WO2015170632A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2015170632A1
WO2015170632A1 PCT/JP2015/062737 JP2015062737W WO2015170632A1 WO 2015170632 A1 WO2015170632 A1 WO 2015170632A1 JP 2015062737 W JP2015062737 W JP 2015062737W WO 2015170632 A1 WO2015170632 A1 WO 2015170632A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
static magnetic
generating means
exterior cover
field generating
Prior art date
Application number
PCT/JP2015/062737
Other languages
English (en)
French (fr)
Inventor
源太 山内
吉村 保廣
茂春 大久保
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2016517878A priority Critical patent/JP6296576B2/ja
Publication of WO2015170632A1 publication Critical patent/WO2015170632A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus using a nuclear magnetic resonance phenomenon.
  • a magnetic resonance imaging apparatus uses a nuclear magnetic resonance phenomenon of an atomic nucleus to generate a magnetic resonance image representing the physical properties of a subject placed in an imaging space. It is a device to obtain.
  • an MRI apparatus includes a static magnetic field generating means for generating a uniform static magnetic field in an imaging space, an irradiation coil for irradiating a high-frequency electromagnetic wave for generating nuclear magnetic resonance in a nucleus of a living tissue of a subject, A receiving coil for receiving a nuclear magnetic resonance signal and a gradient magnetic field coil for generating a linear gradient magnetic field superimposed on a static magnetic field in order to give position information to the nuclear magnetic resonance signal are provided.
  • a linear gradient magnetic field is superimposed on the subject placed in a uniform static magnetic field in the x, y, and z axis directions according to a desired pulse sequence, and the atomic spin of the subject is magnetized at a resonance frequency called a Larmor frequency.
  • a nuclear magnetic resonance signal is detected, and a magnetic resonance image (for example, a two-dimensional tomographic image) of the subject is taken.
  • a pulsed current is passed through a gradient coil disposed in a static magnetic field.
  • the Lorentz force acts on the gradient magnetic field coil by the static magnetic field and the current flowing through the gradient magnetic field coil, and the gradient magnetic field coil vibrates. Due to the vibration of the gradient magnetic field coil, the air around the gradient magnetic field coil vibrates and generates noise. Further, the vibration of the gradient magnetic field coil propagates to the static magnetic field generating means via the support member, the static magnetic field generating means vibrates, the air around the static magnetic field generating means vibrates, and noise is generated.
  • MRI apparatuses are known in which the static magnetic field strength is increased or the current flowing in the gradient magnetic field coil is increased in order to improve the image quality of captured images and shorten the time required for shooting.
  • Lorentz force acting on the gradient magnetic field coil increases, vibration of the gradient magnetic field coil increases, and noise increases. Since noise is a mental and physical burden on the subject, an increase in noise imposes a further mental and physical burden on the subject.
  • the noise of the MRI apparatus is a sound radiated due to the vibration of the gradient magnetic field coil and the static magnetic field generating means.
  • an MRI apparatus is provided with an exterior cover that covers the entire static magnetic field generating means. Since this exterior cover is in contact with the static magnetic field generation means, the vibration of the static magnetic field generation means propagates to the exterior cover, the exterior cover vibrates, the air around the exterior cover vibrates, and noise is generated. .
  • Patent Documents 1 and 2 are disclosed as techniques for reducing noise generated due to the vibration of the static magnetic field generating means.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-28259 discloses a static magnetic field generation means, a gradient magnetic field generation means, a high frequency magnetic field irradiation means for irradiating a subject with a high frequency magnetic field, and a nuclear magnetic resonance signal from the subject.
  • a magnetic resonance imaging apparatus comprising a receiving means for receiving, and an outer cover that covers the static magnetic field generating means, the gradient magnetic field generating means, and the high frequency magnetic field irradiating means
  • the outer cover includes the static magnetic field generating means, the gradient magnetic field generating means, and
  • a magnetic resonance imaging apparatus characterized in that it is not in contact with a high-frequency magnetic field irradiation means (see claim 1).
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-135948
  • a static magnetic field generating means for generating a substantially uniform static magnetic field and a gradient magnetic field arranged in the static magnetic field region by the static magnetic field generating means are generated.
  • a magnetic resonance imaging apparatus having an exterior cover comprising: a non-contact support means for supporting the exterior cover in a non-contact manner from the static magnetic field generating means (disclosed). Item 1).
  • the non-contact support means includes a reinforcing member provided between the exterior cover and the static magnetic field generation means, and the reinforcement cover supports the external cover from the static magnetic field generation means in a non-contact manner. Is disclosed (see claim 2).
  • the magnetic resonance imaging apparatus disclosed in Patent Document 1 is configured such that vibration propagating from the gradient magnetic field coil to the static magnetic field generating means does not propagate to the outer cover by making the static magnetic field generating means and the outer cover non-contact. Has been. As a result, the cause of the vibration of the outer cover is only the noise radiated by the vibration of the static magnetic field generating means, so that the vibration of the outer cover is reduced and the noise of the MRI apparatus is reduced.
  • Patent Document 1 The technique disclosed in Patent Document 1 is effective for an MRI apparatus called a tunnel type (donut type) having a cylindrical gradient coil and a static magnetic field generating means.
  • the shape of the exterior cover is a cylindrical shape having high rigidity, and even if the static magnetic field generating means and the exterior cover are not in contact with each other, the exterior cover can be bent due to the load of the subject. The problem is less likely to occur.
  • Patent Document 1 it is difficult to apply the technique disclosed in Patent Document 1 in an open type MRI apparatus in which circular gradient magnetic field coils and static magnetic field generating means are arranged one above the other.
  • the shape of the exterior cover is a flat plate shape, and the rigidity is lower than that of the cylindrical shape that is the shape of the exterior cover of the tunnel type (donut type) MRI apparatus. If the structure is made non-contact, the problem of bending of the exterior cover due to the load of the subject occurs. When the exterior cover is bent, the posture and position of the subject are shifted, and there is a problem that imaging at the posture and position intended by the operator of the MRI apparatus cannot be performed.
  • the former method of increasing the thickness of the exterior cover narrows the imaging space, which causes a problem of giving the subject a feeling of occlusion and pressure. If the imaging space cannot be narrowed, the static magnetic field generating means must be increased in the height direction, which leads to an increase in the size of the MRI apparatus in the height direction.
  • the latter method of changing the material of the exterior cover to a material having high rigidity is to avoid the adverse effect on the magnetic resonance image, which is a problem peculiar to the MRI apparatus, particularly for the exterior cover on the imaging space where the subject is placed. Since there is no choice but to use a fiber reinforced resin such as nonmagnetic and nonconductive glass epoxy, there is very little room for selection of materials.
  • Patent Document 1 it is difficult to solve the problem of bending of the exterior cover due to the load of the subject in the open type MRI apparatus.
  • a reinforcing member (non-contact supporting means) is provided between the static magnetic field generating means and the exterior cover in the open MRI apparatus, and the static magnetic field generating means is completely provided by this reinforcing member.
  • the vibration that propagates from the gradient magnetic field coil to the static magnetic field generating means is not directly propagated to the external cover by preventing the static magnetic field generating means and the external cover from coming into direct contact with each other. Thereby, the vibration propagated to the exterior cover is reduced, and the noise of the MRI apparatus is reduced.
  • the entire surface of the static magnetic field generating means is in complete contact with the reinforcing member, and the entire surface of the reinforcing member is also in complete contact with the exterior cover.
  • the static magnetic field generating means and the exterior cover are not in direct contact, but are in complete contact indirectly. That is, since the reinforcing member receives the vibration of the entire surface of the static magnetic field generating means, the vibration propagating from the static magnetic field generating means to the reinforcing member cannot be effectively reduced.
  • the exterior cover receives the vibration of the entire surface of the reinforcing member, the vibration propagating from the reinforcing member to the exterior cover cannot be effectively reduced. For this reason, there is a problem that vibration propagating from the static magnetic field generating means to the exterior cover cannot be effectively reduced.
  • the reinforcing member provided near the imaging space where the subject is placed has a certain degree of rigidity in order to prevent the outer cover from being bent, and in order to avoid an adverse effect on the magnetic resonance image, which is a problem specific to the MRI apparatus.
  • the fiber reinforced resin as described above must be used.
  • a material such as this fiber reinforced resin is generally a hard material and easily propagates vibration, so that there is a problem that vibration propagated from the static magnetic field generating means to the exterior cover cannot be effectively reduced.
  • an object of the present invention is to provide a magnetic resonance imaging apparatus (MRI apparatus) that can prevent the outer cover from being bent and reduce noise.
  • MRI apparatus magnetic resonance imaging apparatus
  • a magnetic resonance imaging apparatus is arranged so as to face the vertical direction across the imaging space, and generates a vertical static magnetic field in the imaging space.
  • the centers of the two connecting columns are connected by a straight line, and the two of the connecting columns are opposed to the bed.
  • the magnetic resonance imaging apparatus is disposed opposite to a vertical direction across the imaging space, and opposed to a static magnetic field generating means for generating a vertical static magnetic field in the imaging space.
  • Two connecting columns that connect the static magnetic field generating means, a gradient magnetic field coil that is supported by the static magnetic field generating means via a gradient magnetic field coil support member and generates a magnetic field that is inclined to the static magnetic field,
  • An outer cover that covers the static magnetic field generating means and the connecting column; and a cooling device that is disposed above the static magnetic field generating means and that keeps the superconducting coil of the static magnetic field generating means in a superconductive state.
  • An exterior cover support member for supporting the exterior cover is included in the range of 55 to 75 degrees, 110 to 130 degrees, or both.
  • the magnetic resonance imaging apparatus is disposed opposite to a vertical direction across the imaging space, and opposed to a static magnetic field generating means for generating a vertical static magnetic field in the imaging space.
  • Two connecting columns that connect the static magnetic field generating means, a gradient magnetic field coil that is supported by the static magnetic field generating means via a gradient magnetic field coil support member and generates a magnetic field that is inclined to the static magnetic field,
  • An external cover that covers the static magnetic field generating means and the connecting column, and the external cover includes a layer between the static magnetic field generating means and the imaging space side, and the static magnetic field generating means is provided on the imaging space side.
  • An exterior cover support member that supports the exterior cover is provided in a range where the vibration amplitude averaged in the frequency range of 300 Hz to 500 Hz is a valley on the surface.
  • MRI apparatus magnetic resonance imaging apparatus
  • FIG. 1 is a perspective view of an MRI apparatus according to a first embodiment.
