WO2005041316A1 - 積層型圧電素子 - Google Patents

積層型圧電素子 Download PDF

Info

Publication number
WO2005041316A1
WO2005041316A1 PCT/JP2004/015849 JP2004015849W WO2005041316A1 WO 2005041316 A1 WO2005041316 A1 WO 2005041316A1 JP 2004015849 W JP2004015849 W JP 2004015849W WO 2005041316 A1 WO2005041316 A1 WO 2005041316A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric element
internal electrode
layer
multilayer
Prior art date
Application number
PCT/JP2004/015849
Other languages
English (en)
French (fr)
Inventor
Masaki Terazono
Takeshi Okamura
Katsushi Sakaue
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003366564A external-priority patent/JP2005129871A/ja
Priority claimed from JP2004021948A external-priority patent/JP2005217180A/ja
Priority claimed from JP2004152308A external-priority patent/JP2005159274A/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to DE602004029076T priority Critical patent/DE602004029076D1/de
Priority to US10/577,843 priority patent/US20070080612A1/en
Priority to EP04792970A priority patent/EP1686633B1/en
Publication of WO2005041316A1 publication Critical patent/WO2005041316A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14274Structure of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes

Definitions

  • the present invention relates to a laminated piezoelectric element and an injection device, for example, a fuel injection device for an automobile engine, a liquid injection device such as an inkjet, a precision positioning device such as an optical device, a drive mounted on a vibration prevention device, and the like.
  • a fuel injection device for an automobile engine for example, a liquid injection device such as an inkjet, a precision positioning device such as an optical device, a drive mounted on a vibration prevention device, and the like.
  • Element as well as sensor elements mounted on combustion pressure sensors, knock sensors, acceleration sensors, load sensors, ultrasonic sensors, pressure-sensitive sensors, yorate sensors, etc., as well as piezoelectric gyroscopes, piezoelectric switches, piezoelectric transformers, piezoelectric breakers, etc.
  • the present invention relates to a stacked layer type piezoelectric element used for a mounted circuit element and an injection device.
  • a laminated piezoelectric actuator in which piezoelectric bodies and electrodes are alternately laminated is known.
  • Multilayer piezoelectric actuators are classified into two types: a co-firing type and a stack type in which piezoelectric ceramics and internal electrode plates are alternately stacked.
  • the co-firing type is considered to be low in voltage and reduce manufacturing costs.
  • Piezoelectric actuators are showing advantage.
  • the co-firing type laminated piezoelectric actuator is advantageous in terms of thinning and durability.
  • FIG. 7 is a cross-sectional view showing an example of a conventional laminated piezoelectric actuator.
  • This laminated piezoelectric actuator is composed of a driving laminated section 53 in which piezoelectric bodies 51 and internal electrodes 52 are alternately laminated, and inert protection sections 55 provided on both end faces in the laminating direction.
  • one end of the adjacent two internal electrodes 52 is exposed on the side surface of the driving laminated portion 53 and the other end is covered with the insulator 61 on the side surface.
  • an external electrode 70 is formed on the side surface of the driving laminated portion 53 where the end of the internal electrode 52 is exposed, and the internal electrode 52 whose end is not covered with the insulator 61 is connected to the external electrode.
  • FIG. 8 shows a cross section of another example of the conventional laminated piezoelectric element.
  • the piezoelectric bodies 51 and the internal electrodes 52 are alternately stacked, but the internal electrodes 52a are It is not formed on the entire main surface of the electric body 51, and has a so-called partial electrode structure.
  • the internal electrodes 52 are alternately connected to the external electrodes 54 formed on the side surfaces of the multilayer electronic component alternately.
  • a lead wire (not shown) is further connected and fixed to the external electrode 54 by soldering.
  • the driving multilayer section 63 in which the piezoelectric bodies 51 and the internal electrodes 52 are alternately stacked, and the inactive protection provided at the upper and lower ends in the stacking direction. It consists of part 62.
  • the inert protective portion 62 does not include an electrode layer, but a difference in shrinkage occurs during firing between the driving laminated portion 63 and the inert protective portion 62, causing stress and cracking.
  • an electrode layer similar to that of the drive layer portion 63 is laminated on the inactive protection portion 62 to prevent cracks occurring after firing and cracks occurring during use. (For example, see Patent Document 4)
  • an internal electrode paste serving as an internal electrode is printed on a ceramic green sheet serving as a piezoelectric body in a pattern having a predetermined electrode structure, and the green paste coated with the internal electrode paste is applied. It is manufactured by producing a laminated molded body obtained by laminating a plurality of sheets, baking this, and baking a conductive paste to be an external electrode on the side surface (for example, see Patent Document 1).
  • an alloy of silver and palladium is used for the internal electrode 52.
  • the metal composition of the internal electrode 52 is 70% by weight of silver, It was used at 30% by weight of the film (for example, see Patent Document 2).
  • Patent Document 3 discloses a method of increasing the bonding strength between a piezoelectric body and an internal electrode by mixing ceramic powder into the internal electrode!
  • Patent Document 1 JP-A-61-133715
  • Patent Document 2 Japanese Utility Model Application No. 130568
  • Patent Document 3 JP-A-4-299588
  • Patent Document 4 JP-A-9-270540
  • a multilayer piezoelectric actuator is one in which the porcelain of a piezoelectric body is deformed with energization. That is, the number of times of driving and the number of times of porcelain deformation of the piezoelectric body are the same. Further, in recent years, it has been desired to apply a higher electric field to ensure a large displacement under a large pressure with a small laminated piezoelectric actuator and to continuously drive the piezoelectric actuator for a long time.
  • the present invention provides a multilayer piezoelectric element having excellent reliability and durability, in which the variation in displacement is small even when used under a high electric field and high pressure, and the change in displacement is small even when driven continuously for a long period of time. And an injection device.
  • a first multilayer piezoelectric element includes a multilayer body in which piezoelectric layers and internal electrodes are alternately stacked, and a first multilayer piezoelectric element.
  • An external electrode formed on each of the side surface and the second side surface, one of the adjacent internal electrodes is connected to the external electrode on the first side surface, and the other internal electrode is connected to the second electrode on the second side surface.
  • the laminated piezoelectric element connected to the external electrode on a side surface In the laminated piezoelectric element connected to the external electrode on a side surface,
  • the change rate of the element displacement amount after continuous driving of 1 ⁇ 10 9 or more times to the element displacement amount before continuous driving is within 5%.
  • the first multilayer piezoelectric element of the present invention thus configured does not substantially change its displacement amount even when driven continuously, so that malfunction of the device is eliminated and further, excellent durability without thermal runaway have.
  • the second multilayer piezoelectric element includes a multilayer body in which piezoelectric layers and internal electrodes are alternately stacked, and a first side surface and a second side surface of the multilayer body. And one of the adjacent internal electrodes is connected to the external electrode on the first side surface, and the other internal electrode is connected to the external electrode on the second side surface.
  • the laminated piezoelectric element In the laminated piezoelectric element,
  • the maximum change rate of the element displacement during continuous driving is within 5%. Malfunction can be prevented, and superior durability can be provided without thermal runaway.
  • the dimensional change of the thickness of the piezoelectric layer after continuous driving of 1 ⁇ 10 9 times or more with respect to the thickness of the piezoelectric layer before continuous driving is performed.
  • the conversion is preferably within 5%.
  • the maximum change rate of the element resistance during continuous driving is within 5%.
  • the third multilayer piezoelectric element according to the present invention is formed on a multilayer body in which piezoelectric layers and internal electrodes are alternately stacked, and on the first side face and the second side face of the multilayer body, respectively.
  • One of the adjacent internal electrodes is connected to the external electrode on the first side surface, and the other internal electrode is connected to the external electrode on the second side surface.
  • a pillar penetrating the internal electrode and connecting the piezoelectric layers facing each other with the internal electrode interposed therebetween is provided.
