WO2022051878A1 - 一种非对称结构的调心滚子轴承 - Google Patents

一种非对称结构的调心滚子轴承 Download PDF

Info

Publication number
WO2022051878A1
WO2022051878A1 PCT/CN2020/113863 CN2020113863W WO2022051878A1 WO 2022051878 A1 WO2022051878 A1 WO 2022051878A1 CN 2020113863 W CN2020113863 W CN 2020113863W WO 2022051878 A1 WO2022051878 A1 WO 2022051878A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller bearing
raceway surface
spherical roller
ring
rollers
Prior art date
Application number
PCT/CN2020/113863
Other languages
English (en)
French (fr)
Inventor
梁保柱
严晓明
柴仲冬
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Priority to GB2300908.7A priority Critical patent/GB2612486A/en
Priority to MX2023001698A priority patent/MX2023001698A/es
Priority to CN202080003489.1A priority patent/CN114502851A/zh
Priority to PCT/CN2020/113863 priority patent/WO2022051878A1/zh
Publication of WO2022051878A1 publication Critical patent/WO2022051878A1/zh
Priority to ZA2023/00359A priority patent/ZA202300359B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • F16C33/494Massive or moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of wind power, in particular to a self-aligning roller bearing with an asymmetric structure.
  • the wind turbine nacelle is usually installed on a tower with a height of 40 to 60 meters.
  • the temperature and humidity change greatly and the load situation is complex. Therefore, high requirements are put forward for the rolling bearings installed in various parts.
  • Bearings in wind turbines include yaw system bearings, pitch system bearings and drive system bearings.
  • the transmission system bearings include main shaft bearings, gearbox bearings and generator bearings.
  • the main shaft of the wind turbine transmits torque from the impeller to other parts of the drive train, and large bending deformation occurs during its operation.
  • the main shaft is supported by the main shaft bearing, so the force and deformation on the main shaft affect the main shaft bearing.
  • the main shaft bearing mainly bears the radial force, and also bears the axial force partly due to the wind force, and the force condition is complicated. Due to the influence of the force condition and the deformation of the shaft, the main shaft bearing of the wind turbine must have good self-aligning performance. Therefore, wind turbines usually use spherical roller bearings as the main shaft bearings.
  • the present invention provides a spherical roller bearing with an asymmetric structure, including:
  • Outer ring which has an outer raceway surface on the inner peripheral side for supporting the rolling elements
  • an inner ring having an inner raceway surface on the outer peripheral side for supporting the rolling elements, the inner raceway surface and the outer raceway surface having a certain curvature difference;
  • rolling elements including a first plurality of rollers disposed on a first side of the spherical roller bearing and a second plurality of rollers disposed on a second side of the spherical roller bearing opposite the first side rollers, wherein the first plurality of rollers and the second plurality of rollers are disposed between the outer raceway surface and the inner raceway surface and are configured to roll such that the outer and inner races can rotate relative to each other, and
  • the first included angle between the load action lines of the first plurality of rollers and the radial plane of the spherical roller bearing is different from the load action lines of the second plurality of rollers and the spherical roller bearing the second angle between the radial planes.
  • the outer raceway surface includes a concave curved surface, and the rolling bodies are configured to match the shape of the concave curved surface; and/or the inner raceway surface includes two rows of concave curved surfaces, and the rolling bodies are is configured to fit in shape with the concave curved surface.
  • curvature difference between the inner raceway surface and the outer raceway surface is between 0.1% and 1.5%.
  • the spherical roller bearing further includes a cage, which is arranged between the inner ring and the outer ring, the cage is a two-piece type, and includes N grooves for accommodating the rolling bodies , the grooves are used to separate the rolling bodies in the circumferential direction according to each row.
  • the spherical roller bearing further includes an intermediate spacer ring, which adopts a narrow design and is arranged between the cage and the inner ring, and the inner circumference of the intermediate spacer ring can be The inner raceway surfaces are in contact, and the outer circumference of the spacer ring can be in contact with the inner circumference of the cage.
  • the difference between the first included angle and the second included angle is at least 20%.
  • the load action line passes through a contact point between the roller and the outer raceway surface and a contact point between the roller and a corresponding one of the inner raceway surfaces.
  • outer raceway surface is an asymmetric structure.
  • the inner raceway surface is an asymmetric structure.
  • the invention provides a self-aligning roller bearing with an asymmetric structure, the contact angles of the two rows of rolling elements are different, and the contact angle of one side of the rolling elements is larger, and the design of the floating intermediate ring is adopted at the same time.
  • the bearing capacity of the bearing axial force is enhanced.
  • the floating spacer structure also effectively avoids the eccentric load of the roller raceway under the condition of axial load.
