きくなる列にころ 長さが大きな球面ころを用い、軽負荷側の列にころ長さが小さな球面ころを用いれば 、負荷に応じた適正な支持が各列で行なえ、軸受寿命が長くなる。軽負荷側の列の 球面ころの場合、ころ長さを短くするにも限度がある。すなわち、使用時における荷重 を十分に支持できるだけのころ長さが必要である。そこで、本発明では、軽負荷側の 球面ころのころ長さを、球面ころと軌道輪との接触面に生じる接触だ円の長径よりも 大きくなるようにする。接触だ円の長径よりも大きなころ長さを有する球面ころであれ ば、使用時の荷重に十分耐えることができ、長寿命となる。
[0027] 球面ころと軌道輪の軌道面とが荷重を受けると、その接触面は弾性変形し、接点の 周りにだ円形の接触面が生じる。このだ円形の接触面が「接触だ円」である。
[0028] 球面ころとしては、ころの最大径の位置がころ長さの中央に位置する対称ころでもよ V、し、ころの最大径の位置がころ長さの中央力も外れて 、る非対称ころでもよ!/、。
[0029] この発明のさらに他の実施形態に係る複列自動調心ころ軸受は、一方列の球面こ ろの稜線の曲率半径を Rl、他方列の球面ころの稜線の曲率半径を R2、一方列の球 面ころに接する内輪軌道面の曲率半径を N1、他方列の球面ころに接する内輪軌道 面の曲率半径を N2としたとき、次の寸法関係が成立するようにする。
[0030] N1/RKN2/R2
自動調心ころ軸受においては、通常、球面ころの稜線の曲率半径 Rよりも内輪軌道 面の曲率半径 Nの方が大きい。 NZRの比率が相対的に小さくて 1に近いと、運転時 の接触だ円の大きさが大きくなり、接触部における最大負荷応力は小さくなる。一方 、 NZRの比率が相対的に大きいと接触だ円の大きさが小さくなり、接触部における 最大負荷応力は大きくなる。従って、上記のように、左右の列の NZRの比率を異な らせるようにすれば、負荷に応じた適正な面圧コントロールを各列で行なえる。
[0031] 高負荷側の列における NZRの比率が相対的に小さいものであれば、自動調心こ ろの両端近傍でのエッジ応力が大きくなり、この部分における早期摩耗や剥離の問 題が生じる可能性がある。そこで、高負荷側列における NZRの比率を相対的に大き くしてエッジ応力を低減させる。
[0032] 軽負荷側の列では球面ころと軌道面との間で滑りが生じ易ぐころのスキューも生じ やすい。そこで、軽負荷側の列においては、 NZRの比率を相対的に小さくして接触 だ円の大きさを大きくすることにより、ころのスキューの発生を抑制する。
[0033] NZRの比率を変更するには、左右の列の球面ころの稜線の曲率半径を異ならせ たり、あるいは左右の列の内輪軌道面の曲率半径を異ならせたりすればよい。球面こ ろの稜線の曲率半径および内輪軌道面の曲率半径の両者を異ならせるようにしても よい。そこで、一つの実施形態では、一方列の球面ころの曲率半径 R1を、他方列の 球面ころの曲率半径 R2よりも大きくする。他の実施形態では、一方列の球面ころに 接する内輪軌道面の曲率半径 N1を、他方列の球面ころに接する内輪軌道面の曲 率半径 N2よりも小さくする。 [0034] 好ましくは、曲率半径 R1の一方列の球面ころは、曲率半径 R2の他方列の球面ころ よりも、小さなころ長さを有している。このような構成であれば、ころ長さが大きくて負荷 容量の大きい球面ころのエッジ応力を低減でき、またころ長さが小さくて負荷容量の 小さい球面ころのスキューを効果的に抑制できる。
[0035] この発明における上記各構成の複列自動調心ころ軸受は、いずれも、風力発電機 のブレードが取付けられた主軸を支持する主軸支持軸受として使用されるものであつ ても良い。
風力発電機の主軸支持軸受は、主軸に取付けられたブレードに作用する風圧で、 上記のように片方の列にスラスト荷重が偏って作用するため、この発明における左右 非対称の複列自動調心ころ軸受の効果が有効に発揮され、実質軸受寿命の向上効 果が得られる。
[0036] この発明に係る風力発電機主軸支持装置は、ブレードが取付けられた主軸を、ハ ウジングに設置された 1個または複数の軸受により支持し、上記いずれか一個または 複数の軸受を、この発明における上記の 、ずれかの構成の複列自動調心ころ軸受と したものである。その場合に、上記ブレードから遠い方の列の軸受部分を、近い方の 軸受部分よりも負荷容量が大きいもの、または定格寿命が寿命が長いものとする。 この構成とすることで、主軸支持軸受となる複列自動調心ころ軸受の実質軸受寿命 の向上効果が得られる。
図面の簡単な説明
[0037] この発明は、添付の図面を参考にして以下の好適な実施形態の説明力もより明瞭 に理解されるであろう。しカゝしながら、実施形態および図面は単なる図示および説明 のためのものであり、この発明の範囲を定めるために利用されるべきものではない。こ の発明の範囲は添付のクレームによって定まる。添付図面において、複数の図面に おける同一の部品番号は、同一部分を示す。
[図 1]この発明の第 1実施形態に力かる複列自動調心ころ軸受の部分断面図である。
[図 2]この発明の第 2実施形態にかかる複列自動調心ころ軸受の設置状態を示す部 分断面図である。
[図 3]この発明の第 3実施形態に力かる複列自動調心ころ軸受の設置状態を示す部 分断面図である。
[図 4]第 3実施形態の変形例にかかる複列自動調心ころ軸受の部分断面図である。
[図 5]この発明の第 4実施形態に力かる自動調心ころ軸受の部分断面図である。
[図 6]同自動調心ころ軸受の設置状態を示す部分断面図である。
[図 7]この発明の第 5実施形態に力かる自動調心ころ軸受の部分断面図である。
[図 8]第 5実施形態の変形例 1にかかる自動調心ころ軸受^ aの部分断面図である。
[図 9]第 5実施形態の変形例 2にかかる自動調心ころ軸受組の部分断面である。
[図 10]この発明の第 6実施形態に力かる複列自動調心ころ軸受を示す断面図である
[図 11]ころ長さ寸法の小さな球面ころと内輪軌道面との接触面に生じた接触だ円を 示す図解図である。
[図 12]この発明の第 7実施形態に力かる自動調心ころ軸受について、各列の球面こ ろと内輪軌道面との関係を説明するための図であり、 (a)は球面ころが内輪軌道面に 当接している状態を模式的に示し、 (b)は球面ころと内輪軌道面との間の接触部に 生じる接触だ円を示し、(c)は球面ころの両端部における荷重分布を示している。
[図 13]この発明の第 1一第 7実施形態に係る自動調心ころ軸受を用いた風力発電機 主軸支持装置の切欠斜視図である。
[図 14]同風力発電機主軸支持装置の破断側面図である。
[図 15]従来例の断面図である。
発明を実施するための最良の形態
この発明の第 1実施形態を図 1と共に説明する。この複列自動調心ころ軸受 1は、 内輪 2と外輪 3との間に複列に、いわゆる球面ころ 4, 5を介在させてある。各列のころ 4, 5は、それぞれ保持器 6により保持されている。保持器 6は、各列毎に別個に設け られたものである。外輪 3の軌道面 3aは球ころ状とし、各列のころ 4, 5の外周面は、 外輪 3の軌道面 3aに沿う断面形状、すなわち軌道面 3aに沿った円弧をころ中心線 C 1, C2まわりに回転させた回転曲面としてある。外輪 3は、外径面における両列間の 中間に油溝 7を有し、油溝 7から内径面に貫通する油孔 8が、円周方向の 1箇所また は複数箇所に設けられている。内輪 2は、各列のころ 4, 5の外周面に沿う断面形状 の複列の軌道面 2a, 2bを有し、両軌道面 2a, 2bの間、および両端に、鍔 9一 11がそ れぞれ設けられている。内輪 2は、鍔無しのものであっても良い。
[0039] 左右の列のころ 4, 5は、中心線 CI, C2に沿ったころ長さ LI, L2が互いに異なるも のとされ、かつ左右の列の軸受部分 la, lbは、互いに接触角 0 1, 0 2が異なるもの とされている。この場合に、ころ長さの大きなころ 5の列に対応する軸受部分 lbの接 触角 Θ 2の方が、ころ長さの小さなころ 4の列の軸受部分 laの接触角 θ 1よりも大きく 設定されている。両列のころ 4, 5の外径は、例えば最大径が同じとされる。両列のこ ろ 4, 5の外径は、互いに異なっていても良い。例えば、ころ長さの大きなころ 5の方が 、ころ長さの小さなころ 5よりも外径が大きくされて 、ても良 、。
[0040] この構成の複列自動調心ころ軸受 1は、左右の列に非対称の負荷が作用する用途 、例えば片方の列にスラスト荷重とラジアル荷重とを受け、もう片方の列には殆どラジ アル荷重のみを受けるような用途に用いられる。具体的には、風力発電機の主軸支 持軸受等に用いられる。その場合に、スラスト荷重を負荷する列を、接触角 Θ 2が大 きぐかっころ長さ L2が大きなころ 5の列とする。なお、各列のころ 4, 5自体の形状は 、非対称ころであっても、また非対称ころでなくても良い。