  • the third laminated piezoelectric element according to the present invention having the above-described configuration, by providing a column connecting the piezoelectric members in the internal electrode, it is possible to reduce variation in the amount of displacement. In addition, even after long-time continuous operation, the change in displacement is small, and the piezoelectric An undercuter can be provided. Therefore, for example, it is possible to provide a highly reliable injection device having excellent durability.
  • the number of joints between the column and the piezoelectric layer whose diameter is 50% or more of the maximum diameter of the column occupies 30% or more of the whole. I like it.
  • the average value of the minimum diameter of the column is 0.2 ⁇ m or more.
  • the number of the columns is 5 to 150 per 1 mm.
  • the thermal expansion difference between the piezoelectric material constituting said with the pillar piezoelectric layer is not more than 3 X 10- 5 Z ° C Is preferred,.
  • the columns have the same material strength as the piezoelectric material.
  • the piezoelectric layers and the dummy layers are alternately laminated above and below the laminated body.
  • AZB is 0.01-1.08, where A is the shortest distance from the outer periphery of the dummy layer to the side surface of the inert protection part, and B is the width of the inert protection part. Is preferred.
  • the above-mentioned shortest distance A is a value obtained by measuring the length of each of the protection sections cut in a direction perpendicular to the laminating direction, and the width B of the inactive protection section is obtained by measuring the shortest distance A. The length is measured in the same direction as the direction.
  • the multilayer piezoelectric element configured as described above, the uniform shrinkage of firing is provided, and an appropriate bonding region between the piezoelectric layers is provided. Therefore, the durability can be improved even in continuous use at a high voltage for a long time, and an injection device having a laminated piezoelectric element with excellent durability can be provided.
  • the present inventor conducted research and development on the shortest distance from the outer periphery of the dummy layer to the side surface of the inert protective portion and the durability, and found that there is a relationship between the shortest distance and the durability. I found it. In other words, it is necessary to control the shortest distance to the side surface of the inert protection portion of the dummy layer. It was found that the durability was significantly improved.
  • the dummy layer preferably contains a metal.
  • the dummy layer has the same material strength as that of the internal electrode.
  • the dummy layer preferably contains an inorganic composition of any of metal oxides, nitrides, and carbides./ The dummy layer preferably contains at least 2 wt% of the inorganic composition. Is more preferable.
  • the thickness of the piezoelectric layer is preferably 50 ⁇ m or more.
  • the metal thread in the internal electrode includes a Group VIII metal and a Z or lb group metal. It is preferable to use it as the main component.
  • the metal composition in the internal electrode mainly contains a Group VIII metal and a Z or lb group metal
  • the internal electrode can be formed with a metal composition having high heat resistance. Simultaneous firing with the piezoelectric layer having a high value is possible.
  • the content of the Group VIII metal in the internal electrode is Ml (% by weight).
  • the content of I b metals M2 weight 0/0
  • M1 + M2 100.
  • the specific resistance of the internal electrode can be reduced, the heat generation of the internal electrode portion can be suppressed even when the multilayer piezoelectric element is continuously driven for a long time.
  • the temperature rise of the multilayer piezoelectric element can be suppressed, the element displacement can be stabilized.
  • the Group VIII metal is at least one of Ni, Pt, Pd, Rh, Ir, Ru, and Os
  • the Group lb metal is Cu, Ag. It is preferable that at least one of Au is used.
  • the raw material of the internal electrode is selected from the above range, it can be used even if the raw material of the alloy and the raw material of the mixed powder are different.
  • the Group VIII metal is at least one of Pt and Pd and the Group lb metal is at least one of Ag and Au, the heat resistance and the oxidation resistance are excellent. Internal electrodes can be formed. [0036] Further, when the Group VIII metal is Ni, it is possible to alleviate the stress caused by displacement during driving and to form the internal electrode having excellent heat resistance.
  • the stress caused by displacement during driving can be reduced, and the internal electrode having excellent thermal conductivity can be formed.
  • the adhesion strength at the interface between the internal electrode and the piezoelectric body is increased. At the interface between the piezoelectric material and the piezoelectric body.
  • the oxidized product is mainly composed of a perovskite oxide composed of PbZrO—PbTiO.
  • the piezoelectric layer preferably contains a perovskite oxide as a main component.
  • the piezoelectric body is mainly composed of a perovskite oxide composed of PbZrO 2 -PbTiO.
  • the piezoelectric body and the internal electrode can be fired simultaneously, so that the firing process can be shortened and the specific resistance of the internal electrode can be reduced.
  • the firing temperature of the laminate is 900 ° C or more and 1000 ° C or less.
  • composition deviation in the internal electrode is set to 5% or less before and after firing, it is possible to follow expansion and contraction caused by driving of the laminated piezoelectric element, and it is possible to suppress peeling of the internal electrode.
  • the internal electrodes whose end portions are exposed on the side surfaces of the multilayer body and the internal electrodes whose end portions are not exposed are alternately formed.
  • a groove is formed in the portion of the piezoelectric layer between the internal electrode and the external electrode where the end is not exposed, and an insulator having a lower Young's modulus than the piezoelectric layer is formed in the groove. Is preferably filled.
  • the internal electrode includes a void, and the area ratio of the void to the total cross-sectional area in the cross section of the internal electrode is 5 to 70%.
  • the restraining force by the internal electrodes when the piezoelectric body is deformed by the electric field can be reduced, and the displacement of the piezoelectric body can be increased.
  • the stress applied to the internal electrode is reduced by the gap, and the durability of the element is improved.
  • the heat conduction in the element is a force where the internal electrode is dominant.
  • a device resistant to thermal shock can be obtained.
  • the injection device provides a storage container having an injection hole, any one of the first to third stacked piezoelectric elements stored in the storage container, and the injection hole formed by the stacked piezoelectric element. And a valve for ejecting a liquid from the valve.
  • FIG. 1A is a perspective view showing a laminated piezoelectric element of the present invention.
  • FIG. 1B is a perspective developed view showing a laminated state of a piezoelectric layer and an internal electrode layer in the laminated piezoelectric element of the present invention.
  • FIG. 2A is a perspective view of a multilayer piezoelectric element according to Embodiment 2 of the present invention.
  • FIG. 2B is a side view of the multilayer piezoelectric element according to the second embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing a part of a cross section of the multilayer piezoelectric element according to the second embodiment.
  • FIG. 4A is a perspective view of a laminated piezoelectric element in which a conductive auxiliary member is formed on the outer surface of an external electrode.
  • FIG. 4B is a cross-sectional view of a laminated piezoelectric element in which a conductive auxiliary member is formed on the outer surface of an external electrode.
  • FIG. 5A is a perspective view of a multilayer piezoelectric element according to Embodiment 3 of the present invention.
  • FIG. 5B is a cross-sectional view showing a stacked state of a piezoelectric layer, an internal electrode layer, a protection section, and a dummy layer in the multilayer piezoelectric element of Embodiment 3.
  • FIG. 6 is a side view showing the injection device of the present invention.
  • FIG. 7 is a side view of a conventional laminated piezoelectric actuator.
  • FIG. 8 shows a part of a cross section of a conventional laminated piezoelectric element.
  • FIG. 1A is a perspective view showing a configuration of a laminated piezoelectric element according to Embodiment 1 of the present invention
  • FIG. 1B is a perspective developed view showing a laminated state of piezoelectric layer 1 and internal electrode layer 2. .
  • a multilayer piezoelectric actuator includes a quadrangular prism-shaped multilayer body in which a plurality of piezoelectric layers 1 and a plurality of internal electrodes 2 are alternately stacked. It is composed of internal electrodes 2 and external electrodes 4 formed so as to be connected every other layer on the side surface.
  • the end of the internal electrode 2 is exposed every other side on the side surface on which the external electrode 4 is formed, so that the exposed end of the internal electrode 2 and the external electrode 4 are electrically connected.
  • a portion denoted by reference numeral 14 is an inactive protection portion in which the piezoelectric layer 1 is laminated without including the internal electrode.
  • This internal electrode 2 applies a predetermined voltage to each piezoelectric layer 1, causing a displacement in the piezoelectric layer 1 due to the inverse piezoelectric effect.
