WO2005043102A1 - 荷重センサ及びその製造方法 - Google Patents

荷重センサ及びその製造方法 Download PDF

Info

Publication number
WO2005043102A1
WO2005043102A1 PCT/JP2004/015980 JP2004015980W WO2005043102A1 WO 2005043102 A1 WO2005043102 A1 WO 2005043102A1 JP 2004015980 W JP2004015980 W JP 2004015980W WO 2005043102 A1 WO2005043102 A1 WO 2005043102A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
load sensor
resistor
adjustment layer
thermal expansion
Prior art date
Application number
PCT/JP2004/015980
Other languages
English (en)
French (fr)
Inventor
Keiichi Nakao
Yukio Mizukami
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/529,704 priority Critical patent/US7397340B2/en
Priority to EP04793090A priority patent/EP1584907B1/en
Publication of WO2005043102A1 publication Critical patent/WO2005043102A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges

Definitions

  • the present invention relates to a load sensor for measuring an applied load, that is, a mechanical strain, and a method for manufacturing the same.
  • JP-A-63-298128 discloses a pressure sensor in which an insulating layer is formed on a metal substrate and a thick-film resistor is formed on the surface of the insulating layer. Glass having a thermal expansion coefficient close to that of a metal material is used for the glaze insulating layer.
  • Japanese Patent Application Laid-Open No. 61-67901 discloses a thermal expansion of glass used for a glazed stainless steel substrate to match the temperature coefficient of resistance (TCR) characteristics of the strain-sensitive resistor formed on the substrate. Disclose that the coefficient is matched to the substrate. If the thermal expansion coefficient of the underlying substrate is 70 X 10- 7 Z ° C resistor material of 70 X 10- 7 Z ° C coefficient of thermal expansion is formed. In this case a commercially available resistor materials for alumina substrate (the thermal expansion coefficient of about 70 X 10- 7 Z ° C) it is possible to divert.
  • Japanese Patent Application Laid-Open No. 6-294693 discloses that the thermal expansion coefficient of a glass frit included in a strain-sensitive resistor is approximated to the thermal expansion coefficient of a substrate.
  • Japanese Patent Application Laid-Open No. 9-273968 discloses a mechanical quantity sensor for preventing mutual diffusion between a resistor and a base glass in order to stabilize a strain-sensitive resistor.
  • the two types of resistors improve the matching between the antibody and the underlying glass.
  • the sensor includes a first resistor on an insulating layer on a metal substrate and a second resistor on the first resistor.
  • Japanese Patent No. 3010166 discloses a method for suppressing the influence of mutual diffusion between a glass layer formed on a metal substrate and a strain-sensitive resistor, by forming particulate alumina and particulate oxide between the glass layer and the resistor. It discloses forming a glass layer containing zinc.
  • GF gauge factor
  • resistor material it is necessary to form the resistor in close material X 10- 7 Z ° C.
  • substrate of the thermal expansion coefficient of 140 X 10- 7 Z ° c it is necessary to form the resistor material of 140 X 10- 7 Z ° C.
  • commercially available resistor materials are intended for use with alumina substrates, and other resistor materials with a coefficient of thermal expansion are not commercially available. It is difficult. This is because developing a resistor material is not just a GF. It is necessary to optimize various parameters such as TCR, noise characteristics, and reliability.Development of a resistor material according to the coefficient of thermal expansion of various substrate materials It is virtually impossible.
  • the thickness of a metal material the coefficient of thermal expansion 100 X 10- 7 Z ° C is lmm, 2 mm, the amount of thermal expansion coefficient and warpage varies with substrate 5 mm.
  • the warpage of the substrate immediately after punching is different. Therefore, even if the warp is corrected, the degree of the warp is slightly different if the substrate is fired at 850 ° C. Because the pressing method itself is different for a thick substrate such as a 5 mm thick substrate, the warpage during firing is significantly different from that of the above-mentioned hot substrate.
  • Such a warp or deformation of the substrate causes the resistor to have a thermal expansion coefficient ,
  • the resistance value is easily destabilized.
  • such distortion at the time of force kneading is commonly generated in laser kneaders and the like in addition to the above-described punching force kneading using a mold.
  • the substrate is formed on the substrate by the difference (material, thickness, shape) of the substrate and the processing method (residual stress in mechanical processing, annealing method, punching or pressing method, etc.).
  • the processing method residual stress in mechanical processing, annealing method, punching or pressing method, etc.
  • Various stresses are generated inside the resistor, and the resistance value tends to change with time as the GF of the resistor increases.
  • the load sensor includes a substrate, a glass layer formed on the substrate, wiring formed on the glass layer, an adjustment layer formed on the glass layer, and a wiring formed on the adjustment layer. And a connected strain-sensitive resistor.
  • the thermal expansion coefficient of the adjustment layer is closer to the thermal expansion coefficient of the strain-sensitive resistor than the thermal expansion coefficient of the glass layer.
  • FIG. 1 is a sectional view of a load sensor according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of a load sensor according to an embodiment and a conventional load sensor.
  • FIG. 2B is a cross-sectional view of the load sensor according to the embodiment and a conventional load sensor.
  • FIG. 2C is a cross-sectional view of the load sensor according to the embodiment and a conventional load sensor.
  • FIG. 3A shows a change in resistance value of the load sensor according to the embodiment.
  • FIG. 3B shows a change in the resistance value of the load sensor according to the embodiment.
  • FIG. 4A shows a change in resistance value of a conventional load sensor.
  • FIG. 4B shows a change in resistance value of a conventional load sensor.
  • FIG. 5A is a cross-sectional view of a conventional load sensor.
  • FIG. 5B is a cross-sectional view of a conventional load sensor.
  • FIG. 5C is a cross-sectional view of a conventional load sensor.
  • FIG. 5D is a sectional view of a conventional load sensor.
  • FIG. 6A is a cross-sectional view of the load sensor according to the embodiment.
  • FIG. 6B is a cross-sectional view of the load sensor according to the embodiment.
  • FIG. 6C is a cross-sectional view of the load sensor according to the embodiment.
  • FIG. 6D is a sectional view of the load sensor according to the embodiment.
  • FIG. 7 shows a rate of change in resistance value of a conventional load sensor.
  • FIG. 8 shows a change in resistance value of the load sensor according to the embodiment.
  • FIG. 9 shows a change in resistance value of another load sensor according to the embodiment.
  • FIG. 10 shows a change in resistance value of still another load sensor in the embodiment.
  • FIG. 11 shows a change in resistance value of still another load sensor in the embodiment.
  • FIG. 12A is a cross-sectional view showing the method of manufacturing the load sensor in the embodiment.
  • FIG. 12B is a cross-sectional view showing the method of manufacturing the load sensor in the embodiment.
  • FIG. 12C is a cross-sectional view showing the method of manufacturing the load sensor in the embodiment.
  • FIG. 12D is a cross-sectional view showing the method of manufacturing the load sensor in the embodiment.
  • FIG. 12E is a sectional view showing the method of manufacturing the load sensor in the embodiment.
  • FIG. 13A is a cross-sectional view showing a method for manufacturing another load sensor according to the embodiment.
  • FIG. 13B is a cross-sectional view showing a method for manufacturing another load sensor according to the embodiment.
  • FIG. 13C is a cross-sectional view showing a method for manufacturing another load sensor in the embodiment.
  • FIG. 13D is a sectional view showing the method of manufacturing another load sensor in the embodiment.
  • FIG. 13E is a cross-sectional view showing the other method for manufacturing the load sensor in the embodiment.
  • FIG. 14 is an external view of a load sensor according to an embodiment.
  • FIG. 15 is an enlarged schematic diagram of a composite glass used for an adjustment layer.
  • FIG. 16 shows pinholes that may be generated in composite glass.
  • FIG. 17A is a composite glass used for an adjustment layer of the load sensor according to the embodiment. It is a schematic diagram which shows the manufacturing method of a paste.
  • FIG. 17B is a schematic view showing a method for producing a composite glass paste used for the adjustment layer of the load sensor in the embodiment.
  • FIG. 17C is a schematic view showing a method for producing a composite glass paste used for the adjustment layer of the load sensor in the embodiment.
  • FIG. 18A is a schematic view showing a method for producing a composite glass paste used for the adjustment layer of the load sensor according to the embodiment.
  • FIG. 18B is a schematic view showing a method for producing a composite glass paste used for the adjustment layer of the load sensor according to the embodiment.
  • FIG. 18C is a schematic view showing a method for producing a composite glass paste used for the adjustment layer of the load sensor according to the embodiment.
  • FIG. 18D is a schematic view showing a method for producing a composite glass paste used for the adjustment layer of the load sensor in the embodiment.
  • FIG. 1 is a sectional view of a load sensor 101 according to an embodiment of the present invention.
  • a glass layer 2 serving as an insulating layer is formed on a substrate 1, and an adjustment layer 3 made of a glass material is formed in a central portion on the glass layer 2.
  • a part of each of the plurality of wirings 4 is formed on the glass layer 2 and another part is formed on the adjustment layer 3.
  • the strain-sensitive antibody 5 is formed on the adjustment layer 3 between the plurality of wirings 4.
  • the protective layer 6 is provided on the resistor 5 and the wiring 4, and protects the resistor 5 and the wiring 4.
  • the absolute value of the difference between the thermal expansion coefficients of the adjustment layer 3 and the resistor 5 is smaller than the absolute value of the difference between the coefficients of thermal expansion of the glass layer 2 and the resistor 5. That is, the thermal expansion coefficient of the adjustment layer 3 is closer to the thermal expansion coefficient of the strain-sensitive resistor 5 than the thermal expansion coefficient of the glass layer 2.
  • the thermal expansion coefficient of the adjustment layer 3 is It is approximately equal to the coefficient of thermal expansion of body 5. Even though the thermal expansion coefficients of the substrate 1 and the resistor 5 are significantly different, the adjustment layer 3 formed between the resistor 5 and the glass layer 2 absorbs the difference in thermal expansion due to the difference in the coefficient of thermal expansion. .
  • the resistor 5 does not directly contact the substrate 1 having a thermal expansion coefficient significantly different from that of the resistor 5 or the glass layer 2 having a thermal expansion coefficient significantly different from that of the resistor 5 !.
  • FIGS. 2A to 2C are explanatory diagrams for comparing the load sensor 101 according to the embodiment with the conventional load sensor 601.
  • FIG. 1 is explanatory diagrams for comparing the load sensor 101 according to the embodiment with the conventional load sensor 601.
  • FIG. 2A is a sectional view of a conventional load sensor 601.
  • a glass layer 502 is formed on a substrate 501, and a wiring 504 and a resistor 505 are formed on the glass layer 502.
  • the protective layer 506 is formed on the wiring 504 and the resistor 505 to protect the wiring 504 and the resistor 505.
  • the foil gauge 507 is attached on the protective layer 506 with an adhesive. Vise 8 fixes one end 501A of substrate 501.
  • FIG. 2B shows the load sensor 101 according to the embodiment shown in FIG.
  • a foil gauge 7 is provided on the protective layer 6.
  • One end of the substrate 1 is fixed with a vise 8.
  • the load sensor 101 shown in FIG. 2A differs from the load sensor 501 shown in FIG. 2B in that an adjustment layer 3 is formed between the resistor 5 and the glass layer 2.
  • FIG. 2C shows the load sensors 101 and 601 to which a predetermined load is applied by the weight 41.
  • Weight of board 41, 501 is radiused by weight 41. Detected as a change in the resistance value of 7.
  • FIGS. 3A and 3B show changes in the resistance value of the resistor 5 of the load sensor 101 according to the embodiment shown in FIGS. 1 and 2B.
  • the horizontal axis indicates the elapsed time (arbitrary unit), and the vertical axis indicates the weight of the weight 41.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the resistance value of the resistor 5.
  • the initial resistance value is 100 Converted as shown.
  • a line 1001 indicates the resistance value of the resistor 5 of the load sensor 101 according to the embodiment, and a line 1002 indicates the resistance value of the foil gauge 7.
  • FIG. 4A and FIG. 4B show changes in the resistance value of the resistor 505 of the conventional load sensor 601 shown in FIG. 2A.
  • the horizontal axis represents the elapsed time (arbitrary unit), and the vertical axis represents the weight of the weight 41.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the resistance value of resistor 505. The resistance value is shown by converting the initial value to 100.
  • a line 1501 indicates the resistance value of the resistor 505 of the heavy sensor 601
  • a line 1502 indicates the resistance value of the foil gauge 507.
  • the resistance value of the load sensor 101 according to the embodiment shown by the line 1001 in FIG. 3B increases and decreases in proportion to the weight of the weight 41, similarly to the resistance value of the foil gauge 7 shown by the line 1002. It is constant when the weight is constant.
  • the resistance value of the conventional load sensor 601 shown by the line 1501 in FIG. indicates that even if the foil gauge 7 responds sensitively to the increase or decrease in the weight of the weight 41, it responds with a delay to the change in the weight of the weight 41, and furthermore, The resistance value is not stable even when the weight of 41 is constant. This phenomenon is more remarkable as the difference between the coefficient of thermal expansion of the substrate 1 and the coefficient of thermal expansion of the resistor 5 increases.
  • Table 1 shows changes in the resistance values of the resistors 5 and 505 when the substrates 1 and 501 having various coefficients of thermal expansion are used.
  • the thermal expansion coefficient of the adjustment layer 3 of the load sensor 101 according to the embodiment having the resistor 5 was the resistor 5 and the same 70 X 10- 7 Z ° C.
  • the resistor 501 of the conventional load sensor 601 has a stable resistance value.
  • the resistance value of the resistor 5 is stable even if the difference between the coefficient of thermal expansion of the substrate 1 and the coefficient of thermal expansion of the resistor 5 increases.
  • Table 2 shows the variation of the resistance value of the strain-sensitive resistor 5 of the load sensor 101 using the adjustment layers 3 having various thermal expansion coefficients when the thermal expansion coefficients of the substrate 1 and the resistor 5 are fixed.
  • thermal expansion coefficient of the glass layer 2 was the same 100 X 10- 7 Z ° c and the substrate 1.
  • resistor antibody 5 to the difference in thermal expansion coefficient of the adjustment layer 3 is less than 30 X 10- 7 Z ° C, desirably less than 20 X 10- 7 Z ° C, more preferably less than 10 X 10- 7 z ° c It is.
  • a glass layer 502 is formed on a substrate 501, and a paste serving as a resistor 505 is applied on the glass layer 502 in a predetermined shape.
  • the applied paste is fired in a firing furnace to form a resistor 505.
  • a stress is generated inside the paste, and thereby an abnormal stress is generated in the resistor 505.
  • a large stress generated inside the resistor 505 having a small thermal expansion coefficient formed on the substrate 501 having a large thermal expansion coefficient in the conventional load sensor 601 will be described.
  • FIG. 5A to FIG. 5D show a process in which a resistor 505 of a conventional load sensor 601 does not have an adjustment layer and stress is generated.
  • FIG. 5A shows a temperature profile when firing resistor 505 in a commercially available mesh belt furnace, where the horizontal axis represents time and the vertical axis represents the temperature of substrate 501. It takes about one hour for the substrate 501 at room temperature 9A to enter the belt furnace, heat up, cool down through the maximum temperature 9B, and return to room temperature 9A.
  • FIG. 5B is a cross-sectional view of a conventional load sensor 601 thermally expanded at a maximum temperature of 9B.
  • the directions and lengths of arrows 510A and 511A indicate the direction in which the sample of load sensor 601 is deformed and the amount of deformation, respectively.
  • a glass layer 502 is formed on a substrate 501, and a paste that becomes a resistor 505 is printed and applied on the glass layer 502. The applied paste is fired in a belt furnace to form a resistor 505. Note that the wiring 504 is omitted in FIG. 5B.
  • the substrate 501 When the load sensor 601 is heated to a maximum temperature of 9B in the belt furnace, the substrate 501 is largely thermally expanded as indicated by an arrow 511A. Since the glass layer 502 has a coefficient of thermal expansion close to the coefficient of thermal expansion of the substrate 501, the glass layer 502 also expands in the same direction as the substrate 501 by the same amount as indicated by the arrow 511A.
  • Resistor 505 is melted at a maximum temperature of 9B. As shown in Fig. 5C, the sample goes from the maximum temperature of 9B to the cooling zone 12 in the belt furnace.
  • FIG. 5D shows the stress applied to each part of the sample in the cooling region 12. As the temperature decreases in the temperature drop region 12, the substrate 501 and the glass layer 502 contract greatly in the direction of the force arrows 510B and 511B. At this time, the resistor 505 contracts by a smaller amount than the substrate 501 and the glass layer 502 as shown by the arrow 13. Therefore, stress concentrates on the region 14A near the interface between the glass layer 502 and the resistor 505, and this changes the resistance value of the resistor 505.
  • FIG. 6A to 6D show a process in which a stress is generated in the load sensor 101 according to the embodiment including the adjustment layer 3.
  • FIG. 6A to 6D show a process in which a stress is generated in the load sensor 101 according to the embodiment including the adjustment layer 3.
  • both the substrate 1 and the glass layer 2 undergo large thermal expansion as shown by arrows 10A and 11A.
  • the adjustment layer 3 has the substrate 1 slightly thermally expanded by a smaller amount than the glass layer 2 as indicated by an arrow 42, and the resistor 5 is dissolved.
  • the substrate 1 and the glass layer 2 have arrows.
  • the resistor 5 and the adjustment layer 3 shrink slightly with a smaller amount than the substrate 1 and the glass layer 2.
  • the stress due to the difference in the amount of thermal shrinkage between the substrate 1 or the glass layer 2 and the resistor 5 is concentrated in a region 14 B near the interface between the glass layer 2 and the adjustment layer 3. As a result, stress due to the difference in the amount of heat shrinkage is less likely to be generated in the resistor 5, and the resistance value is stabilized.
  • FIG. 7 shows a change in resistance value of a strain-sensitive resistor 505 of a sample of a conventional load sensor 601 provided with a substrate 501 having various characteristics.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the change in the resistance value of the antibody 505
  • the initial (time tO on the horizontal axis) the change rate of the resistance value in ppm. That is, FIG. 7 corresponds to a diagram obtained by measuring FIG. 4B at a higher resolution.
  • the resistance value of the sample resistor 505 may decrease with time as shown by a characteristic 51 shown in FIG. 7, may not change as shown by a characteristic 52, or may increase with time as shown by a characteristic 53. .
  • the conventional load sensor 601 When the resistance value does not fluctuate as in the characteristic 52, the conventional load sensor 601 operates correctly. However, when the resistor 505 has the resistance values of the characteristic 51 and the characteristic 53, the adjustment layer 3 is required.
  • the resistance value of the characteristic 51 decreases with time, which is considered to be due to the fact that the length of the resistor 5 is slightly reduced with time but gradually reduced. As the resistor 5 is shrunk by the glass layer 2, the length of the resistor 5 is gradually reduced with time. Thus, in the resistor 5 having the resistance value of the characteristic 51, the coefficient of thermal expansion of the adjustment layer 3 is determined so that the resistor 5 is not compressed.
