WO2016031341A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2016031341A1
WO2016031341A1 PCT/JP2015/066674 JP2015066674W WO2016031341A1 WO 2016031341 A1 WO2016031341 A1 WO 2016031341A1 JP 2015066674 W JP2015066674 W JP 2015066674W WO 2016031341 A1 WO2016031341 A1 WO 2016031341A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
gradient magnetic
rigid member
field generator
gradient
Prior art date
Application number
PCT/JP2015/066674
Other languages
English (en)
French (fr)
Inventor
川村 武
幸信 今村
大関 弘行
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2016545003A priority Critical patent/JP6296631B2/ja
Publication of WO2016031341A1 publication Critical patent/WO2016031341A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI; Magnetic Resonance Imaging) apparatus including a static magnetic field generator and a gradient magnetic field generator.
  • MRI Magnetic Resonance Imaging
  • the MRI apparatus obtains a magnetic resonance image (tomographic image) representing the physical properties of the subject placed in the imaging space using the nuclear magnetic resonance phenomenon of the nucleus.
  • an MRI apparatus generates a static magnetic field generation apparatus having a static magnetic field generation source that generates a uniform magnetic field (static magnetic field) in an imaging space, and a high-frequency electromagnetic wave for generating nuclear magnetic resonance in a nucleus of a living tissue of a subject.
  • a gradient magnetic field generator having a generation source is provided.
  • a gradient magnetic field generator superimposes a linear gradient magnetic field in the X, Y, and Z axis directions on a subject placed in a uniform magnetic field according to a desired pulse sequence, and the atomic spin of the subject is changed to Larmor. Excited magnetically at frequency. With this excitation, a magnetic resonance signal is detected, and a magnetic resonance image of the subject, for example, a two-dimensional tomographic image is reconstructed.
  • the gradient magnetic field generator is desired to have a large inner diameter (bore) in order to maximize the space for the subject to enter and relieve the feeling of blockage.
  • the smaller the inner diameter of the static magnetic field generator the smaller the magnetic energy, so it is not preferable to increase the outer shape of the gradient magnetic field generator. That is, the gradient magnetic field generator is desired to be thin.
  • ⁇ Vibration may occur in the gradient magnetic field generator and static magnetic field generator. This vibration may cause degradation of tomographic images and noise around the MRI apparatus.
  • the rigidity of the entire apparatus decreases and the vibration tends to increase.
  • a technique related to a vibration suppression method for an MRI apparatus a technique has been proposed in which a gradient magnetic field generation source is laminated with a viscoelastic sheet and a glass fiber mat, and the attenuation ratio is increased to reduce the noise of the gradient magnetic field generation apparatus ( Patent Document 1).
  • a technique has been proposed in which a reinforcing rib is provided at a portion protruding in the axial direction of the gradient magnetic field generator to reduce vibration while reducing the thickness of the gradient magnetic field generator (see Patent Document 2).
  • the vibration at the resonance point can be reduced by increasing the damping ratio, but the effect of reducing the vibration at a frequency other than the resonance point is considered to be small.
  • the vibration of the protruding portion at the axial end of the gradient magnetic field generator can be reduced by the reinforcing rib, but the vibration other than the axial end cannot be reduced.
  • the problem to be solved by the present invention is to provide an MRI (magnetic resonance imaging) apparatus capable of reducing vibration without increasing the thickness of the gradient magnetic field generator.
  • the present invention provides the rigidity in the axial direction that supports between the main coil and the shield coil of the gradient magnetic field generation source over both sides of the uniform magnetic field direction of the region where the uniform magnetic field is generated.
  • This is an MRI (magnetic resonance imaging) apparatus provided with a large rigid member.
  • MRI magnetic resonance imaging
  • 1 is a schematic perspective view of an MRI (magnetic resonance imaging) apparatus according to a first embodiment of the present invention.
  • 1 is a schematic longitudinal sectional view of an MRI apparatus according to a first embodiment of the present invention.
  • It is a schematic longitudinal cross-sectional view of the gradient magnetic field generator of the MRI apparatus which concerns on the 1st Embodiment of this invention.
  • It is a schematic longitudinal cross-sectional view of the gradient magnetic field generator of the MRI apparatus which concerns on the 2nd Embodiment of this invention.
  • It is a schematic longitudinal cross-sectional view of an axial direction edge part among the gradient magnetic field generators of the MRI apparatus which concerns on the 3rd Embodiment of this invention.
  • It is a schematic front view of the gradient magnetic field generator of the MRI apparatus which concerns on the 4th Embodiment of this invention.
  • FIG. 1 shows a schematic perspective view of an MRI (magnetic resonance imaging) apparatus 1 according to the first embodiment of the present invention.
  • the MRI apparatus 1 has a cylindrical static magnetic field generator 2 capable of introducing the subject 10 into the internal imaging space 8 and a nuclear magnetic resonance in an atomic nucleus constituting a living tissue of the introduced subject 10.
  • the static magnetic field generator 2 generates a uniform magnetic field 7 (see FIG. 2) in the imaging space 8 in order to orient the spins of atoms constituting the living tissue of the subject 10.
  • a shim coil (not shown) is provided on the imaging space 8 side of the static magnetic field generator 2.
  • the static magnetic field generator 2 is supported by a vacuum vessel support leg 2f.
  • the static magnetic field generator 2 has a cylindrical shape with a z-axis parallel to the horizontal direction as a central axis.
  • the gradient magnetic field generator 3 is provided on the imaging space 8 side of the static magnetic field generator 2.
  • the gradient magnetic field generator 3 has a cylindrical or elliptical shape having the same central axis as the static magnetic field generator 2 (with the z axis as the central axis), and a plurality of main coils (gradient magnetic field generation sources). 3a (see FIG. 3) and a plurality of shield coils (gradient magnetic field generating sources) 3b (see FIG. 3).
  • the main coil 3a and the shield coil 3b are fixed by a resin 3c (see FIG. 3) including a laminated structure such as beads or glass fiber cloth.
  • the irradiation coil 4 is provided on the imaging space 8 side of the gradient magnetic field generator 3.
  • the irradiation coil 4 has a cylindrical or elliptical shape having the same central axis as the static magnetic field generator 2 (with the z axis as the central axis).
  • the irradiation coil 4 irradiates a high-frequency signal in order to cause nuclear magnetic resonance to occur in atomic nuclei constituting the biological tissue of the subject 10.
  • a receiving coil 22 is attached to the bed 6 in order to receive a magnetic resonance signal by nuclear magnetic resonance.