[0041] このように、スラスト負荷列について、接触角 0 2を大きくし、かっころ 5のころ長さ L 2を大きくすることによって、スラスト負荷負荷能力を大きくしたため、転がり疲労寿命 が向上する。反対側の列は、接触角 θ 1を小さくし、かっころ 4のころ長さ L1を小さく したため、ころ 4と軌道面 2a, 3aとの接触応力が大きくなり、かっころ 4の自重が軽く なることで、滑りが軽減される。そのため、軽負荷でも、ころ 4の滑りが生じ難ぐ表面 損傷を生じ難い。これらの作用から、総合的に、風力発電機主軸支持軸受等となる 複列自動調心ころ軸受 1の実質寿命が向上する。
[0042] 図 2は、この発明の第 2実施形態を示す。この複列自動調心ころ軸受 1Aは、図 1に 示した第 1実施形態の複列自動調心ころ軸受 1において、外輪 3を、軸方向に並ぶ 2 つの分割外輪 3A, 3B〖こ、両列の間で分割したものである。両分割外輪 3A, 3Bは、 自然状態、つまり両分割外輪 3A, 3Bの球面状の軌道面 3Aa, 3Baが同じ球面上に 位置する状態で、互いの間に隙間 dが生じるように設けられる。この複列自動調心こ ろ軸受 1Aは、軸受ハウジング 20に設置した状態で、予圧付与手段 21によって、両 側の分割外輪 3A, 3Bの隙間 dが狭まるように予圧が付与される。予圧付与手段 21 には、ばね部材または締め付けねじ等が用いられる。ばね部材を用いる場合、例え ば円周方向複数箇所に配置されて外輪 3の端面に接する圧縮ばねとされる。予圧付 与手段 21は、小さ 、方のころ 4側の外輪分割体 3A力 付与するようにすることが好 ましい。
[0043] このように、外輪 3を分割構造とすると、非対称形状の外輪 3を簡単に製造すること ができる。また、外輪 3を分割構造として予圧を与えることで、ころ 4の滑りを積極的に 抑帘 Uすることができる。
この第 2実施形態におけるその他の構成,効果は、第 1実施形態と同じであり、対 応部分に同一符号を付してある。
[0044] なお、図 2の例のように、外輪 3を分割する構成に加えて、図 3に変形例として示す 複列自動調心ころ軸受 1Bのように、内輪 2も、軸方向に並ぶ 2つの分割内輪 2A, 2B に分割しても良い。内輪 2を分割すると、左右非対称な内輪 2の製造が容易になる。
[0045] 図 4は、この発明の第 3実施形態を示す。この複列自動調心ころ軸受 1Cは、片方 の列のころ 4を、中心に孔 4bを有する中空ころとしたものである。この例では、左右の 列の接触角 0 1, 0 2を互いに同じとし、かつ両列のころ 4, 5のころ長さおよび外径を 同じとしている。その他の構成は、図 1に示す第 1実施形態と同じである。
[0046] この第 3実施形態の場合、片方の列のころ 4が中空ころとされることで、ころ 4の材料 が節減される。また、この列のころ 4に作用する負荷が小さくても、ころ 4の自重が軽く なることによって滑りが軽減され、摩耗、表面損傷が軽減される。
[0047] 次に、この発明の第 4実施形態を図 5,図 6と共に説明する。この自動調心ころ軸受 1Dは、複列の自動調心ころ軸受であって、軸受 1Dの全体を、左右の列毎の軸受分 割体 IDA, 1DBに分割し、左右の軸受分割体 IDA, 1DBにおける負荷または寿命 に関係する構成要素を互いに異ならせたものである。
[0048] この自動調心ころ軸受 1Dは、内輪 2と外輪 3との間に複列にころ 4を介在させ、外 輪 3の軌道面 3aを球面状とし、ころ 4の外周面を外輪 3の軌道面に沿う形状とした複 列の軸受である。内輪 2および外輪 3は、左右の分割内輪 2A, 2B、および分割外輪 3A, 3Bにそれぞれ分割されており、上記各軸受分割体 IDA, 1DBは、それぞれ分 割内輪 2A, 2B、分割外輪 3A, 3B、および単列のころ 4を有する。各列のころ 4は、 それぞれの軸受分割体 IDA, 1DBに設けられた環状の保持器 15のポケット 15a内 に保持されている。内輪 2は、両端、および両列のころ 4の間に鍔 2b, 2cを有するも のであり、中央の鍔 2cは、各分割内輪 2A, 2Bに設けられた分割鍔 2ca, 2cbが合わ さって構成されている。
[0049] 左右の軸受分割体 IDA, 1DBの形状および寸法は、この実施形態では、互いに 同じものとされている。左右の軸受分割体 IDA, 1DBにおいて、互いに異ならせる 負荷または寿命に関係する構成要素は、材質、表面改質処理、および表面粗さのい ずれかであり、そのうちの一つまたは複数が異なるものとされる。
[0050] これら材質、表面改質処理、および表面粗さの!/、ずれかを異ならせる場合に、分割 内輪 2A, 2B、分割外輪 3A, 3B、およびころ 4のうちの少なくとも一つについて異な らせる。表面改質処理および表面粗さについては、分割内輪 2A, 2Bおよび分割外 輪 3A, 3Bの場合は軌道面 2a, 3a、ころ 4の場合は外周面力もなる転動面について 、表面改質処理または表面粗さを変える。どの部位について変えるかの組み合わせ は自在であり、例えば、分割内輪 2A, 2Bと分割外輪 3A, 3Bとについて、材質、表 面改質処理、および表面粗さのいずかを異ならせて、ころ 4は左右の列で同じとして も良ぐまた内輪 2A, 2B、分割外輪 3A, 3B、およびころ 4の全てについて、材質、 表面改質処理、および表面粗さの 、ずれかを異ならせても良 、。
[0051] 材質を異ならせる場合、軽負荷側は、軸受として一般に用いられる安価な材料、例 えば高炭素クロム鋼 CFIS規格の SUJ材)を用いる。重負荷側には、硬度または転がり 疲労寿命が軽負荷側よりも優れた材質を用いる。軽負荷側が高炭素クロム鋼である 場合、重負荷側は、例えば高清浄度鋼 (VP材)や、高速度鋼 (M50材)、または次の 各鋼材 (1)ズ2)等を用いる。これらの材質は、内輪 2、外輪 3、およびころ 4のいずれに ついても適用できる。
[0052] 上記鋼材 (1)ズ2)は、いずれも特開 2000— 204444号公報に開示されたものであり 、異物混入環境下や高温環境下においても、優れた転動疲労寿命を有する。
鋼材 (1)の成分は、合金元素の含有量が質量%で、 Cを 0. 6%以上 1. 3%以下、 S iを 0. 3%以上 3. 0%以下、 Mnを 0. 2%以上 1. 5%以下、 Pを 0. 03%以下、 Sを 0 . 03%以下、 Crを 0. 3%以上 5. 0%以下、 Niを 0. 1%以上 3. 0%以下、 A1を 0. 0 50%以下、 Tiを 0. 003%以下、 Oを 0. 0015%以下、 Nを 0. 015%以下含み、残 部が Feおよび不可避不純物力もなる。この鋼材 (1)は、焼入れ処理後または浸炭窒 化処理後に焼戻し処理された構成を有し、かつ前記焼戻し処理後の硬さが HRC58 以上であり、かつ最大の炭化物寸法が 8 m以下であることが好ましい。前記鋼材 (1) は、質量%で、 0. 05%以上 0. 25%未満の Moおよび 0. 05%以上 1. 0%以下の Vの少なくとも一種をさらに含んでいるものであっても良い。
[0053] 鋼材 (2)の成分は、合金元素の含有量が質量%で、 Cを 0. 6%以上 1. 3%以下、 S iを 0. 3%以上 3. 0%以下、 Mnを 0. 2%以上 1. 5%以下、 Pを 0. 03%以下、 Sを 0 . 03%以下、 Crを 0. 3%以上 5. 0%以下、 Niを 0. 1%以上 3. 0%以下、 A1を 0. 0 50%以下、 Tiを 0. 003%以下、 Oを 0. 0015%以下、 Nを 0. 015%以下で各元素 を少なくとも含み、残部が Feからなる。この鋼材 (2)は、焼入れ処理後または浸炭窒 化処理後に焼戻し処理された構成を有し、かつ前記焼戻し処理後の硬さが HRC58 以上であり、かつ最大の炭化物寸法が 8 μ m以下であることが好ましい。
[0054] 表面改質処理を異ならせる場合、例えば、軽負荷側は一般的な焼入れ等の熱処 理を施したものとするか、あるいは特に表面処理を施さないものとする。重負荷側は、 軽負荷側よりも表面硬度を高めるための表面改質処理を施す。表面硬度を高めるた めの処理としては、窒化処理、ショットピー-ング、ダイヤモンドカーボン処理(DLC 処理)等が採用できる。ショットピー-ングは、熱処理後に行われるが、圧縮残留応力 を与えることで硬度を高めることができる。
[0055] 表面粗さを異ならせる場合、軽負荷側は、例えば RaO. 2— 0. 25程度とし、重負荷 側は RaO. 16以下、好ましくは、 RaO. 10以下、または RaO. 05以下とする。 RaO. 1 0—0. 13、または RaO. 13—0. 16の程度であっても良い。この表面粗さの範囲は、 重負荷側の分割内輪 2B,分割外輪 3Bの軌道面、およびころ 4の転動面のいずれに ついても適用できる。表面粗さを小さくすると、加工に手間が力かるが、潤滑性が良く なり、耐久性が向上する。
[0056] 両分割外輪 3A, 3Bは、自然状態、つまり両分割外輪 3A, 3Bの球面状の軌道面 3 aが同じ球面上に位置する状態で、互いの間に隙間 dが生じるように設けられる。この 自動調心ころ軸受 IDは、図 6のように軸受ハウジング 20に設置した状態で、予圧付 与手段 21によって、両側の分割外輪 3A, 3Bの隙間 dが狭まるように予圧が付与され る。予圧付与手段 21には、ばね部材または締め付けねじ等が用いられる。ばね部材 を用いる場合、例えば円周方向複数箇所に配置されて外輪 3の端面に接する圧縮 ばねとされる。予圧付与手段 21は、軽負荷側の外輪分割体 3Aから付与するよう〖こ することが好ましい。このように予圧を与えるようにした場合、ころ 4の滑りを積極的に 抑帘 Uすることができる。