  • the resistance value of the characteristic 53 is a force that increases with time. This is considered to be because the length of the resistor 5 gradually increases with time. As the resistor 5 is pulled by the glass layer 2, its length gradually increases. Thus, in the resistor 5 having the resistance value of the characteristic 53, the thermal expansion coefficient of the adjustment layer 3 is determined so that the resistor 5 is not pulled.
  • the main cause of the change in the resistance value of the strain-sensitive resistor 5 is generated inside the resistor. Since the stress generated inside the resistor 5 can be adjusted by adjusting the coefficient of thermal expansion of the adjustment layer 3 in contact with the resistor 5, the time change of the resistance value can be suppressed.
  • the load sensor 101 shown in FIG. 1 includes the adjustment layer 3 made of a glass material having a thermal expansion coefficient close to that of the resistor 5.
  • the resistance value of the resistor 5 is changed and the force is still small. A slight change in the resistance value (several tens of force or creep for several hundred ppm Z hours) force S may remain.
  • a ceramic filler ceramic powder
  • the resistance value of the resistor 5 is stabilized. I can do it.
  • FIG. 8 and FIG. 9 show changes in the resistance value of the resistor 5 of the load sensor 101 including the adjustment layer 3 to which the ceramic filler is added according to the embodiment. 8 and 9, the horizontal axis represents the ratio (wt%) of the ceramic filler in the glass material of the adjustment layer 3 and the vertical axis represents the time change rate (ppmZh) of the resistance value of the resistor 5.
  • the change rate on the vertical axis corresponds to the change in the resistance value per unit time, that is, the slope of the characteristic 51-53 in FIG. Making the slope of the characteristic in FIG. 7 close to zero is equivalent to making the time change rate indicated by the vertical axis in FIGS. 8 and 9 close to zero.
  • the resistance value of the resistor 5 may decrease with time as shown by the characteristic 51 in FIG.
  • the ratio of the ceramic filler in the glass of the adjustment layer in FIG. 8 is equivalent to Owt%, and thus the rate of change in the resistance value is negative as shown in FIG.
  • a force for reducing the resistance value is generated inside the resistor 5 with time.
  • a ceramic filler having a predetermined coefficient of thermal expansion is added to the adjustment layer.
  • the resistance value of the resistor 5 may increase with time as shown by the characteristic 53 in FIG.
  • the ratio of the ceramic filler in the glass in FIG. 9 corresponds to Owt%, and the rate of change in the resistance value is positive as shown in FIG.
  • a ceramic filler having a predetermined thermal expansion coefficient is added to the adjustment layer.
  • the content of the ceramic filler is preferably less than 50 wt%, more preferably less than 40 wt%. If the content of the ceramic filler is more than 50 wt%, the density of the produced composite glass is insufficient and the physical strength is reduced, and the strength required as a load sensor may not be obtained in some cases.
  • the composition of glass and ceramic filler in advance, it is possible to optimize the composition of glass and ceramic filler by simulation without actually making it. Often. However, the composition may not be optimized by simulation in some cases because of the effects of variations in the lot of the resistor 5, variations in the firing state, mutual diffusion of various materials, and the like. In such a case, changing the actual material shown in Fig. 8 is the most effective and practical method for finding the optimum composition.
  • the ceramic filler added to the glass alumina, zirconia, magnesia, lucia, etc. can be used, and the resistance value of the resistance layer 5 varies. Can be kept below a few ppm.
  • the composition of the adjustment layer 3 is finely adjusted only with glass. In some embodiments, it may be desirable for the adjustment layer 3 to be formed only of a force glass using glass and ceramic.
  • FIGS. 10 and 11 show the rate of change of the resistance value of the strain-sensitive resistance layer 5 due to the adjustment layer 3 using a plurality of types of glasses.
  • the horizontal axis indicates the ratio of the added glass in the mixed glass that is the material of the adjustment layer 3, and the vertical axis indicates the rate of change in the resistance value of the resistor 5.
  • the change rate of the resistance value increases as the ratio of the added glass increases.
  • the rate of change of the resistance value decreases as the ratio of the added glass increases.
  • FIGS. 10 and 11 the crystallized glass of SiO • ZnO 'RO system with low thermal expansion coefficient of about 50 X 10- 7 Z ° C than the glass of the main component as an additive glass Adjustment layer 3 as shown
  • the rate of change of the resistance value can be suppressed to less than several ppm.
  • the adhesive strength at the interface between the glass layer 2 and the adjustment layer 3 may be reduced, and the two layers may be easily separated from each other.
  • the bonding strength between the adjustment layer 3 and the base glass layer 2 can be increased.
  • the material for the strain-sensitive resistor 5 is easily available for an alumina substrate.
  • the glass material of the adjustment layer 3 for such a resistor 5 is preferably a material mainly composed of SiO, ZnO, or alkaline earth oxide.
  • the effect can often be reduced by adding ceramic as a filler. This is because the ceramic material itself has a high melting point and hardly interdiffuses with the resistor 5 at a firing temperature of about 850 ° C. Further, by adjusting the glass component of the adjustment layer 3, the TCR of the resistor 5 and the absolute value of the resistance value can be adjusted.
  • a crystalline glass material can be used as the glass material of the adjustment layer 3.
  • a crystalline glass material is fired and crystallized before forming the resistor 5. Even if the resistor 5 is printed on the adjustment layer 3 made of crystallized glass material and baked at a temperature of about 850 ° C, the crystallized glass material that forms the adjustment layer 3 at this temperature is re-melted. Therefore, mutual diffusion with the resistor 5 hardly occurs.
  • the load sensor 101 is mounted on a vehicle, such as a load sensor used in a smart airbag system for automobiles, etc., the sensor does not work when the airbag is open, the range is weak, or the degree of contact accident is small. The sensor may be broken.
  • the glass material portion (for example, the adjustment layer 3) constituting the sensor may be broken. According to the experiment, the adjustment layer 3 made of crystallized glass was less likely to be damaged by impact than the adjustment layer 3 made of amorphous glass, and a highly reliable result was obtained.
  • the substrate 1 specified by the user has a specific coefficient of thermal expansion depending on the material (metal, ceramic, etc.), and furthermore, the thickness and shape, or the residual stress in the substrate processing method (the thermal treatment of the substrate). , Deformation of the substrate due to residual stress).
  • a load sensor can be manufactured with a limited number of strain-sensitive resistors 5 for a substrate 1 specified by a user, and a variety of load sensors can be manufactured and low cost can be achieved. Become.
  • the load sensor 101 can be manufactured with the adjustment layer 3 using the substrate 1 of various materials such as alumina and metal.
  • the area of the adjustment layer 3 is larger than the resistor 5. Resisting area of adjustment layer 3
  • the adjustment layer 3 can be formed on the entire surface below the resistor 5 by extending the resistor 5 from the body 5. Also, as shown in FIG. 1, it is desirable that a part 4A of the wiring 4 be formed on the adjustment layer 3. By forming the resistor 5 in contact with a part 4A of the wiring 4 formed on the adjustment layer 3, the adjustment layer 3 can be formed on the entire surface below the resistor 5. It is also desirable to form a plurality of resistors 5 on one adjustment layer 3. Thereby, the characteristics of the resistors 5 are made uniform, and the yield of the load sensor can be increased.
  • the area of the adjustment layer 3 is preferably smaller than the glass layer 2. If the area of the adjustment layer 3 is about the same as or larger than the glass layer 2, the difference in thermal expansion coefficient between the adjustment layer 3 and the glass layer 2 The interface may peel off, and the strength may decrease.
  • the thickness of the adjustment layer 3 is desirably 1 ⁇ m or more and less than 500 ⁇ m. If the thickness of the adjustment layer 3 is less than 1 ⁇ m, pinholes may be generated in the adjustment layer 3 and the adjustment layer 3 may not be able to absorb sufficient stress. When the thickness of the adjustment layer 3 is 500 m or more, the rigidity of the adjustment layer 3 becomes too high, and the distortion of the substrate 1 may not be transmitted to the resistor 5 accurately.
  • the firing cost can be reduced by simultaneously firing (or batch firing) the adjustment layer 3 and the glass layer 2. Simultaneously firing (or batch firing) the wiring 4 and the adjustment layer 3 can reduce the firing cost. Note that simultaneous firing (or simultaneous firing) of the adjustment layer 3 and the resistor 5 may have an undesirable effect on the characteristics of the resistor 5, and in such a case, the material of the adjustment layer 3 as described with reference to FIGS. Composition optimization may be required.
  • the load sensor 101 may include a strain-sensitive resistor 5 made of a material used for a commercially available alumina substrate and a substrate 1 made of a metal having a larger thermal expansion coefficient than the alumina substrate.
  • a strain-sensitive resistor 5 made of a material used for a commercially available alumina substrate
  • a substrate 1 made of a metal having a larger thermal expansion coefficient than the alumina substrate.
  • As the material of the resistor 5 used for the alumina substrate several types of firing-type materials containing ruthenium oxide at a firing temperature of 850 ° C. are sold.
  • glass materials and glass pastes with the same thermal expansion coefficient as alumina substrates are being sold for crossover and multilayer insulation for hybrid ICs.
  • the resistance value of the strain-sensitive resistor 5 can be stabilized by the adjustment layer 3 having such a glass material as a main component and finely adjusting the thermal expansion coefficient by adding a predetermined ceramic powder to the glass material as needed.
  • a glass material include SiO, ZnO, RO (R is Mg, Ca
  • the average particle size of the glass powder is 5 ⁇ m or less (or the central particle size is 10 ⁇ m or less), and preferably, the average particle size is 3 ⁇ m or less. It is desirable. By using such fine glass powder, the thickness of the adjustment layer 3 can be made uniform and its surface roughness can be reduced, so that the resistor paste can be easily printed on the adjustment layer 3.
  • the protective layer 6 covers at least the entire surface of the resistor 5.
  • the protective layer 6 covers the entire surface of the resistor 5 and a portion 4A of the wiring 4 connected to the resistor 5 and the adjustment layer 3, so that the influence of the outside air on the resistor 5 and its resistance can be suppressed, and the load can be reduced.
  • the reliability of the sensor 101 can be improved.
  • the difference in the thermal expansion coefficient of the thermal expansion coefficient and the resistor 5 the substrate 1 is 20 X 10- 7 Z ° C or 300
  • X 10 less than 7 ° C is desirable.
  • the predetermined value the difference in thermal expansion coefficients between the substrate 1 and the resistor 5 at the firing conditions and the like without adjusting layer 3 It can be suppressed below.
  • the difference in the thermal expansion coefficients of the substrate 1 and the thermal expansion coefficient of the glass layer 2 is desirably less than 20 X 10- 7 Z ° C. If the thermal expansion coefficient difference between the substrate 1 and the glass layer 2 is not less than 20 X 10- 7 Z ° C, the glass by the internal stress generated in the glass layer 2 generated by the difference in thermal expansion coefficient between the substrate 1 and the glass layer 2 Layer 2 and substrate 1 may peel off.
  • the difference in the thermal expansion coefficient of the resistor 5 and the thermal expansion coefficient of the adjustment layer 3 is less desirable 20 X 10- 7 Z ° C. If the thermal expansion coefficient difference of the resistor 5 and the adjustment layer 3 is not less than 20 X 10- 7 Z ° C, if not suppressed below a predetermined value the difference in thermal expansion coefficient between the substrate 1 and the resistor 5 the adjustment layer 3 There is.
  • the thickness of the adjustment layer 3 is desirably 1 ⁇ m or more and less than 500 ⁇ m. If the thickness of the adjustment layer 3 is less than 1 ⁇ m, a pinhole may be generated in the adjustment layer 3 and the resistor 5 and the glass layer 2 may be in direct contact with each other, and the effect of the adjustment layer 3 is obtained. May not be.
  • the thickness of the adjustment layer 3 is 500 m or more, the rigidity of the adjustment layer 3 itself may affect the substrate 1 and may affect the stability of output as a load sensor.
  • the size of the adjustment layer 3 is not less than 0.1 mm ⁇ 0.1 mm 2 (0.01 mm 2 ) and less than 50 mm ⁇ 50 mm (2500 mm 2 ) and larger than the area of the resistor 5.
  • the size force of the adjustment layer 3 is equal to or less than SO. ImmX O. lmm, it may be difficult to manufacture the adjustment layer 3 by a general thick film technique. If the size of the adjustment layer 3 is 50 mm X 50 mm or more, the adjustment layer 3 In some cases, a large stress is generated and peeling occurs at the interface between the glass layer 2 and the adjustment layer 3. Further, by making the area of the adjustment layer 3 larger than the area of the resistor 5, the adjustment layer 3 can be formed on the entire lower surface of the resistor 5, so that direct contact between the resistor 5 and the glass layer 2 can be prevented.
  • At least a portion 4 A of the wiring 4 is formed on the adjustment layer 3 together with the resistor 5, so that the wiring 4 and the resistor 5 can be connected on the adjustment layer 3.
  • the paste of the material of the resistor 5 can be printed stably. Even when a bridge circuit is formed using a plurality of resistors 5, the characteristics of the plurality of resistors 5 can be kept constant, so that the output characteristics of the load sensor 101 can be stabilized.
  • the thickness of the resistor 5 is desirably 1 ⁇ m or more and less than 500 ⁇ m.
  • the thickness of the resistor 5 is less than 1 ⁇ m, the stress inside the resistor 5 is less likely to be generated due to the difference in the coefficient of thermal expansion between the substrate 1 and the resistor 5, and the resistor 5 is easily formed with a pinhole. The effect of layer 3 may not be obtained.
  • the thickness of the resistor 5 is 500 m or more, when the resistor 5 is manufactured by the thick film technology, the stress generated by sintering the resistor 5 becomes too large, and the adjustment layer 3 absorbs the stress. If not, there are cases.
  • the area of the resistor 5 is 0.1 mm ⁇ 0.1 mm or more and less than 50 mm ⁇ 50 mm and smaller than the area of the adjustment layer 3. If the area of the resistor 5 is less than 0.1 mm ⁇ O.lmm, it may be difficult to fabricate the resistor 5 by a general thick film technique. When the size of the resistor 5 is 50 mm ⁇ 50 mm or more, the adjustment layer 3 may not be able to absorb the stress or the like generated when the resistor 5 is sintered.
  • the material of the substrate 1 is thermal expansion coefficient of 80 X 10- 7 Z ° C or 200 X 10- 7 Z ° C under der Ru metal is preferable.
  • the thermal expansion coefficient of the 80 X 10- 7 Z ° C less than the metal when stabilization of the resistance value of the resistor 5 is possible even without forming the adjustment layer 3 by optimizing the like baking conditions There is.
  • the thermal expansion coefficient of the substrate 1 is not less than 200 X 10- 7 Z ° C, it may not be absorbing the difference in thermal expansion coefficient of the resistor 5 and the substrate 1 by adjusting layer 3.
  • the substrate 1 may be formed by punching a metal plate with a die. Thus, the substrate 1 can be formed at a lower cost as compared with electric discharge machining or laser machining.
  • the metal plate processed by the mold has residual stress inside. Such a substrate 1 may be slightly distorted or warped due to a heat treatment or the like, but such a residual stress is generated by the adjustment layer 3 according to the embodiment. It can be hardly transmitted to the resistor 5.
  • the material of the resistor 5 has a gauge factor (GF) of 10 or more and less than 1000.
  • the resistor 5 made of a material having a GF of less than 10 may not require the adjustment layer 3 to be formed.
  • the resistor 5 is made of a material having a GF of 1000 or more, it may be difficult to stabilize the resistance value even if the adjustment layer 3 is optimized.
  • the resistor 5 is desirably formed by printing a paste of the material of the resistor on the adjustment layer 3 in a predetermined shape and then firing the paste at a temperature of 400 ° C. or more and less than 1000 ° C.
  • the sintering is insufficient and the adhesion between the adjustment layer 3 and the resistor 5 may be low. is there. If the firing temperature of the best exceeds 1000 ° C., the diffusion of the material between the resistor 5 and the adjustment layer 3 becomes too large, and the resistance value of the resistor 5 may not be stable.
  • the adjusting layer 3 is preferably made of glass or a composite glass made of glass and a ceramic filler.
  • the load sensor 101 can be manufactured from the substrate 1 having various coefficients of thermal expansion and the resistor 5 mm by changing the types and mixing ratios of glass and ceramic filler.
  • the particle size of the ceramic filler is desirably 0.01 ⁇ m or more and less than 10 ⁇ m. If the particle size of the ceramic filler is less than 0.01 ⁇ m, the dispersion of the properties of the composite glass containing the particles, which is difficult to disperse, may be large. When the particle size of the ceramic filler is 10 ⁇ m or more, the surface roughness of the adjustment layer 3 that also becomes a composite glass force becomes too large, and the variation in the resistance value of the resistor 5 formed thereon may become large. .
  • the ceramic filler is desirably at least one of alumina, zirconia, magnesia, titania, titari, and lucia.
  • FIGS. 12A to 12D are cross-sectional views illustrating a method of manufacturing the load sensor 101 according to the embodiment.
  • a glass paste is printed on a substrate 15 and baked to form a glass layer 16a.
  • the thickness of the glass layer 16a should be 10 ⁇ m or more and 200 ⁇ m or less. Yes. When the thickness of the glass layer 16a is less than 10 ⁇ m, pinholes may be generated in the glass layer 16a. If the thickness of the glass layer 16a exceeds 200 ⁇ m, the cost increases.
  • an adjustment layer 17a is formed on the glass layer 16a. It is desirable that the adjustment layer 17a be larger than the strain-sensitive resistor 19a formed thereon.
  • the adjustment layer 17a can be formed by printing and firing a paste of the material.
  • a plurality of wirings 18a are formed such that at least one end 118a is located on adjustment layer 17a.
  • the wiring 18a can be formed by printing and firing a paste of each material.
  • a strain-sensitive resistor 19a is formed between the plurality of wirings 18a.
  • the adjustment layer 17a is formed beforehand under the antibody 19a.
  • the resistor 19a can be formed by printing and firing a paste of the material.
  • a protective layer 20a is formed so as to cover at least the surface of the antibody 19a.
  • the adjustment layer 17a can be formed directly below the resistor 19a by an inexpensive method such as printing, and a load sensor that is not easily affected by the thermal expansion coefficient of the substrate 15 can be manufactured at low cost.
  • the glass layer 16a is formed in a plurality of layers in FIG. 12A, the glass layer 16a is affected by pinholes and the like generated inside the glass layer 16a.
  • the glass layer 16a and the adjustment layer 17a can be simultaneously formed by firing at a time, thereby reducing the manufacturing cost.
  • the glass layer 16a and the adjustment layer 17a may have different thermal expansion coefficients from each other, the difference in the thermal expansion coefficient does not matter so much because the adjustment layer 17a is formed only in a very small area.
  • the glass layer 16a, the adjustment layer 17a, and the wiring 18a can be simultaneously fired, so that further cost reduction is possible.
  • metal has a lower shrinkage onset temperature than glass.
  • a shrinkage inhibitor in advance to the paste for forming the wiring 18a, cracks and cracks due to differences in firing shrinkage during simultaneous firing can be prevented.
  • an inorganic material such as glass powder or ceramic powder for the glass layer 16a or the adjustment layer 17a can be used.