  • a rigid member 5 is provided between the main coil 3a and the shield coil 3b of the gradient magnetic field generator 3.
  • the rigid member 5 is formed of a material having higher axial rigidity than members such as beads and glass fiber cloth included in the surrounding resin 3c.
  • FIG. 2 shows a schematic longitudinal sectional view of the MRI apparatus 1 according to the first embodiment of the present invention.
  • the static magnetic field generator 2 includes a plurality of main coils (static magnetic field generation sources) 2a that are superconducting coils, a plurality of shield coils (static magnetic field generation sources) 2b that are superconducting coils, a main coil 2a that is a superconducting coil, and a shield.
  • a cooling container 2e that houses and cools the coil 2b together with a coolant, a radiation shield plate 2d that shields radiation heat radiated from the vacuum container 2c, and a cooling container 2e and a radiation shield plate 2d that contain the cooling container 2e.
  • a vacuum container support leg 2f (see FIG. 1) for supporting the vacuum container 2c on the installation floor, a cooling container 2e and a radiation shield plate 2d in the vacuum container 2c. And a load support (not shown) that supports the heat insulation.
  • the main coil (static magnetic field generating source) 2a has a ring shape, and its central axis coincides with the z-axis. In the present embodiment, a plurality (four in the example of FIG. 2) of main coils 2a are arranged along the z-axis direction.
  • the main coil 2 a generates a static magnetic field that is a uniform magnetic field 7 in an imaging space (space) 8.
  • the main coil 2a generates a static magnetic field in addition to the imaging space 8, and particularly generates a leakage magnetic field at a position farther than the main coil 2a in the z-axis direction with the imaging region 9 as the center.
  • the shield coil (static magnetic field generation source) 2b can reduce the magnitude of this leakage magnetic field.
  • the shield coil 2b has a ring shape, and its central axis coincides with the z-axis.
  • a plurality of shield coils 2b (two (a pair) in the example of FIG. 2) are arranged in the z-axis direction.
  • the shield coil 2b is disposed in the vicinity of the pair of main coils 2a disposed at both ends of the plurality of main coils 2a arranged in the z-axis direction.
  • the shield coil 2b is disposed farther from the pair of main coils 2a disposed at both ends in the z-axis direction when the imaging region 9 is the center.
  • FIG. 3 shows the gradient magnetic field generator 3 in FIG.
  • the gradient magnetic field generator 3 is omitted in FIG. 2 and described as one, but actually has a plurality of main coils (gradient magnetic field generation sources) 3a.
  • main coils gradient magnetic field generation sources
  • one gradient magnetic field generation device 3 is omitted in FIG. 2 and is actually described, it actually includes a plurality of shield coils (gradient magnetic field generation sources) 3b.
  • the gradient magnetic field generator 3 has the resin 3c which fixes the main coil 3a and the shield coil 3b mutually.
  • the cross section of the main coil (gradient magnetic field generation source) 3a is arranged in an annular region having a cylindrical or elliptical shape with the z-axis as the central axis.
  • the main coil 3 a generates a gradient magnetic field 20 that is superimposed on the uniform magnetic field 7 in the imaging space 8.
  • the main coil 3 a generates a leakage magnetic field other than the imaging space 8.
  • the shield coil (gradient magnetic field generation source) 3b can reduce the magnitude of this leakage magnetic field.
  • the shield coil 3b is disposed in a cylindrical or elliptical region with the z axis as the central axis.
  • the shield coil 3b is disposed farther than the main coil 3a with respect to the z axis.
  • the gradient magnetic field generator 3 also reflects this arrangement, and the z axis It has a cylindrical structure with a circular or elliptical cross section.
  • the shield coil 3b is disposed on the static magnetic field generator 2 side with respect to the main coil 3a.
  • the gradient magnetic field generator 3 is attached to the vacuum vessel 2 c via the attachment member 21.
  • the rigid member 5 is disposed between the main coil 3a and the shield coil 3b of the gradient magnetic field generator 3, and supports the main coil 3a and the shield coil 3b. Further, the rigid member 5 is continuously disposed at least on both sides of the imaging space 8 in the z-axis direction in the z-axis direction (the magnetic field direction of the uniform magnetic field 7), and imaging is performed in the direction in which the subject 10 is introduced.
  • the space 8 has end portions outside the both ends.
  • the rigid member 5 is a single member that is disposed so as to overlap with the imaging space 8 in the z-axis direction and has a length that includes at least the entire area of the imaging space 8 in the z-axis direction.
  • the rigid member 5 is disposed between the main coil 3a and the shield coil 3b, and the resin 3c fixes the main coil 3a, the shield coil 3b, and the rigid member 5, and a gradient magnetic field generator as one structure. 3 is formed.
  • the rigid members 5 may be arranged continuously or discretely in the circumferential direction of the gradient magnetic field generator 3.
  • the rigid member 5 is mechanically coupled to the gradient magnetic field generator 3. Since the rigid member 5 is arranged in a region having a large magnetic field between the main coil 3a and the shield coil 3b of the gradient magnetic field generator 3, an eddy current is generated in the rigid member 5 when the gradient magnetic field generator 3 is energized. It is desirable that the electrical resistivity per cross section perpendicular to the z-axis direction of the rigid member 5 is equal to or higher than that of the outer wall of the gradient magnetic field generator 3.
  • a uniform magnetic field 7 is generated in the imaging space 8 by the static magnetic field generator 2, but at the same time, a static magnetic field is also generated in a region where the gradient magnetic field generator 3 is disposed.
  • a pulsed current flows through the main coil 3a and the shield coil 3b of the gradient magnetic field generator 3.
  • this gradient magnetic field generator 3 propagates to the vacuum vessel 2c via the attachment member 21 which attaches the gradient magnetic field generator 3 to the static magnetic field generator 2, and from the vacuum vessel 2c via the load support. By propagating to the radiation shield plate 2d and the cooling container 2e, each member of the static magnetic field generator 2 vibrates.
  • the gradient magnetic field generator 3 is attached to other members which comprise MRI apparatus 1, such as the vacuum vessel 2c. When the is attached, vibrations are similarly generated and transmitted through the connected points.
  • the rigid member 5 is provided as a single structure between the main coil 3a and the shield coil 3b of the gradient magnetic field generator 3 and at least on both sides in the z-axis direction with respect to the imaging space 8 in which the uniform magnetic field 7 is generated. Yes. Thereby, the bending rigidity of the gradient magnetic field generator 3 in the z-axis direction (longitudinal direction) is increased by the bending rigidity of the rigid member 5 itself, and the bending deformation of the gradient magnetic field generator 3 due to vibration is reduced.