  • FIG. 1 shows a cross-sectional view of a spherical roller bearing with an asymmetric structure according to an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of the arrangement of rollers of a spherical roller bearing with an asymmetric structure according to an embodiment of the present invention.
  • the present invention provides a self-aligning roller bearing with an asymmetric structure. , guide and control the swing angle of the roller, and the technical solution of the present invention will be further described below with reference to the accompanying drawings of the embodiments.
  • FIG. 1 shows a cross-sectional view of a spherical roller bearing with an asymmetric structure according to an embodiment of the present invention.
  • a spherical roller bearing with an asymmetric structure includes an outer ring 101 , an inner ring 102 , rolling bodies 103 , a cage 104 and a spacer ring 105 .
  • the inner circumference of the outer ring 101 is an outer raceway surface, and the outer raceway surface is used to support the rolling elements 103.
  • the outer raceway surface 1011 includes a concave surface, so The rolling elements 103 are matched with the concave curved surface in shape.
  • the outer raceway surface 1011 of the outer ring 101 has an asymmetric structure.
  • the inner ring 102 can rotate relative to the outer ring 101.
  • the outer circumference of the inner ring 102 is inner raceway surfaces 1021 and 1022, and the inner raceway surfaces 1021 and 1022 are used to support the rolling elements 103.
  • the inner raceway surfaces 1021 and 1022 include concave curved surfaces
  • the rolling elements 103 are shaped to match the concave curved surfaces
  • the inner raceway surfaces 1021 and 1022 have different curvatures of the concave curved surfaces.
  • the curvature difference between the inner raceway surface and the outer raceway surface is 0.1% to 1.5%. between.
  • the rolling body 103 includes N rollers 1031, which are arranged between the outer raceway surface 1011 and the inner raceway surface 1021 or 1022 in two rows, and are arranged along the circumferential direction in each row, wherein N is a natural number.
  • the rollers 1031 can roll on the outer raceway surface 1011 and the inner raceway surface 1021 or 1022 .
  • the contact angles of the two rows of rolling element rollers are different, and the contact angle of one side is larger, which can bear larger axial force.
  • the contact angles of the two preferably differ from each other by at least 20%-80%, eg 20%, 25%, 30%, 40%, 80%.
  • the swing angle of 1031 is kept within a certain range, which effectively avoids wear.
  • the contact angle refers to the angle between the load action line 001 of the roller 1031 and the radial plane 002 of the spherical roller bearing, and the load action line 001 passes through the roller
  • the rollers 1031 are drum-shaped.
  • the spherical roller bearing with asymmetric structure is a main shaft bearing for a wind turbine, the first side of which is close to the wind rotor, and the second side is away from the wind.
  • One side of the wheel, the contact angle of the first side is 7° to 13°, and the contact angle of the second side is 11° to 17°, and the contact angle ratio of the second side is satisfied.
  • the contact angle of the first side is at least 20% larger than the contact angle of the second side, so that the axial load capacity of the second side is stronger and can be adapted to wind loads with a large axial force.
  • the cage 104 is arranged between the inner ring 102 and the outer ring 101 . As shown in FIG. 2 , the cage 104 is a two-piece type, and is annular as a whole.
  • the transverse plates 1041 are arranged at intervals, and two adjacent transverse plates 1041 form a groove 1042 , the groove 1042 is used for accommodating the rollers 1031 , and each groove 1042 accommodates a roller 1031 .
  • the holder 104 further limits the swing angle.
  • the spacer ring 105 is arranged between the cage 104 and the inner ring 102 , and is annular as a whole and adopts a narrow design.
  • the inner circumference of the spacer ring 105 can be in contact with the inner raceway surface.
  • the outer circumference of the spacer ring can be in contact with the inner circumference of the cage; in an embodiment of the present invention, in order to avoid the eccentric load of the roller raceway, the spacer ring 105 adopts a floating design, That is, there is a certain gap between the inner circumference of the spacer ring 105 and the inner raceway surface, and there is also a certain gap between the outer circumference of the spacer ring and the inner circumference of the cage, so that the The spacer ring 105 can move slightly in the radial direction.
  • the spacer ring 105 in order to further reduce the wear on the side surface of the spacer ring 105, the spacer ring 105 adopts a narrow design, so that under the condition of axial bearing, the end face of the roller and the There is still a certain gap on the side surface of the spacer ring.
  • the gap between the end face of the roller and the side surface of the spacer ring is 0.5-3.5 mm.
  • the outer ring 101 , the inner ring 102 and the rollers 1031 are made of bearing steel
  • the spacer ring 105 is made of cast iron or other metal materials
  • the cage 104 is made of For brass or other metal materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种非对称结构的调心滚子轴承,包括外圈(101)、内圈(102)、滚动体(103)、保持架(104)以及采用窄浮动设计的中隔圈(105)。其中,滚动体(103)分两列配置于内圈(102)和外圈(101)之间,其各自的接触角不同,同时,相应的内滚道面(1021、1022)与外滚道面(1011)亦为非对称结构。

