WO2005115239A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2005115239A1
WO2005115239A1 PCT/JP2005/009523 JP2005009523W WO2005115239A1 WO 2005115239 A1 WO2005115239 A1 WO 2005115239A1 JP 2005009523 W JP2005009523 W JP 2005009523W WO 2005115239 A1 WO2005115239 A1 WO 2005115239A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
vibration
static magnetic
imaging apparatus
resonance imaging
Prior art date
Application number
PCT/JP2005/009523
Other languages
English (en)
French (fr)
Inventor
Takashi Yamamizu
Shichihei Sakuragi
Hirotaka Takeshima
Hiroyuki Takeuchi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US11/628,097 priority Critical patent/US7755359B2/en
Priority to JP2006513899A priority patent/JP4822439B2/ja
Publication of WO2005115239A1 publication Critical patent/WO2005115239A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3854Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus, and more particularly to a magnetic resonance imaging apparatus that suppresses noise generated by driving a gradient coil.
  • a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus) is a nuclear magnetic resonance phenomenon that occurs in nuclei of atoms constituting a subject when the subject is irradiated with an electromagnetic wave in a uniform static magnetic field.
  • MR signals nuclear magnetic resonance signals
  • magnetic resonance images (hereinafter, referred to as the MRI image).
  • a gradient magnetic field is applied so as to overlap the static magnetic field.
  • a gradient magnetic field coil is provided inside (a uniform static magnetic field side) a pair of static magnetic field sources arranged up and down. A pair is arranged facing up and down.
  • each gradient magnetic field coil also has three sets of magnetic field generation coils.
  • a gradient magnetic field power supply is connected to the gradient magnetic field coil, and a pulse current is applied to the MRI apparatus at an appropriate timing and voltage according to conditions at the time of imaging and inspection.
  • a pulse-like current was applied to the gradient coil, Lorentz force was applied, and the gradient coil vibrated to generate noise.
  • the gradient magnetic field coil is attached to the pole piece with a D piece made of a soft material such as rubber interposed therebetween, so that the vibration of the gradient magnetic field coil is not transmitted to the pole piece.
  • Patent Document 1 described above, if the D-piece is too soft, the positional fluctuation due to the vibration of the gradient magnetic field coil becomes large, and the gradient magnetic field becomes large due to the large positional fluctuation. There is a problem that the disturbance causes out of the image artifact.
  • Patent Document 3 also discloses a technique for preventing noise due to vibration of a gradient magnetic field coil.
  • Patent Document 3 in the spectral characteristics of the current waveform applied to the gradient magnetic field coil, the intensity of the component of the frequency f that matches the natural frequency of the gradient magnetic field coil including the holding member is set to approximately 0. , Reduce noise.
  • the axial direction of the holding member is set such that the frequency at which the intensity becomes substantially zero and the natural frequency of the gradient magnetic field coil in the spectral component of a specific current waveform match. It describes how to change the parameters related to the natural frequency, such as the length and the fixed location.
  • Patent Document 1 JP-A-11 137535
  • Patent Document 2 Japanese Patent No. 3156088
  • Patent Document 3 JP-A-10-201735
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-360537
  • Patent Document 3 The technology described in Patent Document 3 has the following problems. That is, in the MRI apparatus, it is necessary to perform imaging by applying a gradient magnetic field having various frequency components from a normal sequence to a high-speed sequence. For this reason, imaging using only a specific current waveform adjusted to suppress vibration cannot cope with various sequences.
  • An object of the present invention is to realize a magnetic resonance imaging apparatus capable of suppressing noise caused by vibration of a gradient coil and improving image quality.
  • the magnetic resonance imaging apparatus of the present invention includes a static magnetic field generating means for generating a static magnetic field in an imaging space, a gradient magnetic field generating means for generating a gradient magnetic field in an imaging space, and a high frequency magnetic field for generating a high frequency magnetic field It has a generating means, a signal receiving means for detecting a nuclear magnetic resonance signal, and a signal processing means for reconstructing an image using the detected nuclear magnetic resonance signal.
  • a plurality of static magnetic field inhomogeneity correction members are provided between the static magnetic field generating means and the gradient magnetic field generating means, and the plurality of holes are provided.
  • an anti-vibration member is provided.
  • the magnetic resonance imaging apparatus of the present invention includes a static magnetic field generating means for generating a static magnetic field in the imaging space, a gradient magnetic field generating means for generating a gradient magnetic field in the imaging space, and a high frequency magnetic field High-frequency magnetic field generating means, a signal receiving means for detecting a nuclear magnetic resonance signal, and a control means for reconstructing an image using the detected nuclear magnetic resonance signal and generating a gradient magnetic field and a high-frequency magnetic field according to a plurality of pulse sequences And
  • the magnetic resonance imaging apparatus further includes a vibration suppressing unit that changes a frequency characteristic or a vibration transmission characteristic of the vibration generated by the vibration of the gradient magnetic field generating unit.
  • FIG. 1 is a schematic configuration diagram of an MRI apparatus to which the present invention is applied.
  • FIG. 2 is a schematic perspective view of an MRI apparatus to which the present invention is applied.
  • FIG. 3 is a schematic sectional view of an MRI apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a plan view showing only a shim tray and an anti-vibration damper in an MRI apparatus according to a second embodiment of the present invention, as viewed from a directional force of a static magnetic field.
  • FIG. 5 is a diagram showing the relationship between the distance between shims and the distance from the center of the shim tray when trying to adjust the static magnetic field with a predetermined uniformity.
  • FIG. 6 is a view showing only a shim tray and an anti-vibration damper in an MRI apparatus according to a third embodiment of the present invention, as viewed from a directional force of a static magnetic field.
  • FIG. 7 is a view showing a fourth embodiment of the present invention, and is a view showing a form of a support means of a vibration damper.
  • FIG. 8 is a view showing only a shim tray and an anti-vibration damper in an MRI apparatus according to a fifth embodiment of the present invention, as viewed from a directional force of a static magnetic field.
  • FIG. 9 is a sectional view taken along the line BB of FIG. 8.
  • FIG. 10 is a sectional view of a gantry according to a sixth embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of a vibration transmission path of a gradient magnetic field coil.
  • FIG. 12 is a conceptual explanatory diagram concerning frequency characteristics of vibration of a gradient magnetic field coil and its transmission.
  • FIG. 13 is a detailed explanatory view of a fixed state of the gradient coil.
  • FIG. 14 is a block diagram of a control system according to a sixth embodiment of the present invention.
  • FIG. 15 is an operation flowchart when imaging is performed using the MRI apparatus according to the sixth embodiment of the present invention.
  • FIG. 16 is a sectional view of a gantry according to a seventh embodiment of the present invention.
  • FIG. 17 is a schematic configuration diagram of a drive system when a hydraulic element is used as an actuator.
  • FIG. 18 is an explanatory diagram in the case of using a piezoelectric element as an actuator.
  • FIG. 19 is an explanatory diagram of a case where a piezoelectric element is used as an actuator.
  • the MRI apparatus is roughly divided into a central processing unit (hereinafter abbreviated as a CPU) 1, a sequencer 2, a transmission system 3, a magnet 4 for generating a static magnetic field, a reception system 5, It comprises a magnetic field generation system 21 and a signal processing system 6.
  • a CPU central processing unit
  • sequencer 2 a transmission system 3
  • magnet 4 for generating a static magnetic field
  • reception system 5 It comprises a magnetic field generation system 21 and a signal processing system 6.
  • the CPU 1 controls the sequencer 2, the transmission system 3, the reception system 5, and the signal processing system 6 according to a predetermined program.
  • Sequencer 2 operates based on a control command from CPU1.
  • the transmission system 3 includes a high-frequency oscillator 8, a modulator 9, and an irradiation coil 11, and modulates a reference high-frequency pulse from the high-frequency oscillator 8 with a modulator 9 according to a command from the sequencer 2.
  • This amplitude-modulated high-frequency pulse is amplified through a high-frequency amplifier 10 to irradiate an irradiation coil 1
  • the subject By supplying it to 1, the subject is irradiated with a predetermined pulsed electromagnetic wave.
  • the static magnetic field generating magnet 4 is for generating a uniform static magnetic field in a predetermined direction around the subject 7.
  • An irradiation coil 11, a gradient magnetic field coil 13, and a receiving coil 14 are arranged in the static magnetic field generating magnet 4.
  • the gradient magnetic field coil 13 is included in the gradient magnetic field generation system 21, receives a current from the gradient magnetic field power supply 12, and generates a gradient magnetic field under the control of the sequencer 2.
  • the receiving system 5 detects a high-frequency signal (NMR signal) emitted by nuclear magnetic resonance of nuclei of living tissue of the subject 7, and includes a receiving coil 14, an amplifier 15, and a quadrature phase signal. It has a detector 16 and an AZD translator 17. Then, a response high-frequency signal (NMR signal) from the subject 7 due to the electromagnetic wave irradiated from the irradiation coil 14 is detected by the receiving coil 14 arranged close to the subject 7, and the amplifier 15 and the quadrature phase detector 16 are detected. Is input to AZD Translator 17 via. Then, in AZD conversion 17, it is converted to digital quantity, and the signal is sent to CPU1.
  • NMR signal high-frequency signal
  • the signal processing system 6 includes an external storage device such as a magnetic disk 20, an optical disk 19 and the like, and a display 18 having a CRT or the like.
  • an external storage device such as a magnetic disk 20, an optical disk 19 and the like
  • a display 18 having a CRT or the like.
  • the CPU 1 executes processing such as signal processing and image reconstruction, and displays an image of a desired tomographic plane of the subject 7 on the display 18 as well as , For example, on the magnetic disk 20 of an external storage device.
  • FIG. 2 is a schematic perspective view of an open MRI apparatus to which the present invention is applied.
  • the open-type MRI apparatus refers to a static magnetic field generating magnet, which is arranged vertically or across the imaging space (not shown in FIG. 2), and is opposed to the left and right, etc., perpendicularly to the aforementioned facing surface.
  • This is an MRI apparatus that obtains an MRI image of a subject placed in the imaging space by disposing a magnetic field.
  • the MRI apparatus has a magnet for generating a static magnetic field, a receiving coil for receiving an NMR signal, and the like, and includes a gantry 31 for accommodating a subject therein.
  • a processing unit 33 for performing an image reconstruction operation to generate an MRI image based on an NMR signal obtained by a reception coil in a gantry 31;
  • a monitor 34 and the like mounted on the monitor 33 for displaying the MRI image generated by the processing device 33 are provided.
  • FIG. 3 shows that the magnetostatic source is arranged at the center by a static magnetic field source arranged vertically opposed as shown in FIG.
  • a static magnetic field source arranged vertically opposed as shown in FIG.
  • This is an example in which an open superconducting magnet 4 for generating a field is used, 35 is a uniform magnetic field space, 36a and 36b are upper and lower cryostats accommodating a superconducting coil, and 13 is an inclined magnetic field space 35.
  • a gradient magnetic field coil for generating a magnetic field 39, a connecting pipe connecting the upper cryostat 36a and the lower cryostat 36b; 40, an RF coil fixture for fixing the RF coil 11 to the upper cryostat 36a and the lower cryostat 36b; 43 is a cover.