  • 1 is a schematic AA sectional view of an MRI apparatus according to a first embodiment.
  • FIG. It is a BB schematic sectional drawing of the MRI apparatus which concerns on 1st Embodiment.
  • It is CC schematic sectional drawing of the MRI apparatus which concerns on 1st Embodiment.
  • (a) is the analysis result of the natural frequency F1
  • (b) is the analysis result of the natural frequency F2
  • (c) is the analysis result of the natural frequency F3.
  • D is an analysis result of the natural frequency F4.
  • FIG. 1 is a perspective view of an MRI apparatus 1 according to the first embodiment.
  • FIG. 2 is an AA schematic cross-sectional view of the MRI apparatus 1 according to the first embodiment.
  • illustration of the exterior cover 10 mentioned later is abbreviate
  • FIG. 2 is a sectional view in the zx plane.
  • the MRI apparatus 1 can include a vertical magnetic field type open MRI apparatus to which a superconducting magnet is applied.
  • the open MRI apparatus is an MRI apparatus having a structure in which a specific part of the imaging space 100 (see FIG. 2) is opened.
  • the features of this open type MRI apparatus are that the subject 200 (see FIG. 4 to be described later) feels open compared to a general donut type (tunnel type) MRI apparatus, and the operator of the MRI apparatus (see FIG. (Not shown) is easy to approach the subject 200.
  • the MRI apparatus 1 includes a scanner gantry 2, a bed 8, and a computer 9.
  • the scanner gantry 2 includes static magnetic field generating means 3a and 3b, gradient magnetic field coils 4a and 4b, irradiation coils 5a and 5b, connecting columns 6a and 6b, and a cooling device 7 (FIG. 1).
  • the scanner gantry 2 is covered with an exterior cover 10 (see FIG. 4 described later).
  • a static magnetic field generating means 3a and a static magnetic field generating means 3b are arranged facing each other in the vertical direction with the imaging space 100 interposed therebetween, so that the upper and lower static magnetic fields are generated.
  • the means 3a, 3b are connected by two connecting columns 6a, 6b.
  • the connecting column 6a and the connecting column 6b are arranged substantially symmetrically with respect to the imaging space 100 as a center.
  • the members constituting the static magnetic field generating means 3a, 3b and the connecting columns 6a, 6b are mainly made of a non-magnetic metal material such as stainless steel.
  • the static magnetic field generating means 3a, 3b includes a superconducting coil (not shown), a cooling container (not shown) that houses the superconducting coil, and a vacuum container (not shown) that houses the cooling container.
  • the superconducting coil is wound in an annular shape and generates a uniform vertical (z-axis direction) static magnetic field in the imaging space 100.
  • the superconducting coil is accommodated in an annular cooling container.
  • a refrigerant such as liquid helium is stored, and the superconducting coil is immersed in this refrigerant. Then, the superconducting coil is cooled to a temperature exhibiting superconducting characteristics by the refrigerant and maintains the cooling temperature.
  • the cooling container is housed in a vacuum container and is thermally insulated from the outside air. Further, a radiation shield is disposed between the vacuum container and the cooling container in order to suppress heat transfer due to radiation from the vacuum container to the cooling container.
  • a recess 3c is provided on the side of the imaging space 100 of the static magnetic field generating means 3a, 3b.
  • gradient magnetic field coils 4a, 4b for generating a linear gradient magnetic field superimposed on the static magnetic field in order to give positional information to the nuclear magnetic resonance signal, and a subject, respectively.
  • Irradiation coils 5a and 5b for irradiating high-frequency electromagnetic waves for generating nuclear magnetic resonance in the nuclei of 200 biological tissues are arranged.
  • the irradiation coils 5a and 5b are disposed in the vicinity of the gradient magnetic field coils 4a and 4b and on the side close to the imaging space 100, respectively.
  • the static magnetic field generating means 3a incorporating the gradient magnetic field coil 4a and the irradiation coil 5a and the static magnetic field generating means 3b incorporating the gradient magnetic field coil 4b and the irradiation coil 5b are two connecting columns with the imaging space 100 interposed therebetween. 6a and 6b are arranged to face each other up and down. The gradient magnetic field coils 4a and 4b are supported by the static magnetic field generating means 3a and 3b via the gradient magnetic field coil support member 4c.
  • the static magnetic field generating means 3a, 3b, the irradiation coils 5a, 5b, and the connecting columns 6a, 6b are covered with an exterior cover 10 (see FIG. 4 described later).
  • illustration of the exterior cover 10 is abbreviate
  • the exterior cover 10 is provided so as to cover the outside of the static magnetic field generating means 3b and the irradiation coil 5b.
  • the MRI apparatus 1 is provided with a bed 8 on which the subject 200 is placed and guided into the imaging space 100.
  • the bed 8 maximizes the feeling of opening of the subject 200, as shown in FIG. 3 to be described later, the center of the connecting column 6a and the connecting column 6b.
  • the straight line m connecting the centers and the straight line n connecting the center of the bed 8 and the center of the imaging space 100 are provided so as not to be orthogonal to each other.
  • the MRI apparatus 1 is provided with a cooling device 7 for keeping the superconducting coils of the static magnetic field generating means 3a and 3b in a superconducting state.
  • the cooling device 7 is disposed on the static magnetic field generating means 3a at a position where it is difficult to see from the subject 200 in order to maximize the feeling of opening of the subject 200.
  • it is provided on the side of the connecting column 6b on the static magnetic field generating means 3a.
  • the cooling device 7 is provided on the upper side of the connecting column 6b on the side.
  • the MRI apparatus 1 includes a power supply device (not shown) for supplying a current to the static magnetic field generating means 3a and 3b, the gradient magnetic field coils 4a and 4b, the irradiation coils 5a and 5b, and the nucleus of the living tissue of the subject 200.
  • a power supply device (not shown) for supplying a current to the static magnetic field generating means 3a and 3b, the gradient magnetic field coils 4a and 4b, the irradiation coils 5a and 5b, and the nucleus of the living tissue of the subject 200.
  • Receiving coil (not shown) for receiving a nuclear magnetic resonance signal generated from the image
  • an image reconstruction device computer 9) for obtaining a magnetic resonance image based on the nuclear magnetic resonance signal
  • a control device for controlling the entire MRI apparatus 1 (Computer 9).
  • a uniform static magnetic field is generated in the imaging space 100 by the static magnetic field generating means 3a and 3b, and the subject 200 placed on the bed 8 is placed in the imaging space 100.
  • a current is passed through the gradient magnetic field coils 4a and 4b, and a linear gradient magnetic field is superimposed on the subject 200 placed in a uniform static magnetic field in the x, y, and z axis directions.
  • Larmor frequency a resonance frequency
  • the subject 200 is irradiated with a high-frequency signal from the irradiation coils 5a and 5b, and the atomic spin of the subject 200 is magnetically excited at a resonance frequency called a Larmor frequency.
  • a nuclear magnetic resonance signal generated is detected by a receiving coil (not shown), and an image is reconstructed by signal processing by a computer 9 which is an image reconstruction device, so that the object 200 in an arbitrary cross section can be obtained.
  • a tomographic image magnetic resonance image
  • FIG. 11 is a BB schematic cross-sectional view (cross-sectional view in the xy plane) of the MRI apparatus according to the reference example.
  • FIG. 12 is a CC schematic cross-sectional view (cross-sectional view in the yz plane) of the MRI apparatus according to the first reference example.
  • FIG. 13 is a CC schematic cross-sectional view (cross-sectional view in the yz plane) of the MRI apparatus according to the second reference example.
  • illustration of the exterior cover 10 is abbreviate
  • the surface on the side of the imaging space 100 of the static magnetic field generating means 3b (hereinafter, this surface is referred to as an opening surface 3d) is provided with a left-down hatching.
  • the exterior cover 10 is disposed so as to cover the outside of the irradiation coil 5b and the opening surface 3d.
  • a pulsed current is passed through the gradient magnetic field coils 4a and 4b arranged in the static magnetic field in order to generate a linear gradient magnetic field.
  • the Lorentz force acts on the gradient magnetic field coils 4a and 4b by the static magnetic field of the static magnetic field generating means 3a and 3b and the current flowing through the gradient magnetic field coils 4a and 4b, and the gradient magnetic field coils 4a and 4b vibrate.
  • the vibration of the gradient magnetic field coils 4a and 4b propagates to the static magnetic field generation means 3a and 3b.
  • the opening surface 3d of the static magnetic field generating means 3a, 3b vibrates.
  • the opening surface 3d and the exterior cover 10 are in contact with each other as shown in FIG. For this reason, vibration propagates from the opening surface 3d to the exterior cover 10, and the exterior cover 10 vibrates. Thereby, the air around the exterior cover 10 vibrates and there exists a subject that a noise generate
  • the opening surface 3 d and the exterior cover 10 are not in contact with each other.
  • a layer (air layer) 11 is provided between the exterior cover 10.
  • the exterior cover 10 is bent by the load of the subject 200 placed in the imaging space 100, and the posture and position of the subject 200 are shifted due to the bending, and the MRI apparatus. There is a problem that photographing with the posture and position intended by the operator cannot be performed.
  • FIG. 3 is a BB schematic cross-sectional view (cross-sectional view in the xy plane) of the MRI apparatus 1 according to the first embodiment.
  • FIG. 4 is a schematic CC cross-sectional view (cross-sectional view in the yz plane) of the MRI apparatus 1 according to the first embodiment.
  • illustration of the exterior cover 10 is abbreviate
  • a layer (air layer) 11 is provided between the opening surface 3d and the exterior cover 10 to prevent the exterior cover 10 from being bent.
  • the exterior cover support member 13 of the exterior cover 10 is provided to prevent the exterior cover 10 from being bent. With such a configuration, bending of the outer cover 10 can be prevented.
  • the vibration of the opening surface 3d propagates to the exterior cover 10 via the exterior cover support member 13 as compared with the second reference example.
  • the vibration of the opening surface 3d propagates to the exterior cover 10 via the exterior cover support member 13 as compared with the second reference example.
  • the position where the exterior cover support member 13 is provided is preferably a position where the vibration of the opening surface 3d is reduced (angle ranges 12a and 12b described later).
  • FIG. 5 shows an example of the calculation result of the natural frequency of vibration.
  • (A) shows the analysis result of the natural frequency F1
  • (b) shows the analysis result of the natural frequency F2
  • (c) shows the analysis of the natural frequency F3.
