WO2005037101A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2005037101A1
WO2005037101A1 PCT/JP2004/015137 JP2004015137W WO2005037101A1 WO 2005037101 A1 WO2005037101 A1 WO 2005037101A1 JP 2004015137 W JP2004015137 W JP 2004015137W WO 2005037101 A1 WO2005037101 A1 WO 2005037101A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
resonance imaging
imaging apparatus
magnetic resonance
static magnetic
Prior art date
Application number
PCT/JP2004/015137
Other languages
English (en)
French (fr)
Inventor
Akira Kurome
Yoshihide Wadayama
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2005514769A priority Critical patent/JP4767688B2/ja
Priority to US10/595,362 priority patent/US7375518B2/en
Publication of WO2005037101A1 publication Critical patent/WO2005037101A1/ja
Priority to US12/119,642 priority patent/US7635981B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3854Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus), and particularly to an MRI having a structure for correcting static magnetic field uniformity and a structure for reducing vibration and noise from a gradient coil.
  • Equipment related a magnetic resonance imaging apparatus
  • An MRI apparatus uses a cylindrical static magnetic field generating magnet, and has an imaging area inside the cylinder, and a pair of opposed static magnetic field generating magnets, and the space between them is an imaging area.
  • Devices are known.
  • As the static magnetic field generating magnet a permanent magnet, a normal conducting magnet, or a superconducting magnet is generally used.
  • a gradient magnetic field coil is arranged on the imaging region side of the static magnetic field generating magnet, and the gradient magnetic field coil and the static magnetic field coil are arranged.
  • a support member for a gradient magnetic field coil and a static magnetic field adjustment unit formed of a magnetic body group are arranged between a magnetic field generating magnet.
  • the static magnetic field adjustment unit is attracted to the static magnetic field generating magnet and generates a distortion, which also causes a distortion in the support member of the gradient magnetic field coil.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-102206
  • Patent Document 1 Disclosed in Patent Document 1!
  • the support member of the gradient magnetic field coil is in contact with the static magnetic field adjustment unit, the vibration of the gradient magnetic field coil is transmitted to the static magnetic field adjustment unit. For this reason, there is a problem that the static magnetic field vibrates.
  • the magnetic field adjustment unit of Patent Document 1 does not have a vibration damping function, it is necessary to separately arrange a damping member in order to damp vibration.
  • a vibration damping member is separately arranged, a space for arranging the damping member is required, so that it is necessary to increase a distance between the gradient magnetic field coil and the static magnetic field generating unit. As a result, there is a problem that the imaging region where the subject is arranged is narrowed.
  • An object of the present invention is to reduce the vibration of the gradient magnetic field coil, not transmit the vibration to the static magnetic field correction unit, and to save space by reducing the vibration and the static magnetic field correction unit.
  • An object of the present invention is to provide an MRI apparatus which can be designed.
  • a first aspect of the present invention provides the following MRI apparatus.
  • a pair of static magnetic field generating units that are arranged to face each other and form a static magnetic field region in a space therebetween, and a pair of static magnetic field generating units that are arranged via opposing surfaces via the first support member.
  • An MRI apparatus comprising: a plate-shaped gradient magnetic field generation unit; and a static magnetic field correction unit for correcting static magnetic field uniformity, which is disposed between the static magnetic field generation unit and the gradient magnetic field generation unit.
  • the static magnetic field correction unit is a flat shim tray on which a magnetic material piece for correcting static magnetic field uniformity is arranged, and a second support is provided on each of opposing surfaces of the pair of static magnetic field generation units. It is arranged via a member.
  • the gradient magnetic field generation unit is supported by the static magnetic field generation unit by the second support unit different from the first support member. Is not directly transmitted to the static magnetic field correction unit.
  • the shim tray and the gradient magnetic field generation unit can be configured to be independently supported by the static magnetic field generation unit.
  • a gap may be provided between the shim tray and the gradient magnetic field generator, and between the shim tray and the gradient magnetic field generator.
  • the above-mentioned shim tray may have one or more through holes, and the first support member may be arranged in the through holes.
  • the shim tray has a configuration in which a plurality of through holes are provided in a predetermined pattern.
  • a configuration may be adopted in which a magnetic member piece is inserted into one or more holes among the through holes, and a first support member is inserted into another one or more holes.
  • the first support member can be arranged symmetrically about the center with respect to the gradient magnetic field generation unit.
  • the shim tray can be formed of a non-magnetic material.
  • the shim tray can be formed of a conductive material, and thereby can also function as a conductive shield that cancels out static magnetic field fluctuations.
  • the static magnetic field generating section has a concave portion on the opposing surface, and the shim tray and the gradient magnetic field generating section can be arranged in the concave section. In this case, it is possible to dispose a member between the inner peripheral surface of the concave portion and the gradient magnetic field generation section for attenuating vibration of the gradient magnetic field generation section in the main plane direction.
  • the first support member may be configured to include a vibration damping member.
  • the first support member includes a member having magnetism, and can be operated to correct static magnetic field uniformity.
  • the first support member can be arranged so as not to contact the shim tray. Thereby, it is possible to prevent the vibration of the gradient magnetic field generating unit from being transmitted to the shim tray.
  • the plurality of through holes of the shim tray are provided with two types, a large diameter and a small diameter, a magnetic member piece is inserted into the small diameter through hole, and the first support member is inserted into the large diameter through hole. can do.
  • a member for suppressing the vibration amplitude of the gradient magnetic field generating unit can be inserted.
  • An elastic member having one end fixed to the static magnetic field generation source and the other end in contact with the gradient magnetic field generation unit can be used as the vibration amplitude suppression member. It is desirable that the vibration amplitude suppressing member is arranged at a position of an antinode of vibration of the gradient magnetic field generating unit.
  • the first support member may be configured to have a first fixed portion and a second fixed portion disposed with the vibration damping member interposed therebetween.
  • the first fixed section is fixed to the static magnetic field generating section, and the second fixed section is fixed to the gradient magnetic field generating section.
  • the first fixing portion has a container-shaped portion, the vibration damping member is disposed in the container-shaped portion, and the second fixing portion is inserted into the vibration damping member of the container-shaped portion. can do.
  • the magnetic member piece a member formed of a material obtained by mixing a magnetic substance in a vibration damping member can be used.
  • a second embodiment of the present invention provides the following MRI apparatus. That is, a pair of static magnetic field generators that are arranged to face each other and form a static magnetic field region in a space therebetween, a gradient magnetic field generator that is respectively disposed on the opposing surfaces of the pair of static magnetic field generators, An MRI apparatus having a shim tray for correcting static magnetic field uniformity, which is disposed between a magnetic field generating unit and the gradient magnetic field generating unit.
  • the shim tray has a multi-layer structure, at least one of which is formed of a vibration damping material, and the gradient magnetic field generating section is mounted on the upper surface of the shim tray and supported by the shim tray.
  • the MRI apparatus includes a static magnetic field generator 2, a gradient magnetic field generator 3, a bed 21, a transmission system 5, and a reception system 6. , A signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8.
  • the static magnetic field generator 2 includes a pair of static magnetic field generating magnets 2 a and 2 b arranged vertically facing each other, a plate-shaped shim tray 22, and a static magnetic field generating device. And a connecting column (not shown) for connecting the magnets 2a and 2b.
  • the outer shape of the static magnetic field generating magnets 2a and 2b It has a disk shape having a concave portion 103 at the center of the facing surface, and forms a static magnetic field region (imaging space) 50 between the static magnetic field generating magnets 2a and 2b.
  • a permanent magnet, a normal conducting magnet, or a superconducting magnet can be used as the static magnetic field generating magnets 2a and 2b.
  • the shim tray 22 is disposed in each of the concave portions 103 of the magnetostatic field generating magnets 2a and 2b. As shown in FIG. 3, the shim tray 22 holds a magnetic piece 23 at a desired position, and generates a static magnetic field by a magnetic field generated by the magnetic piece 23 or a magnetic path formed by the magnetic piece 23. The non-uniformity of the magnetic field in the static magnetic field region 50 formed by 2a and 2b is corrected. Thereby, the uniformity of the static magnetic field region 50 is increased.
  • the structure of the shim tray 22 will be described later in detail.
  • the gradient magnetic field coil 9 of the gradient magnetic field generating system 3 and the high frequency coil 14a of the transmitting system 5 are arranged.
  • the shim tray 22 is disposed so as to be sandwiched between the gradient magnetic field coil 9 and the static magnetic field generating magnets 2a and 2b.
  • the bed 21 has the subject 1 mounted thereon, and the imaging site is arranged in the static magnetic field region 50.
  • the gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 for applying a desired gradient magnetic field to the static magnetic field region 50 in the XYZ three-axis directions, a gradient magnetic field power supply 10 for supplying a drive current to the gradient magnetic field coil 9, and Having.
  • the transmission system 5 includes a high-frequency oscillator 11, a modulator 12, a high-frequency amplifier 13, and a high-frequency coil 14a.
  • the high-frequency signal transmitted by the high-frequency oscillator 11 is modulated by the modulator 12 to a frequency according to the instruction from the sequencer 4, amplified by the high-frequency amplifier 13, and delivered to the transmitting high-frequency coil 14a.
  • the transmitting high-frequency coil 14a generates a high-frequency magnetic field from the received high-frequency signal and irradiates the subject 1 in the static magnetic field region 50.
  • the receiving system 6 has a receiving high-frequency coil 14b, an amplifier 15, a quadrature detector 16, and an A / D converter 17.
  • the magnetic resonance (MR) signal generated by the subject 1 is received by the high-frequency coil 14b, amplified by the amplifier 15, detected by the quadrature detector 16, and further subjected to AZD conversion by AZD conversion.
  • the center frequency serving as a reference for detection of the quadrature detector 16 is set from the high-frequency oscillator 11 to the quadrature detector 16.
  • the signal processing system 7 includes a CPU 8, a display 20, an input unit 19, and a recording / reproducing device 18.
  • the CPU 8 receives the MR signal data from the AZD converter 17 of the receiving system 6, processes the MR signal data, and performs image reconstruction. The obtained image is displayed on the display 20. Image The condition of the configuration also receives the operator power via the input unit 19.
  • the CPU 8 stores the reconstructed image and the MR signal data in the recording / reproducing device 18 as necessary.