  • Reference numeral 22 denotes a shim tray for disposing a large number of ferromagnetic shims (iron shims) in a large number of holes (screw holes).
  • the shim tray 22 is provided between the static magnetic field generating magnet 4 and the gradient magnetic field coil 13. Be placed.
  • Numeral 23 is disposed inside the hole formed in the shim tray 22 to reduce the noise generated by the vibration of the gradient magnetic field coil 13 propagating to the static magnetic field generating magnet and shaking the static magnetic field generating magnet and the like. This is an anti-vibration damper that also produces rubber and resin.
  • the vibration transmissibility representing the performance of the vibration damper 23 is generally calculated according to the following equation (1) according to the value of the natural frequency of the system determined by the spring constant of the vibration damper 23 and the load of the support. I will decide.
  • Tr is the vibration transmissibility
  • fn is the natural vibration frequency of the system
  • f is the vibration frequency
  • K is the panel constant
  • m is the support load.
  • the equal loudness curve force is obtained.
  • the sensitivity of the human ear to obtain the sound of 3 kHz to 5 kHz is higher than the highest sensitivity, and gradually lower at lower frequencies. It goes bad.
  • the minimum frequency setting of the vibration to be damped is set to 3kHz, and a spring constant K (for example, 1Z10 or less) at which the vibration transmissibility is sufficiently small when the frequency is 3kHz is obtained. If this value is used as the upper limit of the panel constant, it is possible to reduce the noise of sounds with high ear sensitivity of about 3kHz to 5kHz.
  • the vibration of the gradient magnetic field coil 13 itself must be suppressed to a small value.
  • the frequency characteristics of the electromagnetic force acting on the gradient magnetic field coil 13 vary depending on the imaging sequence, the frequency characteristics at the resonance point (the frequency at which the vibration transmissibility is maximized (the natural vibration frequency)) of the anti-vibration damper 23 are set The forces at which the amplitude of the vibrations can be taken into account must be taken into account.
  • the amplitude of the vibration at the resonance point is generally determined according to the following equation (2).
  • F is the electromagnetic force applied to the gradient magnetic field coil
  • Q is the ratio of the vibration amplitude at the resonance point to the displacement when the applied electromagnetic force is static.
  • K is the panel constant
  • X is the vibration amplitude.
  • the allowable vibration amplitude of the gradient coil 13 is the same in any direction, for example, about ⁇ 0.1 mm.
  • the lower limit of the constant can be obtained.
  • the panel constant is set to a value between the upper limit and the lower limit of the spring constant.
  • a large number of holes are formed in the shim tray 22 for improving the uniformity of the static magnetic field, and the vibration-damping damper having an appropriate panel constant is formed in the large number of holes.
  • the arrangement area of the means can be secured, noise due to vibration of the gradient magnetic field coil 13 can be reduced, and image quality deterioration can be reduced.
  • FIG. 4 is a plan view of only the shim tray 22 and the vibration damper 23 in the MRI apparatus according to the second embodiment of the present invention, as viewed from the direction of the static magnetic field.
  • the second embodiment is also an example of the vertical magnetic field type MRI apparatus in which the direction of the static magnetic field is perpendicular to the direction of the body axis of the subject, as in the first embodiment. Since these are common to the first embodiment, their illustration is omitted.
  • reference numerals 23a and 23b denote vibration dampers inserted into holes formed inside and outside the center of the shim tray 22, respectively, and 24 denotes a plurality of screw holes formed in the shim tray 22. This is a hole for placing the attached ferromagnetic shim (iron shim). These shim holes 24 are arranged at a certain interval in the radial direction from the center of the shim tray 22, and are also arranged at a constant interval in the angular direction. Therefore, when adjusting the magnetic field, the calculation of the position at which the ferromagnetic material is attached can be performed relatively easily.
  • FIG. 5 shows that when the static magnetic field is to be adjusted with a predetermined uniformity, the density of the ferromagnetic shim (iron shim) must be set at the shim interval.
  • FIG. The horizontal axis in FIG. 5 shows the distance from the center on the shim tray 22, and the vertical axis shows the arrangement interval of ferromagnetic shims (iron shims) (the reciprocal of the possible amount of shim per unit area).
  • a ferromagnetic shim (iron shim) must be closely arranged. In other words, the distance between the ferromagnetic shim (iron shim) holes 24 must be smaller at the center.
  • the distance between the shim holes 24 is smaller at the center than at the outer periphery of the shim tray 22.
  • the space between the shim holes 24 is wider at the outer periphery of the shim tray 22 than at the center.
  • the anti-vibration damper 23 inserted into the hole formed in the shim tray 22 has four inner dampers 23a (the first damper 23a) in accordance with the difference between the inner and outer shim holes 24. It consists of two types: a vibration isolating member) and four outer dampers 23b (a second vibration isolating member).
  • the inner damper 23a has a circumferential length that allows for more space to place a ferromagnetic shim (iron shim) that is smaller than the radial length. .
  • the four outer dampers 23b can make the space between the shim holes 24 wider than the inner side, so that they can be relatively freely arranged. In the case of FIG. 4, the circumferential width is larger than the radial length.
  • the arrangement of the vibration isolating dampers 23a shown in FIG. 4 is rotationally symmetric about the center point of the shim tray 22, and a plurality (four in this example) are arranged at a predetermined angle (here, 90 degrees). Are the same as each other. Also, the panel constants of a plurality (four in this example) of outer vibration dampers 23b arranged at predetermined angles (here, 90 degrees) are the same. Preferably, the panel constants of all the inner and outer dampers 23a and 23b are the same.
  • the weight of the gradient magnetic field coil 13 can be equally received at each position, so that the vibration damping performance of all the vibration dampers 23 can be equalized.
  • the shims are arranged according to the shim arrangement density required for adjusting the static magnetic field with a predetermined uniformity, and the shims are arranged according to the distance between the shims. And a vibration damper, so that the static magnetic field Coordination with the shading means can be achieved.
  • FIG. 6 is a diagram showing only the shim tray 22 and the vibration damper 23 of the MRI apparatus according to the third embodiment of the present invention when viewed from the direction of the static magnetic field.
  • the inner vibration damper 23a has a shape in which the length in the circumferential direction is reduced in accordance with the force toward the center point of the shim tray 22.
  • a ferromagnetic shim (iron shim) is arranged near the center of the shim tray 22. You can take more pace.
  • FIG. 7 is a view showing a fourth embodiment of the present invention, showing a form of a support means of the vibration dampers 23a and 23b, and is a line AA of the vibration damper 23a shown in FIG.
  • FIG. 7 is a view corresponding to a cross-sectional view taken along the line. It should be noted that not only the anti-vibration damper 23a but also the anti-vibration damper 23b have the same structure.
  • the vibration-proof damper 23a has a shape in which the damper material 26 is sandwiched between two metal fittings 25a and 25b.
  • the metal fittings 25a and 25b and the damper material 26 are fixed by bonding.
  • the brackets 25a and 25b are fastened to the cryostats 36a and 36b and the gradient magnetic field coil 13 with bolts 27, respectively, so that the vibration-proofing of the gradient magnetic field coil 13 can be performed.
  • the height of the vibration-damping damper 23a is made slightly higher than the height of the shim tray 22, so that the dimension in the height direction can be reduced, and the subject is arranged. Space can be expanded.
  • the panel constant of the vibration isolating damper 23a having the same shape is smaller than the panel constant in the compression direction, and the panel constant in the shearing direction is, for example, 10: 1.
  • the electromagnetic force acting on the gradient magnetic field coil 13 is almost the same in the vertical direction and the horizontal direction, optimizing the panel constant in the compression direction results in the panel constant in the shear direction being too small. As a result, the horizontal displacement of the gradient magnetic field coil 13 increases.
  • the displacement of the gradient magnetic field generating coil 13 in the horizontal direction is applied to the outer peripheral portion of the shim tray 22 which can take a large length in the circumferential direction. Separately attach anti-vibration damper 23c for suppression purpose.
  • FIG. 9 is a cross-sectional view taken along the line BB of FIG.
  • the bracket 25a is a gradient magnetic field. It has a surface that is substantially parallel to the surface direction of the coil 13 and is attached to the gradient magnetic field coil 13, and a surface that is substantially perpendicular to the surface direction of the gradient magnetic field coil 13 and supports the damper material 26.
  • the metal fitting 25b is substantially parallel to the surface direction of the lower cryostat 36b, and has a surface on which the lower cryostat 36b is mounted and a surface substantially perpendicular to the surface direction of the lower cryostat 36b and which supports the damper member 26. Have.
  • FIG. 10 is a sectional view of a gantry 31 according to the sixth embodiment of the present invention.
  • the same portions as those in the example shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the difference between the example shown in FIG. 10 and the example shown in FIG. 3 is that the shim tray and the vibration damper are not disposed between the gradient magnetic field coil 13 and the upper and lower cryostats 36a and 36b. Instead of these, a gradient coil fixture 41 and an actuator 42 are provided.
  • the actuator 42 changes the natural frequency of the fixed member according to the mode of the method of applying the current pulse to the gradient magnetic field coil 13, and the vibration is changed by the upper and lower cryostats 36 a and 36 b and the like. Changes the transfer function when it is transmitted to and resonates to produce noise.
  • the weight of the gradient magnetic field coil 13 is relatively heavy, generally 30 to 400 kg, depending on the structure employed. It is designed to have high rigidity.
  • the RF coil 11 is a force formed by attaching an electric element to a non-magnetic and non-conductive base material, and generally weighs about 10 to 50 kg.
  • the cover 43 is formed of a non-metallic material such as FRP (fiber reinforced plastic) having a thickness of several mm, and is generally relatively lightweight, about 10 to 50 kg, and has low rigidity. ing. As described above, since the weight and the like of each component are different, the vibration characteristics are also greatly different.
  • FIG. 12 (a) shows the frequency characteristics of the current pattern applied to the gradient coil 13 (or due to the current pattern applied to the gradient coil 13) when a certain imaging sequence is used. (Frequency characteristics of the vibration itself of the gradient magnetic field coil 13).
  • FIG. 12 (b) shows the vibration generated in the gradient coil 13 shown in FIG.
  • the ratio of transmission from the subject to the surgeon via the route that has passed until the sound is heard as noise is expressed as a transfer function.
  • (I) in Fig. 12 (c) shows the frequency characteristics of noise actually heard by the subject and the surgeon.
  • the frequency characteristic of (I) in FIG. 12 (c) is a result of multiplying FIG. 12 (a) by (I) in FIG. 12 (b).
  • the peak frequency of the frequency characteristic of (I) in Fig. 12 (b) matches or is very close to the frequency of the peak part of the frequency characteristic in Fig. 12 (a). are doing.
  • the transfer function in (I) of FIG. 12 (b) is changed by the method and means described later, as shown in (II) of FIG. 12 (b). This is changed so that the peak in FIG. 12 (a) and the peak in (II) in FIG. 12 (b) do not coincide with each other. As a result, the frequency characteristics of the noise actually heard by the subject and the operator are as shown in (II) of FIG. 12C, and the magnitude of the peak can be reduced.
  • reference numeral 42a denotes a base for fixing the actuator 42 to the lower cryostat 36b.