[0057] 上記第 4実施形態に係る自動調心ころ軸受 1Dによると、左右の列の軸受分割体 1 DA, 1DBにおける負荷または寿命に関係する構成要素を互いに異ならせたため、 左右の列に非対称の負荷が作用する用途に用いられた場合に、負荷に応じた適正 な支持が各列で行える。これにより、軽負荷側の列で、負荷容量や定格寿命の余裕 が大きくなり過ぎて材料ゃ改質処理,加工等の無駄が生じることが防止できる。軸受 1Dを左右の軸受分割体 IDA, 1DBに分割するため、このような左右の列で互いに 負荷または寿命に関係する構成要素を異ならせることが簡単に行える。また、重負荷 側の軸受分割体 1DBのみに、特殊な材料や、表面改質処理、表面粗さの向上加工 を行えば良いため、軸受 1Dの全体にこれらの材料,表面改質処理、表面粗さ向上 加工を行う場合に比べて製造コストが低減される。特に、後に示すような風力発電機 の主軸支持軸に適用した場合は、その風力で主軸に作用する特性に応じた適正な 支持が行えて、実質寿命の延長効果が高い。
[0058] 図 7は、この発明の第 5実施形態を示す。この第 5実施形態の自動調心ころ軸受 1E は、左右の列の軸受分割体 1EA, 1EBの間で互いに異ならせる負荷または寿命に 関係する構成要素の一つを、左右の軸受分割体 1EA, 1EBの軸方向寸法、および ころ 4の軸方向寸法としたものである。この例では、重負荷側の分割内輪 2Bおよび分 割外輪 3Bの軸方向幅を、軽負荷側の分割内輪 2Aおよび分割外輪 3Aよりも長くし、 かつ重負荷側のころ 4の長さを、軽負荷側のころ 4よりも長くしてある。これに伴い、左 右の列の軸受分割体 1EA, 1EBは、互いに接触角 0 a, 0 bが異なるものとされてい る。この場合に、ころ長さの大きなころ 4の列に対応する軸受分割体 1EBの接触角 Θ bの方が、ころ長さの小さなころ 4の列の軸受分割体 1EAの接触角 Θ aよりも大きく設 定されている。両列のころ 4の外径は、例えば最大径が同じとされる。両列のころ 4の 外径は、互いに異なっていても良い。例えば、ころ長さの大きなころ 4の方力 ころ長 さの小さなころ 4よりも外径が大きくされて 、ても良 、。
[0059] 左右の軸受分割体 1EA, 1EBの材質、表面改質処理、および表面粗さについて は、互いに同じとしても良ぐまた重負荷側の軸受分割体 1EBにっき、上記実施形態 と同じく軽負荷側の軸受分割体 1EAよりも優れたものとしてもよい。この第 5実施形態 における他の構成は、第 4実施形態と同じである。
[0060] この第 5実施形態の場合、片方の列の軸受分割体 1EB列のころ 4のころ長さを大き くし、また接触角 Θ bを大きくしたため、スラスト負荷負荷能力が大きくなり、転がり疲 労寿命が向上する。反対側の列は、接触角 Θ aを小さくし、かっころ 4のころ長さを小 さくしたため、ころ 4と軌道面 2a, 3aとの接触応力が大きくなり、かっころ 4の自重が軽 くなることで、滑りが軽減される。そのため、軽負荷でも、ころ 4の滑りが生じ難ぐ表面 損傷を生じ難い。これらの作用から、総合的に、風力発電機主軸支持軸受等となる 複列自動調心ころ軸受 1Eの実質寿命が向上する。左右の軸受分割体 1EA, 1EB の材質、表面改質処理、および表面粗さのいずれかを上記のように異ならせた場合 は、さらに自動調心ころ軸受 1Eの実質寿命が向上する。
[0061] また、自動調心ころ軸受 1Eを 2つの軸受分割体 1EA, 1EBに分割した構造とした ため、このような左右非対象の自動調心ころ軸受 1Eを簡単に製造することができ、ま た重負荷側の軸受分割体 1EBだけをころ長さの大きなものとすれば良いため、軸受 全体を大寸法のものにする場合に比べて材料の無駄がなく、コスト低下が図れる。
[0062] なお、上記第 4一第 5実施形態は、いずれも、複列自動調心ころ軸受 1Dおよび 1E を分割した構造のものとした力 図 8または図 9に示すように、単列の自動調心ころ軸 受 IOC, 10Dを軸方向に 2個並べて設けた自動調心ころ軸受組 10としても良い。こ の場合に、両側の単列の自動調心ころ軸受 IOC, 10Dにおける負荷または寿命に 関係する構成要素を互いに異ならせたものとする。両側の外輪 3の軌道面 3aは、略 同一の球面上に沿うものとする。
[0063] 図 8の変形例 1は、両側の単列の自動調心ころ軸受 IOC, 10Dを、相互間で寸法 が互いに等しぐ材質、表面改質処理、および表面粗さのいずれかを相互の間で異 ならせたものである。材質、表面改質処理、および表面粗さをどのように異ならせるか は、図 5,図 6に示した第 4実施形態と同様である。
[0064] 図 9の変形例 2は、両側の単列の自動調心ころ軸受 10E, 10Fを、相互間で内外 輪 2, 3の軸方向寸法、およびころ 4の軸方向寸法を互いに異ならせたものである。
[0065] この変形例 1および 2のように、単独で機能する単列の自動調心ころ軸受を 2個並 ベて設け、その 2個の単列自動調心ころ軸受 IOC, 10Dまたは 10Eおよび 10Fを、 負荷または寿命に関係する構成要素が互いに異なるものとしても、上記のような左右 の列の非対称負荷に対して、負荷に応じた適正な支持が各列で行えて、実質寿命を 延長することができ、また材料に無駄のない経済的なものにできるという効果が得ら れる。傷が軽減される。
[0066] 図 10および図 11を参照して、この発明の第 6実施形態に係る複列自動調心ころ軸 受を説明する。
[0067] 複列自動調心ころ軸受 1Fは、内輪 22と、外輪 26と、両軌道輪の間に複列に配置 した球面ころ 12, 13と、これらのころ 12, 13を保持する保持器 14とを備える。保持器 14は、各列毎に別個に設けられたものである。外輪 26の軌道面 26aは球面状に形 成されており、各列のころ 12, 13の外周面は、外輪 26の軌道面 26aに沿う球面形状 を有している。
[0068] 外輪 26は、その外径面における中間位置に油溝 7Aを有し、さらに油溝 7Aから内 径面にまで貫通する油孔 8Aを有している。油孔 8Aは、円周方向の 1箇所または複 数箇所に設けられている。
[0069] 図示した実施形態における内輪 22は、幅方向の両端に外鍔 24, 25を有し、また中 間に中鍔 23を有している。なお、他の実施形態として、鍔無しの内輪を用いることも 可能である。内輪 22は、各列のころ 12, 13の外周面に沿う断面形状の複列の軌道 面 22a, 22bを有している。
[0070] 左右の列のころ 12, 13の中心線 CI, C2に沿ったころ長さ寸法に注目すると、図中 右側列のころ 13の長さ寸法 L2は、左側列のころ 12の長さ寸法 L1よりも大きくされて いる。また、図示した実施形態では、左右の列の軸受部分 10a, 10bは、互いに接触 角 0 1, 0 2が異なるものとされる。この場合、長さ寸法の大きなころ 13の列に対応す る軸受部分 10bの接触角 Θ 2の方が、長さ寸法の小さなころ 12の列の軸受部分 10a の接触角 Θ 1よりも大きく設定されている。
[0071] 両列のころ 12, 13の外径は、例えば最大径が同じとされる。変更例として、両列の ころ 12, 13の外径を互いに異ならせてもよい。例えば、長さ寸法の大きなころ 13の 方が、長さ寸法の小さなころ 12よりも大きな外径を有するようにしてもよい。各列のこ ろ 12, 13の形状に関しては、ころの最大径の位置がころ長さの中央に位置する対称 ころであってもよ!/、し、ころの最大径の位置がころ長さの中央から外れて!/、る非対称 ころであってもよい。
[0072] 図 11は、小さなころ長さ寸法 L1を有するころ 12が、内輪 22の軌道面 22a上に位置 して 、る状態を模式的に示して 、る。ころ 12と内輪 22の軌道面 22aとが荷重を受け ると、その接触面は弾性変形し、接点の周りにだ円形の接触面、すなわち接触だ円 2 7aが生じる。図示していないが、ころ 13と外輪 26の軌道面 26aとの接触面において も同様の接触だ円が生じる。ころ 12のころ長さ寸法 L1は、接触だ円 27aの長径 Aより も大きくなるようにされて ヽる。
[0073] 上記構成の複列自動調心ころ軸受 1Fは、左右の列に非対称の負荷が作用する用 途、例えば一方の列にスラスト荷重とラジアル荷重とを受け、他方の列にはもっぱらラ ジアル荷重のみを受けるような用途に用いられる。この場合、スラスト荷重およびラジ アル荷重を受ける高負荷列側にころ長さ寸法の大きなころ 13を用い、もっぱらラジア ル荷重のみを受ける軽負荷側列にころ長さ寸法の小さなころ 12を用いる。