  • (D) is an analysis result of the natural frequency F4.
  • the point a on the opening surface 3d at the center of the connection column 6a on the circumference of the circle is 0 degree
  • a point b on the opening surface 3d at the center of the angle is defined as 180 degrees
  • an angle from the point a toward the point b is defined as an angle ⁇ .
  • FIG. 5 is a graph in which the natural frequency of the vibration of the opening surface 3d when the angle ⁇ is a parameter is analyzed, and the magnitude of the vibration obtained from this analysis is plotted.
  • the natural frequency of vibration is a frequency that is always excited when the structure (here, the MRI apparatus 1) vibrates and resonates to increase vibration.
  • 5 (a) to 5 (d) show four different frequencies (F1, F2, F3, F4, the magnitude of the frequency among the natural frequency analysis results of vibration at 300 Hz to 500 Hz where the noise level is high in the MRI apparatus 1.
  • the relationship indicates the analysis result of F1 ⁇ F2 ⁇ F3 ⁇ F4).
  • the horizontal axis indicates the angle ⁇ from the point a, where 0 degree is the position of the point a, 180 degrees is the position of the point b, and 90 degrees is the circle connecting the point a and the point b and the y axis. Is the position of the intersection with The vertical axis represents the vibration amplitude normalized by the maximum value of the vibration amplitude of the natural frequency of vibration at each frequency. In addition, it means that a vibration amplitude is so large that a vertical axis
  • the vibration of the structure constituting the MRI apparatus 1 generates vibrations including many frequencies. Therefore, as a position where the exterior cover support member 13 can be disposed, there is no position (node) where vibration is small at any frequency, and there is a problem that a position satisfying the position cannot be determined.
  • the target frequency range is limited, that is, if the frequency range is relatively high due to the noise of the MRI apparatus 1, it is possible to find a position with a small vibration amplitude on the opening surface 3d. Revealed.
  • FIG. 6 shows the result of analyzing the natural frequency of the vibration on the opening surface 3d in the frequency range of 300 Hz to 500 Hz, which is obtained to obtain FIG. 5, normalized with the maximum value of the vibration amplitude at each frequency, and normalized vibration amplitude. It is the analysis result which performed the statistical averaging process with respect to it. Note that the vertical and horizontal axes in FIG. 6 are the same as those in FIG.
  • the vibration amplitude averaged in the frequency range of 300 Hz to 500 Hz has a small vibration amplitude at the positions of point c and point d at an angle excluding the periphery of point a and point b. .
  • this angular range 12a, 12b there is a frequency at which the vibration amplitude increases (becomes antinode) as shown in FIG. 5, but as shown in FIG. 6, a frequency of 300 Hz to 500 Hz where the noise level is high. In the range, it can be said that the vibration amplitude is small on average.
  • 5 and 6 are the natural frequencies of vibration, so if the excitation force vibrates over a wide frequency band, the other vibrations in the angle range 12a and the angle range 12b shown in FIG.
  • the vibration amplitude is relatively small compared to the position of the opening surface 3d.
  • the exterior cover support member 13 installed in order to prevent the exterior cover 10 from bending is provided in the angle range 12a and the angle range 12b, so that the exterior cover 10 is located at a portion where the vibration amplitude on the opening surface 3d is relatively small. Can be supported. Thereby, the vibration propagated from the opening surface 3d to the exterior cover 10 can be reduced, and the noise generated by the vibration of the exterior cover 10 is reduced, so that the noise of the MRI apparatus 1 can be reduced.
  • the exterior cover support member 13 for preventing the exterior cover 10 from being bent is installed in the angle range 12a and the angle range 12b. .
  • the exterior cover support member 13 By installing the exterior cover support member 13 in this way, it is possible to prevent the exterior cover 10 from being bent due to the load of the subject 200, which occurs when the layer 11 is provided between the exterior cover 10 and the opening surface 3d. Therefore, the posture and position of the subject 200 are not shifted, and imaging in the posture and position intended by the operator can be performed.
  • the MRI apparatus 1 does not narrow the imaging space 100 or in the height direction of the MRI apparatus 1 as compared with the method of preventing the bending by increasing the thickness of the exterior cover 10. Without causing an increase in size, the outer cover 10 can be prevented from being bent and the noise of the MRI apparatus 1 can be reduced.
  • FIG. 3 although illustrated as what arrange
  • a plurality of the exterior cover support members 13 may be disposed as long as the exterior cover support members 13 are installed within the range (angle ranges 12a and 12b).
  • the exterior cover support member 13 is disposed at this position to support the exterior cover 10.
  • the subject 200 is not placed around this area and the load of the subject 200 cannot be effectively supported, the effect of preventing the outer cover 10 from being bent is small.
  • FIG. 7 is a BB schematic cross-sectional view (schematic cross-sectional view in the xy plane) of the MRI apparatus according to the second embodiment.
  • the MRI apparatus 1 according to the first embodiment includes the exterior cover support member 13 (see FIG. 3), whereas the MRI apparatus according to the second embodiment includes the exterior cover support member 14 (see FIG. 7).
  • the configuration is different.
  • Other configurations of the MRI apparatus according to the second embodiment are the same as those of the MRI apparatus 1 according to the first embodiment shown in FIGS.
  • the exterior cover support member 14 of the second embodiment is located in the vicinity of the inner circumference of the opening surface 3d (that is, the irradiation coil 5b) in the exterior cover support position ranges 12a and 12b illustrated in the first embodiment.
  • the exterior cover support member 14 is linearly arranged in the exterior cover support position range 12a, 12b in the radial direction of the opening surface 3d (static magnetic field generating means 3b).
  • the bending of the exterior cover 10 due to the load of the subject 200 that occurs when the layer 11 is provided between the exterior cover 10 and the opening surface 3d can be prevented.
  • the position is not displaced, and it is possible to take a picture in the posture and position intended by the operator.
  • the vibration amplitude is other than Since the position is smaller than the position of the opening surface 3d, vibration propagating from the opening surface 3d to the exterior cover 10 via the exterior cover support member 14 can be reduced, and noise generated by the vibration of the exterior cover 10 is reduced. Therefore, the noise of the MRI apparatus can be reduced.
  • exterior cover support member 14 of 2nd Embodiment demonstrated as what was arrange
  • FIG. 8 is a BB schematic cross-sectional view (schematic cross-sectional view in the xy plane) of the MRI apparatus according to the third embodiment.
  • the MRI apparatus 1 according to the first embodiment includes the exterior cover support member 13 (see FIG. 3), whereas the MRI apparatus according to the third embodiment includes the exterior cover support member 15 (see FIG. 8).
  • the configuration is different.
  • Other configurations of the MRI apparatus according to the third embodiment are the same as those of the MRI apparatus 1 according to the first embodiment shown in FIGS.
  • the exterior cover support member 15 of the third embodiment is arranged in the circumferential direction of the opening surface 3d (static magnetic field generating means 3b) in the exterior cover support position ranges 12a and 12b shown in the first embodiment. It is arranged in an arc shape.
  • the bending of the exterior cover 10 due to the load of the subject 200 that occurs when the layer 11 is provided between the exterior cover 10 and the opening surface 3d can be prevented.
  • the position is not displaced, and it is possible to take a picture in the posture and position intended by the operator.
  • the vibration amplitude is other than Since it is smaller than the position of the opening surface 3d, vibration propagating from the opening surface 3d to the exterior cover 10 via the exterior cover support member 15 can be reduced, and noise generated by the vibration of the exterior cover 10 is reduced. Therefore, the noise of the MRI apparatus can be reduced.
  • exterior cover support member 15 of 3rd Embodiment demonstrated as what was arrange
  • an exterior cover support member having a cross-like shape in combination with the exterior cover support member 14 (see FIG. 7) linearly arranged in the radial direction of the opening surface 3d shown in the second embodiment. May be arranged in the outer cover support position range 12a, 12b.
  • the shape and quantity of the exterior cover support members are necessary to prevent the exterior cover 10 from being bent due to the load of the subject 200.
  • the shape and quantity can be appropriately selected and arranged.
  • FIG. 9 is a CC schematic cross-sectional view (schematic cross-sectional view in the yz plane) of the MRI apparatus according to the fourth embodiment.
  • the MRI apparatus according to the fourth embodiment is the first embodiment in that a sound absorbing material 20 typified by glass wool or urethane foam is provided on the layer 11 between the exterior cover 10 and the opening surface 3d of the static magnetic field generating means 3b. This is different from the MRI apparatus 1 according to FIG.
  • Other configurations of the MRI apparatus according to the fourth embodiment are the same as those of the MRI apparatus 1 according to the first embodiment shown in FIGS.
  • the layer 11 between the exterior cover 10 and the opening surface 3d of the static magnetic field generating means 3b is provided with a sound absorbing material 20 typified by glass wool or urethane foam.
  • the vibration energy of the noise becomes thermal energy by the sound absorbing material 20.
  • the sound is converted and disappears, and the sound is further reduced by the sound insulation of the outer cover 10. That is, by providing the sound absorbing material 20, the sound insulation effect of the exterior cover 10 is increased and the noise radiated to the outside of the exterior cover 10 is reduced, so that the noise of the MRI apparatus can be reduced.
  • the sound absorbing material 20 is generally a soft material to which a foaming material is applied. Therefore, it does not have a sufficient function for preventing the outer cover 10 from being bent.
  • the outer cover support member 13 has the function of preventing the outer cover 10 from bending. That is, it is different from what is supported on the entire surface as in Patent Document 2.
  • the outer cover support member 13 is described as supporting the outer cover 10.
  • the present invention is not limited to this, and the outer cover support member 14 of the second embodiment or the third embodiment is supported.
  • the exterior cover support member 15 may be used, and the quantity and shape may be changed as appropriate.
  • the sound absorbing material 20 includes a layer between the outer cover 10 and the static magnetic field generating unit 3b provided in addition to the layer 11 between the outer cover 10 and the opening surface 3d, and the static magnetic field generating unit 3a and the outer cover 10. It can also be installed in the layer between.
  • FIG. 10 is a CC schematic cross-sectional view (schematic cross-sectional view in the yz plane) of the MRI apparatus according to the fifth embodiment.
  • the MRI apparatus according to the fifth embodiment includes the sound absorbing material 20 and the vibration isolating material 30 in the layer 11 between the exterior cover 10 and the opening surface 3d of the static magnetic field generating means 3b. Different from the device 1.
