WO2005029603A1 - 積層型圧電素子 - Google Patents

積層型圧電素子 Download PDF

Info

Publication number
WO2005029603A1
WO2005029603A1 PCT/JP2004/013844 JP2004013844W WO2005029603A1 WO 2005029603 A1 WO2005029603 A1 WO 2005029603A1 JP 2004013844 W JP2004013844 W JP 2004013844W WO 2005029603 A1 WO2005029603 A1 WO 2005029603A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
external electrode
silver
electrode
piezoelectric element
Prior art date
Application number
PCT/JP2004/013844
Other languages
English (en)
French (fr)
Inventor
Takeshi Okamura
Katsushi Sakaue
Shigenobu Nakamura
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003332020A external-priority patent/JP4808915B2/ja
Priority claimed from JP2003385370A external-priority patent/JP2005150369A/ja
Priority claimed from JP2003421146A external-priority patent/JP4593911B2/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US10/573,331 priority Critical patent/US7633214B2/en
Priority to EP04788027.3A priority patent/EP1677370B1/en
Publication of WO2005029603A1 publication Critical patent/WO2005029603A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means

Definitions

  • the present invention relates to a multilayer piezoelectric element, for example, a driving element mounted on a fuel injection device of an automobile engine, a liquid injection device such as an ink jet, a precision positioning device such as an optical device, a vibration prevention device, and the like.
  • Sensor elements mounted on combustion pressure sensors, knock sensors, acceleration sensors, load sensors, ultrasonic sensors, pressure-sensitive sensors, cholesterol sensors, etc., and mounted on piezoelectric gyros, piezoelectric switches, piezoelectric transformers, piezoelectric breakers, etc.
  • the present invention relates to a laminated piezoelectric element used for a circuit element.
  • a laminated piezoelectric actuator in which piezoelectric bodies and electrodes are alternately laminated has been known.
  • Multilayer piezoelectric actuators are classified into two types: co-firing types and stack types in which piezoelectric ceramics and internal electrode plates are alternately stacked.Thus, when considering low voltage and reduction in manufacturing costs, thinner piezoelectric actuators are used. Therefore, the co-firing type laminated piezoelectric actuator is showing an advantage because it is advantageous for the durability and the durability.
  • FIG. 9 shows a typical multilayer capacitor as a conventional multilayer electronic component, in which dielectrics 21 and internal electrodes 22 are alternately stacked.
  • the internal electrode 22 is not formed on the entire main surface of the dielectric 21, but has a so-called partial electrode structure. By laminating the inner electrodes 22 of this partial electrode structure alternately on the left and right, the inner electrodes 22 can be alternately connected to the outer electrodes 23 formed on the side surfaces of the multilayer electronic component alternately (for example, see Patent Reference 1).
  • FIG. 8A shows a conventional laminated piezoelectric element, in which a piezoelectric body 1 and an internal electrode 2 are alternately laminated. As shown in FIG. It is not formed on the entire surface, and has a so-called partial electrode structure. By laminating left and right internal electrodes 12 having this partial electrode structure, the internal electrodes 2 can be alternately connected to the external electrodes 4 formed on the side surfaces of the multilayer electronic component.
  • Basics of multilayer piezoelectric element The structure is the same as that of the multilayer capacitor shown in Fig. 9.A paste of internal electrodes is printed on a ceramic green sheet in a pattern that provides a predetermined electrode structure, and a plurality of Darline sheets to which the internal electrode paste is applied are laminated. It was fired to produce a laminate (for example, see Patent Document 2).
  • the piezoelectric bodies 11 and the internal electrodes 12 are alternately laminated to form a columnar laminated body 13, and inactive layers 14 are laminated on both end faces in the laminating direction.
  • the internal electrode 12 is formed such that one end thereof is alternately connected to the left and right external electrodes 14 at right and left sides.
  • a lead wire is further fixed to the external electrode 14 by soldering.
  • an alloy of silver and palladium is used as the internal electrode.
  • the metal composition of the internal electrode is 70% by weight of silver and 30% by weight of noradium. % (See, for example, Patent Document 3).
  • Patent Document 1 Japanese Utility Model Publication No. 60-99522
  • Patent Document 2 JP-A-61-133715
  • Patent Document 3 Japanese Utility Model Application No. 130568
  • the piezoelectric body has a temperature dependence in which the displacement changes depending on the environmental temperature in use, there is a problem that the displacement of the piezoelectric actuator changes when the element temperature rises.
  • a load change occurs on the power supply to be voltage-controlled, causing a problem of imposing a load on the power supply.
  • the rate of change of the displacement is large, the displacement itself deteriorates rapidly, and when the temperature rise of the element exceeds the heat radiation, a thermal runaway phenomenon occurs and the element is destroyed.
  • the composition of 70% by weight of silver and 30% by weight of palladium which has been conventionally used for the laminated piezoelectric element, has 1.5 times higher resistance than palladium.
  • the present invention is to provide a laminated piezoelectric element having excellent durability, in which the displacement does not change even when the piezoelectric actuator is continuously driven for a long period of time under high voltage and high pressure. Aim.
  • the laminated piezoelectric element of the present invention provides a laminated body in which piezoelectric layers and internal electrodes are alternately laminated, and external electrodes formed on the first side surface and the second side surface of the laminated body, respectively. Wherein one of the adjacent internal electrodes is connected to the external electrode on the first side surface, and the other internal electrode is connected to the external electrode on the second side surface. In the child,
  • the metal composition in the internal electrode is mainly composed of a Group VIII metal and a Group lb metal in the periodic table,
  • the content of the Group VIII metal and the lb group metal is determined by multiplying the content of the Group VIII metal by Ml (weight).
  • Ml weight
  • the amount 0/0), when the content of the lb group metal was M2 (wt 0/0), 0 ⁇ M1 ⁇ 15 , 85 ⁇ M2 ⁇ 100, set it to satisfy the Ml + M2 100 It is characterized by.
  • the multilayer piezoelectric element according to the present invention configured as described above, since the specific resistance of the internal electrode can be reduced, the heat generation of the internal electrode portion can be suppressed even when the piezoelectric element is continuously driven. Further, by suppressing the rise in the element temperature, the displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator having excellent durability can be provided. At the same time, it is possible to provide a highly reliable piezoelectric actuator with excellent durability even in a high-temperature, high-humidity atmosphere in which the silver-migration phenomenon does not occur even when the piezoelectric actuator is driven continuously.
  • the VIII group metal is at least one of Ni, Pt, Pd, Rh, Ir, Ru, and Os, and the lb group metal is Cu, Ag, Au. Among them, at least one kind is preferable.
  • the raw material for the internal electrode can be either an alloy raw material or a mixed powder raw material, and the specific resistance of the internal electrode can be reduced. be able to. Further, by suppressing the rise in element temperature, the amount of displacement of the piezoelectric actuator can be stabilized, and a highly reliable piezoelectric actuator excellent in durability can be provided.
  • the Group VIII metal is preferably at least one of Pt and Pd, and the Group lb metal is preferably at least one of Ag and Au.
  • the Group VIII metal is preferably at least one of Pt and Pd
  • the Group lb metal is preferably at least one of Ag and Au.
  • the lb group metal is more preferably Cu.
  • the multilayer piezoelectric element of the present invention all of the metal composition components having a resistance of the internal electrode that is larger than the element resistance Ag when the metal composition components in the internal electrode are assumed to be silver force. It is preferable that the element resistance is smaller than the element resistance Pd when the palladium force is also increased.
  • the multilayer piezoelectric element configured as described above an electrode having excellent heat resistance can be formed, and the specific resistance of the internal electrode can be reduced. Even when driven continuously, heat generation of the internal electrode portion can be suppressed. Further, by suppressing the rise in the element temperature, the amount of displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator having excellent durability can be provided.
  • the laminated piezoelectric element of the present invention is formed on a laminated body in which piezoelectric layers and internal electrodes are alternately laminated, and on the first side surface and the second side surface of the laminated body, respectively.
  • One of the adjacent internal electrodes is connected to the external electrode on the first side surface, and the other internal electrode is connected to the external electrode on the second side surface.
  • the resistance of the internal electrode is the element resistance when all the metal composition components in the internal electrode are silver, and the element resistance when all metal composition components larger than Ag are also palladium. It is characterized by being smaller than Pd.
  • the specific resistance of the internal electrodes can be reduced, the heat generation of the internal electrode portions can be suppressed even when the internal electrodes are driven continuously. Further, by suppressing the rise in the element temperature, the amount of displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator having excellent durability can be provided.
  • the metal composition component constituting the internal electrode has a crystal particle having a maximum diameter of 1 m or more, and 80% by volume or more of the metal composition. Is preferred.
  • the specific resistance of the internal electrode can be reduced, it is possible to suppress heat generation of the internal electrode portion even when the piezoelectric element is continuously driven. Further, by suppressing the rise in element temperature, the displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator with excellent durability can be provided.
  • an inorganic composition may be added to the internal electrode together with the metal composition.
  • the internal electrode and the piezoelectric body can be firmly connected, and the heat generation of the internal electrode portion is suppressed even when the piezoelectric element is continuously driven. can do. Further, by suppressing the rise in element temperature, the amount of displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator excellent in durability can be provided.
  • the inorganic composition mainly comprises a perovskite oxide composed of PbZrO-PbTiO.
  • the internal electrode and the piezoelectric body can be more firmly coupled, and even when driven continuously, heat generation of the internal electrode portion can be suppressed. Further, the displacement of the piezoelectric actuator can be stabilized by suppressing the rise in the element temperature, so that a highly reliable piezoelectric actuator with excellent durability can be provided.
  • the piezoelectric body contains a vesicular oxide as a main component.
  • the piezoelectric body and the internal electrode can be simultaneously fired, and the specific resistance of the internal electrode can be reduced. Therefore, even when the piezoelectric element and the internal electrode are driven continuously, heat generation of the internal electrode portion can be suppressed. Further, by suppressing the rise in the element temperature, the amount of displacement of the piezoelectric actuator can be stabilized, so that a high durability with excellent durability can be obtained. A reliable piezoelectric actuator can be provided.
  • the piezoelectric body is mainly composed of a perovskite oxide composed of PbZrO—PbTiO.
  • the amount of displacement can be increased, and the specific resistance of the internal electrode can be reduced. Therefore, even when the piezoelectric element is continuously driven, heat generation of the internal electrode portion can be suppressed. Further, by suppressing the rise in the element temperature, the amount of displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator having excellent durability can be provided.
  • the firing temperature of the laminate is preferably 900 ° C or more and 1000 ° C or less.
  • the piezoelectric body and the electrode can be firmly coupled to each other, so that a highly reliable piezoelectric actuator having excellent durability can be provided.
  • a deviation of yarn composition in the internal electrode is 5% or less before and after firing.
  • the electrodes can be prevented from being hardened, so that a highly reliable piezoelectric actuator having excellent durability can be provided.
  • the external electrode is made of a conductive material mainly composed of silver and glass, and a silver weight ratio of the internal electrode to the entire conductive material is X (%).
  • the weight ratio of silver to the total weight of the conductive material and the glass in the external electrode is Y (%)
  • the internal electrode is satisfied so that ⁇ 85 and 0.9 ⁇ / ⁇ 1.1.
  • the silver ratio of the external electrode is set. By setting such a silver ratio, the amount of expensive palladium used can be suppressed, so that a multilayer piezoelectric element can be manufactured at low cost.
  • the weight ratio of silver in the conductive material constituting the internal electrode is substantially equal to the weight ratio of silver in the external electrode, when the external electrode is printed on the laminate, the external electrode has Interdiffusion of silver in the electrode and silver in the internal electrode is promoted, and strong bonding between the internal electrode and the external electrode is enabled. Even when the device is driven continuously for a long time under a high electric field and high pressure, Excellent durability without breaking the external electrode and the internal electrode is obtained.
  • the internal electrode includes a piezoelectric material, and a silver weight ratio of the internal electrode to a total weight including the piezoelectric material is ⁇ (%). , 0.7 ⁇ Z / Y ⁇ 1.0.
  • the internal electrode includes a piezoelectric material
  • the conductive material in the internal electrode sinters with the piezoelectric body during firing, and the bonding strength between the internal electrode and the piezoelectric body is improved.
  • the durability of the laminate is improved.
  • the silver weight ratio ⁇ (%) satisfies 0.7 ⁇ ⁇ / ⁇ 1.0
  • the silver weight ratio in the internal electrode is almost equal to the silver weight ratio in the external electrode. That is, when the external electrode is baked, mutual diffusion of silver in the external electrode and silver in the internal electrode is promoted, and strong bonding between the internal electrode and the external electrode becomes possible. Thereby, even when driving at high speed, it is possible to prevent disconnection of the contact portion between the external electrode and the internal electrode.
  • the external electrode is a porous conductor having a three-dimensional network structure. Since the external electrode, which is a porous conductive material having a three-dimensional network structure, has flexibility, even when the external electrode expands and contracts in the stacking direction during driving, the external electrode corresponds to the expansion and contraction of the laminate. Accordingly, it is possible to prevent a disconnection of the external electrode, a contact failure between the external electrode and the internal electrode, and the like.
  • the porosity of the external electrode is preferably 30 to 70% by volume. As described above, when the porosity of the external electrode is 30 to 70% by volume, the stress generated by expansion and contraction during driving can be absorbed, so that the external electrode can be prevented from being damaged.
  • the softening point (° C.) of the glass used for the external electrode is 4Z5 or less of the melting point (° C.) of the conductive material forming the internal electrode. It is characterized by the following. Softening point (° C) of glass If the melting point (° C) of the conductive material constituting the internal electrode is 4Z5 or less, the baking of the external electrode will be more than the melting point of the conductive material forming the internal electrode. It can be performed at a low temperature and at a temperature higher than the softening point of the glass.
  • the glass constituting the external electrode is amorphous.
  • the Young's modulus can be made lower than that of the crystalline material, so that cracks or the like generated in the external electrode can be suppressed.
  • the thickness of the external electrode is smaller than the thickness of the piezoelectric body constituting the multilayer body.
  • the internal electrode is made of a conductive material containing silver as a main component and containing at least one of palladium or platinum
  • the external electrode is made of a conductive material containing silver as a main component. It is made of a glass component, and it is preferable that the silver ratio of the internal electrode conductive material near the connection with the external electrode is larger than the silver ratio of the internal electrode conductive material inside the laminate.
  • connection between the conductive material of the internal electrode and the conductive material of the external electrode is reliably and firmly established, and the connection between the external electrode and the internal electrode can be made even when driven continuously in a high electric field.
  • the problem can be prevented from occurring when the part is peeled off.
  • the silver ratio of the internal electrode conductive material is larger than the silver ratio inside the laminate near the connection with the external electrode. This makes it possible to make the concentration of silver, which is the main component of the external electrode conductive material, close to that of silver in the internal electrode conductive material.Thus, the mutual diffusion of silver ensures the bonding between the external electrode and the internal electrode. It will be.
  • the external electrode since the concentration of silver in the conductive material constituting the internal electrode near the connection with the external electrode is substantially equal to the concentration of silver in the external electrode, the external electrode is baked on the laminate. In this case, mutual diffusion of silver in the external electrode and silver in the internal electrode is promoted, and strong bonding between the internal electrode and the external electrode is enabled, and continuous driving is performed for a long time under a high electric field and high pressure. Also in this case, it is possible to have excellent durability without disconnecting the external electrode and the internal electrode.
  • the ratio of silver in the internal electrode conductive material be gradually increased as approaching the external electrode. In this way, the As a result, a silver concentration gradient is continuously formed, so that stable internal electrodes and bonding between the internal and external electrodes can be realized.
  • the silver ratio in the internal electrode conductive material is preferably 85% by weight or more.
  • the silver ratio in the internal electrode conductive material is 85% by weight or more, the silver concentration in the internal electrode can be increased, and the connection with the external electrode by silver diffusion bonding can be ensured.
  • the silver ratio in the internal electrode conductive material refers to the silver ratio inside the laminate where the silver ratio of the internal electrode does not change.
  • the glass component in the external electrode is present at substantially 80% or less of the thickness of the external electrode on the surface side of the multilayer body.
  • the glass component in the external electrode contains lead oxide or bismuth oxide.
  • the bonding between the external electrode and the piezoelectric body can be strengthened.
  • a conductive material component of the internal electrode diffuses into the external electrode to form a neck at a joint between the external electrode and the internal electrode. Is preferred. As described above, when the neck portion is formed, even when a large current is applied and driving is performed at high speed, it is possible to prevent sparking or disconnection at the contact portion between the internal electrode and the external electrode.
  • the laminated piezoelectric element of the present invention is characterized in that a glass-rich layer is formed on a surface layer of the external electrode on a piezoelectric body side.
  • a glass-rich layer is formed on a surface layer of the external electrode on a piezoelectric body side.
  • the internal electrode includes a void, and the area ratio of the void to the total cross-sectional area in the cross section of the internal electrode be 5 to 70%. In this way, the internal electrode is used when the piezoelectric body is deformed by the electric field.
  • the restraining force can be reduced, and the amount of displacement of the piezoelectric body can be increased.
  • the stress applied to the internal electrode is reduced by the void, and the durability of the element is improved.
  • the internal electrodes dominate the heat conduction inside the device. If there is a gap in the internal electrodes, the temperature change inside the device due to the rapid temperature change outside the device will be reduced, and the device that is resistant to thermal shock will can get.
  • a groove is formed between the end of the other internal electrode and the external electrode on the first side surface, and the groove is formed in the groove.
  • An insulator is provided to insulate the other internal electrode from the external electrode.
  • On the second side surface a groove is formed between the end of the one internal electrode and the external electrode, and the groove is formed.
  • An insulator may be provided on the first electrode to insulate one of the internal electrodes from the external electrode. Thereby, the internal electrode and the external electrode can be insulated alternately. In this case, it is preferable that the insulator has a lower Young's modulus than the piezoelectric body.
  • the stress generated by the displacement during driving can be reduced, it is possible to suppress the heat generation of the internal electrode portion even when the piezoelectric element is driven continuously. Further, by suppressing the rise in the element temperature, the displacement of the piezoelectric actuator can be stabilized, so that a highly reliable piezoelectric actuator with excellent durability can be provided. Further, the insulator in the concave groove can be deformed by following the expansion and contraction during driving of the laminate, so that cracks and the like in the vicinity of the groove can be prevented.
  • the multilayer piezoelectric element of the present invention is provided with a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-shaped metal plate is embedded on the outer surface of the external electrode. Is also good.
  • the laminate can be driven at high speed with a large current.
  • the large current can flow through the conductive auxiliary member, disconnection due to local heat generation of the external electrode can be prevented, and the durability can be greatly improved.
  • the conductive adhesive is made of a polyimide resin in which conductive particles are dispersed.
  • the conductive adhesive can maintain high adhesive strength even when the laminate is driven at a high temperature.
  • the conductive particles in the conductive adhesive be silver powder. If the conductive particles in the conductive adhesive are silver powder, the resistance value of the conductive adhesive can be reduced, so that even when the laminate is driven with a large current, Local heat generation can be prevented.
  • the laminated piezoelectric element with excellent durability that does not change the displacement amount. For example, it is possible to provide an injection device having excellent durability.
  • FIG. 1A is a perspective view of a laminated piezoelectric element according to Embodiment 13 of the present invention.
  • FIG. 1B is a longitudinal sectional view taken along line AA ′ of FIG. 1A.
  • FIG. 2A is an enlarged cross-sectional view showing a part of FIG. 1B.
  • FIG. 2B is an enlarged sectional view showing a part of FIG. 2A.
  • FIG. 2C is a cross-sectional photograph of the same portion as FIG. 2B.
  • FIG. 3A is a cross-sectional view after a groove is formed on a side surface in the method for manufacturing a multilayer piezoelectric element of the present invention.
  • FIG. 3B is a cross-sectional view after the conductive paste 21 is formed on the side surface in the method for manufacturing a multilayer piezoelectric element of the present invention.
  • FIG. 3C is a cross-sectional view after forming the external electrode 4 on the side surface in the method of manufacturing a multilayer piezoelectric element of the present invention.
  • FIG. 4A is a perspective view showing a laminated piezoelectric element according to the present invention in which a conductive auxiliary member is formed on the outer surface of an external electrode.
  • FIG. 4B is a sectional view of FIG. 4B.
  • FIG. 4C is a cross-sectional view showing a part of FIG. 4B in an enlarged manner.
  • FIG. 5 is a cross-sectional view showing a configuration of an injection device according to Embodiment 4 of the present invention.
  • FIG. 6 is a cross-sectional view of a conventional laminated piezoelectric actuator.
  • FIG. 7 is a graph showing a silver ratio in an internal electrode conductive material in Example 4 of the present invention.
  • FIG. 8A is a perspective view showing a configuration of a conventional laminated piezoelectric element.
  • FIG. 8B is an exploded perspective view showing an exploded part of the multilayer piezoelectric element of FIG. 8A.
  • FIG. 9 is a perspective view showing a configuration of a typical multilayer capacitor as a conventional multilayer electronic component.
  • FIG. 1A is a perspective view of a multilayer piezoelectric element (multilayer piezoelectric actuator) according to Embodiment 1 of the present invention
  • FIG. 1B is a longitudinal sectional view taken along line AA ′ in FIG. 1A. It is.
  • the laminated piezoelectric actuator according to the first embodiment has a square pillar-shaped laminated body 10 in which a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately laminated. And that side The surface is constituted by internal electrodes 2 and external electrodes 4 formed so as to be connected every other layer. Specifically, the end of the internal electrode 2 is covered with the insulator 3 on every other side on the side surface on which the external electrode 4 is formed, and the end of the internal electrode 2 not covered with the insulator 3 and the outside.
  • the configuration is such that the unit electrodes 4 conduct.
  • the external electrode 4 be a porous conductor having a three-dimensional network structure formed of a conductive material containing silver as a main component and a glass force. Note that, in the laminated body 10, a portion denoted by reference numeral 9 is an inactive layer in which an internal electrode is formed.
  • the internal electrode 2 is disposed between the piezoelectric bodies 1.
  • the internal electrode 2 is formed of a metal material such as silver / palladium, and is an electrode for applying a predetermined voltage to each piezoelectric body 1. This causes the piezoelectric body 1 to undergo a displacement due to the inverse piezoelectric effect according to the applied voltage.
  • a groove having a depth of 30 to 500 ⁇ m and a width of 30 to 200 ⁇ m in the stacking direction is formed on every other side surface of the laminated body 10, and a younger than the piezoelectric body 1 is formed in this groove.
  • the insulator 3 is formed by filling a low-rate glass, epoxy resin, polyimide resin, polyamideimide resin, silicone rubber, or the like. It is preferable that the insulator 3 be made of a material having a low elastic modulus that follows the displacement of the laminate 10, in particular, a material such as silicone rubber, in order to strengthen the bonding with the laminate 10.
  • External electrodes 4 are bonded to two opposing side surfaces of the laminate 10, and the laminated internal electrodes 2 are electrically connected to every other layer to the external electrodes 4. .
  • the external electrodes 4 serve to commonly supply a voltage required for displacing the piezoelectric body 1 to the connected internal electrodes 2 by the inverse piezoelectric effect.
  • a lead wire 6 is connected and fixed to the external electrode 4 by soldering.
  • the lead wire 6 serves to connect the external electrode 4 to an external voltage supply.
  • a method of keeping the element temperature constant during continuous driving or a method according to the element temperature is used.
  • a method of controlling the driving voltage with a small power has been adopted.
  • a structure in which a heat sink that actively dissipates heat is attached to control the driving voltage while monitoring the element temperature or suppress a change in the temperature around the element is used.
  • heat generation of the element itself due to driving is suppressed.
  • the element resistance is reduced.
  • the element resistance is the resistance of the laminated piezoelectric element measured between the external electrodes, and is mainly determined by the part having the highest resistance among the piezoelectric body, the internal electrode, the external electrode, and the interface resistance at the boundary between them.
  • the interface resistance is a resistance component due to an energy barrier generated by a difference between an electronic level generated in a grain boundary portion of a piezoelectric body and a work function of an internal electrode (similar to a Schottky nolia of a semiconductor). The resistance is higher than the body's resistance component.
  • element resistance can be measured with an LCR meter, impedance analyzer, etc.
  • the specific resistance value of the internal electrode is reduced, and furthermore, by using a material having excellent heat conduction characteristics as the electrode material, the temperature rise of the element is suppressed. ing.
  • the specific resistance of the internal electrode is reduced to suppress heat generation due to the resistance of the internal electrode, and the internal electrode is quickly (effectively) transferred to the outside of the element to generate heat inside the element.
  • the internal electrode itself reaches as close to the outer surface of the element as possible. Furthermore, it is desirable that the temperature characteristic of the displacement amount of the piezoelectric material itself be constant regardless of the operating temperature. Therefore, the piezoelectric material having a small displacement amount with respect to the element temperature change during continuous driving. Is preferred.
  • the interface resistance In order to reduce the element resistance, it is effective to reduce the interface resistance.
  • a method for reducing the interface resistance there is a method of diffusing the material of the internal electrode into the piezoelectric body in order to suppress the formation of an energy barrier. From this point, Ag is easier to diffuse than Pd, so the energy barrier is lower and the interface resistance can be reduced.
  • the metal composition in the internal electrode 2 is mainly composed of a Group VIII metal and a Group lb metal.
  • the metal composition containing a Group VIII metal and a Group lb metal as its main components has excellent heat resistance, the piezoelectric body 1 and the internal Electrode 2 can be co-fired.
  • the composition ratio of the main component of the internal electrode metal component is limited to the above range for the following reason. That is, when the content of the Group VIII metal exceeds 15% by weight, the specific resistance of the internal electrode 2 increases, and when the multilayer piezoelectric element is continuously driven, the internal electrode 2 may generate heat. Further, in order to prevent the lb group metal in the internal electrode 2 from migrating into the piezoelectric body 1, the content of the group VIII metal is preferably 0.001% by weight or more and 15% by weight or less. From the viewpoint of improving the durability of the multilayer piezoelectric element, the content is preferably from 0.1% by weight to 10% by weight. When excellent heat conduction and higher durability are required, the content is more preferably 0.5% by weight or more and 9.5% by weight or less. If higher durability is required, the content is more preferably 2% by weight or more and 8% by weight or less.