  • reference numeral 42a denotes a base for fixing the actuator 42 to the lower cryostat 36b.
  • FIG. 13 only two gradient coil fixing devices 41 are shown. However, in actuality, a number sufficient to support the gradient coil 13 is required, and is omitted in FIG.
  • the force actuator 42 is disposed above the base 42a.
  • the tip on the side of the gradient magnetic field coil 13 is not in contact with the gradient magnetic field coil 13 in a normal state.
  • the natural vibration mode generated in the gradient magnetic field coil 13 or the transfer function shown in FIG. 12 (b) is determined by the arrangement of the gradient magnetic field coil fixture 41.
  • the actuator 42 when the actuator 42 is operated to bring the gradient magnetic field coil 13 into close contact with the gradient magnetic field coil 13 side of the actuator 42, the fixing condition of the gradient magnetic field coil 13 changes. As a result, when the natural vibration mode changes, the transfer function also changes.
  • the frequency (peak frequency) at which the transfer function peaks and the frequency characteristics of the current pattern applied to the gradient coil 13 (determined in advance) It is possible to set so that the frequency of the peak in (1) shifts.
  • the generated noise can be reduced, and the discomfort felt by the subject and the operator can be eliminated.
  • FIG. 14 is a block diagram of a control system according to the sixth embodiment of the present invention.
  • a CPU 1 that controls the entire system issues commands such as an imaging sequence and parameters to a sequencer 2 that controls a current applied to the gradient coil 13.
  • commands such as an imaging sequence and parameters to a sequencer 2 that controls a current applied to the gradient coil 13.
  • a control signal is supplied to a drive source 63 for driving the actuator 42, and an appropriate actuator is provided. 42 is brought into contact with the gradient coil 13.
  • the sixth embodiment of the present invention does not directly cancel the vibration unlike the technique described in Japanese Patent Application Laid-Open No. 8-154518. Instead of controlling, control it statically. Therefore, high driving circuit Since a fast one is not required, it can be simplified.
  • step 71 the operator inputs information such as a sequence to be shot and parameters to be shot via the display 18 or the like.
  • the frequency characteristic of the current pattern applied to the gradient coil 13 is calculated when the imaging is performed using the sequence and parameters input in step 71.
  • step 73 in order to make the vibration generated by the current no-turn applied with the frequency characteristic calculated in step 72 as loud noise to the subject and the operator, any actuator is used. To determine whether to decorate the transfer function.
  • photographing is performed while driving the actuator 42 as determined in step 73.
  • the transfer function between the gradient magnetic field coil 13 and the upper and lower cryostats 36a, 36b is changed according to the imaging sequence.
  • the actuator 42 is configured to be driven so as to have the most appropriate value for suppressing the vibration of the magnetic field, so that the generation of noise due to the vibration of the gradient magnetic field coil can be suppressed in accordance with various sequences. Image quality can be improved.
  • FIG. 16 is a sectional view of a gantry 31 according to the seventh embodiment of the present invention.
  • the same portions as those in the example shown in FIG. 10 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the anti-vibration dampers 23 (23a, 23b) in the first to fifth embodiments of the present invention are used as the actuator 42, and the elastic modulus of the actuator 42 is changed. By doing so, the elastic modulus that can be most suppressed vibration according to various sequences, There is an example of control.
  • the RF coil 11 and the cover 43 have a lower rigidity and weight.
  • the higher the frequency the greater the effect of sound insulation. Therefore, when the vibration intensity of the gradient magnetic field coil 13 is the same, it is better to suppress the vibration peak on the lower frequency side to reduce the noise peak. can do.
  • the human sensitivity to noise depends on the frequency. Therefore, the transfer function may be changed including its sensitivity.
  • the noise generated varies depending on the location, it is possible to design the location to be subject to noise suppression taking into account the noise. For example, since the position of the ear of the subject is different depending on the imaging region of the subject, it is only necessary to select which actuator is brought into contact with each component according to the imaging region. At this time, it is also possible to take into account the level of noise reduction of the operator.
  • a rubber damper or the like is arranged so as to be in contact with the gradient magnetic field coil 13, and by changing this temperature, the hardness of the rubber damper is changed and the frequency characteristic of the vibration of the gradient magnetic field coil 13 is changed.
  • the effect of the present invention can also be obtained by changing.
  • a method of changing the temperature a method of using a heater, a method of changing the temperature of a fluid inside a pipe wound around rubber, a method of using a Peltier element, or the like can be considered.
  • a vibration damping effect can also be obtained, so that an effect of suppressing the transmission of vibration from the gradient coil 13 to the magnet (cryostat) can also be obtained.
  • a piezoelectric element can be used as an actuator.
  • FIG. 17 is a schematic configuration diagram of a drive system of the actuator 42 when a hydraulic element is used as the actuator 42.
  • the CPU 1 outputs a command to the power supply 80 so as to have a dimension corresponding to the sequence to be executed, and in accordance with the power supplied from the power supply 80, the hydraulic pressure in which the pump 81 is the actuator 42.
  • the hydraulic element 42 and the pump 81 are made of a non-magnetic material in consideration of the influence on the magnetic field uniformity.