  • This is formed by a metal material such as silver-palladium, for example.
  • the inactive protection section 14 is composed of a plurality of piezoelectric layers 1 on which the internal electrodes 2 are not arranged, and the inactive protection section 14 does not displace even when a voltage is applied.
  • the multilayer piezoelectric element according to the first embodiment is configured such that the rate of change in the element displacement before and after the driving is within 5% even when the piezoelectric element is driven continuously and repeatedly. . That is, the multilayer piezoelectric element of the first embodiment is extremely low in durability because the rate of change of the element displacement before and after the continuous driving is suppressed to power% or less.
  • the rate of change in the amount of element displacement before and after continuous driving refers to the ratio of the change in the amount of displacement after repeated driving to the amount of displacement before continuous use after the multilayer piezoelectric element is manufactured. .
  • a certain DC voltage is applied to the multilayer piezoelectric element to determine a displacement (initial displacement).
  • the rate of change of the displacement after continuous driving with respect to the initial displacement is calculated, and the rate of change is defined as the rate of change of the element displacement before and after continuous driving.
  • the multilayer piezoelectric element of the first embodiment is configured so that the maximum change rate of the element displacement during continuous driving is within 5%. This is because if the maximum change rate of the element displacement amount during continuous driving of the multilayer piezoelectric element exceeds 5%, it may deteriorate during driving of the multilayer piezoelectric element, and the durability of the multilayer piezoelectric element may decrease. Because.
  • the maximum rate of change of the element displacement during continuous driving means that a certain DC voltage is applied to the laminated piezoelectric element, and the amount of displacement occurring at that time is the displacement before the continuous driving (initial displacement). State displacement), and then an AC equivalent to the DC voltage applied to measure the initial state displacement.
  • a current is applied to the stacked piezoelectric element, and the piezoelectric element is continuously driven about 1 ⁇ 10 8 times, and the displacement is measured in each cycle.
  • the maximum value of the displacement is defined as the maximum displacement during continuous driving.
  • the maximum displacement is shown as a ratio changed with respect to the displacement before the continuous driving.
  • continuous driving may be performed using the force / noise voltage described in the case of continuous driving by applying an AC voltage.
  • the maximum amount of element displacement during continuous driving may be obtained.
  • the rate of change is configured to be within 5%.
  • a DC voltage of 15 OV is applied to the multilayer piezoelectric element, and the displacement at that time is used as the initial amount of displacement.
  • the element according to the present invention the maximum value of the displacement therein, is configured so as to be within 5% Ru.
  • the DC voltage and the AC voltage or the pulse voltage for measuring the initial state can be arbitrarily set, for example, between 10 OV and 200V.
  • the thickness dimensional change rate of the piezoelectric body before and after continuous driving is set to within%. This is because if the rate of change in the thickness of the piezoelectric body before and after continuous driving of the multilayer piezoelectric element exceeds 5%, the dimensions of the multilayer piezoelectric element before and after driving change, resulting in a change in the amount of displacement. Therefore, the deterioration of the multi-layer piezoelectric element is increased, and the durability of the multi-layer piezoelectric element is significantly reduced.
  • the thickness of the piezoelectric body can be measured by observing the piezoelectric body on the cross section and the side surface of the multilayer piezoelectric element with an SEM.
  • the rate of change in the thickness dimension before and after the driving of the piezoelectric body refers to the lamination direction of the multilayer piezoelectric element after an arbitrary AC voltage is applied to the multilayer piezoelectric element and the piezoelectric element is continuously driven about 1 ⁇ 10 9 times.
  • the ratio of the thickness dimension of the piezoelectric body changed to the thickness dimension of the piezoelectric body before continuous driving is shown.
  • the rate of change in the thickness of the piezoelectric body is determined by observing the side surface of the stacked piezoelectric element before driving with a microscope such as an SEM, measuring the thickness of any 10 places of the piezoelectric body, and calculating the average value. Calculated, after driving, it can be obtained by measuring the thickness dimension of the same location and calculating the average value.
  • the rate of change of the element resistance is within 5%. This is because when the rate of change in element resistance before and after continuous driving of the multilayer piezoelectric element exceeds 5%, the deterioration of the multilayer piezoelectric element increases, and the durability of the multilayer piezoelectric element significantly decreases.
  • the rate of change of the element resistance before and after the continuous driving means that an arbitrary DC voltage is applied to the laminated piezoelectric element, and the resistance value of the element measured at that time is taken as the element resistance before the continuous driving,
  • an arbitrary AC voltage is applied to the laminated piezoelectric element by an applied force tl, and the resistance value of the element after continuously driving about 1 ⁇ 10 9 times is set as the element resistance after continuous driving, and the element after continuous driving is determined.
  • the figure shows the rate at which the resistance has changed with respect to the element resistance before the continuous driving.
  • the maximum change rate of the element resistance during the continuous driving is within the power%. This is because when the maximum change rate of the element resistance during continuous operation of the multilayer piezoelectric element exceeds 5%, the deterioration increases during the operation of the multilayer piezoelectric element, and the durability of the multilayer piezoelectric element decreases. Because there is.
  • the maximum rate of change of the element resistance during continuous driving means that an arbitrary DC voltage is applied to the laminated piezoelectric element, and the resistance value of the element measured at that time is defined as the element resistance before continuous driving.
  • an arbitrary AC voltage is applied to the laminated piezoelectric element by the applied force tl, and the maximum resistance value of the element resistance changed during continuous driving of about 1 ⁇ 10 8 times is defined as the element resistance during continuous driving. It shows the rate at which the element resistance during the continuous driving has changed with respect to the element resistance before the continuous driving.
  • the amount of change in the element before and after continuous driving and during continuous driving the rate of change in the thickness of the piezoelectric body before and after continuous driving, and the continuous driving
  • the following may be performed.
  • a method of keeping the element temperature constant during continuous driving or a method of controlling the drive voltage according to the element temperature Has been used. Specifically, the drive voltage was controlled while monitoring the element temperature, and a heat sink that actively dissipates heat was attached to control the temperature around the element.
  • the element generated by driving The device temperature during continuous driving was controlled by suppressing body heat (change in device temperature was suppressed).
  • the element temperature compress the change in the element temperature
  • the polarization state before and after the continuous driving must be the same in order to maintain a constant rate of change in the thickness of the piezoelectric body before and after the continuous driving.
  • the temperature of the piezoelectric body becomes higher than the Curie point, the polarization state before driving and the polarization state during driving change, and the thickness and displacement of the piezoelectric body before and after continuous driving are changed. Therefore, it is necessary to suppress an increase in element temperature. Therefore, it is necessary to suppress the temperature rise of the element itself during driving by reducing the specific resistance of the electrode material.
  • the piezoelectric layer 1 is composed mainly of a perovskite oxide such as PbZrO—PbTiO.
  • the cooling rate is set to 600 ° CZ or less, more preferably 300 ° CZ or less.
  • the value of the dielectric loss (tan ⁇ ) is preferably less than 1.5%, more preferably 0.5% or less.
  • the material of the internal electrode 2 In order to reduce the element resistance, it is preferable to select a material having a composition having a small specific resistance as the material of the internal electrode 2 and to form a dense structure that secures a path for electric conduction. Furthermore, it is desirable that the temperature characteristics of the displacement amount of the material forming the piezoelectric layer 1 be constant regardless of the operating temperature, so that the displacement amount is within the temperature change range of the element when continuously driven. Smaller, piezoelectric materials are preferred.
  • the internal electrode 2 which is a main path for transferring heat has a composition having excellent heat conduction characteristics.
  • a perovskite-type oxidizing material having the same strength as PbZrO—PbTiO.
  • a slurry is prepared by mixing the calcined powder of the piezoelectric ceramics of the product, a binder made of an organic polymer such as acrylic or petalal, and a plasticizer such as DBP (dibutyl phthalate) or DOP (dibutyl phthalate). I do. Then, using the slurry, a well-known doctor The ceramic bulky sheet to be the piezoelectric layer 1 is produced by a tape molding method such as a calendering method and a calender roll method.