  • the CPU 8 When receiving an instruction to start imaging from the input unit 19, the CPU 8 reads a program stored in advance in a built-in memory and executes it to execute a pulse sequence for realizing predetermined imaging. Set to.
  • the imaging conditions are received from the operator via the input unit 19.
  • the sequencer 4 outputs a control signal to the gradient magnetic field power supply 10, the modulator 12, and the AZD converter 17 at a predetermined timing according to the pulse sequence set by the CPU 8, and operates the controller. Specifically, the sequencer 4 transmits a control signal to the gradient magnetic field power supply 10 and causes the gradient magnetic field coil 9 to generate a gradient magnetic field in a desired direction in the imaging space.
  • a command is transmitted to the modulator 12 to generate a predetermined high-frequency magnetic field waveform, a high-frequency magnetic field pulse is generated from the high-frequency coil 14a, and applied to the subject 1.
  • the MR signal emitted from the subject 1 is received by the high-frequency magnetic field coil 14b, detected by the detector 16, and used for image reconstruction processing by the CPU 8.
  • the shim tray 22 is a disc provided with a plurality of through holes 22h in a predetermined pattern as shown in FIG. 3, and is made of a non-magnetic material.
  • a non-magnetic conductive metal such as aluminum or copper, or a resin such as FRP (Fiber Reinforced Plastics) or glass epoxy resin can be used.
  • FRP Fiber Reinforced Plastics
  • the arrangement pattern of the through-holes 22h is such that the center force of the shim tray 22 is arranged radially and at regular intervals in the radial direction. It is also possible.
  • the shim tray 22 is supported by a support portion 29 disposed on the static magnetic field generating magnets 2a and 2b.
  • the support portion 29 supports the shim tray 22 and the static magnetic field generating magnets 2a and 2b so that they do not come into direct contact with each other and a slight gap is opened between them.
  • Bolts 126 fix shim tray 22 to support 29 and static magnetic field generators 2a, 2b.
  • a magnetic piece 23 for correcting the non-uniformity of the static magnetic field formed by the static magnetic field generating magnets 2a and 2b is inserted into a part of the plurality of through holes 22h of the shim tray 22.
  • a support member 25 is inserted into a part of the through hole 22h in which the magnetic piece 23 is not inserted.
  • the support member 25 supports the gradient magnetic field coil 9 with respect to the static magnetic field generating magnets 2a and 2b.
  • the support member 25 supports the gradient magnetic field coil 9 so that a small gap (for example, several mm) is opened between the gradient magnetic field coil 9 and the shim tray 22. That is, the sim tray 22 is independently supported by the static magnetic field generators 2a and 2b by the support portion 29, and the gradient magnetic field coil 9 is independently supported by the support member 25.
  • the support member 25 is not in contact with the inner wall of the through hole 22h of the shim tray 22.
  • the support member 25 includes a vibration damping member 24, and bolts 28 and seats 27 fixed to the end surfaces thereof, respectively.
  • a vibration damping member 24 for example, a columnar member formed of a material having a large effect of converting vibration into heat energy and attenuating the vibration, such as a composite member of rubber, plastic, and metal and rubber, can be used.
  • the shape of the vibration damping member 24 is designed in consideration of the vibration damping characteristics of the material used and the vibration mode of the gradient magnetic field coil 9 so that the vibration mode to be suppressed is effectively damped.
  • the bolt 28 and the seat 27 are fixed to the vibration damping member 24 with an adhesive or a screw structure or the like.
  • Bolts 28 of support member 25 are fixed to static magnetic field generating magnets 2a and 2b.
  • a female screw is formed in the seat 27 and is connected to a bolt 26 that passes through the gradient coil 9.
  • a hole at a position suitable for disposing the support member 25 is selected in consideration of the shape and the vibration mode of the gradient magnetic field coil 9.
  • a hole which can support the gradient magnetic field coil 9 and is located at a position suitable for suppressing the vibration of the gradient magnetic field coil 9 is selected.
  • the support member 25 is arranged symmetrically about the center with respect to the gradient coil 9.
  • the number of the support members 25 may be any number that can support the gradient magnetic field coil 9, that is, one or more.
  • four support members 25 tilt the support members 25. It supports a magnetic field coil 9. While the force is being applied, not only four but also a desired number of support members 25 can be arranged. When the number of the support members 25 is one, the support members 25 can be arranged at the center position of the gradient magnetic field coil 9.
  • the magnetic material piece 23 includes a magnetic material such as iron in an amount capable of obtaining a desired magnetizing force, and is formed into a shape that can be inserted into the through hole 22h.
  • a magnetic material such as iron in an amount capable of obtaining a desired magnetizing force
  • a ferromagnetic material, a permanent magnet material, a soft magnetic material, or the like can be used as the magnetic material.
  • the magnetic piece 23 is caused by the magnetic field generated by the magnetic piece 23 or the action of the magnetic path formed by the magnetic piece 23 to generate the magnetic fields of the static magnetic field generating magnets 2a and 2b. This is for correcting the unevenness of the field.
  • the magnetic field generated by the magnetic piece 23 can enhance the static magnetic field to correct static magnetic field inhomogeneity. it can.
  • the magnetic field 23 including the magnetized permanent magnet is arranged so that the direction of the generated magnetic field coincides with the direction of the static magnetic field. By arranging them in the opposite direction, the static magnetic field can be weakened and the non-uniformity of the static magnetic field can be corrected.
  • the magnetic piece 23 containing the soft magnetic material at a position where the magnetic flux density of the static magnetic field is coarse, the surrounding magnetic flux can be attracted to correct the nonuniformity of the static magnetic field.
  • the magnetic piece 23 should be magnetized beforehand if it has the desired magnetic properties when placed in the static magnetic field of the static magnetic field generating magnets 2a and 2b. Can be determined as needed.
  • the magnetic piece 23 for example, a desired amount of a magnetic material (for example, iron) wrapped with a non-magnetic material such as a resin, or a magnetic material is dispersed in a non-magnetic material Anything can be used.
  • the outer shape of the magnetic piece 23 can be, for example, a cylindrical shape in accordance with the shape of the through hole 22h. Further, by forming a female screw on the inner wall of the through hole 22h and forming the magnetic member 23 into a male screw shape that fits the female screw, the mounting of the magnetic member 23 into the through hole 22h becomes easy.
  • a plurality of types of magnetic material pieces 23 having different amounts of magnetic material are prepared in advance so that a plurality of types of magnetization amounts can be obtained, and according to the measurement result of the nonuniformity of the static magnetic field region 50. If the magnetic field required for the correction is selected and mounted in the through hole 22h, the non-uniformity of the static magnetic field can be easily corrected.
  • the mounting procedure of the shim tray 22 at the time of manufacturing or installing the MRI apparatus is as follows. First, the uniformity of the magnetic field in the static magnetic field region 50 formed by the static magnetic field generator 2 is measured. In accordance with the measurement result, the amount of magnetism of the magnetic piece 23 and the position of the through hole 22h in which the magnet piece 23 is to be arranged, which are necessary to make the uniformity of the static magnetic field uniform or more, are obtained by calculation. When the position of the through hole 22h for inserting the magnetic piece 23 overlaps with the position of the through hole 22h for disposing the support member 25, which is determined in advance by design, the disposition of the support member 25 is prioritized. In this case, the position of the magnetic body piece 23 is shifted to the adjacent through-hole 23, for example.
  • the shim tray 22 having the magnetic piece 23 attached to one or more of the predetermined through holes 22h is inserted into the recesses of the static magnetic field generating magnets 2a and 2b. Place in section 103 and secure with bolt 126.
  • the support member 25 is passed through the through-hole 22h, which is predetermined by design, in a non-contact manner, and the bolt 28 of the support member 25 is fixed to the static magnetic field generating magnets 2a and 2b.
  • the gradient coil 9 is placed on the shim tray 22 and fixed to the seat 27 of the support member 25 with bolts 26. Further, the high-frequency coil 14a is arranged above the recess 103.
  • the shim tray 22 By arranging the shim tray 22 in this way, the non-uniformity of the static magnetic field can be corrected by the magnetic piece 23 attached to the through hole 22h of the shim tray 22, so that the uniformity of the static magnetic field can be improved. And a highly accurate reconstructed image can be provided. Since the support member 25 arranged in the through hole 22h of the shim tray 22 can convert the vibration of the gradient magnetic field coil 9 into heat energy and attenuate the vibration, another vibration damping member is superimposed on the shim tray 22. It is possible to realize thin static magnetic field generating magnets 2a and 2b that need not be arranged. This makes it possible to provide an MRI apparatus in which the vibration of the gradient magnetic field coil force and the noise due to the vibration are reduced.
  • the gradient magnetic field coil 9 and the high-frequency coil 14a do not protrude toward the static magnetic field region 50, so that a large static magnetic field with respect to the subject 1.
  • An area (imaging space) 50 can be provided, and the subject 1 does not feel pressured. Therefore, if a high-accuracy reconstructed image can be obtained and a wide imaging space 50 with little vibration and noise can be provided, ⁇ the burden on the subject is small ⁇ , an MRI apparatus can be provided.
  • the vibration of the gradient coil 9 is transmitted to the shim tray 22 via the support member 25, the static magnetic field generating magnets 2a and 2b, and the support portion 29. You. Therefore, as compared with the case where the vibration is directly transmitted from the gradient magnetic field coil 22, the vibration transmission path is longer, and the effect of reducing the vibration of the shim tray 22 that is less likely to transmit the vibration can be obtained.
  • the support member 25 is preferentially disposed.
  • the support member 25 can also serve the function of the magnetic piece 23. This eliminates the need to shift the position of the magnetic piece 23, so that the uniformity of the static magnetic field can be corrected with high accuracy.
  • a configuration of the support member 25 having desired magnetism for example, a configuration in which a magnetic material such as iron powder is added to the vibration suppressing member 24 by dispersing a predetermined amount, or the like can be adopted.
  • seat 27 and bolt 28 It is also possible to use a magnetic material having a magnetization amount, or to embed a magnetic piece in the seat 27 or the bolt 28.
  • the magnetic material piece 23 a material obtained by dispersing a magnetic material powder such as an iron powder in a vibration damping material and molding by compression molding or the like can be used.