  • the addition amount of the shrinkage inhibitor is desirably lwt% or more and 20wt% or less. When the addition amount of the shrinkage inhibitor is lwt% or less, the shrinkage suppressing effect may not be obtained. If the addition amount of the shrinkage inhibitor exceeds 20 wt%, the resistance value of the wiring may increase and affect the characteristics of the resistor 19a. There is a match.
  • FIGS. 13A to 13E are cross-sectional views illustrating a method of manufacturing another load sensor according to the embodiment.
  • a glass layer or an electrode paste is printed on a substrate 15 and baked to form a glass layer 16 b containing the internal electrode 20. It is desirable that the thickness 116b of the glass layer 16b between the substrate 1 and the internal electrode 20 be 10 m or more and 200 m or less. If the thickness 116b of the glass layer 16b is less than 10 m, pinholes may be generated in the glass layer 16b. If the thickness 116b of the part 116b of the glass layer 16b exceeds 200 ⁇ m, the cost will increase.
  • the internal electrode 20 inside the glass layer 16b improves the electromagnetic interference (EMI) characteristics of the load sensor, and makes the load sensor less susceptible to electromagnetic waves from mobile phones and wireless devices.
  • EMI electromagnetic interference
  • an adjustment layer 17b is formed on the glass layer 16b.
  • the adjustment layer 17b it is desirable that the adjustment layer 17b be wider than the strain-sensitive resistor 19b formed thereon.
  • the adjustment layer 17b can be formed by printing and baking a paste of the material.
  • a plurality of wirings 18b are formed so that at least one end 118b covers the adjustment layer 17b.
  • the wiring 18b can be formed by printing a paste of the material and baking the paste.
  • a strain-sensitive resistor 19b is formed on the adjustment layer 17b and between the plurality of wirings 18b.
  • the resistor 19b can be formed by printing and firing a paste of the material.
  • a protective layer 20b is formed so as to cover at least the surface of the resistor 19b. According to this manufacturing method, since the adjustment layer 17b can be formed directly below the resistor 19b by an inexpensive method such as printing, a load sensor that is hardly affected by the coefficient of thermal expansion of the substrate 15 can be manufactured at low cost.
  • the glass layer 16b may be formed by forming a plurality of glass layers by repeating printing Z-drying a paste of the material a plurality of times, thereby forming a plurality of glass layers.
  • the effect of internal pinholes can be reduced.
  • the glass layer 16b, the internal electrode 20, and the adjustment layer 17b are simultaneously formed by firing at a time. be able to. Thereby, the manufacturing cost of the load sensor can be reduced.
  • the glass layer 16b and the adjustment layer 17b have different thermal expansion coefficients from each other. Since the adjustment layer 17b is printed on a very small area, the difference in the thermal expansion coefficient does not cause much problem in simultaneous firing.
  • the cost can be reduced by simultaneously firing the glass layer 16b, the adjustment layer 17b, the internal electrode 20, and the wiring 18b as needed.
  • the shrinkage onset temperature of metal is lower than that of glass.
  • a shrinkage inhibitor to the paste of the material of the internal electrodes 20 and the wirings 18b, cracks and cracks due to differences in shrinkage during batch firing can be prevented.
  • an inorganic material such as glass powder or ceramic powder for the glass layer 16b or the adjustment layer 17b can be used.
  • the addition amount of the shrinkage inhibitor is preferably lwt% or more and 20wt% or less. If the amount of the shrinkage inhibitor is less than lwt%, the shrinkage inhibitory effect may not be obtained. If the amount of the shrinkage inhibitor exceeds 20% by weight, the resistance of the wiring 18b may increase or the characteristics of the resistor 19b may be affected.
  • FIG. 14 is an external view of another load sensor 102 according to the embodiment.
  • the illustration of the protective layer is omitted for explanation.
  • distortion due to processing such as outer peripheral processing, hole processing, and fitting processing performed on the substrate 21 may affect the characteristics of the strain-sensitive resistor 25.
  • the load sensor 102 includes a substrate 21, a glass layer 22 on the substrate 21, an adjustment layer 23 on the glass layer 22, a part of a wiring 24 on the adjustment layer 23, and an adjustment layer 23.
  • the upper strain-sensitive resistor 25 is provided.
  • the resistor 25 and a part 124 of the wiring 24 are connected.
  • the load sensor 102 shown in FIG. 14 detects a load applied to the sensor 102 due to a change in the resistance value of the plurality of strain-sensitive resistors 25. It is desirable that the plurality of resistors 25 form a bridge circuit. At this time, if the resistance values of the plurality of resistors 25 are different, predetermined characteristics of the bridge circuit formed by the resistors 25 may not be obtained. Therefore, by forming a plurality of resistors 25 on one adjustment layer 23, the resistor 25 can be printed with a paste of the material stably, thereby suppressing variation in resistance value.
  • the thickness of the adjustment layer 23 is preferably 1 ⁇ m or more and less than 500 ⁇ m.
  • the thickness of the adjustment layer 23 When the thickness is 1 ⁇ m or less, a difference in thermal expansion coefficient between the glass layer 22 and the resistor 23 may not be completely absorbed, or a pinhole may be generated inside. If the thickness of the adjustment layer 23 is larger than 500 m, the material cost of the adjustment layer 23 increases.
  • the area of the adjustment layer 23 with respect to one resistor 25 is desirably 0.1 mm ⁇ O. 1 mm or more and less than 50 mm ⁇ 50 mm. If the area of the adjustment layer 23 is less than 0.1 mm X O. 1 mm, the cross section of the adjustment layer 23 rises in a convex shape and the flat portion decreases, so that the paste of the material of the resistor 25 is formed on the adjustment layer 23. Is difficult to print with high accuracy. In addition, the adjustment layer 23 having an area of 0.1 mm ⁇ 0.1 mm or more has many flat portions on the surface, and the paste of the material of the resistor 25 can be easily printed on the adjustment layer 23 with high accuracy.
  • the area of the adjustment layer 23 exceeds 50 mm ⁇ 50 mm, a crack may occur between the adjustment layer 23 and the glass layer 22 therebelow due to a difference in thermal expansion coefficient. It is preferable that the area of the adjustment layer 23 is larger than the area of the resistor 25. If the area of the adjustment layer 23 is smaller than the area of the resistor 25, the resistor 25 may come into contact with the glass layer 22 and affect the stress distribution inside the resistor 25. By forming a plurality of resistors 25 on one adjustment layer 23, the resistors 25 can be printed stably.
  • FIG. 15 is an enlarged schematic diagram of a composite glass used for adjusting layer 3 according to the embodiment.
  • the ceramic powder 27 is dispersed in the crystallized glass 26 and fired simultaneously to form a composite glass 28.
  • the thermal expansion coefficient of composite glass 28 can be fine-tuned by fine-tuning the type and amount of ceramic powder 27 added. .
  • the thermal expansion coefficient of the composite glass 28 can be reduced. Further, by adding zirconium having a thermal expansion coefficient of 9.5 ppm / ° C as the ceramic powder 27, the thermal expansion coefficient of the composite glass 28 can be increased.
  • a composite glass can be formed at the same time, and the difference in the coefficient of thermal expansion between the resistor 5 and the substrate 1 can be absorbed.
  • the addition rate of the filler added to the glass 26 is desirably 5 wt% or more and less than 40 wt%. If the amount of the filler is less than 5 wt%, the effect of the addition may not be obtained. If the amount of the filler added exceeds Owt%, the composite glass 28 may not be easily sintered, and the strength may be reduced. This is due to the lack of glass 26 required to cover the surface of ceramic powder 27.
  • the ceramic powder 27 added to the composite glass 28 of the adjustment layer 3 was alumina (Al 2 O 3)
  • the thermal expansion coefficient is 6.5-8. OppmZ. , MgO (Coefficient of thermal expansion is 13ppmZ ° C), Forsterite (2MgO'SiO, Coefficient of thermal expansion is 8-l lppmZ ° C depending on composition), Zirco (
  • the thermal expansion coefficient is preferably 10.4 ppmZ ° C), and titanium oxide, calcium oxide, magnesium oxide, and spinel (MgO'Al 2 O 3) are desirable.
  • the average particle size of the ceramic powder is about 0.01 to 5 m
  • the thermal expansion coefficient of the composite glass 28 can be finely adjusted by adding the ceramic powder 27 as a filler. it can.
  • the ceramic powder 27 preferably has a coefficient of thermal expansion of 6 ppmZ ° C or more and less than 15 ppmZ ° C. Ceramic powder 27 with a thermal expansion coefficient of less than 6 ppmZ ° C or more than 15 ppmZ ° C may have little effect as composite glass.
  • the coefficient of thermal expansion of the composite glass 28 can be easily obtained by a proportional calculation of the coefficient of thermal expansion of the crystallized glass and the coefficient of thermal expansion of the ceramic powder 27 to be added.
  • glass 26 When the cross section of the actual composite glass 28 is analyzed by a scanning electron microscope (SEM) or an X-ray micro analysis (XMA), the glass 26 and the diffused ceramic powder 27 are visible. When these were analyzed by elemental analysis, glass 26 was composed of glass 26 such as MgO, SiO, and Al 2 O.
  • FIG. 16 is an explanatory view of pinholes that may be generated in the composite glass
  • FIGS. 17A to 17C are schematic views showing a method for manufacturing a composite glass paste used for the adjustment layer 3 in the embodiment
  • FIGS. 18A to 18D are schematic views showing a method for producing a composite glass paste used for adjusting layer 3 in the embodiment.
  • the composite glass 26 may include a ceramic powder aggregate 29 and a pinhole 30.
  • the pinhole 30 is not generated, but when the dispersion of the ceramic powder 27 is insufficient and the ceramic powder aggregate 29 is generated, FIG. As shown, a pinhole 30 may be formed. This is because the ceramic powder 27 does not sinter at the firing temperature of the glass 26. In the composite glass 26 remaining after the ceramic powder 27 has formed the ceramic powder aggregates 29, pinholes 30 are generated with a very small probability. The generation of the pinhole 30 can be prevented by uniformly dispersing the ceramic powder in the composite glass 26.
  • a method for producing a composite glass paste will be described with reference to FIGS. 17A to 17C and FIGS. 18A to 18D.
  • the ceramic powder 27 used for the composite glass 26 is dispersed in a solvent in advance, and the glass powder is added to the solvent and kneaded.
  • a composite glass paste containing no ceramic powder aggregates 29 can be obtained.
  • a predetermined material 3 la-31d such as a ceramic powder, a solvent, a dispersant, and a small amount of resin is prepared.
  • a predetermined material 3 la-31d such as a ceramic powder, a solvent, a dispersant, and a small amount of resin.
  • the predetermined raw materials 31a to 31d are dispersed by the beads 33 in the dispersing device 32 as shown in FIG. 17B to obtain a slurry.
  • the dispersing device 32 it is desirable to use a stirring, vibrating, or rotating dispersing device using beads 33 such as a rotary ball mill, a stirring ball mill, and a dyno mill manufactured by Shinmaru Enterprise. Put the ceramic powder together with a solvent and a small amount of By using the dispersing device 32, the dispersion can be performed without generating ceramic powder aggregates.
  • the viscosity of the slurry composed of the ceramic powder, the solvent, the dispersant, or a small amount of the resin is desirably in the range of 1 to 10 cP.
  • the ceramic powder may precipitate when the slurry is taken out and filtered.
  • the viscosity exceeds 10P, the dispersing device 32 using the beads 33 may not sufficiently disperse the ceramic powder, and it may be difficult to remove the beads 33 and the slurry.
  • the diameter of the beads 33 is preferably 10 cm or less.
  • the dispersion effect is high even for fine V and ceramic powder, but since the collision energy between the beads 33 is small, use a dispersing device 32 that uses a power greater than a predetermined force. It is desirable. With such a dispersing device 32, especially a rotary dispersing device 32, it is sometimes difficult to use beads 33 having a diameter of 0.3 mm or less due to the performance of the lip seal (a type of sealing mechanism of the dispersing device 32). .
  • the material of the beads 33 is desirably made of commercially available alumina or zirconia containing yttria. Also, by selecting the same bead material as the ceramic powder, even if the beads 33 are polished and mixed into the slurry, they do not become impurities.
  • the slurry is poured into a filter 36a provided in a filtering device 35a, filtered, and collected in a container 37a.
  • the filter 36a As the filter 36a, a commercially available mesh having an opening of 10 to 20 m can be used, but a filter 36a in which a fiber called a depth type (volume filtration type) is wound into a wound shape is used. Is also good. With this fiber, even a large amount of slurry can be filtered with a small pressure loss, that is, in a state where the filter 36a is hardly clogged. Filtration may be performed by the own weight of the slurry itself! However, the working efficiency can be improved by using an air pressure or a diaphragm pump.
  • a depth type volume filtration type
  • predetermined materials 31e to 31h such as slurry, glass powder, resin, and dispersant, in which the recovered ceramic powder is dispersed in a container 37a, are prepared.
  • a colorant or the like By adding a colorant or the like as needed, the thickness and state of each layer can be easily determined, and process control and product control can be easily performed.
  • a stirring jig 39 is built in the kneader 38 shown in Fig. 18B.
  • a planetary mixer, a kneader, an automatic mortar and the like can be used.
  • the stirring jig 39 inside the kneader 38 in this way, even a highly viscous material can be stably kneaded.
  • the paste of the composite glass is printed by screen printing, so that the cost can be reduced.
  • such a composite glass may have a viscosity of tens of thousands of boises or more and may not flow at all under its own weight, and it is desirable to use a kneader 38 having a stirring jig 39 to knead such a paste.
  • a predetermined amount of the predetermined material 31e-31h is charged into the kneading machine 38, and is kneaded by rotating the built-in stirring jig 39 in the direction of the arrow 34. It is desirable that the predetermined materials 31e to 31h be added in such an order that they do not react with each other. For example, if a large amount of glass powder and resin, slurry and glass powder, etc. are kneaded at once, ceramic powder aggregates may be generated. In order to prevent the generation of such ceramic powder aggregates called solvent shock, it is necessary to confirm in advance the amount of the material to be added little by little or the combination of materials that are hard to agglomerate.
  • the ceramic powder and the glass powder in the slurry are uniformly dispersed by kneading using a kneader 38 such as three rolls 40, so that a composite glass paste can be produced.
  • the slurry can be filtered with a filtering device 35b and a filter 36b to remove dust and aggregates in the glass paste used for the adjustment layer 3.
  • a commercially available inexpensive alumina powder (several dollars ZKg) containing a large number of ceramic powder aggregates having a particle size of 0.4 ⁇ m was used as a ceramic powder of 3 la of a predetermined material.
  • the particle size distribution of the alumina slurry was solved to primary particles by measurement using a particle size distribution meter. Since a predetermined amount of a dispersant is added to this alumina slurry, the concentration of alumina is as high as 60 wt% or more, preferably 80 wt% or more. Although the viscosity of this slurry was less than 10P (range of shear rate lZs-IOOOZs), the dispersion was stable even after 24 hours of stirring. When the alumina slurry is stored for a long time, it can be prevented from sedimentation and re-agglomeration of the ceramic powder by rotating it while mounted on a rotating base or the like. The alumina slurry thus produced could be filtered by a filter 36a having an opening of 10 m as shown in FIG. 17C.
  • this alumina slurry was weighed with glass powder or another binder, premixed as shown in FIG. 18B, and finally roll-kneaded as shown in FIG. 18C.
  • the composite glass paste thus produced could be filtered by the filter 36b having an opening of 20 m.
  • the load sensor 101 shown in FIG. 1 was produced using the composite glass paste thus filtered as the adjustment layer 3.
  • the cross section of the adjustment layer 3 was analyzed by SEM or XMA, and alumina uniformly dispersed in the glass 26 shown in FIG. 15 was detected.
  • the viscosity of the ceramic slurry is sufficiently low, but the amount of solvent is too large and the amount of solvent needs to be reduced. There may be.
  • the load sensor 101 can use the substrate 1 made of an inexpensive metal material due to the adjustment layer 3.
  • the material of the substrate 1 include an austenitic alloy and a Ni-based alloy. It is desirable to use ferritic alloy heat-resistant steel as compared with age-hardened alloys such as Inconel and Co-based alloys.
  • the ferrite heat-resistant alloy makes it easy to apply the sensor with high precision, and reduces residual stress and processing distortion after processing.
  • an aluminum oxide film is formed on the metal elastic body by the aluminum added during the heat treatment, and the heat resistance and oxidation resistance of the substrate 1 are improved.
  • SUS304, 316, 404, 430, SI7 and 444 are suitable as AISII type 300 or 400 series alloy.
  • other metal elastic bodies can be used by subjecting their surfaces to heat treatment.
  • Such alloy has a thermal expansion coefficient of 90 X 10- 7 / ° C one 140 X 10- 7 Z ° C by its composition.
  • the substrate When the substrate is cut into a predetermined shape for the load sensor 101, distortion remains inside the metal elastic substrate 1 during the processing. Therefore, when the substrate 1 is printed with a glass paste and baked, the substrate 1 is often deformed beyond its original coefficient of thermal expansion. For example, the substrate 1 may warp significantly more than the warpage of the substrate calculated from the difference between the thermal expansion coefficients of the glass and the metal substrate. Even when one SUS material is used, substrates 1 having a thickness of 0.5 mm, 2 mm, and 5 mm and processed into a predetermined shape by pressing (punching) are warped by different amounts. If the thickness changes, the processing method changes, so even with the same metal material, the amount of warpage changes depending on the pressure, method, procedure, and mold used during processing.
  • Such warpage is a force that can be corrected after processing. Even with such correction, it is difficult to reduce residual stress and deformation during heat treatment to zero. Therefore, even with the substrate 1 processed into such a predetermined shape and the stress remains inside, a load sensor can be manufactured by the adjustment layer 3.
  • the paste of the material of the resistor 5 is fired at a temperature of 400 ° C. or more and less than 1000 ° C. If the firing is performed at less than 400 ° C., the paste may not be sufficiently sintered, and the predetermined strength of the resistor 5 may not be obtained. If firing at 1000 ° C or more, the substrate 1 is easily oxidized and the proof stress decreases, so it is necessary to use a more expensive and special metal material for the substrate 1.
  • the glass can have higher power resistance and higher breaking strength than amorphous glass.
  • one or more internal electrodes are formed inside the glass layer 2, and the wiring 4 and the internal electrodes are connected via a connection body such as a through hole, etc. Can be improved.
  • the glass paste used for the adjustment layer 3 was prepared by adding a glass powder of the main component, 5% by weight to 40% by weight of a ceramic powder, and a resin and a solvent to reduce the thermal expansion coefficient after firing.
  • the adjustment can be performed with good reproducibility, and the adjustment layer 3 can be formed at low cost. It is desirable that the adjustment layer 3 be fired at 400 to 900 ° C. If the firing is performed at a temperature lower than 400 ° C., the adjustment layer 3 may not be sufficiently sintered to obtain a predetermined strength. If the firing layer 3 is fired at a temperature of 1000 ° C. or more, the metal substrate 1 is easily oxidized and the proof stress is reduced. Therefore, it is necessary to use an expensive and special metal material for the substrate 1.
  • the load sensor according to the present invention can use general-purpose materials for the strain-sensitive resistor even on substrates having different coefficients of thermal expansion, and is useful for diversification and cost reduction.