  • the main coil 3a and the shield coil 3b are fixed, and the two cylindrical or elliptical structures that have been softly fixed by the resin 3c are rigidly fixed, so that the bending rigidity proportional to the fourth power of the diameter is obtained.
  • the bending deformation of the gradient magnetic field generator 3 due to vibration decreases and decreases.
  • the bending rigidity in the z-axis direction of the gradient magnetic field generator 3 is improved by the rigid member 5.
  • the vibration amplitude of the gradient magnetic field generator 3 is suppressed, and the radiated sound (noise) propagating in the air is reduced.
  • the bending rigidity in the longitudinal direction of the rigid member 5 is proportional to the cube of the radial dimension that is the plate thickness, and is proportional to the first power of the circumferential dimension that is the width direction.
  • the rigid member 5 has a sufficient thickness to support the main coil 3a and the shield coil 3b in the radial direction, the circumferential dimension is short, that is, even in a discrete arrangement in the circumferential direction.
  • the longitudinal bending rigidity can be improved.
  • the shim tray 12 is a tray for installing a shim member used to ensure the accuracy of the uniform magnetic field 7.
  • the vibration of the gradient magnetic field generation device 3 is reduced, so Propagation is also reduced, vibration of the static magnetic field generator 2 is also suppressed, and image deterioration due to an error magnetic field due to this can be suppressed.
  • the gradient magnetic field generator 3 vibrates the gradient magnetic field 20
  • the tomographic image may be deteriorated due to the influence of the error magnetic field when the tomographic image is captured.
  • the influence of the error magnetic field can be reduced, and image degradation can be suppressed.
  • the vibration suppression effect can be achieved without increasing the thickness of the gradient magnetic field generator 3.
  • a shim tray 12 that stores a magnetic body for adjusting a static magnetic field is arranged between the rigid members 5 so that the space can be efficiently used and An MRI apparatus having a large bore can be provided.
  • FIG. 4 is a schematic longitudinal sectional view of the gradient magnetic field generator 3 of the MRI apparatus 1 according to the second embodiment of the present invention.
  • the MRI apparatus 1 of the second embodiment is different from the MRI apparatus 1 of the first embodiment in that the rigid member 5 protrudes in the z-axis direction from the main coil 3a of the gradient magnetic field generator 3. Is a point.
  • the rigid member 5 protrudes in the z-axis direction from the main coil 3a of the gradient magnetic field generator 3. Is a point. According to such a rigid member 5, in addition to the gradient magnetic field generating device 3 becoming more rigid, it is possible to reduce the vibration of the protruding portion of the shield coil 3b having a large vibration.
  • the protruding portion of the shield coil 3b at the end in the z-axis direction of the gradient magnetic field generator 3 is thin, so that vibration tends to increase.
  • the vibration of the protruding portion of the shield coil 3b is reduced, the fatigue accumulated at the end of the shield coil 3b is suppressed, and damage is less likely to occur. be able to.
  • Joule heat is generated in the main coil 3a and the shield coil 3b, and the temperature of the gradient magnetic field generator 3 rises.
  • the rigid member 5 protrudes to the end in the axial direction.
  • the surface area of the gradient magnetic field generator 3 increases, and the efficiency of heat dissipation can be increased. as a result.
  • the gradient magnetic field generation device 3 is fixed to the static magnetic field generation device 2, the heat of the gradient magnetic field generation device 3 is propagated to the static magnetic field generation device 2 through the attachment member 21, and from the vacuum vessel 2c (see FIG. 2). By dissipating heat to the surroundings, consumption of the refrigerant stored in the cooling container 2e of the static magnetic field generator 2 can be suppressed.
  • FIG. 5 shows a schematic longitudinal sectional view of a part of the gradient magnetic field generator 3 of the MRI apparatus 1 according to the third embodiment of the present invention.
  • the MRI apparatus 1 according to the third embodiment is different from the MRI apparatus 1 according to the first embodiment between the rigid member 5 and the main coil 3a and shield coil 3b of the gradient magnetic field generator 3. It is the point provided with this rigid member 5a.
  • the main coil 3a and the shield coil 3b can be rigidly fixed.
  • the rigid members 5 and 5a may protrude in the axial direction from the main coil 3a of the gradient magnetic field generator 3 as in the second embodiment.
  • FIG. 6 the schematic front view of the z-axis direction of the gradient magnetic field generator 3 of the MRI apparatus 1 which concerns on the 4th Embodiment of this invention is shown.
  • the MRI apparatus 1 of the fourth embodiment is different from the MRI apparatus 1 of the first embodiment in that the rigid member 5 stores a shim tray 12 that stores a magnetic material for adjusting a static magnetic field. It is a point that doubles as a frame.
  • the frame that houses the shim tray 12 also has a shape that expands in the radial direction. Therefore, the thickness of the shim tray 12 can be increased, the amount of the magnetic material stored for adjusting the static magnetic field can be increased, and the magnetic field uniformity can be improved.
  • an additional rigid member (not shown) can be inserted between the rigid member 5 serving as the frame of the shim tray 12 and the shim tray 12. It is necessary to provide a gap between the rigid member 5 and the shim tray 12 for the convenience of inserting and removing the shim tray 12, but by filling the gap with an additional rigid member (not shown), the rigidity of the shim tray 12 can also be increased by the main coil 3a. And can be used to fix the shield coil 3b rigidly.
  • the shim tray 12 can be made of a material having rigidity equivalent to that of the rigid member 5, so that the above effect can be enhanced.
  • the MRI apparatus 1 of the fifth embodiment is different from the MRI apparatus 1 of the first to fourth embodiments in that the material of the rigid member 5 is carbon fiber reinforced plastics. Although carbon is a conductor, the cross-sectional area is reduced by becoming a fiber, the electric resistance per rigid member 5 is increased, and the eddy current is suppressed, thereby reducing heat generation.
  • the rigidity is large while being lightweight, the natural frequency of the gradient magnetic field generator 3 is increased.
  • the vibration mode has a higher energy when the natural frequency is smaller. Therefore, when the natural frequency is higher, the energy of noise is reduced, leading to a reduction in overall. Therefore, it is effective for noise reduction.