  • the proportion of the lb group metal is preferably set to 85% by weight or more and 99.999% by weight or less.
  • the content is preferably 90% by weight or more and 99.9% by weight or less. Further, when higher durability is required, it is preferable to use 99.5% by weight or more and 99.5% by weight or less. When higher durability is required, the content is more preferably from 92% by weight to 98% by weight.
  • Ml and M2 indicating the weight% of the metal component in the internal electrode 2 are EPMA (Electron
  • the metal component in the internal electrode 2 of the present invention is such that the Group VIII metal is at least one of Ni, Pt, Pd, Rh, Ir, Ru, and Os, and the lb group metal is Cu, Ag, Au. Preferably, at least one of them is used. This is because the metal composition is excellent in mass productivity in recent alloy powder synthesis technology.
  • the metal component in the internal electrode 2 of the first embodiment is such that the Group VIII metal is Pt or Pd. It is more preferable that at least one or more of them be used, and the lb group metal be at least one of Ag and Au. As a result, an electrode having excellent heat resistance can be formed, and the specific resistance of the internal electrode 2 can be reduced. Therefore, even when the electrode is continuously driven, heat generation of the internal electrode 2 can be suppressed.
  • the lb group metal is more preferably Cu.
  • the internal electrodes are formed of such a material
  • an electrode having excellent thermal conductivity can be formed, and the specific resistance of the internal electrode 2 can be reduced.
  • heat generation in two parts of the internal electrodes can be suppressed.
  • the rise in the element temperature can be suppressed and the displacement of the piezoelectric actuator can be stabilized, a highly reliable piezoelectric actuator with excellent durability can be provided.
  • the element resistance preferably satisfies p Ag ⁇ p ⁇ p Pd.
  • p Ag is the element resistance value when the internal electrode 2 is made of 100% silver
  • Pd is the element resistance value when the internal electrode 2 is made of 100% palladium.
  • the composition of 70% by weight of silver and 30% by weight of noradium which has been used for the internal electrode 2 of the multilayer piezoelectric element, has a resistance 1.5 times higher than that of palladium.
  • an element resistance P of not less than 80% by weight of silver and not more than 20% by weight of palladium.
  • the conductivity ⁇ of the internal electrode 2 satisfies ⁇ Pd ⁇ ⁇ Ag.
  • ⁇ Ag is a resistance value assuming that the internal electrode 2 is made of 100% silver
  • ⁇ Pd is a resistance value assuming that the internal electrode 2 is made of 100% palladium.
  • the proportion of crystal particles having a maximum diameter of 1 ⁇ m or more occupies 80% by volume or more of the entire metal composition. It is preferable to do so.
  • the resistance can be further reduced when the proportion of crystal particles having a maximum diameter of 1 ⁇ m or more occupies 90% by volume or more in the metal composition component constituting the internal electrode 2. More preferably, the resistance is further reduced when the proportion of crystal particles having a maximum diameter of 1 m or more occupies 95% by volume or more in the metal composition component constituting the internal electrode 2.
  • the ratio of those with a maximum diameter of 1 m or more should be determined by SEM, etc., by specifying crystal particles with a maximum diameter of 1 ⁇ m or more in the metal composition in the internal electrode 2 and converting them to volume%. Can be calculated.
  • an inorganic composition is added to the internal electrode 2 of the present invention together with the metal composition. Thereby, the internal electrode 2 and the piezoelectric body 1 can be firmly coupled.
  • the inorganic composition added to the internal electrode 2 is composed of PbZrO—PbTiO.
  • the internal electrode 2 and the piezoelectric body 1 can be firmly coupled, and even when driven continuously, a stable displacement of the piezoelectric actuator can be obtained.
  • the piezoelectric body 1 according to the first embodiment contains a perovskite oxide as a main component.
  • a perovskite type pressure represented by barium titanate (BaTiO 3).
  • the piezoelectric distortion constant d indicating its piezoelectric characteristics is high.
  • the piezoelectric element 1 and the internal electrode 2 can be simultaneously fired while functioning as an excellent piezoelectric element.
  • the piezoelectric body 1 of the present invention contains a perovskite oxide as a main component, which is a PbZr03-PbTi03 force.
  • a perovskite oxide as a main component, which is a PbZr03-PbTi03 force.
  • the firing temperature of the multilayer piezoelectric element of the present invention is preferably not less than 900 ° C and not more than 1000 ° C.
  • the piezoelectric body 1 and the electrode can be firmly coupled.
  • 900 ° C or less The reason why the temperature is limited to 1000 ° C or lower is that at a temperature lower than 900 ° C, it is not possible to produce a dense piezoelectric body 1, and at a temperature higher than 1000 ° C, the electrode shrinks during firing and the piezoelectric body 1 shrinks. Another reason is that the stress caused by the displacement increases and cracks occur during continuous driving. Further, it is preferable that the deviation of the composition in the internal electrode 2 be 5% or less before and after firing.
  • the deviation of the composition in the internal electrode 2 means the rate of change of the composition of the internal electrode 2 due to the evaporation of the elements constituting the internal electrode 2 or the diffusion of the elements into the piezoelectric body 1. Is shown.
  • the internal electrodes 2 whose ends are exposed on the side surfaces of the multilayer body and the internal electrodes 2 whose ends are not exposed are formed alternately, and the end portions are formed.
  • a groove is formed in the piezoelectric portion between the internal electrode 2 and the external electrode 4 that are not exposed. It is preferable that an insulator is formed in this groove, which has a lower Young's modulus than the piezoelectric body 12. With the low Young's modulus and the multilayer piezoelectric element with the insulator formed in the groove, the stress generated by the displacement during driving can be reduced, so that even if the piezoelectric element is driven continuously, the internal electrode 2 generates heat. Can be suppressed.
  • the laminated piezoelectric element of the present invention has a single plate or the number of laminations of 1 or more.
  • the pressure applied to the element can be converted to a voltage, and the element can be displaced by applying a voltage to the element.
  • the stress can be relaxed by dispersing and converting the voltage. Therefore, it is possible to provide a highly reliable piezoelectric actuator with excellent durability.
  • the multilayer piezoelectric element of the present invention is manufactured as follows.
  • a piezoelectric material such as a perovskite oxide made of PbZrOPbTiO is used.
  • a slurry is prepared by mixing a calcined powder of ceramics, a binder having an organic polymer such as an acrylic or a butyral type, and a plasticizer such as DOP (dibutyl phthalate) or DBP (dibutyl phthalate).
  • the slurry can be prepared by using the well-known doctor blade method, calendar roll method, etc.
  • the ceramic green sheet which becomes the piezoelectric body 1 is produced by the tape molding method described above.
  • a conductive paste is prepared by adding and mixing a metal powder constituting an internal electrode such as silver-palladium or the like with a binder, a plasticizer, or the like, and printing this on the upper surface of each of the green sheets by screen printing. Print to a thickness of 1 to 40 ⁇ m by the method.
  • the columnar laminate 10 is manufactured.
  • the calcination is preferably performed at 900-1000 ° C.
  • the columnar laminate 10 is not limited to the one produced by the above-described method, but may be a columnar laminate 10 formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes. If possible, any manufacturing method may be used.
  • one of two adjacent internal electrodes has an end exposed at one side surface on which an external electrode is formed, and the other internal electrode has an end exposed at one end.
  • One of the two adjacent internal electrodes is located on the other side where another external electrode is formed, so that The end is located inside without being exposed, and the other internal electrode is fabricated such that the end is exposed to the other side force.
  • a groove is formed on the side surface of the laminated body where the ends of the internal electrodes are alternately exposed, toward the ends of the internal electrodes whose ends are not exposed.
  • a groove is preferably formed is shown as an example. However, in the present invention, a groove must be formed without fail. .
  • a glass powder is mixed with a noinder to prepare a silver glass conductive paste, which is formed into a sheet and dried (solvent is scattered). 0
  • the green density of the sheet is 6-9 gZcm. Control to 3.
  • This sheet is transferred to the external electrode forming surface (one side surface and the other side surface described above) of the columnar laminate 10 and is heated at a temperature higher than the softening point of glass and at a temperature lower than the melting point of silver (965 ° C.). The baking is performed at a temperature of 4Z5 or less of the firing temperature (° C).
  • the binder component in the sheet produced using the silver glass conductive paste is scattered and disappears, and the external electrode 4 made of a porous conductor having a three-dimensional network structure is formed.
  • the baking temperature of the silver glass conductive paste is such that an effective neck is formed, silver in the silver glass conductive paste is diffused and bonded to the internal electrode 2, and a gap in the external electrode 4 is reduced.
  • the temperature is preferably 550-700 ° C. from the viewpoint that the external electrodes 4 and the side surfaces of the columnar laminate 10 are partially connected to each other, and that the external electrodes 4 are partially bonded.
  • the softening point of the glass component in the silver glass conductive paste is desirably 500 to 700 ° C.
  • baking temperature is higher than 700 ° C.
  • the sintering of the silver powder of the silver glass conductive paste proceeds excessively, and a porous conductor having an effective three-dimensional network structure cannot be formed.
  • the external electrodes 4 become too dense.
  • the Young's modulus of the external electrode 4 becomes too high, so that the stress during driving cannot be sufficiently absorbed, and the external electrode 4 may be disconnected.
  • baking is performed at a temperature within 1.2 times of the softening point of the glass.
  • the neck portion is not formed because the diffusion bonding between the end of the internal electrode 2 and the external electrode 4 is not sufficiently performed, and the internal There is a possibility of sparking between the electrode 2 and the external electrode 4.
  • the thickness of the sheet of the silver glass conductive paste is desirably smaller than the thickness of the piezoelectric body 1. More preferably, it is not more than 50 / z m from the viewpoint of following the expansion and contraction of the actuator.
  • silver having a low Young's modulus or an alloy containing silver as a main component is preferable since the conductive material constituting the external electrode 4 sufficiently absorbs stress generated by expansion and contraction of the actuator.
  • the columnar laminate 10 on which the external electrodes 4 are formed is immersed in a silicone rubber solution, and the silicone rubber solution is evacuated by vacuum to fill the inside of the groove of the columnar laminate 10 with silicone rubber.
  • the silicone rubber solution force also pulls up the columnar laminate 10 and coats the side of the columnar laminate 10 with silicone rubber. Then, the silicone rubber filled in the groove and coated on the side surface of the columnar laminate 10 is cured.
  • a lead wire is connected to the external electrode 4 to complete the multi-layer piezoelectric element of the present invention.
  • a direct current voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 4 via the lead wires to polarize the columnar laminated body 10, thereby completing a laminated piezoelectric actuator as a product. I do.
  • the lead wire of the manufactured laminated piezoelectric actuator is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire and the external electrode 4, each piezoelectric body 1 is greatly displaced by the inverse piezoelectric effect. This functions as, for example, an automobile fuel injection valve that supplies fuel to the engine.
  • the element resistance when the metal composition component in the internal electrode 2 also has a silver force is p Ag
  • the element resistance when the metal composition component also has a palladium force is when the element resistance was p Pd
  • the conductivity of the internal electrode 2 is ⁇ Ag, and the metal composition component is palladium.
  • the internal electrode 2 conductivity is ⁇ Pd
  • the internal electrode 2 conductivity ⁇ force ⁇ Pd ⁇ ⁇ Ag so that the actuator is continuously driven under a high electric field.
  • the displacement does not change effectively, it is possible to provide a highly reliable piezoelectric actuator with excellent durability without malfunction of the device.
  • the multilayer piezoelectric element configured as described above, at least 80% by volume of the crystal particles constituting the internal electrode 2 having the maximum diameter of the metal composition component power: Lm or more exist. Therefore, even when the actuator is continuously driven under a high electric field, the displacement does not change effectively, and the device has high durability and high reliability without malfunctioning.
  • An electrical actuator can be provided.
  • a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-shaped metal plate is embedded may be formed on the outer surface of the external electrode 4.
  • a conductive auxiliary member on the outer surface of the external electrode 4
  • a large current can be supplied to the actuator and a large current can be passed through the conductive auxiliary member even when the actuator is driven at high speed.
  • the current flowing through the external electrode 4 can be reduced, it is possible to prevent the external electrode 4 from locally generating heat and breaking the wire, thereby greatly improving the durability.
  • a metal mesh or a mesh-like metal plate is embedded in the conductive adhesive, it is possible to prevent the conductive adhesive from cracking.
  • the metal mesh is formed by weaving metal wires, and the mesh-shaped metal plate is formed by forming holes in the metal plate to form a mesh.
  • the conductive adhesive constituting the conductive auxiliary member is desirably made of a polyimide resin in which silver powder is dispersed. That is, by dispersing a silver powder having a low specific resistance into a polyimide resin having a high heat resistance, it is possible to form a conductive auxiliary member having a low resistance value and maintaining a high adhesive strength even when used at a high temperature.
  • the conductive particles are non-spherical particles such as flakes and needles. This is because the conductive particles are formed into non-spherical particles such as flakes and needles, so that the entanglement between the conductive particles can be strengthened, and the shear strength of the conductive adhesive can be increased. This is because it can be increased.
  • the multilayer piezoelectric element of the present invention is not limited to these, and various changes can be made without departing from the gist of the present invention.
  • the example in which the external electrodes 4 are formed on the opposing side surfaces of the columnar laminate 10 has been described.
  • a pair of external electrodes may be formed on the adjacent side surface.
  • the multilayer piezoelectric element of Embodiment 1 configured as described above may be, for example, a precision positioning device such as a fuel injection device for an automobile engine, a liquid injection device such as an inkjet device, an optical device, or the like.
  • Other than sensor elements mounted on devices such as piezoelectric gyros, piezoelectric switches, piezoelectric transformers, piezoelectric breakers, etc., any other device that uses piezoelectric characteristics can be used. It is.
  • the desired displacement does not change effectively.
  • a malfunction of the device can be prevented, and a highly reliable injection device with excellent durability can be provided.
  • the multi-layer piezoelectric element (multi-layer piezoelectric actuator) according to the second embodiment of the present invention is the same as the multi-layer piezoelectric element according to the first embodiment except that the external electrode 4 and the internal electrode 2 are configured as follows. I have.
  • the external electrode 4 is made of a conductive material mainly composed of silver and glass
  • the internal electrode 2 is made of a conductive material and a piezoelectric material.
  • the silver weight ratio in the conductive material of the internal electrode 2 is X (%)
  • the silver weight ratio in the internal electrode 2 including the conductive material and the piezoelectric material is Z (%)
  • the silver weight ratio in the external electrode 4 is
  • Y (%) is set, each ratio is set to satisfy ⁇ 85 and 0.9 ⁇ / ⁇ 1.1. This is for the following reasons. If X is less than 85%, the weight ratio of the palladium constituting the internal electrode 2 necessarily increases, so that it is not possible to manufacture a multilayer piezoelectric actuator at low cost.
  • the amount of silver in the internal electrode 2 is relatively smaller than the amount of silver in the external electrode 4, so that when the external electrode 4 is burned, This is because the mutual diffusion of silver contained in the electrode 4 is reduced, the bonding strength between the internal electrode 2 and the external electrode 4 is reduced, and the durability of the laminated piezoelectric actuator is reduced.
  • X ⁇ exceeds 1.1 the amount of silver in the external electrode 4 becomes relatively smaller than that of the internal electrode 2, so that when the external electrode 4 is burned, This is because the interdiffusion between the contained silver is reduced, the bonding strength between the internal electrode 2 and the external electrode 4 is reduced, and the durability of the laminated piezoelectric actuator is reduced.
  • the weight ratio of silver in the conductive material of the internal electrode 2 was ⁇ (%), and the weight ratio of silver in the conductive material containing silver as a main component and the external electrode 4 having glass power was ⁇ (%). ⁇ ⁇ 85, and 0 When 9 ⁇ X / Y ⁇ 1.1 is satisfied, the amount of expensive palladium forming the internal electrode 2 can be suppressed, so that a multilayer piezoelectric element can be manufactured at low cost.
  • the internal electrode 2 and the external electrode 4 are almost equal, when the external electrode 4 is burned, the internal electrode 2 and the external electrode 4 Promotes interdiffusion of silver contained in the internal electrode 2 and solid bonding of the internal electrode 2 and the external electrode 4. It can have excellent durability without breaking the external electrode 4.
  • the internal electrode 2 is made of a conductive material and a piezoelectric material, and the silver weight ratio in the internal electrode 2 is ⁇ (%), it satisfies 0.7 ⁇ / ⁇ 1.0. Is desirable. This is for the following reason.
  • is less than 0.7, the amount of silver in the internal electrode 2 is relatively smaller than the amount of silver in the external electrode 4, and the resistance of the internal electrode 2 is higher than that of the external electrode 4. Local heat is generated in the internal electrode 2.
  • the external electrode 4 is diffusion-bonded to the end of the internal electrode 2 exposed on the side surface of the multilayer body, and the conductive material component of the internal electrode 2 is It is desirable to diffuse the electrode 4 to form the neck portion 4b.
  • the neck portion 4b By the neck portion 4b, a strong connection between the internal electrode 2 and the external electrode 4 can be realized.
  • a large current flows through the multilayer piezoelectric element to drive the piezoelectric element at high speed. However, it is possible to prevent local heat generation and sparks at the junction between the internal electrode and the external electrode.
  • the external electrode 4 be formed of a porous conductor having a three-dimensional network structure.
  • the three-dimensional network structure does not mean that a so-called spherical void exists in the external electrode 4 .
  • the conductive material powder and the glass powder constituting the external electrode 4 are baked at a relatively low temperature. As a result, the sintering does not proceed and the voids exist in a connected state to the extent that voids are present.
  • 2A is a cross-sectional view in which a part of the cross section shown in FIG. 1B is enlarged
  • FIG. 2B is a cross-sectional view in which a part of FIG. 2A is further enlarged.
  • the external electrode 4 is partially joined to the side surface of the laminate 10. That is, diffusion bonding is performed with the end of the internal electrode 2 exposed on the side surface of the multilayer body 10, and is partially bonded with the side surface of the piezoelectric body 1 of the multilayer body 10. That is, the mixture of the conductive material and the glass is partially bonded to the side surface of the piezoelectric body 1, and a gap 4 a is formed between the side surface of the piezoelectric body 1 and the external electrode 4. Also, a large number of voids 4a are formed in the external electrode 4, whereby the external electrode 4 is made of a porous conductor.
  • the shape of the gap 4a is a complicated shape in which the shape of the conductive material and the glass before baking relatively remains as it is.
  • the external electrode 4 is made of a porous conductor having a three-dimensional network structure, otherwise, the external electrode 4 has no flexibility and cannot follow the expansion and contraction of the laminated piezoelectric actuator. Therefore, disconnection of the external electrode 4 and contact failure between the external electrode 4 and the internal electrode 2 may occur.
  • the porosity in the external electrode 4 is desirably 30 to 70% by volume. Thereby, the stress generated by the expansion and contraction of the actuator can be flexibly received. That is, when the porosity in the external electrode 4 is smaller than 30% by volume, the external electrode 4 may not be able to withstand the stress generated by the expansion and contraction of the actuator, and the external electrode 4 may be disconnected. On the other hand, if the porosity in the external electrode 4 is greater than 70% by volume, the resistance value of the external electrode 4 increases, and when a large current flows, the external electrode 4 generates local heat and is disconnected. could be done.
  • a glass-rich layer be formed on the surface layer of the external electrode 4 on the side of the piezoelectric body 1. If the glass-rich layer does not exist, it is difficult to join the glass component in the external electrode 4 with the glass component.
  • the softening point (° C.) of the glass contained in the external electrode 4 is preferably not more than 4Z5 of the melting point (° C.) of the conductive material constituting the internal electrode 2. This is because if the softening point of the glass forming the external electrode 4 exceeds the melting point of 4Z5 of the conductive material forming the internal electrode 2, the softening point of the glass forming the external electrode 4 and the conductive material forming the internal electrode 2 Have the same melting point As a result, the temperature at which the external electrode 4 is baked necessarily approaches the melting point of the internal electrode 2, so that when the external electrode 4 is baked, the conductive materials of the internal electrode 2 and the external electrode 4 aggregate and diffuse. In some cases, bonding may not be prevented, or the baking temperature may not be set to a temperature sufficient to soften the glass component of the external electrode 4, so that sufficient bonding strength of the softened glass may not be obtained.
  • the glass constituting the external electrode 4 be made amorphous. This is because, in the case of crystalline glass, the stress generated by expansion and contraction of the laminated piezoelectric actuator cannot be absorbed by the external electrode 4, so that cracks and the like may occur.
  • the thickness of the external electrode 4 be smaller than the thickness of the piezoelectric body 1. This is because the thickness of the external electrode 4 is larger than the thickness of the piezoelectric body 1 and the strength of the external electrode 4 increases, so that when the laminate 10 expands and contracts, the joint between the external electrode 4 and the internal electrode 2 The load may increase, resulting in poor contact.
  • an insulator 3 having a Young's modulus lower than that of the piezoelectric body 1 is filled in a concave groove formed on a side surface of the laminate 10, and the internal electrode 2 and the external electrode It is desirable that 4 be insulated every other layer.
  • the piezoelectric body 1 sandwiched between the internal electrodes 2 is a force that expands and contracts due to the voltage applied between the adjacent internal electrodes 2.
  • the piezoelectric body 1 near the side of the laminate 10 that is not sandwiched between the internal electrodes 2 has an internal Even if a voltage is applied to the electrode 2, it does not expand or contract, so that a compressive stress or a tensile stress is generated every time a voltage is applied to the internal electrode 2.
  • the laminated body 10 expands and contracts when the laminated body 10 expands and contracts.
  • the stress generated on the side surface of the insulator 3 can be reduced by the expansion and contraction of the insulator 3, thereby improving the durability.
  • the Young's modulus of the insulator 3 filled in the concave groove is larger than that of the piezoelectric body 1, the stress generated near the side surface of the laminate 10 cannot be reduced by the expansion and contraction of the insulator 3 as described above. However, the durability of the multilayer piezoelectric element may be reduced.
  • the material constituting the desired piezoelectric body 1 is mainly composed of PbZrO—PbTiO, Pb (Yb Nb) 0, Pb (Co Nb) 0 and Pb (Zn Nb) 0 as components
  • Those containing 0 to 20 mol% are preferred. That is, the state diagram of silver-palladium alloy, when the palladium using 5 weight 0/0 of silver-palladium alloy, a baked formation capable piezoelectric body 1 at temperatures below 980 ° C, for example, mainly PbZrO PbTiO Component and P as a subcomponent
  • the external electrode 4 is composed of 87-99.5% by weight of a conductive material and 0.5-13% by weight of a glass powder, and a small amount of glass is dispersed in the conductive material.
  • This external electrode 4 is partially joined to the side surface of the laminate 10. That is, the conductive material in the internal electrode 2 and the conductive material in the external electrode 4 are diffusion-bonded to the end of the internal electrode 2 exposed on the side surface of the laminate 10, and Are bonded mainly via the glass component in the external electrode 4. That is, the mixture of the conductive material and the glass in the external electrode 4 is partially joined to the side surface of the piezoelectric body 1, and a gap 4 a is formed between the side surface of the piezoelectric body 1 and the external electrode 4.
  • a large number of voids 4a are also formed in the external electrode 4, whereby the external electrode 4 is made of a porous conductor.
  • the shape of the gap 4a is a complex shape in which the shape of the conductive material and the glass before baking relatively remains.
  • the conductive material of the external electrode 4 is silver having a low Young's modulus or an alloy force containing silver as a main component. It is also desirable that the external electrode 4 as a whole be formed of a porous conductor having a flexible three-dimensional network structure.
  • the multilayer piezoelectric actuator of the second embodiment according to the present invention can be manufactured in the same manner as the multilayer piezoelectric actuator of the first embodiment. First, in the same manner as in the first embodiment, a laminate 10 is manufactured.
  • the silver-palladium alloy forming the internal electrode 2 preferably has a low palladium ratio, and more preferably has a palladium ratio of 10% by weight or less.
  • the piezoelectric body 1 be a material that can be fired at 980 ° C. or lower.
  • PbZrO—PbTiO is a main component
  • Pb (YbNb) 0 is a subcomponent.
  • the silver-palladium constituting the internal electrode may be an alloy powder of silver and palladium, or a mixture of silver powder and palladium powder. Note that, even when a mixture of silver powder and palladium powder is used, a silver-palladium alloy is formed during firing.
  • the ratio of the piezoelectric material (calcined powder of the piezoelectric ceramic) added to the conductive paste for forming the internal electrode 2 makes the bonding strength between the internal electrode 2 and the piezoelectric body 1 strong,
  • the fired internal electrode 2 contains 75 to 93% by weight of the conductive material and 7 to 25% by weight of the remaining piezoelectric material.
  • the laminate 10 is not limited to the one produced by the above-described manufacturing method. If the laminate 10 can be produced by alternately laminating a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2, It may be formed by any manufacturing method.
  • a concave groove is formed every other side of the laminated body 10 by a dicing apparatus or the like.
  • the binder component in the sheet 21 produced using the silver glass conductive paste is scattered and disappears, and the external electrode made of a porous conductor having a three-dimensional network structure is formed. It is also possible to form the poles 4.
  • the green density of the sheet 21 is controlled to 6-9 gZcm3, and the porosity of the external electrodes 4 is set to 30%. In order to achieve 70%, it is desirable to set the green density to 6.2-7. OgZcm3.
  • the green density of the sheet 21 can be measured by the Archimedes method.
  • voids 4a are formed in the external electrodes 4, and the silver in the silver glass paste is diffusion-bonded to the silver-palladium alloy in the internal electrodes 2 to form a net.
  • the external electrode 4 that may be formed with the cut portion 4b is partially joined to the side surface of the multilayer body 10.
  • the silver-palladium alloy of the internal electrode 2 and the silver of the external electrode 4 mutually diffuse, so that the palladium diffused from the internal electrode 2 can be analyzed by a general analysis method (for example, EPMA, EDS, etc.). Can be detected.
  • the baking temperature of the silver glass paste is preferably set in the range described in Embodiment 1 in order to effectively form the neck portion 4b.
  • the thickness of the silver glass paste sheet 21 be smaller than the thickness of the piezoelectric body 1. More preferably, it is 50 m or less in order to follow the expansion and contraction of the laminated piezoelectric actuator.
  • the reason why the silver powder in the silver glass conductive paste 21 was 87- 99.5 wt% and the remaining glass powder was 0.5- 13 wt% is that when the silver powder is less than 87 wt%, However, when the glass component becomes relatively large and baking is performed, voids 4a are effectively formed in the external electrode 4.Partial bonding between the external electrode 4 and the side surface of the laminate 10 is performed. On the other hand, if the silver powder is more than 97% by volume and 99.5% by weight, the glass component becomes relatively small, and the bonding strength between the external electrode 4 and the laminate 10 is weakened. This is because there is a possibility that the external electrode 4 may also peel off the laminated body 10 during driving of the actuator.
  • the glass components constituting the external electrode 4 are silica glass, soda lime glass, lead alkali silicate glass, alumino borosilicate glass, borosilicate glass, alumino silicate glass, borate Glass, phosphate glass, lead glass, or the like is used.
  • borosilicate glass SiO 40- 70 weight 0/0
  • BO 2- 30 weight 0 / OAL
  • alkaline earth metal oxides such as MgO, CaO, SrO, BaO
  • ZnO has the effect of lowering the working temperature of borosilicate glass.
  • a glass containing 30% by weight, ZnOO—30% by weight, alkaline earth metal oxides 0-30% by weight, and alkali metal oxides 0-10% by weight may be used. it can.
  • a glass containing 0.1% by weight of an alkali metal oxide can be used.
  • the multilayer piezoelectric actuator of the second embodiment can be manufactured.
  • the laminate 10 on which the external electrodes 4 are formed is immersed in a silicone rubber solution and evacuated by vacuum to fill the inside of the groove of the laminate 10 with silicone rubber and cure the silicone rubber.