Abstract

 荷重センサは、基板と、基板上に形成されたガラス層と、ガラス層上に形成された配線と、ガラス層上に形成された調整層と、調整層上に形成され、配線に接続された感歪抵抗体とを備える。ガラス層の熱膨張係数より調整層の熱膨張係数は感歪抵抗体の熱膨張係数に近い。この荷重センサでは、抵抗体の内部に残る応力が低減され、その抵抗値の経時変化が抑えられる。したがって、1種類の抵抗体で様々な熱膨張係数や形状、厚みの基板上に形成することができ、様々な仕様の荷重センサが得られる。

Description

明 細 書
荷重センサ及びその製造方法
技術分野
[0001] 本発明は、印加される荷重すなわち力学的歪を測定する荷重センサ及びその製造 方法に関する。
背景技術
[0002] 特開昭 63— 298128号公報は、金属基板上に絶縁層を形成し、その絶縁層の表 面に厚膜抵抗を形成した圧力センサを開示しており、この圧力センサに用いるガラス グレーズ絶縁層には金属材料と熱膨張係数を近づけたガラスが用いられる。
[0003] 特開昭 61— 67901号公報は、グレーズされたステンレス基板とその上に形成される 感歪抵抗体の抵抗温度係数 (TCR)特性をマッチングさせるため、抵抗体に用いる ガラスの熱膨張係数を基板に合わせることを開示して 、る。下地の基板の熱膨張係 数が 70 X 10— 7Z°Cの場合は熱膨張係数が 70 X 10— 7Z°Cの材料で抵抗体が形成さ れる。この場合市販のアルミナ基板用の抵抗体材料 (熱膨張係数は約 70 X 10— 7Z °C)を流用することが可能である。
[0004] 特開平 6— 294693号公報は、感歪抵抗体の中に含まれて 、るガラスフリットの熱膨 張係数を基板の熱膨張係数に近似させることを開示している。
[0005] 特開平 9— 273968号公報は感歪抵抗体の安定ィ匕のために抵抗体と下地ガラスと の相互拡散を防止する力学量センサを開示して 、る。ここでは 2種類の抵抗体で抵 抗体と下地ガラスとのマッチングが改善される。具体的にはそのセンサは金属基板の 上の絶縁層上に第 1の抵抗体と第 1の抵抗体上の第 2の抵抗体とを備える。第 1の抵 抗体の抵抗値を第 2の抵抗体の抵抗値より高く設定しておくことで、たとえ第 1の抵抗 体が絶縁層の影響を受けた場合でもセンサ全体の抵抗値に対する影響が抑えられ る。
[0006] 特許第 3010166号公報は、金属基板上に形成されたガラス層と感歪抵抗体との 相互拡散の影響を抑えるためにガラス層と抵抗体との間に粒子状アルミナと粒子状 酸化亜鉛を含むガラス層を形成することを開示している。 [0007] 感歪抵抗体を用いた各種デバイスが広く使われるにつれて抵抗体の単位歪あたり の抵抗変化率であるゲージファクタ (GF)の向上が望まれている力 抵抗体は GFが 高くなるほどその特性が不安定になりやすい。
[0008] 例えば、下地の基板の熱膨張係数が 100 X 10— 7Z°cの場合は熱膨張係数が 100
X 10— 7Z°Cに近い材料で抵抗体を形成する必要がある。同様に 140 X 10— 7Z°cの 熱膨張係数の基板には 140 X 10— 7Z°Cの材料で抵抗体を形成する必要がある。し かし市販の抵抗体材料はせ!/ヽぜ 、アルミナ基板用のものであり、それ以外の熱膨張 係数を有する抵抗体材料は市販されておらず、こうした抵抗体材料を新規開発する ことは困難である。これは抵抗体材料の開発は単に GFだけではなぐ TCRやノイズ 特性、信頼性等の様々なパラメータを最適化する必要がり、様々な基板の材料の熱 膨張係数に応じた抵抗体材料の開発は実質的に不可能である。
[0009] 感歪抵抗体の材料と下地基板の材料の相互拡散の影響を抑えられるとしても以下 の課題が残る。金属の基板と抵抗体の熱膨張係数の差は吸収できな ヽため基板の 熱膨張係数に合わせて複数種の抵抗体ペーストを用意する必要がある。また金属基 板と抵抗体材料の熱膨張係数の差による抵抗体の内部での応力発生は防止できな い。
[0010] さらに、実際の荷重センサに使われる基板に金属を用いた場合、熱膨張係数以外 にも感歪抵抗体の抵抗値を不安定化させる要因がある。例えば厚!、金属板を金型 で打抜きユーザの求める複雑な寸法形状の荷重センサを製造する場合、前記金属 板の内部応力が問題になる。このように基板を打抜きプレス等で加工した際に発生し た残留応力、打抜き時に発生した反りの修正 (一般的に逆に反らせて反りを修正する )、焼鈍化等で上記のパラメータも実際の基板の熱膨張係数に影響する。そのため、 熱膨張係数 100 X 10— 7Z°Cの金属材料で厚みが lmm、 2mm、 5mmの基板で熱 膨張係数や反りの量が変化する。例えば、厚みが lmmや 2mmの金属板を同じプレ スで打抜いて基板を形成した場合に、打抜き直後の基板の反りが異なる。したがって 、反りを修正をした場合でも基板を 850°Cで焼成するとその反り度合が微妙に異なる 。厚みが 5mmのように厚い基板はプレス方法自体が違うので、焼成時の反りが上記 の暑さの基板と大きく異なる。このような基板の反りや変形は抵抗体には熱膨張係数 のように影響を与えているので、抵抗値を不安定化させやすい。またこうした力卩ェ時 の歪みは金型を使った上述の打ち抜き力卩ェの他にレーザカ卩ェ等でも共通して発生 する。
[0011] 上記従来の荷重センサでは、基板の違い (材質、厚み、形状)やその加工方法 (機 械加工での残留応力、焼鈍し方法、打抜きやプレス方法等)によって、基板上に形 成された抵抗体の内部に様々な応力が発生し、抵抗体の GFが大きくなるほど抵抗 値が経時変化しやすくなる。
発明の開示
[0012] 荷重センサは、基板と、基板上に形成されたガラス層と、ガラス層上に形成された 配線と、ガラス層上に形成された調整層と、調整層上に形成され、配線に接続された 感歪抵抗体とを備える。ガラス層の熱膨張係数より調整層の熱膨張係数は感歪抵抗 体の熱膨張係数に近い。
[0013] この荷重センサでは、抵抗体の内部に残る応力が低減され、その抵抗値の経時変 化が抑えられる。したがって、 1種類の抵抗体で様々な熱膨張係数や形状、厚みの 基板上に形成することができ、様々な仕様の荷重センサが得られる。
図面の簡単な説明
[0014] [図 1]図 1は本発明の実施の形態における荷重センサの断面図である。
[図 2A]図 2Aは実施の形態による荷重センサと従来の荷重センサの断面図である。
[図 2B]図 2Bは実施の形態による荷重センサと従来の荷重センサの断面図である。
[図 2C]図 2Cは実施の形態による荷重センサと従来の荷重センサの断面図である。
[図 3A]図 3Aは実施の形態による荷重センサの抵抗値の変化を示す。
[図 3B]図 3Bは実施の形態による荷重センサの抵抗値の変化を示す。
[図 4A]図 4Aは従来の荷重センサの抵抗値の変化を示す。
[図 4B]図 4Bは従来の荷重センサの抵抗値の変化を示す。
[図 5A]図 5Aは従来の荷重センサの断面図である。
[図 5B]図 5Bは従来の荷重センサの断面図である。
[図 5C]図 5Cは従来の荷重センサの断面図である。
[図 5D]図 5Dは従来の荷重センサの断面図である。 [図 6A]図 6Aは実施の形態における荷重センサの断面図である。
[図 6B]図 6Bは実施の形態における荷重センサの断面図である。
[図 6C]図 6Cは実施の形態における荷重センサの断面図である。
[図 6D]図 6Dは実施の形態における荷重センサの断面図である。
[図 7]図 7は従来の荷重センサの抵抗値の変化率を示す。
[図 8]図 8は実施の形態における荷重センサの抵抗値の変化を示す。
[図 9]図 9は実施の形態における他の荷重センサの抵抗値の変化を示す。
[図 10]図 10は実施の形態におけるさらに他の荷重センサの抵抗値の変化を示す。
[図 11]図 11は実施の形態におけるさらに他の荷重センサの抵抗値の変化を示す。
[図 12A]図 12Aは実施の形態における荷重センサの製造方法を示す断面図である。
[図 12B]図 12Bは実施の形態における荷重センサの製造方法を示す断面図である。
[図 12C]図 12Cは実施の形態における荷重センサの製造方法を示す断面図である。
[図 12D]図 12Dは実施の形態における荷重センサの製造方法を示す断面図である。
[図 12E]図 12Eは実施の形態における荷重センサの製造方法を示す断面図である。
[図 13A]図 13Aは実施の形態における他の荷重センサの製造方法を示す断面図で める。
[図 13B]図 13Bは実施の形態における他の荷重センサの製造方法を示す断面図で める。
[図 13C]図 13Cは実施の形態における他の荷重センサの製造方法を示す断面図で める。
[図 13D]図 13Dは実施の形態における他の荷重センサの製造方法を示す断面図で める。
[図 13E]図 13Eは実施の形態における他の荷重センサの製造方法を示す断面図で める。
[図 14]図 14は実施の形態による荷重センサの外観図である。
[図 15]図 15は調整層に用いるコンポジットガラスの拡大模式図である。
[図 16]図 16はコンポジットガラスに発生する可能性があるピンホールを示す。
[図 17A]図 17Aは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
[図 17B]図 17Bは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
[図 17C]図 17Cは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
[図 18A]図 18 Aは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
[図 18B]図 18Bは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
[図 18C]図 18Cは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
[図 18D]図 18Dは実施の形態における荷重センサの調整層に用いるコンポジットガラ スペーストの製造方法を示す模式図である。
符号の説明
[0015]
2 ガラス層
3 調整層
4 配線
5 感歪抵抗体
6 保護層
20 内部電極
発明を実施するための最良の形態
[0016] 図 1は本発明の実施の形態における荷重センサ 101の断面図である。基板 1の上 に絶縁層となるガラス層 2が形成され、ガラス層 2上の中央部にガラス材料による調整 層 3が形成されている。複数の配線 4はそれぞれの一部がガラス層 2上に形成され他 の一部が調整層 3上に形成されている。複数の配線 4の間で調整層 3の上に感歪抵 抗体 5が形成されている。保護層 6は抵抗体 5と配線 4上に設けられ、抵抗体 5と配線 4を保護する。 [0017] 調整層 3と抵抗体 5の熱膨張係数の差の絶対値は、ガラス層 2と抵抗体 5の熱膨張 率の差の絶対値より小さい。すなわち、ガラス層 2の熱膨張係数より調整層 3の熱膨 張係数は感歪抵抗体 5の熱膨張係数に近い、実施の形態による荷重センサ 101で は、調整層 3の熱膨張係数は抵抗体 5の熱膨張係数とほぼ等しい。基板 1と抵抗体 5 の熱膨張係数は大きく異なっていても、抵抗体 5とガラス層 2の間に形成された調整 層 3によってそれらの熱膨張率の差による熱膨張の差が吸収される。抵抗体 5と大き く異なる熱膨張係数を有する基板 1や抵抗体 5と大きく異なる熱膨張係数を有するガ ラス層 2に抵抗体 5は直接的に接しな!/、。
[0018] 図 2A—図 2Cは実施の形態による荷重センサ 101と従来の荷重センサ 601を比較 するための説明図である。
[0019] 図 2Aは従来の荷重センサ 601の断面図である。基板 501の上にガラス層 502が形 成され、ガラス層 502上に配線 504と抵抗体 505が形成されている。保護層 506は 配線 504と抵抗体 505と上に形成されて配線 504と抵抗体 505を保護する。箔ゲー ジ 507は保護層 506上に接着剤によって貼り付けられている。万力 8は基板 501の 一端 501Aを固定する。
[0020] 図 2Bは図 1に示す実施の形態による荷重センサ 101を示す。保護層 6上に箔ゲー ジ 7が設けられている。基板 1の一端は万力 8で固定されている。図 2Aに示す荷重セ ンサ 101は図 2Bに示す荷重センサ 501と異なり、抵抗体 5とガラス層 2との間に調整 層 3が形成されている。
[0021] 図 2Cは錘 41によって所定の荷重が印加された荷重センサ 101、 601を示す。一端 1A、 501Aが万力 8で固定された基板 1、 501の他端 1B、 501Bからぶら下げられた 錘 41により基板 1、 501が橈み、この橈みによる歪み量を抵抗体 5ゃ箔ゲージ 7の抵 抗値の変化として検出する。
[0022] 図 3A、図 3Bは、図 1と図 2Bに示す実施の形態による荷重センサ 101の抵抗体 5の 抵抗値の変化を示す。図 3Aにおいて横軸は経過時間(単位は任意)、縦軸は錘 41 の重さを示し、経過時間 =0において錘 41の重さは 0、すなわち荷重センサ 101には 何もぶら下げられていない。時間の経過と共に錘 41の重さを変えた。図 3Bにおいて 、横軸は経過時間であり、縦軸は抵抗体 5の抵抗値を示す。抵抗値は初期値を 100 として換算して示す。線 1001は実施の形態による荷重センサ 101の抵抗体 5の抵抗 値を示し、線 1002は箔ゲージ 7の抵抗値を示す。
[0023] 図 4A、図 4Bは、図 2Aに示す従来の荷重センサ 601の抵抗体 505の抵抗値の変 化を示す。図 4Aにおいて横軸は経過時間(単位は任意)、縦軸は錘 41の重さを示し 、経過時間 =0において錘 41の重さは 0、すなわち荷重センサ 101には何もぶら下 げられていない。時間の経過と共に錘 41の重さを変えた。図 4Bにおいて、横軸は経 過時間であり、縦軸は抵抗体 505の抵抗値を示す。抵抗値は初期値を 100として換 算して示す。線 1501は重センサ 601の抵抗体 505の抵抗値を示し、線 1502は箔ゲ ージ 507の抵抗値を示す。
[0024] 図 3Bの線 1001で示す実施の形態による荷重センサ 101の抵抗値は線 1002で示 す箔ゲージ 7の抵抗値と同様に錘 41の重さに比例して増減し、錘 41の重さが一定の 時は一定である。一方、図 4Bの線 1501で示す従来の荷重センサ 601の抵抗値は 錘 41の重さに応じて増減する。し力し図 4Bの線 1501で示す抵抗値は、箔ゲージ 7 が錘 41の重さの増減に敏感に応答しても、錘 41の重さの変化に遅れて応答し、さら に、錘 41の重さが一定の時も抵抗値が安定していない。この現象は基板 1の熱膨張 係数と抵抗体 5の熱膨張係数の差が大きいほど顕著に見られる。
[0025] 様々な熱膨張係数の基板 1、 501を用いた場合の抵抗体 5、 505の抵抗値の変化 を表 1に示す。なお、抵抗体 5を有する実施の形態による荷重センサ 101の調整層 3 の熱膨張係数は抵抗体 5と同じ 70 X 10— 7Z°Cとした。
[0026] [表 1]
熱膨張係数 (x l o - 7 / : ) 抵抗体 5の 抵抗体 5 0 5 基板 ガラス層 抵抗体 抵抗値 の抵抗値
40 40 70 安定 不安定
60 60 70 安定 安定
70 70 70 安定 安定
80 80 70 安定 安定
1 00 100 70 安定 不安定
1 20 1 20 70 安定 不安定
140 140 70 安定 不安定
1 60 1 60 70 安定 不安定
1 80 180 70 安定 不安定
200 200 70 安定 不安定
[0027] 表 1にお!/、て、 40 X 10— 7Z°Cから 200 X 10— 7Z°Cまでの様々な熱膨張係数を有 する基板 1、 101を用いた。ガラス層 2、 502の熱膨張係数は特開昭 63— 298128号 公報で開示されているように基板 1、 101と同じ部材で形成した。抵抗体 5、 505は巿 販のアルミナ基板用のものであり、熱膨張係数は 70 X 10— 7Z°Cである。
[0028] 表 1に示すように、従来の荷重センサ 601の抵抗体 501は基板 501の熱膨張係数 と抵抗体 505の熱膨張係数がほぼ等しい場合には抵抗値が安定している力 基板 5 01の熱膨張係数と抵抗体 505の熱膨張係数との差が大きくなると抵抗値が不安定 になる。一方実施の形態による荷重センサ 101では、基板 1の熱膨張係数と抵抗体 5 の熱膨張係数の差が大きくなつても抵抗体 5の抵抗値は安定している。
[0029] 次に、調整層 3の熱膨張係数について説明する。表 2は、基板 1と抵抗体 5の熱膨 張係数を固定した場合に、様々な熱膨張係数を有する調整層 3を用いた荷重センサ 101の感歪抵抗体 5の抵抗値の変動を示す。なおガラス層 2の熱膨張率は基板 1と 同じ 100 X 10— 7Z°cとした。
[0030] [表 2] 熱膨張係数 (X 1 0— 7 /で) 抵抗体 5の 基板 1 調整層 3 抵抗体 5 抵抗値
100 40 70 不安定
100 60 70 安定
100 40 70 安定
100 80 70 安定
1 00 1 00 70 不安定
1 00 1 20 70 不安定
1 00 140 70 不安定
1 00 1 60 70 不安定
100 180 70 不安定
100 200 70 安定
[0031] 表 2に示すように、基板 1とガラス層 2の熱膨張係数が 100 X 10— 7Z°Cの場合、調 整層 3の熱膨張係数が 40 X 10— 7Z°C未満と小さい場合や 100 X 10— 7Z°C以上と大 き 、場合には抵抗体 5の抵抗値が不安定である。