  • Other configurations of the MRI apparatus according to the fifth embodiment are the same as those of the MRI apparatus 1 according to the first embodiment shown in FIGS.
  • the vibration isolating material 30 is provided on the side of the opening surface 3d of the static magnetic field generating means 3b in the layer 11, and the sound absorbing material 20 is provided on the exterior cover 10 side.
  • an anti-vibration rubber can be used as the vibration isolator 30, to be used. With such a configuration, noise radiated when the static magnetic field generating means 3b vibrates can be reduced, and noise of the MRI apparatus can be reduced.
  • the sound absorbing material 20 and the vibration isolating material 30 are described as being provided in the layer 11, the sound absorbing material 20 may be omitted. That is, the structure provided with the vibration isolator 30 and the air layer in the layer 11 between the exterior cover 10 and the opening surface 3d of the static magnetic field generating means 3b may be used.
  • FIG. 10 although demonstrated as what supports the exterior cover 10 by the exterior cover support member 13, it is not restricted to this,
  • the exterior cover support member 15 may be used, and the quantity and shape may be changed as appropriate.
  • the magnetic resonance imaging apparatus has a range 12a where the angle ⁇ from the point a is 55 degrees to 75 degrees and a range 12b where 110 degrees to 130 degrees.
  • the angle ⁇ from one connecting column 6a (or 6b) to the other connecting column 6b (or 6a) is defined as 0 ° to 180 °, and the angle ⁇ ranges from 55 ° to 70 °, and from 110 ° to 125 °. It is good also as what arrange
  • the side of the connecting column 6 a located at the position facing the bed 8 is defined as defining the angle ⁇ as 0 degree. It is not limited. Of the two connecting columns 6a and 6b, the side of the connecting column 6a opposite to the side where the cooling device 7 (see FIG. 1) is disposed may be defined as an angle ⁇ of 0 degree.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

磁気共鳴イメージング装置(1)は、外装カバー(10)の振動による騒音を抑制するために、外装カバー(10)と静磁場発生手段(3b)との間の層(11)に外装カバー支持部材(13)を備えている。このとき、外装カバー支持部材(13)は、2つの連結柱(6a,6b)の中心をつなぐ直線(m)上でかつ連結柱(6a)側の開口部(3d)上の点(a)を、開口部(3d)の表面に沿って55度~75度あるいは110度~130度回転させた位置(12a,12b)もしくはその両方の位置に設けられる。

Description

磁気共鳴イメージング装置
 本発明は、核磁気共鳴現象を利用した磁気共鳴イメージング装置に関する。
 磁気共鳴イメージング装置(以降、MRI(Magnetic Resonance Imaging)装置と称する。)は、原子核の核磁気共鳴現象を利用して、撮影空間内に置かれた被検体の物理的性質を表す磁気共鳴画像を得る装置である。一般的に、MRI装置には、撮影空間に均一な静磁場を発生させる静磁場発生手段と、被検体の生体組織の原子核に核磁気共鳴を生じさせるための高周波電磁波を照射する照射コイルと、核磁気共鳴信号を受信する受信コイルと、核磁気共鳴信号に位置情報を付与するために静磁場に重ねて線形な傾斜磁場を発生させる傾斜磁場コイルと、を備えている。
 撮影時には、所望のパルスシーケンスに従い、均一な静磁場中に置かれた被検体にx,y,z軸方向に線形傾斜磁場が重ねられ、被検体の原子スピンがラーモア周波数と呼ばれる共鳴周波数で磁気的に励起される。この励起に伴い、核磁気共鳴信号が検出され、被検体の磁気共鳴画像(例えば、2次元断層像)が撮影される。
 このように、撮影時において、線形傾斜磁場を生成するために、静磁場中に配置された傾斜磁場コイルにパルス的な電流を流す。このとき、静磁場と傾斜磁場コイルを流れる電流とによって、傾斜磁場コイルにローレンツ力が作用し、傾斜磁場コイルが振動する。この傾斜磁場コイルの振動によって、傾斜磁場コイルの周囲の空気が振動して、騒音が発生する。また、傾斜磁場コイルの振動が支持部材を介して静磁場発生手段に伝搬し、静磁場発生手段が振動して、静磁場発生手段の周囲の空気が振動して、騒音が発生する。
 近年では、撮影画像の画質向上や撮影に要する時間の短縮化のために、静磁場強度を大きくしたり、傾斜磁場コイルに流す電流を大きくしたりしたMRI装置が知られている。このようなMRI装置では、傾斜磁場コイルに作用するローレンツ力が増大し、傾斜磁場コイルの振動が増大し、騒音が増大する。騒音は、被検体にとって精神的・肉体的負担となるため、騒音の増大は被検体にさらなる精神的・肉体的負担を強いることとなる。
 このように、MRI装置の騒音は、傾斜磁場コイルや静磁場発生手段の振動が原因で放射される音である。また、一般的に、MRI装置には、静磁場発生手段全体を覆う外装カバーが設置されている。この外装カバーは静磁場発生手段と接触しているため、静磁場発生手段の振動が外装カバーに伝搬し、外装カバーが振動して、外装カバーの周囲の空気が振動して、騒音が発生する。こうした静磁場発生手段の振動が原因で発生する騒音を低減する技術として、特許文献1および特許文献2が開示されている。
 特許文献1(特開2009-28259号公報)には、静磁場発生手段と、傾斜磁場発生手段と、被検体に高周波磁場を照射する高周波磁場照射手段と、被検体からの核磁気共鳴信号を受信する受信手段と、上記静磁場発生手段、傾斜磁場発生手段及び高周波磁場照射手段を覆う外装カバーを備えた磁気共鳴イメージング装置において、上記外装カバーは、上記静磁場発生手段、傾斜磁場発生手段及び高周波磁場照射手段に対して非接触とされていることを特徴とする磁気共鳴イメージング装置が開示されている(請求項1参照)。
 また、特許文献2(特開2007-135948号公報)には、ほぼ均一な静磁場を発生する静磁場発生手段と、この静磁場発生手段による静磁場領域内に配置された傾斜磁場を生成する傾斜磁場コイルと、被検体に高周波信号を照射する照射コイルと、前記被検体からの核磁気共鳴信号を受信する受信コイルと、前記要素で構成されたスキャナガントリィと、このスキャナガントリィを覆う外装カバーとを備えた磁気共鳴イメージング装置において、前記外装カバーを前記静磁場発生手段から非接触に支持する非接触支持手段を備えたことを特徴とする磁気共鳴イメージング装置が開示されている(請求項1参照)。そして、前記非接触支持手段は、前記外装カバーと前記静磁場発生手段との間に補強部材を設けて成り、この補強部材で前記外装カバーを前記静磁場発生手段から非接触に支持することが開示されている(請求項2参照)。
特開2009-28259号公報 特開2007-135948号公報
 特許文献1に開示された磁気共鳴イメージング装置では、静磁場発生手段と外装カバーとを非接触とすることで、傾斜磁場コイルから静磁場発生手段へ伝搬する振動が外装カバーへ伝搬しないように構成されている。これにより、外装カバーの振動が生じる原因は、静磁場発生手段の振動により放射される騒音のみとなるため、外装カバーの振動が低減し、MRI装置の騒音が低減する。
 この特許文献1に開示された技術は、円筒状の傾斜磁場コイルおよび静磁場発生手段を備えるトンネル型(ドーナツ型)などと呼ばれるMRI装置に有効である。トンネル型(ドーナツ型)MRI装置では、外装カバーの形状は剛性が高い円筒状であり、静磁場発生手段と外装カバーとを非接触にする構造としても、被検体の荷重による外装カバーの撓みの問題は発生しにくい。
 しかし、円形状の傾斜磁場コイルおよび静磁場発生手段が上下に配置されるオープン型と呼ばれるMRI装置においては、特許文献1に開示された技術を適用することは困難である。オープン型MRI装置では、外装カバーの形状は平板状であり、トンネル型(ドーナツ型)MRI装置の外装カバーの形状である円筒状と比較して剛性が低く、静磁場発生手段と外装カバーとを非接触にする構造とすると、被検体の荷重による外装カバーの撓みの問題が発生する。外装カバーに撓みが生じると、被検体の姿勢や位置がずれ、MRI装置のオペレータが意図する姿勢や位置での撮影ができないという問題が生じる。
 なお、オープン型MRI装置において、特許文献1に開示された技術を適用し、さらに外装カバーの撓みを防止するため、外装カバーの剛性を高める方法が考えられる。外装カバーの剛性を高める方法としては、外装カバーの厚さを増加させる方法や外装カバーの材料を剛性が高い材料に変更する方法が考えられる。
 しかし、MRI装置において、これらの方法を実現するのは容易ではない。前者の外装カバーの厚さを増加させる方法は、撮影空間を狭めることになり、被検体にとって閉塞感や圧迫感を与えてしまうという問題が生じる。撮影空間を狭めない場合は、静磁場発生手段を高さ方向に大きくせざるを得ず、こうするとMRI装置の高さ方向の大型化を招くこととなる。また、後者の外装カバーの材料を剛性が高い材料に変更する方法は、特に、被検体が置かれる撮影空間側の外装カバーはMRI装置特有の問題である磁気共鳴画像への悪影響を避けるために、非磁性かつ非導電性のガラスエポキシ等といった繊維強化樹脂を使用せざるを得ないため、材料の選択の余地は非常に少ない。