  • a lead wire 6 is connected to the external electrode 4, and a DC voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 4 via the lead wire 6 to polarize the laminate 10.
  • a laminated piezoelectric actuator that functions as an automobile fuel injection valve that supplies fuel to the engine is completed.
  • the multilayer piezoelectric element (laminate piezoelectric actuator) according to the third embodiment of the present invention is the same as the element shown in FIGS. 1A and 1B, except that the internal electrode 2 has silver as a main component and at least one of palladium and platinum.
  • the external electrode 4 is made of a conductive material containing silver as a main component and a glass component, and the silver ratio of the conductive material in the internal electrode 2 near the connection with the external electrode 4 is inside the laminate 10. It is characterized in that it is larger than the silver ratio of the conductive material in the internal electrode 2.
  • the silver ratio in the conductive material of the internal electrode 2 near the connection with the external electrode 4 larger than the silver ratio in the conductive material of the internal electrode 2 inside the multilayer body 10 Since the concentration of silver in the conductive material of the electrode 4 and the silver in the conductive material of the internal electrode 2 can be close to each other, mutual diffusion of silver ensures that the connection between the external electrode 4 and the internal electrode 2 is ensured. Become.
  • the external electrode 4 is When baking on 10, the mutual diffusion of silver in the external electrode 4 and silver in the internal electrode 2 is promoted, and strong bonding between the internal electrode 2 and the external electrode 4 becomes possible. Even in the case of continuous driving under a force for a long time, it is possible to have excellent durability without breaking the external electrode 4 and the internal electrode 2.
  • the silver ratio in the conductive material of the internal electrode 2 gradually increases as approaching the external electrode 4.
  • a concentration gradient of silver is continuously formed in the conductive material of the internal electrode 2, so that a stable connection between the internal electrode 2 and the internal electrode 2 and the external electrode 4 can be established.
  • the external electrode 4 and the internal electrode 2 are diffusion-bonded via the neck portion 4b.
  • the neck portion 4b that can withstand the large current is formed at the junction between the internal electrode 2 and the external electrode 4, so that the contact It is possible to prevent sparks and disconnections in the section.
  • the internal electrode 2 and the external electrode 4 form a diffusion bond through the neck portion, a highly reliable bonding where a clear composition boundary is formed at the junction between the internal electrode 2 and the external electrode 4 A part can be formed.
  • the neck portion 4b is a portion formed by mutually diffusing the conductive material of the internal electrode 2 and the conductive material of the external electrode 4.
  • the concentration of silver in the internal electrode 2 can be increased, and connection with the external electrode 4 by silver diffusion bonding can be achieved. Can be assured. Further, by setting the silver ratio in the conductive material of the internal electrode 2 to 85% by weight or more, the amount of expensive palladium and platinum used can be suppressed, so that an inexpensive laminated piezoelectric element can be manufactured. Become. On the other hand, when the silver ratio in the conductive material of the internal electrode 2 is less than 85% by weight, the use of expensive palladium and platinum inevitably increases, so that an inexpensive laminated piezoelectric element can be manufactured.
  • the concentration of silver in the conductive material of the internal electrode 2 becomes low, so that the connection with the external electrode 4 becomes uncertain.
  • the silver ratio in the conductive material of the internal electrode 2 is defined as a point at which the silver ratio in the conductive material of the internal electrode 2 is at least 1 mm away from the junction with the external electrode 4 inside the laminate 10 where the silver ratio does not change. Of silver.
  • the bonding strength between the external electrode 4 and the side surface of the multilayer body 10 can be improved by increasing the amount of the glass component in the external electrode 4 at the bonding interface with the piezoelectric body 1.
  • the glass component in the external electrode 4 is present in substantially 80% or less of the thickness of the external electrode 4 on the surface side of the laminate 10.
  • the glass component responsible for bonding with the multilayer body 10 exists in the surface layer on the side of the piezoelectric body 1, strong bonding between the external electrode 4 and the multilayer body 10 becomes possible.
  • the conductive material containing silver as a main component is substantially present in the surface layer on the atmosphere side, good solder wettability can be obtained even when a lead wire or the like is connected and fixed to the external electrode 4 by soldering.
  • External electrodes 4 surfaces can be provided.
  • the glass component in the external electrode 4 contains oxidized lead or oxidized bismuth.
  • the bonding between the external electrode 4 and the piezoelectric body is strengthened by the inclusion of oxidized lead or bismuth oxidized with high bonding strength with the piezoelectric body 1 in the glass component in the external electrode 4. can do.
  • the glass component in the external electrode 4 does not contain oxidized lead or oxidized bismuth, if the external electrode 4 also exfoliates the lateral force of the laminate 10 during driving, there is a problem that V and the like may be lost. Can occur.
  • the internal electrode 2 it is desirable to use a silver-palladium alloy having a low palladium ratio as the internal electrode 2. To this end, it is necessary to use a piezoelectric body 1 that can be fired at about 980 ° C or lower.
  • the material constituting the desired piezoelectric body 1 is mainly composed of PbZrO—PbTiO,
  • Those containing 0 to 20 mol% are preferred. That is, the state diagram of silver-palladium alloy, when the palladium using 5 weight 0/0 of silver-palladium alloy as baked formation capable piezoelectric body 1 at temperatures below 980 ° C, for example, a PbZrO -PbTiO P as main component and P as subcomponent
  • the external electrode 4 is composed of 80-99.5% by weight of a conductive material containing silver as a main component and 0.5-13% by weight of a glass component containing at least one of lead oxide and bismuth oxide.
  • the glass component is substantially present only in 80% or less of the outer layer 4 having a thickness of 10 and the surface side of the laminate 10.
  • the conductive material in the internal electrode 2 and the conductive material in the external electrode 4 are diffusion-bonded to the end of the internal electrode 2 exposed on the side surface of the multilayer body
  • the side surface of the piezoelectric body 1 of the body 10 is mainly joined via the glass component in the external electrode 4.
  • the laminated body 10 is manufactured in the same manner as in Embodiment 2, and as shown in FIG. 3A, concave grooves are formed on the side surfaces of the laminated body 10 by using a dicing apparatus or the like.
  • the external electrode 4 is formed as follows.
  • the remainder of the lead oxide or bismuth oxide in a particle size 0. 1- 10 ⁇ m at least one more A binder is added to a mixture consisting of 0.5 to 13% by weight of glass powder to prepare a silver glass paste for the lower layer. Furthermore, a binder is added to silver powder having a particle size of 0.1-10 ⁇ m to prepare a silver paste for the upper layer.
  • the lower layer silver glass paste 2 la having a thickness of 5 to 40 ⁇ m was screen-printed on the release-treated film, and after drying, the upper layer silver glass paste having a thickness of 5 to 40 / zm was formed thereon.
  • Screen-print paste 21b After drying, the paste sheet 21 is peeled off from the release film, and the paste sheet 21 is placed on the surface of the laminated body 10 on which the grooves are formed, as shown in FIG.
  • the paste was transferred to the laminate 10 side and baked at a temperature higher than the soft point of the glass component contained in the lower layer silver glass paste and at a temperature equal to or lower than the melting point of silver.
  • the external electrode 4 having the neck portion 4b can be formed.
  • the internal electrode 2 gradually changes the silver ratio in the conductive material as it approaches the external electrode 4 effectively.
  • the baking pattern of the external electrode 4 is represented by the exponential function Y of the temperature shown in Equation 1, the value obtained by integrating Y with respect to time (unit) is 1000 or more, preferably 1800-4000. I want to be there! / ⁇ .
  • the silver ratio in the inner electrode 2 conductive material is effectively increased gradually as approaching the outer electrode 4,
  • a neck portion 4b is formed at the junction between the external electrode 4 and the internal electrode 2, and a glass-rich layer can be formed on the surface of the laminated body 10 of the external electrode 4 further.
  • the paste sheet 21 made of the lower layer silver glass paste containing the glass component and the upper layer silver paste not containing the glass component is baked so that the lower layer silver glass paste is on the laminate 10 side.
  • a glass-rich layer can be provided on the surface side of the laminate 10 of the external electrode 4.
  • the glass component in the external electrode 4 is substantially reduced to a thickness of the external electrode 4 in the laminate 10 on the surface layer side. It can be present in less than 80%.
  • a neck portion 4b is formed by the above-described baking, and in the neck portion 4b, the silver-palladium alloy of the internal electrode 2 and the silver of the external electrode 4 interdiffuse, so that the parameter diffused from the internal electrode 2 is generally used. It can be detected by analytical methods (eg, EPMA, EDS, etc.).
  • the method for forming the external electrodes 4 is not limited to the above-described method, and printing may be performed directly on the external electrode 4 forming surface on the side surface of the laminate 10. Further, in the above-described method, the external electrode 4 was formed by one baking, but after transferring or printing the lower layer silver glass paste, baking was performed, and then, after transferring or printing the upper layer silver paste, baking was performed.
  • the external electrodes 4 may be formed by attaching, ie, baking twice.
  • the thickness of the external electrode 4 be smaller than the thickness of the piezoelectric body 1. More preferably, in order to follow the expansion and contraction of the laminate, which is the actuator body, 50 / zm or less is more preferable.
  • the silver powder in the silver glass paste for the lower layer was 80-99.5% by weight, and the remaining glass powder was 0.1% by weight.
  • the reason for setting to 5 to 13% by weight is that when the silver powder is less than 80% by weight, the specific resistance of the external electrode 4 becomes large, and when the high current is applied to drive at high speed, the external Local heating may occur at the electrode 4, while when the silver powder is more than 99.5% by weight, the glass component becomes relatively small, and the bonding strength between the external electrode 4 and the laminate 10 is increased. However, if the external electrodes 4 peel off from the laminate 10 during driving, a problem may occur.
  • the silver paste for the upper layer does not contain a glass component. This is because when the lead wire 6 is connected and fixed to the external electrode 4 by a solder, if the glass component exists in the surface layer of the external electrode 4 on the air side, the wettability of the solder is remarkably reduced, and the lead wire 6 This is because the bonding strength to the external electrode 4 may be reduced, and the lead wire 6 may come off during driving. By including at least one of them, the bonding strength with the laminate 10 can be improved.
  • the multilayer piezoelectric actuator of the second embodiment can be manufactured.
  • the laminate 10 on which the external electrodes 4 are formed is immersed in a silicone rubber solution and evacuated by vacuum to fill the inside of the groove of the laminate 10 with silicone rubber and cure the silicone rubber.
  • a lead wire 6 is connected to the external electrode 4, and a DC voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 4 via the lead wire 6 to polarize the laminate 10.
  • a laminated piezoelectric actuator that functions as an automobile fuel injection valve that supplies fuel to the engine is completed.
  • the piezoelectric body 1 is mainly composed of, for example, lead zirconate titanate Pb (Zr, Ti) 0 (hereinafter abbreviated as PZT) or barium titanate BaTiO.
  • the piezoelectric ceramic It is made of a piezoelectric ceramic material. It is desirable that the piezoelectric ceramic has a high piezoelectric distortion constant d33 indicating the piezoelectric characteristics.
  • the thickness of piezoelectric body 1, that is, the distance between internal electrodes 2 is desirably 50 to 250 m.
  • the multilayer piezoelectric actuator can be made smaller and shorter, and the dielectric breakdown of the piezoelectric body 1 can be prevented. Can be prevented.
  • the internal electrode 2 has a void, and the area ratio of the void to the total cross-sectional area in the cross section of the internal electrode 2 (hereinafter, referred to as void ratio) is 5-70. % Is preferable.
  • a multilayer piezoelectric element having high durability can be obtained by forming a multilayer piezoelectric element using the internal electrode 2 including a gap. If the porosity of the internal electrode 2 is smaller than 5%, the restraining force against the displacement of the piezoelectric body is increased, and the effect of the presence of the void is reduced. On the other hand, if the porosity of the internal electrode 2 is larger than 70%, the conductivity of the internal electrode 2 becomes small and the strength is undesirably reduced. In order to enhance the durability of the element, the porosity of the internal electrode 2 is more preferably 7 to 70%, and more preferably the porosity of the internal electrode 2 is 10 to 60%. The amount can be secured and high durability can be obtained.
  • the porosity of the internal electrode 2 refers to the ratio of the area occupied by the void to the total cross-sectional area in the cross section of the internal electrode 2 as described above, and is specifically determined as follows. Can be.
  • the laminated piezoelectric element is cut in parallel with the laminating direction, and the total cross-sectional area and the void occupied area occupied by the void in one internal electrode 2 exposed in the longitudinal section are obtained by, for example, microscopic observation. Then, the area specific force and the porosity of the internal electrode 2 ((void occupation area Z total cross-sectional area) X 100) are calculated.
  • the internal electrode 2 including a void can be manufactured as follows.
  • metal powder constituting the internal electrode 2 two or more kinds of materials having different melting points are used as metal powder constituting the internal electrode 2 so that voids are formed in the internal electrode 2 after firing.
  • an alloy can be used as the metal material according to the purpose.
  • the metal powder constituting the internal electrode 2 is calcined at a temperature higher than the melting point of the metal having the lowest melting point, higher than the melting point of the metal, and lower than the melting point of the metal. If calcined at such a temperature, the metal or alloy melted above its melting point in the metal powder constituting the internal electrode 2 moves to the gap between the unmelted metals by capillary action, and A void is formed in the place where it was.
  • the porosity of the internal electrode 2 can be set to a desired ratio by adjusting the mixing ratio of two or more metal powders constituting the internal electrode 2 and the temperature.
  • the voids in the internal electrode 2 may be, for example, small gaps formed between the metal powders when adjusting the conductive paste used to form the internal electrode 2, or the binder contained in the conductive paste may be burned out. It may be formed by utilizing a gap or the like generated after the above.
  • a material constituting the internal electrode 2 and a substance having poor wettability may be added to the conductive base for the internal electrode, or the surface of the piezoelectric green sheet on which the conductive paste for the internal electrode is printed may be added.
  • a void can be formed in the internal electrode 2 by coating the material constituting the internal electrode 2 and a substance having poor wettability.
  • a material having poor wettability with the material forming the internal electrode 2 for example, BN is cited.
  • the external electrode 4 is formed of a conductive adhesive 7a in which a metal mesh or mesh-shaped metal plate 7b is embedded on the outer surface.
  • the conductive auxiliary member 7 may be formed.
  • a large current can be supplied to the actuator and a large current can flow through the conductive auxiliary member 7 even when the actuator is driven at high speed.
  • the current flowing through the external electrode 4 can be reduced. From this, it is possible to prevent the external electrode 4 from being locally heated and disconnected, and to greatly improve the durability. Further, when a metal mesh or a mesh-shaped metal plate 7b is embedded in the conductive adhesive 7a, it is possible to prevent the conductive adhesive 7a from being cracked.
  • a metal mesh is formed by weaving metal wires, and a mesh-shaped metal plate is formed by forming holes in a metal plate to form a mesh.
  • the conductive adhesive be made of a polyimide resin in which conductive particles are dispersed. This is because even when the laminate 10 is driven at a high temperature by using a polyimide resin, the conductive adhesive is highly adhered by using a polyimide resin having relatively high heat resistance. Easy to maintain strength ⁇ .
  • the conductive adhesive 7a constituting the conductive auxiliary member 7 is made of silver powder having a low specific resistance. More desirably, it is made of a polyimide resin in which is dispersed. This is because local heat generation in the conductive adhesive is easily suppressed by using silver powder having a relatively low resistance value for the conductive particles.
  • the conductive particles are non-spherical particles such as flakes and needles. This is because, by making the shape of the conductive particles non-spherical particles such as flakes and needles, the entanglement between the conductive particles can be strengthened, and the shear strength of the conductive adhesive 7a can be reduced. This is because it can be further increased.
  • FIG. 5 shows an injection device according to a fourth embodiment of the present invention, which is configured using the piezoelectric actuator according to the present invention.
  • reference numeral 31 denotes a storage container.
  • An injection hole 33 is provided at one end of the storage container 31, and a single dollar valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
  • a fuel passage 37 is provided in the injection hole 33 so as to be able to communicate with the fuel passage 37.
  • the fuel passage 37 is connected to an external fuel supply source, and the fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is ejected at a constant high pressure into a fuel chamber (not shown) of the internal combustion engine.
  • the upper end of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31.
  • the above-described piezoelectric actuator 43 is stored.
  • the piezoelectric actuator 43 is the piezoelectric actuator according to the present invention.
  • Example 1 the multilayer piezoelectric element of FIG. 1 was configured as follows. Using multilayer piezoelectric elements having different internal electrode material compositions, the durability characteristics of multilayer piezoelectric elements having various displacement characteristics were examined.
  • the piezoelectric body is formed of lead zirconate titanate (Pb ZrO PbTiO) with a thickness of 150 m, and the internal electrodes are formed with a thickness of 3 m.
  • Pb ZrO PbTiO lead zirconate titanate
  • the number of layers of each pole was 300 layers.
  • the firing temperature was 1000 ° C.
  • the sheet of the silver glass paste was transferred to the external electrode surface of the columnar laminate, and baked at 650 ° C. for 30 minutes to form an external electrode made of a porous conductor having a three-dimensional network structure. did.
  • the porosity of the external electrode at this time was 40% when a cross-sectional photograph of the external electrode was measured using an image analysis device.
  • a lead wire is connected to the external electrodes, and a DC electric field of 3 kVZmm is applied to the positive and negative external electrodes via the lead wires for 15 minutes to perform polarization processing, thereby producing a laminated piezoelectric element as shown in Fig. 1. did.
  • the columns labeled Pd, Pt, Ag, and Cu in Table 1-1 show the contents of Pd, Pt, Ag, and Cu in the metal components of the internal electrodes.
  • the multilayer piezoelectric element is damaged by silver midaeration and cannot be driven continuously.
  • Ml (wt%) the content of the metal composition is a group VIII metal in the internal electrode (Pd, Pt), lb metals (Ag, Cu) content of M2 (weight 0/0)
  • a highly reliable piezoelectric actuator with excellent durability can be provided.
  • Ml is preferably 0.1% by weight or more and 10 or less (No. 4-13), and 0 is required when higher durability is required. 5 or more and 9.5 or less (No. 5-12) are more preferable. Further, when higher durability was required, more preferable results were obtained in the range of 2% or more and 8 or less (No. 7-10).
  • M2 is preferably 90 or more and 99.9 or less.If higher durability is required, M2 is 90.5 or more and 99.5 or less. Is more preferred. In the case where higher durability is required, more preferable results were obtained when the durability was 92 or more and 98 or less.
  • Example 2 for the devices fabricated in Example 1 (excluding device No. 15), a DC voltage of 10 V was applied between the external electrodes, and the device resistance was measured. The results are shown in Table 2. The voltage applied to measure the element resistance can be measured at any voltage between 1 and 100V.
  • the element resistance in Table 2 was normalized (as 1) based on the element resistance when the internal electrode was formed of 100% silver.
  • Example 3 the internal electrode conductivity of the sample of Example 1 (excluding the device No. 15) was evaluated. The results are shown in Table 3.
  • Example 4 the particle size of the internal electrode was evaluated for the sample of Example 1 (excluding the device No. 15). The results are shown in Table 4.
  • Table 4 shows the ratio of the internal electrodes having a particle size of not less than m.
  • Example 5 a laminated piezoelectric element of the present invention was produced as follows.
  • a slurry was prepared by mixing a calcined powder of a piezoelectric ceramic containing PZT as a main component, a binder, and a plasticizer, and a ceramic green sheet having a thickness of 150 m was obtained by a doctor blade method.
  • a groove having a depth of 50 ⁇ m and a width of 50 ⁇ m was formed every other layer at the end of the internal electrode 2 on the side surface of the laminate 10 by a dicing apparatus.
  • flake-shaped silver powder having an average particle size of 2 m was mixed with a soft powder mainly composed of silicon having an average particle size of 2 m so that the weight ratio Y (%) of silver was 84 to 97% by weight.
  • Amorphous glass powder with a point of 640 ° C is mixed, and 8 parts by weight of a binder is added to 100 parts by weight of the total weight of silver powder and glass powder, and mixed to form a silver glass conductive paste.
  • the silver glass paste thus produced is formed on a release film by screen printing, dried, and peeled off from the release film to obtain a sheet of silver glass conductive paste.
  • a neck portion 4b in which silver in the silver-palladium alloy in the internal electrode 2 and silver in the silver glass conductive paste in the external electrode 4 are mutually diffused is formed at the joint between the internal electrode 2 and the external electrode 4.
  • the neck 4b was analyzed by EPMA, it was confirmed that palladium was diffused from the internal electrode 2.
  • the porosity of the external electrode 4 formed above was 40% based on the photograph of the cross section of the external electrode 4. Furthermore, when measured by a cross-sectional photograph of the external electrode 4, the joint between the external electrode 4 and the side surface of the laminate 10 was about 50%. Further, a glass-rich layer in which the glass component in the silver glass conductive paste was unevenly formed was formed on the piezoelectric body side surface portion of the external electrode 4.
  • a lead wire is connected to the external electrodes, and a DC electric field of 3 kVZmm is applied to the positive and negative external electrodes via the lead wires for 15 minutes to perform a polarization process, thereby producing a laminated piezoelectric actuator as shown in Fig. 1. did.
  • the silver weight ratio X (%) in the internal electrode 2 conductive material and the silver weight ratio Y (%) in the external electrode are calculated as follows. ⁇ 85, and verified the relationship between the value of ⁇ ⁇ and the drive of the multilayer piezoelectric actuator.
  • the value of ⁇ / ⁇ was set to 0.9 or ⁇ > 1.1 Samples formed in the range of were prepared.
  • a DC voltage of 185 V was applied to the multilayer piezoelectric actuator obtained as described above, a displacement of 49 m was obtained in the stacking direction in all the multilayer piezoelectric actuators.
  • drive tests were performed on these laminated piezoelectric actuators at room temperature by applying an AC electric field of 0 to +185 V at a frequency of 150 Hz to 2 ⁇ 108 cycles. The results are as shown in Table 5.
  • Sample Nos. 19 to 21 which are examples of the present invention, are multilayer piezoelectric actuators formed within the range of 0.9 ⁇ X / Y ⁇ 1.1 at X ⁇ 85. Therefore, mutual diffusion of silver between the internal electrode 2 and the external electrode 4 is promoted, and the internal electrode 2 and the external electrode 4 For bonding becomes firm, 2 X 10 8 cycles after obtained displacement amount of 49 / zm, also, 2 X 10 8 cycle after an external electrode 4 that abnormal spark or disconnection or the like occurs Nag multilayer pressure It had excellent durability as an electric actuator.
  • Example 6 a conductive material and a piezoelectric material were used in a multilayer piezoelectric actuator made using an internal electrode 2 formed of a conductive paste obtained by adding a calcined powder of a piezoelectric ceramic to a silver-palladium alloy. Assuming that the weight ratio of silver of the internal electrode 2 including the material is Z (%), the silver weight ratio Y (%) of the external electrode 4 and the silver weight ratio of the internal electrode 2 ⁇ (%) was formed, and the relationship between the value of ⁇ and the driving of the laminated piezoelectric actuator was verified. The manufacturing method is the same as in Example 5.
  • a multilayer piezoelectric actuator comprising the multilayer piezoelectric element of the present invention was manufactured as follows.
  • the laminated body 10 of FIG. 1 was produced, and as shown in FIG. And a groove having a width of 5 O / zm was formed.
  • the lower layer silver glass paste is printed on the release film by screen printing to a thickness of 5 to 40 ⁇ m, and after drying, the upper layer silver glass paste is printed on the release film by screen printing. Printing was performed with a thickness of 40 m. After the paste was dried, it was peeled off from the release film to obtain a paste sheet. Then, the paste sheet is baked at 800 ° C. for 30 minutes on a transfer sheet so that the silver glass paste for the lower layer is on the surface side of the laminate 10 on a pair of opposite sides of the laminate 10 to form the external electrodes 4. did. At this time, the value obtained by integrating Y in Equation 1 with respect to time (minutes) was 3240.
  • a neck 4b is formed in which the silver-palladium alloy in the internal electrode 2 and the silver in the external electrode 4 are mutually diffused, and this neck 4b is formed by EPMA. Analysis showed that palladium diffused from the internal electrode 2.
  • a glass-rich layer in which a glass component is unevenly distributed is formed in the surface layer of the external electrode 4 on the piezoelectric body side. Had been formed. Further, the glass component contained in the external electrode 4 was substantially present in 60% or less of the surface of the laminate 10.
  • a lead wire is connected to the external electrodes, and a DC electric field of 3 kVZmm is applied to the positive and negative external electrodes via the lead wires for 15 minutes to perform a polarization process, thereby producing a laminated piezoelectric actuator as shown in Fig. 1. did.
  • Example 8 several types of laminated piezoelectric actuators were manufactured using the same manufacturing method as in Example 7, except that the type of the conductive paste forming the external electrode 4 and the baking temperature were changed. Produced. With respect to the obtained laminated piezoelectric actuator, the ratio of the silver ratio in the vicinity of the connection between the internal electrode 2 and the external electrode 4 of the conductive material and the silver ratio in the multilayer body 10 was examined. When a DC voltage of 185 V was applied to the laminated piezoelectric actuator obtained as described above, a displacement of 49 ⁇ m was obtained in the laminating direction in all the laminated piezoelectric actuators. In addition, a drive test was performed on these laminated piezoelectric actuators at room temperature by applying an AC electric field of 0 to +185 V at a frequency of 150 Hz to 2 ⁇ 10 8 cycles. The results are as shown in Table 7.
  • Sample No. 31 which is a comparative example, shows that the ratio of the silver ratio in the vicinity of the connection between the internal electrode 2 and the external electrode 4 of the conductive material to the silver ratio in the laminate 10 was 1
  • the silver ratio in the internal electrode 2 conductive material near the connection with the external electrode 4 is larger than the silver ratio in the internal electrode 2 conductive material inside the laminate 10.
  • the contact strength between the internal electrode 2 and the external electrode 4 is low, and the contact between the internal electrode 2 and the external electrode 4 peels off during operation, causing some piezoelectric No voltage is supplied to 1 and the transformation characteristics are reduced.
  • Example 9 several types of laminated piezoelectric actuators were produced by changing the type of conductive paste forming the external electrodes 4 and the baking temperature.
  • Sample No. 16 has no glass-rich layer on the surface of the laminate of the external electrode 4 and Sample No. 17 has a glass component existing up to 95% of the thickness of the external electrode 4 on the surface side of the laminate. is there.
  • a DC voltage of 185 V was applied to the obtained laminated piezoelectric actuator, a displacement of 49 m was obtained in the laminating direction in all samples.
  • a drive test was performed on these laminated piezoelectric actuators at room temperature by applying an AC electric field of 0 to +185 V at a frequency of 150 Hz to 5 ⁇ 10 8 cycles. The results are as shown in Table 8.
  • Sample No. 34 shows that the external electrode 4 has a weak bonding strength to the laminate 10 because the glass-rich layer does not exist on the surface of the laminate 10 and the external electrode 4 is driven during driving.
  • the electrode 4 has peeled off from the laminate 10, and no voltage is supplied to some of the piezoelectric bodies 1, and the displacement characteristics have been reduced.
  • sample No. 35 since the glass component exists up to 95% of the surface of the laminate 10 with the thickness of the external electrode 4, the bonding strength of the solder to which the lead wire 6 is connected and fixed to the external electrode 4 is weak.
  • the lead wire 6 has fallen off during the quick drive.
  • sample Nos. 32 and 33 a displacement of 49 ⁇ m was obtained even after 5 ⁇ 10 8 cycles, and no abnormalities such as disconnection of the contact part between the internal electrode 2 and the external electrode 4 occurred. .
  • the multilayer piezoelectric element of the present invention can be used for a piezoelectric transformer. Further, the multilayer piezoelectric element of the present invention can be used for a multilayer piezoelectric actuator used for a precision positioning device such as a fuel injection device for an automobile, an optical device, or a driving element for preventing vibration. Further, by using the laminated piezoelectric element of the present invention, it can be used for an injection device such as fuel for automobiles and ink of an ink jet printer.