[0032] 調整層 3の熱膨張係数を抵抗体 5に合わせることで、基板 1からの応力は調整層 3 で吸収され、抵抗体 5に伝わりにくい。表 2より、抵抗体 5と調整層 3の熱膨張係数の 差が 30 X 10— 7Z°C以上になると抵抗体 5の抵抗値が不安定になる。したがって、抵 抗体 5と調整層 3の熱膨張係数の差は 30 X 10— 7Z°C未満、望ましくは 20 X 10— 7Z °C未満、更に望ましくは 10 X 10— 7z°c未満である。
[0033] 従来の荷重センサ 601の製造工程において、基板 501上にガラス層 502が形成さ れ、ガラス層 502上に抵抗体 505となるペーストが所定形状で塗布される。塗布され たペーストが焼成炉の中で焼成されて抵抗体 505となる。このペーストが焼成中にそ の内部に応力が発生し、これにより抵抗体 505に異常な応力が発生する。従来の荷 重センサ 601での熱膨張係数の大きな基板 501上に形成された熱膨張係数の小さ な抵抗体 505の内部に発生する大きな応力について説明する。
[0034] 図 5 A—図 5Dは調整層を有しな!/、従来の荷重センサ 601の抵抗体 505に応力が 発生する過程を示す。 [0035] 図 5Aは抵抗体 505を市販のメッシュベルト炉で焼成する際の温度プロファイルを 示し、横軸は時間、縦軸は基板 501の温度を示す。室温 9Aの基板 501がベルト炉 に入って昇温し、最高温度 9Bを経て降温し、室温 9Aまで戻るのに 1時間程度かかる
[0036] 図 5Bは最高温度 9Bで熱膨張した従来の荷重センサ 601の断面図である。図 5B において、矢印 510A、 511Aの方向と長さは荷重センサ 601のサンプルが変形する 方向と変形する量をそれぞれ示す。従来の荷重センサ 601では、基板 501上にガラ ス層 502が形成され、ガラス層 502上に抵抗体 505となるペーストが印刷塗布される 。塗布されたペーストがベルト炉の中で焼成されて抵抗体 505となる。なお図 5Bにお いて配線 504は省略している。荷重センサ 601がベルト炉内で最高温度 9Bに加熱さ れている時、基板 501は矢印 511 Aに示すように大きく熱膨張している。ガラス層 50 2は基板 501の熱膨張率と近い熱膨張率を有するので、ガラス層 502も矢印 511A に示すように基板 501と同じ方向で同程度の量だけ熱膨張する。
[0037] 抵抗体 505は最高温度 9Bで融けている。図 5Cに示すように、サンプルが最高温 度 9Bからベルト炉の中で降温領域 12になる。図 5Dは降温領域 12でのサンプルの 各部にカゝかる応力を示す。降温領域 12で温度が下がるにつれて基板 501やガラス 層 502力矢印 510B、 511Bの方向に大きく収縮する。この時、抵抗体 505は矢印 13 に示すように基板 501、ガラス層 502より少ない量だけ収縮する。そのためガラス層 5 02と抵抗体 505の界面付近の領域 14Aに応力が集中し、これが抵抗体 505の抵抗 値を変動させる。
[0038] 次に、実施の形態による荷重センサ 101で発生する応力を説明する。
[0039] 図 6A—図 6Dは調整層 3を備えた実施の形態による荷重センサ 101に応力が発生 する過程を示す。
[0040] 図 6Aに示す最高温度 9Bでは荷重センサ 101において、図 6Bに示すように、基板 1もガラス層 2も矢印 10A、 11 Aが示すように大きく熱膨張する。調整層 3は矢印 42 のように基板 1もガラス層 2より少ない量だけ僅かに熱膨張しており、抵抗体 5は溶解 している。
[0041] 図 6Cに示す降温領域 12においては、図 6Dに示すように、基板 1やガラス層 2は矢 印 10B、 1 IBが示すように大きく収縮する。抵抗体 5や調整層 3は矢印 13、 42が示 すように、基板 1やガラス層 2より少ない量で僅かしか収縮しない。基板 1やガラス層 2 と抵抗体 5の熱収縮量の差による応力はガラス層 2と調整層 3の界面付近の領域 14 Bに集中する。その結果、熱収縮量の差による応力は抵抗体 5に発生しにくくなり、そ の抵抗値は安定する。
[0042] 次に、任意の熱膨張係数の基板 1で荷重センサ 101を製造する方法について説明 する。ユーザはその用途によって様々な熱膨張係数、厚み、形状の基板 1を指定す る。
[0043] 図 7は様々な特性を有する基板 501を備えた従来の荷重センサ 601のサンプルの 感歪抵抗体 505の抵抗値の変動を示す。図 7において横軸は経過時間、縦軸は抵 抗体 505の抵抗値の変化を、初期(横軸の時刻 tO)の抵抗値力ゝらの変化率を ppmで 示す。すなわち、図 7は図 4Bを更に高分解能で測定した図に相当する。
[0044] サンプルの抵抗体 505の抵抗値は、図 7に示す特性 51のように時間と共に低下す る場合、特性 52のように変化しない場合、特性 53のように時間と共に増加する場合 がある。
[0045] 特性 52のように抵抗値が変動しない場合、従来の荷重センサ 601でも正確に動作 する。しかし抵抗体 505が特性 51や特性 53の抵抗値を有する場合、調整層 3が必 要となる。
[0046] 特性 51の抵抗値は時間と共に低下するが、これは抵抗体 5の長さが時間と共に微 少ではあるが徐々に短くなつているためと考えられる。抵抗体 5がガラス層 2による縮 められることで、抵抗体 5の長さが時間と共に徐々に短くなつている。このように特性 5 1の抵抗値を有する抵抗体 5では、抵抗体 5が押し縮められないように調整層 3の熱 膨張係数を決定する。
[0047] 特性 53の抵抗値は時間と共に増加している力 これは抵抗体 5の長さが時間と共 に徐々に長くなつているためと考えられる。抵抗体 5がガラス層 2により引っ張られるこ とで、その長さが徐々に長くなつている。このように特性 53の抵抗値を有する抵抗体 5では、抵抗体 5が引っ張られないように調整層 3の熱膨張係数を決定する。
[0048] 以上のように、感歪抵抗体 5の抵抗値の変化の主原因は抵抗体内部に発生してい る応力と考えられ、抵抗体 5と接する調整層 3の熱膨張係数の調整によって抵抗体 5 の内部に発生する応力が調整できるので、抵抗値の時間変化を抑えられる。
[0049] 感歪抵抗体 5を形成するペーストがベルト炉の中で焼成され、高温下で柔らかく溶 解しているときは殆どペースト (抵抗体 5)内に応力が発生しない。しかし、ペーストが 冷えて固まり始めると共に抵抗体 5の内部に様々な応力が発生する。実際に、従来 の荷重センサ 601では抵抗体 505の抵抗値は基盤 501やガラス層 502の熱膨張の 影響を大きく受ける。
[0050] 図 1に示す荷重センサ 101では抵抗体 5に近い熱膨張係数を有するガラス材料で 調整層 3を備える。荷重センサ 101では抵抗体 5の抵抗値の変化はされ力 それでも 若干の抵抗値の変化 (数十力も数百 ppmZ時間のクリープ)力 S残ることがある。調整 層 3を形成するガラス材料にこのガラスとは異なる熱膨張係数を有するセラミックフィ ラー (セラミック粉)を添加し、全体としての熱膨張を微調整することにより、抵抗体 5の 抵抗値を安定ィ匕できる。
[0051] 図 8および図 9は実施の形態におけるセラミックフィラーを添加された調整層 3を備 えた荷重センサ 101の抵抗体 5の抵抗値の変化を示す。図 8および図 9において、横 軸は調整層 3のガラス材料中のセラミックフィラーの割合 (wt%)であり、縦軸は抵抗 体 5の抵抗値の時間変化率 (ppmZh)である。縦軸の変化率は、単位時間当たりの 抵抗値の変化、すなわち図 7の特性 51— 53の傾きに相当する。図 7の特性の傾きを ゼロに近づけることは、図 8や図 9では縦軸で示す時間変化率をゼロに近づけること に相当する。
[0052] セラミックフィラーを含まないガラスによる調整層は、図 7の特性 51で示すように、時 間と共に抵抗体 5の抵抗値が減少する場合がある。この調整層を備えたサンプルは 図 8の調整層のガラス中のセラミックフィラーの割合が Owt%に相当するので、図 8に 示すように抵抗値の変化率は負である。このサンプルでは、時間と共に抵抗値を低 下させる力が抵抗体 5の内部に発生して 、ると考えられる。このような力が発生しな!ヽ ように、所定の熱膨張係数を有するセラミックフィラーを調整層に添加する。セラミック フィラーの添加量を調整することで、抵抗体の内部で抵抗値を低下させようとしている 力を減らし、図 8に示すように抵抗値の時間変化が抑えられる。 [0053] また、セラミックフィラーを含まな 、調整層では、図 7の特性 53で示すように、時間と 共に抵抗体 5の抵抗値が増加する場合がある。この調整層を備えたサンプルは図 9 のガラス中のセラミックフィラーの割合が Owt%に相当し、図 9に示すように抵抗値の 変化率は正である。このサンプルでは、時間と共に抵抗値を増加させる力が抵抗体 5 内部に発生していると考えられる。このような力が発生しないように、所定の熱膨張係 数を有するセラミックフィラーを調整層に添加する。そしてセラミックフィラーの添加量 を調整することで、抵抗体 5内部で抵抗値を増加させようとしている力を減らし、図 9 に示すように抵抗値の時間変化が抑えられる。
[0054] なお、調整層 3を形成するガラスにセラミックフィラーを添加したコンポジットガラスで は、セラミックフィラー含有率は 50wt%未満、望ましくは 40wt%未満が望ましい。セ ラミックフィラーの含有率が 50wt%を超えると、作製したコンポジットガラスの密度が 不足して物理的強度が低下し、荷重センサとして要求される強度が得られな 、場合 がある。
[0055] また、こうした用途に予め熱膨張係数の異なる数種類のガラス材料、セラミックフイラ 一を用意しておくことが望ましい。これによりユーザ指定の基板 1を用いて荷重センサ を製造する場合、図 7に示すような特性 51、 53のように抵抗層 5の抵抗値が変化して も図 8や図 9に示すようにしてその変化を抑えることができる。このように熱膨張係数 の異なる数種の調整層 3の材料を用意し、これらを用いて図 1に示す荷重センサを製 造する。図 8や図 9に示したようにセラミックフィラーの添加量によって抵抗値の変化 率が観察され、変化率を最小にするガラスとセラミックフィラーの組成が判明する。な お基本となる抵抗体 5、ガラス層 2、調整層 3等の熱膨張係数を予め測定しておくこと で、実際の作成無しでシミュレーションにてガラスとセラミックフィラーの糸且成を最適化 できる場合が多い。しかし、抵抗体 5のロットばらつきや焼成状況のばらつき、各種材 料の相互拡散等の影響を受けるので、シミュレーションで組成を最適化できな 、場合 もある。こうした場合に図 8に示す実際の材料を変化させることが最適な組成を求める 最も有効で実用的な方法である。
[0056] なお、実施の形態において、ガラス中に添加したセラミックフイラ一としてはアルミナ 、ジルコユア、マグネシア、力ルシア等を用いることができ、抵抗層 5の抵抗値の変動 を数 ppm未満に抑えることができる。
[0057] なお、実施の形態では調整層 3の組成をガラスだけで微調整する。実施の形態で は調整層 3はガラスとセラミックを用いた力 ガラスだけで調整層 3を形成することが望 ましい場合もある。
[0058] 以下、異なる熱膨張係数の複数種類のガラスをブレンドして調整層 3の最適化につ いて図を用いて説明する。図 10、図 11は複数種類のガラスを用いた調整層 3による 感歪抵抗層 5の抵抗値の変化率を示す。横軸は調整層 3の材料である混合ガラス中 の添加ガラスの割合を示し、縦軸は抵抗体 5の抵抗値の変化率を示す。図 10では、 添加ガラスの割合が増加するほど抵抗値の変化率が大きくなる。図 11では添加ガラ スの割合が増加するほど抵抗値の変化率が小さくなつている。
[0059] 熱膨張係数 60— 80 X 10— 7Z°C程度の SiO 'ZnO 'PbO系の結晶質ガラスを主成
2
分のガラスとして、これより高い熱膨張係数 100 X 10— 7Z°C程度の SiO ·Β Ο -RO
2 2 3 系の非晶質ガラスや、主成分のガラスより低い熱膨張係数 50 X 10— 7Z°C程度の SiO • ZnO 'RO系の結晶化ガラスを添加ガラスとして図 10や図 11に示すように調整層 3
2
が形成される。これによつて抵抗値の変化率を数 ppm未満に抑えることができる。
[0060] なお荷重センサの多くはユーザの機器に組みこまれるためにそれぞれ特有の形状 をしている。そのため同じ金属材料、厚みであっても加工方法の違いで基板 1の中の 残留応力が異なり、あるいは加工時の変形を補正するために逆に反らせる加工が行 われることが多い。一般的にシミュレーションを行うことで調整層 3の成分の実験によ る微調整まで必要無いことも多い。しかし、抵抗体 5の抵抗値は残留応力の影響を受 けやすい場合には、実施の形態による調整層 3の成分の微調整が有効である。
[0061] また、ガラス層 2と調整層 3の界面で熱収縮の差により、ガラス層 2と調整層 3の界面 の接着強度が低下し、互いに剥がれ易くなる可能性もある。こうした場合、上述のよう に異なるガラス素材を混ぜ合わせることで調整層 3の下地となるガラス層 2との接着強 度を高めることができる。
[0062] 次に調整層 3を形成するガラス材料について説明する。感歪抵抗体 5の材料は一 般的にアルミナ基板用のものが入手しやす 、。このような抵抗体 5に対する調整層 3 のガラス材料としては SiO、 ZnO、アルカリ土類酸ィ匕物を主体としたものが望ましい。
2 酸化鉛や酸化ビスマス等の低軟化点成分が調整層 3に含まれて 、ても問題が無!ヽ 場合もある。しかし、抵抗体 5が酸ィ匕鉛や酸ィ匕ビスマスを含んでいる場合に、抵抗体 5と調整層 5との相互拡散により抵抗体 5の抵抗値や抵抗温度係数 (TCR)を変化さ せる場合もある。
[0063] しかし、この場合もセラミックをフイラ一として添加することでその影響を低減できるこ とが多 、。これはセラミック材料自体の融点が高く 850°C程度の焼成温度では抵抗 体 5と殆ど相互拡散しないためである。また調整層 3のガラス成分を調整することでも 抵抗体5の TCRや抵抗値の絶対値を調整できる。
[0064] 調整層 3のガラス材料は結晶性のガラス材料を用いることができる。結晶性のガラス 材料を抵抗体 5の形成前に焼成して結晶化しておく。結晶化したガラス材料による調 整層 3上に抵抗体 5を印刷し、温度 850°C程度で焼成しても、この程度の温度では調 整層 3を形成する結晶化したガラス材料は再融解しないので抵抗体 5との相互拡散 が起こり難い。荷重センサ 101が自動車用のスマートエアバッグシステム等に用いる 荷重センサのように車載用の場合、エアーバッグが開かな 、範囲の弱 、接触事故程 度ではセンサは働かないが、衝突時の衝撃によりセンサが壊れる場合が考えられる。 基板 1には充分な耐カがあったとしてもセンサを構成するガラス材料の部分 (例えば 調整層 3)が割れる場合がある。実験によれば、結晶化ガラスによる調整層 3が非晶 質ガラスによる調整層 3より衝撃に対して壊れにくく高信頼性の結果が得られた。
[0065] ユーザが指定する基板 1は、その材質 (金属、セラミック等)に応じて固有の熱膨張 係数を有し、さらに厚みや形状、あるいは基板の加工方法での残留応力(基板の熱 処理、残留応力で基板の変形)等の様々な物理的な性質を有する。しかし、前述の ように、実施の形態によると、ユーザの指定する基板 1に対して限られた感歪抵抗体 5で荷重センサを作製でき、荷重センサの多品種化、低コストィ匕が可能になる。今後 、更なる酸化ルテニウムを含まな ヽ高 、ゲージファクタ(GF)を有する感歪抵抗体 5 の材料が開発され、その熱膨張係数が酸化ルテニウムを含む一般の抵抗体 5の材料 と大きく異なっていても、調整層 3によりアルミナや金属による様々な材料の基板 1で 荷重センサ 101を作製できる。
[0066] なお、調整層 3の面積は抵抗体 5より大きいことが望ましい。調整層 3の面積を抵抗 体 5より広げることで抵抗体 5の下の全面に調整層 3を形成できる。また、図 1に示す ように、調整層 3の上に配線 4の一部 4Aが形成されることが望ましい。調整層 3の上 に形成された配線 4の一部 4Aに接して抵抗体 5を形成することで抵抗体 5の下の全 面に調整層 3を形成できる。また、一つの調整層 3の上に複数の抵抗体 5を形成する ことも望ましい。これにより互いの抵抗体 5の特性が揃えられ、荷重センサの歩留を上 げることができる。また、調整層 3の面積はガラス層 2より小さいことが望ましい。調整 層 3の面積がガラス層 2と同程度もしくはそれより大きくなると調整層 3とガラス層 2の 熱膨張係数の差力 界面が剥離し、強度が低下する場合がある。
[0067] 調整層 3の厚みは 1 μ m以上 500 μ m未満が望ましい。調整層 3の厚みが 1 μ m未 満の場合は調整層 3にピンホールが発生する場合があり、更に調整層 3での十分な 応力吸収ができない場合がある。また調整層 3の厚みが 500 m以上の場合調整層 3の剛性が高くなりすぎて基板 1の歪みを正確に抵抗体 5に伝えることができない場 合がある。