[0074] 上記のように、高負荷側列にころ長さ寸法の大きなころ 13を配置し、軽負荷側列に ころ長さ寸法の小さなころ 12を配置することにより、各列の負荷状況に応じた適正な 支持を行なうことができる。すなわち、高負荷側列では負荷能力が増大しているので 、転がり疲労寿命が向上する。また、軽負荷側列ではころ長さ寸法の小さなころ 12と 軌道面 26a, 22aとの接触応力が大きくなり、かっころの自重が小さくなるので滑りが 軽減される。
[0075] さらに、ころ長さ寸法を小さくしたころ 12においても、そのころ長さ寸法 L1は接触だ 円 27aの長径 Aよりも大きいので、使用時におけるラジアル荷重に十分に耐えること ができる。 [0076] 図 12は、この発明の第 7実施形態にかかる自動調心ころ軸受について、各列のこ ろと、それに接する内輪軌道面との関係を説明するための図である。(a)は、ころが 内輪軌道面に当接している状態を模式的に示し、(b)は、ころと内輪軌道面との間の 接触部に生じる接触だ円を示し、(c)は、ころの両端部における荷重分布を示してい る。
[0077] 図 12 (a)に示すように、ころ長さの小さな左列のころ 12の稜線の曲率半径、つまり 中心線 CI, C2 (図 10)を含む断面に表れる外形線の曲率半径を Rl、ころ長さの大 きな右列のころ 13の稜線の曲率半径を R2、左列の内輪軌道面 22aの曲率半径を N 1、右列の内輪軌道面 22bの曲率半径を N2とすると、次の寸法関係が成立するよう にする。ここで、ころ 12, 13の稜線とは球面 12, 13の中心線 CI, C2を含む断面に 表れる外形線をいう。
[0078] N1/RKN2/R2
上記の寸法関係を得るには、次の 、ずれかの設計をすればょ 、。
[0079] (1)左右の列のころ 12, 13の稜線の曲率半径を異ならせる。図示した実施形態で は、ころ長さの小さな左列のころ 12の曲率半径 R1を、ころ長さの大きな右列のころ 1 3の曲率半径 R2よりも大きくする。
[0080] (2)左右の列の内輪軌道面 22a, 22bの曲率半径を異ならせる。図示した実施形 態では、右列の内輪軌道面 22bの曲率半径を左列の内輪軌道面 22aよりも大きくす る。
[0081] (3)上記の(1)および(2)の両者を実施する。
[0082] ころと内輪軌道面とが荷重を受けると、その接触面は弾性変形し、接点の周りにだ 円形の接触面が生じる。このだ円形の接触面が接触だ円である。内輪軌道面の曲率 半径 Nところの稜線の曲率半径 Rとの比率 NZRが相対的に小さくて 1に近いと、運 転時の接触だ円の大きさが大きくなり、一方、 NZRの値が相対的に大きくなると運転 時の接触だ円の大きさが小さくなる。
[0083] 従って、図 12 (b)に示すように、ころ長さの大きな右列のころ 13と右列の内輪軌道 面 22bとの間の接触部に生じる接触だ円 27aの大きさは相対的に小さくなる。接触だ 円 27aの大きさが小さくなれば、図 12 (c)に示す面圧分布ようにころ 13の両端部に おけるエッジロードが低減する。
[0084] ころ長さの小さな左列のころ 12と左列の内輪軌道面 22aとの間の接触部に生じる 接触だ円 27aの大きさは相対的に大きくなる。接触だ円 27aの大きさが大きくなれば 、内輪から伝達されるころの駆動力が大きくなるため、ころの姿勢は安定しやすい。ま た、スキューの回転軸となる部分が広いため、摩擦抵抗によりスキューは抑えられる。 図 12 (c)に示すように、エッジ応力が大きくなる力 負荷荷重が小さいため問題には ならない。
[0085] 上記構成の複列自動調心ころ軸受 1Fは、左右の列に非対称の負荷が作用する用 途、例えば一方の列にスラスト荷重とラジアル荷重とを受け、他方の列にはもっぱらラ ジアル荷重のみを受けるような用途に用いられる。この場合、スラスト荷重およびラジ アル荷重を受ける高負荷列側にころ長さが大きなころ 13を用い、もっぱらラジアル荷 重のみを受ける軽負荷側列にころ長さの小さなころ 12を用いる。
[0086] 上記のように、高負荷側列にころ長さの大きなころ 13を配置し、軽負荷側列にころ 長さの小さなころ 12を配置することにより、各列の負荷状況に応じた適正な支持を行 なうことができる。すなわち、高負荷側列では負荷能力が増大しているので、転がり疲 労寿命が向上する。また、軽負荷側列ではころ長さの小さなころ 12と軌道面 22a, 26 aとの接触面積が広くなり、かっころの自重が小さくなるので滑りが軽減される。
[0087] さらに、ころ長さを大きくした高負荷側列のころ 13のエッジ応力を低減するために、 内輪軌道面 22bの曲率半径 N2ところ 13の稜線の曲率半径 R2との比率 N2ZR2を 相対的に大きくして接触だ円の大きさを小さくしているので、高負荷側列におけるこ ろの寿命をより延ばすことが期待できる。ころ長さ寸法を小さくした軽負荷側列のころ 12に対しては、内輪軌道面 22aの曲率半径 N 1ところ 12の稜線の曲率半径 R1との 比率 N1ZR1を相対的に小さくして接触だ円の大きさを大きくしてスキューに対する 摩擦抵抗を大きくしているので、スキューを効果的に抑制できる。
[0088] この発明は、左右の列のころに不均等な荷重が作用する複列自動調心ころ軸受ぉ よびそのような軸受を備えた風力発電機の主軸支持構造に有利に利用され得る。
[0089] 図 13,図 14は、この発明の第 1一第 7実施形態に係る複列自動調心ころ軸受を用 いた風力発電機主軸支持装置の一例を示す。支持台 31上に旋回座軸受 32 (図 14 )を介してナセル 33のケーシング 33aが水平旋回自在に設置されて!、る。ナセル 33 のケーシング 33a内には、軸受ハウジング 34に設置された主軸支持軸受 35を介して 主軸 36が回転自在に設置され、主軸 36のケーシング 33a外に突出した部分に、旋 回翼となるブレード 37が取付けらている。主軸 36の他端は、増速機 38に接続され、 増速機 38の出力軸が発電機 39のロータ軸に結合されている。ナセル 33は、旋回用 モータ 40により、減速機 41を介して任意の角度に旋回させられる。
[0090] 主軸支持軸受 35は、図示の例では 2個並べて設置してあるが、 1個であっても良い 。この主軸支持軸受 35に、上記第 1一第 7実施形態のいずれかの複列自動調心ころ 軸受 1, 1A, IB, 1C, ID, IE, 1Fが用いられる。この場合、ブレード 37から遠い方 の列のころに大きな負荷が力かるので、ころ長さ寸法の大きなころを用いる。ブレード 37に近い方の列のころには主としてラジアル荷重のみが加わるので、ころ長さ寸法 の小さなころを用いる。
[0091] 風力発電機の風車が静止する無風状態においては、大きなラジアル荷重が作用 するので、この荷重に耐えられるようにするために、ブレード 37に近い方の列に位置 するころのころ長さ寸法を、このころと軌道輪との接触面に生ずる接触だ円の長径よ りも大きくする。
[0092] さらに、図 12に示すように、ブレード 37に近い方の列のころの稜線の曲率半径を R 1、ブレード 37に遠い方の列のころの稜線の曲率半径を R2、ブレードに近い方の列 の内輪軌道面の曲率半径を N1、ブレードに遠い方の列の内輪軌道面の曲率半径 を N2としたとき、次の寸法関係が成立するように設計する。
[0093] N1/RKN2/R2
なお、図示した実施形態では、左右の列のころのころ長さを異ならせていたが、他 の実施形態として、左右の列のころのころ長さを同じにしてもょ 、。
[0094] この発明は、左右の列のころに不均等な荷重が作用する複列自動調心ころ軸受ぉ よびそのような軸受を備えた風力発電機の主軸支持構造に有利に利用され得る。
[0095] このように風力発電機の主軸支持軸受 35に、上記実施形態の複列自動調心ころ 軸受 1, 1A, IB, 1C, ID, IE, 1Fを適用した場合、ブレード 37に対して遠い方の 列がスラスト荷重負荷列となる。そのため、このスラスト荷重負荷列側に、ころ幅の大 きい列が配置されるように複列自動調心ころ軸受 1, 1A, IB, 1Eを設置する。図 4の 第 3実施形態の複列自動調心ころ軸受 1Cを使用する場合は中実のころ 4側の列を スラスト荷重負荷列側とする。
[0096] このように風力発電機の主軸支持軸受 35に、例えば、上記実施形態の複列自動 調心ころ軸受 1Dを適用した場合、ブレード 37に対して遠い方の列がスラスト荷重負 荷列となる。そのため、このスラスト荷重負荷列側に、負荷容量の大きい、あるいは定 格寿命の長!ヽ軸受分割体 1DBが配置されるように複列自動調心ころ軸受 1Dを設置 する。
[0097] なお、上記主軸支持軸受 35として、図 8,図 9等に示す単列の自動調心ころ軸受 1 OC, 10Dまたは 10E, 10Fを並べた自動調心ころ軸受組 10を用いても良い。
[0098] 以上のとおり、図面を参考しながら好適な実施形態を説明したが、当業者であれば 、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するで あろう。したがって、そのような変更および修正は、添付のクレーム力 定まるこの発 明の範囲内のものと解釈される。