  • a binder, a plasticizer, and the like are added to and mixed with a metal powder constituting an internal electrode such as silver-palladium to prepare a conductive paste.
  • This conductive paste is printed on the upper surface of each green sheet by screen printing or the like to a thickness of 110 ⁇ m.
  • the laminated body is debindered at a predetermined temperature, and then fired at 900 to 1200 ° C. to produce a laminated body.
  • the method of manufacturing the laminate is not limited to the above-described method. What kind of laminate can be manufactured as long as a laminate formed by alternately laminating a plurality of piezoelectric layers 1 and a plurality of internal electrodes 2 can be produced. It may be a manufacturing method.
  • the laminate is manufactured such that the end of the internal electrode 2 is exposed every other layer on the side surface. Also, a groove is formed in the piezoelectric portion between the internal electrode 2 and the external electrode 4 whose ends are not exposed, and a resin such as resin or rubber having a lower Young's modulus than the piezoelectric layer 1 is formed in the groove. An insulator may be formed.
  • the groove is formed on the side surface of the laminate by an internal dicing device or the like.
  • the conductive material forming the external electrode 4 is desirably silver having a low Young's modulus or an alloy containing silver as a main component from the viewpoint of sufficiently absorbing the stress generated by expansion and contraction of the actuator.
  • the baking temperature of the silver glass conductive paste is set such that silver in the silver glass conductive paste is diffused and bonded to the internal electrode 2 so that an effective neck portion is formed.
  • the external electrode 4 and the side surface of the columnar laminate 550-700 ° C is desirable for optimal bonding.
  • the softening point of the glass component in the silver glass conductive paste is desirably 500 to 700 ° C.
  • the baking temperature is higher than 700 ° C.
  • the sintering of the silver powder of the silver glass conductive paste proceeds excessively, and a porous conductor having an effective three-dimensional network structure cannot be formed.
  • the external electrode 4 may be too dense, and the Young's modulus of the external electrode 4 may be too high. If the Young's modulus of the external electrode 4 is high, the stress during driving cannot be sufficiently absorbed, so that the external electrode 4 may be disconnected.
  • baking is performed at a temperature within 1.2 times the softening point of the glass.
  • the neck portion is not formed because the diffusion bonding between the end of the internal electrode 2 and the external electrode 4 is not sufficiently performed, and the internal There is a possibility of sparking between the electrode 2 and the external electrode 4.
  • the thickness of the silver glass conductive paste sheet is preferably smaller than the thickness of the piezoelectric layer 1. More preferably, it is 50 m or less from the viewpoint of following the expansion and contraction of the actuator.
  • the laminate on which the external electrode 4 is formed is immersed in a silicone rubber solution, and the silicone rubber solution is degassed under vacuum to form a groove in the laminate.
  • the inside is filled with silicone rubber, and then the silicone rubber solution is pulled up with the solution force, and the side of the laminate is coated with silicone rubber. Thereafter, the silicone rubber coated in the inside of the groove and coated on the side surface of the columnar laminate is cured to complete the multilayer piezoelectric element of the present invention.
  • a lead wire is connected to the external electrode 4, and a pair of external electrodes 4 is connected to the external electrode 4 via the lead wire.
  • a laminated piezoelectric actuator using the laminated piezoelectric element of the present invention is completed by applying a DC voltage of 13 kVZmm and polarizing the laminated body.
  • this laminated piezoelectric actuator when the lead wire is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire and the external electrode 4, each piezoelectric layer 1 is formed by an inverse piezoelectric effect. Large displacement.
  • the multilayer piezoelectric actuator according to the first embodiment configured as described above can be used, for example, for an automobile fuel injection valve that supplies fuel to an engine. Wear.
  • FIG. 2A is a perspective view showing a configuration of a multilayer piezoelectric actuator according to a second embodiment of the present invention
  • FIG. 2B is a side view thereof
  • FIG. 3 is a cross-sectional view of the internal electrode 2.
  • a multilayer piezoelectric actuator having a multilayer piezoelectric element according to the second embodiment has a rectangular columnar shape in which piezoelectric layers 1 and internal electrodes 2 are alternately stacked.
  • the end of the internal electrode 2 is covered with the insulator 3 every other layer, and is covered with the insulator 3, and the external electrode 4 is provided so as to be connected to the end of the internal electrode 2.
  • the external electrodes 4 are porous conductors made of a conductive material mainly composed of silver and glass, and a lead wire 6 is connected and fixed to each external electrode 4.
  • a plurality of columns 18 penetrating through the internal electrodes 2 are provided. It is characterized in that the piezoelectric layers 1 are connected.
  • the rigidity of the internal electrodes 2 is improved, and the absorption of the displacement generated in the internal electrodes 2 can be suppressed.
  • a stable displacement can be obtained.
  • the variation in the amount of displacement for each product can be reduced, and the reliability of each product can be improved.
  • the change in the displacement amount after long-time use is small, and the durability can be improved.
  • the number of the columns 18 such that the diameter B of the joint portion 22 between the column 18 and the piezoelectric layer 1 is 50% or more of the maximum diameter A of the column 18 is 30% of the whole. It is preferable to occupy the above. This is because a more stable displacement can be obtained in this manner. That is, the number of the columns 18 occupying 30% or more of which the diameter B of the joint portion 22 between the column 18 and the piezoelectric layer 1 is 50% or more of the maximum diameter A of the column 18 occupies 30% or more.
  • the strength of the body layer 1 increases and the rigidity also increases. Thereby, the absorption of the displacement generated in the internal electrode 2 is reduced, and the displacement is stabilized.
  • the variation in the displacement amount of each product can be further suppressed, and the reliability can be further improved.
  • the change of the displacement amount after long-time use is reduced, and the durability can be improved.
  • pillar 18 and piezoelectric layer More preferably, the diameter B of the joint portion 22 with 1 is 50% or more of the maximum diameter A of the column 18 and the number force of the column 18 is 50% or more of the entire column 18.
  • the maximum diameter A and the diameter B are measured as follows. First, as shown in Fig. 3, in the cross-sectional photograph near the internal electrode 2 of the laminated piezoelectric element, the maximum diameter A and the diameter B of the joint between the piezoelectric layer 1 and each of the columns 18 are shown. Measure. Based on the measurement results, the value of (BZA) ⁇ 100 was calculated, and for each column 18, the maximum diameter A of the column 18 and the diameter B of the joint 22 between the column 18 and the piezoelectric layer 1 were calculated. Find the percentage. Then, calculate what percentage of the measured number has a value of 50% or more. Do 10 such things and take the average.
  • the average of the minimum diameters of the columns 18 is preferably 0.2 m or more, more preferably 0.2 or more.
  • the multilayer piezoelectric element of the present invention it is preferable that 5 to 150 columns 18 per mm are present in the cross section near the internal electrode 2, more preferably 10 to 100 columns. This is because by setting the number of columns 18 as described above, the rigidity can be increased, and a highly reliable laminated piezoelectric element with small variation in displacement can be obtained. If the number of pillars 18 is less than 5, the effect of providing the pillars is reduced, while if the number of pillars 18 is more than 100, the resistance of the internal electrode 2 increases and the electrode functions as an electrode, for example, heating. Decreases.
  • the pillar 18 and the difference in thermal expansion between the piezoelectric layer 1 is 3 X 10- 5 Z ° C or less, particularly preferably 2 X 10- 5 Z ° C.
  • the internal stress between the piezoelectric layer 1 and the column 18 is reduced, the bonding strength at the interface can be increased, and the durability can be improved.
  • PZ T in the piezoelectric layer 1 as the material of the thermal expansion difference 3 X 10- 5 Z ° C below the pillar 18, PZT, Al Omicron,
  • ZrO, TiO, SiO and the like can be used.
  • the column 18 has the same material strength as that of the piezoelectric layer 1.
  • the internal stress generated between the column 18 and the piezoelectric layer 1 is further reduced, the bonding strength at the interface is increased, and the durability can be improved.