  • FIG. 18 is an explanatory diagram in the case where a piezoelectric element is used as the actuator 42.
  • Piezoelectric elements have various structures based on an element in which a piezoelectric body is sandwiched between two electrodes, and include a monomorph type and a laminated type.
  • the laminated piezoelectric element When applied to the present invention, it is desirable to use a stacked type in order to obtain a relatively large displacement.
  • the laminated piezoelectric element includes an external electrode 83 and an internal electrode 84, and is formed by laminating several tens of LOO piezoelectric thin plates.
  • the piezoelectric bodies are alternately stacked so that the polarization in the thickness direction is reversed. When a voltage is applied to the electrode, it is displaced in the stacking direction.
  • a piezoelectric element has a hysteresis in the amount of displacement with respect to an applied voltage, as shown in Fig. 19, and therefore control needs to be performed in consideration of this.
  • the MRI apparatus in which the gradient magnetic field coil 13 is provided on the cryostats 36a and 36b has been described.
  • the present invention is also applicable to an MRI apparatus in which the gradient magnetic field coil 13 is installed on a support table fixed to a floor other than the cryostat.
  • the actuator base may be provided between the support base and the gradient coil.
  • An MRI apparatus using such a support table can reduce the transmission of vibration from the gradient coil 13 to the cryostats 36a and 36b, and thus has an effect of suppressing noise.
  • the present invention can be used in combination with a known noise reduction technology (for example, a sequence-based noise reduction, a vacuum shielding technology, and the like), and further noise reduction can be achieved.
  • a known noise reduction technology for example, a sequence-based noise reduction, a vacuum shielding technology, and the like
  • the force is not used. Noise may be reduced if not closely attached to the gradient coil.
  • the present invention is not limited to the above-described embodiments, and can be implemented in various modifications without departing from the spirit of the present invention.
  • the present invention is directed to a horizontal magnetic field type tunnel type MRI apparatus, that is, an object arranged in an imaging space in a gantry by generating a static magnetic field in a generally cylindrical gantry along a central axis of the cylinder. It can also be applied to MRI equipment that obtains MRI images.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 傾斜磁場コイルの振動による騒音を抑制するとともに画質の向上化が可能な磁気共鳴イメージング装置を実現する。  シムトレイ22は、静磁場発生磁石4と傾斜磁場コイル13との間に配置される。このシムトレイ22には、多数の強磁性体シムが、多数の穴(ネジ穴)24内に配置される。防振ダンパー23はシムトレイ22に形成された孔の内部に配置され、傾斜磁場コイル13の振動が静磁場発生用磁石へ固体伝播して静磁場発生用磁石等が揺れて発生する騒音を低減する。これにより、静磁場不均一性の補正手段及び振動抑制手段の2つの手段の配置領域を確保でき、傾斜磁場コイル13の振動による騒音を低減し、かつ、画像の画質劣化を低減することができる。

Description

明 細 書
磁気共鳴イメージング装置
技術分野
[0001] 本発明は、磁気共鳴イメージング装置に係り、特に、傾斜磁場コイルの駆動により 発生する騒音を抑制する磁気共鳴イメージング装置に関する。
背景技術
[0002] 磁気共鳴イメージング装置(以下、 MRI装置と 、う)は、均一な静磁場内に置かれ た被検体に電磁波を照射したときに被検体を構成する原子の原子核に生じる核磁気 共鳴現象を利用し、被検体からの核磁気共鳴信号 (以下、 MR信号という)を検出し、 この NMR信号を使って画像再構成することにより、被検体の物理的性質をあらわす 磁気共鳴画像 (以下、 MRI画像という)を得るものである。このイメージングの位置情 報を与えるために、静磁場に重畳して傾斜磁場が印加される。
[0003] 静磁場方向が被検体の体軸方向と直交する垂直磁場方式では、上下対向して配 置される一対の静磁場発生源の内側 (均一な静磁場側)に、傾斜磁場コイルが上下 対向して一対が配置される。また、この傾斜磁場は互いに直交する 3軸方向につい て発生させるため、各傾斜磁場コイルも、各々、 3組の磁場発生コイルを有する。
[0004] 傾斜磁場コイルには傾斜磁場電源が接続され、 MRI装置では撮影 ·検査の際の条 件に応じて、適切なタイミング及び電圧でパルス状電流が印加される。しかしながら、 傾斜磁場コイルにパルス状の電流が印加されると、ローレンツ力が作用し、傾斜磁場 コイルが振動して騒音となって ヽた。
[0005] これを解決する先行技術として、傾斜磁場コイルをポールピースの凹部に収容し、 遮音する構造を持つ MRI装置がある (特許文献 1参照)。
[0006] この特許文献 1記載の技術では、傾斜磁場コイルをゴム等の柔らかい材質から成る Dピースを介在させてポールピースに取りつけることにより、傾斜磁場コイルの振動が ポールピースへ伝わらな 、ようにして 、る。
[0007] し力しながら、上記特許文献 1にお 、て、 Dピースが柔らかすぎると、傾斜磁場コィ ルの振動による位置変動が大きくなり、その大きくなつた位置変動による傾斜磁場の 乱れが画像アーチファ外を引き起こす間題がある。
[0008] そこで、傾斜磁場コイルに力かる荷重を多数個の弾性体に分散することにより、一 個当たりの弾性体の変位量を十分小さくして傾斜磁場分布の乱れを抑制する技術が 特許文献 2に記載されて ヽる。
[0009] また、特許文献 3にも、傾斜磁場コイルの振動による騒音を防止するための技術が 記載されている。
[0010] 特許文献 3においては、傾斜磁場コイルに印加される電流波形のスペクトル特性に おいて、保持部材も含めた傾斜磁場コイルの固有振動数と一致する周波数 fの成分 の強度を略 0とし、騒音を低減させている。
[0011] また、特許文献 3においては、ある特定の電流波形のスペクトル成分において、強 度が略 0となる周波数と傾斜磁場コイルの固有振動数とがー致するように、保持部材 の軸方向の長さや固定場所などの固有振動数に関与するパラメータを変更する方法 が記載されている。
[0012] 一方、 MRI装置において、静磁場の均一度を向上させるために静磁場発生源と傾 斜磁場コイルとの間に強磁性体シムを配置して、画質を向上させる技術が特許文献
4に記載されている。
[0013] 特許文献 1 :特開平 11 137535号公報
特許文献 2:特許 3156088号公報
特許文献 3:特開平 10— 201735号公報
特許文献 4:特開 2002— 360537号公報
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、特許文献 2記載の技術では、弾性体の一個当たりの変位量を小とす るために、多数個の弾性体を広範囲に配置する必要がある。このため、傾斜磁場コィ ルの振動による騒音を抑制することはできても、例えば、特許文献 4に記載されたよう な、画質向上化手段を配置する領域が制限されるため、画質の向上化が困難となつ てしまう。
[0015] また、特許文献 3記載の技術にあっては、次のような問題点がある。 [0016] すなわち、 MRI装置では、通常シーケンスから高速シーケンスまで多様な周波数成 分を有する傾斜磁場を印加して撮像する必要がある。このため、振動を抑制するた めに調整された特定電流波形のみを用いて撮像することは、多様なシーケンスに対 応できない。
[0017] また、保持部材のパラメータを変更させる技術でも、多様なシーケンス毎に保持部 材の軸方向の長さや固定場所などのパラメータを変更することは、実際上できず、騒 音防止及び画質向上は困難である。
[0018] 本発明の目的は、傾斜磁場コイルの振動による騒音を抑制するとともに画質の向 上化が可能な磁気共鳴イメージング装置を実現することである。
課題を解決するための手段
[0019] (1)本発明の磁気共鳴イメージング装置は、撮影空間に静磁場を発生する静磁場 発生手段と、撮影空間に傾斜磁場を発生する傾斜磁場発生手段と、高周波磁場を 発生する高周波磁場発生手段と、核磁気共鳴信号を検出する信号受信手段と、検 出した核磁気共鳴信号を用いて画像を再構成する信号処理手段とを有する。
[0020] そして、上記磁気共鳴イメージング装置にお!ヽて、静磁場発生手段と傾斜磁場発 生手段との間に配置され、複数の静磁場不均一性補正部材を有すると共に、複数の 孔が形成された静磁場不均一補正手段と、この静磁場不均一補正手段に形成され た複数の孔内に配置され、傾斜磁場発生手段に発生した振動の静磁場発生手段へ の伝達を抑制する複数の防振部材とを備える。
[0021] (2)また、本発明の磁気共鳴イメージング装置は、撮影空間に静磁場を発生する静 磁場発生手段と、撮影空間に傾斜磁場を発生する傾斜磁場発生手段と、高周波磁 場を発生する高周波磁場発生手段と、核磁気共鳴信号を検出する信号受信手段と 、検出した核磁気共鳴信号を用いて画像を再構成するとともに、複数のパルスシー ケンスに従って傾斜磁場及び高周波磁場を発生させる制御手段とを有する。
[0022] そして、上記磁気共鳴イメージング装置において、傾斜磁場発生手段の振動により 発生する振動の周波数特性又は振動伝達特性を変更する振動抑制手段を備える。 発明の効果
[0023] (1)静磁場不均一性の補正手段及び振動抑制手段の 2つの手段の配置領域を確 保でき、傾斜磁場発生手段の振動による騒音を低減し、かつ、画質劣化を低減する ことができる。
[0024] (2)多様なシーケンスに応じて、傾斜磁場コイルの振動による騒音の発生を抑制す ることができるとともに、画質の向上を図ることができる。
図面の簡単な説明
[0025] [図 1]本発明が適用される MRI装置の概略構成図である。
[図 2]本発明が適用される MRI装置の概略斜視図である。
[図 3]本発明の第 1の実施形態である MRI装置の概略断面図である。
[図 4]本発明の第 2の実施形態に係る MRI装置におけるシムトレイと防振ダンパーの みを静磁場の方向力 見た平面図である。
[図 5]所定の均一度で静磁場を調整しょうとした場合の、シム間の距離とシムトレイ中 心からの距離との関係を示す図である。
[図 6]本発明の第 3の実施形態に係る MRI装置におけるシムトレイと防振ダンパーの みを静磁場の方向力 見た図である。
[図 7]本発明の第 4の実施形態を示し、防振ダンパーの支持手段についての形態を 示す図である。
[図 8]本発明の第 5の実施形態に係る MRI装置におけるシムトレイと防振ダンパーの みを静磁場の方向力 見た図である。
[図 9]図 8の B— B線に沿った断面図である。
[図 10]本発明の第 6の実施形態におけるガントリの断面図である。
[図 11]傾斜磁場コイルの振動の伝達経路の説明図である。