Claims

請求の範囲
[I] 内輪と外輪との間に複列に球面ころを配置した複列自動調心ころ軸受であって、左 右の列の軸受部分における負荷容量を互いに異ならせた複列自動調心ころ軸受。
[2] 請求項 1において、左右の列のころを、互いに寸法および形状の少なくとも片方が異 なるものとした複列自動調心ころ軸受。
[3] 請求項 1において、
左右の列のころを、互いにころ長さが異なるものとした複列自動調心ころ軸受。
[4] 請求項 1において、
左右いずれか片方の列のころを、中心に孔を有する中空ころとした複列自動調心こ ろ軸受。
[5] 請求項 1において、
左右の列の接触角を互 、に異ならせた複列自動調心ころ軸受。
[6] 請求項 1において、
左右の列のころを、互いにころ長さが異なるものとし、かつ左右の列の接触角を互 いに異ならせた複列自動調心ころ軸受。
[7] 請求項 1にお 、て、外輪を、軸方向に並ぶ 2つの分割外輪に分割した複列自動調心 ころ軸受。
[8] 請求項 7において、 2つの分割外輪の間に隙間を設け、これら分割外輪間に予圧を 負荷した複列自動調心ころ軸受。
[9] 請求項 1にお 、て、風力発電機のブレードが取付けられた主軸を支持する主軸支持 軸受として使用されるものである複列自動調心ころ軸受。
[10] ブレードが取付けられた主軸を、ノ、ウジングに設置された 1個または複数の軸受によ り支持し、上記いずれか一個または複数の軸受を、請求項 1に記載の複列自動調心 ころ軸受とし、この複列自動調心ころ軸受における上記ブレード力 遠い方の列の軸 受部分を、近い方の軸受部分よりも負荷容量が大きいものとした風力発電機主軸支 持装置。
[II] 内輪と外輪との間に複列にころを配置した複列自動調心ころ軸受であって、
軸受の全体を、それぞれ分割内輪、分割外輪、および単列のころを有する左右の 列毎の軸受分割体に分割し、左右の軸受分割体における負荷または寿命に関係す る構成要素を互いに異ならせた複列自動調心ころ軸受。
[12] 請求項 11にお!/、て、左右の列の軸受分割体の相互間で互いに異ならせる負荷また は寿命に関係する構成要素の一つ力 分割内輪、分割外輪、およびころのうちの少 なくとも一つの材質である複列自動調心ころ軸受。
[13] 請求項 11にお!/、て、左右の列の軸受分割体の相互間で互いに異ならせる負荷また は寿命に関係する構成要素の一つ力 分割内輪、分割外輪、およびころのうちの少 なくとも一つの軌道面またはころ転動面の表面改質処理である複列自動調心ころ軸 受。
[14] 請求項 11にお!/、て、左右の列の軸受分割体の相互間で互いに異ならせる負荷また は寿命に関係する構成要素の一つ力 分割内輪、分割外輪、およびころのうちの少 なくとも一つの軌道面またはころ転動面の表面粗さである複列自動調心ころ軸受。
[15] 請求項 11において、左右の列の軸受分割体およびそのころの寸法を互いに同じとし た複列自動調心ころ軸受。
[16] 請求項 11において、互いに異ならせる負荷または寿命に関係する構成要素の一つ 力 左右の軸受分割体の内外輪の軸方向寸法、およびころの軸方向寸法である複 列自動調心ころ軸受。
[17] 請求項 11において、 2つの分割外輪の間に隙間を設け、これら分割外輪間に予圧を 負荷した複列自動調心ころ軸受。
[18] 請求項 11に記載の自動調心ころ軸受であって、風力発電機のブレードが取付けら れた主軸を支持する主軸支持軸受として使用されるものである複列自動調心ころ軸 受。
[19] 単列の自動調心ころ軸受を軸方向に 2個並べて設けてなり、両側の単列自動調心こ ろ軸受における負荷または寿命に関係する構成要素を互いに異ならせた複列自動 調心ころ軸受糸且。
[20] 請求項 19に記載の自動調心ころ軸受であって、風力発電機のブレードが取付けら れた主軸を支持する主軸支持軸受として使用されるものである複列自動調心ころ軸 受組。
[21] ブレードが取付けられた主軸を、ノ、ウジングに設置された 1個または複数の軸受によ り支持し、上記いずれか一個または複数の軸受を、請求項 11に記載の自動調心ころ 軸受とし、この自動調心ころ軸受における上記ブレードから遠い方の列の軸受分割 体を、近い方の軸受分割体よりも、負荷容量が大きいもの、または定格寿命が長いも のとした風力発電機主軸支持装置。
[22] 請求項 1において、一方列のころのころ長さを Ll、他方列のころのころ長さを L2、一 方列のころと軌道輪との接触面に生ずる接触だ円の長径を Aとしたとき、
LKL2,
L1 >A
の寸法関係が成立する複列自動調心ころ軸受。
[23] 請求項 22に記載において、前記ころは、ころの最大径の位置がころ長さの中央に位 置する対称ころである、複列自動調心ころ軸受。
[24] 請求項 22に記載において、前記ころは、ころの最大径の位置がころ長さの中央から 外れている非対称ころである、複列自動調心ころ軸受。
[25] 請求項 1において、一方列のころの稜線の曲率半径を Rl、他方列のころの稜線の曲 率半径を R2、一方列のころに接する内輪軌道面の曲率半径を Nl、他方列のころに 接する内輪軌道面の曲率半径を N2としたとき、
N1/RKN2/R2
の寸法関係が成立する複列自動調心ころ軸受。
[26] 請求項 25において、前記一方列のころの曲率半径 R1は、前記他方列のころの曲率 半径 R2よりも大きい、複列自動調心ころ軸受。
[27] 請求項 25において、前記一方列のころに接する内輪軌道面の曲率半径 N1は、前 記他方列のころに接する内輪軌道面の曲率半径 N2よりも小さい、複列自動調心ころ 軸受。
[28] 請求項 25において曲率半径 R1の前記一方列のころは、曲率半径 R2の前記他方列 のころよりも、小さいころ長さを有している、複列自動調心ころ軸受。
PCT/JP2004/016977 2003-11-18 2004-11-16 複列自動調心ころ軸受および風力発電機主軸支持装置 WO2005050038A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES04818890.8T ES2339457T5 (es) 2003-11-18 2004-11-16 Cojinete de rodillos autoalineable de doble hilera y dispositivo de soporte de un árbol principal de generador de turbina eólica
DE602004025042T DE602004025042D1 (de) 2003-11-18 2004-11-16 Zweireihiges, selbstausrichtendes rollenlager und vorrichtung zur abstützung der hauptwelle eines windturbinengenerators
US10/579,567 US7918649B2 (en) 2003-11-18 2004-11-16 Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
EP04818890.8A EP1705392B2 (en) 2003-11-18 2004-11-16 Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003388314A JP4163596B2 (ja) 2003-11-18 2003-11-18 複列自動調心ころ軸受および風力発電機主軸支持装置
JP2003-388314 2003-11-18
JP2004015341A JP2005207517A (ja) 2004-01-23 2004-01-23 自動調心ころ軸受および風力発電機主軸支持装置
JP2004-015341 2004-01-23
JP2004-273030 2004-09-21
JP2004273030A JP2006090346A (ja) 2004-09-21 2004-09-21 複列自動調心ころ軸受および風力発電機の主軸支持構造
JP2004273029A JP2006090345A (ja) 2004-09-21 2004-09-21 複列自動調心ころ軸受および風力発電機の主軸支持構造
JP2004-273029 2004-09-21