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 高電圧、高圧力下で圧電アクチュエータを長期間連続駆動させた場合でも、変位量が変化することがなく、耐久性に優れた積層型圧電素子を提供するために、圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第1の側面と第2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の内部電極は第1の側面で外部電極に接続され、他方の内部電極は第2の側面で外部電極に接続された積層型圧電素子において、内部電極中の金属組成物が周期律表VIII族金属およびIb族金属を主成分としており、そのVIII族金属およびIb族金属の含有量は、前記VIII族金属の含有量をM1(重量%)、Ib族金属の含有量をM2(重量%)としたとき、0<M1≦15、85≦M2<100、M1+M2=100を満足するように設定した。

Description

明 細 書
積層型圧電素子
技術分野
[0001] 本発明は、積層型圧電素子に関し、例えば、自動車エンジンの燃料噴射装置、ィ ンクジェット等の液体噴射装置、光学装置等の精密位置決め装置や振動防止装置 等に搭載される駆動素子、ならびに燃焼圧センサ、ノックセンサ、加速度センサ、荷 重センサ、超音波センサ、感圧センサ、ョーレートセンサ等に搭載されるセンサ素子 、ならびに圧電ジャイロ、圧電スィッチ、圧電トランス、圧電ブレーカ一等に搭載され る回路素子に用いられる積層型圧電素子に関するものである。
背景技術
[0002] 従来より、積層型圧電素子としては、圧電体と電極を交互に積層した積層型圧電 ァクチユエータが知られている。積層型圧電ァクチユエータは、同時焼成タイプと、圧 電磁器と内部電極板を交互に積層したスタックタイプの 2種類に分類されており、低 電圧化、製造コスト低減の面から考慮すると、薄層化に対して有利であることと、耐久 性に対して有利であることから、同時焼成タイプの積層型圧電ァクチユエータが優位 性を示しつつある。
[0003] 図 9は、従来の積層型電子部品として代表的な積層コンデンサを示すもので、誘電 体 21と内部電極 22が交互に積層されている。内部電極 22は誘電体 21主面全体に は形成されておらず、いわゆる部分電極構造となっている。この部分電極構造の内 部電極 22を左右互い違いに積層することで、積層型電子部品の側面に形成された 外部電極 23に内部電極 22を一層おきに交互に接続することができる(例えば、特許 文献 1参照)。
[0004] 図 8Aは、従来の積層型圧電素子を示すもので、圧電体 1と内部電極 2が交互に積 層されている力 図 8Bに示すように、内部電極 12は圧電体 11の主面全体には形成 されておらず、いわゆる部分電極構造となっている。この部分電極構造の内部電極 1 2を左右互 、違いに積層することで、積層型電子部品の側面に形成された外部電極 4に内部電極 2を一層おきに交互に接続することができる。積層型圧電素子の基本 構造は、図 9の積層コンデンサと同じであり、セラミックグリーンシートに内部電極ぺー ストを所定の電極構造となるパターンで印刷し、この内部電極ペーストが付されたダリ ーンシートを複数積層し、これを焼成して積層体を作製していた (例えば、特許文献 2参照)。
[0005] このような積層型圧電素子は、圧電体 11と内部電極 12が交互に積層されて柱状 積層体 13が形成され、その積層方向における両端面には不活性層 14が積層されて いる。内部電極 12は、その一方の端部が左右交互に外部電極 14と左右各々一層起 きに導通するように形成されている。積層型圧電ァクチユエータとして使用する場合 には、外部電極 14にさらにリード線が半田により固定される。
[0006] また、内部電極としては、銀とパラジウムの合金が用いられ、特に、圧電体と内部電 極を同時焼成するために、内部電極の金属組成は、銀 70重量%、 ノラジウム 30重 量%にして用いて 、た (例えば、特許文献 3参照)。
これは、銀 70重量0 /0、パラジウム 30重量%の組成において、固相線 1150°C、液 相線 1220°Cであることと、 PbZrO PbTiOからなるぺロブスカイト型酸化物を主成
3 3
分とした圧電体の最適焼結温度が 1200°C近傍であった力もである。
このように、銀 100%の金属組成力もなる内部電極ではなぐパラジウムを含む銀' ノ《ラジウム合金含有の金属組成力もなる内部電極を用いるのは、パラジウムを含まな い銀 100%組成では、一対の対向する電極間に電位差を与えた場合、その一対の 電極のうちの正極から負極へ電極中の銀が素子表面を伝わつて移動するという、い わゆるシルバ一'マイグレーション現象が生じる力もである。この現象は、高温、高湿 の雰囲気中で、特に著しく発生する。
[0007] ところで、近年においては、小型の圧電ァクチユエータで大きな圧力下において大 きな変位量を確保するため、より高い電界を印加し、長時間連続駆動させることが行 われている。
特許文献 1:実開昭 60— 99522号公報
特許文献 2 :特開昭 61— 133715号公報
特許文献 3:実開平 1 130568号公報
発明の開示 発明が解決しょうとする課題
[0008] し力しながら、圧電体は使用する環境温度により変位量が変化する温度依存性を 有していることから、素子温度が上昇することで、圧電ァクチユエータ変位量が変化 する問題があった。また、変位量が駆動中に変化することで電圧制御する電源に対 する負荷変動が生じ、電源に負担をかける問題が生じていた。さらには、変位量の変 化率が大きいと、変位量自体が急激に劣化するだけでなぐ素子温度上昇が放熱量 を上回ると熱暴走現象が生じて素子が破壊する問題があった。
そこで、内部電極を比抵抗の低!ヽ組成とするために銀の組成比を多くする試みも 行われていたが、緻密な電極構造にすることができずに、電極抵抗値が逆に高抵抗 になる問題があった。
即ち、従来、積層型圧電素子に用いられてきた銀 70重量%、パラジウム 30重量% の組成ではパラジウムの 1. 5倍の高抵抗な特性になるのである。し力も、内部電極の 焼結密度が低くなれば、さらに高抵抗の電極になるのである。
また、このような積層型圧電素子では、圧電ァクチユエータとして駆動させると、所 望の変位量が次第に変化して、装置が誤作動する問題を生じていたことから、長期 間連続運転における素子変化量の抑制と耐久性向上が求められていた。
[0009] そこで、本発明は、高電圧、高圧力下で圧電ァクチユエータを長期間連続駆動させ た場合でも、変位量が変化することがなぐ耐久性に優れた積層型圧電素子を提供 することを目的とする。
課題を解決するための手段
[0010] 本発明の積層型圧電素子は、圧電体層と内部電極とが交互に積層されてなる積層 体と、その積層体の第 1の側面と第 2の側面にそれぞれ形成された外部電極とを備え 、隣接する内部電極の一方の内部電極は前記第 1の側面で前記外部電極に接続さ れ、他方の内部電極は前記第 2の側面で前記外部電極に接続された積層型圧電素 子において、
前記内部電極中の金属組成物が周期律表 VIII族金属および lb族金属を主成分と しており、
その VIII族金属および lb族金属の含有量は、前記 VIII族金属の含有量を Ml (重 量0 /0)、 lb族金属の含有量を M2 (重量0 /0)としたとき、 0< M1≤15、 85≤M2< 100 、 Ml + M2= 100を満足するように設定されたことを特徴とする。
[0011] 以上のように構成された本発明に係る積層型圧電素子では、内部電極の比抵抗を 小さくできることから、連続駆動させても、内部電極部の発熱を抑制することができる 。さらには、素子温度の上昇を抑制することで、圧電ァクチユエータ変位量を安定ィ匕 することができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供するこ とができる。また同時に、連続駆動させても、シルバー 'マイグレーション現象が生じる ことなぐ高温、高湿の雰囲気中でも、耐久性に優れた高信頼性の圧電ァクチユエ一 タを提供することができる。
[0012] また、素子温度の上昇を抑制することで、所望の変位量が実質的に変化しないた めに、装置が誤作動することなぐさらには熱暴走のない耐久性に優れた高信頼性 の圧電ァクチユエータを提供することができる。
[0013] また、本発明の積層型圧電素子は、 VIII族金属が Ni、 Pt、 Pd、 Rh、 Ir、 Ru、 Osの うち少なくとも 1種以上であり、 lb族金属が Cu, Ag、 Auのうち少なくとも 1種以上であ ることが好ましい。
これにより、内部電極の原料を、合金原料、混合粉原料のいずれも使用することが できるとともに、内部電極の比抵抗を小さくできることから、連続駆動させても、内部電 極部の発熱を抑制することができる。さらには、素子温度の上昇を抑制することで、圧 電ァクチユエータ変位量を安定ィ匕することができ、耐久性に優れた高信頼性の圧電 ァクチユエータを提供することができる。
[0014] また、本発明の積層型圧電素子において、前記 VIII族金属が Pt、 Pdのうち少なく とも 1種以上であり、 lb族金属が Ag、 Auのうち少なくとも 1種以上であることが好まし い。このようにすると、耐熱性が優れた電極を形成できるとともに、内部電極の比抵抗 を小さくできることから、連続駆動させても、内部電極部の発熱を抑制することができ る。さらには、素子温度の上昇を抑制することで、圧電ァクチユエータ変位量を安定 化することができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供する ことができる。
同時に、このような積層型圧電素子では、駆動時の変位にて生じる応力を緩和する ことができるとともに、耐熱性および耐酸化性ならびに熱伝導性が優れた電極を形成 できるとともに、内部電極の比抵抗を小さくできることから、連続駆動させても、内部電 極部の発熱を抑制することができる。さらには、素子温度の上昇を抑制することで、圧 電ァクチユエータ変位量を安定ィ匕することができるので、耐久性に優れた高信頼性 の圧電ァクチユエータを提供することができる。
[0015] また、本発明の積層型圧電素子では、前記 lb族金属が Cuであることがさらに好まし い。このようにすると、熱伝導特性が優れた電極を形成できるとともに、内部電極の比 抵抗を小さくできることから、連続駆動させても、内部電極部の発熱を抑制することが できる。さらには、素子温度の上昇を抑制することで、圧電ァクチユエータ変位量を安 定ィ匕することができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供 することができる。
[0016] また、本発明の積層型圧電素子では、前記内部電極の抵抗が、前記内部電極中 の金属組成物成分が全て銀力 なるとしたときの素子抵抗 Agより大きぐ金属組成 物成分が全てパラジウム力もなるとしたときの素子抵抗 Pdより小さいことが好ましい このように構成された積層型圧電素子では、耐熱性が優れた電極を形成できるとと もに、内部電極の比抵抗を小さくできることから、連続駆動させても、内部電極部の発 熱を抑制することができる。さらには、素子温度の上昇を抑制することで、圧電ァクチ ユエータ変位量を安定ィ匕することができるので、耐久性に優れた高信頼性の圧電ァ クチユエータを提供することができる。
[0017] また、本発明の積層型圧電素子は、圧電体層と内部電極とが交互に積層されてな る積層体と、その積層体の第 1の側面と第 2の側面にそれぞれ形成された外部電極 とを備え、隣接する内部電極の一方の内部電極は前記第 1の側面で前記外部電極 に接続され、他方の内部電極は前記第 2の側面で前記外部電極に接続された積層 型圧電素子において、前記内部電極の抵抗が、前記内部電極中の金属組成物成 分が全て銀力 なるとしたときの素子抵抗 Agより大きぐ金属組成物成分が全てパ ラジウム力もなるとしたときの素子抵抗 Pdより小さいことを特徴とするものである。 このように構成された積層型圧電素子では、耐熱性が優れた電極を形成できるとと もに、内部電極の比抵抗を小さくできることから、連続駆動させても、内部電極部の発 熱を抑制することができる。さらには、素子温度の上昇を抑制することで、圧電ァクチ ユエータ変位量を安定ィ匕することができるので、耐久性に優れた高信頼性の圧電ァ クチユエータを提供することができる。
[0018] また、本発明の積層型圧電素子では、前記内部電極を構成する金属組成物成分 力もなる結晶粒子の最大径が 1 m以上であるものが金属組成物の 80体積%以上 存在することが好ましい。これにより、このような積層型圧電素子では、内部電極の比 抵抗を小さくできることから、連続駆動させても、内部電極部の発熱を抑制することが できる。さらには、素子温度の上昇を抑制することで、圧電ァクチユエータ変位量を安 定ィ匕することができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供 することができる。
[0019] また、本発明の積層型圧電素子では、前記内部電極中に金属組成物とともに無機 組成物が添加されていてもよい。このように、内部電極中に無機組成物が添加された 積層型圧電素子では、内部電極と圧電体を強固に結合することができるとともに、連 続駆動させても、内部電極部の発熱を抑制することができる。さらには、素子温度の 上昇を抑制することで、圧電ァクチユエータ変位量を安定ィ匕することができるので、耐 久性に優れた高信頼性の圧電ァクチユエータを提供することができる。
[0020] また、前記無機組成物が PbZrO— PbTiOからなるぺロブスカイト型酸化物を主成
3 3
分としていることが好ましい。このようにすると、内部電極と圧電体をより強固に結合す ることができるとともに、連続駆動させても、内部電極部の発熱を抑制することができ る。さらには、素子温度の上昇を抑制することで、圧電ァクチユエータ変位量を安定 化することができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供する ことができる。
[0021] また、本発明の積層型圧電素子では、前記圧電体はべ口ブスカイト型酸化物を主 成分としていることが好ましい。このようにすると、圧電体と内部電極を同時焼成する ことができるとともに、内部電極の比抵抗を小さくできることから、連続駆動させても、 内部電極部の発熱を抑制することができる。さらには、素子温度の上昇を抑制するこ とで、圧電ァクチユエータ変位量を安定ィ匕することができるので、耐久性に優れた高 信頼性の圧電ァクチユエータを提供することができる。
[0022] また、前記圧電体が PbZrO— PbTiOからなるぺロブスカイト型酸化物を主成分と
3 3
していることが好ましい。このような積層型圧電素子では、変位量を大きくできるととも に、内部電極の比抵抗を小さくできることから、連続駆動させても、内部電極部の発 熱を抑制することができる。さらには、素子温度の上昇を抑制することで、圧電ァクチ ユエータ変位量を安定ィ匕することができるので、耐久性に優れた高信頼性の圧電ァ クチユエータを提供することができる。
[0023] また、前記積層体の焼成温度は 900°C以上 1000°C以下であることが好ましい。こ れにより、圧電体と電極とを強固に結合することができるので、耐久性に優れた高信 頼性の圧電ァクチユエータを提供することができる。
[0024] また、前記内部電極中の糸且成のずれが焼成前後で 5%以下であることを特徴とする 。これにより、電極が硬くなることを抑制することができるので、耐久性に優れた高信 頼性の圧電ァクチユエータを提供することができる。
[0025] 本発明の積層型圧電素子において、前記外部電極が銀を主成分とする導電材と ガラスからなり、前記内部電極における、導電材全体に対する銀重量比率を X(%)と し、前記外部電極における、導電材とガラスの総重量に対する銀の重量比率を Y(% )としたとき、 Χ≥85でかつ 0. 9≤Χ/Υ≤1. 1を満足するように、前記内部電極と前 記外部電極の銀比率が設定されて 、ることが好ま 、。このような銀比率に設定する と、高価なパラジウムの使用量を抑制できるため、低コストで積層型圧電素子を製造 することが可能になる。
[0026] また、前記内部電極を構成する導電材中の銀の重量比率と、前記外部電極中の銀 の重量比率がほぼ等しくなるため、前記外部電極を前記積層体に焼き付ける際に、 前記外部電極中の銀と前記内部電極中の銀の相互拡散が促進され、前記内部電極 と前記外部電極の強固な接合が可能になり、高電界、高圧力下で長時間連続駆動 させる場合においても、前記外部電極と前記内部電極を断線することがなぐ優れた 耐久性が得られる。
[0027] また、本発明の積層型圧電素子において、前記内部電極は圧電材を含み、前記 内部電極における前記圧電材を含む総重量に対する銀重量比率を Ζ (%)とするとき 、 0. 7≤Z/Y≤1. 0を満たすことが好ましい。
このように、前記内部電極が圧電材を含むと、前記内部電極中の導電材が焼成時 に圧電体と焼結して前記内部電極と前記圧電体との接合強度が向上するので、前 記積層体の耐久性が向上する。また、銀重量比率 Ζ (%)が 0. 7≤Ζ/Υ≤1. 0を満 たして 、るため、前記内部電極中の銀重量比率と前記外部電極中の銀重量比率が ほぼ等しくなり、前記外部電極を焼き付けた際に、前記外部電極中の銀と前記内部 電極中の銀の相互拡散が促進され、前記内部電極と前記外部電極の強固な接合が 可能になる。これにより、高速で駆動させる場合においても、前記外部電極と前記内 部電極との接点部の断線などを防ぐことができる。
[0028] また、本発明の積層型圧電素子では、前記外部電極が 3次元網目構造をなす多孔 質導電体力 なることが好ましい。この 3次元網目構造をなす多孔質導電体力 なる 前記外部電極は、柔軟性を有しているので、駆動時に積層方向へ伸縮した場合に おいても、前記外部電極が前記積層体の伸縮に対応して追従することが可能になり 、前記外部電極の断線や前記外部電極と前記内部電極の接点不良などを防ぐこと ができる。
[0029] また、本発明の積層型圧電素子において、前記外部電極の空隙率が 30— 70体積 %であることが好ましい。このように、前記外部電極の空隙率が 30— 70体積%であ れば、駆動時の伸縮によって生じる応力を吸収することができるため、前記外部電極 の破損を防ぐことができる。
[0030] また、本発明の積層型圧電素子は、前記外部電極に用いるガラスの軟ィ匕点 (°C)が 、前記内部電極を構成する導電材の融点 (°C)の 4Z5以下であることを特徴とする。 ガラスの軟ィヒ点 (°C)力 内部電極を構成する導電材の融点 (°C)の 4Z5以下であれ ば、前記外部電極の焼き付けを前記内部電極を構成する導電材の融点よりも十分低 温度で、且つ前記ガラスの軟ィ匕点より高温度で行うことができる。これにより、前記内 部電極及び前記外部電極の導電材の凝集を防ぐとともに、前記内部電極中の導電 材と前記外部電極の導電材との十分な拡散接合を可能にし、軟ィ匕したガラスによつ て強 、接合強度を有することができる。
[0031] また、本発明の積層型圧電素子は、前記外部電極を構成するガラスが非晶質であ ることが好ましい。前記外部電極を構成するガラスが非晶質であれば、結晶質よりも ヤング率を低くすることができるため、前記外部電極に生じるクラックなどを抑制する ことができる。
[0032] また、本発明の積層型圧電素子は、前記外部電極の厚みが前記積層体を構成す る前記圧電体の厚みよりも薄いことが好ましい。このように、前記外部電極を薄くする と、硬度が小さくなり、前記積層体が駆動時に伸縮する際に、前記外部電極と前記内 部電極の接合部における負荷を小さくできるため、前記接合部の接点不良を抑制す ることがでさる。
[0033] 本発明の積層型圧電素子では、前記内部電極が銀を主成分としパラジウム若しく は白金の少なくとも 1種含む導電材からなり、また前記外部電極が銀を主成分とする 導電材とガラス成分からなり、外部電極との接続部近傍の内部電極導電材の銀比率 力 積層体内部の内部電極導電材の銀比率に比べて大きいことが好ましい。
[0034] このように構成すると、内部電極の導電材と外部電極の導電材との接続が、確実強 固なものとなり、高電界で連続駆動させた場合においても外部電極と内部電極の接 続部が剥離したりするといつた問題が生じるのを防ぐことができる。
即ち、銀を主成分とする外部電極導電材との接合を強固なものとするために、外部 電極との接続部近傍で、内部電極導電材の銀比率を積層体内部の銀比率よりも大 きくすることにより、外部電極導電材の主成分である銀と、内部電極導電材中の銀の 濃度を近くすることができるため、銀の相互拡散により、外部電極と内部電極の接合 が確実なものとなる。
[0035] つまり、外部電極との接続部近傍の内部電極を構成する導電材中の銀の濃度と外 部電極中の銀の濃度がほぼ等しくなるため、前記外部電極を前記積層体に焼き付け る際に、前記外部電極中の銀と前記内部電極中の銀の相互拡散が促進され、前記 内部電極と前記外部電極の強固な接合が可能になり、高電界、高圧力下で長時間 連続駆動させる場合においても、前記外部電極と前記内部電極を断線することなぐ 優れた耐久性を有することができる。
[0036] また、本発明の積層型圧電素子では、外部電極に近づくに従!ヽ、内部電極導電材 中の銀の比率が次第に大きくなることが好ましい。このようにすると、外部電極に近づ くに従い、連続的に銀の濃度勾配が形成されるため、安定した内部電極および内部 電極と外部電極の接合を実現できる。
[0037] また、本発明の積層型圧電素子では、内部電極導電材中の銀比率が 85重量%以 上であることが好ましい。内部電極導電材中の銀比率を 85重量%以上とすると、内 部電極中の銀の濃度を高くすることができ、銀の拡散接合による外部電極との接続 を確実なものにすることができる。なお、内部電極導電材中の銀比率とは、内部電極 の銀比率が変化しない積層体内部での銀比率を指す。
[0038] また、本発明の積層型圧電素子では、外部電極中のガラス成分が実質的に外部電 極の厚みの積層体表層側の 80%以下に存在して 、ることが好まし 、。このようにする と、外部電極の大気にふれる表層部には実質的に銀を主成分とする導電材しか存 在せず、リード線を前記外部電極に半田にて接続固定する際においても、半田濡れ 性の良好な外部電極表面を提供することができる。
[0039] また、本発明の積層型圧電素子では、外部電極中のガラス成分に酸化鉛もしくは 酸ィ匕ビスマスを含むことが好ましい。外部電極中のガラス成分に酸化鉛もしくは酸ィ匕 ビスマスを含むことにより、外部電極と圧電体との接合を強固なものとすることができ る。
[0040] 本発明に係る積層型圧電素子では、前記外部電極と前記内部電極との接合部に ぉ ヽて、前記内部電極の導電材成分が前記外部電極に拡散してネック部を形成し ていることが好ましい。このように、ネック部が形成されると、大電流を流して高速に駆 動させる場合においても、前記内部電極と前記外部電極との接点部のスパークや断 線などを防ぐことができる。
[0041] また、本発明の積層型圧電素子は、前記外部電極の圧電体側表層部にガラスリツ チ層が形成されていることを特徴とする。このようなガラスリッチ層が形成されていると 、前記外部電極中のガラス成分を前記圧電体との接合界面に多く存在させることを 可能にするため、前記外部電極と前記積層体との接合強度を向上することができる。 さらに、本発明に係る積層型圧電素子において、前記内部電極は空隙を含み、前 記内部電極の断面における全断面積に対する空隙の占める面積比が 5— 70%であ ることが好ましい。このようにすると、圧電体が電界によって変形する際の内部電極に よる拘束力を弱くでき、圧電体の変位量を大きくできる。また、空隙により内部電極に 加わる応力が緩和され、素子の耐久性が向上するという利点がある。さらに、素子内 における熱伝導は内部電極が支配的である力 内部電極に空隙があると、素子外部 の急激な温度変化による素子内部の温度変化が緩和されるので、熱衝撃に強い素 子が得られる。
[0042] また、本発明に係る積層型圧電素子では、前記第 1の側面にお!、て、前記他方の 内部電極の端部と前記外部電極との間に溝を形成してその溝に絶縁体を設けて他 方の内部電極と前記外部電極とを絶縁し、前記第 2の側面において、前記一方の内 部電極の端部と前記外部電極との間に溝を形成してその溝に絶縁体を設けることに より、一方の内部電極と前記外部電極とを絶縁するようにしてもよい。これにより、前 記内部電極と前記外部電極を一層置きに絶縁することができる。この場合、前記絶 縁体は前記圧電体よりもヤング率が低 、ことが好ま 、。このように構成された積層 型圧電素子では、駆動中の変位によって生じる応力を緩和することができることから 、連続駆動させても、内部電極部の発熱を抑制することができる。さらには、素子温 度の上昇を抑制することで、圧電ァクチユエータ変位量を安定ィ匕することができるの で、耐久性に優れた高信頼性の圧電ァクチユエータを提供することができる。またさ らに、前記積層体の駆動時における伸縮に対して、凹溝内の前記絶縁体が追従して 変形することができるため、溝近傍におけるクラック等の発生を防止できる。
[0043] また、本発明の積層型圧電素子は、前記外部電極の外面に、金属のメッシュ若しく はメッシュ状の金属板が埋設された導電性接着剤からなる導電性補助部材を備えて いてもよい。
このように、前記外部電極の外面に、金属のメッシュ若しくはメッシュ状の金属板が 埋設された導電性接着剤からなる導電性補助部材を設けることにより、前記積層体を 大電流で高速駆動させる場合にぉ 、ても、前記大電流を導電性補助部材に流すこ とができるため、前記外部電極の局所発熱による断線を防ぐことができ、耐久性を大 幅に向上させることができる。
さらに、前記導電性接着剤には、金属のメッシュ若しくはメッシュ状の金属板が埋設 されていることにより、前記積層体の駆動時における伸縮によって生じる導電性接着 剤のクラックなどを防ぐことができる。
[0044] また、本発明の積層型圧電素子は、前記導電性接着剤が導電性粒子を分散させ たポリイミド榭脂からなることが好ま ヽ。前記導電性接着剤が導電性粒子を分散さ せたポリイミド榭脂からなると、前記積層体を高温で駆動する際においても、前記導 電性接着剤が高 ヽ接着強度を維持することができる。
[0045] また、本発明の積層型圧電素子は、前記導電性接着剤中の前記導電性粒子が銀 粉末であることが好ましい。前記導電性接着剤中の前記導電性粒子が銀粉末であれ ば、前記導電性接着剤の抵抗値を低くすることができるため、前記積層体を大電流 で駆動する場合にぉ ヽても、局所発熱を防ぐことができる。
発明の効果
[0046] 以上のように本発明によれば、高電圧、高圧力下で圧電ァクチユエータを長期間連 続駆動させた場合でも、変位量が変化することがなぐ耐久性に優れた積層型圧電 素子を提供でき、例えば、耐久性の優れた噴射装置を提供することができる。
図面の簡単な説明
[0047] [図 1A]本発明に係る実施の形態 1一 3の積層型圧電素子の斜視図である。
[図 1B]図 1 Aの A— A'線についての縦断面図である。
[図 2A]図 1Bの一部を拡大して示す断面図である。
[図 2B]図 2Aの一部を拡大して示す断面図である。
[図 2C]図 2Bと同じ部分の断面写真である。
[図 3A]本発明の積層型圧電素子の製造方法において、側面に溝を形成した後の断 面図である。
[図 3B]本発明の積層型圧電素子の製造方法において、側面に導電性ペースト 21を 形成した後の断面図である。
[図 3C]本発明の積層型圧電素子の製造方法において、側面に外部電極 4を形成し た後の断面図である。
[図 4A]外部電極の外面に導電性補助部材を形成した本発明に係る積層型圧電素 子を示す斜視図である。
[図 4B]図 4Bの断面図である。 [図 4C]図 4Bの一部を拡大して示す断面図である。
圆 5]本発明に係る実施の形態 4の噴射装置の構成を示す断面図である。
[図 6]従来の積層型圧電ァクチユエータの断面図である。
圆 7]本発明の実施例 4における内部電極導電材中の銀比率を示すグラフである。 圆 8A]従来の積層型圧電素子の構成を示す斜視図である。
圆 8B]図 8Aの積層型圧電素子の一部を分解して示す分解斜視図である。
圆 9]従来の積層型電子部品として代表的な積層コンデンサの構成を示す斜視図で ある。
符号の説明
1·· •圧電体
2" •内部電極
3·· '絶縁体
4·. •外部電極
4b ··ネック咅
6·· 'リード線
10·· '積層体
31·· •収納容器
33·· '噴射孔
35·· 'バルブ
43·· •圧電ァクチユエータ
発明を実施するための最良の形態