  • a magnetic material powder such as an iron powder in a vibration damping material and molding by compression molding or the like
  • the Lorentz force generated in the magnetic piece 23 by the gradient magnetic field generated by the gradient coil 9 can be attenuated by the vibration damping material. This can prevent the shim tray 22 from vibrating due to the Lorentz force generated in the magnetic piece 23.
  • the vibration damping member 24 can be filled in the through hole 22h of the shim tray 22 in which the support member 25 and the magnetic piece 23 are not disposed. The effect of damping the vibration of the shim tray 22 can be obtained.
  • the shim tray 22 When the shim tray 22 is formed of a conductive material such as aluminum or copper, an effect as a conductive shield that cancels out static magnetic field fluctuations caused by the vibration of the magnetostatic field generating magnets 2a and 2b can be obtained. It can.
  • the conductive shield generates an eddy current due to a static magnetic field fluctuation, and the magnetic field generated by the eddy current acts to cancel the static magnetic field fluctuation, and is a technique known as an aluminum shield or the like.
  • the diameter of the above-described support member 25 tends to increase in an attempt to improve the effect of damping vibration.
  • a large number of magnetic pieces 23 having a small diameter for example, ⁇ 6 to 8 mm
  • the non-uniformity of the static magnetic field can be corrected with high accuracy. Therefore, as shown in FIG. 6, the diameter of the through hole 22h provided in the shim tray 22 is made larger in advance for the through hole 22h through which the support member 25 (vibration damping member 24) passes, and the other through holes are formed.
  • the diameter can be adjusted to match the magnetic material piece 23.
  • the MRI apparatus of the second embodiment is different from the first embodiment in the structure of the support member 25.
  • the other structure is the same as that of the first embodiment, and the description is omitted.
  • the support member 25 of the second embodiment is made of a rigid material such as a metal.
  • the container 28a is formed with a bolt 28 having a structure in which a male screw 28b is fixed to the bottom of the container 28a, and the inside of the container 28a is filled with a vibration damping member 24 such as rubber.
  • the seat 27 having the threaded hole is embedded in the vibration damping member 24. Therefore, the seat 27 and the container 28a are disposed with the vibration damping member 24 interposed therebetween in direct contact therebetween.
  • the gradient coil 9 is fixed to the seat 27 by bolts 26.
  • the support member 25 in FIG. 5 has a structure in which the vibration damping member 24 is housed in the container 28b and the seat 27 is embedded therein, the strength of the support member 25 is large and the effect of vibration damping is large. There are features. Therefore, even when the weight of the gradient magnetic field coil 9 is large, the gradient magnetic field coil 9 can be supported by a small number of support members 25, and the effect of vibration damping is high.
  • the support member 25 according to the second embodiment can easily be designed with a high damping effect, but tends to have a large diameter in structure.
  • the diameter of the support member 25 of the second embodiment is, for example, about ⁇ 40-50 mm.
  • a large number of magnetic pieces 23 having a small diameter for example, ⁇ 6 to 8 mm are arranged. Therefore, as the shim tray 22, the one shown in FIG. 6 in which only the through hole 22h through which the support member 25 passes is increased.
  • the MRI apparatus according to the third embodiment differs from the first embodiment in the structure of the support member 25.
  • the other structure is the same as that of the first embodiment, and the description is omitted.
  • the support member 25 of the third embodiment uses a bolt 28 having a structure in which a male screw 28b is fixed to the bottom of a container 28a made of a rigid material such as metal.
  • the container 28a is filled with a vibration damping member 24.
  • the seat 27 in which the screw hole is formed is embedded in the vibration damping member 24.
  • the container 28a has a shape in which the opening is narrowed, and the opening is closed by the seat 27, and furthermore, has a structure in which the container is sealed by the sealing material 150.
  • a viscous fluid such as oil, butane-based polymer, silicon-based polymer, or lead ball or sand particle is used. Wear Granules with large friction can be sealed in the container 28a for use.
  • the vibration damping member 24 is housed in the container 28b, and therefore, the strength of the support member 25 is large and the effect of vibration damping is high.
  • the shim tray 22 it is possible to use a shim tray 22 having a structure in which only the through-hole 22h in which the support member 25 is arranged shown in FIG.
  • MRI apparatus An MRI apparatus according to the fourth embodiment will be described with reference to FIG.
  • the main vibration mode having a large vibration amplitude the vibration mode that contributes to resonance and noise, and the vibration amplitude is reduced.
  • means for directly reducing the amount of water are further arranged.
  • a columnar vibration amplitude suppression member 124 made of an elastic material is erected in the through hole 22h at the position where the amplitude of the vibration mode to be reduced is large (at or near the antinode of vibration).
  • the support member 25 and the magnetic piece 23 are arranged in the same manner as in the first embodiment. Other configurations are the same as those of the first embodiment.
  • the columnar vibration amplitude suppressing member 124 may be an elastic body.
  • a vibration damping member 24 with a bolt 28 attached is used similarly to the supporting member 25 of the first embodiment.
  • the tip of the vibration damping member 24 is adjusted in length so as to be in contact with the gradient coil 9.
  • the through-hole 22 h in which the vibration amplitude suppressing member 124 is disposed selects a position of a vibration antinode of the gradient magnetic field coil 9 or a position near the antinode. Thereby, vibration can be suppressed efficiently.
  • vibration modes of the gradient magnetic field coil 9 having a frequency of about several thousand Hz
  • the vibration amplitude suppressing member can also function as the magnetic piece 23. it can. Note that in the configuration shown in FIG. 8, it is also possible to use the support member 25 shown in FIG. 5 or FIG. 7 as the support member 25.
  • a ring-shaped vibration damping member 224 is arranged on the outer peripheral portion of the gradient coil 9 as shown in FIG.
  • the ring-shaped vibration damping member 224 is fixed to the static magnetic field generating magnets 2a and 2b by bolts 30.
  • the inner peripheral surface of the ring-shaped vibration damping member 224 is in contact with the outer peripheral surface of the gradient magnetic field coil 9 to attenuate the vibration of the gradient magnetic field coil 9 in the main plane direction.
  • FIG. 9 shows an example in which the first embodiment is used as the shim tray 22 and the support member 25.
  • the second to fourth embodiments can be used.
  • a force using the ring-shaped vibration damping member 224 is used. Instead, a plurality of rod-shaped damping members are radially or randomly arranged from the inner wall of the recess 103 toward the gradient coil 9. By doing so, a similar effect can be obtained.
  • the shim tray 22 has a three-layer structure, and the middle layer 324 is formed of a vibration damping member.
  • the upper layer 22a located on the side of the gradient magnetic field coil 9 and the lower layer 22b located on the side of the static magnetic field generating magnets 2a and 2b are made of aluminum or FRP (Fiber
  • a plurality of through-holes 22h are formed in the shim tray 22 having the three-layer structure.
  • Piece 23 is inserted.
  • the magnetic piece 23 is the same as that described in the first embodiment.
  • the gradient magnetic field coil 9 is directly mounted on the surface of the shim tray 22 and is fixed to a screw hole 226 formed in the upper layer 22a of the shim tray 22 by a bolt 26.
  • Other configurations of the MRI apparatus are the same as those of the first embodiment.
  • the vibration of the gradient magnetic field coil 9 can be attenuated by being converted into thermal energy by the vibration damping layer 324 of the shim tray 22. Further, the non-uniformity of the static magnetic field generated by the static magnetic field generating magnets 2a and 2b can be corrected by the magnetic piece 23 attached to the shim tray 22.
  • the present invention can provide an MRI apparatus which can obtain a highly accurate static magnetic field homogeneity, has a small force, has little vibration and noise of a gradient magnetic field coil force, and has a small burden on a subject, while being a compact apparatus.
  • FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus according to a first embodiment.
  • FIG. 2 is a sectional view of a static magnetic field generator 2 of the MRI apparatus according to the first embodiment.
  • FIG. 3 is a top view of a shim tray 22 of the MRI apparatus according to the first embodiment.
  • FIG. 4 is a sectional view of a static magnetic field generating magnet 2 a and a shim tray 22 of the MRI apparatus according to the first embodiment.
  • FIG. 5 is an enlarged sectional view of a shim tray 22 and a support member 25 of the MRI apparatus according to the second embodiment.
  • FIG. 6 is a top view of a shim tray 22 of the MRI apparatus according to the first and second embodiments.
  • FIG. 7 is an enlarged sectional view of a shim tray 22 and a support member 25 of the MRI apparatus according to the third embodiment.
  • FIG. 8 is a sectional view of a static magnetic field generating magnet 2 a and a shim tray 22 of an MRI apparatus according to a fourth embodiment.