Publications (1)

Publication Number Publication Date
WO2005050038A1 true WO2005050038A1 (ja) 2005-06-02

Family

ID=34623900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016977 WO2005050038A1 (ja) 2003-11-18 2004-11-16 複列自動調心ころ軸受および風力発電機主軸支持装置

Country Status (5)

Country Link
US (1) US7918649B2 (ja)
EP (1) EP1705392B2 (ja)
DE (1) DE602004025042D1 (ja)
ES (1) ES2339457T5 (ja)
WO (1) WO2005050038A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095953A1 (en) * 2006-02-24 2007-08-30 Vestas Wind Systems A/S Gearbox for a wind turbine, bearing and method of manufacturing a bearing
DE102007034570A1 (de) 2007-07-25 2009-01-29 Schaeffler Kg Wälzlager
WO2017022718A1 (ja) * 2015-08-06 2017-02-09 Ntn株式会社 複列自動調心ころ軸受
WO2017164325A1 (ja) 2016-03-24 2017-09-28 Ntn株式会社 複列自動調心ころ軸受
DE112016004227T5 (de) 2015-09-17 2018-06-14 Ntn Corporation Doppelreihiges selbstausrichtendes Wälzlager
WO2018131617A1 (ja) 2017-01-13 2018-07-19 Ntn株式会社 複列自動調心ころ軸受および飛出し止め治具
WO2018131618A1 (ja) 2017-01-13 2018-07-19 Ntn株式会社 複列自動調心ころ軸受
WO2019022161A1 (ja) 2017-07-28 2019-01-31 Ntn株式会社 複列自動調心ころ軸受
WO2019203265A1 (ja) 2018-04-20 2019-10-24 Ntn株式会社 複列自動調心ころ軸受
WO2020067334A1 (ja) * 2018-09-26 2020-04-02 Ntn株式会社 転がり軸受、および風力発電用主軸支持装置
US10655674B2 (en) 2016-03-24 2020-05-19 Ntn Corporation Double-row self-aligning roller bearing
US10697492B2 (en) 2017-01-13 2020-06-30 Ntn Corporation Double-row self-aligning roller bearing
US10808761B2 (en) 2016-03-24 2020-10-20 Ntn Corporation Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
US10883544B2 (en) 2017-01-13 2021-01-05 Ntn Corporation Double-row self-aligning roller bearing and protrusion prevention jig
CN113378319A (zh) * 2021-06-24 2021-09-10 宁波蓝海量子精工轴承制造有限公司 一种双端面不对称轴承套圈端面磨削留量的设计方法
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
US7922396B2 (en) * 2004-09-21 2011-04-12 Ntn Corporation Double row self-aligning roller bearing and main shaft support structure of wind power generator
US20080118344A1 (en) * 2005-01-25 2008-05-22 Naoki Matsumori Helical Gear Supporting Structure, Speed Increaser for Wind Power Generator, and Vertical Shaft Supporting Structure
EP1927795A1 (en) * 2006-11-28 2008-06-04 Darwind Development & Demonstration BV Oil seal device
US7675211B2 (en) * 2007-03-06 2010-03-09 General Electric Company Method of assembling a rotor shaft assembly
US20090014977A1 (en) * 2007-07-10 2009-01-15 Molenaar Kelly J Control arm for vehicles
DE102007041508A1 (de) 2007-08-31 2009-03-05 Schaeffler Kg Rotorlagerung für eine Windenergieanlage
EP2096303A1 (en) * 2008-02-29 2009-09-02 Darwind Holding B.V. Windturbine comprising a bearing seal
JP5564505B2 (ja) * 2008-08-27 2014-07-30 アクティエボラゲット・エスコーエッフ ポッド推進システムのための軸受
CA2694124C (en) * 2010-02-12 2012-11-27 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
EP2426355A1 (en) * 2010-02-12 2012-03-07 Mitsubishi Heavy Industries, Ltd. Step-up gear for a wind-powered electrical generator, and wind-powered electrical generator
DE102010008061A1 (de) * 2010-02-16 2011-12-15 Erwin Becker Umlaufrollenwindturbine und Verfahren zur Stromerzeugung aus Windenergie
WO2011135703A1 (ja) 2010-04-28 2011-11-03 三菱重工業株式会社 ダイレクトドライブ型風力発電装置、及び、軸受構造
DE102010054321A1 (de) 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotorlagerung einer Windkraftanlage
DE102010054318A1 (de) 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotorlagerung einer Windkraftanlage
CN103314119B (zh) * 2011-01-21 2015-09-02 Ntn株式会社 套圈的制造方法、套圈及滚动轴承
DE102011003513A1 (de) * 2011-02-02 2012-08-02 Aktiebolaget Skf Wälzlager
DE102011086925A1 (de) 2011-11-23 2013-05-23 Schaeffler Technologies AG & Co. KG Zweireihiges Pendelrollenlager
CN102536685A (zh) * 2011-12-27 2012-07-04 国电联合动力技术(连云港)有限公司 一种紧凑型的风力发电机组传动链装置
CN102619875B (zh) * 2012-04-10 2014-05-07 济南轨道交通装备有限责任公司 一种风力发电机主轴调心滚子轴承及其设计方法
DE102012210419A1 (de) 2012-06-20 2013-12-24 Aktiebolaget Skf Vorrichtung mit wenigstens einem Pendelrollenlager und Verfahren
DE102012214432A1 (de) * 2012-08-14 2014-06-12 Schaeffler Technologies Gmbh & Co. Kg Fahrmischergetriebe
WO2014062922A1 (en) * 2012-10-18 2014-04-24 Schaeffler Technologies AG & Co. KG Roller bearing for wind turbines
BR102014026410A2 (pt) * 2013-11-07 2016-10-04 Skf Ab disposição de mancal para aplicação de maquinário de fluido
DE102014213789A1 (de) 2014-07-16 2016-01-21 Schaeffler Technologies AG & Co. KG Zweireihiges Pendelrollenlager
US10385822B2 (en) * 2014-09-26 2019-08-20 Aktiebolaget Skf Wind turbine rotor shaft arrangement
US9732793B2 (en) * 2015-04-09 2017-08-15 Aktiebolaget Skf Bearing and bearing arrangement
US9797440B2 (en) * 2015-04-09 2017-10-24 Aktiebolaget Skf Bearing
US9850942B2 (en) * 2015-04-09 2017-12-26 Aktiebolaget Skf Bearing and bearing arrangement
US9909453B2 (en) 2015-05-19 2018-03-06 General Electric Company Lubrication system for a turbine engine
US10415429B2 (en) 2015-09-25 2019-09-17 General Electric Company Planet gearbox with cylindrical roller bearing with high density roller packing
US10234018B2 (en) 2015-10-19 2019-03-19 General Electric Company Planet gearbox with cylindrical roller bearing with under race lube scheme
CN108350944A (zh) * 2015-10-29 2018-07-31 Ntn株式会社 生产轴承环的方法、双列圆锥滚子轴承以及生产双列圆锥滚子轴承的方法
ITUB20156062A1 (it) 2015-12-01 2017-06-01 Gen Electric Alloggiamento per l'uso in un motore a turboventilatore e procedimento di lavaggio di fluido da esso.
DE102016210046B4 (de) * 2016-06-08 2018-05-03 Schaeffler Technologies AG & Co. KG Lagerung eines Schiffsantriebs
CN106438683A (zh) * 2016-10-28 2017-02-22 国电联合动力技术有限公司 调心滚子轴承及包含该轴承的风电机组主轴传动链系统
DE102016223543A1 (de) * 2016-11-28 2018-05-30 Schaeffler Technologies AG & Co. KG Windturbinenwellenanordnung
CN107191340A (zh) * 2017-07-31 2017-09-22 如皋市非标轴承有限公司 一种自调心滚子轴承及风力发电机主轴支撑结构
CN107740811A (zh) * 2017-11-14 2018-02-27 如皋市非标轴承有限公司 一种滚子轴承
US10975842B2 (en) 2018-08-25 2021-04-13 Samuel Messinger Wind turbine propeller regulator to produce uninterrupted electricity and longer bearing life
US11215164B2 (en) 2018-08-25 2022-01-04 Samuel Messinger Wind turbine propeller regulator to produce uninterrupted electricity and longer bearing life
EP3739226B1 (en) * 2019-05-16 2022-12-14 Siemens Gamesa Renewable Energy A/S Bearing arrangement for a wind turbine and wind turbine
WO2022015791A1 (en) * 2020-07-17 2022-01-20 The Timken Company Bearing assembly with stainless steel race
CN111720434A (zh) * 2020-07-22 2020-09-29 山东省宇捷轴承制造有限公司 一种适用于轴向及径向偏载工况的调心滚子轴承及热处理工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB139512A (en) * 1919-02-27 1920-07-02 Skf Svenska Kullagerfab Ab Improvements in or relating to roller-bearings
GB539502A (en) * 1939-08-31 1941-09-12 Roulements A Billes Miniatures Double-row self-aligning ball-bearing
JPS5438749U (ja) * 1977-08-23 1979-03-14
JPS62282173A (ja) * 1986-05-31 1987-12-08 Yamaha Motor Co Ltd プロペラ型風車のロ−タ支持構造
JPH01128022U (ja) * 1988-02-24 1989-08-31
JP2000320550A (ja) * 1999-05-06 2000-11-24 Nsk Ltd 複列円錐ころ軸受
JP2001140874A (ja) * 1999-11-09 2001-05-22 Nsk Ltd 自動調心ころ軸受
JP2003293940A (ja) * 2002-04-01 2003-10-15 Tomoji Oikawa 簡易風力発電装置
JP2003301850A (ja) * 2002-04-10 2003-10-24 Nsk Ltd ころ軸受