Description

一种非对称结构的调心滚子轴承 技术领域
本发明涉及风电技术领域,特别涉及一种非对称结构的调心滚子轴承。
背景技术
近年来,世界各国开始高度重视绿色能源,风力发电技术也逐渐朝着大型化、商品化快速发展。风力发电机机舱通常安装在40~60米高的塔架上,温度、湿度变化较大,载荷情况复杂,因此对于各个部位安装的滚动轴承提出了很高的要求。风力发电机组中的轴承包括偏航系统轴承、变桨距系统轴承以及传动系统轴承。其中传动系统轴承包括了主轴轴承、变速箱轴承以及发电机轴承。
风力发电机的主轴从叶轮传递扭矩到传动系的其他零部件,其工作过程中会产生较大的弯曲变形,主轴由主轴轴承支承,因而主轴上的作用力以及变形都影响到主轴轴承。主轴轴承主要承受径向力,也受部分由于风力而产生的轴向力,受力状况复杂。由于受力状况以及轴的变形的影响,风力发电机的主轴轴承必须有良好的调心性能。因此,通常风力发电机都采用调心滚子轴承作为主轴轴承。
但是,在实际应用中,当轴向力较大时,典型的固定挡边结构的调心滚子轴承,其滚动体偏载严重,会造成早期滚道磨损,而典型的浮动中隔圈结构的调心滚子轴承,其隔环磨损严重,易造成早期轴承失效。
发明内容
针对现有技术中的部分或全部问题,本发明提供一种非对称结构的调心滚子轴承,包括:
外圈,其在内周侧具有外滚道面以用于支承滚动体
内圈,其在外周侧具有内滚道面以用于支承滚动体,所述内滚道面与所述外滚道面具有一定的曲率差;以及
滚动体,包括布置在所述调心滚子轴承的第一侧的第一多个滚子和 布置在所述调心滚子轴承的与第一侧相对的第二侧的第二多个滚子,其中所述第一多个滚子和第二多个滚子布置在外滚道面和内滚道面之间并且被构造为能够滚动,使得外圈和内圈能够相对于彼此转动,并且其中第一多个滚子的载荷作用线与所述调心滚子轴承的径向平面之间的第一夹角不同于第二多个滚子的载荷作用线与所述调心滚子轴承的径向平面之间的第二夹角。
进一步地,所述外滚道面包括凹曲面,且所述滚动体被构造为与所述凹曲面形状配合;和/或所述内滚道面包括两列凹曲面,且所述滚动体被构造为与所述凹曲面形状配合。
进一步地,所述内滚道面与所述外滚道面的曲率差在0.1%至1.5%之间。
进一步地,所述调心滚子轴承还包括保持架,其设置于所述内圈及所述外圈之间,所述保持架为两片式,包括容纳所述滚动体的N个凹槽,所述凹槽用于将所述滚动体按照每一列沿周向隔开。
进一步地,所述调心滚子轴承还包括中隔圈,所述中隔圈采用窄式设计,设置于所述保持架与所述内圈之间,所述中隔圈的内周能够与所述内滚道面接触,且所述中隔圈的外周能够与所述保持架的内周接触。
进一步地,所述第一夹角与第二夹角之间相差至少20%。
在本发明中,所述载荷作用线通过所述滚子与所述外滚道面的接触点及所述滚子与对应的一方的内滚道面的接触点。
进一步地,所述外滚道面为非对称结构。
进一步地,所述内滚道面为非对称结构。
进一步地,所述中隔圈的内周与所述内滚道面之间存在空隙,且所述中隔圈的外周与所述保持架的内周之间存在空隙。
进一步地,所述中隔圈的侧面与所述滚子的端面间存在空隙。