[0049] 以下、図面を参照しながら、本発明に係る実施の形態の積層型圧電素子につい て詳細に説明する。
[0050] 実施の形態 1.
図 1Aは、本発明に係る実施の形態 1の積層型圧電素子 (積層型圧電ァクチユエ一 タ)の斜視図であり、図 1Bは、図 1 Aにおける A-A'線に沿った縦断面図である。
[0051] 本実施の形態 1の積層型圧電ァクチユエータは、図 1A, Bに示すように、複数の圧 電体 1と複数の内部電極 2とを交互に積層してなる四角柱状の積層体 10と、その側 面に内部電極 2と一層おきに接続されるように形成された外部電極 4とによって構成 されている。具体的には、内部電極 2の端部を、外部電極 4が形成される側面におい て一層おきに絶縁体 3で被覆し、絶縁体 3で被覆して ヽない内部電極 2の端部と外 部電極 4が導通するように構成している。また、外部電極 4は、銀を主成分とする導電 材とガラス力 なる 3次元網目構造を有する多孔質導電体とすることが好ましい。尚、 積層体 10にお 、て、符号 9を付して示す部分は内部電極が形成されて 、な ヽ不活 性層である。
[0052] 圧電体 1の間には内部電極 2が配されている力 この内部電極 2は銀 パラジウム 等の金属材料で形成されており、各圧電体 1に所定の電圧を印加するための電極で あり、印可された電圧に応じた逆圧電効果による変位を圧電体 1に起こさせる。
[0053] また、積層体 10の側面に一層おきに深さ 30— 500 μ m、積層方向の幅 30— 200 μ mの溝が形成されており、この溝内に、圧電体 1よりもヤング率の低いガラス、ェポ キシ榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、シリコーンゴム等が充填されて絶縁体 3が形成されている。この絶縁体 3は、積層体 10との接合を強固とするために、積層 体 10の変位に対して追従する弾性率が低い材料、特にはシリコーンゴム等力もなる ことが好適である。
[0054] 積層体 10の対向する 2つの側面にはそれぞれ外部電極 4が接合されており、該外 部電極 4には、積層された内部電極 2がー層おきに電気的に接続されている。この外 部電極 4は、接続されている各内部電極 2に圧電体 1を逆圧電効果により変位させる に必要な電圧を共通に供給する作用をなす。
[0055] さらに、外部電極 4にはリード線 6が半田により接続固定されている。このリード線 6 は外部電極 4を外部の電圧供給部に接続する作用をなす。
[0056] 従来、積層型圧電ァクチユエータにおいて、連続駆動中の素子変位量が温度変化 の影響を受けないようにするためには、連続駆動中の素子温度を一定に保つ方法や 、素子温度に応じて駆動電圧を細力べ制御する方法が採用されていた。具体的には 、素子温度をモニターしながら駆動電圧を制御したり、素子周辺温度の変化を抑える ために、放熱を積極的に行うヒートシンクを取り付けた構造などが用いられる。これに 対して、本実施の形態 1においては、駆動により発生する素子自身の発熱を抑制さ せることを目的として、素子抵抗が小さくなるように構成している。
ここで、素子抵抗とは、外部電極間で測定される積層型圧電素子の抵抗であり、主 として、圧電体、内部電極、外部電極及びそれらの境界における界面抵抗のうち最も 抵抗の高い部分により支配される。尚、界面抵抗とは、圧電体の粒界部分に生じる電 子準位と内部電極の仕事関数との差によって生じるエネルギー障壁による抵抗成分 であり(半導体のショットキーノリアと同様なもの)、圧電体の抵抗成分より高い抵抗値 となる。
また、素子抵抗は、 LCRメーターやインピーダンスアナライザ一等により測定できる
[0057] 本実施の形態 1では、素子抵抗を小さくするために、内部電極の比抵抗値を小さく し、さらに電極材料として熱伝導特性の優れた材料を用いることにより、素子の温度 上昇を抑えている。
すなわち、内部電極の比抵抗値を小さくして内部電極の抵抗に起因した発熱を抑 え、かつ素子内部で発生した熱を素子の外側にすみやかに(効果的に)伝達するた めに内部電極を熱伝導特性の優れた材料として ヽる。
また、内部電極自体ができるだけ素子の外表面近くに達していることが好ましい。ま た、さらには、圧電体材料自体の持つ変位量の温度特性が、使用温度に関係なく一 定であることが望ましいので、連続駆動中の素子温度変化に対して変位量が小さい 圧電体材料が好ましい。
また、素子抵抗を小さくするためには、界面抵抗を小さくすることが効果的であり、 その方法としてエネルギー障壁の形成を抑えるために内部電極の材料を圧電体に 拡散させる方法がある。この点からいうと、 Pdに比較して、 Agの方が拡散しやすいの でエネルギー障壁が低くなり界面抵抗を小さくできる。
[0058] また、内部電極の抵抗値を小さくし、かつ熱伝導性をよくするには、電極材料として 比抵抗の小さい材料を用いるとともに、緻密な電極構造にすることが効果的である。 このような点を考慮して、本実施の形態 1の積層型圧電素子では、内部電極 2中の 金属組成物を、 VIII族金属と lb族金属を主成分としている。また、 VIII族金属と lb族 金属を主成分とする金属組成物は耐熱性に優れていることから、圧電体 1と内部電 極 2を同時焼成することができる。
[0059] そして、本実施の形態 1ではさらに、前記 VIII族金属の含有量を Ml (重量%)、 lb 族金属の含有量を M2 (重量0 /0)としたとき、 0< M1≤15、 85≤M2< 100、 M1 + M2= 100を満足するように組成比を設定して 、る。
本実施の形態 1にお 、て、内部電極金属成分の主成分の組成比を上記範囲に限 定したのは、次の理由による。即ち、 VIII族金属が 15重量%を超えると、内部電極 2 の比抵抗が大きくなり、積層型圧電素子を連続駆動させた場合、内部電極 2が発熱 する場合があるからである。また、内部電極 2中の lb族金属の圧電体 1へのマイダレ ーシヨンを抑制するために、 VIII族金属が 0. 001重量%以上 15重量%以下とするこ とが好ましい。また、積層型圧電素子の耐久性を向上させるという点では、 0. 1重量 %以上 10重量%以下が好ましい。また、熱伝導に優れ、より高い耐久性を必要とす る場合は 0. 5重量%以上 9. 5重量%以下がより好ましい。また、さらに高い耐久性を 求める場合は 2重量%以上 8重量%以下がさらに好ましい。
[0060] ここで、 lb族金属が 85重量%未満になると、内部電極 2の比抵抗が大きくなり、積 層型圧電素子を連続駆動させた場合、内部電極 2が発熱する場合がある。また、内 部電極 2中の lb族金属の圧電体 1へのマイグレーションを抑制するために、 lb族金属 の割合を 85重量%以上 99. 999重量%以下とすることが好ましい。また、積層型圧 電素子の耐久性を向上させるという点では、 90重量%以上 99. 9重量%以下が好ま しい。また、より高い耐久性を必要とする場合は 90. 5重量%以上 99. 5重量%以下 力 り好ましい。また、さらに高い耐久性を求める場合は 92重量%以上 98重量%以 下がさらに好ましい。
[0061] これら、内部電極 2中の金属成分の重量%を示す Ml、 M2は EPMA (Electron
Probe Micro Analysis)法等の分析方法で特定できる。
また、本発明の内部電極 2中の金属成分は、 VIII族金属が Ni、 Pt、 Pd、 Rh、 Ir、 R u、 Osのうち少なくとも 1種以上であり、 lb族金属が Cu, Ag、 Auのうち少なくとも 1種 以上であることが好ましい。これは、近年における合金粉末合成技術において量産 性に優れた金属組成であるからである。
[0062] また、本実施の形態 1の内部電極 2中の金属成分は、 VIII族金属が Pt、 Pdのうち 少なくとも 1種以上であり、 lb族金属が Ag、 Auのうち少なくとも 1種以上であることが、 より好ましい。これにより、耐熱性が優れた電極を形成できるとともに、内部電極 2の 比抵抗を小さくできることから、連続駆動させても、内部電極 2部の発熱を抑制するこ とができるカゝらである。
また、本実施の形態 1の内部電極 2中の金属成分として、 lb族金属が Cuであること 力 より好ましい。
このような材料で内部電極が構成された実施の形態 1の積層型圧電素子では、熱 伝導特性が優れた電極を形成できるとともに、内部電極 2の比抵抗を小さくできること から、連続駆動させても、内部電極 2部の発熱を抑制することができる。さらには、素 子温度の上昇を抑制することが可能で、圧電ァクチユエータ変位量を安定させること ができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供することができ る。
[0063] また、本実施の形態 1の積層型圧電素子では、素子抵抗 は、 p Ag< p < p Pd を満足することが好ましい。ここで、 p Agは、内部電極 2が銀 100%からなると仮定し たときの素子抵抗の値であり、 Pdは内部電極 2がパラジウム 100%からなると仮定 したときの素子抵抗の値である。
具体的には、従来、積層型圧電素子の内部電極 2に用いられてきた銀 70重量%、 ノラジウム 30重量%の組成ではパラジウムの 1. 5倍の高抵抗な特性になるが、上記 範囲内の素子抵抗 Pとするためには、銀 80重量%以上かつパラジウム 20重量%以 下とすればよい。ただし、内部電極 2の焼結密度が低くなれば、それに伴い、高抵抗 になるため、さらに銀の組成比を高めること、あるいはさらに低抵抗の電極材料を用 いることが好ましい。さらに、電極自体が焼結して大きな粒子が結合した構造にするこ とで、電極抵抗が低ぐ電気伝導の経路が十分確保された緻密な内部電極 2にする ことができる。
[0064] また、本実施の形態 1の積層型圧電素子は、内部電極 2の導電率 σは、 σ Pd< σ < σ Agを満足していることが好ましい。ここで、 σ Agは、内部電極 2が銀 100%から なると仮定したときの抵抗値であり、 σ Pdは内部電極 2がパラジウム 100%からなると 仮定したときの抵抗値である。 さらに、本発明の積層型圧電素子は、内部電極 2を構成する金属組成物において 、最大径が 1 μ m以上である結晶粒子の占める割合が、金属組成物全体に対して 80 体積%以上存在するようにすることが好まし ヽ。
これは、電極自体が焼結して大きな粒子が結合した構造にすることで、電極抵抗が 低ぐ電気伝導の経路が十分確保された緻密な内部電極 2にするためである。好まし くは、内部電極 2を構成する金属組成物成分中、最大径が 1 μ m以上である結晶粒 子の占める割合が 90体積%以上存在することで、さらに抵抗を低くできる。さらに好 ましくは、内部電極 2を構成する金属組成物成分中、最大径が 1 m以上である結晶 粒子の占める割合が 95体積%以上存在することで、さらに抵抗が小さくなる。
なお、上記最大径が 1 m以上であるものの比率は、 SEM等により、内部電極 2中 の金属組成物における、最大径が 1 μ m以上の結晶粒子を特定して、体積%に換算 することで算出できる。
[0065] また、本発明の内部電極 2中には、金属組成物とともに無機組成物を添加すること が好ましい。これにより、内部電極 2と圧電体 1とを強固に結合することができる。 また、内部電極 2に添加する無機組成物は、 PbZrO— PbTiOからなるぺロブス力
3 3
イト型酸化物を主成分とすると、内部電極 2と圧電体 1を強固に結合することができる ことに加え、連続駆動させた場合においても、安定した圧電ァクチユエータの変位量 を得ることができる。
[0066] また、本実施の形態 1の圧電体 1はぺロブスカイト型酸化物を主成分とすることが好 ましい。これは、例えば、チタン酸バリウム (BaTiO )を代表とするぺロブスカイト型圧
3
電セラミックス材料等で形成されると、その圧電特性を示す圧電歪み定数 d が高い
33 ことから、変位量を大きくできる力 である。さらに、優れた圧電素子として機能すると ともに圧電体 1と内部電極 2を同時焼成することができる。
また、本発明の圧電体 1が PbZr03—PbTi03力 なるぺロブスカイト型酸化物を主 成分とすることがより好ましい。これにより、さらに圧電歪み定数 d33が高いことから、 変位量を大きくできる。
[0067] また、本発明の積層型圧電素子は、焼成温度が 900°C以上 1000°C以下であるこ とが好ましい。これにより、圧電体 1と電極とを強固に結合することができる。 900°C以 上 1000°C以下に限定したのは、 900°Cより低温では、緻密な圧電体 1を作製するこ とができず、 1000°Cを超えると焼成時の電極の収縮と圧電体 1の収縮のずれを起因 とした応力が大きくなり、連続駆動時にクラックが発生するという理由力もである。 また、内部電極 2中の組成のずれが焼成前後で 5%以下であることが好ましい。こ れは、内部電極 2中の組成のずれが焼成前後で 5%を超えると、内部電極 2中の金 属材料が圧電体 1へのマイグレーションが多くなり、積層型圧電素子の駆動による伸 縮に対して、内部電極 2が追従できなくなる可能性があるからである。
[0068] ここで、内部電極 2中の組成のずれとは、内部電極 2を構成する元素が焼成によつ て蒸発、または圧電体 1へ拡散することにより内部電極 2の組成が変わる変化率を示 している。
また、本実施の形態 1の積層型圧電素子では、積層体の側面に端部が露出する内 部電極 2と端部が露出しない内部電極 2とが交互に構成されており、前記端部が露 出して ヽない内部電極 2と外部電極 4間の圧電体部分に溝が形成されて ヽる。この 溝内には、圧電体 12よりもヤング率の低 、絶縁体が形成されて!、ることが好ま 、。 このようにヤング率の低!、絶縁体が溝内に形成された積層型圧電素子では、駆動中 の変位によって生じる応力を緩和することができることから、連続駆動させても、内部 電極 2の発熱を抑制することができる。
[0069] また、本発明の積層型圧電素子は単板あるいは積層数が 1またはそれ以上力もな ることが好ましい。これにより、素子に加えられた圧力を電圧に変換することも、素子 に電圧を加えることで素子を変位させることもできるため、素子駆動中に予期せぬ応 力を加えられたとしても、応力を分散して電圧変換することで、応力緩和させることが できる。従って、耐久性に優れた高信頼性の圧電ァクチユエータを提供することが可 會 になる。
[0070] 本発明の積層型圧電素子は、以下のようにして製造する。柱状積層体 10を作製す るためにまず、例えば、 PbZrO PbTiOからなるぺロブスカイト型酸化物等の圧電
3 3
セラミックスの仮焼粉末と、アクリル系、プチラール系等の有機高分子力も成るバイン ダ一と、 DOP (フタル酸ジォチル)、 DBP (フタル酸ジブチル)等の可塑剤とを混合し てスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等 のテープ成型法により圧電体 1となるセラミックグリーンシートを作製する。
[0071] 次に、例えば、銀-パラジウム等の内部電極を構成する金属粉末にノインダー、可 塑剤等を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面 にスクリーン印刷等によって 1一 40 μ mの厚みに印刷する。
そして、上面に導電性ペーストが印刷されたグリーンシートを複数積層し、この積層 体について所定の温度で脱バインダーを行った後、 900— 1200°Cで焼成する。こう して、柱状積層体 10を作製する。焼成は、好ましくは 900— 1000°Cで行う。
[0072] 尚、柱状積層体 10は、上記製法によって作製されるものに限定されるものではなく 、複数の圧電体と複数の内部電極とを交互に積層してなる柱状積層体 10を作製で きれば、どのような製法によっても良い。
ここで、積層体は、(1)隣接する 2つの内部電極のうちの一方の内部電極は外部電 極が形成される一方の側面においてその端部が露出され、他方の内部電極はその 端部が一方の側面力 露出されることなく内側に位置するように、(2)その隣接する 2 つの内部電極のうちの一方の内部電極は別の外部電極が形成される他方の側面に おいてその端部が露出されることなく内側に位置し、他方の内部電極はその端部が 他方の側面力 露出されるように、作製されている。
[0073] 次に、内部電極の端部が交互に露出された積層体の側面において、端部が露出し ていない内部電極の端部に向けて溝を形成して、この溝内に、圧電体よりもヤング率 の低い、例えば榭脂またはゴム等の絶縁体を形成する。尚、本実施の形態 1では、好 まし 、例として溝を形成した例を示して 、るが、本発明にお 、て溝は必ず形成しなけ ればならな 、と 、うものではな 、。
[0074] 次に、ガラス粉末に、ノインダーを加えて銀ガラス導電性ペーストを作製し、これを シート状に成形して、乾燥する (溶媒を飛散させる。 ) 0シートの生密度は 6— 9gZcm 3に制御する。このシートを、柱状積層体 10の外部電極形成面 (前述した一方の側 面と他方の側面)に転写し、ガラスの軟化点よりも高い温度で、且つ銀の融点(965 °C)以下の温度であって、しかも焼成温度 (°C)の 4Z5以下の温度で焼き付けを行う 。これにより、銀ガラス導電性ペーストを用いて作製したシート中のバインダー成分が 飛散消失し、 3次元網目構造をなす多孔質導電体からなる外部電極 4が形成される [0075] なお、前記銀ガラス導電性ペーストの焼き付け温度は、有効なネック部を形成し、 銀ガラス導電性ペースト中の銀と内部電極 2を拡散接合させ、また、外部電極 4中の 空隙を有効に残存させ、さら〖こは、外部電極 4と柱状積層体 10側面とを部分的に接 合させるという点から、 550— 700°Cが望ましい。また、銀ガラス導電性ペースト中の ガラス成分の軟化点は、 500— 700°Cが望ましい。
[0076] 焼き付け温度が 700°Cより高 、場合には、銀ガラス導電性ペーストの銀粉末の焼結 が進みすぎ、有効な 3次元網目構造をなす多孔質導電体を形成することができず、 外部電極 4が緻密になりすぎてしまう。その結果、外部電極 4のヤング率が高くなりす ぎ駆動時の応力を十分に吸収することができずに外部電極 4が断線してしまう可能 性がある。好ましくは、ガラスの軟ィ匕点の 1. 2倍以内の温度で焼き付けを行った方が よい。
[0077] 一方、焼き付け温度が 550°Cよりも低い場合には、内部電極 2端部と外部電極 4の 間で十分に拡散接合がなされないために、ネック部が形成されず、駆動時に内部電 極 2と外部電極 4の間でスパークを起こしてしまう可能性がある。
[0078] なお、銀ガラス導電性ペーストのシートの厚みは、圧電体 1の厚みよりも薄いことが 望ましい。さらに好ましくは、ァクチユエータの伸縮に追従するという点から、 50 /z m 以下がよい。
また、外部電極 4は構成する導電材はァクチユエータの伸縮によって生じる応力を 十分に吸収するという点から、ヤング率の低い銀、若しくは銀が主成分の合金が望ま しい。
[0079] 次に、外部電極 4を形成した柱状積層体 10をシリコーンゴム溶液に浸漬してシリコ ーンゴム溶液を真空脱気することにより、柱状積層体 10の溝内部にシリコーンゴムを 充填し、その後シリコーンゴム溶液力も柱状積層体 10を引き上げ、柱状積層体 10の 側面にシリコーンゴムをコーティングする。その後、溝内部に充填、及び柱状積層体 10の側面にコーティングした前記シリコーンゴムを硬化させる。
その後、外部電極 4にリード線を接続することにより本発明の積層型圧電素子が完 成する。 [0080] そして、リード線を介して一対の外部電極 4に 0. 1— 3kVZmmの直流電圧を印加 し、柱状積層体 10を分極処理することによって、製品としての積層型圧電ァクチユエ ータが完成する。作製した積層型圧電ァクチユエータのリード線を外部の電圧供給 部に接続し、リード線及び外部電極 4を介して内部電極 2に電圧を印加すると、各圧 電体 1は逆圧電効果によって大きく変位し、これによつて例えばエンジンに燃料を噴 射供給する自動車用燃料噴射弁として機能する。
[0081] 以上のように構成された積層型圧電素子は、内部電極 2中の金属組成物が VIII族 金属および lb族金属を主成分として、前記電極中の VIII族金属の含有量を Ml重量 %、 lb族金属の含有量を M2重量%としたとき、 0< M1≤15、 85≤M2< 100、 Ml + M2= 100を満足するため、ァクチユエ一タを高電界下、連続で駆動させた場合で も、熱暴走を生じることを防ぐことができ、高信頼性のァクチユエータを提供することが できる。
[0082] また、以上のように構成された積層型圧電素子は、内部電極 2中の金属組成物成 分が銀力もなるときの素子抵抗を p Ag、金属組成物成分力パラジウム力もなるときの 素子抵抗を p Pdとした時、前記素子抵抗 p i P もく Pく ρ Pdとなるため、ァクチ ユエ一タを高電界下、連続で駆動させた場合でも、変位量が実効的に変化しないた めに、装置が誤作動することなぐ耐久性に優れた高信頼性の圧電ァクチユエータを 提供することができる。
[0083] また、以上のように構成された積層型圧電素子は、内部電極 2中の金属組成物成 分が銀からなるときの内部電極 2の導電率を σ Ag、金属組成物成分がパラジウムか らなるときの内部電極 2導電率を σ Pdとした時、前記内部電極 2導電率 σ力 σ Pd < σ < σ Agとなるため、ァクチユエ一タを高電界下、連続で駆動させた場合でも、変 位量が実効的に変化しないために、装置が誤作動することなぐ耐久性に優れた高 信頼性の圧電ァクチユエータを提供することができる。
[0084] また、以上のように構成された積層型圧電素子は、前記内部電極 2を構成する金属 組成物成分力もなる結晶粒子の最大径が: L m以上であるものが 80体積%以上存 在するため、ァクチユエ一タを高電界下、連続で駆動させた場合でも、変位量が実効 的に変化しないために、装置が誤作動することなぐ耐久性に優れた高信頼性の圧 電ァクチユエータを提供することができる。
[0085] さらに、本発明では、外部電極 4の外面に、金属のメッシュ若しくはメッシュ状の金 属板が埋設された導電性接着剤からなる導電性補助部材を形成してもよ ヽ。この場 合には、外部電極 4の外面に導電性補助部材を設けることによりァクチユエ一タに大 電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材に流す ことができ、外部電極 4に流れる電流を低減できるという理由から、外部電極 4が局所 発熱を起こし断線することを防ぐことができ、耐久性を大幅に向上させることができる 。さらには、導電性接着剤中に金属のメッシュ若しくはメッシュ状の金属板を埋設して いるため、前記導電性接着剤にクラックが生じるのを防ぐことができる。
金属のメッシュとは金属線を編み込んだものであり、メッシュ状の金属板とは、金属 板に孔を形成してメッシュ状にしたものを 、う。
[0086] さらに、前記導電性補助部材を構成する導電性接着剤は銀粉末を分散させたポリ イミド榭脂からなることが望ましい。即ち、比抵抗の低い銀粉末を、耐熱性の高いポリ イミド榭脂に分散させることにより、高温での使用に際しても、抵抗値が低く且つ高い 接着強度を維持した導電性補助部材を形成することができる。さらに望ましくは、前 記導電性粒子はフレーク状や針状などの非球形の粒子であることが望ま U、。これ は、導電性粒子の形状をフレーク状や針状などの非球形の粒子とすることにより、該 導電性粒子間の絡み合いを強固にすることができ、該導電性接着剤のせん断強度 をより高めることができるためである。
本発明の積層型圧電素子はこれらに限定されるものではなぐ本発明の要旨を逸 脱しな 、範囲であれば種々の変更は可能である。
また、上記例では、柱状積層体 10の対向する側面に外部電極 4を形成した例につ いて説明したが、本発明では、例えば隣設する側面に一対の外部電極を形成しても よい。
[0087] また、以上のように構成された実施の形態 1の積層型圧電素子は、例えば、自動車 エンジンの燃料噴射装置、インクジェット等の液体噴射装置、光学装置等の精密位 置決め装置や振動防止装置等に搭載される駆動素子、ならびに燃焼圧センサ、ノッ クセンサ、加速度センサ、荷重センサ、超音波センサ、感圧センサ、ョーレートセンサ 等に搭載されるセンサ素子、ならびに圧電ジャイロ、圧電スィッチ、圧電トランス、圧 電ブレーカ一等に搭載される回路素子以外であっても、圧電特性を用いた素子であ れば、用いることが可能である。
[0088] 特に、本実施の形態 1の積層型圧電素子を連続駆動させても、所望の変位量が実 効的に変化しないために、例えば、自動車エンジンの燃料噴射装置に適用した場合 に、装置の誤作動を防止でき、耐久性に優れた高信頼性の噴射装置を提供すること ができる。
[0089] 実施の形態 2.
本発明に係る実施の形態 2の積層型圧電素子 (積層型圧電ァクチユエータ)は、実 施の形態 1の積層型圧電素子において、外部電極 4と内部電極 2とが以下のように構 成されている。
[0090] 本実施の形態 2の積層型圧電ァクチユエータでは、外部電極 4が銀を主成分とする 導電材とガラスカゝらなり、前記内部電極 2が導電材と圧電材を含んでなる。
そして、内部電極 2の導電材中の銀重量比率を X(%)、導電材と圧電材を含めた 内部電極 2中の銀重量比率を Z (%)、外部電極 4中の銀重量比率を Y(%)としたとき 、各比率が、 Χ≥85、及び 0. 9≤Χ/Υ≤1. 1を満たすように設定している。これは、 以下の理由による。 Xが 85%未満であれば、必然的に内部電極 2を構成するパラジ ゥムの重量比率が増大するため、低コストで積層型圧電ァクチユエータを製造できな い。また、 ΧΖΥが 0. 9未満では、内部電極 2中の銀の量が外部電極 4中の銀の量に 対して相対的に少なくなるため、外部電極 4を焼き付ける際に、内部電極 2と外部電 極 4に含まれている銀同士の相互拡散が少なくなり、内部電極 2と外部電極 4の接合 強度が弱くなり、積層型圧電ァクチユエータの耐久性が低下するためである。また、 X ΖΥが 1. 1を超えると、外部電極 4中の銀の量が内部電極 2に対して相対的に少なく なるため、外部電極 4を焼き付ける際に、内部電極 2と外部電極 4に含まれている銀 同士の相互拡散が少なくなり、内部電極 2と外部電極 4の接合強度が弱くなり、積層 型圧電ァクチユエータの耐久性が低下するためである。
[0091] これに対して、内部電極 2の導電材中の銀重量比率を Χ(%)、銀を主成分とした導 電材とガラス力もなる外部電極 4中の銀重量比率を Υ(%)としたとき、 Χ≥85、及び 0 . 9≤X/Y≤1. 1を満たすと、内部電極 2を構成する高価なパラジウムの使用量を 抑制できるため、低コストで積層型圧電素子を製造することが可能になる。また、内部 電極 2中の銀重量比率 Χ(%)と外部電極 4中の銀重量比率 Υ(%)とがほぼ等しくな るため、外部電極 4を焼き付ける際に、内部電極 2と外部電極 4に含まれている銀同 士の相互拡散が促進され、内部電極 2と外部電極 4の強固な接合が可能になり、高 電界、高圧下で長時間連続駆動させる場合においても、内部電極 2と外部電極 4を 断線することなぐ優れた耐久性を有することができる。
[0092] さら〖こ、内部電極 2が導電材と圧電材からなり、内部電極 2中の銀重量比率を Ζ (% )とするとき、 0. 7≤Ζ/Υ≤1. 0を満たすことが望ましい。これは、以下の理由による 。 ΖΖΥが 0. 7未満では、内部電極 2中の銀の量が外部電極 4中の銀の量に対して 相対的に少なくなるため、外部電極 4より内部電極 2の抵抗値が高くなるので、内部 電極 2に局所発熱が生じる。また、 ΖΖΥが 1. 0を超えると、内部電極 2中の圧電材が 少なくなるため、内部電極 2と圧電体 1の界面の密着強度が弱くなり、内部電極 2と圧 電体 1の界面で剥離が生じる。また、外部電極 4中の銀の量が内部電極 2に対して相 対的に少なくなるので、内部電極 2と外部電極 4間の銀の相互拡散が少なくなり、内 部電極 2と外部電極 4の接合強度が弱くなる場合がある。
[0093] 本実施の形態 2では、図 2Βに示すように、外部電極 4が積層体側面に露出した内 部電極 2の端部と拡散接合しており、内部電極 2の導電材成分が外部電極 4に拡散 してネック部 4bを形成することが望ましい。このネック部 4bにより、内部電極 2と外部 電極 4の強固な接続が実現できる。また、このように、内部電極端部にネック部が形 成され、このネック部が外部電極中に埋設されていると、積層型圧電素子に大電流を 流し、高速で駆動させる場合にぉ ヽても内部電極と外部電極の接合部での局所発 熱やスパーク等を防止できる。