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR425081A (fr) 1910-01-25 1911-06-01 Sven Gustaf Wingquist Coussinet à rouleaux
US1350263A (en) * 1919-12-16 1920-08-17 Skf Svenska Kullagerfab Ab Roller-bearing
US1736426A (en) * 1926-10-16 1929-11-19 Hayton Pump & Blower Co Pump bearing
DE605948C (de) 1932-12-28 1934-11-22 Erste Automatische Gussstahlku Lagerung mit zwei um einen Schwenkpunkt pendelnden einreihigen Tonnenlagern
DE7003667U (de) 1970-02-03 1970-09-03 Kugelfischer G Schaefer & Co Mehrreihiges pendelrollenlager.
JPS5761933B2 (ja) * 1972-07-07 1982-12-27 Esu Kee Efu Andeyusutoriaru Toreedeingu Ando Dev Co Bv
US3910656A (en) * 1973-11-12 1975-10-07 Fmc Corp Spherical roller bearing for heavy loads
US3934957A (en) * 1974-02-13 1976-01-27 Fmc Corporation Preloaded double row spherical roller bearing
GB1580268A (en) * 1976-12-01 1980-11-26 Sfk Nova Ab Apparatus comprising a shaft supported for rotation by a double row rolling bearing and a gear wheel mounted on the shaft
JPS5438749A (en) 1977-08-31 1979-03-23 Matsushita Electric Works Ltd Semiconductor relay
DE2739367A1 (de) 1977-09-01 1978-10-26 Kugelfischer G Schaefer & Co Einbaufertiges, selbsthaltendes schraegrollenlager
NL7710564A (nl) * 1977-09-28 1979-03-30 Skf Ind Trading & Dev Wentellager.
SE410992B (sv) * 1978-04-11 1979-11-19 Skf Ab Rullningslager
IT1162535B (it) 1978-09-01 1987-04-01 Skf Ab Cuscinetto a rulli sferici provvisti di bombatura simmetrica per il controllo dell'obliquita'
US4557613A (en) * 1978-09-01 1985-12-10 Skf Industries, Inc. Spherical roller bearing having reciprocal crowning for skew control
DE2906210C2 (de) * 1979-02-17 1984-05-30 FAG Kugelfischer Georg Schäfer KGaA, 8720 Schweinfurt Zweireihiges Radialpendelrollenlager
JP2564261B2 (ja) 1985-01-25 1996-12-18 日本精工株式会社 圧延機ロ−ルネック軸受支持装置
JPH01128022A (ja) 1987-11-13 1989-05-19 Konica Corp 自動焦点カメラ
JP2551090B2 (ja) 1988-03-04 1996-11-06 日本精工株式会社 自動調心ころ軸受
US4828404A (en) * 1988-05-16 1989-05-09 Nippon Seiko Kabushiki Kaisha Self-aligning roller bearing
US4916750A (en) * 1988-12-23 1990-04-10 Ntn Toyo Bearing Co. Ltd. Sealed double row spherical roller bearing
JP2900527B2 (ja) 1990-06-06 1999-06-02 日本精工株式会社 自動調心ころ軸受
DE9100650U1 (ja) 1991-01-21 1991-04-11 Fag Kugelfischer Georg Schaefer Kgaa, 8720 Schweinfurt, De
DE4104454C1 (en) 1991-02-14 1992-07-30 Dorstener Maschinenfabrik Ag, 4270 Dorsten, De Bearing pedestal for wind power installations - has bearing housing longitudinally split in rotor shaft region into upper and lower parts
JP3252587B2 (ja) 1994-02-28 2002-02-04 日本精工株式会社 玉軸受装置
JPH08326759A (ja) 1995-05-31 1996-12-10 Ntn Corp 複列ころ軸受
JP4023860B2 (ja) * 1996-02-28 2007-12-19 Ntn株式会社 自動車の変速機における主軸歯車機構
JPH10184677A (ja) 1996-12-27 1998-07-14 Nippon Seiko Kk スラスト荷重受け用予圧複列円すいころ軸受
US6296395B1 (en) * 1997-09-22 2001-10-02 Fag Oem Und Handel Ag Self-aligning roller bearing
US5975762A (en) * 1997-10-14 1999-11-02 The Timken Company Tapered roller bearing with true rolling contacts
JPH11193817A (ja) * 1997-10-29 1999-07-21 Ntn Corp 自動調心ころ軸受
JP2000074051A (ja) 1998-08-28 2000-03-07 Hitachi Ltd 帯鋼巻取機用軸受装置
JP4458592B2 (ja) 1998-11-11 2010-04-28 Ntn株式会社 高温用転がり軸受部品
WO2000028102A1 (fr) 1998-11-11 2000-05-18 Ntn Corporation Piece de roulement a billes resistant aux hautes temperatures
JP3794008B2 (ja) 1998-11-27 2006-07-05 株式会社ジェイテクト ホイール用軸受
JP2000356218A (ja) 1999-04-16 2000-12-26 Nsk Ltd 転がり軸受
GB2362928C (en) 2000-05-30 2005-10-21 Nsk Rhp Europe Technology Co Ltd Bearing assemblies incorporating roller bearings
JP2002031148A (ja) 2000-07-14 2002-01-31 Nsk Ltd 転がり軸受装置
JP2002147449A (ja) 2000-11-08 2002-05-22 Ntn Corp 自動調心ころ軸受
GB2371603B (en) 2000-12-18 2005-06-22 Nsk Rhp Europe Technology Co Ltd Shaft bearing arrangements
DK174085B1 (da) 2001-04-02 2002-06-03 Vestas Wind Sys As Vindmølle med planetgear
GB0118997D0 (en) 2001-08-03 2001-09-26 Hansen Transmissions Int Planet carrier assembly for wind turbine assembly
JP2003130057A (ja) 2001-10-25 2003-05-08 Ntn Corp ころ軸受
CN1266396C (zh) 2001-10-31 2006-07-26 日本精工株式会社 滚动轴承
JP2003184885A (ja) 2001-12-18 2003-07-03 Ntn Corp 円すいころ軸受およびパイロット部軸支持構造
JP4460309B2 (ja) * 2002-04-23 2010-05-12 ザ ティムケン カンパニー ドラグラインスイングシャフト用密閉球状ローラベアリング
JP2004011737A (ja) 2002-06-06 2004-01-15 Nsk Ltd 自動調心ころ軸受
JP2004019731A (ja) 2002-06-13 2004-01-22 Ntn Corp 自動調心ころ軸受
WO2004027277A1 (en) 2002-09-18 2004-04-01 Forskningscenter Risø A spherical roller bearing having a holding structure for controlling axial displacement of two rows of rollers in a direction away from each other
JP2004245251A (ja) 2003-02-10 2004-09-02 Nsk Ltd 自動調心ころ軸受
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP2005195097A (ja) * 2004-01-07 2005-07-21 Ntn Corp 円筒ころ軸受およびこれを用いた遊星歯車装置
US7922396B2 (en) * 2004-09-21 2011-04-12 Ntn Corporation Double row self-aligning roller bearing and main shaft support structure of wind power generator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB139512A (en) * 1919-02-27 1920-07-02 Skf Svenska Kullagerfab Ab Improvements in or relating to roller-bearings
GB539502A (en) * 1939-08-31 1941-09-12 Roulements A Billes Miniatures Double-row self-aligning ball-bearing
JPS5438749U (ja) * 1977-08-23 1979-03-14
JPS62282173A (ja) * 1986-05-31 1987-12-08 Yamaha Motor Co Ltd プロペラ型風車のロ−タ支持構造
JPH01128022U (ja) * 1988-02-24 1989-08-31
JP2000320550A (ja) * 1999-05-06 2000-11-24 Nsk Ltd 複列円錐ころ軸受
JP2001140874A (ja) * 1999-11-09 2001-05-22 Nsk Ltd 自動調心ころ軸受
JP2003293940A (ja) * 2002-04-01 2003-10-15 Tomoji Oikawa 簡易風力発電装置
JP2003301850A (ja) * 2002-04-10 2003-10-24 Nsk Ltd ころ軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1705392A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095953A1 (en) * 2006-02-24 2007-08-30 Vestas Wind Systems A/S Gearbox for a wind turbine, bearing and method of manufacturing a bearing
DE102007034570A1 (de) 2007-07-25 2009-01-29 Schaeffler Kg Wälzlager
WO2017022718A1 (ja) * 2015-08-06 2017-02-09 Ntn株式会社 複列自動調心ころ軸受
DE112016004227T5 (de) 2015-09-17 2018-06-14 Ntn Corporation Doppelreihiges selbstausrichtendes Wälzlager
US10655674B2 (en) 2016-03-24 2020-05-19 Ntn Corporation Double-row self-aligning roller bearing
WO2017164325A1 (ja) 2016-03-24 2017-09-28 Ntn株式会社 複列自動調心ころ軸受
US10808761B2 (en) 2016-03-24 2020-10-20 Ntn Corporation Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
WO2018131617A1 (ja) 2017-01-13 2018-07-19 Ntn株式会社 複列自動調心ころ軸受および飛出し止め治具
US10697492B2 (en) 2017-01-13 2020-06-30 Ntn Corporation Double-row self-aligning roller bearing
WO2018131618A1 (ja) 2017-01-13 2018-07-19 Ntn株式会社 複列自動調心ころ軸受
US10883544B2 (en) 2017-01-13 2021-01-05 Ntn Corporation Double-row self-aligning roller bearing and protrusion prevention jig
WO2019022161A1 (ja) 2017-07-28 2019-01-31 Ntn株式会社 複列自動調心ころ軸受
US11187266B2 (en) 2017-07-28 2021-11-30 Ntn Corporation Double-row self-aligning roller bearing
WO2019203265A1 (ja) 2018-04-20 2019-10-24 Ntn株式会社 複列自動調心ころ軸受
US11306776B2 (en) 2018-04-20 2022-04-19 Ntn Corporation Double-row self-aligning roller bearing
WO2020067334A1 (ja) * 2018-09-26 2020-04-02 Ntn株式会社 転がり軸受、および風力発電用主軸支持装置
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device
JP7373341B2 (ja) 2018-09-26 2023-11-02 Ntn株式会社 転がり軸受、および風力発電用主軸支持装置
CN113378319A (zh) * 2021-06-24 2021-09-10 宁波蓝海量子精工轴承制造有限公司 一种双端面不对称轴承套圈端面磨削留量的设计方法
CN113378319B (zh) * 2021-06-24 2022-04-12 宁波蓝海量子精工轴承制造有限公司 一种双端面不对称轴承套圈端面磨削余量的设计方法