  • FIG. 9 is a sectional view of a static magnetic field generating magnet 2a and a shim tray 22 of an MRI apparatus according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view of a static magnetic field generating magnet 2a and a shim tray 22 of an MRI apparatus according to a sixth embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】傾斜磁場コイルの振動を低減するとともに、静磁場補正部に振動を伝達せず、しかも、省スペース化を図る。 【解決手段】静磁場発生部の対向面にそれぞれ第1の支持部材を介して平板状の傾斜磁場発生部を配置する。静磁場発生部と傾斜磁場発生部との間には、静磁場均一度補正のための静磁場補正部を配置する。静磁場補正部は、静磁場均一度を補正するための磁性体片が配置されている平板状のシムトレイであって、一対の静磁場発生部の対向面にそれぞれ第2の支持部材を介して配置されている。これにより、傾斜磁場発生部は、第1の支持部材とは別の第2の支持部によって静磁場発生部に支持されるため、傾斜磁場発生部の振動が静磁場補正部には直接伝達されない。

Description

明 細 書
磁気共鳴イメージング装置
技術分野
[0001] 本発明は、磁気共鳴イメージング装置 (以下、 MRI装置という。 )に関し、特に、静 磁場均一度を補正する構造と、傾斜磁場コイルからの振動、騒音を減少させる構造 とを備えた MRI装置に関する。
背景技術
[0002] MRI装置には、円筒型の静磁場発生磁石を用い、円筒の内部を撮像領域とする 装置と、対向配置された一対の静磁場発生磁石を用い、その間の空間を撮像領域と する装置が知られている。静磁場発生磁石としては、一般的には、永久磁石、常電 導磁石、または超電導磁石が用いられる。
[0003] 対向配置型の静磁場発生磁石を用いる MRI装置の場合、例えば特許文献 1に示 すように、静磁場発生磁石の撮像領域側に傾斜磁場コイルを配置し、傾斜磁場コィ ルと静磁場発生磁石との間に、傾斜磁場コイルの支持部材と、磁性体群で構成され た静磁場調整部とを配置する構成が知られている。しカゝしながら、この構成では、静 磁場調整部が静磁場発生磁石に引きつけられて歪みを生じ、これにより傾斜磁場コ ィルの支持部材も歪みを生じるため、傾斜磁場コイルと支持部材との間に空隙が生 じ、支持が不完全になりやすいという問題がある。傾斜磁場コイルにはパルス状の電 流が流れるため、ローレンツ力による振動を発生するが、支持部材による支持が不完 全であると大きな振動を生じやすい。特許文献 1では、この問題を解決するために、 傾斜磁場コイルとその支持部材との間に、高さ調整手段を挿入し、空隙が生じないよ うにしている。これにより、傾斜磁場コイルの振動を抑制している。
特許文献 1:特開 2002-102206号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記特許文献 1に開示されて!ヽる構成では、傾斜磁場コイルの支持部材と静磁場 調整部とが接触しているので、傾斜磁場コイルの振動が静磁場調整部に伝達する。 このため、静磁場が振動してしまうという問題がある。また、特許文献 1の磁場調整部 は、振動減衰機能を備えていないため、振動を減衰させるためには減衰部材を別途 配置する必要がある。振動減衰部材を別途配置する場合、減衰部材を配置するため の空間が必要になるため、傾斜磁場コイルと静磁場発生部との間の間隔を広げる必 要が生じる。その結果、被検体を配置する撮像領域が狭められるという問題がある。
[0005] 本発明の目的は、傾斜磁場コイルの振動を低減するとともに、静磁場補正部に振 動を伝達せず、し力も、静磁場補正部が振動減衰をも行うことによって省スペース化 を図ることができる MRI装置を提供することにある。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明の第 1の態様では、以下のような MRI装置を 提供する。すなわち、互いに対向して配置され、その間の空間に静磁場領域を形成 する一対の静磁場発生部と、前記一対の静磁場発生部の対向面にそれぞれ第 1の 支持部材を介して配置された平板状の傾斜磁場発生部と、前記静磁場発生部と前 記傾斜磁場発生部との間にそれぞれ配置された、静磁場均一度補正のための静磁 場補正部とを有する MRI装置である。静磁場補正部は、静磁場均一度を補正するた めの磁性体片が配置されて ヽる平板状のシムトレイであって、前記一対の静磁場発 生部の対向面にそれぞれ第 2の支持部材を介して配置されている。このような第 1の 態様の MRI装置では、傾斜磁場発生部は第 1の支持部材とは別の第 2の支持部に よって静磁場発生部に支持されているため、傾斜磁場発生部の振動が静磁場補正 部に直接伝達されない。
[0007] このとき、上記シムトレイと傾斜磁場発生部は、それぞれ独立して静磁場発生部に よって支持された構成にすることができる。
[0008] また、上記シムトレイと傾斜磁場発生部との間、およびシムトレイと傾斜磁場発生部 との間には、空隙が設けられた構成にすることができる。
[0009] 上記シムトレイが 1以上の貫通孔を有する構成とし、第 1の支持部材を貫通孔内に 配置する構成にすることができる。これにより、振動減衰のための空間をシムトレイと は別に用意する必要がないため、省スペース化を図ることができる。
[0010] 上記シムトレイが予め定めたパターンで複数の貫通孔を備える構成とし、複数の貫 通孔のうち 1以上の孔には、磁性部材片を挿入し、別の 1以上の孔には、第 1の支持 部材を挿入する構成にすることができる。
[0011] 上記第 1の支持部材は、傾斜磁場発生部に対して中心対称に配置することが可能 である。
[0012] 上記シムトレイは、非磁性材料により形成することが可能である。
[0013] 上記シムトレイは、導電性を有する材料で形成することが可能であり、これにより、静 磁場変動を打ち消す導電性シールドとしての作用も得ることができる。
[0014] 上記静磁場発生部は、対向面に凹部を有する構成とし、シムトレイと傾斜磁場発生 部は、凹部内に配置することが可能である。この場合、凹部の内周面と傾斜磁場発 生部との間に、傾斜磁場発生部の主平面方向の振動を減衰させる部材を配置する ことが可能である。
[0015] 上記第 1の支持部材は、振動減衰部材を含む構成にすることができる。
[0016] 上記第 1の支持部材は、磁性を有する部材を含み、静磁場均一度を補正する作用 を奏するよう〖こすることちできる。
[0017] 上記第 1の支持部材は、シムトレイと非接触となるように配置することができる。これ により、傾斜磁場発生部の振動がシムトレイに伝達するのを防止することができる。
[0018] 上記シムトレイの複数の貫通孔は、大径と小径の 2種類を設け、磁性部材片を小径 の貫通孔に挿入し、第 1の支持部材を大径の貫通孔に挿入する構成にすることがで きる。
[0019] 上記シムトレイの複数の貫通孔のうち、磁性部材片および第 1の支持部材のいずれ もが配置されていない貫通孔の少なくとも 1つに、傾斜磁場発生部の振動振幅抑制 のための部材を挿入することができる。この振動振幅抑制部材としては、静磁場発生 源に一端が固定され、他端が傾斜磁場発生部に接触する弾性部材を用いることがで きる。上記振動振幅抑制部材は、傾斜磁場発生部の振動の腹の位置に配置すること が望ましい。
[0020] また、シムトレイの複数の貫通孔のうち、磁性部材片および支持部材の 、ずれもが 配置されて!ヽな ヽ貫通孔の少なくとも 1つに、振動減衰材料を充填することも可能で める。 [0021] 上記第 1の支持部材は、振動減衰部材を挟んで配置された第 1固定部と第 2固定 部とを有する構成にすることができる。第 1固定部は、静磁場発生部に固定し、第 2固 定部は、傾斜磁場発生部に固定する。
[0022] 上記第 1固定部は容器形状部を有する構成とし、振動減衰部材は容器形状部の 中に配置し、第 2固定部は、容器形状部の振動減衰部材の中に挿入する構成とする ことができる。
[0023] 上記磁性部材片は、振動減衰部材の中に磁性体を混合した材料によって形成され たものを用いることができる。
[0024] 上記目的を達成するために、本発明の第 2の実施の態様では、以下のような MRI 装置を提供する。すなわち、互いに対向して配置され、その間の空間に静磁場領域 を形成する一対の静磁場発生部と、前記一対の静磁場発生部の対向面にそれぞれ 配置された傾斜磁場発生部と、前記静磁場発生部と前記傾斜磁場発生部との間に 配置された、静磁場均一度補正のためのシムトレイとを有する MRI装置である。シム トレィは、複数層構造であって、少なくとも一層は振動減衰材料で形成され、傾斜磁 場発生部は、シムトレイの上面に搭載され、シムトレイによって支持されている。 発明の効果
[0025] 傾斜磁場コイルと静磁場発生磁石との間の空間を拡張することなぐ傾斜磁場コィ ルの振動の低減と、静磁場不均一の補正の両方を達成することができる。
発明を実施するための最良の形態
[0026] 本発明の一実施の形態の磁気共鳴イメージング装置について図面を用いて説明 する。
(第 1の実施の形態)
第 1の実施の形態の MRI装置は、図 1にその全体構成を示したように、静磁場発生 装置 2と、傾斜磁場発生系 3と、ベッド 21と、送信系 5と、受信系 6と、信号処理系 7と 、シーケンサ 4と、中央演算処理装置 (CPU) 8とを備えている。
[0027] 静磁場発生装置 2は、図 2にその概要を示したように、上下に対向して配置された 一対の静磁場発生磁石 2a、 2bと、板状のシムトレイ 22と、静磁場発生磁石 2a、 2bを 連結する不図示の連結柱とを有する。静磁場発生磁石 2a、 2bの外形は、いずれも 対向面の中央に凹部 103を有する円盤状であり、静磁場発生磁石 2a、 2bの間の空 間に静磁場領域 (撮像空間) 50を形成する。静磁場発生磁石 2a、 2bとしては、永久 磁石、常電導磁石、または超電導磁石を用いることができる。シムトレイ 22は、静磁 場発生磁石 2a、 2bの凹部 103内にそれぞれ配置されている。シムトレイ 22には、図 3に示したように所望の位置に磁性体片 23が保持されており、磁性体片 23の発する 磁界もしくは磁性体片 23が形成する磁路の作用によって静磁場発生磁石 2a、 2bが 形成する静磁場領域 50の磁場の不均一を補正する。これにより、静磁場領域 50の 均一度を高めている。シムトレイ 22の構造については、後で詳しく説明する。
[0028] 静磁場発生磁石 2a、 2bの凹部 103には、シムトレイ 22の他に、傾斜磁場発生系 3 の傾斜磁場コイル 9と、送信系 5の高周波コイル 14aが配置されている。シムトレイ 22 は、傾斜磁場コイル 9と静磁場発生磁石 2a、 2bとの間に挟まれるように配置される。 ベッド 21は被検体 1を搭載し、撮像部位を静磁場領域 50に配置する。
[0029] 傾斜磁場発生系 3は、静磁場領域 50に XYZ3軸方向にそれぞれ所望の傾斜磁場 印加するための傾斜磁場コイル 9と、傾斜磁場コイル 9に駆動電流を供給する傾斜磁 場電源 10とを有する。
[0030] 送信系 5は、高周波発振器 11と、変調器 12と、高周波増幅器 13と、高周波コイル 1 4aとを有する。高周波発振器 11が発信した高周波信号は、変調器 12によりシーケン サ 4からの指示に応じた周波数に変調され、高周波増幅器 13によって増幅され、送 信側高周波コイル 14aに受け渡される。送信側高周波コイル 14aは、受け取った高 周波信号から高周波磁場を発生し、静磁場領域 50の被検体 1に照射する。
[0031] 受信系 6は、受信側高周波コイル 14bと、増幅器 15と、直交位相検波器 16と、 A/ D変換器 17とを有する。被検体 1が発生する磁気共鳴 (MR)信号は、高周波コイル 1 4bにより受信された後、増幅器 15で増幅され、直交位相検波器 16により検波され、 さらに AZD変 により AZD変換される。なお、直交位相検波器 16の検波の 基準となる中心周波数は、高周波発振器 11から直交位相検波器 16にセットされる