 このように、特許文献1に開示された技術では、オープン型MRI装置における被検体の荷重による外装カバーの撓みの問題を解決することは困難である。
 特許文献2に開示された磁気共鳴イメージング装置では、オープン型MRI装置において、静磁場発生手段と外装カバーの間に補強部材(非接触支持手段)を備え、この補強部材で静磁場発生手段を完全に覆い、静磁場発生手段と外装カバーが直接的に接触しないようにすることで、傾斜磁場コイルから静磁場発生手段へ伝搬する振動が外装カバーへ直接的に伝搬しないように構成されている。これにより、外装カバーに伝搬する振動が低減し、MRI装置の騒音が低減する。
 また、特許文献2に開示された磁気共鳴イメージング装置では、外装カバーは補強部材によって全面を完全に支持されているため、被検体の荷重による外装カバーの撓みを防止できる。この点においては、特許文献1に開示された技術で課題となっていたオープン型MRI装置における被検体の荷重による外装カバーの撓みの問題を解決している。
 しかし、特許文献2に開示された技術では、静磁場発生手段の表面全体は補強部材と完全に接触しており、また、補強部材の表面全面も外装カバーと完全に接触している。このため、静磁場発生手段と外装カバーは直接的ではないが、間接的には完全に接触している。即ち、補強部材は静磁場発生手段の表面全体の振動を受けるため、静磁場発生手段から補強部材に伝搬する振動を効果的に低減することができない。また、外装カバーは補強部材の表面全体の振動を受けるため、補強部材から外装カバーに伝搬する振動を効果的に低減できない。このため、静磁場発生手段から外装カバーに伝搬する振動を効果的に低減することができないという問題があった。
 特に、被検体が置かれる撮影空間付近に備えられる補強部材は、外装カバーの撓みを防止するためにある程度剛性が高く、かつ、MRI装置特有の問題である磁気共鳴画像への悪影響を避けるために、前記のような繊維強化樹脂を使用せざるを得ない。この繊維強化樹脂のような材料は、一般に硬い材料であり振動を伝搬しやすいため、静磁場発生手段から外装カバーに伝搬する振動を効果的に低減することができないという問題があった。
 そこで、本発明は、外装カバーの撓みを防止し、騒音を低減できる磁気共鳴イメージング装置(MRI装置)を提供することを課題とする。
 このような課題を解決するために、本発明に係る磁気共鳴イメージング装置は、撮影空間を挟んで上下方向に対向して配置され、該撮影空間に垂直方向の静磁場を発生させるための静磁場発生手段と、対向して配置された前記静磁場発生手段を連結する2本の連結柱と、傾斜磁場コイル支持部材を介して前記静磁場発生手段に支持され、前記静磁場に傾斜した磁場を発生させる傾斜磁場コイルと、前記静磁場発生手段および前記連結柱を覆う外装カバーと、前記被検体を前記撮影空間に案内するための寝台と、を備え、前記外装カバーは、前記静磁場発生手段の撮影空間側との間に層を備え、前記静磁場発生手段の前記撮影空間側の表面上において、前記連結柱2本の中心を直線で結び、前記連結柱2本のうち前記寝台と対向する連結柱側の前記直線上の角度を0度とし、他方の連結柱側の前記直線上の角度を180度としたとき、前記表面上に沿って角度が55度~75度あるいは110度~130度もしくはその両方の範囲に、前記外装カバーを支持する外装カバー支持部材を有することを特徴とする。
 また、本発明に係る磁気共鳴イメージング装置は、撮影空間を挟んで上下方向に対向して配置され、該撮影空間に垂直方向の静磁場を発生させるための静磁場発生手段と、対向して配置された前記静磁場発生手段を連結する2本の連結柱と、傾斜磁場コイル支持部材を介して前記静磁場発生手段に支持され、前記静磁場に傾斜した磁場を発生させる傾斜磁場コイルと、前記静磁場発生手段および前記連結柱を覆う外装カバーと、前記静磁場発生手段の上側に配置され、前記静磁場発生手段の超電導コイルを超電導状態に保つための冷却装置と、を備え、前記外装カバーは、前記静磁場発生手段の撮影空間側との間に層を備え、前記静磁場発生手段の前記撮影空間側の表面上において、前記連結柱2本の中心を直線で結び、前記連結柱2本のうち前記冷却装置が配置される側とは反対側の連結柱側の前記直線上の角度を0度とし、他方の連結柱側の前記直線上の角度を180度としたとき、前記表面上に沿って角度が55度~75度あるいは110度~130度もしくはその両方の範囲に、前記外装カバーを支持する外装カバー支持部材を有することを特徴とする。
 また、本発明に係る磁気共鳴イメージング装置は、撮影空間を挟んで上下方向に対向して配置され、該撮影空間に垂直方向の静磁場を発生させるための静磁場発生手段と、対向して配置された前記静磁場発生手段を連結する2本の連結柱と、傾斜磁場コイル支持部材を介して前記静磁場発生手段に支持され、前記静磁場に傾斜した磁場を発生させる傾斜磁場コイルと、前記静磁場発生手段および前記連結柱を覆う外装カバーと、を備え、前記外装カバーは、前記静磁場発生手段の撮影空間側との間に層を備え、前記静磁場発生手段の前記撮影空間側の表面上において、300Hz~500Hzの周波数範囲における平均化処理した振動振幅が谷となる範囲に、前記外装カバーを支持する外装カバー支持部材を有することを特徴とする。
 本発明によれば、外装カバーの撓みを防止し、騒音を低減できる磁気共鳴イメージング装置(MRI装置)を提供することができる。
第1実施形態に係るMRI装置の斜視図である。 第1実施形態に係るMRI装置のA-A概略断面図である。 第1実施形態に係るMRI装置のB-B概略断面図である。 第1実施形態に係るMRI装置のC-C概略断面図である。 振動の固有周波数の計算結果例のうち、(a)は固有周波数F1の解析結果であり、(b)は固有周波数F2の解析結果であり、(c)は固有周波数F3の解析結果であり、(d)は固有周波数F4の解析結果である。 300Hz~500Hzの周波数範囲における開口面上の振動の固有周波数解析結果において、各周波数で振動振幅の最大値で正規化し、正規化した振動振幅に対して統計的な平均化処理を施した解析結果である。 第2実施形態に係るMRI装置のB-B概略断面図である。 第3実施形態に係るMRI装置のB-B概略断面図である。 第4実施形態に係るMRI装置のC-C概略断面図である。 第5実施形態に係るMRI装置のC-C概略断面図である。 参考例に係るMRI装置のB-B概略断面図である。 第1参考例に係るMRI装置のC-C概略断面図である。 第2参考例に係るMRI装置のC-C概略断面図である。
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
≪第1実施形態≫
<MRI装置>
 第1実施形態に係るMRI装置1について、図1および図2を用いて説明する。図1は、第1実施形態に係るMRI装置1の斜視図である。図2は、第1実施形態に係るMRI装置1のA-A概略断面図である。なお、図1および図2では、後述する外装カバー10の図示を省略している。
 なお、以下の説明において、撮影空間100(図2参照)の中心を原点とし、この撮影空間100に対して、垂直方向(上下方向)をz軸、2本の連結柱6a,6bが配置される左右方向をx軸、このx軸に直交する前後方向をy軸とする。これに従うと、図2はzx平面における断面図である。
 図1に示すように、第1実施形態に係るMRI装置1としては、超電導磁石を適用した垂直磁場方式のオープン型MRI装置を挙げることができる。オープン型MRI装置とは、撮影空間100(図2参照)のある特定の部分が開放された構造をもつMRI装置である。このオープン型MRI装置の特徴は、一般的なドーナツ型(トンネル型)MRI装置と比較して、被検体200(後述する図4参照)にとって開放感が得られる点と、MRI装置のオペレータ(図示せず)が被検体200へアプローチしやすい点が挙げられる。
 図1に示すように、MRI装置1は、スキャナガントリ2と、寝台8と、コンピュータ9と、を備えている。そして、図2に示すように、スキャナガントリ2は、静磁場発生手段3a,3bと、傾斜磁場コイル4a,4bと、照射コイル5a,5bと、連結柱6a,6bと、冷却装置7(図1参照)と、を備えている。また、図1および図2では、図示を省略するが、スキャナガントリ2は、外装カバー10(後述する図4参照)で覆われている。
 図1および図2に示すように、MRI装置1には、静磁場発生手段3aと静磁場発生手段3bが撮影空間100を挟んで上下方向に対向して配置されており、上下の静磁場発生手段3a,3bは2本の連結柱6a,6bで連結されている。図2および後述する図3に示すように、連結柱6aと連結柱6bは、撮影空間100を中心としてほぼ点対称に配置されている。なお、静磁場発生手段3a,3bや連結柱6a,6bを構成する部材には、主としてステンレス鋼などの非磁性の金属系材料を用いる。
 静磁場発生手段3a,3bは、超電導コイル(図示せず)と、超電導コイルを収納する冷却容器(図示せず)と、冷却容器を収納する真空容器(図示せず)と、を有している。超電導コイルは、円環状に巻かれており、撮影空間100に均一な垂直(z軸方向)静磁場を発生させる。超電導コイルは、円環状の冷却容器に収納される。この冷却容器には、液体ヘリウムなどの冷媒が貯蔵され、超電導コイルはこの冷媒に浸漬される。そして、超電導コイルは、冷媒により超電導特性を示す温度にまで冷却され、その冷却温度を保持する。冷却容器は、真空容器に収納され、外気と真空断熱される。また、真空容器から冷却容器への輻射による伝熱を抑制するために、真空容器と冷却容器との間には輻射シールドが配置されている。
 図2に示すように、静磁場発生手段3a,3bの撮影空間100の側には、窪み部3cが設けられている。静磁場発生手段3a,3bの窪み部3cには、それぞれ、核磁気共鳴信号に位置情報を付与するために静磁場に重ねて線形な傾斜磁場を発生させる傾斜磁場コイル4a,4bと、被検体200の生体組織の原子核に核磁気共鳴を生じさせるための高周波電磁波を照射する照射コイル5a,5bと、が配置されている。なお、照射コイル5a,5bは、それぞれ、傾斜磁場コイル4a,4bの近傍かつ撮影空間100に近い側に配置されている。つまり、傾斜磁場コイル4aおよび照射コイル5aを内蔵した静磁場発生手段3aと、傾斜磁場コイル4bおよび照射コイル5bを内蔵した静磁場発生手段3bとは、撮影空間100を挟んで2本の連結柱6a,6bによって上下に対向して配置されている。なお、傾斜磁場コイル4a,4bは、傾斜磁場コイル支持部材4cを介して、静磁場発生手段3a,3bに支持されている。
 また、静磁場発生手段3a,3b、照射コイル5a,5b、および連結柱6a,6bは、外装カバー10(後述する図4参照)で覆われている。なお、図1、図2(および後述する図3)では、外装カバー10の図示を省略している。特に、後述する図4に示すように、外装カバー10は、静磁場発生手段3bと照射コイル5bの外側を覆うように設けられている。
 また、図1および図2に示すように、MRI装置1には、被検体200を載せて撮影空間100内に案内する寝台8が備えられている。寝台8は、被検体200が撮影空間100内に置かれたとき、被検体200の開放感を最大化させるために、後述する図3に示すように、連結柱6aの中心と連結柱6bの中心を結ぶ直線mと、寝台8の中心と撮影空間100の中心とを結ぶ直線nと、が直交しないように設けられている。