[図 12]傾斜磁場コイルの振動及びその伝達の周波数特性に関する概念的な説明図 である。
[図 13]傾斜磁場コイルの固定状態の詳細説明図である。
[図 14]本発明の第 6の実施形態における制御系のブロック図である。
[図 15]本発明の第 6の実施形態に係る MRI装置を用いて撮影を行なう際の動作フロ 一チャートである。
[図 16]本発明の第 7の実施形態におけるガントリの断面図である。 [図 17]ァクチユエータとして油圧素子を使用した場合の駆動システムの概略構成図 である。
[図 18]ァクチユエータとして圧電素子を用いる場合の説明図である。
[図 19]ァクチユエータとして圧電素子を用いる場合の説明図である。
符号の説明
[0026] 1···中央処理装置、 2· · 'シーケンサ、 3·· '送信系、 4·· '静磁場発生用磁石、 5· • '受信系、 7· · '被検体、 8· ··高周波発振器、 9·· '変調器、 10· ··高周波増幅器、 11· · ·照射コイル、 12· · ·傾斜磁場電源、 13·· ·傾斜磁場コイル、 14· · ·受信コイル , 15·· '増幅器、 16· ··直交位ネ目検波器、 17· · 'ADC、 18·· 'ディスプレイ、 19· · · 光ディスク、 20· · '磁気ディスク、 22·· 'シムトレイ、 23· ··防振ダンパー、 24· · 'ネジ 穴、 31···ガントリ、 32· "テーブル、 33···処理装置、 34· "モニタ、 40'.'RFコィ ル固定具、 41·· '傾斜磁場コイル固定具、 42· · 'ァクチユエータ
発明を実施するための最良の形態
[0027] 以下、一般的な MRI装置のシステム構成を図 1により詳細に説明する。
[0028] 図 1において、 MRI装置は大別して、中央処理装置(以下、 CPUと略称する) 1と、 シーケンサ 2と、送信系 3と、静磁場発生用磁石 4と、受信系 5と、傾斜磁場発生系 21 と、信号処理系 6とから構成されている。
[0029] CPU1は、予め定められたプログラムに従って、シーケンサ 2、送信系 3、受信系 5、 信号処理系 6を制御する。シーケンサ 2は、 CPU1からの制御指令に基づいて動作し
、被検体 7の断層面の画像データ収集に必要な種々の命令を送信系 3、傾斜磁場発 生系 21、受信系 5に送る。
[0030] また、送信系 3は、高周波発振器 8と、変調器 9と、照射コイル 11とを備え、シーケン サ 2の指令により高周波発振器 8からの基準高周波パルスを変調器 9で振幅変調し、 この振幅変調された高周波パルスを高周波増幅器 10を介して増幅して照射コイル 1
1に供給することにより、所定のパルス状の電磁波を被検体に照射する。
[0031] 静磁場発生用磁石 4は、被検体 7の周りの所定の方向に均一な静磁場を発生させ るためのものである。この静磁場発生用磁石 4には、照射コイル 11と、傾斜磁場コィ ル 13と、受信コイル 14とが配置されている。 [0032] 傾斜磁場コイル 13は、傾斜磁場発生系 21に含まれ、傾斜磁場電源 12より電流の 供給を受け、シーケンサ 2の制御により傾斜磁場を発生する。
[0033] また、受信系 5は、被検体 7の生体組織の原子核の核磁気共鳴により放出される高 周波信号 (NMR信号)を検出するもので、受信コイル 14と、増幅器 15と、直交位相検 波器 16と、 AZD変翻17とを有している。そして、上記照射コイル 14から照射され た電磁波による被検体 7からの応答高周波信号 (NMR信号)は被検体 7に近接して 配置された受信コイル 14で検出され、増幅器 15及び直交位相検波器 16を介して A ZD変翻 17に入力される。そして、 AZD変翻 17において、ディジタル量に変 換され、その信号が CPU1に送られる。
[0034] また、信号処理系 6は、磁気ディスク 20、光ディスク 19などの外部記憶装置と、 CR T等力 なるディスプレイ 18とを備える。そして、受信系 5からのデータが CPU1に入 力されると、 CPU 1が信号処理、画像再構成などの処理を実行し、被検体 7の所望の 断層面の画像をディスプレイ 18で表示すると共に、外部記憶装置の磁気ディスク 20 などに記憶させる。
[0035] 図 2は、本発明が適用されるオープン MRI装置の概略斜視図である。ここで、ォー プン型 MRI装置とは、撮像空間を挟んで上下、又は(図 2では図示せず)左右等に 対向して配置された静磁場発生用磁石の前記対向面に垂直に静磁場を配置させて 、前記撮像空間に配置された被検体の MRI画像を得る MRI装置のことである。
[0036] 図 2にお ヽて、 MRI装置は、静磁場を発生する静磁場発生用磁石や NMR信号を 受信するための受信コイル等を有し、被検体をその中に収容するガントリ 31と、被検 体を載せるためのテーブル 32と、ガントリ 31内の受信コイルにより得られた NMR信 号に基づいて、画像再構成演算を行って、 MRI画像を生成する処理装置 33と、処 理装置 33の上に載せられ、この処理装置 33によって生成された MRI画像を表示す るモニタ 34等を備えている。
[0037] ただし、図 2において、ガントリ 31と処理装置 33とを結び、受信コイルにより得られ た NMR信号を処理装置 33へ送るケーブルは省略されている。
[0038] 次に、図 3を参照して、ガントリ 31について説明する。
[0039] 図 3は、図 2に示した様に、上下に対向配置した静磁場発生源により中央部に静磁 場を発生する開放型超電導磁石 4を用いた場合の例であり、 35は均一磁場空間、 3 6a及び 36bは超電導コイルを収容する上部クライオスタツト及び下部クライオスタツト 、 13は均一磁場空間 35に傾斜磁場を発生させる傾斜磁場コイル、 39は上部クライ ォスタツト 36aと下部クライオスタツト 36bを接続する連結管、 40は RFコイル 11を上部 クライオスタツト 36a及び下部クライオスタツト 36bへ固定するための RFコイル固定具 、 43はカバーである。
[0040] そして、 22は多数の強磁性体シム (鉄シム)を、多数の穴 (ネジ穴)内に配置するた めのシムトレイであり静磁場発生磁石 4と傾斜磁場コイル 13との間に配置される。 23 はシムトレイ 22に形成された孔の内部に配置され、傾斜磁場コイル 13の振動が静磁 場発生用磁石へ固体伝播して静磁場発生用磁石等が揺れて発生する騒音を低減 するためのゴムや榭脂等力も成る防振ダンパーである。
[0041] ここで、防振ダンパー 23の性能を表す振動伝達率は、防振ダンパー 23のバネ定 数と支持体荷重によって決まる系の固有振動数の値によって、一般に次式(1)に従 い定まる。
[0042] [数 1]
Figure imgf000009_0001
[0043] ただし、式(1)において、 Trは振動伝達率、 fnは系の固有振動周波数、 fは振動周 波数、 Kはパネ定数、 mは支持体荷重である。
[0044] 上記(1)式によれば、例えば、防振ダンパー 23のパネ定数を最適化し、系の固有 振動数を 120Hz程度にすれば、 400Hz以上の振動周波数成分を 1Z10以下の振 動伝達率で防振できることがわ力る。 [0045] これは、逆に、防振したい振動の最低周波数を設定すれば、パネ定数の上限値が 決まると 、うことと等価である。
[0046] ここで、騒音という観点から見ると、等ラウドネス曲線力 得られる人間の耳の感度 は 3kHz〜5kHzの音に対して最も感度が高ぐそれ以上やそれ以下では徐々〖こ感 度が悪くなつていく。
[0047] したがって、防振したい振動の最低周波数の設定を 3kHzとして、周波数が 3kHz の時に振動伝達率が十分小さくなるような (例えば、 1Z10以下となるような)バネ定 数 Kを求めて、その値をパネ定数の上限値とすれば、十分耳の感度が高い 3kHz〜 5kHz程度の音の騒音を低減することが可能となる。
[0048] このような方法によって、パネ定数の上限値を求めることができる。ただし、基本的 には、防振周波数は低く設定し、パネ定数はできるだけ小さいほうが防振性能は高 い。
[0049] 一方、パネ定数を小さく設定しすぎると、傾斜磁場コイル 13自体の振動の振幅が大 きくなつてしまい、傾斜磁場コイル 13が被検体に位置情報を与えるための傾斜磁場 が歪んでしまう。
[0050] この傾斜磁場の歪みは MRI装置の撮影画像の画質を劣化させるため、傾斜磁場 コイル 13自体の振動は小さく抑えなくてはならない。特に、傾斜磁場コイル 13に働く 電磁力の周波数特性は、撮影シーケンスによって多様に変化するため、防振ダンバ 一 23が持つ共振点 (振動伝達率が最大となる周波数(固有振動周波数) )での振動 振幅が、どの程度になる力も考慮しておかなければならない。
[0051] ここで、共振点での振動の振幅は一般に次式(2)に従 、定まる。
[0052] [数 2]
F : QKX (2)
[0053] ただし、上記式(2)にお 、て、 Fは傾斜磁場コイルに負荷される電磁力、 Qは共振 点における振動振幅の、負荷電磁力が静的である場合の変位に対する比である共 振倍率、 Kはパネ定数、 Xは振動振幅である。 [0054] 上記式(2)によれば、傾斜磁場コイル 13に許容できる振動の振幅を設定することに よってパネ定数の下限値を定めることができることがわかる。
[0055] ここで、傾斜磁場コイル 13の許容振動振幅は、どの方向に対しても同程度であり、 例えば、 ±0. 1mm程度であるので、この値を式(2)に代入してパネ定数の下限値を 求めることができる。
[0056] 本発明の第 1の実施形態における防振ダンパー 23ではパネ定数を、上記バネ定 数の上限値と下限値によって計算される値の間とする。これにより、防振ができ、騒音 が低減できるとともに、傾斜磁場コイル 13が振動することによって撮影画像の画質劣 化を低減可能な MRI装置を実現することができる。
[0057] つまり、本発明の第 1の実施形態においては、静磁場の均一性を向上するための シムトレイ 22に、多数の孔を形成し、これら多数の孔に適切なパネ定数の防振ダンバ 一 23を配置し、傾斜磁場コイル 13と静磁場発生用磁石の上部及び下部クライオスタ ット 36a、 36bとの間に配置したので、静磁場不均一性の補正手段及び振動抑制手 段の 2つの手段の配置領域を確保でき、傾斜磁場コイル 13の振動による騒音を低減 し、かつ、画質劣化を低減することができる。
[0058] 図 4は、本発明の第 2の実施形態に係る MRI装置におけるシムトレイ 22と防振ダン パー 23のみを静磁場の方向から見た平面図である。ただし、この第 2の実施形態も、 第 1の実施形態と同様に、静磁場の方向が被検体の体軸の方向と垂直な垂直磁場 方式 MRI装置の例であるため、 MRI装置の全体構成等は、第 1の実施形態と共通 するため、その図示は省略する。
[0059] 図 4において、 23a及び 23bは、それぞれシムトレイ 22の中央に対して内側及び外 側に形成された孔に挿入された防振ダンパー、 24はシムトレイ 22に形成された複数 のネジ穴に取り付けられた強磁性体シム (鉄シム)を配置するための穴である。これら シム穴 24は、シムトレイ 22の中心から半径方向にはある特定の間隔で並び、かつ、 角度方向にも一定の間隔で並んでいる。したがって、磁場調整時、強磁性体を取り 付ける位置計算が比較的簡易に行える。
[0060] ここで、図 5は、所定の均一度で静磁場を調整しょうとした場合、強磁性体シム (鉄 シム)をどの程度の密度でシム間隔を設定しなければならな 、かを示した図である。 図 5の横軸はシムトレイ 22上での中心からの距離、縦軸は強磁性体シム(鉄シム)の 配置間隔(単位面積当たりのシム配置可能量の逆数)を示したものである。
[0061] シムトレイ 22上で中央の方が磁場分布に与える影響は大きいため、強磁性体シム( 鉄シム)を細力べ配置しなければならない。すなわち、強磁性体シム (鉄シム)穴 24同 士の間隔を中央の方が小さくとらなければならない。
[0062] そのため、図 4に示したシム穴 24の配置では、シムトレイ 22の外周より中央の方が シム穴 24とシム穴 24との間隔を小さくとっている。シムトレイ 22の外周の方は中央よ りシム穴 24間の間隔を広くとっている。
[0063] そして、シムトレイ 22に形成された孔に揷入される防振ダンパー 23は、上記シム穴 24の間隔が内側と外側で違うのに合わせて、内側 4個のダンパー 23a (第 1の防振 部材)と外側 4個のダンパー 23b (第 2の防振部材)との 2種類とから成る。内側のダン パー 23aは円周方向の長さが、半径方向の長さに対して小さぐ強磁性体シム (鉄シ ム)を配置するためのスペースをなるベく多くとれるようになつている。外側 4個のダン パー 23bは、シム穴 24同士の間隔を内側より広くすることができるため、比較的、 自 由な配置が可能である。図 4の場合には、円周方向の幅が、半径方向の長さより大き くなつている。
[0064] また、図 4に示す防振ダンパー 23aの配置はシムトレイ 22の中心点を中心に回転 対称として、ある所定の角度 (ここでは 90度)ずつ配置された複数個(ここでは 4個)の パネ定数を互いに同じとしている。また、ある所定の角度 (ここでは 90度)ずつ配置さ れた複数個(ここでは 4個)の外側の防振ダンパー 23bのパネ定数を互いに同じとす る。望ましくは内側と外側のすべての防振ダンパー 23a、 23bのパネ定数を同じとす る。
[0065] これにより、傾斜磁場コイル 13の自重を各位置で均等に受けることができるため、 全ての防振ダンパー 23の防振性能を等しくすることができる。
[0066] 以上のように、本発明の第 2の実施形態によれば、第 1の実施形態と同様な効果を 得ることができる。さらに、この第 2の実施形態によれば、所定の均一度で静磁場を調 整するに必要なシムの配置密度に応じて、シムを配置すると共に、シムとシムとの間 隔に応じて、防振ダンパーを配置するように構成したので、静磁場均一化手段と防 振ィ匕手段との協調を図ることができる。
[0067] 図 6は、本発明の第 3の実施形態に係る MRI装置のシムトレイ 22と防振ダンパー 2 3のみを静磁場の方向から見た図である。この第 3の実施形態では、第 2の実施形態 と比較して、内側の防振ダンパー 23aをシムトレイ 22の中心点に向力 に従って、円 周方向の長さが小さくなる形状としている。