  • the column 18 is preliminarily mixed with a powder of a material constituting the column 18 in the internal electrode 2, and is held at least once in the firing step at a temperature of 80% or more of the maximum firing temperature during the heating.
  • This And can be formed by:
  • the powder of the material forming the pillars 18 mixed with the internal electrode 2 is kept at 80% or more of the maximum firing temperature after degreasing, so that the surrounding metal composition As a result, grain growth is likely to occur. Thereafter, by firing at the highest firing temperature, grain growth occurs so as to connect the piezoelectric layers 1, penetrates the internal electrode 2, and connects the opposing piezoelectric layers 1 with the internal electrode 2 interposed therebetween. 8 can be formed.
  • An appropriate amount of the kneaded material powder of the pillar 18 to be added to the internal electrode 2 is 5 to 40% by weight. If the content is more than 40% by weight, the resistance of the electrode becomes too high and there is a possibility of heating. If the content is less than 5% by weight, columns cannot be provided sufficiently, and the effect of improving the rigidity of the internal electrode is reduced. , Reliability and durability cannot be sufficiently improved.
  • a ceramic green sheet serving as the piezoelectric layer 1 is manufactured.
  • a metal powder constituting an internal electrode such as silver-palladium is mixed with one or more ceramic powders such as PZT, AlO, ZrO, TiO, and SiO as a material of the pillar 18.
  • a conductive paste is produced by adding and mixing a plasticizer and the like. This conductive paste is printed on the upper surface of each of the green sheets to a thickness of 110 ⁇ m by screen printing or the like.
  • a plurality of green sheets each having a conductive paste printed on the upper surface thereof were laminated, and the laminated body was subjected to a binder removal treatment at a predetermined temperature, and then kept at 80% or more of the maximum temperature. After that, it is fired at the maximum temperature of 900-1200 ° C.
  • the holding time at 80% or more of the maximum temperature is preferably longer than 0.25h.
  • two or more steps may be provided. For example, it may be held at 80% and 90% of the maximum holding temperature, and may be heated in a multi-stage pattern. Thus, to promote column growth, it is necessary to temporarily hold at 80% or more of the maximum holding temperature. Thereby, the opposing piezoelectric bodies can be firmly coupled.
  • the reason why the maximum temperature is set between 900 ° C and 1200 ° C is that if the temperature is lower than 900 ° C, a dense piezoelectric body cannot be manufactured. The stress caused by the displacement of body contraction increases and cracks occur during continuous driving. Because of the reason.
  • a groove is formed between the internal electrode 2 whose end is not exposed and the side surface so that every other internal electrode whose end is exposed appears on the side surface of the multilayer piezoelectric element.
  • This groove 3 can be formed by a dicing device or the like.
  • the external electrodes 4 are formed in the same manner as in the first embodiment.
  • the laminate 10 on which the external electrodes 4 are formed is immersed in a silicone rubber solution, and the silicone rubber solution is evacuated by vacuum to fill the inside of the groove of the laminate 10 with silicone rubber. Lift the body 10 and coat the side of the laminate 10 with silicone rubber. Thereafter, the silicone rubber filled in the groove and coated on the side surface of the laminate 10 is cured.
  • a direct current voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 4 via the lead wires to polarize the laminate 10, thereby completing the laminate type piezoelectric actuator as a product.
  • the lead wire is connected to an external voltage supply and a voltage is applied to the internal electrode 2 via the lead wire and the external electrode 4, each piezoelectric layer 1 is greatly displaced by the inverse piezoelectric effect.
  • it functions, for example, as an automobile fuel injection valve that supplies fuel to the engine.
  • the rigidity of the internal electrode 2 is increased, and the bonding strength is improved, so that the displacement of the internal electrode can be reduced. Further, even when the drive is performed continuously, delamination does not occur, so that the change in the displacement can be reduced. Therefore, it is possible to provide a high-reliability piezoelectric actuator without malfunction.
  • the multilayer piezoelectric element of the second embodiment is not limited to the specific examples described above, and various modifications can be made without departing from the scope of the present invention.
  • FIG. 5A and 5B show a laminated piezoelectric element according to Embodiment 3 of the present invention.
  • FIG. 5A is a perspective view
  • FIG. 5B is a laminated state of a piezoelectric layer, an internal electrode layer, a protection section, and a dummy layer. Indicating a break FIG.
  • the laminated piezoelectric element according to the third embodiment includes a pair of opposed side surfaces of a laminated body 30 in which the piezoelectric layers 1 and the internal electrodes 2 are alternately laminated. Each is provided with an external electrode 4, and the internal electrode 2 is electrically connected to each external electrode 4 every other layer. Then, in the multilayer piezoelectric element of the third embodiment, the multilayer body 30 is formed by laminating inactive protection sections 20 in which the piezoelectric layers 1 and the dummy layers 21 are alternately stacked above and below the drive multilayer section 13. It becomes.
  • the shortest distance between the outer periphery of the dummy layer 21 and the side surface of the stacked body in the cross section perpendicular to the stacking direction in the stacked body 30 is A
  • the AZB is configured to be 0.01 to 0.08. That is, the invention according to the third embodiment can improve the durability by setting the shortest distance A and the width B of the inactive protection portion 20 as described above, and the characteristics can be improved even when used for a long time. It was completed by finding that a highly reliable laminated piezoelectric element having no change can be obtained.
  • the value of A / B is preferably 0.02 to 0.07. Further 0.03-0.
  • the dummy layer 21 contains a metal.
  • the metal may be a single metal element in the periodic table, such as Ag, Cu, Ni, Pd, or an alloy of one or more of them.
  • glass may be included in the dummy layer.
  • the dummy layer 21 has the same material strength as that of the internal electrode 2. As a result, the firing behavior of the inert protective portion 20 and the driving lamination portion 13 becomes almost the same, the stress generated between them can be suppressed, the delamination can be reduced, and the piezoelectric material with improved durability can be obtained. An element can be obtained.
  • the thickness of the piezoelectric layer 1 is preferably 50 Pm or more. With such a thickness, it is possible to withstand the generated stress and prevent destruction.
  • the dummy layer 21 contains one or more of a metal oxide, a nitride, and a carbide as the inorganic composition.
  • the inorganic composition cross-links between the piezoelectric layers 1 and becomes resistant to stress during firing and use, making it difficult for delamination to occur, thus improving durability. I do.
  • PZT, AlO, ZrO, TiO, SiO, TiN, SiN, A1N, SiC, TiC, etc. may be used as the inorganic composition.
  • the dummy layer 21 contains 2 wt% or more of the inorganic composition. Thereby, the cross-linking between the piezoelectric layers 1 becomes sufficient, the bonding strength between the piezoelectric layers 1 increases, the delamination is reduced, and the durability can be improved.
  • a method of manufacturing the multilayer piezoelectric element according to the third embodiment of the present invention will be described.
  • a ceramic green sheet to be the piezoelectric layer 1 is manufactured in the same manner as in the first embodiment.
  • this green sheet is cut to an appropriate size and fixed to a frame to control AZB.
  • a conductive paste is prepared by adding a metal powder constituting the internal electrode 2 such as silver-palladium or the like to a binder, a plasticizer, or the like, and forming a conductive paste on the upper surface of each of the green sheets. Print to a thickness of 40 / zm by printing or the like, and prepare a green sheet for the drive lamination section 13.
  • a dummy layer containing silver-palladium or the like is printed on the upper surface of the green sheet by a screen printing or the like by 1 to 40 m to prepare a green sheet for the inert protective portion 20.
  • control is performed so that AZB becomes a predetermined value in consideration of firing shrinkage and printing is performed.
  • the drive laminating unit having the conductive paste printed on the upper surface A plurality of the green sheets for 13 and the green sheets for the inactive protection section 20 are laminated so that the inactive protection sections 20 are located above and below the driving lamination section 13, and are simultaneously adhered by applying pressure.