 また、MRI装置1は、静磁場発生手段3a,3bの超電導コイルを超電導状態に保つための冷却装置7を備えている。冷却装置7は、被検体200の開放感を最大化させるために、静磁場発生手段3aの上で被検体200から見えにくい位置に配置されている。具体的には、図1に示すように、静磁場発生手段3aの上で連結柱6bの側に設けられている。また、換言すれば、後述する図3に示す連結柱6aの中心と連結柱6bの中心を結ぶ直線mと、寝台8の中心と撮影空間100の中心とを結ぶ直線nとが、鋭角となる側の連結柱6bの上側に冷却装置7が設けられている。
 また、MRI装置1は、静磁場発生手段3a,3b、傾斜磁場コイル4a,4b、照射コイル5a,5bなどに電流を供給する電源装置(図示せず)と、被検体200の生体組織の原子核から発生した核磁気共鳴信号を受信する受信コイル(図示せず)と、その核磁気共鳴信号に基づき磁気共鳴画像を得る画像再構築装置(コンピュータ9)と、MRI装置1全体を制御する制御装置(コンピュータ9)と、を備えている。
 次に、MRI装置1による被検体200の断層画像(磁気共鳴画像)の撮影の流れについて説明する。まず、静磁場発生手段3a,3bによって撮影空間100内に均一な静磁場を発生させ、寝台8に載せた被検体200を撮影空間100内に置く。そして、所望のパルスシーケンスに従い、傾斜磁場コイル4a,4bに電流を流し、均一な静磁場中に置かれた被検体200にx,y,z軸方向に線形傾斜磁場が重ねられ、被検体200の原子スピンがラーモア周波数と呼ばれる共鳴周波数で磁気的に励起される。所望のパルスシーケンスに従い、傾斜磁場コイル4a,4bに電流を流し、被検体200に対してx,y,z軸方向に線形傾斜磁場が重ねられる。
 また、照射コイル5a,5bから高周波信号を被検体200に照射し、被検体200の原子スピンがラーモア周波数と呼ばれる共鳴周波数で磁気的に励起させる。この励起に伴い、発生した核磁気共鳴信号を受信コイル(図示せず)で検出し、画像再構築装置であるコンピュータ9で信号処理により画像を再構築することで、任意断面における被検体200の断層画像(磁気共鳴画像)を得ることができる。
<外装カバーの支持構造>
 次に、第1実施形態に係るMRI装置1の外装カバー10の支持構造について、図11から図13に示す参考例と対比しつつ、図3および図4を用いて説明する。
 まず、参考例に係るMRI装置の外装カバー10の支持構造について、図11から図13を用いて説明する。図11は、参考例に係るMRI装置のB-B概略断面図(xy平面における断面図)である。図12は、第1参考例に係るMRI装置のC-C概略断面図(yz平面における断面図)である。図13は、第2参考例に係るMRI装置のC-C概略断面図(yz平面における断面図)である。なお、図11では、外装カバー10の図示を省略している。
 図11では、静磁場発生手段3bの撮影空間100の側の表面(以降は、この表面を開口面3dと称する。)に、左下がりハッチングを付している。図12および図13に示すように、外装カバー10は、照射コイル5bと開口面3dの外側を覆うように配置されている。
 ここで、前述のように、被検体200の断層画像の撮影時には、線形傾斜磁場を生成するために、静磁場中に配置された傾斜磁場コイル4a,4bにパルス的な電流を流す。このとき、静磁場発生手段3a,3bの静磁場と傾斜磁場コイル4a,4bを流れる電流とによって、傾斜磁場コイル4a,4bにローレンツ力が作用し、傾斜磁場コイル4a,4bが振動する。傾斜磁場コイル4a,4bは傾斜磁場コイル支持部材4cを介して静磁場発生手段3a,3bに支持されているため、傾斜磁場コイル4a,4bの振動は静磁場発生手段3a,3bに伝搬して、静磁場発生手段3a,3bの開口面3dが振動する。
 第1参考例に係るMRI装置では、図12に示すように、開口面3dと外装カバー10とは全面で接触している。このため、開口面3dから外装カバー10に振動が伝搬して、外装カバー10が振動する。これにより、外装カバー10の周囲の空気が振動して、騒音が発生するという課題がある。
 このような外装カバー10の振動による騒音を低減するために、第2参考例に係るMRI装置では、図13に示すように、開口面3dと外装カバー10とは接触せず、開口面3dと外装カバー10との間に層(空気層)11を設けている。このような構成により、開口面3dの振動が外装カバー10に伝搬することを抑制し、これによりMRI装置の騒音を低減する。
 しかし、前述のように、図13に示す構造では、撮影空間100内に置かれた被検体200の荷重によって、外装カバー10が撓み、その撓みによって被検体200の姿勢や位置がずれ、MRI装置のオペレータが意図する姿勢や位置での撮影ができないという課題があった。
 なお、前述のように、外装カバー10の撓みを防止する方法として、外装カバー10の厚さを増加させる方法や外装カバー10の材料を剛性が高い材料に変更する方法を挙げたが、これらの方法を実現するのは容易ではない。
 次に、第1実施形態に係るMRI装置1の外装カバー10の支持構造について、図3から図4を用いて説明する。図3は、第1実施形態に係るMRI装置1のB-B概略断面図(xy平面における断面図)である。図4は、第1実施形態に係るMRI装置1のC-C概略断面図(yz平面における断面図)である。なお、図3では、外装カバー10の図示を省略している。
 第1実施形態に係るMRI装置1では、開口面3dと外装カバー10の間に層(空気層)11を設け、外装カバー10の撓みを防止するために、開口面3dと外装カバー10の間に外装カバー10の外装カバー支持部材13を設けて、外装カバー10の撓みを防止する。このような構成により、外装カバー10の撓みを防止することができる。
 しかし、第1実施形態に係るMRI装置1では、第2参考例と比較して、開口面3dの振動が外装カバー支持部材13を介して外装カバー10に伝搬する。ここで、開口面3dの振動が大きな位置に外装カバー支持部材13を設けると、外装カバー10に伝搬する振動も大きくなり、騒音も大きくなる。一方、開口面3dの振動が小さい位置に外装カバー支持部材13を設けると、外装カバー10に伝搬する振動も小さくなり、騒音も低減することができる。したがって、外装カバー支持部材13を設ける位置は、開口面3dの振動が小さくなる位置(後述する角度範囲12a,12b)とすることが好ましい。
 そこで、本発明では、開口面3dの振動が小さくなる位置を明らかにした。以下では、その方法について、図5および図6を用いて説明する。
 図5は、振動の固有周波数の計算結果例のうち、(a)は固有周波数F1の解析結果であり、(b)は固有周波数F2の解析結果であり、(c)は固有周波数F3の解析結果であり、(d)は固有周波数F4の解析結果である。
 まず、図3に示した開口面3d上において、連結柱6aと連結柱6bの中心を結ぶ直線m上で寝台8と対向する位置にある連結柱6aの撮影空間100側の面と照射コイル5bの円周上の連結柱6a側との中心にある開口面3d上の点aを0度とし、連結柱6bの撮影空間100側の面と照射コイル5bの円周上の連結柱6b側との中心にある開口面3d上の点bを180度とし、点aを始点とし点bに向かう角度を角度θと定義する。
 図5は、角度θをパラメータとしたときの開口面3dの振動の固有周波数を解析し、この解析より得られる振動の大小をプロットしたグラフである。ここで、振動の固有周波数とは、構造物(ここではMRI装置1)が振動する際に必ず励起され、共振して振動が大きくなる周波数である。
 また、図5(a)~(d)は、MRI装置1において騒音レベルが高い300Hz~500Hzにおける振動の固有周波数解析結果のうち、異なる4つの周波数(F1、F2、F3、F4、周波数の大小関係は、F1<F2<F3<F4)の解析結果を示している。ここで、横軸は、点aからの角度θを示しており、0度が点aの位置、180度が点bの位置であり、90度は点aと点bを結ぶ円とy軸との交点の位置である。また、縦軸は、各周波数における振動の固有周波数の振動振幅の最大値で正規化した振動振幅である。なお、縦軸が上になるほど振動振幅が大きいことを意味する。
 図5に示すように、開口面3dにおける点aと点bを結ぶ半円上では、振動振幅が大きい位置(腹)と、振動振幅が小さい位置(節)と、が存在する。また、点aから点bまで角度θが大きくなるに従って、腹と節が交互に繰り返されていることがわかる。また、F1、F2、F3、F4は、周波数の数値が小さいものから大きいものの順であるが、周波数が大きくなるに従い、点aから点bを結ぶ円の間に含まれる腹と節の数が増加することがわかる。この振動の周波数が大きくなるに従って、振動振幅の腹と節が交互に繰り返される数が増加するのは、振動の固有周波数の特徴である。
 さらに、図5で示した4つのグラフの共通点として、角度θが0度(点a)付近と180度(点b)付近はほぼ節になっており、振動振幅が小さいことがわかる。これは、連結柱6a,6bの近傍の位置であり、この付近は連結柱6a,6bという構造物によって開口面3dの振動が抑制されているためである。
 一方、角度θが0度付近以外かつ180度付近以外の位置では、振動振幅が腹になっている周波数もあれば、節になっている周波数もある。例えば、角度θが60度や120度の位置では、F1とF3ではほぼ節、つまり振動振幅が小さいことがわかる。しかし、F2やF4ではほぼ腹、つまり振動振幅が大きいことがわかる。
 即ち、どの開口面3d上の位置においても、振動振幅が大きくなる周波数と小さくなる周波数が存在する。換言すれば、開口面3dの振動が複数の周波数で振動する場合において、どの周波数でも振動が小さい開口面3d上の位置は、点aと点bの周辺以外は存在しない。
 このように、点aと点bの周辺以外では、構造物が単独の周波数で振動するものであれば、振動が小さい位置を見出し、その位置に対して外装カバー支持部材13を配置すればよい。しかし、一般的にMRI装置1を構成する構造の振動は、数多くの周波数を含んだ振動が発生する。そのため、外装カバー支持部材13が配置できる位置として、どの周波数でも振動が小さい位置(節)は存在せず、それを満たす位置を決定することができないという課題があった。
 しかし、本発明では、対象とする周波数範囲を限定して、つまりMRI装置1の騒音でレベルが比較的高い周波数範囲に限定すれば、開口面3dで振動振幅の小さい位置を見出すことができることを明らかにした。
 図6は、図5を得るために実施した300Hz~500Hzの周波数範囲における開口面3d上の振動の固有周波数解析結果において、各周波数で振動振幅の最大値で正規化し、正規化した振動振幅に対して統計的な平均化処理を施した解析結果である。なお、図6の縦軸と横軸は、図5と同様であるため説明を省略する。
 図6に示すように、300Hz~500Hzの周波数範囲における平均化処理した振動振幅は、点aと点bの周辺を除いた角度において、点cおよび点dの位置で振動振幅が小さくなっている。
 即ち、図6に示すように、角度θが0度(点a)と180度(点b)の周辺を除き、点aから角度θが55度~75度の角度範囲12a、および、110度~130度の角度範囲12bで振動振幅が小さいことがわかる。
 この角度範囲12a,12bでは、図5に示したように、振動振幅が大きくなる(腹となる)周波数も存在するが、図6に示したように、騒音のレベルが高い300Hz~500Hzの周波数範囲では、平均的に振動振幅が小さいということがいえる。
 また、図5や図6は振動の固有周波数であるため、広い周波数帯域に渡って振動する加振力であれば、図6で示した振動が小さい角度範囲12aと角度範囲12bでは、他の開口面3dの位置と比較して相対的に振動振幅は小さくなる。