[0068] また、ガラスペーストを印刷し、焼成して調整層 3を形成する場合、調整層 3とガラス 層 2を同時焼成 (もしくは一括焼成)することによって焼成コストを下げることができる。 また配線 4と調整層 3を同時焼成 (もしくは一括焼成)することによって焼成コストを下 げられる。なお調整層 3と抵抗体 5の同時焼成 (もしくは一括焼成)は抵抗体 5の特性 に望ましくない影響を与える場合があり、そうした場合図 8から図 11で説明したような 調整層 3の材料の組成の最適化が必要な場合がある。
[0069] 荷重センサ 101は、市販のアルミナ基板に用いられる材料による感歪抵抗体 5と、 アルミナ基板より熱膨張係数が大きい金属による基板 1とを備えてもよい。アルミナ基 板に用いる抵抗体 5の材料として、酸化ルテニウムを含む焼成温度 850°Cの数種の 焼成型の材料が販売されている。さらにハイブリッド IC用のクロスオーバー用や多層 絶縁用に、アルミナ基板とほぼ同じ熱膨張係数を有するガラス材料やガラスペースト が販売されている。このようなガラス材料を主成分として、これに必要に応じて所定の セラミック粉を添加して熱膨張係数を微調整した調整層 3で感歪抵抗体 5の抵抗値を 安定させることができる。このようなガラス材料としては SiO、 ZnO、 RO (Rは Mg、 Ca
2
、 Sr、 Ba等のアルカリ土類金属)をガラス成分とする結晶性のものが望ましい。 [0070] なお、このガラス材料のガラスペーストとして、ガラス粉の平均粒径が 5 μ m以下 (も しくは中心粒径が 10 μ m以下)、望ましくは平均粒径を 3 μ m以下とすることが望まし い。このような細かいガラス粉を使うことで調整層 3の厚みを均一化できると共にその 表面粗さを小さくできるので、調整層 3の上に抵抗体ペーストを印刷しやすくなる。
[0071] なお、保護層 6は少なくとも抵抗体 5の全面を覆うことが望ましい。保護層 6が抵抗 体 5の全面及び抵抗体 5と接続された配線 4の一部 4A、調整層 3を覆うことで抵抗体 5やその抵抗値への外気の影響を抑えることができ、荷重センサ 101の信頼性が改 善できる。
[0072] また、基板 1の熱膨張係数と抵抗体 5の熱膨張係数の差が 20 X 10— 7Z°C以上 300
X 10— 7Z°C未満が望ましい。基板 1と抵抗体 5の熱膨張係数が 20 X 10— 7Z°C未満 の場合には、調整層 3無しで基板 1と抵抗体 5との熱膨張係数の差を焼成条件等で 所定値以下に抑えられる。
[0073] さらに、基板 1の熱膨張係数とガラス層 2の熱膨張係数の差が 20 X 10— 7Z°C未満 が望ましい。基板 1とガラス層 2の熱膨張係数差が 20 X 10— 7Z°C以上の場合、基板 1とガラス層 2の熱膨張係数の差によって発生するガラス層 2の内部に発生した応力 によってガラス層 2と基板 1が剥がれる場合がある。
[0074] そして、抵抗体 5の熱膨張係数と調整層 3の熱膨張係数の差は 20 X 10— 7Z°C以下 が望ましい。抵抗体 5と調整層 3の熱膨張係数差が 20 X 10— 7Z°C以上の場合、基板 1と抵抗体 5との熱膨張係数差を調整層 3で所定値以下に抑えられない場合がある。
[0075] なお、調整層 3の厚みは 1 μ m以上 500 μ m未満が望ましい。調整層 3の厚みが 1 μ m未満の場合、調整層 3にピンホールが発生しやすぐ抵抗体 5とガラス層 2が直 接接してしまう可能性があり、調整層 3の効果が得られない場合がある。また調整層 3 の厚みが 500 m以上の場合、調整層 3自体の剛性が基板 1に影響を与える可能性 があり、荷重センサとしての出力の安定性に影響を与える場合がある。
[0076] また、調整層 3の大きさは 0. ImmX O. lmm (0. 01mm2)以上 50mm X 50mm ( 2500mm2)未満でかつ抵抗体 5の面積よりも大き 、ことが望ま 、。調整層 3の大き さ力 SO. ImmX O. lmm以下の場合、調整層 3を一般の厚膜技術で作製することが 難しい場合がある。また調整層 3の大きさが 50mm X 50mm以上の場合、調整層 3 に大きな応力が発生してガラス層 2と調整層 3の界面で剥離が発生する場合がある。 また調整層 3の面積を抵抗体 5の面積より大きくすることで抵抗体 5の下全面に調整 層 3を形成できるので抵抗体 5とガラス層 2が直接接することが防止できる。
[0077] また、図 1に示すように、配線 4の少なくとも一部 4Aは抵抗体 5と共に調整層 3の上 に形成することで調整層 3の上で配線 4と抵抗体 5を接続できるので抵抗体 5の材料 のペーストを安定して印刷できる。複数の抵抗体 5を用いてブリッジ回路を形成する 場合でも、複数の抵抗体 5の特性を一定に保つことができるので荷重センサ 101の 出力特性の安定化が図れる。
[0078] なお、抵抗体 5の厚みは 1 μ m以上 500 μ m未満が望ましい。抵抗体 5の厚みが 1 μ m未満の場合、基板 1と抵抗体 5の熱膨張率の差により抵抗体 5の内部の応力が 発生しにくくなると共に抵抗体 5にピンホールが発生しやすく調整層 3の効果が得ら れない場合がある。また抵抗体 5の厚みが 500 m以上の場合、抵抗体 5を厚膜技 術で製造する際、抵抗体 5の焼結により発生する応力が大きくなりすぎて調整層 3で はその応力を吸収できな 、場合がある。
[0079] また、抵抗体 5の面積は 0. lmm X 0. 1mm以上 50mm X 50mm未満でかつ調整 層 3の面積よりも小さいことが望ましい。抵抗体 5の面積が 0. Imm X O. lmm未満の 場合、抵抗体 5を一般の厚膜技術で作製することが難しい場合がある。また抵抗体 5 の大きさが 50mm X 50mm以上の場合、抵抗体 5を焼結した際に発生する応力等を 調整層 3では吸収できな 、場合がある。
[0080] なお、基板 1の材料は熱膨張係数が 80 X 10— 7Z°C以上 200 X 10— 7Z°C未満であ る金属が望ましい。熱膨張係数が 80 X 10— 7Z°C未満の金属により基板 1では、調整 層 3を形成しなくても焼成条件等の最適化によって抵抗体 5の抵抗値の安定化が可 能な場合がある。また基板 1の熱膨張係数が 200 X 10— 7Z°C以上の場合、調整層 3 で抵抗体 5と基板 1の熱膨張係数の差を吸収できない場合がある。
[0081] なお、基板 1は金属板を金型によって打抜力 、て形成しても良い。これにより放電 加工やレーザ加工に比べて基板 1を安価に形成できる。また金型で加工された金属 板は内部に残留応力が残っている。このような基板 1は熱処理等によって微妙に歪 んだり、反ったりする場合があるが、実施の形態による調整層 3でこうした残留応力が 抵抗体 5に伝わりにくくできる。
[0082] なお、抵抗体 5の材料はゲージファクタ(GF)は 10以上 1000未満が望ましい。 GF が 10未満の材料による抵抗体 5は調整層 3を形成する必要がない場合がある。また GFが 1000以上の材料による抵抗体 5の場合、調整層 3を最適化してもその抵抗値 を安定化させることが困難な場合が考えられる。
[0083] なお、抵抗体 5は、調整層 3の上に抵抗体の材料のペーストが所定形状に印刷され た後に温度 400°C以上 1000°C未満で焼成されて形成されることが望ましい。温度 4 00°C未満でペーストを焼成して形成された抵抗体 5では、焼結が不充分で調整層 3 と抵抗体 5の接着力が低い場合があり、それらの界面で剥離する場合がある。またべ 一ストの焼成温度が 1000°Cを超える場合、抵抗体 5と調整層 3との間の材料の拡散 が大きくなりすぎて抵抗体 5の抵抗値が安定しない場合がある。
[0084] なお、調整層 3はガラスもしくはガラスとセラミックフィラーよりなるコンポジットガラス よりなることが望ましい。コンポジットガラスを用いた調整層 3は、ガラスとセラミックフィ ラーの種類や混合比率を変えることにより、様々な熱膨張係数の基板 1や抵抗体 5〖こ より荷重センサ 101を作製できる。
[0085] なお、セラミックフィラーの粒径は 0. 01 μ m以上 10 μ m未満が望ましい。セラミック フィラーの粒径が 0. 01 μ m未満の場合、その分散が難しぐそれを含むコンポジット ガラスの特性のばらつきが大きい場合がある。またセラミックフィラーの粒径が 10 μ m 以上の場合、コンポジットガラス力もなる調整層 3の表面粗さが大きくなりすぎてこの 上に形成される抵抗体 5の抵抗値のばらつきが大きくなる場合がある。
[0086] また、セラミックフイラ一はアルミナ、ジルコユア、マグネシア、チタ二了、チタバリ、力 ルシアの内の一種類以上が望ましい。こうした安価な材料を用いることで抵抗体 5と セラミックフィラーの拡散を抑えられると共に荷重センサ 101のコストダウンが可能に なる。
[0087] 図 12A—図 12Dは実施の形態における荷重センサ 101の製造方法を示す断面図 である。
[0088] 図 12Aに示すように、基板 15の上にガラスペーストを印刷して焼成することによりガ ラス層 16aが形成される。ガラス層 16aの厚みは 10 μ m以上 200 μ m以下が望まし い。ガラス層 16aの厚みが 10 μ m未満の場合、ガラス層 16aにピンホールが発生す る可能性がある。またガラス層 16aの厚みが 200 μ mを超えるとコストアップとなる。
[0089] 次に、図 12Bに示すように、ガラス層 16aの上に調整層 17aを形成する。調整層 17 aはこの上に形成する感歪抵抗体 19aより大き 、ことが望ま 、。調整層 17aはその 材料のペーストを印刷して焼成することで形成できる。
[0090] 次に図 12Cに示すように、少なくともその一端 118aが調整層 17a上に位置するよう にして複数の配線 18aを形成する。配線 18aはおの材料のペーストを印刷して焼成 することで形成できる。
[0091] 次に図 12Dに示すように、複数の配線 18aの間に感歪抵抗体 19aを形成する。抵 抗体 19aの下には調整層 17aが予め形成されている。抵抗体 19aはその材料のぺー ストを印刷して焼成することで形成できる。最後に、図 12Eに示すように、少なくとも抵 抗体 19aの表面を覆うように保護層 20aを形成する。
[0092] 以上の方法により、抵抗体 19aの直下に調整層 17aを印刷等の安価な方法で形成 でき、基板 15の熱膨張係数の影響を受けにくい荷重センサを安価に製造できる。な お図 12 Aにお ヽてガラス層 16aを複数層で形成するとガラス層 16aはその内部に発 生するピンホール等の影響を受けに《なる。また、ガラス層 16aと調整層 17aを一括 して焼成して同時に形成することができ、これにより製造コストを抑えることができる。 なおガラス層 16aと調整層 17aは互いに熱膨張係数が異なる場合があるが、調整層 17aは極僅かの面積に形成されるに過ぎないので、熱膨張係数の違いはそれほど問 題にならない。
[0093] また、ガラス層 16aと調整層 17a、配線 18aも同時に焼成することができ、更なるコス トダウンが可能である。一般的にガラスより金属が収縮開始温度が低い。配線 18aを 形成するペーストに予め収縮抑制剤を添加しておくことで、同時焼成時の焼成収縮 の違いによる割れやクラックが防止できる。なお収縮抑制剤としてはガラス層 16aや 調整層 17aのガラス粉やセラミック粉等の無機材料を用いることができる。なお収縮 抑制剤の添加量は lwt%以上 20wt%以下が望ましい。収縮抑制剤の添加量が lw t%以下の場合収縮抑制効果が得られな 、場合がある。収縮抑制剤の添加量が 20 wt%を超える場合、配線の抵抗値が増加し、抵抗体 19aの特性に影響を及ぼす場 合がある。
[0094] 図 13A—図 13Eは実施の形態における他の荷重センサの製造方法を示す断面図 である。
[0095] 図 13Aに示すように、基板 15の上にガラスペーストや電極ペーストを印刷して焼成 すること〖こより、内部電極 20を内蔵したガラス層 16bが形成される。なお基板 1と内部 電極 20の間のガラス層 16bの一部 116bの厚みは 10 m以上 200 m以下が望ま しい。ガラス層 16bの一部 116bの厚みが 10 m未満の場合、ガラス層 16bにピンホ ールが発生する可能性がある。またガラス層 16bの一部 116bの厚みが 200 μ mを超 えるとコストアップの原因になる。ガラス層 16bの内部の内部電極 20により、荷重セン サの電磁気妨害 (EMI)特性が改善され、荷重センサが携帯電話や無線機等の電 磁波の影響を受けに《することができる。
[0096] 次に、図 13Bに示すようにガラス層 16bの上に調整層 17bを形成する。ここで調整 層 17bはその上に形成する感歪抵抗体 19bより広 、ことが望ま 、。調整層 17bはそ の材料のペーストを印刷して焼成することで形成できる。
[0097] 次に、図 13Cに示すように、複数の配線 18bをその少なくともその一端 118bが調 整層 17bの上を覆うように形成する。配線 18bはその材料のペーストを印刷して焼成 することで形成できる。
[0098] そして、図 13Dに示すように、調整層 17bの上でかつ複数の配線 18bの間に感歪 抵抗体 19bを形成する。抵抗体 19bはその材料のペーストを印刷して焼成することで 形成できる。
[0099] 最後に、図 13Eに示すように、少なくとも抵抗体 19bの表面を覆うように保護層 20b を形成する。この製造方法では、抵抗体 19bの直下に調整層 17bを印刷等の安価な 方法により形成できるので、基板 15の熱膨張係数の影響を受けにくい荷重センサを 安価に製造することができる。
[0100] なお、図 13Aに示すようにガラス層 16bは、その材料のペーストを複数回の印刷 Z 乾燥を繰り返して複数のガラス層を形成して作成してもよぐこれによりガラス層 16b の内部のピンホールの影響を小さくできる。
[0101] また、ガラス層 16b、内部電極 20、調整層 17bを一括して焼成して同時に形成する ことができる。これにより荷重センサの製造コストを抑えることができる。なおガラス層 1 6bと調整層 17bとは互いに熱膨張係数が異なる力 調整層 17bは極僅かの面積に 印刷されるだけなので、熱膨張係数の違いは同時焼成でそれほど問題にならない。
[0102] また、ガラス層 16bと調整層 17b、内部電極 20、配線 18bも必要に応じて同時に焼 成することでコストダウンができる。一般的にガラスより金属の収縮開始温度が低い。 内部電極 20や配線 18bの材料のペーストに収縮抑制剤を添加しておくことにより、 一括焼成の際の収縮量の違いによる割れやクラックが防止できる。なお収縮抑制剤 としてはガラス層 16bや調整層 17bのガラス粉やセラミック粉等の無機材料を用いる ことができる。
[0103] なお、収縮抑制剤の添加量は lwt%以上 20wt%以下が望ましい。収縮抑制剤の 添加量が lwt%以下の場合、収縮抑制効果が得られない場合がある。また収縮抑制 剤の添加量が 20wt%を超える場合、配線 18bの抵抗値が増加したり、抵抗体 19b の特性に影響を及ぼす場合がある。
[0104] 図 14は実施の形態による他の荷重センサ 102の外観図である。説明のために保護 層の図示を省略している。また基板 21の施される、外周の加工、孔加工、嵌合加工 等の加工による歪が感歪抵抗体 25の特性に影響を与える場合がある。また図 14に おいて配線 24はその一部しか図示しておらず、配線 24に実装される部品や接続さ れる配線等も図示を省略している。図 14に示すように、荷重センサ 102は基板 21と、 基板 21上のガラス層 22と、ガラス層 22上の調整層 23と、調整層 23上の配線 24の 一部 124と、調整層 23上の感歪抵抗体 25とを備える。抵抗体 25と配線 24の一部 12 4とが接続されている。
[0105] 図 14に示す荷重センサ 102は複数の感歪抵抗体 25の抵抗値の変化によりセンサ 102にかかった荷重を検出する。複数個の抵抗体 25がブリッジ回路を形成すること が望ましい。このとき複数個の抵抗体 25の抵抗値が異なると、抵抗体 25が構成する ブリッジ回路の所定の特性が得られなくなることがある。そのため、一つの調整層 23 の上に複数の抵抗体 25を形成することにより、抵抗体 25はその材料のペーストが安 定して印刷でき、抵抗値のばらつきを抑制できる。
[0106] なお、調整層 23の厚みは 1 μ m以上 500 μ m未満が望ましい。調整層 23の厚みが 1 μ m以下の場合、ガラス層 22と抵抗体 23との熱膨張係数の違いを吸収しきれない 場合や内部にピンホールが発生する可能性がある。また調整層 23の厚みが 500 mより厚い場合、調整層 23の材料費が増加する。
[0107] 調整層 23の 1つの抵抗体 25に対する面積は 0. 1mm X O. 1mm以上 50mm X 50 mm未満が望ましい。調整層 23の面積が 0. lmm X O. 1mm未満の場合、調整層 2 3の断面が凸状に盛りあがって平坦な部分が少なくなるので、調整層 23の上に抵抗 体 25の材料のペーストを高精度に印刷することが難しい。また面積が 0. Imm X O. lmm以上の調整層 23は表面の平らな部分が多くなり、調整層 23の上へ抵抗体 25 の材料のペーストが高精度に容易に印刷できる。調整層 23の面積が 50mmX 50m mを超えると、熱膨張係数の違いにより、調整層 23とその下のガラス層 22との間にク ラックが発生する可能性がある。また抵抗体 25の面積より調整層 23の面積を大きく することが望ましい。抵抗体 25の面積より調整層 23の面積が小さい場合、抵抗体 25 がガラス層 22と接し、抵抗体 25の内部の応力分布に影響する場合がある。一つの 調整層 23の上に複数の抵抗体 25を形成することにより抵抗体 25を安定して印刷で きる。