[0068] これにより、第 3の実施形態では、第 2の実施形態と同様な効果を得ることができる 他、シムトレイ 22の中央付近において、強磁性体シム (鉄シム)を配置するためのス ペースを更に多くとることができる。
[0069] 図 7は、本発明の第 4の実施形態を示す図であり、防振ダンパー 23a、 23bの支持 手段についての形態を示し、図 4に示した防振ダンパー 23aの A— A線に沿った断 面図に対応する図である。なお、防振ダンパー 23aのみならず、防振ダンパー 23bに 関しても同等な構造を有するものとする。
[0070] 図 7において、防振ダンパー 23aは、 2枚の金具 25a、 25bによってダンパー材 26 を挟み込んだ形状をしている。金具 25a、 25bとダンパー材 26は接着により固定され ている。そして、金具 25a、 25bを、それぞれ、クライオスタツト 36a、 36b、傾斜磁場コ ィル 13にボルト 27にて締結することで傾斜磁場コイル 13の防振支持ができる。
[0071] この防振ダンパー支持構造によれば、防振ダンパー 23aの高さは、シムトレイ 22の 高さよりも若干高くすることによって、高さ方向寸法を減少することができ、被検体を 配置するスペースを拡張することができる。
[0072] ところで、互いに同形状の防振ダンパー 23aのパネ定数は、圧縮方向のパネ定数 に対し、せん断方向のパネ定数は小さくなり、その比は例えば 10 : 1である。ここで、 傾斜磁場コイル 13に、作用する電磁力が垂直方向と水平方向とで同程度であった 場合、圧縮方向のパネ定数を最適化すると、せん断方向のパネ定数は小さすぎるこ とになり、傾斜磁場コイル 13の水平方向変位が大きくなつてしまう。
[0073] そこで、本発明の第 5の実施形態では、図 8に示すように、円周方向の長さを大きく 取れるシムトレイ 22の外周部に、傾斜磁場発生用コイル 13の水平方向の変位を抑 える目的の防振ダンパー 23cを別途取り付ける。
[0074] 図 8の B— B線に沿った断面図を図 9に示す。図 9において、金具 25aは、傾斜磁場 コイル 13の面方向と略平行であり、傾斜磁場コイル 13に取り付けられる面と、傾斜磁 場コイル 13の面方向と略垂直であり、ダンパー材 26を支持する面とを有する。また、 金具 25bは、下部クライオスタツト 36bの面方向に略平行であり、下部クライオスタツト 36b取り付けられる面と、下部クライオスタツト 36bの面方向と略垂直であり、ダンパー 材 26を支持する面とを有する。
[0075] 傾斜磁場コイル 13の面方向に平行な方向の力に対してはダンパー材 26が圧縮さ れる方向で受けるため、この防振ダンパー 23cを配置することにより、傾斜磁場コイル 13の水平方向変位を抑えることが可能である。
[0076] 図 10は、本発明の第 6の実施形態におけるガントリ 31の断面図を示す。ただし、図 3に示した例と同一の部分には同一の符号を付し、その詳細な説明は省略する。
[0077] 図 10に示した例と図 3に示した例との相違点は、傾斜磁場コイル 13と上下部クライ ォスタツト 36a、 36bとの間に、シムトレイ、防振ダンパーは配置されておらず、これら に代えて、傾斜磁場コイル固定具 41と、ァクチユエータ 42が配置されている点である
[0078] ァクチユエータ 42は、傾斜磁場コイル 13への電流パルスの印加方法のモードに応 じて、固定部材の固有振動数を変更したり、その振動が、上部及び下部のクライオス タツト 36a及び 36b等へ伝わって共鳴して騒音となる際の伝達関数を変更する。
[0079] 図 10に示すような構造のガントリ 31において、傾斜磁場コイル 13の重量は、採用 する構造によって重 、場合から軽 、場合まで考えられる力 一般には 30〜400kg程 度と比較的重ぐその剛性も高くなるように設計されている。
[0080] また、 RFコイル 11は非磁性 '非導電性のベース材に電気素子を取付けて構成され る力 一般に 10〜50kg程度の重量である。更に、カバー 43は、数 mmの厚さの FR P (繊維強化プラスチック)等の非金属材料で形成されており、一般的に、 10〜50kg 程度と比較的軽量であり、かつ剛性も低くなつている。このように、各構成要素で、そ れぞれ、重量等が異なるため、振動特性も大きく異なっている。
[0081] 傾斜磁場コイル 13に電流パルスが印加されて振動が発生してから、ガントリ 31の均 一磁場空間 35に配置されている被検体やガントリ 31の近くに立っている術者にまで 、その振動が伝わり騒音として聞こえるまでには、複数の伝達経路がある。 [0082] それらの主な伝達経路を、図 11を参照して説明する。まず、パルス状の電流を傾 斜磁場コイル 13に印加することにより、ローレンツ力で傾斜磁場コイル 13が振動する (ブロック 51)。この振動の一部は、空気を媒介として、被検者ゃ術者へ騒音として伝 わる(ブロック 51→ブロック 52→ブロック 53)。また、傾斜磁場コイル 13における振動 の一部は、 RFコイル 11や磁石 (クライオスタット)、カバー等の固体を介して伝播する 伝達経路がある。例えば、 RFコイル 11への振動を介して空気に伝わり、空気振動を 通して被検者ゃ術者へ騒音として伝播する伝達経路がある(ブロック 51→ブロック 54 →ブロック 52→ブロック 53) o
[0083] また、 RFコイル 11への振動を介してカバー 43へ振動が伝わり、空気振動を通して 被検者ゃ術者へ騒音として伝播する伝達経路がある(ブロック 51→ブロック 54→ブ口 ック 55→ブロック 52→ブロック 53)。さら〖こ、傾斜磁場コイル 13から直接、磁石(クライ ォスタツト)へ振動が伝わり、磁石 (クライオスタツト)力もカバー 43へ振動が伝わり、更 に空気振動を通して被検者ゃ術者へ騒音として伝播する伝達経路がある(ブロック 5 1→ブロック 56→ブロック 55→ブロック 52→ブロック 53)。
[0084] また、傾斜磁場コイル 13から直接、磁石 (クライオスタツト)へ振動が伝わり、磁石 (ク ライォスタツト)から空気振動を通して被検者ゃ術者へ騒音として伝播する伝達経路 がある(ブロック 51→ブロック 56→ブロック 52→ブロック 53)。
[0085] 一方、傾斜磁場コイル 13に印加される電流の波形は、使用する撮影シーケンスや 撮影パラメータによって、いろいろなものが印加される。従って、撮影方法に応じて、 傾斜磁場コイル 13に発生する振動それ自体は、多種多様な周波数成分を持つこと になる。
[0086] 次に、傾斜磁場コイル 13の振動及びその伝達の周波数特性に関する概念的な説 明を行う。
[0087] まず、図 12 (a)は、ある撮影シーケンスを用いた場合に、傾斜磁場コイル 13に印加 する電流パターンの周波数特性 (あるいは、傾斜磁場コイル 13に印加する電流バタ ーンに起因して発生する傾斜磁場コイル 13の振動それ自体の周波数特性)を示した ものである。
[0088] 次に、図 12 (b)の(I)は、傾斜磁場コイル 13に発生する振動が、上記図 11で示し た経路を介して被検者ゃ術者へ伝播して騒音として聞こえるまでの伝達割合を、伝 達関数として表したものである。
[0089] そして、図 12 (c)の (I)は、被検者ゃ術者に実際に聞こえる騒音の周波数特性を示 したものである。図 12 (c)の(I)の周波数特性は、図 12 (a)に図 12 (b)の (I)を掛け合 わせた結果となる。この例の場合、図 12 (b)の(I)の周波数特性のうちピークとなる部 分の周波数は、図 12 (a)の周波数特性のピークとなる部分の周波数と合致、もしくは 非常に接近している。
[0090] この結果として、掛け合わされた図 12 (c)の(I)の周波数特性におけるピークが大き くなり、被検者ゃ術者に実際に聞こえる騒音が大きくなつている。
[0091] し力しながら、この第 6の実施形態では、後述する方法と手段により、図 12 (b)の (I) における伝達関数を、図 12 (b)の(II)に示すように変更して、図 12 (a)のピークと図 1 2 (b)の(II)のピークとが互いに一致しないようにする。その結果、被検者ゃ術者に実 際に聞こえる騒音の周波数特性は図 12 (c)の(II)に示すようになり、ピークの大きさ を小さくできる。
[0092] すなわち、被検者ゃ術者に実際に聞こえる騒音を小さく抑えることが可能となる。な お、図 12に示した例では周波数のピークが 1つしかない場合が示されている力 周 波数のピークが二つ以上存在する場合が一般的であり、その場合には騒音に最も影 響を与えるピークが優先的に低減されるように適宜、伝達関数を最適化すれば良い
[0093] 次に、第 6の実施形態において、どのようにして、傾斜磁場コイル 13に発生した振 動が、被検者ゃ術者へ伝播して騒音として聞こえるまでの振動の伝達割合 (伝達関 数)を変更するかを説明する。このため、傾斜磁場コイル 13の固定状況の詳細な説 明を、図 13を参照して説明する。
[0094] 図 13において、 42aはァクチユエータ 42を下部クライオスタツト 36bへ固定するため のベースである。図 13においては、傾斜磁場コイル固定具 41は 2個しか示していな いが、実際には傾斜磁場コイル 13を十分に支持できるだけの個数が必要であり、図 13では省略されている。
[0095] 図 13において、ベース 42aの上側にはァクチユエータ 42が配置されている力 そ の傾斜磁場コイル 13側の先端は、通常状態では傾斜磁場コイル 13と接触していな い。この場合、傾斜磁場コイル 13に発生する固有振動モード、あるいは図 12 (b)に 示した伝達関数は、傾斜磁場コイル固定具 41の配置によって決定されている。
[0096] 一方、ァクチユエータ 42を作動させて、傾斜磁場コイル 13とァクチユエータ 42の傾 斜磁場コイル 13側を密に接触させると、傾斜磁場コイル 13の固定条件が変化する。 その結果、固有振動モードが変化することにより、伝達関数も変化する。
[0097] 予め、接触態様と伝達関数の相関を算出しておくことにより、伝達関数のピークとな る周波数 (ピーク周波数)と傾斜磁場コイル 13に印加する電流パターンの周波数特 性 (予め求めておく)におけるピークの周波数とがずれるように設定することが可能で ある。
[0098] その結果、発生する騒音を減らすことができ、被検者ゃ術者が感じる不快感を取り 除くことができる。一般的に、傾斜磁場コイル 13とァクチユエータ 42とが接触する箇 所の個数が増えると、ピーク周波数が高周波数側にシフトする。例えば、ァクチユエ ータ 42を傾斜磁場コイル 13に接触させることにより伝達関数は、図 12 (b)の(II)のよ うになり、被検者ゃ術者に実際に聞こえる騒音の周波数特性は図 12 (c)の (II)に示 すようになる。
[0099] この結果、発生する騒音を減らすことができ、被検者ゃ術者が感じる不快感を取り 除くことができる。
[0100] 次に、図 14を参照してァクチユエータ 42の動作制御について説明する。図 14は、 本発明の第 6の実施形態における制御系のブロック図である。
[0101] 図 14において、システム全体を制御する CPU1から、傾斜磁場コイル 13に印加す る電流を制御するシーケンサ 2に撮影のシーケンスやパラメータなどの指令が出され る。一方、この指令に示された条件に基づいて、どのァクチユエータを傾斜磁場コィ ル 13に接触させたら良いかを決定し、ァクチユエータ 42を駆動する駆動源 63に制 御信号を供給し、適切なァクチユエータ 42を傾斜磁場コイル 13に接触させる。
[0102] 本発明の第 6の実施形態は、特開平 8— 154518号公報に記載されている技術の ように、振動を直接キャンセルするものではないので、撮影中に高速度にァクチユエ ータ 42を制御するのではなぐ静的に制御する。したがって、駆動回路系などにも高 速なものが要求されないので、簡素なものとすることができる。
[0103] 次に、図 15に示したフローチャートを参照して、第 6の実施形態に係る MRI装置を 用いて撮影を行なう際の手順を説明する。
[0104] 先ず、ステップ 71において、操作者がディスプレイ 18等を介して、これから撮影を 行なうシーケンスやパラメータなどの情報を入力する。次に、ステップ 72において、ス テツプ 71で入力されたシーケンスやパラメータにお ヽて撮影を行なった際に、傾斜 磁場コイル 13へ印加される電流パターンの周波数特性を計算する。
[0105] 次に、ステップ 73において、ステップ 72で計算した周波数特性で印加される電流 ノターンによって発生する振動が、大きな騒音として被検者ゃ術者に聞こえな 、よう にするために、どのァクチユエータを駆動して伝達関数を調飾するかを決める。
[0106] 次に、ステップ 73で決めたようにァクチユエータ 42を駆動させながら、撮影を行う。
[0107] 以上のように、本発明の第 6の実施形態によれば、傾斜磁場コイル 13と上下部クラ ィォスタツト 36a、 36bとの間の伝達関数を、撮影シーケンスに応じて、傾斜磁場コィ ルの振動を抑制するに最も適切な値となるように、ァクチユエータ 42を駆動するように 構成したので、多様なシーケンスに応じて、傾斜磁場コイルの振動による騒音の発生 を抑制することができるともに、画質の向上を図ることができる。
[0108] 図 16は、本発明の第 7の実施形態におけるガントリ 31の断面図を示す。ただし、図 10に示した例と同一の部分には同一の符号を付し、その詳細な説明は省略する。
[0109] 図 16に示した例においては、図 10に示した例のように、傾斜磁場コイル 13と上下 部クライオスタツト 36a、 36bとの間のみならず、上下部クライオスタツト 36a、 36bと力 バー 43との間にも、複数のァクチユエータ 42を配置している。
[0110] この図 16に示した例は、上下部クライオスタツト 36a、 36bとカノく一 43との間の伝達 関数を、撮影シーケンスに応じて変化させ、傾斜磁場コイル力 上下部クライオスタツ ト 36a、 36bを介してカバー 43に伝達される振動を抑制し、さらに、騒音を低下する 例である。