本发明提供的一种非对称结构的调心滚子轴承,其两列滚动体的接触角不同,其中一侧滚动体接触角较大,同时采用了浮动中隔圈设计。一方面增强了轴承轴向力的承受能力,另一方面,由于内外圈密合度的差值设计,结合中隔圈的结构,能有效引导滚动体,控制滚子摆动,避免了轴向承载情况下,隔圈侧面磨损。同时,浮动中隔圈结构,还有效避免了轴向承载情况下,滚子滚道的偏载。经过验证,在风机载荷下,当Fa/Fr>0.2时,特别是在0.25<Fa/Fr≤0.5时,本发明提供的一种非 对称结构的调心滚子轴承相较于其他轴承而言,磨耗水平明显降低,稳定性有显著提高。
附图说明
为进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出本发明一个实施例的一种非对称结构的调心滚子轴承的剖视图;以及
图2示出本发明一个实施例的一种非对称结构的调心滚子轴承的滚子排列示意图。
具体实施方式
以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免模糊本发明的发明点。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明并不限于这些特定细节。此外,应理解附图中示出的各实施例是说明性表示且不一定按正确比例绘制。
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。
需要说明的是,本发明的实施例以特定顺序对工艺步骤进行描述,然而这只是为了阐述该具体实施例,而不是限定各步骤的先后顺序。相反,在本发明的不同实施例中,可根据工艺的调节来调整各步骤的先后顺序。
针对风力发电机在轴向力较大时,滚子偏载以及中隔圈磨损严重的问题,本发明提供一种非对称结构的调心滚子轴承,通过内外圈滚道的 不同密合度设计,引导控制滚子摆动角度,下面结合实施例附图,对本发明的技术方案做进一步描述。
图1示出本发明一个实施例的一种非对称结构的调心滚子轴承的剖视图。如图1所示,一种非对称结构的调心滚子轴承,包括外圈101、内圈102、滚动体103、保持架104以及中隔圈105。
所述外圈101的内周为外滚道面,所述外滚道面用于支承所述滚动体103,在本发明的一个实施例中,所述外滚道面1011包括凹曲面,所述滚动体103与所述凹曲面形状配合,在本发明的又一个实施例中,所述外圈101的外滚道面1011为非对称结构。
所述内圈102能够与所述外圈101相对转动,所述内圈102的外周为内滚道面1021及1022,所述内滚道面1021及1022用于支承所述滚动体103,在本发明的一个实施例中,所述内滚道面1021及1022包括凹曲面,所述滚动体103与所述凹曲面形状配合,所述内滚道面1021及1022的凹曲面的曲率不同,且所述内滚道面与外滚道面也存在一定的曲率差,在本发明的一个实施例中,所述内滚道面与外滚道面之间的曲率差在0.1%至1.5%之间。