  • the thermal conductivity in the axial direction is increased, and the heat generated in the central portion in the axial direction of the gradient magnetic field generator 3 can be quickly transferred to the axial end. Can be transported to. This works more effectively in the case of the second embodiment.
  • the MRI apparatus 1 of the sixth embodiment is different from the MRI apparatuses 1 of the first to fourth embodiments in that the material of the rigid member 5 is metal fiber reinforced plastics.
  • the metal include nonmagnetic materials such as aluminum and stainless steel.
  • the metal is a conductor
  • the cross-sectional area is reduced by becoming a fiber
  • the electric resistance per rigid member 5 is increased
  • the eddy current is suppressed, so that heat generation is reduced.
  • the thermal conductivity in the axial direction is increased, and the heat generated in the central portion in the axial direction of the gradient magnetic field generating device 3 can be quickly transferred to the axial end. Can be transported to. This works more effectively in the case of the second embodiment.
  • the MRI apparatus 1 of the seventh embodiment is different from the MRI apparatus 1 of the first to fourth embodiments in that the material of the rigid member 5 is plastics reinforced with non-magnetic insulating fibers. Is a point.
  • nonmagnetic insulators include boron.
  • the MRI apparatus 1 of the eighth embodiment is different from the MRI apparatuses 1 of the first to fourth embodiments in that the material of the rigid member 5 is ceramic. Since the electric resistance is large, eddy current is hardly generated and the heat generation of the rigid member 5 is small.
  • the superconducting coil is taken up as the static magnetic field generation sources 2a and 2b, but the present invention is not limited to this.
  • a normal conducting coil or a permanent magnet may be used as the static magnetic field generating sources 2a and 2b.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

空間に均一磁場(7)を発生させる静磁場発生源(2a、2b)を有する静磁場発生装置(2)と、均一磁場(7)に傾斜磁場(20)を重畳させる傾斜磁場発生源(3a、3b)を有する傾斜磁場発生装置(3)と、前記傾斜磁場発生源(3a、3b)のメインコイル(3a)とシールドコイル(3b)の間を均一磁場(7)方向両側にわたって支持する剛性部材(5)と、を備えた磁気共鳴イメージング装置。剛性部材(5)は、傾斜磁場発生装置(3)の傾斜磁場発生源(3a、3b)同士を剛に固定している。これにより、傾斜磁場発生装置(3)の肉厚を増やすことなく、振動の低減が可能な磁気共鳴イメージング(MRI)装置(1)を提供する。

Description

磁気共鳴イメージング装置
 本発明は、静磁場発生装置と傾斜磁場発生装置を備えた磁気共鳴イメージング(以下、MRI;Magnetic Resonance Imagingと称す)装置に関する。
 MRI装置は、原子核の核磁気共鳴現象を利用して撮像空間内に置かれた被検体の物理的性質を表す磁気共鳴画像(断層画像)を得るものである。一般に、MRI装置は、撮像空間に均一磁場(静磁場)を発生させる静磁場発生源を有する静磁場発生装置と、被検体の生体組織の原子核に核磁気共鳴を生じさせるための高周波の電磁波を発生させる照射コイルと、核磁気共鳴により発生する核磁気共鳴信号を検出する受信コイルと、核磁気共鳴信号に位置情報を付与するために均一磁場に重畳して線形な傾斜磁場を発生させる傾斜磁場発生源を有する傾斜磁場発生装置を備えている。MRI装置の撮影時には、傾斜磁場発生装置によって、所望のパルスシーケンスに従い、均一磁場中に置かれた被検体にX、Y、Z軸方向に線形傾斜磁場が重畳され、被検体の原子スピンがラーモア周波数で磁気的に励起される。この励起に伴い、磁気共鳴信号が検出され、被検体の磁気共鳴画像、例えば、2次元の断層画像が再構成される。
 傾斜磁場発生装置は、被験者の入る空間を最大限に確保して閉塞感を和らげるために、内径(ボア)を大きくすることが望まれている。一方で、静磁場発生装置は内径が小さい方が、磁気エネルギーが小さくて済むため、傾斜磁場発生装置の外形を大きくすることは好ましくない。即ち、傾斜磁場発生装置には薄肉であることが望まれる。
 傾斜磁場発生装置と静磁場発生装置には、振動が発生する場合がある。この振動は、断層画像の劣化とMRI装置周辺における騒音の原因となる場合が考えられ、傾斜磁場発生装置が薄肉化されると装置全体の剛性が減少して振動が増加する傾向となる。MRI装置の振動抑制方法に関する従来技術として、傾斜磁場発生源に粘弾性シートとガラス繊維マットを積層し、減衰比を大きくすることで傾斜磁場発生装置の騒音を低減する技術が提案されている(特許文献1参照)。また、傾斜磁場発生装置の軸方向に突出した部分に補強リブを設けることで、傾斜磁場発生装置を薄肉化しつつ振動を低減する技術が提案されている(特許文献2参照)。