  • the shortest distance A from the outer periphery of the dummy layer 21 to the side surface of the inactive protection section 20 is controlled by fixing the green sheet to the frame and simultaneously bringing the inactive protection section 20 and the drive lamination section 13 into close contact with each other. be able to.
  • the green sheet is cut into an appropriate size, debindered at a predetermined temperature, and then fired at 900 to 1200 ° C to produce a laminated piezoelectric element.
  • the multilayer piezoelectric element is not limited to the one manufactured by the above manufacturing method, but may be any method that can control the shortest distance A from the outer periphery of the dummy layer 21 to the side surface of the inactive protection portion 20. As long as it is formed by any manufacturing method.
  • the internal electrodes 2 whose ends are exposed on the side surfaces of the multilayer piezoelectric element and the internal electrodes 2 whose ends are not exposed are alternately formed, and the internal electrodes 2 whose ends are not exposed and the external electrodes 4 are formed.
  • a groove 3 is formed in the piezoelectric layer 1, and an insulator such as resin or rubber having a lower Young's modulus than the piezoelectric layer 1 is formed in the groove 3.
  • the groove 3 is formed by an internal dicing device or the like, and the external electrode 4 is formed on the side surface of the driving laminated portion 13.
  • the conductive material constituting the groove 3 sufficiently absorbs the stress caused by the expansion and contraction of the laminated piezoelectric element. Low silver or an alloy mainly composed of silver is desirable.
  • the external electrodes 4 are formed in the same manner as in the first embodiment.
  • the driving laminated portion 13 on which the external electrodes 4 were formed was immersed in a silicone rubber solution, and the silicone rubber solution was evacuated to vacuum to fill the inside of the groove 3 of the driving laminated portion 13 with silicone rubber. Then, the driving lamination part 13 is also pulled up with the silicone rubber solution force, and the side surface of the driving lamination part 13 is coated with silicone rubber. Thereafter, the silicone rubber coated in the inside of the groove 3 and coated on the side surface of the columnar driving laminated portion 13 is cured, thereby completing the laminated piezoelectric element of the present invention.
  • a lead wire 6 is connected to the external electrode 4, a direct current voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 4 via the lead wire 6, and the driving lamination portion 13 is polarized.
  • the lead wire 6 is connected to an external voltage supply unit, and the internal electrode 2 is connected to the internal electrode 2 via the lead wire and the external electrode 4.
  • each piezoelectric layer 1 is largely displaced by the inverse piezoelectric effect, and thereby functions as, for example, an automobile fuel injection valve that injects fuel to an engine.
  • the metal composition in the internal electrode 2 preferably contains a Group VIII metal and a Z or lb group metal as main components. Since those metal compositions have high heat resistance, it is possible to simultaneously fire the piezoelectric layer 1 and the internal electrode 2 at a high firing temperature.
  • the content is preferably from 0.1% by weight to 10% by weight.
  • the content is more preferably 0.5% by weight or more and 9.5% by weight or less.
  • the content is more preferably 2% by weight or more and 8% by weight or less.
  • the reason why the lb group metal is preferably 85% by weight or more is that when the lb group metal is less than 85% by weight, the specific resistance of the internal electrode 2 increases and the multilayer piezoelectric element is continuously driven. In this case, the internal electrode 2 may generate heat. Further, in order to suppress the migration of the lb group metal in the internal metal 12 to the piezoelectric layer 1, it is preferable that the lb group metal be 85% by weight or more and 99.999% by weight or less. From the viewpoint of improving the durability of the multilayer piezoelectric element, it is preferable that the lb group metal is contained in an amount of 90% by weight or more and 99.9% by weight or less.
  • the content of the lb group metal is more preferably from 90.5% by weight to 99.5% by weight. Further, when higher durability is required, it is more preferable that the amount of the lb group metal be 92% by weight or more and 98% by weight or less.
  • the group VIII metal and the group lb metal indicating the weight percent of the metal component in the internal electrode 2 can be specified by an analysis method such as a ⁇ (Electron Probe Micro Analysis) method.
  • the metal component in the internal electrode 2 of the present invention is such that the Group VIII metal is at least one of Ni, Pt, Pd, Rh, Ir, Ru, and Os, and the Group lb metal is Cu, Ag. And at least one of Au. This is because the metal composition has excellent mass productivity in recent alloy powder synthesis technology.
  • the Group VIII metal is preferably at least one of Pt and Pd, and the lb group metal is preferably at least one of Ag and Au.
  • the metal component in the internal electrode 2 it is preferable that the Group VIII metal is Ni and the Group lb metal is Cu. Thereby, there is a possibility that the internal electrode 2 having excellent heat resistance and thermal conductivity can be formed.
  • an oxide, a nitride, or a carbide be added to the internal electrode 2 together with the metal composition.
  • the internal electrode 2 and the piezoelectric layer 1 can be firmly connected, and the durability of the multilayer piezoelectric element is improved.
  • the oxide is mainly composed of a perovskite oxide composed of PbZrO-PbTiO.
  • the content of the added oxidized product can be calculated from the area specific force of the composition in the internal electrode in the cross-sectional SEM image of the multilayer piezoelectric element.
  • the deviation of the composition in the internal electrode 2 be 5% or less before and after firing. This is because if the composition deviation in the internal electrode 2 exceeds 5% before and after firing, the metal material in the internal electrode 2 migrates more to the piezoelectric layer 1 and expands and contracts by driving the multilayer piezoelectric element. There is a possibility that the internal electrode 2 cannot follow. Further, when the composition deviation in the electrode is 5% or less before and after firing, the electrode can be prevented from becoming hard.
  • the composition deviation in the internal electrode 2 refers to a change in the composition of the internal electrode 2 due to the evaporation of the elements constituting the internal electrode 2 or the diffusion of the element into the piezoelectric layer 1. The rate is shown.
  • the internal electrode includes a void, and the area ratio of the void to the total cross-sectional area in the cross section of the internal electrode is 5 to 70%.
  • the restraining force by the internal electrodes when the piezoelectric body is deformed by the electric field can be reduced, and the displacement of the piezoelectric body can be increased.
  • the stress applied to the internal electrode is reduced by the void, and the durability of the element is improved.
  • the internal electrodes dominate the heat conduction inside the device. If there is a gap in the internal electrodes, the temperature change inside the device due to the rapid temperature change outside the device will be reduced, and the device that is resistant to thermal shock will can get.
  • the internal electrode 2 has a void, and the area ratio of the void to the total cross-sectional area in the cross section of the internal electrode 2 (hereinafter, referred to as void ratio) is 5 to 70. % Is preferable.
  • a multilayer piezoelectric element having high durability can be obtained. If the porosity of the internal electrode 2 is smaller than 5%, the restraining force against the displacement of the piezoelectric body is increased, and the effect of the presence of the void is reduced. On the other hand, if the porosity of the internal electrode 2 is larger than 70%, the conductivity of the internal electrode 2 becomes small and the strength is undesirably reduced. In order to enhance the durability of the element, the porosity of the internal electrode 2 is more preferably 7 to 70%, and more preferably the porosity of the internal electrode 2 is 10 to 60%. The amount can be secured and high durability can be obtained.
  • the porosity of the internal electrode 2 refers to the ratio of the area occupied by the voids to the total cross-sectional area in the cross section of the internal electrode 2 as described above, and is specifically determined as follows. Can be.
  • the multilayer piezoelectric element is cut in parallel with the laminating direction, and the total sectional area and the void occupied area occupied by voids in one internal electrode 2 exposed in the longitudinal section are obtained by, for example, microscopic observation. Then, the area specific force and the porosity of the internal electrode 2 ((void occupation area Z total cross-sectional area) X 100) are calculated.
  • the internal electrode 2 including a void can be manufactured as follows.
  • the powder is calcined at a temperature equal to or higher than the melting point of the lowest melting point, higher than the melting point, and lower than the melting point of the metal. If calcined at such a temperature, the metal or alloy melted above its melting point in the metal powder constituting the internal electrode 2 moves to the gap between the unmelted metals by capillary action, and A void is formed in the place where it was.