[0094] また、本実施の形態 2では、外部電極 4は 3次元網目構造をなす多孔質導電体から なることが望ましい。ここで、 3次元網目構造とは、外部電極 4にいわゆる球形のボイド が存在している状態を意味するのではなぐ外部電極 4を構成する導電材粉末とガラ ス粉末が、比較的低温で焼き付けられている為に、焼結が進みきらずにボイドがある 程度連結した状態で存在し、外部電極 4を構成する導電材粉末とガラス粉末が 3次 元的に連結、接合した状態を指す。尚、図 2Aは、図 1Bに示す断面の一部を拡大し た断面図であり、図 2Bは図 2Aの一部をさらに拡大して示す断面図である。
[0095] また、この外部電極 4は、積層体 10の側面に部分的に接合していることが好ましい 。即ち、積層体 10の側面に露出した内部電極 2の端部とは拡散接合しており、積層 体 10の圧電体 1の側面とは部分的に接合している。つまり、圧電体 1の側面には導 電材とガラスの混合物が一部接合し、圧電体 1の側面と外部電極 4との間には空隙 4 aが形成されている。また、外部電極 4中にも空隙 4aが多数形成され、これにより、外 部電極 4が多孔質導電体から構成されている。空隙 4aの形状は、導電材とガラスの 焼き付け前の形状が比較的そのまま残存した複雑な形状である。
[0096] 外部電極 4が 3次元網目構造をなす多孔質導電体で構成されて!、なければ、外部 電極 4はフレキシブル性を有しな 、ため、積層型圧電ァクチユエータの伸縮に追従で きなくなるので、外部電極 4の断線や外部電極 4と内部電極 2の接点不良が生じる場 合がある。
[0097] さらに、本発明では、外部電極 4中の空隙率が 30— 70体積%であることが望ましい 。これにより、ァクチユエータの伸縮によって生じる応力を柔軟に受けることができる。 つまり、外部電極 4中の空隙率が 30体積%より小さい場合においては、外部電極 4 がァクチユエータの伸縮によって生じる応力に耐えきれずに、外部電極 4が断線して しまう可能性がある。一方で、外部電極 4中の空隙率が 70体積%より大きい場合には 外部電極 4の抵抗値が大きくなつてしま ヽ、大電流を流した際に外部電極 4が局所発 熱を起こし、断線してしまう可能性がある。
[0098] さらに、外部電極 4の圧電体 1側表層部にガラスリッチ層が形成されていることが望 ましい。これは、ガラスリッチ層が存在しないと、外部電極 4中のガラス成分との接合 が困難になるため、外部電極 4が圧電体 1との強固な接合が容易でなくなる可能性が ある。
[0099] また、外部電極 4に含まれるガラスの軟化点 (°C)力 内部電極 2を構成する導電材 の融点 (°C)の 4Z5以下であることが望ましい。これは、外部電極 4を構成するガラス の軟化点が、内部電極 2を構成する導電材の融点の 4Z5を超えると、外部電極 4を 構成するガラスの軟化点と内部電極 2を構成する導電材の融点が同程度の温度にな るため、外部電極 4を焼き付ける温度が必然的に内部電極 2を構成する融点に近づ くので、外部電極 4の焼き付けの際に、内部電極 2及び外部電極 4の導電材が凝集し て拡散接合を妨げたり、また、焼き付け温度を外部電極 4のガラス成分が軟化するの に十分な温度に設定できないため、軟ィ匕したガラスによる十分な接合強度を得ること ができない場合がある。
[0100] さらに、外部電極 4を構成するガラスを非晶質にすることが望ましい。これは、結晶 質のガラスでは、積層型圧電ァクチユエータの伸縮によって生じる応力を外部電極 4 が吸収できな 、ので、クラック等が発生する場合がある。
またさらに、外部電極 4の厚みが圧電体 1の厚みよりも薄いことが望ましい。これは、 外部電極 4の厚みが圧電体 1の厚みよりも厚 、と、外部電極 4の強度が増大するため 、積層体 10が伸縮する際に、外部電極 4と内部電極 2の接合部の負荷が増大し、接 点不良が生じる場合がある。
[0101] また、図 2及び図 3に示すように、積層体 10の側面に形成された凹溝内に圧電体 1 よりもヤング率の低い絶縁体 3が充填され、内部電極 2と外部電極 4がー層置きに絶 縁されていることが望ましい。内部電極 2間に挟まれた圧電体 1は、隣り合う内部電極 2間に印加された電圧により伸縮する力 内部電極 2に挟まれていない積層体 10の 側面付近の圧電体 1には、内部電極 2に電圧を印加しても伸縮しないので、内部電 極 2に電圧が印加される度に、圧縮応力や引張応力が発生する。これに対し、積層 体 10の側面に凹溝を形成し、この凹溝内に圧電体 1よりもヤング率の低い絶縁体 3を 充填することにより、積層体 10が伸縮した場合に積層体 10の側面に発生する応力を 、絶縁体 3が伸縮することにより低減することが可能となり、これにより耐久性を改善す ることがでさる。
この時、前記凹溝に充填される絶縁体 3のヤング率が圧電体 1より大きいと、上記の ように積層体 10の側面付近に発生する応力を絶縁体 3の伸縮で緩和できな 、ので、 積層型圧電素子の耐久性が低下する可能性がある。
[0102] また、コスト面から、内部電極 2として低パラジウム比率の銀-パラジウム合金を用い ることが望ましいが、このためには、 980°C以下程度で焼成可能な圧電体 1を用いる ことが望ましぐこの圧電体 1を構成する材料は、 PbZrO— PbTiOを主成分とし、副 成分として Pb (Yb Nb ) 0、Pb (Co Nb ) 0及び Pb (Zn Nb ) 0を 1
1/2 1/2 3 1/3 2/3 3 1/3 2/3 3
0— 20mol%含有させたものが好ましい。即ち、銀 パラジウム合金の状態図から、 パラジウムが 5重量0 /0の銀 パラジウム合金を用いる際には、 980°C以下の温度で焼 成可能な圧電体 1としては、例えば、 PbZrO PbTiOを主成分とし、副成分として P
3 3
b (Yb Nb ) O、 Pb (Co Nb ) O及び Pb (Zn Nb ) Oを 10 20mol
1/2 1/2 3 1/3 2/3 3 1/3 2/3 3
%含有させたものを用いることができる。
[0103] ここで、ノラジウム 5重量%の銀-パラジウム合金を内部電極 2として用いた場合に おいて、 1100°Cの温度で焼成してしまうと、焼成温度が内部電極 2構成する導電材 (銀-パラジウム合金)の融点を超えてしま 、、内部電極 2の導電材が凝集してしま ヽ 、デラミネーシヨンが発生するといつた問題が生じてしまう。即ち、内部電極 2の導電 材に低パラジウム比率の銀-パラジウム合金を用いるためには、圧電体 1の焼成温度 を 980°C以下程度に下げる必要がある。
[0104] 外部電極 4は、導電材 87— 99. 5重量%と、ガラス粉末 0. 5— 13重量%からなり、 微量のガラスが導電材中に分散している。この外部電極 4は、積層体 10の側面に部 分的に接合している。即ち、積層体 10の側面に露出した内部電極 2の端部とは内部 電極 2中の導電材と外部電極 4中の導電材が拡散接合しており、積層体 10の圧電 体 1の側面とは、主に外部電極 4中のガラス成分を介して接合している。つまり、圧電 体 1の側面とは外部電極 4中の導電材とガラスの混合物が部分的に接合し、圧電体 1 の側面と外部電極 4との間には空隙 4aが形成されている。また、外部電極 4中にも空 隙 4aが多数形成され、これにより、外部電極 4が多孔質導電体から構成されている。 空隙 4aの形状は、導電材とガラスの焼き付け前の形状が比較的そのまま残存する複 雑な形状である。
[0105] また、外部電極 4は、積層型圧電ァクチユエータの伸縮によって生じる応力を十分 に吸収するために、外部電極 4の導電材はヤング率の低い銀、若しくは銀を主成分と した合金力 なることが望ましぐまた、外部電極 4全体としては、フレキシブルな 3次 元網目構造をなす多孔質導体で形成されて 、ることが望ま 、。
[0106] 本発明に係る実施の形態 2の積層型圧電ァクチユエータは、実施の形態 1の積層 型圧電ァクチユエータと同様に製造することができる。 [0107] まず、実施の形態 1と同様にして、積層体 10を作製する。
ここで、コスト面から、内部電極 2を形成する銀-パラジウム合金としては、低パラジ ゥム比率のものが望ましぐ特に、パラジウム比率が 10重量%以下のものがより好まし い。このためには、圧電体 1が 980°C以下で焼成できる材料であることが望ましぐ例 えば、 PbZrO— PbTiOを主成分とし、副成分として Pb (Yb Nb ) 0
3 3 1/2 1/2 3、 Pb (Co
1
Nb ) 0及び Pb (Zn Nb ) 0を 10— 20mol%含有させた材料を圧電体 1
/3 2/3 3 1/3 2/3 3
に用いればよい。また、内部電極を構成する銀-パラジウムは、銀とパラジウムの合金 粉末を用いても、銀粉末とパラジウム粉末の混合物を用いても良い。なお、銀粉末と ノ《ラジウム粉末の混合物を用いた場合においても、焼成時に銀-パラジウムの合金 が形成される。
[0108] また、内部電極 2を形成するための導電性ペーストに添加する圧電材 (圧電セラミツ タスの仮焼粉末)の比率は、内部電極 2と圧電体 1の接合強度を強固なものにし、ま た、内部電極 2の抵抗値を十分低くするので、焼成後の内部電極 2中に導電材が 75 一 93重量%、残部の圧電材が 7— 25重量%含まれることが望ましい。
[0109] 尚、積層体 10は、上記製法によって作製されるものに限定されるものではなぐ複 数の圧電体 1と複数の内部電極 2とを交互に積層してなる積層体 10を作製できれば 、どのような製法によって形成されても良い。
積層体 10を作製した後、図 3Aに示すように、ダイシング装置等により積層体 10の 側面に一層おきに凹溝を形成する。
[0110] さらに、粒径 0. 1— 10 μ mの銀粉末を 87— 99. 5重量%と、残部が粒径 0. 1— 10 μ mでケィ素を主成分とする軟化点が 450— 800°Cのガラス粉末 0. 5— 13重量% からなる混合物に、バインダーを加えて銀ガラス導電性ペーストを作製し、これを成 形し、乾燥した (溶媒を飛散させた)シート 21の生密度を 6— 9gZcm3に制御し、こ のシート 21を、図 3Bに示すように、溝が形成された積層体 10の外部電極形成面に 転写し、ガラスの軟ィ匕点よりも高い温度、且つ銀の融点以下の温度で焼き付けを行う ことにより、外部電極 4を形成することができる。
[0111] また、図 3Cに示すように、銀ガラス導電性ペーストを用いて作製したシート 21中の バインダー成分が飛散消失し、 3次元網目構造をなす多孔質導電体からなる外部電 極 4を形成することも可能であり、特に、 3次元網目構造の外部電極 4を形成するに は、シート 21の生密度を 6— 9gZcm3に制御し、さらに、外部電極 4の空隙率を 30 一 70%とするためには、生密度を 6. 2-7. OgZcm3とすることが望ましい。シート 2 1の生密度はアルキメデス法により測定できる。
[0112] この銀ガラスペーストの焼き付けによって、外部電極 4中に空隙 4aが形成されるとと もに、銀ガラスペースト中の銀が内部電極 2中の銀-パラジウム合金と拡散接合し、ネ ック部 4bが形成されてもよぐ外部電極 4が積層体 10側面に部分的に接合される。ネ ック部 4bでは、内部電極 2の銀-パラジウム合金と外部電極 4の銀が相互拡散するの で、内部電極 2から拡散したパラジウムは一般的な分析手法 (例えば、 EPMA、 EDS 等)で検出できる。
なお、前記銀ガラスペーストの焼き付け温度は、ネック部 4bを有効に形成するため に実施の形態 1で説明した範囲に設定することが好ましい。
[0113] また、銀ガラスペーストのシート 21の厚みは、圧電体 1の厚みよりも薄いことが望まし い。さらに好ましくは、積層型圧電ァクチユエータの伸縮に追従するためにも、 50 m以下がより好ましい。
[0114] 銀ガラス導電性ペースト 21中の銀粉末を 87— 99. 5重量%、残部のガラス粉末を 0. 5— 13重量%としたのは、銀粉末が 87重量%より少ない場合には、相対的にガラ ス成分が多くなり、焼き付けを行った際に、外部電極 4中に有効的に空隙 4aを形成 することゃ該外部電極 4と積層体 10側面とを部分的に接合することができず、一方、 銀粉末が 97体積%99. 5重量%より多い場合には、相対的にガラス成分が少なくな り外部電極 4と積層体 10との接合強度が弱くなり、積層型圧電ァクチユエータの駆動 中に外部電極 4が積層体 10力も剥離してしまう可能性があるからである。
[0115] また、外部電極 4を構成するガラス成分は、シリカガラス、ソーダ石灰ガラス、鉛アル カリけい酸ガラス、アルミノほうけい酸塩ガラス、ほうけい酸塩ガラス、アルミノけい酸塩 ガラス、ほう酸塩ガラス、りん酸塩ガラス、鉛ガラス等を用いる。
例えば、ほうけい酸塩ガラスとしては、 SiO 40— 70重量0 /0、 B O 2— 30重量0 /oAl
2 2 3
O 0— 20重量%、 MgO、 CaO、 SrO、 BaOのようなアルカリ土類金属酸化物を総
2 3
量で 0— 10重量%、アルカリ金属酸ィ匕物 0— 10重量%含有するものを使用すること ができる。また、上記ほうけい酸塩ガラスに、
Figure imgf000033_0001
としても構わない。 ZnOは、ほうけい酸塩ガラスの作業温度を低下させる効果がある。
[0116] また、りん酸塩ガラスとしては、 P O 40— 80重量0 /0、 Al O 0— 30重量0 /0、 B O O
2 5 2 3 2 3 一 30重量%、 ZnOO— 30重量%、アルカリ土類金属酸化物 0— 30重量%、アルカリ 金属酸ィ匕物 0— 10重量%を含むようなガラスを使用することができる。
また、鉛ガラスとしては、 PbO 0— 80重量0 /0、 SiO 0— 40重量0 /0、 Bi O 0— 30重
3 2 2 3 量%、 Al O 0— 20重量%、 ZnOO— 30重量%、アルカリ土類金属酸化物 0— 30重
2 3
量%、アルカリ金属酸ィ匕物 0— 10重量%を含むようなガラスを使用することができる。
[0117] 以下、実施の形態 1と同様にして、実施の形態 2の積層型圧電ァクチユエータは、 製造できる。
すなわち、外部電極 4を形成した積層体 10をシリコーンゴム溶液に浸漬して真空脱 気することにより、積層体 10の溝内部にシリコーンゴムを充填して、シリコーンゴムを 硬化させる。
そして、外部電極 4にリード線 6を接続して、リード線 6を介して一対の外部電極 4に 0. 1一 3kVZmmの直流電圧を印加し、積層体 10を分極処理する。これで、例えば 、エンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する積層型圧電ァ クチユエータが完成する。
[0118] 実施の形態 3.
本発明に係る実施の形態 3の積層型圧電素子 (積層型圧電ァクチユエータ)は、図 1A, B等に示す素子において、内部電極 2が銀を主成分としパラジウム若しくは白金 の少なくとも 1種を含む導電材からなり、また、外部電極 4が銀を主成分とする導電材 とガラス成分カゝらなり、外部電極 4との接続部近傍の内部電極 2中の導電材の銀比率 力 積層体 10内部の内部電極 2中の導電材の銀比率よりも大きくなつていることを特 徴としている。
[0119] このように、外部電極 4との接続部近傍の内部電極 2の導電材中の銀比率を積層 体 10内部の内部電極 2の導電材中の銀比率よりも大きくすることにより、外部電極 4 導電材の主成分である銀と、内部電極 2導電材中の銀の濃度を近くすることができる ため、銀の相互拡散により、外部電極 4と内部電極 2の接合が確実なものとなる。 [0120] つまり、外部電極 4との接続部近傍の内部電極 2を構成する導電材中の銀の濃度と 外部電極中 5の銀の濃度がほぼ等しくなるため、前記外部電極 4を前記積層体 10に 焼き付ける際に、前記外部電極 4中の銀と前記内部電極 2中の銀の相互拡散が促進 され、前記内部電極 2と前記外部電極 4の強固な接合が可能になり、高電界、高圧 力下で長時間連続駆動させる場合にぉ 、ても、前記外部電極 4と前記内部電極 2を 断線することなぐ優れた耐久性を有することができる。
[0121] さらに、内部電極 2導電材中の銀比率が、外部電極 4に近づくに従い、次第に大き くなつていることが望ましい。このことにより内部電極 2導電材において、連続的に銀 の濃度勾配が形成されるため、安定的な内部電極 2および内部電極 2と外部電極 4 の接合を確立することができる。
[0122] さらに、外部電極 4と内部電極 2がネック部 4bを介して拡散接合していることが望ま しい。このことにより、ァクチユエ一タに大電流を流して高速で駆動させる場合におい ても、内部電極 2と外部電極 4の接合部分に大電流に耐えうるネック部 4bが形成され ているため、該接点部でのスパークや断線を防ぐことができる。また、該ネック部を介 して内部電極 2と外部電極 4とが拡散接合をして ヽるため、内部電極 2と外部電極 4と の接合部で明確な組成境界がなぐ信頼性の高い接合部を形成することができる。 なお、前記ネック部 4bとは内部電極 2の導電材と外部電極 4の導電材が相互拡散し て形成された部分のことを 、う。
[0123] さらに、内部電極 2導電材中の銀比率を 85重量%以上とすることにより、内部電極 2中の銀の濃度を高くすることができ、銀の拡散接合による外部電極 4との接続を確 実なものにすることができる。また、内部電極 2の導電材中の銀比率を 85重量%以上 とすることにより、高価なパラジウムや白金などの使用量を抑制できるため、安価な積 層型圧電素子を製造することが可能になる。一方、内部電極 2の導電材中の銀比率 が 85重量%未満の場合においては、必然的に高価なパラジウムや白金の使用量が 増大するため、安価な積層型圧電素子を製造することができなくなり、また、内部電 極 2の導電材中の銀の濃度が低くなるため、外部電極 4との接合が不確かなものにな つてしまう。なお、内部電極 2導電材中の銀比率とは、内部電極 2導電材中の銀比率 が変化しない積層体 10内部で外部電極 4との接合部から lmm以上離れたところで の銀比率を指す。
[0124] さらに、外部電極 4の圧電体 1側表層部にガラスリッチ層を設けることが望ましい。こ のように、外部電極 4中のガラス成分を圧電体 1との接合界面に多く存在させることに より、外部電極 4と積層体 10側面との接合強度を向上させることができる。
[0125] さらに、外部電極 4中のガラス成分が実質的に外部電極 4厚みの積層体 10表層側 の 80%以下に存在していることが望ましい。これにより、積層体 10との接合を担うガ ラス成分が圧電体 1側の表層部に存在するため、外部電極 4と積層体 10との強い接 合が可能となり、一方で、外部電極 4の大気側表層部には実質的に銀を主成分とす る導電材しか存在せず、リード線等を前記外部電極 4に半田にて接続固定する際に おいても、半田濡れ性の良好な外部電極 4表面を提供することができる。
[0126] さらに、外部電極 4中のガラス成分に酸ィ匕鉛もしくは酸ィ匕ビスマスを含むことが望ま しい。即ち、外部電極 4中のガラス成分に圧電体 1との接合強度が高い酸ィ匕鉛若しく は酸ィ匕ビスマスを含有することにより、外部電極 4と圧電体との接合を強固なものとす ることができる。一方で、外部電極 4中のガラス成分に酸ィ匕鉛若しくは酸ィ匕ビスマスを 含有しな 、場合にぉ 、ては、駆動時に外部電極 4が積層体 10側面力も剥離すると V、つた問題が生じる可能性がある。
[0127] また、コスト面から、内部電極 2として低パラジウム比率の銀-パラジウム合金を用い ることが望ましいが、このためには、 980°C以下程度で焼成可能な圧電体 1を用いる ことが望ましぐこの圧電体 1を構成する材料は、 PbZrO— PbTiOを主成分とし、副
3 3
成分として Pb (Yb Nb ) 0、 Pb (Co Nb ) 0及び Pb (Zn Nb ) 0を 1
1/2 1/2 3 1/3 2/3 3 1/3 2/3 3
0— 20mol%含有させたものが好ましい。即ち、銀 パラジウム合金の状態図から、 パラジウムが 5重量0 /0の銀 パラジウム合金を用いる際には、 980°C以下の温度で焼 成可能な圧電体 1としては、例えば、 PbZrO -PbTiOを主成分とし、副成分として P
3 3
b (Yb Nb ) O、 Pb (Co Nb ) O及び Pb (Zn Nb ) Oを 10 20mol
1/2 1/2 3 1/3 2/3 3 1/3 2/3 3
%含有させたものを用いることができる。
[0128] ここで、ノ ラジウム 5重量%の銀-パラジウム合金を内部電極 2として用いた場合に おいて、 1100°Cの温度で焼成してしまうと、焼成温度が内部電極 2構成する導電材 (銀-パラジウム合金)の融点を超えてしま 、、内部電極 2の導電材が凝集してしま ヽ 、デラミネーシヨンが発生するといつた問題が生じてしまう。即ち、内部電極 2の導電 材に低パラジウム比率の銀-パラジウム合金を用いるためには、圧電体 1の焼成温度 を 980°C以下程度に下げる必要がある。
[0129] 外部電極 4は銀を主成分とする導電材 80— 99. 5重量%と、酸化鉛若しくは酸ィ匕 ビスマスの少なくとも 1種を含むガラス成分 0. 5— 13重量%からなり、該ガラス成分は 実質的に外部電極 4厚みの積層体 10表層側の 80%以下にしか存在していない。ま た、前述の外部電極 4は、積層体 10の側面に露出した内部電極 2の端部とは内部電 極 2中の導電材と外部電極 4中の導電材が拡散接合しており、積層体 10の圧電体 1 の側面とは主に外部電極 4中のガラス成分を介して接合している。
[0130] 次に、本発明の積層型圧電素子からなる積層型圧電ァクチユエータの製法を説明 する。
本製造方法では、実施の形態 2と同様にして、積層体 10を作製して、図 3Aに示す ように、ダイシング装置等により積層体 10の側面に一層おきに凹溝を形成する。
[0131] 次に、外部電極 4を以下のようにして形成する。
まず、粒径 0. 1— 10 /z mの銀粉末を 87— 99. 5重量0 /0と、残部が粒径 0. 1— 10 μ mで酸化鉛若しくは酸化ビスマスの少なくとも 1種以上を含むガラス粉末 0. 5— 13 重量%からなる混合物に、バインダーを加えて下層用銀ガラスペーストを作製する。 さらに、粒径 0. 1— 10 μ mの銀粉末にバインダーを加えて上層用銀ペーストを作製 する。
[0132] そして、離型処理したフィルム上に、 5— 40 μ mの厚みで下層用銀ガラスペースト 2 laをスクリーン印刷し、乾燥後、その上に 5— 40 /z mの厚みで上層用銀ペースト 21b をスクリーン印刷する。さらに乾燥後、離型フィルムよりペーストシート 21を剥離し、こ のペーストシート 21を図 3 (b)に示すように、溝が形成された積層体 10の外部電極 4 形成面に下層用銀ガラスペーストが積層体 10側になるように転写し、下層用銀ガラ スペーストに含まれるガラス成分の軟ィヒ点よりも高い温度、且つ銀の融点以下の温度 で焼き付けを行うことにより、図 3 (c)に示すようにネック部 4bを形成した外部電極 4を 形成することができる。
[0133] なお、内部電極 2導電材中の銀比率を、有効的に外部電極 4に近づくに従い次第 に大きくするためには、外部電極 4の焼き付けパターンを式 1に示す温度の指数関数 Yで表した場合において、 Yを時間(単位分)で積分した値が 1000以上、望ましくは 1800— 4000であること力望まし!/ヽ。
(式 1) Y=exp ( (T+ 273) /273) [Tの単位は。 C]
[0134] このように、 Yを時間(分)で積分した値を 1800— 4000にすることにより、有効的に 内部電極 2導電材中の銀比率を、外部電極 4に近づくにつれ次第に大きくし、また、 外部電極 4と内部電極 2との接合部にネック部 4bを形成し、さら〖こ、外部電極 4の積 層体 10表層側にガラスリッチ層を形成することができる。
[0135] このようにガラス成分を含む下層用銀ガラスペーストとガラス成分を含まな 、上層用 銀ペーストからなるペーストシート 21を下層用銀ガラスペーストが積層体 10側になる ように焼き付けを行うことにより、外部電極 4の積層体 10表層側にガラスリッチ層を設 けることができる。また、前述のペーストシート 21を形成する下層用銀ガラスペースト と上層用銀ペーストの厚みを制御することにより、外部電極 4中のガラス成分を実質 的に外部電極 4厚みの積層体 10表層側の 80%以下に存在させることができる。さら に、前記焼き付けによりネック部 4bが形成され、ネック部 4bでは、内部電極 2の銀- パラジウム合金と外部電極 4の銀が相互拡散するので、内部電極 2から拡散したパラ ジゥムは一般的な分析手法 (例えば、 EPMA、 EDS等)で検出できる。
[0136] なお、外部電極 4の形成方法は、上述の方法に限定されるものではなぐ直接積層 体 10側面の外部電極 4形成面に印刷しても構わない。さらに、上述の方法では、 1回 の焼き付けで外部電極 4を形成したが、下層用銀ガラスペーストを転写若しくは印刷 した後、焼き付けを行い、その後、上層用銀ペーストを転写若しくは印刷した後、焼き 付けを行って、即ち 2回の焼き付けで外部電極 4を形成しても良 、。
また、外部電極 4の厚みは、圧電体 1の厚みよりも薄いことが望ましい。さらに好まし くは、ァクチユエータ本体である積層体の伸縮に追従するためにも、 50 /z m以下がよ り好ましい。
[0137] 下層用銀ガラスペースト中の銀粉末を 80— 99. 5重量%、残部のガラス粉末を 0.
5— 13重量%としたのは、銀粉末が 80重量%より少ない場合には、外部電極 4の比 抵抗が大きくなつてしまい、大電流を流して高速で駆動させる場合において、該外部 電極 4で局所発熱を起こす可能性があり、一方で、銀粉末が 99. 5重量%よりも多い 場合には、相対的にガラス成分が少なくなり、外部電極 4と積層体 10との接合強度が 弱くなつてしま 、、駆動中に外部電極 4が積層体 10から剥離してしまうと 、つた問題 が生じる可能性がある。
[0138] また、上層用銀ペーストにはガラス成分は含まれていない。これは、リード線 6を半 田により外部電極 4に接続固定する場合において、ガラス成分が外部電極 4の大気 側表層部分に存在していると、著しく半田の濡れ性が低下し、リード線 6の外部電極 4への接合強度が低下し、駆動中に該リード線 6が外れてしまう恐れがあるからである また、下層用銀ガラスペーストのガラス成分に、酸ィ匕鉛若しくは酸ィ匕ビスマスの少な くとも 1種を含有させることにより、積層体 10との接合強度を向上させることができる。
[0139] 以下、実施の形態 1等と同様にして、実施の形態 2の積層型圧電ァクチユエータは 、製造できる。
すなわち、外部電極 4を形成した積層体 10をシリコーンゴム溶液に浸漬して真空脱 気することにより、積層体 10の溝内部にシリコーンゴムを充填して、シリコーンゴムを 硬化させる。
そして、外部電極 4にリード線 6を接続して、リード線 6を介して一対の外部電極 4に 0. 1一 3kVZmmの直流電圧を印加し、積層体 10を分極処理する。これで、例えば 、エンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する積層型圧電ァ クチユエータが完成する。
[0140] 以上説明した実施の形態 1一 3において、圧電体 1は、例えば、チタン酸ジルコン 酸鉛 Pb (Zr, Ti) 0 (以下 PZTと略す)、或いはチタン酸バリウム BaTiOを主成分と
3 3 する圧電セラミックス材料等で形成されている。この圧電セラミックスは、その圧電特 性を示す圧電歪み定数 d33が高 ヽものが望まし ヽ。
[0141] また、実施の形態 1一 3において、圧電体 1の厚み、つまり内部電極 2間の距離は 5 0— 250 mが望ましい。これにより、積層型圧電ァクチユエータは電圧を印加してよ り大きな変位量を得るために積層数を増加させたとしても、ァクチユエータの小型化、 低背化ができるとともに、圧電体 1の絶縁破壊を防止できる。 [0142] 以上の実施の形態 1一 3において、内部電極 2は空隙を有し、内部電極 2の断面に おける全断面積に対する空隙の占める面積比(以下、空隙率という。)が 5— 70%で あることが好ましい。