所述滚动体103包括N个滚子1031,分两列配置于所述外滚道面1011与所述内滚道面1021或1022之间,且在各列沿着周向布置,其中,N为自然数。所述滚子1031能够在所述外滚道面1011及内滚道面1021或1022上滚动。如图1所示,两列滚动体滚子的接触角不同,其中一侧的接触角较大,可以承受较大轴向力。例如,二者的接触角优选地彼此相差至少20%-80%之间、例如20%、25%、30%、40%、80%。发明人通过研究发现,当所述接触角差值在20%以上时,可以较好地承受风力发电机情况下的轴向负载,且滚动体不容易发生轴承旋转面方向上的滑动。所述接触角差值越大,轴向负载能力越强。两列滚子不同接触角的设计结合与其对应的外滚道面1011与内滚道面1021及1022的不同曲率,使得两边内外圈滚道的密合度不同,这就可以引导控制所述滚子1031的摆动角度保持在一定范围内,有效避免磨损。在本发明中,所述接触角是指所述滚子1031的载荷作用线001与所述调心滚子轴承的径向平面002之间的夹角,所述载荷作用线001通过所述滚子1031与所述外滚道面1011的接触点及所述滚子1031与对应的一方的内滚道面1021或2022的接触点。在实际工作中,当轴承旋转时,所述滚子1031 有时会绕着所述载荷作用线001转动微小角度,这一微小角度即所述摆动角度。在本发明的一个实施例中,所述滚子1031为鼓型。在本发明的又一个实施例中,所述非对称结构的调心滚子轴承为用于风力发电机的主轴轴承,其第一侧为接近风轮的一侧,并且第二侧为远离风轮的一侧,所述第一侧的接触角取值7°到13°,以及所述第二侧的接触角取值11°到17°,并且满足所述第二侧的接触角比所述第一侧的接触角角大第二侧的接触角的至少20%,由此使得所述第二侧的轴向负载能力更强,可以适应轴向力占比大的风力载荷。
所述保持架104设置于所述内圈102及所述外圈101之间,如图2所示,所述保持架104为两片式,整体为环状,其两侧具有在周向等间隔设置的横板1041,相邻的两个横板1041构成一个凹槽1042,所述凹槽1042用于容纳所述滚子1031,每个凹槽1042内容纳有一个滚子1031。所述保持架104进一步限制了所述摆动角度。
所述中隔圈105设置于所述保持架104与所述内圈102之间,整体为环状,采用窄式设计,所述中隔圈105的内周能够与所述内滚道面接触,且所述中隔圈的外周能够与所述保持架的内周接触;在本发明的一个实施例中,为了避免滚子滚道的偏载,所述中隔圈105采用了浮动设计,即所述中隔圈105的内周与所述内滚道面之间存在一定的空隙,且所述中隔圈的外周与所述保持架的内周之间也存在一定的空隙,使得所述中隔圈105在径向上能够做些许移动。在本发明的一个实施例中,为了进一步减小所述中隔圈105侧面的磨损,所述中隔圈105采用较窄设计,使得在轴向承载情况下,所述滚子的端面与所述中隔圈的侧面仍保留有一定的空隙,在本发明的一个实施例中,所述滚子的端面与所述中隔圈的侧面间的空隙为0.5-3.5mm。
在本发明的一个实施例中,所述外圈101、内圈102以及滚子1031由轴承钢制成,所述中隔圈105的材料为铸铁或其他金属材料,所述保持架104的材料为黄铜或其他金属材料。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。