  • the porosity of the internal electrode 2 can be set to a desired ratio by adjusting the mixing ratio of two or more metal powders constituting the internal electrode 2 and the temperature.
  • the gap of the internal electrode 2 is included in, for example, a slight gap formed between metal powders when adjusting a conductive paste used for forming the internal electrode 2, or in a conductive paste. It may be formed by utilizing a gap or the like generated after the binder is burned off.
  • a material constituting the internal electrode 2 and a substance having poor wettability may be added to the conductive paste for the internal electrode, or the surface of the piezoelectric green sheet on which the conductive paste for the internal electrode is printed.
  • a substance having poor wettability By coating the material constituting the internal electrode 2 with a substance having poor wettability, a void can be formed in the internal electrode 2.
  • a material having poor wettability with the material forming the internal electrode 2 for example, BN is cited.
  • the piezoelectric layer 1 preferably contains a perovskite oxide as a main component.
  • a perovskite oxide represented by barium titanate (BaTiO 3).
  • the displacement amount can be increased, and the piezoelectric layer 1 and the internal electrode 2 can be fired simultaneously.
  • a perovskite oxide as a main component as a ZrO PbTiO.
  • the firing temperature is preferably 900 ° C or more and 1000 ° C or less. If the firing temperature is 900 ° C. or lower, the firing temperature is low and the firing is insufficient, and it becomes difficult to produce a dense piezoelectric layer 1. If the firing temperature exceeds 1000 ° C, the stress caused by the difference between the shrinkage of the internal electrode 2 and the shrinkage of the piezoelectric layer 1 during firing increases, and cracks may occur during continuous driving of the laminated piezoelectric element. Because there is a nature.
  • the internal electrode 2 whose end is exposed on the side surface of the multilayer piezoelectric element of the present invention and the internal electrode 2 whose end is not exposed are alternately configured so that the end is exposed! It is preferable that a groove is formed in the piezoelectric portion between the electrode 2 and the external electrode 4, and an insulator having a lower Young's modulus than the piezoelectric layer 1 is formed in the groove.
  • a groove is formed in the piezoelectric portion between the electrode 2 and the external electrode 4
  • an insulator having a lower Young's modulus than the piezoelectric layer 1 is formed in the groove.
  • the external electrode 4 be a porous conductor having a three-dimensional network structure. If the external electrode 4 is not made of a porous conductor having a three-dimensional network structure, the external electrode 4 does not have flexibility and cannot follow the expansion and contraction of the laminated piezoelectric actuator. In some cases, disconnection of 4 or defective contact between external electrode 4 and internal electrode 2 may occur.
  • the three-dimensional network structure does not mean a state in which a so-called spherical void exists in the external electrode 4.
  • the conductive material powder and the glass powder constituting the external electrode 4 are baked at a relatively low temperature. hand! For this reason, the sintering did not proceed, and the voids existed in a state of being connected to some extent, suggesting a state in which the conductive material powder and the glass powder constituting the external electrode 4 were three-dimensionally connected and joined.
  • the porosity in the external electrode 4 is desirably 30 to 70% by volume.
  • the porosity is a ratio of the porosity 4a in the external electrode 4. If the porosity in the external electrode 4 is smaller than 30% by volume, the external electrode 4 may not be able to withstand the stress caused by the expansion and contraction of the multilayer piezoelectric actuator, and the external electrode 4 may be disconnected. If the porosity in the outer electrode 4 exceeds 70% by volume, the resistance value of the outer electrode 4 increases, so that when a large current flows, the outer electrode 4 may locally generate heat and break. There is.
  • a glass-rich layer is formed on the surface layer of the external electrode 4 on the side of the piezoelectric layer 1. This is because if the glass-rich layer does not exist, it is difficult to bond with the glass component in the external electrode 4, and it may be difficult to make the external electrode 4 firmly bonded to the piezoelectric layer 1. .
  • the softening point (° C.) of the glass constituting the external electrode 4 is desirably 4Z5 or less of the melting point (° C.) of the conductive material constituting the internal electrode 2. This is the glass that constitutes the external electrode 4.
  • the softening point of the conductive material of the internal electrode 2 exceeds the melting point of 4Z5 of the conductive material forming the internal electrode 2, the softening point of the glass forming the external electrode 4 and the melting point of the conductive material forming the internal electrode 2 become substantially the same. Therefore, the temperature at which the external electrode 4 is baked necessarily approaches the melting point of the internal electrode 2, so that when the external electrode 4 is baked, the conductive materials of the internal electrode 2 and the external electrode 4 aggregate to form a diffusion bond.
  • the baking temperature cannot be set to a temperature sufficient to soften the glass component of the external electrode 4, so that sufficient bonding strength of the softened glass may not be obtained.
  • the glass constituting the external electrode 4 be made amorphous. This is because, in the case of crystalline glass, the stress generated by expansion and contraction of the laminated piezoelectric actuator cannot be absorbed by the external electrode 4, so that cracks and the like may occur.
  • the thickness of the external electrode 4 be smaller than the thickness of the piezoelectric layer 1. This is because when the thickness of the external electrode 4 is greater than the thickness of the piezoelectric layer 1 and the strength of the external electrode 4 increases, the joint between the external electrode 4 and the internal electrode 2 when the laminate expands and contracts. Load may increase, and contact failure may occur.
  • a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-shaped metal plate is embedded may be formed on the outer surface of the external electrode 4.
  • the metal mesh is formed by weaving metal wires, and the mesh-shaped metal plate is formed by forming holes in the metal plate to form a mesh.
  • the conductive adhesive constituting the conductive auxiliary member has conductive particles dispersed therein.
  • U which is preferably made of polyimide resin.
  • the conductive particles are preferably silver powder. This is because local heat generation in the conductive adhesive is easily suppressed by using silver powder having a relatively low resistance value for the conductive particles. Also, by dispersing a silver powder having a low specific resistance into a polyimide resin having a high heat resistance, it is possible to form a conductive auxiliary member having a low resistance value and maintaining a high adhesive strength even when used at a high temperature. Can be. More preferably, the conductive particles are non-spherical particles such as flakes and needles.
  • the shape of the conductive particles non-spherical particles such as flakes and needles, the entanglement between the conductive particles can be strengthened, and the shear strength of the conductive adhesive can be reduced. This is because it can be higher.
  • the laminated piezoelectric element of the present invention is composed of a single plate or one or more laminated layers.
  • the pressure applied to the element can be converted into a voltage, and the element can be displaced by applying a voltage to the element.
  • the stress can be relaxed, so that a highly reliable piezoelectric actuator having excellent durability can be provided.
  • the laminated piezoelectric element of the present invention is not limited to these, and various modifications can be made without departing from the spirit of the present invention.
  • the external electrodes 4 are formed on the opposing side surfaces of the laminate.
  • a pair of external electrodes may be formed on adjacent side surfaces.
  • the laminated body does not necessarily have to be a quadrangular prism, but may have various shapes such as a circular column and a polygonal column.
  • FIG. 6 shows an injection device of the present invention, in which an injection hole 33 is provided at one end of a storage container 31, and the injection hole 33 can be opened and closed in the storage container 31.
  • a fuel passage 37 is provided in the injection hole 33 so as to be able to communicate therewith.
  • the fuel passage 37 is connected to an external fuel supply source, and the fuel is always supplied to the fuel passage 37 at a constant high pressure. Obedience Then, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is ejected at a constant high pressure into a fuel chamber (not shown) of the internal combustion engine.
  • the upper end of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31.
  • the above-described piezoelectric actuator 43 is stored.
  • the present invention relates to a multilayer piezoelectric element and an injection device, but is not limited to the above embodiments, for example, a liquid injection device such as a fuel injection device for an automobile engine, an ink jet, or the like.
  • a liquid injection device such as a fuel injection device for an automobile engine, an ink jet, or the like.
  • Driving elements mounted on precision positioning devices such as optical devices, vibration prevention devices, etc., or mounted on combustion pressure sensors, knock sensors, acceleration sensors, load sensors, ultrasonic sensors, pressure-sensitive sensors, yorate sensors, etc.