Also Published As

Publication number Publication date
EP1705392B2 (en) 2016-08-31
EP1705392B1 (en) 2010-01-06
US7918649B2 (en) 2011-04-05
US20070127858A1 (en) 2007-06-07
EP1705392A4 (en) 2007-05-30
DE602004025042D1 (de) 2010-02-25
EP1705392A1 (en) 2006-09-27
ES2339457T5 (es) 2017-03-16
ES2339457T3 (es) 2010-05-20

Similar Documents

Publication Publication Date Title
WO2005050038A1 (ja) 複列自動調心ころ軸受および風力発電機主軸支持装置
US7922396B2 (en) Double row self-aligning roller bearing and main shaft support structure of wind power generator
EP3372852B1 (en) Rotation support device for pinion shaft
US10655674B2 (en) Double-row self-aligning roller bearing
US10883544B2 (en) Double-row self-aligning roller bearing and protrusion prevention jig
US8608444B2 (en) Single-bearing structure and wind power plant having the single-bearing structure
WO2005038296A1 (en) Epicyclic gear system
JP2007536473A (ja) 風力タービン用変速機の軸のための位置決め軸受アセンブリ
CN101194103A (zh) 风力设备纵向延伸转子叶片的轴承单元、装备这种转子叶片轴承结构的风力设备以及用于操作这种风力设备的方法
WO2017164325A1 (ja) 複列自動調心ころ軸受
US10697492B2 (en) Double-row self-aligning roller bearing
WO2021060389A1 (ja) 複列円すいころ軸受
JP2017180832A (ja) 複列自動調心ころ軸受
JP2005207517A (ja) 自動調心ころ軸受および風力発電機主軸支持装置
JP2017180831A (ja) 複列自動調心ころ軸受
WO2022051878A1 (zh) 一种非对称结构的调心滚子轴承
WO2018131618A1 (ja) 複列自動調心ころ軸受
JP2006090346A (ja) 複列自動調心ころ軸受および風力発電機の主軸支持構造
WO2018131617A1 (ja) 複列自動調心ころ軸受および飛出し止め治具
CN110945256B (zh) 双排自动调心滚柱轴承
JP2006090345A (ja) 複列自動調心ころ軸受および風力発電機の主軸支持構造
JP2021055831A (ja) 複列円すいころ軸受
JP4114598B2 (ja) トロイダル型無段変速機
JP2006105208A (ja) 複列自動調心ころ軸受および風力発電機の主軸支持構造
CN109737006A (zh) 一种轴承、风力发电机组的变桨装置及其变桨方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007127858

Country of ref document: US

Ref document number: 10579567

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004818890

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004818890

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10579567

Country of ref document: US