[0108] 図 15は実施の形態による調整層 3に用いるコンポジットガラスの拡大模式図である 。図 15に示すように結晶化ガラス 26の内部にセラミック粉 27が分散された状態で同 時焼成され、コンポジットガラス 28を形成している。ガラス 26の中にセラミック粉 27を 分散させた状態で同時焼成させることにより、コンポジットガラス 28は添加するセラミ ック粉 27の種類や添加量を微調整することでその熱膨張係数が微調整できる。
[0109] 例えば、図 15に示すガラス 26の熱膨張係数を 8. 5ppmZ°Cとした場合、ガラス 26 に熱膨張係数 7ppm/°Cのアルミナ力もなるセラミック粉 (フイラ一) 27を添加すること でコンポジットガラス 28の熱膨張係数を低下させることができる。また熱膨張係数 9. 5ppm/°Cのジルコユアをセラミック粉 27として添加することでコンポジットガラス 28 の熱膨張係数を増カロさせることができる。あるいはガラス 26の熱膨張係数が lOppm Z°Cや 13ppmZ°Cと大きいものを選んだ場合でも同時にコンポジットガラスにでき、 抵抗体 5と基板 1との熱膨張率の違いを吸収できる。
[0110] なお、ガラス 26に加えるフィラーの添加率は 5wt%以上 40wt%未満が望ましい。 フィラーの添加量が 5wt%未満の場合、その添加効果が得られない場合がある。ま たフイラ一の添加量力 Owt%を超える場合、コンポジットガラス 28が焼結しにくくなり 強度が低下する場合がある。これはセラミック粉 27の表面を覆うのに必要なガラス 26 が不足することに起因する。
[0111] 調整層 3のコンポジットガラス 28に添加するセラミック粉 27としてはアルミナ (Al O
2 3
、熱膨張係数は 6. 5-8. OppmZ。 、 MgO (熱膨張係数は 13ppmZ°C)、フオル ステライト(2MgO ' SiO、熱膨張係数は組成により 8— l lppmZ°C)、ジルコ-ァ(
2
熱膨張係数は 10. 4ppmZ°C)、酸ィ匕チタン、酸ィ匕カルシウム、酸化マグネシウム、ス ピネル(MgO'Al O )が望ましい。またセラミック粉の平均粒径は 0. 01— 5 m程度
2 3
が望ましい。平均粒径が 0. 01 μ m未満の場合、コスト高になる。また平均粒径が 5 μ mより大きな場合、ガラス 26との同時焼成ができない場合がある。また実施の形態に よる結晶化ガラス以外の市販の結晶化ガラスについてもセラミック粉 27をフイラ一とし て添加することによりコンポジットガラス 28の熱膨張係数が微調整できるため、調整 層 3を最適設計ができる。
[0112] なお、セラミック粉 27としては熱膨張係数は 6ppmZ°C以上 15ppmZ°C未満のも のが望ましい。熱膨張係数 6ppmZ°C未満や 15ppmZ°C以上のセラミック粉 27はコ ンポジットガラスとしての効果が少ない場合がある。
[0113] 特に、コンポジットガラス 28の中のセラミック粉 27はガラス 26と殆ど反応しないので 、焼成してもそのまま図 15に示すように残っていることが多い。そのため、コンポジット ガラス 28の熱膨張係数は結晶化ガラスの熱膨張係数と添加するセラミック粉 27の熱 膨張係数との比例計算で簡単に求めることができる。
[0114] なお、実際のコンポジットガラス 28の断面を走査型電子顕微鏡 (SEM)や X線マイ クロ分析 (XMA)で解析すると、ガラス 26と拡散したセラミック粉 27が見える。またこ れらを元素分析すると、ガラス 26からは MgO、 SiO、 Al O等のガラス 26を構成す
2 2 3
る複数の元素が均一に混ざり合っているのが確認でき、セラミック粉 27の固有の元素 としてアルミナを用いた場合、アルミと酸素の元素が特異的に多く検出される。またセ ラミック粉 27に酸ィ匕ジルコユアを用いた場合、ジルコユアと酸素の元素が特異的に多 く検出されるので、これら元素がガラス 26に含まれていたもの力、あるいはコンポジッ トガラス 28を構成するためにフイラ一として添加されたもの力容易に判別することがで きる。
[0115] 次に、実施の形態による調整層 3用のガラスペーストの製造方法について説明する 。図 16はコンポジットガラスに発生する可能性があるピンホールの説明図、図 17A— 図 17Cは実施の形態における調整層 3に用いるコンポジットガラスのペーストの製造 方法を示す模式図、図 18A—図 18Dは実施の形態における調整層 3に用いるコン ポジットガラスペーストの製造方法を示す模式図である。
[0116] 図 16に示すように、コンポジットガラス 26はセラミック粉凝集体 29と、ピンホール 30 を含む場合がある。セラミック粉 27がガラス 26の内部に均一に分散されて!ヽる場合ピ ンホール 30は発生しな 、が、セラミック粉 27の分散が不充分でセラミック粉凝集体 2 9が発生すると、図 16に示すようにピンホール 30を形成する場合がある。これはガラ ス 26の焼成温度ではセラミック粉 27が焼結しないことに起因する。セラミック粉 27は セラミック粉凝集体 29を形成した状態で残ったコンポジットガラス 26では、非常に小 さな確率ではあるがピンホール 30が発生する。ピンホール 30の発生はコンポジットガ ラス 26中のセラミック粉を均一に分散させることにより防ぐことができる。
[0117] コンポジットガラスのペーストの製造方法について、図 17A—図 17C、図 18A—図 18Dを用いて説明する。実施の形態では、コンポジットガラス 26に用いるセラミック粉 27を予め溶剤中に分散し、その溶剤にガラス粉を添加して混練する。このようにガラ ス粉とセラミック粉 27を個別に最適な条件で分散することでセラミック粉凝集体 29を 含まないコンポジットガラスのペーストが得られる。
[0118] 図 17Aにおいて、セラミック粉、溶剤、分散剤、少量の榭脂等の所定の材料 3 la— 31dを準備する。榭脂を加えることでセラミック粉のガラスに対する濡れ性が向上する 。しかし、榭脂を加えすぎると粘度が上がって分散しに《なるので、添加する榭脂は 少量に限定される。
[0119] 所定原料 31a— 31dは図 17Bに示すように分散装置 32の中でビーズ 33によって 分散され、スラリーが得られる。分散装置 32として回転ボールミル、攪拌ボールミル、 シンマルエンタープライズ製のダイノミル等のビーズ 33を用いた攪拌式、振動式、回 転式の分散装置を使うことが望まし ヽ。セラミック粉を溶剤や少量の分散剤と共にこう した分散装置 32で分散することで、セラミック粉凝集体を発生させずに分散できる。
[0120] この分散においてセラミック粉、溶剤、分散剤もしくは少量の榭脂からなるスラリーの 粘度は 1センチボイズ (cP)以上 10ボイズ (P)以下が望ましい。 lcP未満の低粘度の スラリーでは、分散装置 32の中ではセラミック粉は均一に混ざっていても、スラリーを 取出して濾過する時にセラミック粉が沈殿してしまうことがある。また粘度が 10Pを超 える場合、ビーズ 33を使った分散装置 32では十分にセラミック粉が分散せずビーズ 33とスラリーの除去が難しくなる場合がある。
[0121] なお、ビーズ 33の直径は 10cm以下が望ましい。ビーズ 33が小さい場合は、細か V、セラミック粉に対しても分散効果が高 、が、ビーズ 33の間の衝突エネルギーが小 さくなるので、所定の力以上の動力を用いた分散装置 32を使うことが望ましい。こうし た分散装置 32、特に回転式の分散装置 32では、リップシール (分散装置 32のシー ル機構の一種)の性能にもよる力 0. 3mm φ以下のビーズ 33は使いにくいことがあ る。
[0122] また、ビーズ 33の材料は市販のアルミナ製やイットリア入りジルコユア製が望ましい 。またセラミック粉と同じ成分のビーズ材料を選定することでビーズ 33が研磨されてス ラリー中に混入した場合でもそれが不純物とはならな 、。
[0123] スラリーは、図 17Cの矢印 34に示すように、濾過装置 35aに設けられたフィルタ 36 aに注がれて濾過され、容器 37aに回収される。
[0124] なお、フィルタ 36aとしては開口が 10— 20 mの市販の網を用いることができるが 、デプス型 (体積濾過型)と呼ばれる繊維を糸卷状にカ卩ェしたフィルタ 36aを使っても よい。この繊維により、多量のスラリーでも少ない圧力損失で、すなわちフィルタ 36a が詰まりにく 、状態で濾過できる。濾過はスラリー自体の自重で行ってもよ!、が、エア 一圧力やダイヤフラムポンプ等を用 、ることで作業効率が向上できる。
[0125] 次に、図 18Aに示すように、容器 37aに回収されたセラミック粉が分散されてなるス ラリー、ガラス粉、榭脂、分散剤等の所定材料 31e— 31hを準備する。必要に応じて 着色剤等を加えておくことで、各層の厚みや状態が判別しやすくなり、工程管理や製 品管理を容易に実施できる。
[0126] 図 18Bに示す混練機 38の内部には攪拌治具 39が内蔵されている。こうした混練 機 38としてはプラネタリーミキサー、ニーダー、自動乳鉢等を用いることができる。こ のように混練機 38の内部に攪拌治具 39をセットすることで、高粘度の材料でも安定 して混練できる。特に、実施の形態による荷重センサでは、コンポジットガラスのぺー ストはスクリーン印刷で印刷され、コストダウンが可能になる。スクリーン印刷では、コ ンポジットガラスのペーストの粘度が低すぎると印刷後にパターンが滲んだり、所定の 厚みが得られない場合があるので、所定値以上の高粘度が必要になる。そのため、 こうしたコンポジットガラスは数万ボイズ以上の粘度で自重ではまったく流動しな ヽ場 合があり、このようなペーストを混練するには攪拌治具 39を備えた混練機 38を用いる ことが望ましい。
[0127] 図 18Bに示すように、所定量の所定材料 31e— 31hが混練機 38に投入され、内蔵 された攪拌治具 39が矢印 34に回転することで混練される。なお所定材料 31e— 31h は互いに反応しあわない順序で添加することが望ましい。例えばガラス粉と榭脂、ス ラリーとガラス粉等を一度に多量に混練すると、セラミック粉凝集体が発生する場合 がある。こうしたソルベントショック等と呼ばれるセラミック粉凝集体の発生を防止する には少量ずつ材料を添加するカゝ、あるいは凝集しにくいものの材料の組合せを予め 確かめておくことが必要である。
[0128] そして、図 18Cに示すように、 3本のロール 40等の混練機 38を用いて混練すること でスラリー中のセラミック粉とガラス粉を均一に分散し、コンポジットガラスペーストが 作製できる。
[0129] 最後に図 18Dに示すように、スラリーを濾過装置 35b、フィルタ 36bで濾過して、調 整層 3に用 、るガラスペースト中のゴミゃ凝集体を除去できる。
[0130] 以下、コンポジットガラスのペーストを詳しく説明する。
[0131] まず、図 17Aに示すように、所定材料 3 laのセラミック粉として、市販の粒径 0. 4 μ mの、セラミック粉凝集体を多数含む安価なアルミナ粉 (数ドル ZKg)を用いた。
[0132] 次に、このアルミナ粉に吸油量を僅かに超える程度の少量の溶剤(吸油量の詳細 ίお IS— K5101に記載されて 、る)と溶剤(プチルカルビトールアセテート等)と分散 剤を加え、高濃度であるが低粘度のアルミナスラリーを作製し、これを市販のビーズミ ルを用いて一定時間分散した。なおビーズ 33にはアルミナ製の直径 2mmのものを 用いた。こうして分散したアルミナは、グラインドメーター(詳細 «JIS-K5600に記載 )を用いて 3 μ m以上のセラミック粉凝集体は検出されな力つた。またこのアルミナスラ リーの粒度分布は粒度分布計を用いた測定で一次粒子まで解されて 、ることが判つ た。このアルミナスラリー中には所定量の分散剤が添加されているので、アルミナの 濃度は 60wt%以上望ましくは 80wt%以上と高い。このスラリーの粘度は 10P (ズリ 速度 lZs— lOOZsの範囲)未満であったにも関わらず、攪拌の 24時間後でも分散 は安定していた。なおこのアルミナスラリーを長時間保存する場合は回転架台等に 搭載した状態で回転させておくと沈殿防止やセラミック粉の再凝集を防止できる。こう して作製したアルミナスラリーは図 17Cに示すように開口 10 mのフィルター 36aで 濾過できた。
[0133] 次に、図 18Aに示すように、このアルミナスラリーをガラス粉や他のバインダ等と秤 量し、図 18Bに示すようにプレミキシングし、最後に図 18Cに示すようにロール混練し た。こうして作製したコンポジットガラスペーストは開口 20 mのフィルタ 36bで濾過 できた。こうして濾過されたコンポジットガラスペーストを調整層 3として用いて図 1に 示す荷重センサ 101を作製した。調整層 3の断面を SEMや XMAで解析し、図 15〖こ 示すガラス 26の中に均一に分散されたアルミナが検出された。
[0134] このようにセラミック粉凝集体を発生させな!/、ように材料を分散させるためには工数 が増加するので、より低コストに効率良く分散させることが望まれている。セラミックスラ リーを高濃度にしておくことで分散効率を高められ、製造コストも下げることができる。 特に、セラミックスラリーを高濃度 (例えば、スラリーの吸油量の 10%増から 50%増ま での量の溶剤)で分散することが重要である。溶剤の添加量カ^ラシ一の吸油量以 下の場合、セラミックスラリーの粘度が高すぎてビーズで分散させにくい。またスラリー の吸油量よりその 100%多い溶剤(例えば、 JISに従って測定した吸油量 50gに対し て 100gの溶剤)では、セラミックスラリーの粘度は充分低いが、溶剤の量が多すぎて 溶剤を減らす必要がある場合がある。
[0135] 次に、荷重センサ 101の基板 1に用いる金属弾性体について説明する。
[0136] 実施の形態における荷重センサ 101は調整層 3により安価な金属材料の基板 1を 用いることができる。基板 1の材料としては、例えばオーステナイト系合金や Ni基合金 等の時効硬化合金やインコネル等の Co基合金に比べ、フェライト系の合金の耐熱性 鋼を用いることが望まし 、。フェライト系の耐熱合金によりセンサを容易に高精度に加 ェできると共に加工後の残留応力や加工歪み等が少ない。また必要に応じて金属弹 性体にアルミニウムを含有させておくことで熱処理時に添加したアルミニウムにより金 属弾性体上に酸化アルミ皮膜が形成され、基板 1の耐熱性や耐酸化性が向上する。 この材料としては AISIIタイプの 300や 400シリーズの合金として SUS304、 316、 4 04、 430、 SI 7及び 444力 S適当である。また他の金属弾性体であってもその表面に 耐熱処理を行うことで使うことができる。こうした合金はその組成によって 90 X 10— 7/ °C一 140 X 10— 7Z°Cの熱膨張係数を有する。
[0137] 荷重センサ 101のために所定形状にカ卩ェした場合、その加工時に金属弾性体の 基板 1の内部に歪みが残る。そのために基板 1をその上にガラスペーストを印刷して 焼成した場合、本来の熱膨張係数以上に変形してしまうことが多い。例えばガラスと 金属基板の熱膨張係数の差から計算される基板の反り量以上に基板 1が大きく反る 場合がある。また 1つの SUS材料を用いた場合でも、厚みが 0. 5mm、 2mm、 5mm でプレス(打抜き)によって所定の形状に加工した基板 1はそれぞれ異なる量だけ反 る。厚みが変化すれば加工方法が変わるので、同じ金属材料でも反り量は加工時の 圧力、方法、手順、金型の違いで変化してしまう。
[0138] また、こうした反りは加工後に修正できる力 その修正でも残留応力や熱処理時の 変形量をゼロにすることは難しい。そのため、こうした所定形状に加工され内部に応 力が残る基板 1でも調整層 3により荷重センサを作製できる。
[0139] なお、抵抗体 5の材料のペーストは 400°C以上 1000°C未満の温度で焼成すること が望ましい。 400°C未満で焼成するとペーストが十分に焼結せず、抵抗体 5の所定の 強度が得られない場合がある。また 1000°C以上で焼成すると、基板 1が酸化しやす くなり耐力が低下するので、基板 1にはより高価で特殊な金属材料を使う必要がある
[0140] また、ガラス層 2に結晶化ガラスを用いることで非晶質ガラスに比べてガラスの耐カ 、破壊強度を高められる。またガラス層 2内部に 1層以上の内部電極を形成し、配線 4と内部電極をスルーホール等の接続体を介して接続することでセンサの耐ノイズ特 性が改善できる。
[0141] さらに、調整層 3に用いるガラスペーストを主成分のガラス粉と 5重量%—40重量% のセラミック粉と榭脂ゃ溶剤を添加して作製することにより、焼成後の熱膨張係数を 再現性良く調整でき、調整層 3を安価に形成できる。また調整層 3は 400— 900°Cで 焼成することが望ましい。 400°C未満で焼成すると調整層 3は十分に焼結せずに所 定の強度が得られな 、場合がある。 1000°C以上の温度で焼成層 3を焼成すると金 属の基板 1が酸ィ匕しやすくなり耐力が低下するため、基板 1に高価で特殊な金属材 料を使う必要がある。
産業上の利用可能性
[0142] 本発明による荷重センサは、熱膨張係数の異なる基板でも感歪抵抗体に汎用の材 料を用いることができ、多品種化と低コスト化に有用である。