[0032] 信号処理系 7は、 CPU8とディスプレイ 20と入力部 19と記録再生装置 18とを有して いる。 CPU8は、受信系 6の AZD変翻 17から MR信号データを受け取り、これを 処理して画像再構成を行う。得られた画像は、ディスプレイ 20に表示される。画像再 構成の条件は、入力部 19を介して操作者力も受け付ける。 CPU8は、必要に応じて 再構成画像や MR信号データを記録再生装置 18に格納する。
[0033] CPU8は、入力部 19から撮像開始の指示を受け付けた場合には、内蔵するメモリ に予め格納されたプログラムを読み込んで実行することにより、所定の撮像を実現す るパルスシーケンスをシーケンサ 4に設定する。撮像条件は、入力部 19を介してオペ レータから受け付ける。シーケンサ 4は、 CPU8から設定されたパルスシーケンスに従 つて、傾斜磁場電源 10、変調器 12および AZD変換器 17に所定のタイミングで制 御信号を出力して動作させる。具体的には、シーケンサ 4は、傾斜磁場電源 10に制 御信号を送信し、傾斜磁場コイル 9により撮像空間に所望方向の傾斜磁場を発生さ せる。同時に、変調器 12に命令を送信して所定の高周波磁場波形を生成させ、高 周波コイル 14aから高周波磁場パルスを発生し、被検体 1に印加する。被検体 1が発 した MR信号は、高周波磁場コイル 14bにより受信し、検波器 16で検波し、 CPU8に よる画像再構成処理に用いられる。
[0034] ここでシムトレイ 22の構造について図 3、図 4を用いて詳しく説明する。シムトレイ 22 は、図 3に示したように予め定められたパターンで複数の貫通孔 22hが設けられた円 板であり非磁性材料によって形成されている。非磁性材料としては、例えば、アルミ や銅等の非磁性で導電性の金属、 FRP(Fiber Reinforced Plastics)やガラスエポキシ 榭脂等の榭脂を用いることができる。貫通孔 22hの配置パターンは、図 3の例では、 シムトレイ 22の中心力も放射状に、かつ、半径方向に一定の間隔をあけて配列して いる力 これに限らず他の配列パターンやランダムな配置とすることも可能である。
[0035] シムトレイ 22は、図 4に示したように、静磁場発生磁石 2a、 2b上に配置された支持 部 29によって支持されている。この支持部 29は、シムトレイ 22と静磁場発生磁石 2a 、 2bとが直接接触せず、両者の間に僅かな空隙が開くように支持している。ボルト 12 6は、シムトレイ 22を支持部 29および静磁場発生装置 2a、 2bに固定している。シムト レイ 22の複数の貫通孔 22hのうちの一部には、静磁場発生磁石 2a, 2bの形成する 静磁場の不均一を補正するための磁性体片 23が挿入されて ヽる。磁性体片 23が挿 入されていない貫通孔 22hのうちの一部には、支持部材 25が挿入されている。この 支持部材 25は、静磁場発生磁石 2a、 2bに対して傾斜磁場コイル 9を支持している。 このとき支持部材 25は、傾斜磁場コイル 9とシムトレイ 22との間には僅かな間隔 (例 えば数 mm)の空隙が開くように傾斜磁場コイル 9を支持している。すなわち、シムトレ ィ 22は支持部 29によって、傾斜磁場コイル 9は支持部材 25によって、それぞれ独立 に静磁場発生装置 2a、 2bに支持されている。なお、支持部材 25は、シムトレイ 22の 貫通孔 22hの内壁に対して非接触である。
[0036] 支持部材 25は、振動減衰部材 24と、その端面にそれぞれ固定されたボルト 28と座 27とを含む。振動減衰部材 24は、例えばゴム、プラスチック、金属とゴムの複合部材 のように振動を熱エネルギーに変換して減衰させる作用が大きい材料で形成された 柱状部材を用いることができる。振動減衰部材 24の形状は、用いる材料の振動減衰 特性と、傾斜磁場コイル 9の振動モードとを考慮して、抑制したい振動モードが効果 的に振動減衰されるように設計する。ボルト 28と座 27は、接着剤やねじ構造等によつ て振動減衰部材 24に固定されて!/ヽる。
[0037] 支持部材 25のボルト 28は、静磁場発生磁石 2a、 2bに固定される。一方、座 27に は、雌ねじが形成されており、傾斜磁場コイル 9を貫通するボルト 26と結合する。支 持部材 25を通す貫通孔 22hは、傾斜磁場コイル 9の形状や振動モードを考慮して支 持部材 25を配置するのに適した位置の孔が選択される。具体的には、傾斜磁場コィ ル 9を支持することができ、かつ、傾斜磁場コイル 9の振動を抑制するのに適した位 置にある孔を選択する。例えば、支持部材 25を傾斜磁場コイル 9に対して中心対称 に配置する。このとき、振動振幅が大きい主振動モードの腹の位置に支持部材 25を 配置するのが望ましい。支持部材 25の数は、傾斜磁場コイル 9を支持できる数、すな わち 1本以上であればよいが、図 3では、一例として 4本の支持部材 25 (振動減衰部 材 24)によって傾斜磁場コイル 9を支持している。し力しながら、 4本に限らず所望の 本数の支持部材 25を配置することができる。また、支持部材 25を 1本にする場合に は、傾斜磁場コイル 9の中心位置に配置することができる。
[0038] 磁性体片 23は、鉄等の磁性体を所望の磁化力が得られる量だけ含み、貫通孔 22 hに挿入可能な形状に形成されている。磁性体としては、強磁性材料、永久磁石材 料、軟磁性材料等を用いることができる。磁性体片 23は、磁性体片 23が生じる磁界 もしくは磁性体片 23が形成する磁路の作用によって、静磁場発生磁石 2a、 2bの磁 場の不均一を補正するものである。例えば、着磁されていない鉄を含む磁性体片 23 が静磁場中に配置されることにより、磁性体片 23が発生する磁界によって、静磁場を 強めることによって静磁場不均一を補正することができる。また、着磁されている永久 磁石を含む磁性体片 23を、発生する磁界の向きが静磁場の向きと一致するように配 置することにより静磁場を強めて静磁場不均一を補正したり、逆向きに配置すること により静磁場を弱めて静磁場不均一を補正することができる。さらに、軟磁性材料を 含む磁性体片 23を、静磁場の磁束密度が粗な位置に配置することにより周囲の磁 束を引き寄せて静磁場不均一を補正することができる。このように、磁性体片 23とし ては、静磁場発生磁石 2a、 2bの静磁場中に配置された場合に意図する磁気的性質 が生じるものであればよぐ予め着磁しておくかどうかは必要に応じて定めることがで きる。
[0039] 具体的な磁性体片 23の構造としては、例えば、所望量の磁性体 (例えば鉄)を榭 脂等の非磁性材料によって包み込んだものや、磁性体を非磁性材料に分散させたも のを用いることできる。磁性体片 23の外形は、貫通孔 22hの形状に合わせ、例えば 円柱形状にすることができる。また、貫通孔 22hの内壁に雌ねじを形成しておき、磁 性体片 23をそれに嚙み合う雄ねじ形状にすることにより、貫通孔 22hへの磁性体片 23の装着が容易になる。また、磁性体片 23として、複数種類の磁化量が得られるよ うに磁性体の量をそれぞれ変えた複数種類のものを予め用意しておき、静磁場領域 50の不均一度の測定結果に応じて補正に必要な磁ィ匕量のものを選択して、貫通孔 22hに装着するようにすると、容易に静磁場不均一の補正を行うことができる。
[0040] MRI装置の製造時または設置時のシムトレイ 22の装着手順は次の通りである。ま ず静磁場発生装置 2が形成する静磁場領域 50の磁場均一度を測定する。測定結果 に応じて、静磁場均一度の所望の均一度以上にするために必要な、磁性体片 23の 磁ィ匕量およびそれを配置すべき貫通孔 22hの位置を計算により求める。磁性体片 2 3を挿入する貫通孔 22hの位置が、予め設計により定めた、支持部材 25を配置する 貫通孔 22hの位置と重なる場合には、支持部材 25の配置を優先する。この場合、磁 性体片 23の位置を隣接する貫通孔 23にずらす等により対応する。所定の 1以上の 貫通孔 22hに磁性体片 23を装着したシムトレイ 22を、静磁場発生磁石 2a、 2bの凹 部 103に配置し、ボルト 126で固定する。貫通孔 22hのうち予め設計により定めた孔 に、支持部材 25を非接触で通し、支持部材 25のボルト 28を静磁場発生磁石 2a、 2b に固定する。傾斜磁場コイル 9をシムトレイ 22の上に配置し、ボルト 26によって支持 部材 25の座 27に固定する。さらに高周波コイル 14aを凹部 103の上部に配置する。
[0041] このようにシムトレイ 22を配置することにより、シムトレイ 22の貫通孔 22hに装着した 磁性体片 23により、静磁場不均一を補正することができるため、静磁場均一度を向 上させることができ、高精度な再構成画像を提供できる。しカゝも、シムトレイ 22の貫通 孔 22hに配置した支持部材 25によって、傾斜磁場コイル 9の振動を熱エネルギーに 変換して減衰することができるため、シムトレイ 22に重ねて別の振動減衰部材を配置 する必要がなぐ薄型の静磁場発生磁石 2a、 2bを実現できる。これにより、傾斜磁場 コイル力ゝらの振動、振動に伴う騒音を低減した MRI装置を提供できる。また、静磁場 発生磁石 2a、 2bの凹部 103が浅くても、傾斜磁場コイル 9や高周波コイル 14aを静 磁場領域 50側に突出して配置することがないため、被検体 1に対して広い静磁場領 域 (撮像空間) 50を提供することができ、被検体 1に圧迫感を与えない。よって、高精 度な再構成画像が得られ、しかも振動および騒音が少なぐ広い撮像空間 50を提供 できると ヽぅ被検体にとって負担の少な ヽ MRI装置を提供できる。
[0042] また、支持部材 25とシムトレイ 22とは非接触であるため、傾斜磁場コイル 9の振動 は、支持部材 25と静磁場発生磁石 2a、 2bと支持部 29とを介してシムトレイ 22に伝わ る。よって、傾斜磁場コイル 22から直接伝わる場合と比較して、振動の伝達経路が長 くなつているため、振動が伝達しにくぐシムトレイ 22の振動を低減できるという効果も 得られる。
[0043] なお、上述の説明では、磁性体片 23を配置すべき貫通孔 22hと、支持部材 25を配 置すべき貫通孔 22hとが重なる場合には、支持部材 25を優先的に配置しているが、 支持部材 25として、所望の磁性を有するものを用いることにより、支持部材 25に磁性 体片 23の作用を兼用させることも可能である。これにより、磁性体片 23の位置をずら す必要がないため、高精度に静磁場均一度の補正ができる。所望の磁性を有する支 持部材 25の構成としては、例えば振動抑制部材 24に鉄粉等の磁性体を所定量分 散させる等により添加した構成にすることができる。また、座 27やボルト 28を所定の 磁化量の磁性体材料により構成することや、座 27やボルト 28に磁性体片を埋め込ん だ構成にすることも可能である。
[0044] 磁性体片 23として、鉄粉等の磁性体粉を振動減衰材料に分散させたものを圧縮成 型等により成型したものを用いることができる。このような磁性体片 23を用いることに より、傾斜磁場コイル 9の発生する傾斜磁場によって磁性体片 23に生じるローレンツ 力を振動減衰材料によって減衰させることができる。これにより、磁性体片 23に生じ るローレンツ力により、シムトレイ 22に振動が生じるのを防止することができる。
[0045] また、シムトレイ 22の貫通孔 22hのうち、支持部材 25も磁性体片 23も配置していな ぃ孔に、振動減衰部材 24を充填することが可能である。シムトレイ 22の振動を減衰 する効果が得られる。
[0046] また、シムトレイ 22をアルミや銅等の導電性材料によって形成した場合には、静磁 場発生磁石 2a、 2bの振動により生じる静磁場変動を打ち消す導電性シールドとして の作用を得ることができる。この導電性シールドは、静磁場変動によって渦電流を生 じ、この渦電流によって生じる磁界が静磁場変動を打ち消す作用をするものであり、 アルミシールド等として公知の技術である。