 即ち、外装カバー10の撓みを防止するために設置する外装カバー支持部材13は、角度範囲12aと角度範囲12bに備えることで、開口面3d上の振動振幅が相対的に小さい部位で外装カバー10を支持することができる。これにより、開口面3dから外装カバー10に伝搬する振動を低減することができ、外装カバー10の振動によって発生する騒音が低減するため、MRI装置1の騒音を低減することができる。
 以上のように、第1実施形態に係るMRI装置1では、図3に示すように、角度範囲12aおよび角度範囲12bに、外装カバー10の撓みを防止するための外装カバー支持部材13を設置する。このように外装カバー支持部材13を設置することにより、外装カバー10と開口面3dの間に層11を設けた際に生じる、被検体200の荷重による外装カバー10の撓みを防止することができるため、被検体200の姿勢や位置がずれることがなく、オペレータが意図する姿勢や位置での撮影が可能となる。
 また、MRI装置1の騒音でレベルの高い300Hz~500Hzの周波数範囲において、点aからの角度θが55度~75度の角度範囲12a、および110度~130度の角度範囲12bでは、振動振幅が他の開口面3dの位置と比較して小さいため、開口面3dから外装カバー支持部材14を経由して外装カバー10に伝搬する振動を低減することができ、外装カバー10の振動によって発生する騒音が低減するために、MRI装置1の騒音を低減することができる。
 また、第1実施形態に係るMRI装置1は、外装カバー10の厚さを増加させて撓みを防止する方法と比較して、撮影空間100を狭めることなく、あるいはMRI装置1の高さ方向の大型化を招くことなく、外装カバー10の撓みを防止し、MRI装置1の騒音を低減することができる。
 なお、図3では、各角度範囲12a,12bごとに1つの外装カバー支持部材13を配置するものとして図示しているがこれに限られるものではない。外装カバー支持部材13を配置する数は、外装カバー支持部材13の設置範囲(角度範囲12a,12b)であれば、複数配置してもよい。
 ちなみに、点aと点b、即ち、連結柱6a,6bの周辺は、どの周波数に置いても振動振幅が小さいが、この位置に外装カバー支持部材13を配置して外装カバー10を支持しても、この周辺には被検体200が置かれることはなく、被検体200の荷重を効果的に支えることができないため、外装カバー10の撓みを防止する効果は小さい。
≪第2実施形態≫
 次に、第2実施形態に係るMRI装置について図7を用いて説明する。図7は、第2実施形態に係るMRI装置のB-B概略断面図(xy平面における概略断面図)である。なお、第1実施形態に係るMRI装置1は外装カバー支持部材13(図3参照)を備えるのに対し、第2実施形態に係るMRI装置は外装カバー支持部材14(図7参照)を備える点で構成が異なっている。第2実施形態に係るMRI装置のその他の構成は、図1から図6に示す第1実施形態に係るMRI装置1と同様であり、説明を省略する。
 図7に示すように、第2実施形態の外装カバー支持部材14は、第1実施形態で示した外装カバー支持位置範囲12a,12bにおいて、開口面3dの内円周付近(即ち、照射コイル5bの円周付近)から開口面3dの外円周付近に向かって直線的に配置されている。即ち、外装カバー支持部材14は、外装カバー支持位置範囲12a,12bにおいて、開口面3d(静磁場発生手段3b)の径方向に向かって直線的に配置されている。
 このような構造により、外装カバー10と開口面3dの間に層11を設けた際に生じる、被検体200の荷重による外装カバー10の撓みを防止することができるため、被検体200の姿勢や位置がずれることがなく、オペレータが意図する姿勢や位置での撮影が可能となる。また、MRI装置の騒音でレベルの高い300Hz~500Hzの周波数範囲において、点aからの角度θが55度~75度の範囲12a、および110度~130度の範囲12bでは、振動振幅が他の開口面3dの位置と比較して小さいため、開口面3dから外装カバー支持部材14を経由して外装カバー10に伝搬する振動を低減することができ、外装カバー10の振動によって発生する騒音が低減するために、MRI装置の騒音を低減することができる。
 なお、第2実施形態の外装カバー支持部材14は、直線的に配置されているものとして説明したが、これに限られるものではない。例えば、S字のような曲線的な形状を持つ外装カバー支持部材を外装カバー支持位置範囲12a,12bに配置してもよい。
≪第3実施形態≫
 次に、第3実施形態に係るMRI装置について図8を用いて説明する。図8は、第3実施形態に係るMRI装置のB-B概略断面図(xy平面における概略断面図)である。なお、第1実施形態に係るMRI装置1は外装カバー支持部材13(図3参照)を備えるのに対し、第3実施形態に係るMRI装置は外装カバー支持部材15(図8参照)を備える点で構成が異なっている。第3実施形態に係るMRI装置のその他の構成は、図1から図6に示す第1実施形態に係るMRI装置1と同様であり、説明を省略する。
 図8に示すように、第3実施形態の外装カバー支持部材15は、第1実施形態で示した外装カバー支持位置範囲12a,12bにおいて、開口面3d(静磁場発生手段3b)の周方向に向かって円弧状に配置されている。
 このような構造により、外装カバー10と開口面3dの間に層11を設けた際に生じる、被検体200の荷重による外装カバー10の撓みを防止することができるため、被検体200の姿勢や位置がずれることがなく、オペレータが意図する姿勢や位置での撮影が可能となる。また、MRI装置の騒音でレベルの高い300Hz~500Hzの周波数範囲において、点aからの角度θが55度~75度の範囲12a、および110度~130度の範囲12bでは、振動振幅が他の開口面3dの位置と比較して小さいため、開口面3dから外装カバー支持部材15を経由して外装カバー10に伝搬する振動を低減することができ、外装カバー10の振動によって発生する騒音が低減するために、MRI装置の騒音を低減することができる。
 なお、第3実施形態の外装カバー支持部材15は、開口面3dの周方向に向かって円弧状に配置されているものとして説明したが、これに限られるものではない。例えば、第2実施形態で示した開口面3dの径方向に向かって直線的に配置されている外装カバー支持部材14(図7参照)と組み合わせて、十字のような形状を持つ外装カバー支持部材を外装カバー支持位置範囲12a,12bに配置してもよい。
 以上、第1実施形態から第3実施形態で示すように、外装カバー支持部材(13~15)の形状や数量は、被検体200の荷重によって生じる外装カバー10の撓みを防止するのに必要な形状や数量を適宜選択し、配置することができる。ただし、開口面3dの振動が外装カバー10に極力伝搬しないようにするためには、外装カバー支持部材の数量は少ないことが望ましい。
≪第4実施形態≫
 次に、第4実施形態に係るMRI装置について図9を用いて説明する。図9は、第4実施形態に係るMRI装置のC-C概略断面図(yz平面における概略断面図)である。
 第4実施形態に係るMRI装置は、外装カバー10と静磁場発生手段3bの開口面3dとの間の層11に、グラスウールやウレタンフォームに代表される吸音材20を備える点で第1実施形態に係るMRI装置1と異なっている。第4実施形態に係るMRI装置のその他の構成は、図1から図6に示す第1実施形態に係るMRI装置1と同様であり、説明を省略する。
 図9に示すように、外装カバー10と静磁場発生手段3bの開口面3dとの間の層11に、グラスウールやウレタンフォームに代表される吸音材20を備えている。
 このように、層11に吸音材20を備えることで、静磁場発生手段3bが振動した際に放射される騒音が吸音材20を伝搬する際、騒音の振動エネルギが吸音材20による熱エネルギに変換されて消失し、また、外装カバー10の遮音によってさらに減音される。即ち、吸音材20を備えることで、外装カバー10の遮音効果が増大し、外装カバー10の外部に放射される騒音が低減するため、MRI装置の騒音を低減することができる。
 なお、吸音材20は、一般に発砲材料が適用され、柔らかい材料である。そのため、外装カバー10の撓みを防止するための十分な機能を有していない。外装カバー10の撓み防止は、第1実施形態で説明したように外装カバー支持部材13がその機能を有する。即ち、特許文献2のように全面で支持するものとは異なる。
 なお、図9では、外装カバー支持部材13により、外装カバー10を支持するものとして説明したが、これに限られるものではなく、第2実施形態の外装カバー支持部材14や、第3実施形態の外装カバー支持部材15を用いてもよく、数量や形状は適宜変更してもよい。
 また、吸音材20は、外装カバー10と開口面3dの間の層11以外に設けられている外装カバー10と静磁場発生手段3bの間の層や、静磁場発生手段3aと外装カバー10との間の層に設置することもできる。
≪第5実施形態≫
 次に、第5実施形態に係るMRI装置について図10を用いて説明する。図10は、第5実施形態に係るMRI装置のC-C概略断面図(yz平面における概略断面図)である。
 第5実施形態に係るMRI装置は、外装カバー10と静磁場発生手段3bの開口面3dとの間の層11に、吸音材20および防振材30を備える点で第1実施形態に係るMRI装置1と異なっている。第5実施形態に係るMRI装置のその他の構成は、図1から図6に示す第1実施形態に係るMRI装置1と同様であり、説明を省略する。
 即ち、層11のうち、静磁場発生手段3bの開口面3dの側に防振材30が設けられており、外装カバー10の側に吸音材20が設けられている。なお、防振材30としては、防振ゴムを用いることができる。このような構成により、静磁場発生手段3bが振動した際に放射される騒音を低減し、MRI装置の騒音を低減することができる。
 なお、層11に吸音材20および防振材30を備えるものとして説明したが、吸音材20を省略してもよい。即ち、外装カバー10と静磁場発生手段3bの開口面3dとの間の層11に、防振材30と空気層を備える構成であってもよい。
 なお、図10では、外装カバー支持部材13により、外装カバー10を支持するものとして説明したが、これに限られるものではなく、第2実施形態の外装カバー支持部材14や、第3実施形態の外装カバー支持部材15を用いてもよく、数量や形状は適宜変更してもよい。
<変形例>
 なお、本実施形態に係る磁気共鳴イメージング装置は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
 本実施形態に係る磁気共鳴イメージング装置は、図3(図7、図8)に示すように、点aからの角度θが55度~75度の範囲12a、および110度~130度の範囲12bに外装カバー支持部材13(14,15)を配置するものとして説明したが、これに限られるものではない。一方の連結柱6a(または6b)から他方の連結柱6b(または6a)までの角度θを0度~180度で定義して、角度θが55度~70度の範囲、および110度から125度の範囲に外装カバー支持部材13(14,15)を配置するものとしてもよい。
 また、本実施形態に係る磁気共鳴イメージング装置は、図3に示すように、寝台8と対向する位置にある連結柱6aの側を角度θが0度と定義するものとして説明したが、これに限られるものではない。2本の連結柱6a,6bのうち冷却装置7(図1参照)が配置される側とは反対側の連結柱6aの側を角度θが0度と定義してもよい。
1        MRI装置
2        スキャナガントリ
3a,3b    静磁場発生手段
3c       窪み部
3d       開口面