[0111] 本発明の第 8の実施形態としては、本発明の第 1〜第 5の実施形態における防振ダ ンノ 一 23 (23a、 23b)をァクチユエータ 42とし、ァクチユエータ 42の弾性率を変化さ せることにより、多様なシーケンスに応じて最も振動抑制可能な弾性率となるように、 制御させる例がある。
[0112] なお、本発明の第 6、 7の実施形態においては、傾斜磁場コイル 13をクライオスタッ ト 36a、 36bに固定する部分やカバー 43にァクチユータを設けて伝達関数を変更す る場合について例を示した。しかし、これ以外のガントリ 31の構成要素、例えば、図 1 1に示した振動の伝達経路である RFコイル 11等もそれぞれ各固有の周波数特性で 振動している。
[0113] したがって、それらの構成要素に接触可能なようにァクチユエータ 42を配置し、制 御することで、それぞれの振動の周波数特性や伝達関数を変更して、被検者ゃ術者 へ伝わる騒音を低減するようにしても良 、。
[0114] 傾斜磁場コイル 13に比べて、 RFコイル 11やカバー 43は剛性や重量が小さいので
、傾斜磁場コイル 13に比べて、それぞれの振動の周波数特性を変更することは容易 である。
[0115] 実際の制御においては、印加電流の周波数特性と、システムを構成する各部品の 固有振動モードとから予想される騒音レベル力 、さくなるように、各部品の振動モー ドを制御すればよい。例えば、傾斜磁場コイル 13の振動によって直接、生じる騒音は 、 RFコイル 11やカバー 43等で、ある程度まで遮音される。
[0116] 一般には、高周波数側ほど、遮音の効果は大きくなるので、傾斜磁場コイル 13の 振動強度が同一の場合、より低周波数側の振動ピークを抑制しておく方が騒音ピー クを小さくすることができる。
[0117] また、騒音に対する人間の感受性は周波数に依存する。したがって、その感受性も 含め上記伝達関数の変更を行なえば良い。また、発生する騒音は場所によっても異 なるので、騒音抑制の対象となる位置についても、考慮を入れて設計することができ る。例えば、被検体の撮影部位に応じて被検体の耳の位置する場所も異なるので、 撮影部位に応じて、どのァクチチュエータを各構成要素へ接触させるかを選択するよ うにすれば良い。その際、術者の静音化レベルも考慮に入れることも可能である。
[0118] また、本発明の第 6、 7、 8の実施形態に用いるァクチユエータは、撮影のために使 用するシーケンスに応じて切り替るものであり、特開平 8— 154918号公報に記載さ れている場合のように騒音を直接キャンセルするものではない。したがって、高速に 伸び縮みを切り替えることができない素子でも使用することができる。例えば、形状記 憶合金や油圧素子、空圧素子等が利用できる。
[0119] また、ゴムダンパー等を傾斜磁場コイル 13に接触するように配置しておき、この温 度を変化させることで、そのゴムダンパーの硬度を変化させて傾斜磁場コイル 13の 振動する周波数特性を変更することでも本発明の効果は得られる。温度変化させる 方法としては、ヒータを利用する方法や、ゴムに巻きつけたパイプ内部の流体温度を 変化させる方法、ペルチエ素子等を用いる方法が考えられる。
[0120] ゴムダンパーを用いれば、振動の緩衡効果も得られるので、傾斜磁場コイル 13から 磁石 (クライオスタツト)への振動伝達を抑制する効果も得られる。また、ァクチユエ一 タとしては、圧電素子の利用も可能である。
[0121] 図 17は、ァクチユエータ 42として、油圧素子を使用した場合のァクチユエータ 42の 駆動システムの概略構成図である。図 17において、 CPU1は、実行されるシーケン スに応じた寸法となるように、電源 80に指令を出力し、この電源 80から供給される電 力に応じて、ポンプ 81がァクチユエータ 42である油圧素子のシリンダーを駆動する。 ただし、これら油圧素子 42、ポンプ 81は、磁場均一度への影響を考慮して非磁性材 料で構成される。
[0122] 図 18は、ァクチユエータ 42として、圧電素子を用いる場合の説明図である。圧電素 子は、圧電体を 2枚の電極で挟んだ素子を基本として各種の構造を有し、モノモルフ 型や積層型等がある。
[0123] 本発明に適用する場合は、比較的大きな変位を得るために、積層型を用いることが 望ましい。この積層型の圧電素子は、図 18に示すように、外部電極 83と内部電極 84 とを備え、圧電体の薄板を数 10〜: LOO枚積層したものである。圧電体の一枚一枚は 、厚み方向の分極が逆になるように、交互に積層されている。電極に電圧を印加する ことで積層方向に変位する。
[0124] なお、圧電素子は一般に、印加電圧に対して、図 19に示すように、変位量がヒステ リシス特性を有するので、これを考慮した制御が必要である。
[0125] 更に、以上の説明では、振動モード或いは伝達関数を変更するために、ァクチユエ ータを各部品に押し当てる手段を説明した。しかし、これ以外にも、部材を引っ張る、 挟み込むなどの機構を利用することも可能である。
[0126] また、第 6〜8の実施形態では、傾斜磁場コイル 13をクライオスタツト 36a、 36bに設 置する MRI装置につ!ヽて示した。
[0127] しかし、クライオスタツトではなぐ床に固定されたサポート台に傾斜磁場コイル 13を 設置した MRI装置にも本発明は適用可能である。そのような場合には、ァクチユエ一 タゃベースはサポート台と傾斜磁場コイルとの間に設けてもよい。そのようなサポート 台を用いた MRI装置は、傾斜磁場コイル 13からクライオスタツト 36a、 36bへの振動 伝達を低減できるので、騒音抑制効果がある。
[0128] さらに、本発明は、公知の静音化技術 (例えば、シーケンスによる静音化、真空遮 蔽技術等)と併用することができ、より一層の静音化が可能となる。
[0129] また、被検者ゃ術者に聞こえる騒音を低減するためにァクチユエータを駆動する場 合について例を示した力 使用するシーケンスによっては、どのァクチユエ一タも駆 動せず、どのァクチユエータも傾斜磁場コイル等に密着させない方が騒音が小さくな る場合ちある。
産業上の利用可能性
[0130] 本発明は上記実施例に限定されるものではなぐ本発明の要旨を逸脱しない範囲 で種々に変形して実施できる。例えば、本発明は、水平磁場方式のトンネル型 MRI 装置、即ち、概ね円筒形状のガントリ内に前記円筒の中心軸に沿って静磁場を発生 させて、ガントリ内の撮像空間に配置された被検体の MRI画像を得る MRI装置へも 適用可能である。

Claims

請求の範囲
[1] 撮影空間に静磁場を発生する静磁場発生手段 (4)と、前記撮影空間に傾斜磁場 を発生する傾斜磁場発生手段(13)と、前記撮影空間に配置される被検体に核磁気 共鳴を起こさせる高周波磁場を発生する高周波磁場発生手段(11)と、前記被検体 力ゝらの核磁気共鳴信号を検出する信号受信手段(14)と、検出した核磁気共鳴信号 を用 ヽて画像を再構成する信号処理手段( 1、 6)とを有する磁気共鳴イメージング装
¾【こ; /、て、
前記静磁場発生手段 (4)と前記傾斜磁場発生手段(13)との間に配置され、複数 の静磁場不均一性補正部材 (24)を有すると共に、複数の孔が形成された静磁場不 均一補正手段 (22)と、
前記静磁場不均一補正手段 (22)に形成された前記複数の孔内に配置され、前記 傾斜磁場発生手段(13)に発生した振動の前記静磁場発生手段 (4)への伝達を抑 制する複数の防振部材 (23)と、
を備えることを特徴とする磁気共鳴イメージング装置。
[2] 請求項 1記載の磁気共鳴イメージング装置にぉ 、て、前記複数の防振部材(23)は 、前記静磁場発生手段 (4)と前記傾斜磁場発生手段(13)とを接続するように配置さ れることを特徴とする磁気共鳴イメージング装置。
[3] 請求項 1または 2記載の磁気共鳴イメージング装置において、前記静磁場発生手 段 (4)は、前記撮影空間を挟んで対向して配置され、前記傾斜磁場発生手段(13) は、前記静磁場発生手段 (4)の前記撮影空間側に、前記撮影空間を挟んで対向し て配置されることを特徴とする磁気共鳴イメージング装置。
[4] 請求項 3記載の磁気共鳴イメージング装置において、前記複数の静磁場不均一性 補正部材 (24)の前記静磁場不均一補正手段 (22)における配置密度は、前記静磁 場不均一補正手段 (22)の中央部領域力 端部領域に向けて小となることを特徴と する磁気共鳴イメージング装置。 [5] 請求項 3記載の磁気共鳴イメージング装置にお 、て、前記静磁場不均一補正手段 (22)は円板状であり、前記複数の防振部材 (23)は、前記前記静磁場不均一補正 手段 (22)の中央部領域に配置され、前記静磁場不均一補正手段 (22)の半径方向 の長さより円周方向の長さが短い第 1の防振部材と、前記前記静磁場不均一補正手 段 (22)の端部領域に配置され、前記静磁場不均一補正手段 (22)の半径方向の長 さより円周方向の長さが長い第 2の防振部材とを有することを特徴とする磁気共鳴ィメ 一ジング装置。
[6] 請求項 3記載の磁気共鳴イメージング装置において、前記第 1の防振部材の円周 方向の長さは、前記静磁場不均一補正手段(22)の中央部から端部に向かって大と なって 、くことを特徴とする磁気共鳴イメージング装置。
[7] 請求項 3記載の磁気共鳴イメージング装置にお 、て、前記静磁場不均一補正手段
(22)の端部領域に配置され、前記静磁場不均一補正手段 (22)の半径方向の長さ より円周方向の長さが長ぐこの円周方向に長い部分の、前記静磁場不均一補正手 段(22)の半径方向の一側面が第 1の支持手段により、前記傾斜磁場コイルに支持さ れ、前記円周方向に長い部分の、前記静磁場不均一補正手段 (22)の半径方向の 他方側面が第 2の支持手段により、前記静磁場発生手段に支持されることを特徴と する磁気共鳴イメージング装置。
[8] 撮影空間に静磁場を発生する静磁場発生手段 (4)と、前記撮影空間に傾斜磁場 を発生する傾斜磁場発生手段(13)と、前記撮影空間に配置される被検体に核磁気 共鳴を起こさせる高周波磁場を発生する高周波磁場発生手段(11)と、前記被検体 力ゝらの核磁気共鳴信号を検出する信号受信手段(14)と、検出した核磁気共鳴信号 を用いて画像を再構成するとともに、複数のパルスシーケンスに従って傾斜磁場及 び高周波磁場を発生させる制御手段(1、 6)とを有する磁気共鳴イメージング装置に おいて、 前記傾斜磁場発生手段(13)の振動により発生する振動の周波数特性又は振動伝 達特性を変更する振動抑制手段(1、 42、 63)を備えることを特徴とする磁気共鳴ィメ 一ジング装置。
[9] 請求項 8記載の磁気共鳴イメージング装置にぉ 、て、前記振動抑制手段(1、 42、 63)は、前記静磁場発生手段 (4)と前記傾斜磁場発生手段(13)との間に配置され、 前記静磁場発生手段 (4)と前記傾斜磁場発生手段(13)への接触面積又は接触圧 力を変化できるァクチユエータ (42)を備え、前記制御手段(1)は、前記パルスシー ケンスに応じて、前記ァクチユエータ (42)の接触面積又は接触圧力を変更すること を特徴とする磁気共鳴イメージング装置。
[10] 請求項 7記載の磁気共鳴イメージング装置にお ヽて、前記静磁場発生手段 (4)、 前記傾斜磁場発生手段(13)、前記高周波磁場発生手段(11)を覆うカバー (43)を 備え、このカバー (43)と前記静磁場発生手段 (4)との間にも、前記ァクチユエータ (4 2)が配置されることを特徴とする磁気共鳴イメージング装置。
[11] 請求項 8記載の磁気共鳴イメージング装置において、前記静磁場発生手段 (4)と 前記傾斜磁場発生手段( 13)との間に配置され、複数の静磁場不均一性補正部材( 24)を有すると共に、複数の孔が形成された静磁場不均一補正手段 (22)を備え、前 記ァクチユエータ (42)は前記複数の孔内に配置されることを特徴とする磁気共鳴ィ メージング装置。
PCT/JP2005/009523 2004-05-31 2005-05-25 磁気共鳴イメージング装置 WO2005115239A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/628,097 US7755359B2 (en) 2004-05-31 2005-05-25 Magnetic resonance imaging apparatus with noise suppressing structure
JP2006513899A JP4822439B2 (ja) 2004-05-31 2005-05-25 磁気共鳴イメージング装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-160779 2004-05-31
JP2004160779 2004-05-31
JP2005-070214 2005-03-14
JP2005070214 2005-03-14

Publications (1)

Publication Number Publication Date
WO2005115239A1 true WO2005115239A1 (ja) 2005-12-08

Family

ID=35450615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009523 WO2005115239A1 (ja) 2004-05-31 2005-05-25 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US7755359B2 (ja)
JP (1) JP4822439B2 (ja)
WO (1) WO2005115239A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170632A1 (ja) * 2014-05-08 2015-11-12 株式会社 日立メディコ 磁気共鳴イメージング装置
JPWO2016136465A1 (ja) * 2015-02-25 2017-11-30 株式会社日立製作所 磁気共鳴イメージング装置、静磁場均一度調整方法、プログラム及び計算機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089445B4 (de) * 2011-12-21 2015-11-05 Siemens Aktiengesellschaft Verfahren und Gradientensystem zur Reduzierung von mechanischen Schwingungen in einem Magnetresonanzbildgebungssystem