[0047] 上述した支持部材 25は、振動を減衰する効果を向上させようとすると径が大きくな る傾向にある。一方、磁性体片 23は、径が小さい(例えば φ 6— 8mm)ものが多数配 置された方が、高精度な静磁場不均一の補正ができる。そこで図 6に示したように、 シムトレイ 22に設ける貫通孔 22hを、支持部材 25 (振動減衰部材 24)を通す貫通孔 22hにつ ヽては予め径を大きく形成しておき、他の貫通孔 22hにつ ヽては磁性体片 23に合わせた径にしておくことができる。これにより、大径の支持部材 25と小径の磁 性体片 23とを用いることが可能になるため、傾斜磁場コイル 9の支持強度向上と、高 精度な静磁場不均一の補正とを両立させることができる。
[0048] (第 2の実施の形態)
第 2の実施の形態の MRI装置は、支持部材 25の構造が第 1の実施の形態とは異 なっている。他の構造については第 1の実施の形態と同様であるので説明を省略す る。
[0049] 第 2の実施の形態の支持部材 25は、図 5に示したように、金属等の剛性のある材料 で形成された容器 28aの底部に雄ねじ 28bを固定した構造のボルト 28を用い、容器 28aの内部にゴム等の振動減衰部材 24を充填している。ねじ穴が形成された座 27 は、振動減衰部材 24の中に埋め込まれている。よって、座 27と容器 28aとは直接接 触することはなぐ振動減衰部材 24を挟んで配置される。傾斜磁場コイル 9は、ボルト 26によって座 27に固定される。
[0050] 図 5の支持部材 25は、振動減衰部材 24を容器 28bに収容し、その内部に座 27を 埋め込んだ構造であるため、支持部材 25の強度が大きぐ振動減衰の効果が大きい という特徴がある。よって、傾斜磁場コイル 9の重量が大きい場合であっても、少ない 数の支持部材 25で傾斜磁場コイル 9を支持することができ、振動減衰の効果も高 、
[0051] 第 2の実施の形態の支持部材 25は、減衰効果が高いものが容易に設計できるが、 構造上径が大きくなる傾向にある。設計にもよるが第 2の実施の形態の支持部材 25 の径は、例えば φ 40— 50mm程度となる。一方、磁性体片 23は、径が小さい(例え ば φ 6— 8mm)ものが多数配置された方力 高精度な静磁場不均一の補正ができる 。したがって、シムトレイ 22としては、図 6に示した、支持部材 25を通す貫通孔 22hの み径を大きくしたものを用いることができる。
[0052] (第 3の実施の形態)
第 3の実施の形態の MRI装置は、支持部材 25の構造が第 1の実施の形態とは異 なっている。他の構造については第 1の実施の形態と同様であるので説明を省略す る。
[0053] 第 3の実施の形態の支持部材 25は、図 7に示したように、金属等の剛性のある材料 で形成された容器 28aの底部に雄ねじ 28bを固定した構造のボルト 28を用い、容器 28aの内部に振動減衰部材 24を充填している。ねじ穴が形成された座 27は、振動 減衰部材 24の中に埋め込まれている。容器 28aは開口が狭められた形状であり、こ の開口が座 27によって塞がれ、さらにシール材 150によって密閉された構造になつ ている。
[0054] 従って、本実施の形態では、振動減衰部材 24としてゴム等の固体の弾性部材の他 に、オイル、ブタン系高分子、シリコン系高分子等の粘性流体や、鉛玉や砂粒等の摩 擦の大きな粒状物を容器 28aに封入して用いることができる。
[0055] し力も、本実施の形態の支持部材 25は、振動減衰部材 24が容器 28bに収容され ているため、支持部材 25の強度が大きぐ振動減衰の効果も高い。
[0056] なお、シムトレイ 22としては、図 6に示した支持部材 25が配置される貫通孔 22hの み径を大きくした構造のものを用いることができる。
[0057] (第 4の実施の形態)
第 4の実施の形態の MRI装置を図 8を用いて説明する。図 8の MRI装置では、傾 斜磁場コイル 9の振動モードのうち振動振幅が大きい主振動モードや、共振や騒音 に寄与して 、る振動モード等、その振動振幅を低減した 、振動モードの振幅を直接 的に低減する手段をさらに配置したものである。具体的には、低減したい振動モード の振幅が大き!、位置 (振動の腹の位置もしくはその近傍)の貫通孔 22hに、弾性材 料で形成された柱状の振動振幅抑制部材 124を立設し、振動振幅抑制部材 124の 先端を傾斜磁場コイル 22に接触させることにより傾斜磁場コイル 22の振動を直接的 に押さえ、振動振幅を減少させる。支持部材 25および磁性体片 23は、第 1の実施の 形態と同様に配置する。また、他の構成も第 1の実施の形態と同様である。
[0058] 柱状の振動振幅抑制部材 124は、弾性体であればよぐここでは第 1の実施の形態 の支持部材 25と同様に、振動減衰部材 24にボルト 28を取り付けたものを用いている 。振動減衰部材 24の先端は、傾斜磁場コイル 9に接するように長さが調節されている
[0059] 振動振幅抑制部材 124を配置する貫通孔 22hは、傾斜磁場コイル 9の振動の腹の 位置、またはその近傍を選択する。これにより振動を効率よく抑制することができる。 ただし、傾斜磁場コイル 9の振動モードは、周波数が数千 Hz程度のものまで多数存 在するため、すべての振動モードの腹の位置に振動振幅減衰部材 124を配置するこ とは現実的には困難である。したがって、騒音や共振等に寄与している振動モードを 選択し、その振動の腹の位置またはその近傍に振動振幅抑制部材 124を配置する。
[0060] また、振動振幅抑制部材 124の振動減衰部材 24として、所望の磁化量の磁性体を 含有するものを用いることにより、振動振幅抑制部材に磁性体片 23としての作用を 兼用させることができる。 [0061] なお、図 8に示した構成において、支持部材 25として、図 5または図 7に示した支持 部材 25を用いることも可能である。
[0062] (第 5の実施の形態)
第 5の実施の形態では、第 1一第 4の実施の形態に示した構成に加えて、図 9のよう に傾斜磁場コイル 9の外周部にリング状の振動減衰部材 224を配置する。
[0063] リング状の振動減衰部材 224は、静磁場発生磁石 2a、 2bにボルト 30によって固定 される。リング状の振動減衰部材 224の内周面は、傾斜磁場コイル 9の外周面と接触 することにより、傾斜磁場コイル 9の主平面方向の振動を減衰させる。
[0064] これにより、傾斜磁場コイル 9を厚み方向については支持部材 25によって支持して 振動を減衰させ、主平面方向につ!、てはリング状の振動減衰部材 224によって振動 を減衰させることができる。なお、図 9では、シムトレイ 22および支持部材 25として第 1の実施の形態のものを用いた例を示している力 第 2—第 4の実施の形態のものを 用いることが可能である。
[0065] また、図 9では、リング状の振動減衰部材 224を用いている力 これに代えて、複数 の棒状の減衰部材を凹部 103の内壁から傾斜磁場コイル 9に向かって放射状または ランダムに配置することにより、同様の効果を得ることが可能である。
[0066] (第 6の実施の形態)
つぎに、本発明の第 6の実施の形態の MRI装置について図 10を用いて説明する。 第 6の実施の形態では、シムトレイ 22を 3層構造とし、中層 324を振動減衰部材で形 成している。傾斜磁場コイル 9側に位置する上層 22aおよび静磁場発生磁石 2a、 2b 側に位置する下層 22bは、第 1の実施の形態と同様にアルミや FRP(Fiber
Reinforced Plastics)等の非磁性材料によって形成されて!、る。
[0067] 3層構造のシムトレイ 22には、第 1の実施の形態の図 3に示したように複数の貫通 孔 22hが形成され、そのうち静磁場の補正が必要な位置の孔については磁性体片 2 3が挿入されている。磁性体片 23は、第 1の実施の形態で説明したものと同様である 。傾斜磁場コイル 9は、シムトレイ 22の表面に直接搭載され、シムトレイ 22の上層 22a に形成されたねじ穴 226に対してボルト 26によって固定されている。この他の MRI装 置の構成については第 1の実施の形態と同様の構成である。 [0068] 図 7の 3層構造のシムトレイ 22の場合、傾斜磁場コイル 9の振動を、シムトレイ 22の 振動減衰層 324によって熱エネルギーに変換されることにより減衰することができる。 また、シムトレイ 22に装着された磁性体片 23によって、静磁場発生磁石 2a、 2bの発 生する静磁場の不均一を補正することができる。
産業上の利用可能性
[0069] 本発明は、コンパクトな装置でありながら、高精度な静磁場均一度が得られ、し力も 、傾斜磁場コイル力 の振動、騒音が少なく被検体にとって負担が少ない MRI装置 を提供できる。
図面の簡単な説明
[0070] [図 1]第 1の実施の形態の MRI装置の全体構成を示すブロック図である。
[図 2]第 1の実施の形態の MRI装置の静磁場発生装置 2の断面図である。
[図 3]第 1の実施の形態の MRI装置のシムトレイ 22の上面図である。
[図 4]第 1の実施の形態の MRI装置の静磁場発生磁石 2aとシムトレイ 22の断面図で める。
[図 5]第 2の実施の形態の MRI装置のシムトレイ 22と支持部材 25の拡大断面図であ る。
[図 6]第 1および第 2の実施の形態の MRI装置のシムトレイ 22の上面図である。
[図 7]第 3の実施の形態の MRI装置のシムトレイ 22と支持部材 25の拡大断面図であ る。
[図 8]第 4の実施の形態の MRI装置の静磁場発生磁石 2aとシムトレイ 22の断面図で める。
[図 9]第 5の実施の形態の MRI装置の静磁場発生磁石 2aとシムトレイ 22の断面図で める。
[図 10]第 6の実施の形態の MRI装置の静磁場発生磁石 2aとシムトレイ 22の断面図 である。
符号の説明
[0071] 1 · · '被検体、 2· · '静磁場発生装置、 2a、 2b - - '静磁場発生磁石、 3 · · '傾斜磁場 発生系、 4· ·,シーケンサ、 5 · · ·送信系、 6 · · ·受信系、 7 · · ·信号処理系、 8 · · ·中央 演算処理装置 (CPU)、 9···傾斜磁場コイル、 10···傾斜磁場電源、 11···高周波 発振器、 12··,変調器、 13· ··高周波増幅器、 14a · · '送信側高周波コイル、 14b- · '受信側高周波コイル、 15·· '増幅器、 16…直交位相検波器、 17· · 'AZD変換器 、 18···記録再生装置、 19···入力部、 20· "ディスプレイ、 21· "ベッド、 22···シ ムトレイ、 22h' · ·貫通孔、 23·· '磁性体片、 24· · '振動減衰部材、 25·· '支持部、 2 6· "ボルト、 27···座、 28· "ボルト、 29···支持部、 103···凹部、 124···振動振 幅抑制部材、 126·· 'ボルト、 150·· 'シール材、 224· ··リング状振動減衰部材、 22 6·· 'ボルト、 324· · '振動減衰層。

Claims

請求の範囲
[1] 互いに対向して配置され、その間の空間に静磁場領域を形成する一対の静磁場 発生部と、前記一対の静磁場発生部の対向面にそれぞれ第 1の支持部材を介して 配置された平板状の傾斜磁場発生部と、前記静磁場発生部と前記傾斜磁場発生部 との間にそれぞれ配置された、静磁場均一度補正のための静磁場補正部とを有し、 前記静磁場補正部は、静磁場均一度を補正するための磁性体片が配置されて ヽ る平板状のシムトレイであって、前記一対の静磁場発生部の対向面にそれぞれ第 2 の支持部材を介して配置されていることを特徴とする磁気共鳴イメージング装置。
[2] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記シムトレイと前記傾斜 磁場発生部は、それぞれ独立して前記静磁場発生部によって支持されていることを 特徴とする磁気共鳴イメージング装置。
[3] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記シムトレイと前記傾斜 磁場発生部との間、および前記シムトレイと前記傾斜磁場発生部との間には、空隙が 設けられていることを特徴とする磁気共鳴イメージング装置。