特開平2-124139号公報 特開2013-39152号公報
 しかし、前記した特許文献1の技術では、減衰比が増加することで共振点における振動は低減可能であるが、共振点でない周波数における振動の低減効果は小さいと考えられた。また、特許文献2の技術では、傾斜磁場発生装置の軸方向端部の突出部の振動は補強リブによって低減可能であるが、軸方向端部以外の振動は低減できないと考えられた。
 そこで、本発明が解決しようとする課題は、傾斜磁場発生装置の肉厚を増加させず、振動の低減が可能なMRI(磁気共鳴イメージング)装置を提供することにある。
 前記課題を解決するために、本発明は、前記均一磁場の発生する領域の均一磁場方向両側に亘って、前記傾斜磁場発生源のメインコイルとシールドコイルの間を支持する、前記軸方向の剛性が大きい剛性部材を備えたMRI(磁気共鳴イメージング)装置であることを特徴としている。
 本発明によれば、傾斜磁場発生装置の肉厚を増やさず、振動の低減が可能なMRI(磁気共鳴イメージング)装置を提供できる。
本発明の第1の実施形態に係るMRI(磁気共鳴イメージング)装置の概略斜視図である。 本発明の第1の実施形態に係るMRI装置の概略縦断面図である。 本発明の第1の実施形態に係るMRI装置の傾斜磁場発生装置の概略縦断面図である。 本発明の第2の実施形態に係るMRI装置の傾斜磁場発生装置の概略縦断面図である。 本発明の第3の実施形態に係るMRI装置の傾斜磁場発生装置のうち軸方向端部の概略縦断面図である。 本発明の第4の実施形態に係るMRI装置の傾斜磁場発生装置の概略正面図である。
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
(第1の実施形態)
 図1に、本発明の第1の実施形態に係るMRI(磁気共鳴イメージング)装置1の概略斜視図を示す。MRI装置1は、被検体10を内部の撮像空間8に導入可能な円筒形状の静磁場発生装置2と、導入された被検体10の生体組織を構成する原子核に核磁気共鳴を起こさせるために高周波信号を照射する照射コイル4と、被検体10から発せられる各々の信号に位置情報を与えるための傾斜磁場発生装置3と、傾斜磁場発生装置3の内部に設けられる剛性部材5(図5参照)と、被検体10から発せられる信号を受信するための受信コイル22と、被検体10を積載する寝台6等で構成されている。
 静磁場発生装置2は、被検体10の生体組織を構成する原子のスピンを配向させるために、撮像空間8に均一磁場7(図2参照)を生成する。その均一磁場7の磁場を補正し、その均一度を高めるために、シムコイル(図示せず)が静磁場発生装置2の撮像空間8側に設けられている。
 静磁場発生装置2は、真空容器支持脚2fで支えられている。静磁場発生装置2は、水平方向に平行なz軸を中心軸とする円筒形状をしている。傾斜磁場発生装置3は、静磁場発生装置2の撮像空間8側に設けられている。
 傾斜磁場発生装置3は、静磁場発生装置2と中心軸を共通とする(z軸を中心軸とする)円筒状もしくは楕円状の形状をしており、複数のメインコイル(傾斜磁場発生源)3a(図3参照)と、複数のシールドコイル(傾斜磁場発生源)3b(図3参照)を有している。また、メインコイル3aとシールドコイル3bとは、ビーズやガラス繊維クロス等の積層構造を含んだレジン3c(図3参照)によって固定されている。
 照射コイル4は、傾斜磁場発生装置3の撮像空間8側に設けられている。照射コイル4は、静磁場発生装置2と中心軸を共通とする(z軸を中心軸とする)円筒状もしくは楕円状の形状をしている。照射コイル4は、被検体10の生体組織を構成する原子の原子核に核磁気共鳴を起こさせるために、高周波信号を照射する。また、受信コイル22が、核磁気共鳴による磁気共鳴信号を受け取るために、寝台6に取り付けられている。
 詳細は後述するが、傾斜磁場発生装置3のメインコイル3aとシールドコイル3bの間には、剛性部材5が設けられている。この剛性部材5は、周囲にあるレジン3cに含まれるビーズやガラス繊維クロスといった部材よりも軸方向の剛性が高い材料で形成されている。
 図2に、本発明の第1の実施形態に係るMRI装置1の概略縦断面図を示す。静磁場発生装置2は、超電導コイルである複数のメインコイル(静磁場発生源)2aと、超電導コイルである複数のシールドコイル(静磁場発生源)2bと、超電導コイルであるメインコイル2aとシールドコイル2bを冷媒と共に収納し冷却する冷却容器2eと、冷却容器2eを内包する構造を有し、真空容器2cから放射される輻射熱からシールドする輻射シールド板2dと、冷却容器2eと輻射シールド板2dとを真空環境下に収納し断熱する真空容器2cと、真空容器2cを設置床面に支持する真空容器支持脚2f(図1参照)と、冷却容器2eと輻射シールド板2dを真空容器2c内に断熱支持する荷重支持体(図示せず)等を有している。
 メインコイル(静磁場発生源)2aはリング形状を有しており、その中心軸はz軸と一致する。本実施例においては、メインコイル2aは、z軸方向に沿って複数(図2の例では4個)配置されている。
 メインコイル2aは、撮像空間(空間)8に、均一磁場7である静磁場を生成する。なお、メインコイル2aは、撮像空間8以外にも、静磁場を生成し、特に、撮像領域9を中心としてz軸方向において、メインコイル2aよりも遠くの位置に漏れ磁場を生成させる。シールドコイル(静磁場発生源)2bは、この漏れ磁場の大きさを小さくすることができる。
 シールドコイル2bは、リング形状を有しており、その中心軸はz軸と一致する。シールドコイル2bは、z軸方向に複数(図2の例では2個(一対))配置されている。シールドコイル2bは、z軸方向において複数個配列されているメインコイル2aのうち両端に配置された一対のメインコイル2aの近傍に配置されている。シールドコイル2bは、撮像領域9を中心としたときに、z軸方向において両端に配置された一対のメインコイル2aよりも遠くに配置されている。
 図2のうち傾斜磁場発生装置3について示したのが図3である。
 傾斜磁場発生装置3は、図2では記載を省略して1個記載したが実際には複数のメインコイル(傾斜磁場発生源)3aを有している。また、傾斜磁場発生装置3は、図2では記載を省略して1個記載したが実際には複数のシールドコイル(傾斜磁場発生源)3bを有している。そして、傾斜磁場発生装置3は、メインコイル3aとシールドコイル3bを互いに固定するレジン3cを有している。
 メインコイル(傾斜磁場発生源)3aは、z軸を中心軸とする円筒状もしくは楕円状をした環状の領域に断面が配置される。メインコイル3aは、撮像空間8に、均一磁場7に重畳する傾斜磁場20を生成する。メインコイル3aは、撮像空間8以外には、漏れ磁場を生成させる。シールドコイル(傾斜磁場発生源)3bは、この漏れ磁場の大きさを小さくすることができる。シールドコイル3bは、z軸を中心軸とする円筒状もしくは楕円状の領域に配置される。シールドコイル3bは、z軸に対して、メインコイル3aよりも遠くに配置されている。このように、メインコイル3aとシールドコイル3bとはz軸を中心とする円形または楕円形をした環状の領域に断面が配置されるため、傾斜磁場発生装置3もこの配置を反映し、z軸と垂直な断面が円形または楕円形をした円筒状の構造をしている。