CA2871384C (en) 2012-04-30 2020-04-21 Children's Hospital Medical Center Acoustic noise reducing rf coil for magnetic resonance imaging
DE102013206555B4 (de) * 2013-04-12 2018-03-01 Siemens Healthcare Gmbh Magnetresonanzscanner mit Antennensystem
DE102013206557B4 (de) * 2013-04-12 2017-03-23 Siemens Healthcare Gmbh Magnetresonanzscanner mit Antennensystem
US9625540B2 (en) * 2013-09-12 2017-04-18 Case Western Reserve University Magnetic resonance fingerprinting exams with optimized sound
JP6245993B2 (ja) * 2014-01-09 2017-12-13 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置及びシムトレイ
US10656225B2 (en) * 2016-09-01 2020-05-19 Canon Medical Systems Corporation Magnetic resonance imaging apparatus
CN112826494B (zh) * 2020-12-30 2023-05-23 上海联影医疗科技股份有限公司 Mr设备振动和声学噪声消减方法、系统、装置及存储介质
CN114994770A (zh) * 2022-04-27 2022-09-02 吉林大学 一种频率域地空电磁探测用接收系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250136A (ja) * 1991-01-28 1992-09-07 Toshiba Corp 磁気共鳴イメージング装置
JP2000126152A (ja) * 1998-10-26 2000-05-09 Ge Yokogawa Medical Systems Ltd Mri装置
JP2002017705A (ja) * 2000-07-05 2002-01-22 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2002360537A (ja) * 2001-06-05 2002-12-17 Mitsubishi Electric Corp 超電導マグネット装置及び超電導マグネット装置の磁場均一度調整方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156088B2 (ja) 1991-06-24 2001-04-16 株式会社日立製作所 磁気共鳴イメージング装置
JPH08154918A (ja) 1994-12-06 1996-06-18 Hitachi Medical Corp 磁気共鳴イメ−ジング装置
US5630415A (en) * 1995-01-19 1997-05-20 The Regents Of The University Of California Rigidized gradient coil
JPH10201735A (ja) 1997-01-17 1998-08-04 Hitachi Medical Corp 磁気共鳴イメージング装置
US5786695A (en) * 1997-03-21 1998-07-28 Picker International, Inc. Shim tray with reduced heat conduction and forced cooling
JP3886622B2 (ja) 1997-11-13 2007-02-28 株式会社日立メディコ 磁気共鳴イメージング装置
US6208141B1 (en) * 1998-06-11 2001-03-27 Picker International, Inc. Method and apparatus for mounting gradient tube to diagnostic imaging device
WO2000025146A1 (en) * 1998-10-28 2000-05-04 Koninklijke Philips Electronics N.V. Mri apparatus with a mechanically integrated eddy current shield in the gradient system
JP4331322B2 (ja) * 1999-05-31 2009-09-16 株式会社日立メディコ Mri装置
JP4360662B2 (ja) * 1999-11-26 2009-11-11 株式会社日立メディコ 磁気共鳴イメージング装置
US6954068B1 (en) * 2000-01-21 2005-10-11 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
JP4392941B2 (ja) * 2000-02-15 2010-01-06 株式会社日立メディコ 磁気共鳴イメージング装置
US6933722B2 (en) * 2000-07-05 2005-08-23 Hitachi Medical Corporation Magnetic resonance imaging device and gradient magnetic field coil used for it
DE10032836C1 (de) * 2000-07-06 2002-01-17 Siemens Ag Magnetresonanzgerät mit einem Gradientenspulensystem
JP4763124B2 (ja) * 2000-10-02 2011-08-31 株式会社日立メディコ 磁気共鳴イメージング装置
US6437568B1 (en) * 2000-10-02 2002-08-20 General Electric Company Low noise MRI scanner
JP4369613B2 (ja) * 2000-11-20 2009-11-25 株式会社日立メディコ 磁気共鳴イメージング装置
US7034537B2 (en) * 2001-03-14 2006-04-25 Hitachi Medical Corporation MRI apparatus correcting vibratory static magnetic field fluctuations, by utilizing the static magnetic fluctuation itself
EP1260827B1 (en) 2001-05-17 2008-12-31 Mitsubishi Denki Kabushiki Kaisha Superconductive MRI magnet
DE10147984B4 (de) * 2001-09-28 2007-10-11 Siemens Ag Magnetresonanz-Untersuchungsgerät mit einer Einrichtung zur Erzeugung eines homogenen Magnetfeldes und Verfahren zur Verbesserung der Homogenität eines Magnetfeldes
US6984982B2 (en) * 2002-07-29 2006-01-10 Ge Medical Systems Global Technology Company Llc Method and system for shimming an MRI magnet assembly
DE10237874A1 (de) * 2002-08-19 2004-03-11 Siemens Ag Magnetresonanzgerät mit einer verfahrbaren Gradientenspuleneinheit
WO2004093681A1 (ja) * 2003-04-23 2004-11-04 Hitachi Medical Corporation 磁気共鳴イメージング装置
JP4767688B2 (ja) * 2003-10-15 2011-09-07 株式会社日立メディコ 磁気共鳴イメージング装置
US7541812B2 (en) * 2007-02-13 2009-06-02 Kabushiki Kaisha Toshiba MRI apparatus, NMR analyzer, and gantry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250136A (ja) * 1991-01-28 1992-09-07 Toshiba Corp 磁気共鳴イメージング装置
JP2000126152A (ja) * 1998-10-26 2000-05-09 Ge Yokogawa Medical Systems Ltd Mri装置
JP2002017705A (ja) * 2000-07-05 2002-01-22 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2002360537A (ja) * 2001-06-05 2002-12-17 Mitsubishi Electric Corp 超電導マグネット装置及び超電導マグネット装置の磁場均一度調整方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170632A1 (ja) * 2014-05-08 2015-11-12 株式会社 日立メディコ 磁気共鳴イメージング装置
JPWO2015170632A1 (ja) * 2014-05-08 2017-04-20 株式会社日立製作所 磁気共鳴イメージング装置
JPWO2016136465A1 (ja) * 2015-02-25 2017-11-30 株式会社日立製作所 磁気共鳴イメージング装置、静磁場均一度調整方法、プログラム及び計算機

Also Published As

Publication number Publication date
JP4822439B2 (ja) 2011-11-24
US7755359B2 (en) 2010-07-13
US20080309343A1 (en) 2008-12-18
JPWO2005115239A1 (ja) 2008-03-27

Similar Documents

Publication Publication Date Title
WO2005115239A1 (ja) 磁気共鳴イメージング装置
JP4037272B2 (ja) 磁気共鳴イメージング装置及びそれに用いられる静磁場発生装置
JP5203682B2 (ja) Mri装置、nmr分析装置および静磁場発生部
JP3891947B2 (ja) 磁気共鳴撮影装置
US6894498B2 (en) Active vibration compensation for MRI gradient coil support to reduce acoustic noise in MRI scanners
JP3737829B2 (ja) Mri用静音グラジエント・コイル設計における能動的音響制御
EP0597528B1 (en) Magnetic resonance apparatus with noise cancellation
JP2002219112A5 (ja)
JP5243437B2 (ja) オープン型mri装置及びオープン型超電導mri装置
JP3723547B2 (ja) 勾配コイルキャリアの堅固でない懸架素子にピエゾアクチュエータを有するmri装置
RU2562694C2 (ru) Градиентная катушка, магнитный узел и система формирования магнитно-резонансных изображений
GB2384859A (en) Nmr tmography machine with noise suppression by damping of mechanical vibrations
JP4767688B2 (ja) 磁気共鳴イメージング装置
JP4669182B2 (ja) Mri勾配コイルの音波ライナー
JP2013013724A (ja) 傾斜コイルにおいて半径方向力を均衡させるためのシステム及び装置
JP3897958B2 (ja) 磁気共鳴イメージング装置
JPH08257008A (ja) 磁気共鳴イメージング装置およびその振動・騒音抑制方法
JPH10179548A (ja) 磁気共鳴検査方法および装置
US20070182516A1 (en) Magnetic resonance imaging device with an active shielding device
US20060076954A1 (en) Method for compensating for a magnetic field disturbance affecting a magnetic resonance device, and a magnetic resonance device
JPH09308617A (ja) 磁気共鳴イメージング装置
WO2006062028A1 (ja) 磁気共鳴イメージング装置
JP2017113411A (ja) 磁気共鳴イメージング装置
JP3434913B2 (ja) 磁気共鳴イメージング装置
JP2006506156A (ja) 均衡部材を備えた傾斜磁石システムを有する磁気共鳴映像システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513899

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11628097

Country of ref document: US