4a,4b    傾斜磁場コイル
4c       傾斜磁場コイル支持部材
5a,5b    照射コイル
6a,6b    連結柱
7        冷却装置
8        寝台
9        コンピュータ
10       外装カバー
11       層
12a,12b  角度範囲(外装カバー支持位置範囲)
13,14,15 外装カバー支持部材
20       吸音材
30       防振材
100      撮影空間
200      被検体

Claims (7)

  1.  撮影空間を挟んで上下方向に対向して配置され、該撮影空間に垂直方向の静磁場を発生させるための静磁場発生手段と、
     対向して配置された前記静磁場発生手段を連結する2本の連結柱と、
     傾斜磁場コイル支持部材を介して前記静磁場発生手段に支持され、前記静磁場に傾斜した磁場を発生させる傾斜磁場コイルと、
     前記静磁場発生手段および前記連結柱を覆う外装カバーと、
     前記被検体を前記撮影空間に案内するための寝台と、を備え、
     前記外装カバーは、
     前記静磁場発生手段の撮影空間側との間に層を備え、
     前記静磁場発生手段の前記撮影空間側の表面上において、
     前記連結柱2本の中心を直線で結び、前記連結柱2本のうち前記寝台と対向する連結柱側の前記直線上の角度を0度とし、他方の連結柱側の前記直線上の角度を180度としたとき、
     前記表面上に沿って角度が55度~75度あるいは110度~130度もしくはその両方の範囲に、前記外装カバーを支持する外装カバー支持部材を有する
    ことを特徴とする磁気共鳴イメージング装置。
  2.  撮影空間を挟んで上下方向に対向して配置され、該撮影空間に垂直方向の静磁場を発生させるための静磁場発生手段と、
     対向して配置された前記静磁場発生手段を連結する2本の連結柱と、
     傾斜磁場コイル支持部材を介して前記静磁場発生手段に支持され、前記静磁場に傾斜した磁場を発生させる傾斜磁場コイルと、
     前記静磁場発生手段および前記連結柱を覆う外装カバーと、
     前記静磁場発生手段の上側に配置され、前記静磁場発生手段の超電導コイルを超電導状態に保つための冷却装置と、を備え、
     前記外装カバーは、
     前記静磁場発生手段の撮影空間側との間に層を備え、
     前記静磁場発生手段の前記撮影空間側の表面上において、
     前記連結柱2本の中心を直線で結び、前記連結柱2本のうち前記冷却装置が配置される側とは反対側の連結柱側の前記直線上の角度を0度とし、他方の連結柱側の前記直線上の角度を180度としたとき、
     前記表面上に沿って角度が55度~75度あるいは110度~130度もしくはその両方の範囲に、前記外装カバーを支持する外装カバー支持部材を有する
    ことを特徴とする磁気共鳴イメージング装置。
  3.  撮影空間を挟んで上下方向に対向して配置され、該撮影空間に垂直方向の静磁場を発生させるための静磁場発生手段と、
     対向して配置された前記静磁場発生手段を連結する2本の連結柱と、
     傾斜磁場コイル支持部材を介して前記静磁場発生手段に支持され、前記静磁場に傾斜した磁場を発生させる傾斜磁場コイルと、
     前記静磁場発生手段および前記連結柱を覆う外装カバーと、を備え、
     前記外装カバーは、
     前記静磁場発生手段の撮影空間側との間に層を備え、
     前記静磁場発生手段の前記撮影空間側の表面上において、
     300Hz~500Hzの周波数範囲における平均化処理した振動振幅が谷となる範囲に、前記外装カバーを支持する外装カバー支持部材を有する
    ことを特徴とする磁気共鳴イメージング装置。
  4.  前記静磁場発生手段と前記外装カバーの間の層は、空気層で構成される
    ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の磁気共鳴イメージング装置。
  5.  前記静磁場発生手段と前記外装カバーの間の層は、吸音材で構成される
    ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の磁気共鳴イメージング装置。
  6.  前記静磁場発生手段と前記外装カバーの間の層は、
     前記静磁場発生手段の側の防振材と、
     前記外装カバーの側の吸音材と、で構成される
    ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の磁気共鳴イメージング装置。
  7.  前記静磁場発生手段と前記外装カバーの間の層は、
     前記静磁場発生手段の側の防振材と、
     前記外装カバーの側の空気層と、で構成される
    ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の磁気共鳴イメージング装置。
PCT/JP2015/062737 2014-05-08 2015-04-27 磁気共鳴イメージング装置 WO2015170632A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517878A JP6296576B2 (ja) 2014-05-08 2015-04-27 磁気共鳴イメージング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096987 2014-05-08
JP2014096987 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015170632A1 true WO2015170632A1 (ja) 2015-11-12

Family

ID=54392484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062737 WO2015170632A1 (ja) 2014-05-08 2015-04-27 磁気共鳴イメージング装置

Country Status (2)

Country Link
JP (1) JP6296576B2 (ja)
WO (1) WO2015170632A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385795B1 (ja) 2022-10-19 2023-11-24 東洋インキScホールディングス株式会社 粘着剤、粘着シート、積層体、およびディスプレイ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219112A (ja) * 2000-10-02 2002-08-06 General Electric Co <Ge> 低ノイズ型mriスキャナ
JP2005066320A (ja) * 2003-08-01 2005-03-17 Hitachi Medical Corp 傾斜磁場コイル
WO2005115239A1 (ja) * 2004-05-31 2005-12-08 Hitachi Medical Corporation 磁気共鳴イメージング装置
JP2007135948A (ja) * 2005-11-21 2007-06-07 Hitachi Medical Corp 磁気共鳴イメージング装置
JP5243437B2 (ja) * 2007-08-30 2013-07-24 株式会社日立メディコ オープン型mri装置及びオープン型超電導mri装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141974B2 (en) * 2003-08-25 2006-11-28 William A Edelstein Active-passive electromagnetic shielding to reduce MRI acoustic noise

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219112A (ja) * 2000-10-02 2002-08-06 General Electric Co <Ge> 低ノイズ型mriスキャナ
JP2005066320A (ja) * 2003-08-01 2005-03-17 Hitachi Medical Corp 傾斜磁場コイル
WO2005115239A1 (ja) * 2004-05-31 2005-12-08 Hitachi Medical Corporation 磁気共鳴イメージング装置
JP2007135948A (ja) * 2005-11-21 2007-06-07 Hitachi Medical Corp 磁気共鳴イメージング装置
JP5243437B2 (ja) * 2007-08-30 2013-07-24 株式会社日立メディコ オープン型mri装置及びオープン型超電導mri装置

Also Published As

Publication number Publication date
JPWO2015170632A1 (ja) 2017-04-20
JP6296576B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP5243437B2 (ja) オープン型mri装置及びオープン型超電導mri装置
JP4878174B2 (ja) 磁気共鳴イメージング装置
JP4822439B2 (ja) 磁気共鳴イメージング装置
JP5932815B2 (ja) 磁気共鳴イメージング装置
JP6296576B2 (ja) 磁気共鳴イメージング装置
US20050099181A1 (en) Magnetic resonance imaging apparatus
JP4921935B2 (ja) 電磁石装置及び磁気共鳴撮像装置
JP6296631B2 (ja) 磁気共鳴イメージング装置
JP5268716B2 (ja) 磁気共鳴イメージング装置
JP4843469B2 (ja) 磁気共鳴イメージング装置
JP2017113411A (ja) 磁気共鳴イメージング装置
JP4988385B2 (ja) 磁気共鳴イメージング装置
JP4814765B2 (ja) 磁気共鳴イメージング装置
JP6454789B2 (ja) 磁気共鳴イメージング装置
JP2014039633A (ja) 磁気共鳴イメージング装置
JP2006141613A (ja) 磁石装置及び磁気共鳴画像診断装置
JP4749699B2 (ja) 磁気共鳴イメージング装置
JP4866215B2 (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP5298056B2 (ja) 超電導磁石装置及び磁気共鳴イメージング装置
JP5145451B2 (ja) 電磁石装置及び磁気共鳴撮像装置
JP2015053982A (ja) 磁気共鳴イメージング装置
JP2014151151A (ja) 傾斜磁場コイル装置及び磁気共鳴イメージング装置
JP2007061528A (ja) 磁気共鳴イメージング装置
JP2016158705A (ja) 磁気共鳴イメージング装置
JP2006141614A (ja) 磁石装置及び磁石装置の設置方法並びに磁気共鳴画像診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788712

Country of ref document: EP

Kind code of ref document: A1