 シールドコイル3bは、メインコイル3aに対して、静磁場発生装置2の側に配置されている。傾斜磁場発生装置3は、取付部材21を介して真空容器2cに取り付けられている。
 剛性部材5は、傾斜磁場発生装置3のメインコイル3aとシールドコイル3bとの間に配置されており、メインコイル3aとシールドコイル3bを支持している。また、剛性部材5は、z軸方向(均一磁場7の磁場方向)において、少なくとも撮像空間8のz軸方向両側に亘って連続的に配置されており、被検体10を導入する方向において、撮像空間8の両端よりも外側に端部を有している。換言すると、剛性部材5はz軸方向に関して撮像空間8と重なるように配置され、かつz軸方向に関して少なくとも撮像空間8の差渡し全域を含むような長さを有する一個の部材である。
 この剛性部材5が、メインコイル3aとシールドコイル3bとの間に配置されるとともに、レジン3cが、メインコイル3a、シールドコイル3b、剛性部材5を固定し、一個の構造体として傾斜磁場発生装置3を形成する。
 また、剛性部材5は、傾斜磁場発生装置3の周方向については、連続的に配置されていても、離散的に配置されていても良い。剛性部材5は、傾斜磁場発生装置3に機械的に結合している。剛性部材5は傾斜磁場発生装置3のメインコイル3aとシールドコイル3bの間という磁場の大きい領域に配置されるため、傾斜磁場発生装置3に通電した際に剛性部材5に渦電流が生じることのないよう、剛性部材5のz軸方向に直交する断面あたりの電気抵抗率は、傾斜磁場発生装置3の外壁と同等もしくは外壁よりも高くなっていることが望ましい。
 次に、MRI装置1における振動の抑制について説明する。
 撮影時には、静磁場発生装置2によって、撮像空間8に、均一磁場7が生成されるが、同時に、傾斜磁場発生装置3が配置されている領域にも、静磁場が生成されている。このように静磁場の影響を受けた状況下で、傾斜磁場発生装置3が有するメインコイル3aとシールドコイル3bにパルス状の電流が流れる。そうすると傾斜磁場発生装置3が配置された領域に生じている静磁場と、このパルス状の電流のカップリングによりパルス状のローレンツ力がメインコイル3aとシールドコイル3bに作用して、傾斜磁場発生装置3が振動する。
 そして、この傾斜磁場発生装置3の振動は、傾斜磁場発生装置3を静磁場発生装置2に取り付けている取付部材21を介して真空容器2cに伝搬し、真空容器2cから荷重支持体を介して輻射シールド板2dや冷却容器2eに伝播することで、静磁場発生装置2の各部材が振動する。なお、ここでは傾斜磁場発生装置3が静磁場発生装置2に取り付けられる例を挙げたが、これに限らず、例えば真空容器2cなど、MRI装置1を構成する他の部材に傾斜磁場発生装置3が取り付けられる場合も、振動は同様に発生し連結された箇所を介して伝達される。
 剛性部材5は、傾斜磁場発生装置3のメインコイル3aとシールドコイル3bの間で、均一磁場7が生じている撮像空間8に対し少なくともz軸方向両側に亘って一個の構造物として設けられている。これにより、剛性部材5自体の曲げ剛性によって傾斜磁場発生装置3のz軸方向(長手方向)の曲げ剛性が大きくなり、振動による傾斜磁場発生装置3の曲げ変形が減少する。
 また、メインコイル3aとシールドコイル3bが固定され、レジン3cによって柔に固定されていた2つの円筒状もしくは楕円状の構造が剛に固定されることで、径の4乗に比例する曲げ剛性が増加し、振動による傾斜磁場発生装置3の曲げ変形が減少する。
 その結果、撮像時において傾斜磁場発生装置3にパルス状にローレンツ力が生じたとしても、傾斜磁場発生装置3のz軸方向に関する曲げ剛性が、剛性部材5によって向上しているため、ローレンツ力による傾斜磁場発生装置3の振動振幅は抑制され、空気中に伝搬する放射音(騒音)が小さくなる。
 更に、一般にメインコイル3aとシールドコイル3bにはそれぞれ逆向きに電流が流れることから、それぞれに生じるローレンツ力も逆向きとなる。メインコイル3aとシールドコイル3bの間を剛に固定することで、z軸方向に直交する断面内の歪が減少し、傾斜磁場発生装置の信頼性が向上する。
 なお、剛性部材5の長手方向の曲げ剛性は、板厚となる径方向寸法の3乗に比例し、幅方向となる周方向寸法の1乗に比例する。そのため、剛性部材5がメインコイル3aとシールドコイル3bを径方向に支持するような十分な厚みを有する構造であれば、周方向の寸法が短い、すなわち周方向に離散的な配置であっても長手方向曲げ剛性を向上させることができる。
 そして、このような剛性部材5の配置を採用することで、周方向において離散的に配置された剛性部材5の間にシムトレイ12(図6参照)を配置することも可能となる。シムトレイ12は、均一磁場7の精度を確保するために利用されるシム部材を設置するための受け皿である。メインコイル3aとシールドコイル3bとの間にシムトレイ12を配置する空間を確保することによって、空間を効率的に利用し、MRI装置の大型化を抑制することができる。
 また、先に述べた傾斜磁場発生装置3を静磁場発生装置2に対して固定するMRI装置1であれば、傾斜磁場発生装置3の振動が減少することで、静磁場発生装置2への振動伝播も減少し、静磁場発生装置2の振動も抑制され、これに起因する誤差磁場による画像劣化を抑制することができる。
 また、傾斜磁場発生装置3の振動は、傾斜磁場20を振動させるため、断層画像の撮影に対して誤差磁場の影響で断層画像が劣化する可能性があるが、傾斜磁場発生装置3の振動が低減することで、誤差磁場の影響を小さくでき、画像劣化を抑制することができる。
 このように、傾斜磁場発生装置3のメインコイル3aとシールドコイル3bの間の空間を利用して剛性部材5を設置することで、傾斜磁場発生装置3の肉厚を増やすことなく、振動抑制効果を得ることができる。
 また、剛性部材5を周方向に離散的に配置した場合、静磁場調整のための磁性体を格納するシムトレイ12を剛性部材5同士の間に配置して、空間を効率的に利用したコンパクトかつ大型ボアを有するMRI装置を提供することができる。
 (第2の実施形態)
 図4に、本発明の第2の実施形態に係るMRI装置1の傾斜磁場発生装置3の概略縦断面図を示す。第2の実施形態のMRI装置1が、第1の実施形態のMRI装置1と異なっている点は、剛性部材5が、傾斜磁場発生装置3のメインコイル3aよりもz軸方向に突出している点である。このような剛性部材5によれば、傾斜磁場発生装置3がより高剛性となることに加え、振動が大きいシールドコイル3bの突出部の振動を低減することができる。
 メインコイル3aとシールドコイル3bにローレンツ力が作用すると、傾斜磁場発生装置3のz軸方向端部にあるシールドコイル3bの突出部は肉厚が薄いため、振動が大きくなり易い。剛性部材5をシールドコイル3bの突出部まで軸方向に長くすることで、シールドコイル3bの突出部の振動を低減し、シールドコイル3bの端部に蓄積する疲労を抑制し破損を生じさせにくくすることができる。
 また、傾斜磁場発生装置3を運転すると、メインコイル3aとシールドコイル3bにジュール発熱が生じ、傾斜磁場発生装置3の温度が上昇するが、剛性部材5が軸方向端部に突出していることで傾斜磁場発生装置3の表面積が増加し、放熱の効率を高めることができる。その結果。傾斜磁場発生装置3が静磁場発生装置2に固定される場合、取付部材21を中継して傾斜磁場発生装置3の熱が静磁場発生装置2に伝搬し、真空容器2c(図2参照)から周囲に放熱することで、静磁場発生装置2が有する冷却容器2e内に溜められた冷媒の消費を抑制することも可能となる。