[4] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記シムトレイは 1以上の 貫通孔を有し、前記第 1の支持部材は前記貫通孔内に配置されていることを特徴と する磁気共鳴イメージング装置。
[5] 請求項 1に記載の磁気共鳴イメージング装置において、前記シムトレイには、予め 定めたパターンで複数の貫通孔が備えられ、前記複数の貫通孔のうち 1以上の孔に は、前記磁性部材片が挿入され、別の 1以上の孔には、前記第 1の支持部材が挿入 されて 、ることを特徴とする磁気共鳴イメージング装置。
[6] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記第 1の支持部材は、前 記傾斜磁場発生部に対して中心対称に配置されていることを特徴とする磁気共鳴ィ メージング装置。
[7] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記シムトレイは非磁性材 料により形成されていることを特徴とする磁気共鳴イメージング装置。
[8] 請求項 7に記載の磁気共鳴イメージング装置において、前記シムトレイは導電性を 有する材料で形成されていることを特徴とする磁気共鳴イメージング装置。
[9] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記静磁場発生部は、前 記対向面に凹部を有し、前記シムトレイと前記傾斜磁場発生部は、前記凹部内に配 置されて!ヽることを特徴とする磁気共鳴イメージング装置。
[10] 請求項 9に記載の磁気共鳴イメージング装置において、前記凹部の内周面と前記 傾斜磁場発生部との間には、前記傾斜磁場発生部の主平面方向の振動を減衰させ る部材が配置されていることを特徴とする磁気共鳴イメージング装置。
[11] 請求項 1に記載の磁気共鳴イメージング装置において、前記第 1の支持部材は、振 動減衰部材を含むことを特徴とする磁気共鳴イメージング装置。
[12] 請求項 1ないし 4のいずれか 1項に記載の磁気共鳴イメージング装置において、前 記第 1の支持部材は、磁性を有する部材を含み、静磁場均一度を補正していることを 特徴とする磁気共鳴イメージング装置。
[13] 請求項 1に記載の磁気共鳴イメージング装置において、前記第 1の支持部材は、前 記シムトレイとは非接触であることを特徴とする磁気共鳴イメージング装置。
[14] 請求項 5に記載の磁気共鳴イメージング装置において、前記シムトレイの前記複数 の貫通孔には、大径と小径の 2種類があり、前記磁性部材片は、前記小径の貫通孔 に挿入され、前記第 1の支持部材は、前記大径の貫通孔に挿入されていることを特 徴とする磁気共鳴イメージング装置。
[15] 請求項 5に記載の磁気共鳴イメージング装置において、前記シムトレイの複数の貫 通孔のうち、前記磁性部材片および前記第 1の支持部材のいずれもが配置されてい ない貫通孔の少なくとも 1つには、前記傾斜磁場発生部の振動振幅抑制のための部 材が挿入され、
前記振動振幅抑制部材は、前記静磁場発生源に一端が固定され、他端が傾斜磁 場発生部に接触する弾性部材であることを特徴とする磁気共鳴イメージング装置。
[16] 請求項 15に記載の磁気共鳴イメージング装置において、前記振動振幅抑制部材 は、前記傾斜磁場発生部の振動の腹の位置に配置されて!ヽることを特徴とする磁気 共鳴イメージング装置。
[17] 請求項 5に記載の磁気共鳴イメージング装置において、前記シムトレイの複数の貫 通孔のうち、前記磁性部材片および支持部材の ヽずれもが配置されて!ヽな ヽ貫通孔 の少なくとも 1つには、振動減衰材料が充填されていることを特徴とする磁気共鳴ィメ 一ジング装置。
[18] 請求項に記載の磁気共鳴イメージング装置において、前記第 1の支持部材は、前 記振動減衰部材を挟んで配置された第 1固定部と第 2固定部とを有し、前記第 1固定 部は、前記静磁場発生部に固定され、前記第 2固定部は、前記傾斜磁場発生部に 固定されていることを特徴とする磁気共鳴イメージング装置。
[19] 請求項 18に記載の磁気共鳴イメージング装置において、前記第 1固定部は容器形 状部を有し、前記振動減衰部材は前記容器形状部の中に配置され、前記第 2固定 部は、前記容器形状部の前記振動減衰部材の中に挿入されて!ヽることを特徴とする 磁気共鳴イメージング装置。
[20] 請求項 1に記載の磁気共鳴イメージング装置にぉ 、て、前記磁性部材片は、振動 減衰部材の中に磁性体を混合した材料によって形成されて 、ることを特徴とする磁 気共鳴イメージング装置。
[21] 互いに対向して配置され、その間の空間に静磁場領域を形成する一対の静磁場 発生部と、前記一対の静磁場発生部の対向面にそれぞれ配置された傾斜磁場発生 部と、前記静磁場発生部と前記傾斜磁場発生部との間に配置された、静磁場均一 度補正のためのシムトレイとを有し、
該シムトレイは、複数層構造であって、少なくとも一層は振動減衰材料で形成され、 前記傾斜磁場発生部は、前記シムトレイの上面に搭載され、シムトレイによって支持 されて 、ることを特徴とする磁気共鳴イメージング装置。
PCT/JP2004/015137 2003-10-15 2004-10-14 磁気共鳴イメージング装置 WO2005037101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005514769A JP4767688B2 (ja) 2003-10-15 2004-10-14 磁気共鳴イメージング装置
US10/595,362 US7375518B2 (en) 2003-10-15 2004-10-14 Structure for reducing noise in magnetic resonance imaging apparatus
US12/119,642 US7635981B2 (en) 2003-10-15 2008-05-13 Magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-355128 2003-10-15
JP2003355128 2003-10-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/595,362 A-371-Of-International US7375518B2 (en) 2003-10-15 2004-10-14 Structure for reducing noise in magnetic resonance imaging apparatus
US12/119,642 Continuation US7635981B2 (en) 2003-10-15 2008-05-13 Magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
WO2005037101A1 true WO2005037101A1 (ja) 2005-04-28

Family

ID=34463162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015137 WO2005037101A1 (ja) 2003-10-15 2004-10-14 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (2) US7375518B2 (ja)
JP (1) JP4767688B2 (ja)
WO (1) WO2005037101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212504A (ja) * 2007-03-07 2008-09-18 Hitachi Medical Corp 磁気共鳴イメージング装置
WO2009028436A1 (ja) * 2007-08-30 2009-03-05 Hitachi Medical Corporation オープン型mri装置及びオープン型超電導mri装置
JP4822439B2 (ja) * 2004-05-31 2011-11-24 株式会社日立メディコ 磁気共鳴イメージング装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375518B2 (en) * 2003-10-15 2008-05-20 Hitachi Medical Corporation Structure for reducing noise in magnetic resonance imaging apparatus
JP4368909B2 (ja) * 2007-05-25 2009-11-18 三菱電機株式会社 超電導マグネットの磁場調整装置及び磁場調整方法
EP2546661A4 (en) * 2010-03-12 2017-12-06 Alps Electric Co., Ltd. Current measurement device
US20120313643A1 (en) * 2011-06-13 2012-12-13 Edelstein William A Magnetic resonance imaging (mri) device noise dampening system
DE102011089445B4 (de) * 2011-12-21 2015-11-05 Siemens Aktiengesellschaft Verfahren und Gradientensystem zur Reduzierung von mechanischen Schwingungen in einem Magnetresonanzbildgebungssystem
US9297867B2 (en) * 2012-01-05 2016-03-29 General Electric Company Radio frequncy (RF) body coil and method for tuning an RF body coil for magnetic resonance imaging
JP6472673B2 (ja) * 2015-01-28 2019-02-20 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
US20170276748A1 (en) * 2016-03-25 2017-09-28 General Electric Company Force reduced magnetic shim drawer
EP3688478A4 (en) 2017-09-28 2021-06-23 Cedars-Sinai Medical Center MAGNETIC RESONANCE COILS FOR SIMULTANEOUS IMAGING AND B0 SHIMMING

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313458A (ja) * 1996-05-30 1997-12-09 Shin Etsu Chem Co Ltd 永久磁石磁気回路
JP2001149338A (ja) * 1999-11-26 2001-06-05 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2002153439A (ja) * 2000-11-20 2002-05-28 Hitachi Medical Corp 磁気共鳴イメージング装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2276946B (en) * 1993-04-08 1997-04-02 Oxford Magnet Tech Improvements in or relating to MRI magnets
US5532597A (en) * 1994-11-04 1996-07-02 Picker International, Inc. Passive shimming technique for MRI magnets
US5635839A (en) * 1994-11-04 1997-06-03 Picker International, Inc. High order passive shimming assembly for MRI magnets