このように、空隙を含む内部電極 2を用いて積層型圧電体素子を構成することによ り、耐久性の高い積層型圧電素子が得られる。内部電極 2における空隙率が 5%より 小さいと圧電体の変位に対する拘束力が強くなり、空隙の存在による効果が小さくな る。また、内部電極 2における空隙率が 70%より大きいと、内部電極 2の導電率が小 さくなりかつ強度が低下するので好ましくない。素子の耐久性を高めるためには、内 部電極 2の空隙率は 7— 70%であることがより好ましぐさらに好ましくは内部電極 2 の空隙率を 10— 60%とすることで高い変位量を確保しかつ高い耐久性を得ることが できる。
[0143] ここで、内部電極 2の空隙率とは、上述したように、内部電極 2の断面における全断 面積に対する空隙の占める面積比をいうが、具体的には以下のようにして求めること ができる。
すなわち、積層型圧電体素子を積層方向と平行に切断し、その縦断面に露出した 一内部電極 2における全断面積と空隙が占める空隙占有面積を、例えば、顕微鏡観 察により求める。そして、その面積比力 内部電極 2の空隙率((空隙占有面積 Z全 断面積) X 100)を算出する。
[0144] また、空隙を含む内部電極 2は以下のようにして作製することができる。
まず、内部電極 2を構成する金属粉末として、焼成後に内部電極 2に空隙ができる ように、融点の異なる 2種類以上の材料を用いる。この際、目的に応じて金属材料と して合金を用いることもできる。
そして、内部電極 2を構成する金属粉末中、最も融点が低い金属の融点以上で、 最も融点が高 、金属の融点以下の温度で仮焼する。このような温度で仮焼すると、 内部電極 2を構成する金属粉末中、その融点以上となって溶けた金属又は合金が毛 管現象により、溶けていない金属の隙間に移動し、溶けた金属のあった場所に空隙 が形成される。この方法では、内部電極 2を構成する 2種以上の金属粉末の混合割 合、及び温度を調整することにより、内部電極 2の空隙率を所望の割合に設定できる 尚、内部電極 2の空隙は、例えば、内部電極 2を形成するために用いる導電性べ一 ストを調整する際に金属粉末間にできる僅かな隙間、または導電性ペーストに含まれ るバインダーが焼失した後に生じた隙間等を利用して形成してもよい。
[0145] また、内部電極 2を構成する材料と濡れ性の悪い物質を内部電極用の導電性べ一 ストに添加したり、内部電極用導電性ペーストが印刷される圧電体グリーンシートの 表面に内部電極 2を構成する材料と濡れ性の悪い物質をコートすることで内部電極 2 中に空隙を形成することもできる。ここで、内部電極 2を構成する材料と濡れ性の悪 い材料として、例えば、 BNが挙げられる。
[0146] さらに、本実施の形態 1一 3では、図 4に示すように、外部電極 4の外面に、金属のメ ッシュ若しくはメッシュ状の金属板 7bが埋設された導電性接着剤 7aからなる導電性 補助部材 7を形成してもよい。この場合、外部電極 4の外面に導電性補助部材 7を設 けることによりァクチユエ一タに大電流を投入し、高速で駆動させる場合においても、 大電流を導電性補助部材 7に流すことができ、外部電極 4に流れる電流を低減できる 。このことから、外部電極 4が局所発熱を起こし断線することを防ぐことができ、耐久性 を大幅に向上させることができる。さらには、導電性接着剤 7a中に金属のメッシュ若 しくはメッシュ状の金属板 7bを埋設すると、導電性接着剤 7aにクラックが生じるのを 防ぐことができる。
また、外部電極 4の外面にメッシュ若しくはメッシュ状の金属板を使用しな ヽ場合に は、積層体 10の伸縮による応力が外部電極 4に直接作用することにより、駆動中の 疲労によって外部電極 4が積層体 10の側面力も剥離しやすくなる可能性がある。
[0147] 金属のメッシュとは金属線を編み込んだものであり、メッシュ状の金属板とは、金属 板に孔を形成してメッシュ状にしたものを 、う。
[0148] ここで、導電性接着剤が導電性粒子を分散させたポリイミド榭脂からなることが望ま しい。これは、ポリイミド榭脂を使用することにより、積層体 10を高温下で駆動させる 際にも、比較的高い耐熱性を有するポリイミド榭脂を使用することによって、導電性接 着剤が高 ヽ接着強度を維持しやす ヽ。
また、前記導電性補助部材 7を構成する導電性接着剤 7aは比抵抗の低 ヽ銀粉末 を分散させたポリイミド榭脂からなることがさらに望ましい。これは、導電性粒子に比較 的抵抗値の低い銀粉末を使用することによって、導電性接着剤における局所発熱を 抑制しやすいからである。
さらに、前記導電性粒子はフレーク状や針状などの非球形の粒子であることが望ま しい。これは、導電性粒子の形状をフレーク状や針状などの非球形の粒子とすること により、該導電性粒子間の絡み合いを強固にすることができ、該導電性接着剤 7aの せん断強度をより高めることができるためである。
[0149] 実施の形態 4.
図 5は、本発明に係る実施の形態 4の噴射装置を示すもので、本発明に係る圧電 ァクチユエータを使用して構成されて 、る。図 5にお 、て符号 31は収納容器を示して いる。この収納容器 31の一端には噴射孔 33が設けられ、また収納容器 31内には、 噴射孔 33を開閉することができる-一ドルバルブ 35が収容されている。
[0150] 噴射孔 33には燃料通路 37が連通可能に設けられ、この燃料通路 37は外部の燃 料供給源に連結され、燃料通路 37に常時一定の高圧で燃料が供給されている。従 つて、ニードルバルブ 35が噴射孔 33を開放すると、燃料通路 37に供給されていた 燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されて いる。
[0151] また、ニードルバルブ 35の上端部は直径が大きくなつており、収納容器 31に形成 されたシリンダ 39と摺動可能なピストン 41となっている。そして、収納容器 31内には 、上記した圧電ァクチユエータ 43が収納されている。
ここで、圧電ァクチユエータ 43は、本発明に係る圧電ァクチユエータである。
[0152] このような噴射装置では、圧電ァクチユエータ 43が電圧を印加されて伸長すると、 ピストン 41が押圧され、ニードルバルブ 35が噴射孔 33を閉塞し、燃料の供給が停止 される。また、電圧の印加が停止されると圧電ァクチユエータ 43が収縮し、皿パネ 45 がピストン 41を押し返し、噴射孔 33が燃料通路 37と連通して燃料の噴射が行われる ようになっている。
このような噴射装置では、実施の形態 1一 3で説明したように、積層型圧電素子に おいて外部電極と内部電極との断線を抑制でき、耐久性を大幅に向上できるため、 噴射装置の耐久性をも向上できる。
実施例 1
[0153] 実施例 1では、図 1の積層型圧電素子を以下のように構成した。異なる内部電極材 料組成からなる積層型圧電素子を用いて、種々の変位特性を有する積層型圧電素 子の耐久特性を調べた。
まず、柱状積層体を作製した。圧電体は厚み 150 mのチタン酸ジルコン酸鉛 (Pb ZrO PbTiO )、で形成し、内部電極は厚み 3 mにて形成し、圧電体及び内部電
3 3
極の各々の積層数は 300層とした。なお、焼成温度は 1000°Cとした。
[0154] その後、ダイシング装置により柱状積層体の側面の内部電極の端部に一層おきに 深さ 50 μ m、幅 50 μ mの溝を形成した。
次に、平均粒径 2 mのフレーク状の銀粉末を 90体積%と、残部が平均粒径 2 mのケィ素を主成分とする軟ィ匕点が 640°Cの非晶質のガラス粉末 10体積%との混合 物に、バインダーを銀粉末とガラス粉末の合計重量 100質量部に対して 8質量部添 加し、十分に混合して銀ガラス導電性ペーストを作製した。このようにして作製した銀 ガラス導電性ペーストを離型フィルム上にスクリーン印刷によって形成し、乾燥後、離 型フィルムより剥がして、銀ガラス導電性ペーストのシートを得た。このシートの生密 度をアルキメデス法にて測定したところ、 6. 5gZcm3であった。
[0155] 次に、前記銀ガラスペーストのシートを柱状積層体の外部電極面に転写し、 650°C で 30分焼き付けを行い、 3次元網目構造をなす多孔質導電体からなる外部電極を 形成した。なお、この時の外部電極の空隙率は、外部電極の断面写真を画像解析装 置を用いて測定したところ 40%であった。
その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介し て 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 1に示すような積層 型圧電素子を作製した。
[0156] 得られた積層型圧電素子に 170Vの直流電圧を印加した結果、積層方向に 45 mの変位量が得られた。さらに、この積層型圧電素子に室温で 0— + 170Vの交流 電圧を 150Hzの周波数にて印加し駆動試験を行った。
内部電極金属組成を変えて、積層型圧電素子が、駆動回数 1 X 109回に達した時 の積層型圧電素子変位量をそれぞれ測定して、連続駆動を開始する前の積層型圧 電素子初期状態の変位量と比較して、変位量の変化率と積層型圧電素子の劣化の 度合いを算出した。結果は表 1に示すとおりである。
[0157] 表 1
表 1—1
Figure imgf000043_0001
ここで、表 1—1における、 Pd, Pt, Ag, Cuと表示した欄は、内部電極の金属成分 中における Pd, Pt, Ag, Cuの含有量を示している。
[0158] 表 1 2 N o 1 X 1 0 9駆動後の変位量の変化率 (%)
* 1 マイ グレーショ ンで破壊
2 0 . 7
3 0 . 7
4 0 . 4
5 0 . 2
6 0 . 2
7 0
8 0
9 0
1 0 0
1 1 0 . 2
1 2 0 . 2
1 3 0 . 4
1 4 0 . 7
1 5 0 . 2
* 1 6 0 . 9
* 1 7 0 . 9
* 1 8 0 . 9 表 1—1, 1—2より、内部電極を銀 100%にした場合 (No. 1)は、シルバーマイダレ ーシヨンにより積層型圧電素子は破損して連続駆動が不可能となるが、内部電極中 の金属組成物が VIII族金属(Pd、 Pt)の含有量を Ml (重量%)、 lb族金属 (Ag、 Cu )の含有量を M2 (重量0 /0)としたとき、 0く Ml≤15、 85≤M2く 100、 Ml + M2= l 00を満足する金属組成物 (No. 2— 15)を主成分とすることで、装置が誤作動するこ となぐ耐久性に優れた高信頼性の圧電ァクチユエータを提供することができた。特 に積層型圧電素子の耐久性を向上させるという点では、 Mlは、 0. 1重量%以上 10 以下 (No. 4— 13)が好ましい結果となり、より高い耐久性を必要とする場合は 0. 5以 上 9. 5以下 (No. 5— 12)がより好ましい。また、さらに高い耐久性を求める場合は 2 %以上 8以下 (No. 7— 10)がさらに好ましい結果が得られた。同様に、特に積層型 圧電素子の耐久性を向上させるという点では、 M2は、 90以上 99. 9以下が好ましい 結果となり、より高い耐久性を必要とする場合は 90. 5以上 99. 5以下がより好ましい 。また、さらに高い耐久性を求める場合は 92以上 98以下がさらに好ましい結果が得 られた。 実施例 2
[0160] 実施例 2として、実施例 1で作製した素子(素子 No. 15を除く)について、外部電極 間に直流電圧 10Vを印加して素子抵抗を測定した。その結果を、表 2に示す。尚、 素子抵抗を測定するために印加する電圧は、 1一 100Vの間の任意の電圧で測定が 可能である。
[0161] 表 2
Figure imgf000045_0001
表 2における規格ィ匕した素子抵抗は、銀 100%で内部電極を形成したときの素子 抵抗を基準にして( 1として)規格化した。
[0162] 同表より、素子抵抗 pを p Ag< p < p Pdとすることで、連続駆動させても、内部電 極部の発熱を抑制することができ、圧電ァクチユエータ変位量を安定ィ匕することがで きるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供することができた。 実施例 3
[0163] 実施例 3として、実施例 1の試料 (素子 No. 15を除く)について、内部電極導電率 を評価した。その結果を表 3に示す。
[0164] 表 3 N o 内部電極導電率 規格化した
( S · c m— 1 ) 内部電極導電率
* 1 6 0 0 0 0 0 1 . 0 0
2 4 7 5 0 0 0 0 . 7 6
3 4 5 5 0 0 0 0 . 7 6
4 4 1 5 0 0 0 0 . 6 9
5 3 6 0 0 0 0 0 . 6 0
6 2 9 0 0 0 0 0 . 4 8
7 2 5 0 0 0 0 0 . 4 2
8 1 7 0 0 0 0 0 . 2 8
9 1 4 0 0 0 0 0 . 2 4
1 0 1 0 0 0 0 0 0 . 1 7
1 1 9 0 0 0 0 0 . 1 5
1 2 8 6 0 0 0 0 . 1 4
1 3 8 3 5 0 0 0 . 1 4
1 4 6 2 5 0 0 0 . 1 0
* 1 6 5 0 0 0 0 0 . 0 8
* 1 7 3 1 0 0 0 0 . 0 5
* 1 8 6 1 0 0 0 0 . 1 0
[0165] 同表より、内部電極導電率 σを σ Pd< σ < σ Agとすることで、連続駆動させても、 内部電極部の発熱を抑制することができ、圧電ァクチユエータ変位量を安定ィ匕するこ とができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供することがで きた。
実施例 4
[0166] 実施例 4として、実施例 1の試料 (素子 No. 15を除く)について、内部電極における 粒径を評価した。その結果を表 4に示す。
尚、表 4〖こは、内部電極において粒径が: m以上のものの割合を示した。
[0167] 表 4 N o 内部電極における粒径 1
μ m以上の粒子の体積%
* 1 7 0
2 8 0
3 8 0
4 8 5
5 9 0
6 9 0
7 9 5
8 9 5
9 9 5
1 0 9 5
1 1 9 0
1 2 9 0
1 3 8 5
1 4 8 0
* 1 6 7 0
* 1 7 7 0
氺 1 8 7 0
[0168] 同表より、前記内部電極を構成する金属組成物成分力 なる結晶粒子の最大径が 1 μ m以上であるものが 80体積%以上存在することで、連続駆動させても、内部電極 部の発熱を抑制することができ、圧電ァクチユエータ変位量を安定ィ匕することができ るので、耐久性に優れた高信頼性の圧電ァクチユエータを提供することができた。 なお、本発明は、上記実施例に限定されるものではなぐ本発明の要旨を逸脱しな V、範囲内で種々の変更を行うことは何等差し支えな!/、。
実施例 5
[0169] 実施例 5として、本発明の積層型圧電素子を以下のようにして作製した。
先ず、 PZTを主成分とする圧電セラミックスの仮焼粉末、バインダー、及び可塑剤 を混合したスラリーを作製し、ドクターブレード法で厚み 150 mの圧電体 1になるセ ラミックグリーンシートを作製した。
このグリーンシートの片面に、銀の重量比率 X(%)力 ¾5— 95重量%になるようにパ ラジウムを混合させた銀-パラジウム合金にバインダーを加えた導電性ペーストをスク リーン印刷法により 3 m厚みで形成し、前記セラミックグリーンシートを 300枚積層し
、 980— 1100°Cで焼成して図 1の積層体 10を得た。 [0170] 次に、図 3Aに示すように、ダイシング装置により積層体 10側面の内部電極 2の端 部に一層おきに深さ 50 μ m、幅 50 μ mの溝を形成した。
次に、平均粒径 2 mのフレーク状の銀粉末を銀の重量比率 Y(%)が 84— 97重 量%になるように平均粒径 2 mのケィ素を主成分とする軟ィ匕点が 640°Cの非晶質 のガラス粉末を混合させ、さらに、銀粉末とガラス粉末の合計重量 100重量部に対し て 8重量部のバインダーを添加し、混合して銀ガラス導電性ペーストを作製した。この ように作製した銀ガラスペーストを離型フィルム上にスクリーン印刷によって形成し、 乾燥後、離型フィルムより剥がして、銀ガラス導電性ペーストのシートを得た後に、前 記銀ガラス導電ペーストのシートを積層体 10の対向する一対の側面に転写し、 650 °Cで 30分焼き付けを行い、外部電極 4を形成した。
[0171] また、内部電極 2と外部電極 4の接合部には、内部電極 2中の銀 パラジウム合金と 外部電極 4中の銀ガラス導電性ペースト中の銀が互いに拡散したネック部 4bが形成 されており、このネック部 4bを EPMAにより分析を行ったところ、内部電極 2からパラ ジゥムが拡散して 、ることが確認された。
[0172] また、上記で形成された外部電極 4の空隙率は、外部電極 4の断面写真により空隙 率は 40%であった。さらに、外部電極 4の断面写真により測定したところ、外部電極 4 と積層体 10側面の接合部分は、約 50%であった。また、外部電極 4の圧電体側表 層部には銀ガラス導電性ペースト中のガラス成分が偏在したガラスリッチ層が形成さ れていた。
その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介し て 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 1に示すような積層 型圧電ァクチユエータを作製した。
[0173] 上記の製法を用いて作製された本発明の積層型圧電ァクチユエータにおいて、内 部電極 2導電材中の銀重量比率 X(%)と外部電極中の銀重量比率 Y(%)を Χ≥85 の範囲で形成し、 ΧΖΥの値と積層型圧電ァクチユエータの駆動との関連を検証した また、比較例として、上記の Χ/Υの値を ΧΖΥく 0. 9、または ΧΖΥ> 1. 1の範囲 で形成した試料を作製した。 [0174] 上記のようにして得られた積層型圧電ァクチユエータに対して、 185Vの直流電圧 を印加したところ、すべての積層型圧電ァクチユエータにおいて、積層方向に 49 mの変位量が得られた。さらに、これらの積層型圧電ァクチユエータを室温で 0— + 1 85Vの交流電界を 150Hzの周波数で印加して 2 X 108サイクルまで駆動試験を行 つた。結果は表 5に示す通りである。
[0175] 表 5
Figure imgf000049_0001
[0176] この表 5から、比較例である試料番号 22は、 XZYの値が 0. 9未満であったために 、内部電極 2中の銀の量が外部電極 4に対して相対的に少なくなり、また、内部電極 2中の銀の量が少なくなることにより内部電極 2の融点が高くなつたので、内部電極 2 と外部電極 4の間で銀の相互拡散が少なくなり、これによつて、ネック部 4bの強度が 低下したために、積層型圧電ァクチユエータを高速で連続駆動させた場合に、ネック 部 4bが積層体 10の伸縮によって生じる応力で断線し、一部の圧電体 1に電圧が供 給されなくなつたため、駆動サイクルが増加するにつれて積層体 10の変位量が低下 するので、積層型圧電ァクチユエータとしての耐久性が低下した。
[0177] また、比較例である試料番号 23は、 XZYの値が 1. 1を超えたために、外部電極 4 中の銀の量が内部電極 2導電材中の銀の量に対して相対的に少なくなり、内部電極 2と外部電極 4間で銀の相互拡散が少なくなり、これによつて上記と同様に、ネック部 4bが積層体 10の伸縮によって生じる応力で断線し、一部の圧電体 1に電圧が供給 されなくなつたため、駆動サイクルが増加するにつれて積層体 10の変位量が低下す るので、積層型圧電ァクチユエータとしての耐久性が低下した。
[0178] これらに対して、本発明の実施例である試料番号 19一 21では、 X≥85において 0 . 9≤X/Y≤1. 1の範囲内で形成された積層型圧電ァクチユエータであったために 、内部電極 2と外部電極 4間で銀の相互拡散が促進され、内部電極 2と外部電極 4の 接合が強固になったために、 2 X 108サイクル後も 49 /z mの変位量が得られ、また、 2 X 108サイクル後外部電極 4にスパークや断線等の異常が生じることなぐ積層型圧 電ァクチユエータとして優れた耐久性を有した。
実施例 6
[0179] 実施例 6では、銀-パラジウム合金に圧電セラミックスの仮焼粉末を加えた導電性 ペーストで形成された内部電極 2を用いて作製された積層型圧電ァクチユエータに おいて、導電材と圧電材を有する内部電極 2の銀の重量比率を Z (%)として、外部電 極 4中の銀重量比率 Y(%)と内部電極 2中の銀重量比率 Ζ (%)で積層型ァクチユエ ータを形成し、 ΖΖΥの値と積層型圧電ァクチユエータの駆動との関連を検証した。 製造方法は、実施例 5と同様である。
[0180] 上記のようにして得られた積層型圧電ァクチユエータに対して、 185Vの直流電圧 を印加したところ、すべての試料において積層方向に 49 mの変位量が得られた。 さらに、これらの積層型圧電ァクチユエータに対して、室温で 0— + 185Vの交流電 界を 150Hzの周波数で印加して 5 X 108サイクルまで駆動試験を行った。結果は表 6に示す通りである。
[0181] 表 6
Figure imgf000050_0001
[0182] この表 6から、試料番号 27は ΖΖΥの値が 1. 0よりも大きいため、内部電極 2中の圧 電材が少なくなり、内部電極 2と圧電体 1の界面の密着強度が弱くなるので、駆動中 に内部電極 2と圧電体 1の一部で剥離が生じ、一部の圧電体 1に電圧を供給できなく なり、変位量が低下した。
また、試料番号 28は ΖΖΥの値が 0. 7より小さいために、内部電極 2中の銀の量が 少なくなり、外部電極 4と比較して内部電極 2の抵抗値が高くなるので、高周波数で 連続駆動させた場合にその高い抵抗値による電圧降下により圧電体 1に十分な電圧 を供給できなくなり、変位量が低下した。
これに対して、試料番号 24— 26では、 5 X 108サイクル後も 49 μ mの変位量が得 られ、内部電極 2と外部電極 4との接点部の断線等の異常は生じな力つた。
実施例 7
[0183] 本発明の積層型圧電素子からなる積層型圧電ァクチユエータを以下のようにして 作製した。
先ず、実施例 5と同様にして、図 1の積層体 10を作製し、図 3Aに示すように、ダイ シング装置により積層体 10側面の内部電極 2の端部に一層おきに深さ 50 m、幅 5 O /z mの溝を形成した。
[0184] 次に、平均粒径 2 mの銀粉末を 80— 99. 5重量%に、酸ィ匕鉛若しくは酸ィ匕ビスマ スの少なくとも 1種を含む平均粒径 2 mのガラス粉末を混合させ、さらに、バインダ 一を添加して、下層用銀ガラスペーストを作製した。同様に、平均粒径 2 mの銀粉 末にバインダーを添加して上層用銀ガラスペーストを作製した。
[0185] 次に、離型フィルム上に下層用銀ガラスペーストをスクリーン印刷により 5— 40 μ m の厚みで印刷を行い、乾燥後、その上に上層用銀ガラスペーストをスクリーン印刷に より 5— 40 mの厚みで印刷を行った。前記ペーストを乾燥した後、離型フィルムより 剥がして、ペーストシートを得た。その後、前記ペーストシートを積層体 10側面の対 向する一対の側面に下層用銀ガラスペーストが積層体 10表層側になるよう転写紙、 800°Cで 30分焼き付けを行い、外部電極 4を形成した。なお、このときの、式 1の Yを 時間(分)で積分した値は、 3240であった。
[0186] 内部電極 2を図 2Bに示す線 Xに沿って EPMAにより元素の定量分析を行ったとこ ろ、外部電極 4への接続部 50 m手前力も外部電極 4への接続部に向けて、図 5に 示すように内部電極 2導電材中の銀比率が徐々に増加して 、た。
また、内部電極 2と外部電極 4の接合部には、内部電極 2中の銀 パラジウム合金と 外部電極 4中の銀が互いに拡散したネック部 4bが形成されており、このネック部 4bを EPMAにより分析を行ったところ、内部電極 2からパラジウムが拡散して 、ることが確 f*i¾ れ 。
[0187] また、外部電極 4の圧電体側表層部にはガラス成分が偏在したガラスリッチ層が形 成されていた。さらに、外部電極 4に含まれるガラス成分は実質的に積層体 10表層 側の 60%以下に存在して 、た。
その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介し て 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 1に示すような積層 型圧電ァクチユエータを作製した。
実施例 8
[0188] 実施例 8では、外部電極 4を形成する導電性ペーストの種類及びその焼付け温度 を変化させた以外は、実施例 7と同様の製法を用いて数種の積層型圧電ァクチユエ ータを作製した。得られた積層型圧電ァクチユエータに対して、内部電極 2導電材の 外部電極 4との接続部近傍での銀比率の、積層体 10内部での銀比率に対する比を 調べた。上記のようにして得られた積層型圧電ァクチユエータに対して、 185Vの直 流電圧を印加したところ、すべての積層型圧電ァクチユエータにおいて、積層方向に 49 μ mの変位が得られた。さらに、これらの積層型圧電ァクチユエータを室温で 0— + 185Vの交流電界を 150Hzの周波数で印加して 2 X 108サイクルまで駆動試験を 行った。結果は表 7に示す通りである。
[0189] 表 7
Figure imgf000052_0001
[0190] この表 7から、比較例である試料番号 31は、内部電極 2導電材の外部電極 4との接 続部近傍での銀比率の、積層体 10内部での銀比率に対する比が 1より大きくないた めに、即ち、外部電極 4との接続部近傍での内部電極 2導電材中の銀比率が、積層 体 10内部での内部電極 2導電材中の銀比率に比べて大きくなつていないため、内 部電極 2と外部電極 4との接点部分の接合強度が弱 、ために、駆動中に一部の内部 電極 2と外部電極 4の接点部分が剥離し、一部の圧電体 1に電圧が供給されなくなり 、変特性が低下してしまっている。 [0191] これに対して、本発明の実施例である試料番号 29及び 30は、外部電極 4との接続 部近傍での内部電極 2導電材中の銀比率が、積層体 10内部での内部電極 2導電材 中の銀比率に比べて大きいため、内部電極 2と外部電極 4との接合強度が高ぐ 2 X 108サイクル後も 49 μ mの変位量が得られ、また、 2 X 108サイクル後外部電極 4にス パークや断線等の異常が生じることなく、積層型圧電ァクチユエータとして優れた耐 久性を有した。
実施例 9
[0192] 実施例 9では、外部電極 4を形成する導電性ペーストの種類及びその焼付け温度 を変化させて、さらに数種の積層型圧電ァクチユエータを作製した。試料番号 16は 外部電極 4の積層体 10表層部にガラスリッチ層がないもの、試料番号 17は外部電 極 4の厚みの積層体表層側の 95%までガラス成分が存在して ヽるものである。得ら れた積層型圧電ァクチユエータに対して、 185Vの直流電圧を印加したところ、すべ ての試料において積層方向に 49 mの変位量が得られた。さらに、これらの積層型 圧電ァクチユエータに対して、室温で 0— + 185Vの交流電界を 150Hzの周波数で 印加して 5 X 108サイクルまで駆動試験を行った。結果は表 8に示す通りである。
[0193] 表 8
Figure imgf000053_0001
[0194] この表 8から、試料番号 34は、外部電極 4の積層体 10表層部にガラスリッチ層が存 在しないために、外部電極 4の積層体 10に対する接合強度が弱ぐ駆動中に外部電 極 4が積層体 10から剥離してしまい、一部の圧電体 1に電圧が供給されなくなり、変 位特性が低下してしまっている。また、試料番号 35は、外部電極 4厚みの積層体 10 表層側の 95%までガラス成分が存在しているため、リード線 6を接続固定している半 田の外部電極 4に対する接合強度が弱ぐ駆動中にリード線 6が脱落してしまってい る。 これに対して、試料番号 32及び 33では、 5 X 108サイクル後も 49 μ mの変位量が 得られ、内部電極 2と外部電極 4との接点部の断線等の異常は生じな力つた。
産業上の利用可能性
本発明の積層型圧電素子は、圧電トランスに利用できる。また、本発明の積層型圧 電素子は、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止 用の駆動素子等に用いられる積層型圧電ァクチユエータに利用できる。さらに、本発 明の積層型圧電素子を用いることにより、自動車用燃料やインクジェットプリンタのィ ンク等の噴射装置に利用できる。