(第3の実施形態)
 図5に、本発明の第3の実施形態に係るMRI装置1の傾斜磁場発生装置3の一部の概略縦断面図を示す。第3の実施形態のMRI装置1が、第1の実施形態のMRI装置1と異なっている点は、剛性部材5と傾斜磁場発生装置3のメインコイル3a及びシールドコイル3bとの間に、別の剛性部材5aを備えている点である。
 別の剛性部材5aによれば、剛性部材5とメインコイル3a及びシールドコイル3bとの間にギャップが空いていたとしても、メインコイル3aとシールドコイル3bを剛に固定することができる。なお剛性部材5ならびに5aは、第2の実施形態のように傾斜磁場発生装置3のメインコイル3aよりも軸方向に突出していても良い。
(第4の実施形態)
 図6に、本発明の第4の実施形態に係るMRI装置1の傾斜磁場発生装置3のz軸方向の概略正面図を示す。第4の実施形態のMRI装置1が、第1の実施形態のMRI装置1と異なっている点は、剛性部材5が、静磁場調整のための磁性体を格納するシムトレイ12を格納するための枠を兼ねている点である。
 剛性部材5は、傾斜磁場発生装置3のメインコイル3aとシールドコイル3bを剛に固定していることから、シムトレイ12を格納する枠も径方向に広がった形状となる。これによりシムトレイ12の厚さを増やすことができ、静磁場調整のために格納する磁性体の量を増やすことができ、磁場均一度が向上できる。
 また、シムトレイ12の枠となる剛性部材5と、シムトレイ12の間に、追加の剛性部材(図示せず)を挿入することもできる。剛性部材5とシムトレイ12の間には、シムトレイ12を抜き差しする都合上ギャップを設ける必要があるが、追加の剛性部材(図示せず)によってギャップを埋めることで、シムトレイ12の剛性もメインコイル3aとシールドコイル3bを剛に固定するために利用できる。更に、シムトレイ12の材質も剛性部材5と同等の剛性を持った部材とすることで、上記の効果を高めることが可能である。
(第5の実施形態)
 第5の実施形態のMRI装置1が、第1から第4の実施形態のMRI装置1と異なっている点は、剛性部材5の材質が炭素繊維強化プラスチックスである点である。炭素は導体であるが、繊維状となることで断面積が小さくなって剛性部材5あたりの電気抵抗が大きくなり、渦電流が抑制されることで発熱が小さくなる。
 また、軽量な一方で剛性が大きいことから、傾斜磁場発生装置3の固有振動数が高くなる。一般に振動モードは、固有振動数が小さい方がエネルギーが大きくなるため、固有振動数が高くなれば、騒音のエネルギーが減少し、オーバーオールの減少に繋がる。よって、騒音低減に効果的である。
 更に、傾斜磁場発生装置3の軸方向に配向した連続繊維を用いれば、軸方向の熱伝導率が高くなり、傾斜磁場発生装置3の軸方向中央部で生じた熱を速やかに軸方向端部に輸送できる。これは、第2の実施形態とした場合により効果的に作用する。
(第6の実施形態)
 第6の実施形態のMRI装置1が、第1から第4の実施形態のMRI装置1と異なっている点は、剛性部材5の材質が金属繊維強化プラスチックスである点である。金属としては、アルミやステンレス鋼などの非磁性体が挙げられる。
 金属は導体であるが、繊維状となることで断面積が小さくなって剛性部材5あたりの電気抵抗が大きくなり、渦電流が抑制されることで発熱が小さくなる。また、傾斜磁場発生装置3の軸方向に配向した連続繊維を用いれば、軸方向の熱伝導率が高くなり、傾斜磁場発生装置3の軸方向中央部で生じた熱を速やかに軸方向端部に輸送できる。これは、第2の実施形態とした場合により効果的に作用する。
(第7の実施形態)
 第7の実施形態のMRI装置1が、第1から第4の実施形態のMRI装置1と異なっている点は、剛性部材5の材質が非磁性絶縁体の繊維で強化されたプラスチックスである点である。非磁性絶縁体としては、ボロンなどが挙げられる。
 絶縁体であることから、渦電流が発生しないため、剛性部材5が発熱しない。また、軽量であるため、傾斜磁場発生装置3の固有振動数が高くなり、騒音低減に効果的に作用する。
(第8の実施形態)
 第8の実施形態のMRI装置1が、第1から第4の実施形態のMRI装置1と異なっている点は、剛性部材5の材質がセラミックである点である。電気抵抗が大きいことから、渦電流が生じにくく、剛性部材5の発熱が小さい。
 なお、前記した第1から第8の実施形態では、静磁場発生源2aと2bとして超電導コイルを取り上げたが、これに限らない。静磁場発生源2aと2bとして常電導コイルや永久磁石を用いてもよい。
 1   磁気共鳴イメージング装置
 2   静磁場発生装置
 2a  静磁場発生源(メインコイル)
 2b  静磁場発生源(シールドコイル)
 2c  真空容器(静磁場発生装置の外壁)
 2d  輻射シールド板
 2e  冷却容器
 2f  真空容器支持脚
 3   傾斜磁場発生装置
 3a  傾斜磁場発生源(メインコイル)
 3b  傾斜磁場発生源(シールドコイル)
 3c  レジン
 4   照射コイル
 5、5a 剛性部材
 6   寝台
 7   均一磁場
 8   撮像空間
 10  被検体
 11  弾性体
 12  シムトレイ
 20   傾斜磁場
 22  受信コイル

Claims (10)

  1.  被検体を内部の撮像空間に導入可能な円筒形状の静磁場発生源を有する静磁場発生装置と、
     前記撮像空間に傾斜磁場を重畳させる傾斜磁場発生源を有する傾斜磁場発生装置と、を備え、
     前記傾斜磁場発生源は、
     傾斜磁場メインコイルと、
     前記傾斜磁場メインコイルの外側に設けられた傾斜磁場シールドコイルと、
     前記傾斜磁場メインコイルと前記傾斜磁場シールドコイルとの間に前記傾斜磁場発生源の中心軸方向に設けられた剛性部材と、
    を備えることを特徴とする磁気共鳴イメージング装置。
  2.  前記剛性部材は、前記静磁場発生装置の中心軸方向に関して、前記撮像空間の両端を含む柱状の部材であることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  3.  前記剛性部材の両端は、前記静磁場発生装置の中心軸方向に関して、前記傾斜磁場メインコイルの両端を含むことを特徴とする請求項2に記載の磁気共鳴イメージング装置。
  4.  前記剛性部材と、前記傾斜磁場発生装置の前記メインコイルと前記シールドコイルとの間に、前記静磁場発生装置の中心軸方向の寸法が異なる別の剛性部材を備えていることを特徴とする請求項2に記載の磁気共鳴イメージング装置。
  5.  前記剛性部材が、前記傾斜磁場発生装置に備えられている磁性体格納容器もしくは前記格納容器が挿入される枠を兼ねていることを特徴とする請求項2に記載の磁気共鳴イメージング装置。
  6.  前記剛性部材は、前記傾斜磁場メインコイルと前記傾斜磁場シールドコイルとの間の周方向に離散的に配置されていることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  7.  前記剛性部材が、炭素繊維強化プラスチックであることを特徴とする請求項1から請求項6のいずれか一項に記載の磁気共鳴イメージング装置。
  8.  前記剛性部材が、金属繊維強化プラスチックであることを特徴とする請求項1から請求項6のいずれか一項に記載の磁気共鳴イメージング装置。