Claims

請求の範囲
[I] 基板と、
前記基板上に形成されたガラス層と、
前記ガラス層上に形成された配線と、
前記ガラス層上に形成された調整層と、
前記調整層上に形成され、前記配線に接続された感歪抵抗体と、
を備え、前記ガラス層の熱膨張係数より前記調整層の熱膨張係数は前記感歪抵抗 体の熱膨張係数に近い、荷重センサ。
[2] 前記ガラス層は結晶化ガラスを含む、請求項 1に記載の荷重センサ。
[3] 前記ガラス層内に形成された内部電極をさらに備えた、請求項 1に記載の荷重セン サ。
[4] 前記基板の熱膨張係数と前記感歪抵抗体の熱膨張係数との差は 10 X 10— 7Z°C以 上 50 X 10— 7Z°C未満である、請求項 1に記載の荷重センサ。
[5] 前記基板の熱膨張係数と前記ガラス層の熱膨張係数との差は 20 X 10一7 Z°C未満で ある、請求項 1に記載の荷重センサ。
[6] 前記感歪抵抗体の熱膨張係数と前記調整層の熱膨張係数との差は 20 X 10"V°C 以下である、請求項 1に記載の荷重センサ。
[7] 前記調整層の厚みは 1 μ m以上 500 m未満である、請求項 1に記載の荷重センサ
[8] 前記調整層の面積は 0. lmm X 0. 1mm以上 50mm X 50mm未満である、請求項 1に記載の荷重センサ。
[9] 前記調整層の面積は前記感歪抵抗体の面積よりも大き!、、請求項 1に記載の荷重セ ンサ。
[10] 前記配線は前記調整層上に形成された部分を含む、請求項 1に記載の荷重センサ
[II] 前記感歪抵抗体の厚みは 1 μ m以上 500 m未満である、請求項 1に記載の荷重セ ンサ。
[12] 前記調整層の厚みは 1 μ m以上 500 m未満である、請求項 1に記載の荷重センサ
[13] 前記ガラス層の厚みは 10 m以上 500 m未満である、請求項 1に記載の荷重セン サ。
[14] 前記抵抗体の面積は 0. 01mm2以上 2500mm2未満である、請求項 1に記載の荷重 センサ。
[15] 前記基板は熱膨張係数が 80 X 10— 7Z°C以上 200 X 10— 7Z°C未満の金属よりなる、 請求項 1に記載の荷重センサ。
[16] 前記基板は金型によって所定形状に打抜かれた金属板よりなる、請求項 1に記載の 荷重センサ。
[17] 前記感歪抵抗体のゲージファクタは 10以上 1000未満である、請求項 1に記載の荷 重センサ。
[18] 前記調整層はガラスよりなる、請求項 1に記載の荷重センサ。
[19] 前記調整層は 5重量%—40重量%のセラミックフィラーを含むコンポジットガラスより なる、請求項 1に記載の荷重センサ。
[20] 前記セラミックフイラ一は 0. 01 μ m以上 10 μ m未満の粒径のセラミック粉よりなる、 請求項 19に記載の荷重センサ。
[21] 前記セラミックフイラ一はアルミナ、ジルコユア、マグネシア、チタ二了、チタバリ、カル シァのうちの少なくとも 1つである、請求項 19に記載の荷重センサ。
[22] 金属製の基板上にガラス層を形成するステップと、
ガラスペーストを準備するステップと、
前記ガラス層の上に前記ガラスペーストを塗布し焼成して調整層を形成するステップ と、
前記調整層上に複数の配線を形成するステップと、
前記複数の配線間に接続された、抵抗体ペーストを塗布し焼成して前記調整層上に 感歪抵抗体を、前記ガラス層の熱膨張係数より前記調整層の熱膨張係数は前記感 歪抵抗体の熱膨張係数に近くなるよう形成するステップと、
を備えた、荷重センサの製造方法。
[23] 前記感歪抵抗体と前記複数の配線のそれぞれの一部とを覆う保護層を形成するステ ップをさらに備えた、請求項 22に記載の製造方法。
[24] 前記基板の厚みは lmm以上である、請求項 22に記載の製造方法。
[25] 前記感歪抵抗体を形成するステップは、前記塗布された抵抗体ペーストを 400°C以 上 1000°C未満の温度で焼成するステップと含む、請求項 22に記載の製造方法。
[26] 前記調整層を形成するステップは、前記塗布されたガラスペーストを 400— 900°Cで 焼成するステップを含む、請求項 22に記載の製造方法。
[27] 前記ガラスペーストは 5重量%—40重量%のセラミック粉が分散されてなる、請求項
22に記載の製造方法。
[28] 前記ガラスペーストを準備するステップは、
溶剤とバインダに 0. 01ボイズ以上 100ボイズ以下の粘度でセラミック粉に分散させる ステップと、
前記セラミック粉が分散された前記溶剤と前記バインダとに、 100ボイズ以上 10000 ボイズ未満の粘度でガラス粉を分散させるステップと、
を含む、請求項 22に記載の製造方法。
[29] 前記ガラスペーストを準備するステップは、
溶剤と分散剤ノインダに 0. 01ボイズ以上 100ボイズ以下の粘度でセラミック粉に分 散させるステップと、
前記セラミック粉が分散された前記溶剤と前記分散剤とに、 100ボイズ以上 10000ポ ィズ未満の粘度でガラス粉を分散させるステップと、
を含む、請求項 22に記載の製造方法。
[30] 前記ガラス層を形成するステップは、内部に電極を有するガラス層を形成するステツ プを含む、請求項 22に記載の製造方法。
PCT/JP2004/015980 2003-11-04 2004-10-28 荷重センサ及びその製造方法 WO2005043102A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/529,704 US7397340B2 (en) 2003-11-04 2004-10-28 Load sensor and its manufacturing method
EP04793090A EP1584907B1 (en) 2003-11-04 2004-10-28 Load sensor and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003374121A JP3948452B2 (ja) 2003-11-04 2003-11-04 荷重センサ及びその製造方法
JP2003-374121 2003-11-04

Publications (1)

Publication Number Publication Date
WO2005043102A1 true WO2005043102A1 (ja) 2005-05-12

Family

ID=34544183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015980 WO2005043102A1 (ja) 2003-11-04 2004-10-28 荷重センサ及びその製造方法

Country Status (5)

Country Link
US (1) US7397340B2 (ja)
EP (1) EP1584907B1 (ja)
JP (1) JP3948452B2 (ja)
CN (1) CN100394155C (ja)
WO (1) WO2005043102A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205908A (ja) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd 重量センサ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055775B2 (ja) * 2002-08-07 2008-03-05 松下電器産業株式会社 荷重センサ及びその製造方法
US20060030062A1 (en) * 2004-08-05 2006-02-09 Jun He Micromachined wafer strain gauge
EP1811278A4 (en) 2004-12-20 2009-04-29 Panasonic Corp STEM SENSOR AND MANUFACTURING METHOD THEREFOR
FR2905208B1 (fr) * 2006-08-28 2008-12-19 St Microelectronics Sa Filtre a resonateurs a ondes de lamb couples.
PL1927834T3 (pl) 2006-12-02 2010-10-29 Texmag Gmbh Vertriebsgesellschaft Walec z czujnikiem siły
JP2009020061A (ja) * 2007-07-13 2009-01-29 Denso Corp 力学量センサ素子
JP5693047B2 (ja) * 2009-06-01 2015-04-01 株式会社デンソー 力学量センサ素子、およびその製造方法
US8324041B2 (en) * 2011-02-09 2012-12-04 Globalfoundries Inc. Complementary stress liner to improve DGO/AVT devices and poly and diffusion resistors
DE102015111425B4 (de) * 2014-07-18 2016-06-30 Klaus Kürschner Verfahren und Einrichtung zur elektrischen Kraftmessung mittels Isolationsdünnschicht
LU92593B1 (en) * 2014-11-06 2016-05-09 Iee Sarl Impact sensor
WO2017006840A1 (ja) * 2015-07-07 2017-01-12 日立オートモティブシステムズ株式会社 半導体装置、力学量測定装置および半導体装置の製造方法
CN106403866A (zh) * 2015-07-31 2017-02-15 北京航天计量测试技术研究所 一种适用于无安装孔线位移传感器组件的安装夹具
JP6669029B2 (ja) * 2016-09-28 2020-03-18 豊田合成株式会社 半導体装置の製造方法
JP2019138843A (ja) * 2018-02-14 2019-08-22 リンテック株式会社 歪み検出デバイス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441304B2 (ja) * 1974-01-25 1979-12-07
JP3010166B2 (ja) * 1997-12-19 2000-02-14 デルコ・エレクトロニクス・コーポレーション 厚膜ピエゾ抵抗体検知構造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051591B2 (ja) 1977-09-05 1985-11-14 株式会社クラレ 高級感のある皮革様シ−トの製造法
JPS6167901A (ja) 1984-09-11 1986-04-08 昭栄化学工業株式会社 抵抗組成物及びそれよりなる厚膜抵抗体
JPH0666477B2 (ja) * 1986-02-08 1994-08-24 株式会社豊田中央研究所 機械電気変換素子
JPS63298128A (ja) 1987-05-29 1988-12-05 Copal Electron Co Ltd 圧力センサ
JPH0310166A (ja) * 1989-06-08 1991-01-17 Nippon Telegr & Teleph Corp <Ntt> 荷電ビーム検出方法
US5225126A (en) * 1991-10-03 1993-07-06 Alfred University Piezoresistive sensor
JPH06294693A (ja) 1993-04-07 1994-10-21 Matsushita Electric Ind Co Ltd 抵抗体およびこれを用いた圧力センサ
JP3636534B2 (ja) 1996-04-08 2005-04-06 松下電器産業株式会社 力学量センサおよびその製造法
US5867886A (en) * 1997-10-20 1999-02-09 Delco Electronics Corp. Method of making a thick film pressure sensor
DE19813468C1 (de) * 1998-03-26 1999-07-22 Sensotherm Temperatursensorik Sensorbauelement
DE10113474B4 (de) * 2001-03-17 2007-09-13 Siemens Ag Elektrische Schaltung
JP4055775B2 (ja) * 2002-08-07 2008-03-05 松下電器産業株式会社 荷重センサ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441304B2 (ja) * 1974-01-25 1979-12-07
JP3010166B2 (ja) * 1997-12-19 2000-02-14 デルコ・エレクトロニクス・コーポレーション 厚膜ピエゾ抵抗体検知構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1584907A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205908A (ja) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd 重量センサ

Also Published As

Publication number Publication date
JP2005140515A (ja) 2005-06-02
CN1701220A (zh) 2005-11-23
EP1584907A1 (en) 2005-10-12
CN100394155C (zh) 2008-06-11
US20060001521A1 (en) 2006-01-05
JP3948452B2 (ja) 2007-07-25
EP1584907B1 (en) 2012-01-11
US7397340B2 (en) 2008-07-08
EP1584907A4 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
WO2005043102A1 (ja) 荷重センサ及びその製造方法
EP2472529B1 (en) Thermistor and method for producing same
EP0962977A2 (en) Electrically conductive paste and ceramic multi-layered substrate
WO2019119981A1 (zh) 一种复合热敏电阻芯片及其制备方法
JP4055775B2 (ja) 荷重センサ及びその製造方法
JPWO2006001373A1 (ja) セラミックヒータとその製造方法及び加熱装置並びにヘアアイロン
JP4645596B2 (ja) 歪センサ及びその製造方法
CN109293344A (zh) 一种高精度ntc热敏电阻芯片及其制备方法
WO2021024918A1 (ja) セラミック配線基板、セラミック配線基板用セラミックグリーンシート及びセラミック配線基板用ガラスセラミックス粉末
KR20050048601A (ko) 질화알루미늄 소결체, 금속화된 기판, 히터, 지그 및 질화알루미늄 소결체의 제조 방법
US6073340A (en) Method of producing lamination type ceramic heater
US6974515B2 (en) Ceramic substrate and method of manufacturing same
JP4803157B2 (ja) 荷重センサ及びその製造方法
JP4324439B2 (ja) セラミックヒータおよびセラミックヒータ構造体
JP4416427B2 (ja) セラミックヒータおよびその製造方法
JP7294827B2 (ja) 電気検査用基板
JP3214273B2 (ja) ガラスシート
JPH08255667A (ja) オゾナイザ用沿面放電素子およびその製法
JPH06183829A (ja) セラミック基板組成物
JP2003073171A (ja) セラミックグリーンシート
JP2006066735A (ja) ガラスセラミック配線基板およびその製造方法
JPH0620732A (ja) 気密端子用積層ガラス
JP2006100445A (ja) ガラスセラミック配線基板およびその製造方法
JP2008303075A (ja) 絶縁性被膜材料
CN107108371A (zh) 陶瓷基体及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006001521

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529704

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004793090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004801134X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004793090

Country of ref document: EP