Claims

請求の範囲
[1] 圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第 1の側面 と第 2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の 内部電極は前記第 1の側面で前記外部電極に接続され、他方の内部電極は前記第 2の側面で前記外部電極に接続された積層型圧電素子において、
前記内部電極中の金属組成物が周期律表 VIII族金属および lb族金属を主成分と しており、
その VIII族金属および lb族金属の含有量は、前記 VIII族金属の含有量を Ml (重 量0 /0)、 lb族金属の含有量を M2 (重量0 /0)としたとき、 0< M1≤15、 85≤M2< 100 、M1 + M2= 100を満足するように設定されたことを特徴とする積層型圧電素子。
[2] 前記 VIII族金属が Ni、 Pt、 Pd、 Rh、 Ir、 Ru、 Osのうち少なくとも 1種以上であり、 lb 族金属が Cu, Ag、 Auのうち少なくとも 1種以上であることを特徴とする請求項 1記載 の積層型圧電素子。
[3] 前記 VIII族金属が Pt、 Pdのうち少なくとも 1種以上であり、 lb族金属が Ag、 Auのうち 少なくとも 1種以上であることを特徴とする請求項 2に記載の積層型圧電素子。
[4] 前記 lb族金属が Cuであることを特徴とする請求項 2に記載の積層型圧電素子
[5] 圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第 1の側面 と第 2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の 内部電極は前記第 1の側面で前記外部電極に接続され、他方の内部電極は前記第 2の側面で前記外部電極に接続された積層型圧電素子において、
前記内部電極の抵抗が、前記内部電極中の金属組成物成分が全て銀からなるとし たときの素子抵抗 Agより大きぐ金属組成物成分が全てパラジウム力 なるとしたと きの素子抵抗 Pdより小さいことを特徴とする積層型圧電素子。
[6] 前記内部電極の抵抗が、前記内部電極中の金属組成物成分が全て銀からなるとし たときの内部電極の導電率 σ Agより小さぐ金属組成物成分が全てパラジウム力もな るとしたときの内部電極導電率 σ Pdより大き ヽことを特徴とする請求項 1一 5のうちの いずれか 1つに記載の積層型圧電素子。
[7] 前記内部電極を構成する金属組成物成分力 なる結晶粒子の最大径が 1 μ m以上 であるものが金属組成物の 80体積%以上存在することを特徴とする請求項 1一 6のう ちのいずれか 1つに記載の積層型圧電素子。
[8] 前記内部電極中に金属組成物とともに無機組成物を添加したことを特徴とする請求 項 1一 7のうちのいずれか 1つに記載の積層型圧電素子。
[9] 前記無機組成物が PbZrO— PbTiOからなるぺロブスカイト型酸化物を主成分とし
3 3
たことを特徴とする請求項 8記載の積層型圧電素子。
[10] 前記圧電体がぺロブスカイト型酸化物を主成分としたことを特徴とする請求項 1一 9 のうちのいずれか 1つに記載の積層型圧電素子。
[11] 前記圧電体が PbZrO -PbTiOからなるぺロブスカイト型酸化物を主成分としたこと
3 3
を特徴とする請求項 10記載の積層型圧電素子。
[12] 前記積層体の焼成温度が 900°C以上 1000°C以下であることを特徴とする請求項 1 一 11のうちのいずれか 1つに記載の積層型圧電素子
[13] 前記内部電極中の糸且成のずれが焼成前後で 5%以下であることを特徴とする請求項
1一 12のうちのいずれか 1つに記載の積層型圧電素子
[14] 前記外部電極が銀を主成分とする導電材とガラス力 なり、
前記内部電極における、導電材全体に対する銀重量比率を X(%)とし、 前記外部電極における、導電材とガラスの総重量に対する銀の重量比率を Y(%) としたとき、 Χ≥85でかつ 0. 9≤Χ/Υ≤1. 1を満足するように、前記内部電極と前 記外部電極の銀比率が設定されていることを特徴とする請求項 3又は 5に記載の積 層型圧電素子。
[15] 前記内部電極は圧電材を含み、前記内部電極における前記圧電材を含む総重量に 対する銀重量比率を Ζ (%)とするとき、 0. 7≤Ζ/Υ≤1. 0を満たすことを特徴とする 請求項 14記載の積層型圧電素子。
[16] 前記外部電極が 3次元網目構造をなす多孔質導電体からなることを特徴とする請求 項 14又は 15のうちのいずれ力 1つに記載の積層型圧電素子。
[17] 前記外部電極の空隙率が 30— 70体積%であることを特徴とする請求項 14乃至 16 のうちのいずれか 1つに記載の積層型圧電素子
[18] 前記外部電極に用いるガラスの軟ィ匕点 (°C)力 前記内部電極を構成する導電材の 融点 (°C)の 4Z5以下であることを特徴とする請求項 14乃至 17のうちのいずれか 1 つに記載の積層型圧電素子。
[19] 前記外部電極を構成するガラスが非晶質であることを特徴とする請求項 18記載の積 層型圧電素子。
[20] 前記外部電極の厚みが前記積層体を構成する圧電体の厚みよりも薄!ヽことを特徴と する請求項 14乃至 19のうちのいずれか 1つに記載の積層型圧電素子。
[21] 前記内部電極が銀を主成分としパラジウム若しくは白金の少なくとも 1種含む導電材 からなり、また前記外部電極が銀を主成分とする導電材とガラス成分からなり、上記 外部電極との接続部近傍の内部電極導電材の銀比率が、積層体内部の内部電極 導電材の銀比率よりも大きいことを特徴とする請求項 1一 20のうちのいずれか 1つに 記載の積層型圧電素子。
[22] 前記内部電極導電材中の銀の比率が、外部電極に近づくに従い次第に大きくなるこ とを特徴とする請求項 21記載の積層型圧電素子。
[23] 上記内部電極導電材中の銀比率が 85重量%以上であることを特徴とする請求項 21 又は 22に記載の積層型圧電素子。
[24] 外部電極中のガラス成分力 実質的に外部電極の厚みの積層体表層側の 80%以 下の範囲に存在していることを特徴とする請求項 21乃至 23のうちのいずれか 1つに 記載の積層型圧電素子。
[25] 外部電極中のガラス成分に酸ィ匕鉛もしくは酸ィ匕ビスマスを含むことを特徴とする請求 項 21乃至 24のうちのいずれか 1つに記載の積層型圧電素子。
[26] 前記外部電極と前記内部電極との接合部において、前記内部電極の導電材成分が 前記外部電極に拡散してネック部を形成していることを特徴とする請求項 1一 25のう ちのいずれか 1つに記載の積層型圧電素子。
[27] 前記外部電極の圧電体側表層部にガラスリッチ層が形成されていることを特徴とする 請求項 1一 26のうちのいずれか 1つに記載の積層型圧電素子。
[28] 前記内部電極は空隙を含み、前記内部電極の断面における全断面積に対する空隙 の占める面積比が 5— 70%である請求項 1一 27のうちのいずれ力 1つに記載の積層 型圧電素子。
[29] 前記第 1の側面において、前記他方の内部電極の端部と前記外部電極との間に溝 が形成されてその溝に絶縁体が設けられ、前記第 2の側面において、前記一方の内 部電極の端部と前記外部電極との間に溝が形成されてその溝に絶縁体が設けられ、 前記絶縁体は前記圧電体よりもヤング率が低いことを特徴とする請求項 1一 28のうち のいずれか 1つに記載の積層型圧電素子。
[30] 前記外部電極の外面に、金属のメッシュ若しくはメッシュ状の金属板が埋設された導 電性接着剤からなる導電性補助部材が設けられていることを特徴とする請求項 1一 2 9のうちいずれか 1つに記載の積層型圧電素子
[31] 前記導電性接着剤が導電性粒子を分散させたポリイミド榭脂からなることを特徴とす る請求項 30記載の積層型圧電素子。
[32] 前記導電性粒子が銀粉末であることを特徴とする請求項 31記載の積層型圧電素子
PCT/JP2004/013844 2003-09-24 2004-09-22 積層型圧電素子 WO2005029603A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/573,331 US7633214B2 (en) 2003-09-24 2004-09-22 Multi-layer piezoelectric element
EP04788027.3A EP1677370B1 (en) 2003-09-24 2004-09-22 Multilayer piezoelectric device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-332020 2003-09-24
JP2003332020A JP4808915B2 (ja) 2003-09-24 2003-09-24 積層型圧電素子及び噴射装置
JP2003385370A JP2005150369A (ja) 2003-11-14 2003-11-14 積層型圧電素子およびこれを用いた噴射装置
JP2003-385370 2003-11-14
JP2003421146A JP4593911B2 (ja) 2003-12-18 2003-12-18 積層型圧電素子及び噴射装置
JP2003-421146 2003-12-18

Publications (1)

Publication Number Publication Date
WO2005029603A1 true WO2005029603A1 (ja) 2005-03-31

Family

ID=34381784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013844 WO2005029603A1 (ja) 2003-09-24 2004-09-22 積層型圧電素子

Country Status (3)

Country Link
US (1) US7633214B2 (ja)
EP (2) EP1677370B1 (ja)
WO (1) WO2005029603A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011293A1 (de) * 2006-03-10 2007-09-13 Siemens Ag Piezoaktor und Verfahren zum Herstellen eines Piezoaktors
EP1942533A1 (en) * 2005-10-28 2008-07-09 Kyocera Corporation Layered piezoelectric element and injection device using the same
US8125124B2 (en) * 2004-03-09 2012-02-28 Kyocera Corporation Multi-layer piezoelectric element and method for manufacturing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027519D1 (de) * 2003-09-24 2010-07-15 Kyocera Corp Mehrschichtiges piezoelektrisches bauelement
DE102004038103A1 (de) * 2004-08-05 2006-02-23 Epcos Ag Vielschichtbauelement und Verfahren zu dessen Herstellung
WO2006135013A1 (ja) * 2005-06-15 2006-12-21 Kyocera Corporation 積層型圧電素子およびこれを用いた噴射装置
US20100237747A1 (en) * 2005-12-19 2010-09-23 Physical Logic Ag Piezoelectric Composite Material
EP1895605A1 (en) * 2006-08-31 2008-03-05 Siemens Aktiengesellschaft Piezoceramic multilayer actuator
WO2008068975A1 (ja) * 2006-12-06 2008-06-12 Murata Manufacturing Co., Ltd. 積層型圧電素子及びその製造方法
KR20100138931A (ko) * 2008-03-21 2010-12-31 엔지케이 인슐레이터 엘티디 압전/전왜 소자 및 그 제조 방법
DE102008062021A1 (de) 2008-08-18 2010-03-04 Epcos Ag Piezoaktor in Vielschichtbauweise
JP5518090B2 (ja) * 2009-10-28 2014-06-11 京セラ株式会社 積層型圧電素子およびそれを用いた噴射装置ならびに燃料噴射システム
DE102010005403A1 (de) * 2010-01-22 2011-07-28 Epcos Ag, 81669 Verfahren zur Herstellung eines piezoelektrischen Vielschichtbauelements und piezoelektrisches Vielschichtbauelement
DE102010001249A1 (de) * 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Piezoaktor mit einem Mehrlagenaufbau von Piezolagen
US7982371B1 (en) * 2010-03-05 2011-07-19 Indian Institute Of Science Polymer metal composite membranes
WO2012115230A1 (ja) * 2011-02-24 2012-08-30 京セラ株式会社 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JPWO2013031727A1 (ja) * 2011-08-30 2015-03-23 京セラ株式会社 積層型圧電素子およびこれを備えた圧電アクチュエータ、噴射装置ならびに燃料噴射システム
JP5539430B2 (ja) * 2012-03-22 2014-07-02 富士フイルム株式会社 電子機器の製造方法
WO2014069452A1 (ja) * 2012-10-29 2014-05-08 京セラ株式会社 積層型圧電素子およびこれを備えた圧電アクチュエータ、噴射装置ならびに燃料噴射システム
TWI624969B (zh) 2015-10-09 2018-05-21 Ngk Spark Plug Co Ltd Piezoelectric element, piezoelectric actuator and piezoelectric transformer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099522U (ja) 1983-12-13 1985-07-06 株式会社村田製作所 積層型コンデンサ
JPS61133715A (ja) 1984-12-03 1986-06-21 Murata Mfg Co Ltd 周波数調整可能な圧電素子
JPH01130568U (ja) 1988-03-02 1989-09-05
JP2000077733A (ja) * 1998-08-27 2000-03-14 Hitachi Ltd 積層型圧電素子
WO2001093345A1 (en) 2000-05-26 2001-12-06 Ceramtec Ag Internal electrode material for piezoceramic multilayer actuators
JP2001342062A (ja) * 2000-05-31 2001-12-11 Kyocera Corp 圧電磁器及び積層圧電素子並びに噴射装置
US20020150508A1 (en) 2000-12-28 2002-10-17 Toshiatsu Nagaya Integrally fired, laminated electromechanical transducing element

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099522A (ja) 1983-11-04 1985-06-03 Mitsubishi Electric Corp 放電加工装置
JP2666388B2 (ja) * 1988-07-11 1997-10-22 株式会社村田製作所 積層セラミックコンデンサ
US5163209A (en) * 1989-04-26 1992-11-17 Hitachi, Ltd. Method of manufacturing a stack-type piezoelectric element
JPH0529680A (ja) * 1991-07-25 1993-02-05 Hitachi Metals Ltd 積層型変位素子およびその製造方法
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
DE19648545B4 (de) * 1996-11-25 2009-05-07 Ceramtec Ag Monolithischer Vielschichtaktor mit Außenelektroden
US20040167508A1 (en) * 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US20100042093A9 (en) * 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
DE19928190A1 (de) * 1999-06-19 2001-01-11 Bosch Gmbh Robert Piezoaktor
JP4423707B2 (ja) * 1999-07-22 2010-03-03 Tdk株式会社 積層セラミック電子部品の製造方法
US6414417B1 (en) * 1999-08-31 2002-07-02 Kyocera Corporation Laminated piezoelectric actuator
DE10006352A1 (de) * 2000-02-12 2001-08-30 Bosch Gmbh Robert Piezoelektrischer Keramikkörper mit silberhaltigen Innenelektroden
JP2001307947A (ja) * 2000-04-25 2001-11-02 Tdk Corp 積層チップ部品及びその製造方法
JP2002054526A (ja) * 2000-05-31 2002-02-20 Denso Corp インジェクタ用圧電体素子
JP2002203998A (ja) * 2000-12-28 2002-07-19 Denso Corp 圧電体素子及びその製造方法
JP3964184B2 (ja) * 2000-12-28 2007-08-22 株式会社デンソー 積層型圧電アクチュエータ
US6700306B2 (en) * 2001-02-27 2004-03-02 Kyocera Corporation Laminated piezo-electric device
JP3860746B2 (ja) 2001-12-26 2006-12-20 京セラ株式会社 積層型圧電素子及び噴射装置
JP2003298134A (ja) * 2002-01-31 2003-10-17 Toyota Motor Corp 積層型圧電アクチュエータ
JP3929858B2 (ja) * 2002-09-04 2007-06-13 京セラ株式会社 積層型圧電素子
JP2004103623A (ja) 2002-09-05 2004-04-02 Nec Tokin Corp インダクタ及びそれを用いた電源
US7255694B2 (en) * 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
JP4480371B2 (ja) * 2003-08-26 2010-06-16 京セラ株式会社 積層型圧電素子及び噴射装置
US7131860B2 (en) * 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) * 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7947039B2 (en) * 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
CA2574934C (en) * 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US20070173802A1 (en) * 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
CA2574935A1 (en) * 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7972328B2 (en) * 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US20070173813A1 (en) * 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US7513896B2 (en) * 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US7651493B2 (en) * 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) * 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) * 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) * 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US20070282320A1 (en) * 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099522U (ja) 1983-12-13 1985-07-06 株式会社村田製作所 積層型コンデンサ
JPS61133715A (ja) 1984-12-03 1986-06-21 Murata Mfg Co Ltd 周波数調整可能な圧電素子
JPH01130568U (ja) 1988-03-02 1989-09-05
JP2000077733A (ja) * 1998-08-27 2000-03-14 Hitachi Ltd 積層型圧電素子
WO2001093345A1 (en) 2000-05-26 2001-12-06 Ceramtec Ag Internal electrode material for piezoceramic multilayer actuators
JP2001342062A (ja) * 2000-05-31 2001-12-11 Kyocera Corp 圧電磁器及び積層圧電素子並びに噴射装置
US20020150508A1 (en) 2000-12-28 2002-10-17 Toshiatsu Nagaya Integrally fired, laminated electromechanical transducing element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1677370A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125124B2 (en) * 2004-03-09 2012-02-28 Kyocera Corporation Multi-layer piezoelectric element and method for manufacturing the same
EP1942533A1 (en) * 2005-10-28 2008-07-09 Kyocera Corporation Layered piezoelectric element and injection device using the same
EP1942533A4 (en) * 2005-10-28 2011-03-02 Kyocera Corp HISTORIZED PIEZOELECTRIC ELEMENT AND INJECTION DEVICE THEREWITH
US8378554B2 (en) 2005-10-28 2013-02-19 Kyocera Corporation Multi-layer piezoelectric element and injection apparatus using the same
DE102006011293A1 (de) * 2006-03-10 2007-09-13 Siemens Ag Piezoaktor und Verfahren zum Herstellen eines Piezoaktors

Also Published As

Publication number Publication date
EP2037511A3 (en) 2009-04-22
EP1677370B1 (en) 2013-12-25
US20070273251A1 (en) 2007-11-29
US7633214B2 (en) 2009-12-15
EP1677370A4 (en) 2008-02-27
EP1677370A1 (en) 2006-07-05
EP2037511A2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
WO2005029603A1 (ja) 積層型圧電素子
US8004155B2 (en) Multi-layer piezoelectric element
WO2005093866A1 (ja) 積層型圧電素子及びその製造方法
EP1930962A1 (en) Layered piezoelectric element and injection device using the same
JP4808915B2 (ja) 積層型圧電素子及び噴射装置
JP2005340540A (ja) 積層型圧電素子及びその製造方法ならびにこれを用いた噴射装置
WO2005041316A1 (ja) 積層型圧電素子
JP5027448B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4480371B2 (ja) 積層型圧電素子及び噴射装置
JP4817610B2 (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP4956054B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2003101092A (ja) 積層型圧電素子及びその製法並びに噴射装置
JP4925563B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4593911B2 (ja) 積層型圧電素子及び噴射装置
JP4868707B2 (ja) 積層型圧電素子および噴射装置
JP2005129871A (ja) 積層型圧電素子及びこれを用いた噴射装置
JP4741197B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4873837B2 (ja) 積層型圧電素子および噴射装置
JP2005217180A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005150369A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2011109119A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005150548A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2011176343A (ja) 積層型圧電素子およびその製造方法
JP2004087729A (ja) 積層型圧電素子及び噴射装置
JP2005159274A (ja) 積層型圧電素子およびこれを用いた噴射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027658.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004788027

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004788027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10573331

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10573331

Country of ref document: US