Claims (10)

  1. 一种非对称结构的调心滚子轴承,包括:
    外圈,其在内周侧具有外滚道面以用于支承滚动体;
    内圈,其在外周侧具有内滚道面以用于支承滚动体;
    保持架,其设置于所述内圈及所述外圈之间;
    中隔圈,其设置于所述保持架与所述内圈之间;以及
    滚动体;
    其特征在于:
    所述中隔圈采用窄式设计,其侧面与所述滚子的端面间存在一定空隙;
    所述内滚道面与所述外滚道面有一定曲率差;以及
    所述滚动体包括布置在所述调心滚子轴承的第一侧的第一多个滚子和布置在所述调心滚子轴承的与第一侧相对的第二侧的第二多个滚子,其中所述第一多个滚子和第二多个滚子布置在外滚道面和内滚道面之间并且被构造为能够滚动,使得外圈和内圈能够相对于彼此转动,并且其中第一多个滚子的载荷作用线与所述调心滚子轴承的径向平面之间的第一夹角不同于第二多个滚子的载荷作用线与所述调心滚子轴承的径向平面之间的第二夹角。
  2. 根据权利要求1所述的调心滚子轴承,其特征在于,其中:
    所述外滚道面包括凹曲面,并且所述滚动体被构造为与所述凹曲面形状配合;和/或
    所述内滚道面包括两列凹曲面并且所述滚动体被构造为与所述凹曲面形状配合。
  3. 如权利要求1所述的调心滚子轴承,其特征在于,所述内滚道面及外滚道面为非对称结构,且所述内滚道面与所述外滚道面的曲率差在0.1%至1.5%之间。
  4. 根据权利要求1所述的调心滚子轴承,其特征在于,所述保持架为两片式,包括容纳所述滚子的凹槽。
  5. 如权利要求1所述的调心滚子轴承,其特征在于,所述中隔圈的侧面与所述滚子的端面间的空隙为0.5-3.5mm。
  6. 根据权利要求1所述的调心滚子轴承,其特征在于,所述中隔圈的内周被配置为能够与所述内滚道面接触,且所述中隔圈的外周被配置为能够与所述保持架的内周接触。
  7. 如权利要求6所述的调心滚子轴承,其特征在于,所述中隔圈的内周与所述内滚道面之间存在空隙,且所述中隔圈的外周与所述保持架的内周之间存在空隙。
  8. 根据权利要求1所述的调心滚子轴承,其特征在于,所述第一夹角与第二夹角之间的差值范围为20%至80%。
  9. 根据权利要求1所述的调心滚子轴承,其特征在于,所述非对称结构的调心滚子轴承为用于风力发电机的主轴轴承,其中所述第一侧为接近风轮的一侧,并且所述第二侧为远离风轮的一侧,并且所述第一夹角取值范围为7°到13°,以及所述第二夹角的取值范围为11°到17°,同时所述第二夹角比第一夹角大第二夹角的至少20%。
  10. 如权利要求1至9任一所述的调心滚子轴承,其特征在于,所述外圈、内圈以及滚子的材料为轴承钢,和/或所述中隔圈的材料为铸铁,和/或所述保持架的材料为黄铜。
PCT/CN2020/113863 2020-09-08 2020-09-08 一种非对称结构的调心滚子轴承 WO2022051878A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB2300908.7A GB2612486A (en) 2020-09-08 2020-09-08 Self-aligning roller bearing of asymmetric structure
MX2023001698A MX2023001698A (es) 2020-09-08 2020-09-08 Rodamiento de rodillos autoalineable de estructura asimetrica.
CN202080003489.1A CN114502851A (zh) 2020-09-08 2020-09-08 一种非对称结构的调心滚子轴承
PCT/CN2020/113863 WO2022051878A1 (zh) 2020-09-08 2020-09-08 一种非对称结构的调心滚子轴承
ZA2023/00359A ZA202300359B (en) 2020-09-08 2023-01-09 Self-aligning roller bearing of asymmetric structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113863 WO2022051878A1 (zh) 2020-09-08 2020-09-08 一种非对称结构的调心滚子轴承

Publications (1)

Publication Number Publication Date
WO2022051878A1 true WO2022051878A1 (zh) 2022-03-17

Family

ID=80630088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113863 WO2022051878A1 (zh) 2020-09-08 2020-09-08 一种非对称结构的调心滚子轴承

Country Status (5)