  9.  前記剛性部材が、非磁性絶縁体製繊維強化プラスチックであることを特徴とする請求項1から請求項6のいずれか一項に記載の磁気共鳴イメージング装置。
  10.  前記剛性部材が、セラミックス製であることを特徴とする請求項1から請求項6のいずれか一項に記載の磁気共鳴イメージング装置。
PCT/JP2015/066674 2014-08-27 2015-06-10 磁気共鳴イメージング装置 WO2016031341A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545003A JP6296631B2 (ja) 2014-08-27 2015-06-10 磁気共鳴イメージング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172164 2014-08-27
JP2014172164 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031341A1 true WO2016031341A1 (ja) 2016-03-03

Family

ID=55399246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066674 WO2016031341A1 (ja) 2014-08-27 2015-06-10 磁気共鳴イメージング装置

Country Status (2)

Country Link
JP (1) JP6296631B2 (ja)
WO (1) WO2016031341A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109745631A (zh) * 2017-11-07 2019-05-14 医科达有限公司 磁共振成像装置的屏蔽件
JP2019516447A (ja) * 2016-04-25 2019-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴放射線シールド及びシールドされた主磁石

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297444A (ja) * 1990-04-18 1991-12-27 Toshiba Corp Mri装置
JP2005066320A (ja) * 2003-08-01 2005-03-17 Hitachi Medical Corp 傾斜磁場コイル
JP2012157693A (ja) * 2011-01-13 2012-08-23 Toshiba Corp 磁気共鳴イメージング装置
JP2014124195A (ja) * 2012-12-25 2014-07-07 Hitachi Medical Corp 傾斜磁場コイル装置及び磁気共鳴イメージング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297444A (ja) * 1990-04-18 1991-12-27 Toshiba Corp Mri装置
JP2005066320A (ja) * 2003-08-01 2005-03-17 Hitachi Medical Corp 傾斜磁場コイル
JP2012157693A (ja) * 2011-01-13 2012-08-23 Toshiba Corp 磁気共鳴イメージング装置
JP2014124195A (ja) * 2012-12-25 2014-07-07 Hitachi Medical Corp 傾斜磁場コイル装置及び磁気共鳴イメージング装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516447A (ja) * 2016-04-25 2019-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴放射線シールド及びシールドされた主磁石
JP7010842B2 (ja) 2016-04-25 2022-02-10 コーニンクレッカ フィリップス エヌ ヴェ 磁気共鳴放射線シールド及びシールドされた主磁石
US11249156B2 (en) 2016-04-25 2022-02-15 Koninklijke Philips N.V. Magnetic resonance radiation shield and shielded main magnet
CN109745631A (zh) * 2017-11-07 2019-05-14 医科达有限公司 磁共振成像装置的屏蔽件

Also Published As

Publication number Publication date
JPWO2016031341A1 (ja) 2017-08-10
JP6296631B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
US7375526B2 (en) Active-passive electromagnetic shielding to reduce MRI acoustic noise
EP1193507B1 (en) Low noise MRI scanner
US7141974B2 (en) Active-passive electromagnetic shielding to reduce MRI acoustic noise
JP5932815B2 (ja) 磁気共鳴イメージング装置
JP6296631B2 (ja) 磁気共鳴イメージング装置
JP6454789B2 (ja) 磁気共鳴イメージング装置
US10656225B2 (en) Magnetic resonance imaging apparatus
JP6444433B2 (ja) 磁気共鳴イメージング装置
JP7212578B2 (ja) 磁気共鳴イメージング装置および超電導磁石
JP4988385B2 (ja) 磁気共鳴イメージング装置
JP6953236B2 (ja) 磁気共鳴イメージング装置
JP6663821B2 (ja) 磁気共鳴イメージング装置
JP4814765B2 (ja) 磁気共鳴イメージング装置
JP6912321B2 (ja) 磁気共鳴イメージング装置
JP5268716B2 (ja) 磁気共鳴イメージング装置
JP5901561B2 (ja) 磁気共鳴イメージング装置
JP6660742B2 (ja) 磁気共鳴イメージング装置
JP5931612B2 (ja) 磁気共鳴イメージング装置
JP4866215B2 (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP2005066320A (ja) 傾斜磁場コイル
JP2014039633A (ja) 磁気共鳴イメージング装置
JP4651236B2 (ja) 磁気共鳴イメージング装置
WO2015170632A1 (ja) 磁気共鳴イメージング装置
JP2009261747A (ja) 磁気共鳴イメージング装置
JP2014087510A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835325

Country of ref document: EP

Kind code of ref document: A1