US5550472A (en) * 1995-04-13 1996-08-27 Picker International, Inc. Combined radio frequency coil with integral magnetic field shim set
US5864275A (en) * 1995-08-28 1999-01-26 Shin-Etsu Chemical Co., Ltd Opposed magnet-type magnetic circuit assembly with permanent magnets
US5786695A (en) * 1997-03-21 1998-07-28 Picker International, Inc. Shim tray with reduced heat conduction and forced cooling
US6011394A (en) * 1997-08-07 2000-01-04 Picker International, Inc. Self-shielded gradient coil assembly and method of manufacturing the same
JP3886622B2 (ja) * 1997-11-13 2007-02-28 株式会社日立メディコ 磁気共鳴イメージング装置
KR100373577B1 (ko) * 1997-12-26 2003-02-26 스미토모 도큐슈 긴조쿠 가부시키가이샤 자기 공명 촬영 장치용 자계 발생 장치
GB2337595B (en) * 1998-05-22 2003-03-19 Oxford Magnet Tech Improvements in or relating to magnetic resonance imaging systems
US6311389B1 (en) * 1998-07-01 2001-11-06 Kabushiki Kaisha Toshiba Gradient magnetic coil apparatus and method of manufacturing the same
US5923235A (en) * 1998-10-23 1999-07-13 General Electric Company Shim assembly for a pole face of a magnet
JP3040754B2 (ja) * 1998-10-26 2000-05-15 ジーイー横河メディカルシステム株式会社 Mri装置
KR100319923B1 (ko) * 1999-05-10 2002-01-09 윤종용 자기공명영상장치용 자기장 발생 장치
JP4331322B2 (ja) * 1999-05-31 2009-09-16 株式会社日立メディコ Mri装置
JP4392910B2 (ja) * 1999-09-16 2010-01-06 株式会社日立メディコ 開放型磁石装置
JP4392941B2 (ja) * 2000-02-15 2010-01-06 株式会社日立メディコ 磁気共鳴イメージング装置
US6294972B1 (en) * 2000-08-03 2001-09-25 The Mcw Research Foundation, Inc. Method for shimming a static magnetic field in a local MRI coil
DE10047584C2 (de) * 2000-09-26 2002-09-19 Siemens Ag Magnetresonanztomograph mit einer Temperaturregelung für thermisch hochsensitive Bauteile
JP4763124B2 (ja) * 2000-10-02 2011-08-31 株式会社日立メディコ 磁気共鳴イメージング装置
EP1371328A4 (en) * 2001-03-14 2009-11-25 Hitachi Medical Corp MAGNETIC RESONANCE IMAGING APPARATUS AND STATIC MAGNETIC FIELD GENERATOR THEREFOR
JP3878434B2 (ja) * 2001-05-10 2007-02-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮像用コイル構造体および磁気共鳴撮像装置
DE10147984B4 (de) * 2001-09-28 2007-10-11 Siemens Ag Magnetresonanz-Untersuchungsgerät mit einer Einrichtung zur Erzeugung eines homogenen Magnetfeldes und Verfahren zur Verbesserung der Homogenität eines Magnetfeldes
EP1459087A1 (en) * 2001-12-10 2004-09-22 Koninklijke Philips Electronics N.V. Open magnetic resonance imaging (mri) magnet system
DE10214112B4 (de) * 2002-03-28 2006-01-26 Siemens Ag Shimkasten, Gradientenspulensystem und Magnetresonanzgerät zum Aufnehmen des Shimkastens
DE10214111B4 (de) * 2002-03-28 2007-08-16 Siemens Ag Shimkasten, Gradientenspulensystem und Magnetresonanzgerät zum Aufnehmen des Shimkastens
DE10217384C1 (de) * 2002-04-18 2003-12-24 Siemens Ag Gradientenspulensystem
DE10219769B3 (de) * 2002-05-02 2004-01-22 Siemens Ag Magnetresonanzgerät und mit Shimelementen bestückbare Trägervorrichtung
US6984982B2 (en) * 2002-07-29 2006-01-10 Ge Medical Systems Global Technology Company Llc Method and system for shimming an MRI magnet assembly
US7215231B1 (en) * 2002-08-16 2007-05-08 Fonar Corporation MRI system
US6906606B2 (en) * 2003-10-10 2005-06-14 General Electric Company Magnetic materials, passive shims and magnetic resonance imaging systems
US7375518B2 (en) * 2003-10-15 2008-05-20 Hitachi Medical Corporation Structure for reducing noise in magnetic resonance imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313458A (ja) * 1996-05-30 1997-12-09 Shin Etsu Chem Co Ltd 永久磁石磁気回路
JP2001149338A (ja) * 1999-11-26 2001-06-05 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2002153439A (ja) * 2000-11-20 2002-05-28 Hitachi Medical Corp 磁気共鳴イメージング装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822439B2 (ja) * 2004-05-31 2011-11-24 株式会社日立メディコ 磁気共鳴イメージング装置
JP2008212504A (ja) * 2007-03-07 2008-09-18 Hitachi Medical Corp 磁気共鳴イメージング装置
WO2009028436A1 (ja) * 2007-08-30 2009-03-05 Hitachi Medical Corporation オープン型mri装置及びオープン型超電導mri装置
US8466681B2 (en) 2007-08-30 2013-06-18 Hitachi Medical Corporation Open-type MRI apparatus, and open-type superconducting MRI apparatus

Also Published As

Publication number Publication date
US7375518B2 (en) 2008-05-20
US20070001675A1 (en) 2007-01-04
US7635981B2 (en) 2009-12-22
JPWO2005037101A1 (ja) 2007-04-19
JP4767688B2 (ja) 2011-09-07
US20080211504A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
CN101495882A (zh) 声噪声降低的mri梯度线圈组件
US7635981B2 (en) Magnetic resonance imaging apparatus
KR101654649B1 (ko) Mri 시스템들의 그레디언트 코일 진동의 감소를 위한 방법 및 장치
JP4822439B2 (ja) 磁気共鳴イメージング装置
JP5243437B2 (ja) オープン型mri装置及びオープン型超電導mri装置
US7432712B2 (en) Magnetic resonance imaging apparatus
JPH05261080A (ja) 磁気共鳴イメージング装置
US5952829A (en) Process and device for magnetic resonance examinations
JP6953236B2 (ja) 磁気共鳴イメージング装置
JP2982392B2 (ja) 磁気共鳴イメージング装置
WO2016031341A1 (ja) 磁気共鳴イメージング装置
JPH09308617A (ja) 磁気共鳴イメージング装置
JP5268716B2 (ja) 磁気共鳴イメージング装置
JP2002085371A (ja) 磁気共鳴イメージング装置
JP6454789B2 (ja) 磁気共鳴イメージング装置
JP4988385B2 (ja) 磁気共鳴イメージング装置
JPWO2006062028A1 (ja) 磁気共鳴イメージング装置
WO2016199640A1 (ja) 開放型磁気共鳴イメージング装置
JP3774141B2 (ja) 核磁気共鳴イメージング装置
JP2015053982A (ja) 磁気共鳴イメージング装置
JP2009261747A (ja) 磁気共鳴イメージング装置
JPH0963832A (ja) Mri用磁界発生装置
JP2004016657A (ja) 磁気共鳴イメージング装置
JP2007202900A (ja) 磁気共鳴イメージング装置
JPH07163539A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514769

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007001675

Country of ref document: US

Ref document number: 10595362

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10595362

Country of ref document: US