Country Link
CN (1) CN114502851A (zh)
GB (1) GB2612486A (zh)
MX (1) MX2023001698A (zh)
WO (1) WO2022051878A1 (zh)
ZA (1) ZA202300359B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115405637A (zh) * 2022-07-19 2022-11-29 太原重工股份有限公司 十字轴式万向联轴器用十字包及十字轴式万向联轴器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203670467U (zh) * 2014-01-03 2014-06-25 日本精工株式会社 自动调心滚子轴承
JP2016023707A (ja) * 2014-07-18 2016-02-08 日本精工株式会社 自動調心ころ軸受
CN106015324A (zh) * 2015-03-31 2016-10-12 株式会社捷太格特 自动调心滚子轴承
CN106438683A (zh) * 2016-10-28 2017-02-22 国电联合动力技术有限公司 调心滚子轴承及包含该轴承的风电机组主轴传动链系统
CN107939832A (zh) * 2017-12-26 2018-04-20 瓦房店轴承集团有限责任公司 高耐磨性调心滚子轴承
CN108884867A (zh) * 2016-03-24 2018-11-23 Ntn株式会社 双排自调心滚子轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203670467U (zh) * 2014-01-03 2014-06-25 日本精工株式会社 自动调心滚子轴承
JP2016023707A (ja) * 2014-07-18 2016-02-08 日本精工株式会社 自動調心ころ軸受
CN106015324A (zh) * 2015-03-31 2016-10-12 株式会社捷太格特 自动调心滚子轴承
CN108884867A (zh) * 2016-03-24 2018-11-23 Ntn株式会社 双排自调心滚子轴承
CN106438683A (zh) * 2016-10-28 2017-02-22 国电联合动力技术有限公司 调心滚子轴承及包含该轴承的风电机组主轴传动链系统
CN107939832A (zh) * 2017-12-26 2018-04-20 瓦房店轴承集团有限责任公司 高耐磨性调心滚子轴承

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115405637A (zh) * 2022-07-19 2022-11-29 太原重工股份有限公司 十字轴式万向联轴器用十字包及十字轴式万向联轴器
CN115405637B (zh) * 2022-07-19 2023-06-27 太原重工股份有限公司 十字轴式万向联轴器用十字包及十字轴式万向联轴器

Also Published As

Publication number Publication date
GB2612486A (en) 2023-05-03
CN114502851A (zh) 2022-05-13
GB202300908D0 (en) 2023-03-08
MX2023001698A (es) 2023-03-09
ZA202300359B (en) 2024-02-28

Similar Documents

Publication Publication Date Title
US10788018B2 (en) Wind turbine rotor shaft arrangement
KR100967640B1 (ko) 풍력 터빈용 선회 베어링 구조체 및 풍력 발전 장치
WO2005050038A1 (ja) 複列自動調心ころ軸受および風力発電機主軸支持装置
EP2871376B2 (en) Bearing arrangement for fluid machinery application
US10385822B2 (en) Wind turbine rotor shaft arrangement
WO2006033320A1 (ja) 複列自動調心ころ軸受および風力発電機の主軸支持構造
US20140199171A1 (en) Large rolling bearing
JP2009097525A (ja) 保持器付き転がり軸受
EP3742010B1 (en) Wind turbine with a slewing ring bearing and method for assembling a slewing ring bearing with a predetermined preload
WO2022051878A1 (zh) 一种非对称结构的调心滚子轴承
JP2011202714A (ja) 風力発電装置主軸用円すいころ軸受
EP2937585B1 (en) Spacer assembly for a bearing
CN108105256A (zh) T形沟直角接触分体式变桨轴承
CN106438683A (zh) 调心滚子轴承及包含该轴承的风电机组主轴传动链系统
CN107654493A (zh) 包括安装凸缘的滚动轴承
CN206190740U (zh) 调心滚子轴承及包含该轴承的风电机组主轴传动链系统
WO2018194025A1 (ja) 旋回軸受およびその加工方法
CN213808478U (zh) 一种风力发电机组独立变桨的三排圆柱滚子变桨轴承
CN112955671B (zh) 滚动轴承装置和风力设备
CN210484409U (zh) 一种风电增速箱圆柱滚子轴承
CN208024711U (zh) 双列角接触球轴承
CN207715543U (zh) 一种t形沟直角接触分体式变桨轴承
JP2018179291A (ja) 旋回軸受およびその加工方法
JP7456851B2 (ja) 複列円すいころ軸受
JP2006090346A (ja) 複列自動調心ころ軸受および風力発電機の主軸支持構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202300908

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200908

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523442441

Country of ref document: SA