  • the present invention can be implemented as long as it is an element using piezoelectric characteristics other than a sensor element and a circuit element mounted on a piezoelectric gyro, a piezoelectric switch, a piezoelectric transformer, a piezoelectric breaker, or the like.
  • the multilayer piezoelectric actuator according to the present invention was manufactured as follows.
  • a slurry in which a calcined powder, a binder, and a plasticizer were mixed was prepared, and a ceramic green sheet to be a 150 ⁇ m-thick piezoelectric layer 1 was prepared by a doctor blade method.
  • a conductive paste obtained by adding a binder to a silver-palladium alloy formed at an arbitrary composition ratio and having a thickness of 3 m was screen-printed on one surface of the ceramic green sheet. Were formed and laminated at 1000 ° C.
  • a groove having a depth of 50 ⁇ m and a width of 50 ⁇ m was formed every other layer at the end of the internal electrode on the side surface of the laminate using a dicing apparatus.
  • the sheet of the silver glass paste was transferred to the external electrodes 4 of the laminate and baked at 650 ° C. for 30 minutes to form an external electrode 4 made of a porous conductor having a three-dimensional network structure.
  • the porosity of the external electrode 4 at this time was 40% when a cross-sectional photograph of the external electrode 4 was measured using an image analyzer.
  • a lead wire was connected to the external electrode 4, and a direct current electric field of 3 kVZmm was applied to the positive and negative external electrodes 4 via the lead wires for 15 minutes to perform a polarization treatment.
  • a multilayer piezoelectric actuator using a piezoelectric element was fabricated.
  • the multilayer piezoelectric actuator of the present invention manufactured by suppressing the resistance value of the element resistance and the dielectric loss (tan ⁇ ) of the piezoelectric layer 1, before and after continuous driving of the multilayer piezoelectric actuator Rate of change in the amount of element displacement and rate of change in the thickness of the piezoelectric body
  • the degree of deterioration refers to measuring the amount of element displacement (the amount of element displacement after continuous driving) after driving the multilayer piezoelectric actuator at an arbitrary number of times, and further measuring the above-described multilayer piezoelectric actuator.
  • the element displacement after driving the actuator at a predetermined number of times is measured, and the element displacement after long-term driving changes with respect to the element displacement after continuous driving.
  • the ratio is shown. This allows the multilayer piezoelectric actuator to be driven an arbitrary number of times.
  • the eta can be further driven a predetermined number of times, and the state of degradation caused by this can be observed.
  • a sample was prepared in which the rate of change in the amount of element displacement or the rate of change in the element resistance before and after continuous driving of the above-mentioned laminated piezoelectric actuator exceeded 5%.
  • the laminated piezoelectric actuator was driven at room temperature by applying an AC voltage of 0-+ 170 V at a frequency of 150 Hz, and was continuously driven up to 1 ⁇ 10 9 times, and further driven up to 1 ⁇ 10 1 (> times).
  • the test was performed and the results are as shown in Table 1.
  • the side surface of the laminated piezoelectric element before driving was measured using SEM at any 10 locations of the piezoelectric body. The thickness was measured and the average value was calculated. After driving, the thickness at the same location was measured and the average was calculated, and the rate of change in the thickness of the piezoelectric body before and after driving was calculated.
  • the laminated piezoelectric actuator is driven continuously for 1 X 10 9 times and then for a long time up to 1 X io 1C) times.
  • the element displacement after long-term driving up to ⁇ ⁇ ⁇ 1 () times significantly decreased, so the degree of deterioration increased and the lamination It has become difficult to continuously drive the piezoelectric actuator.
  • Sample No. 18 of Example 1 according to the present invention is a multilayer piezoelectric actuator formed with a change rate of the element displacement before and after the continuous driving within a range of 5% or less.
  • the effective displacement required as a laminated piezoelectric actuator does not significantly reduce the element displacement even after driving 1 X 10 9 times continuously for 1 X 10 1 (> long times).
  • a laminated piezoelectric actuator having excellent durability with no thermal runaway or malfunction was produced.
  • the continuous operation of the multilayer piezoelectric actuator is performed.
  • the degree of deterioration refers to measuring the maximum element displacement during driving the multilayer piezoelectric actuator at an arbitrary number of times (the maximum element displacement during continuous driving), and further measuring the above-described multilayer piezoelectric actuator.
  • the element displacement after continuous driving was measured, and the element displacement after continuous driving changed with respect to the maximum element displacement during continuous driving. Shown as a percentage.
  • sample numbers 8 and 9 are comparative examples, since the maximum change rate of the element displacement during continuous driving is greater than 5%, up to 1 X 10 9 times the laminated piezoelectric Akuchiyueta thereby driven, compared to the maximum element displacement in the continuous drive to IX 10 8 times, the degree of deterioration since the element displacement amount after being continuously driven until 1 X 10 9 times was significantly reduced is increased, also, In sample No. 9, the device was destroyed due to thermal runaway, which made it difficult to continue and drive the laminated piezoelectric actuator.
  • the multilayer piezoelectric actuator formed with the maximum change rate of the element displacement during continuous driving was within 5%. Therefore, even after continuous driving of 1 ⁇ 10 9 times, the element has an effective displacement required for a laminated piezoelectric actuator that does not significantly reduce the element displacement, A laminated piezoelectric actuator with excellent durability that does not cause running or malfunction was produced.
  • the maximum change rate of the element displacement during continuous driving of the multilayer piezoelectric actuator was measured.
  • the relationship between the electrode material composition of No. 2 and the degree of deterioration due to continuous driving of the multilayer piezoelectric actuator was verified.
  • Sample Nos. 18 and 19 had a metal composition in the internal electrode 2 in which the content of the Group VIII metal exceeded 15% by weight and the content of the lb group metal was less than 85% by weight. As a result, the deterioration of the multi-layer piezoelectric actuator was reduced due to the increased deterioration due to continuous driving.
  • the present invention is not limited to the above-described embodiment, and does not deviate from the gist of the present invention.
  • Example 4 a multilayer piezoelectric actuator according to the present invention was manufactured as follows.
  • the piezoelectric material is a 150 m thick lead zirconate titanate (Pb
  • the internal electrode is formed with a thickness of 3 m.
  • the number of layers of each of the internal electrodes and the internal electrodes was 300.
  • a mixture of a metal (for example, 90 Ag-lOPd) and a powder of ceramic or the like as shown in Table 4 was used.
  • the materials shown in Table 43 were used in the proportions shown in the table.
  • the particle diameter of the powder such as ceramic was 1.5 m or less, and the particles having an aspect ratio of 3 or less were used.
  • the laminated body was degreased at 400 to 700 ° C, kept at 850 ° C for 20 minutes, and kept at 1000 ° C to obtain a sintered body.
  • the metal composition of the internal electrode was Ni
  • the laminated body was degreased at 400 to 700 ° C, held at 1050 ° C for 20 minutes, and then held at 1200 ° C to obtain a sintered body.
  • the sheet of the silver glass paste was transferred to the external electrode surface of the columnar laminate, and baked at 650 ° C. for 30 minutes to form an external electrode made of a porous conductor having a three-dimensional network structure. did.
  • the porosity of the external electrode at this time was 40% when a cross-sectional photograph of the external electrode was measured using an image analysis device.
  • a lead wire is connected to the external electrodes, and a DC electric field of 3 kVZmm is applied to the external electrodes of the positive electrode and the negative electrode via the lead wires for 15 minutes to perform a polarization process.
  • a laminated piezoelectric actuator was fabricated.
  • a 170 V DC voltage was applied to the obtained laminated piezoelectric actuator that also provided the laminated piezoelectric element force, the displacement of each sample was measured, and the variation was calculated. Further, a driving test was performed by applying an AC voltage of 0 to +170 V at a frequency of 150 Hz to the multilayer piezoelectric actuator composed of the multilayer piezoelectric element at room temperature.
  • a DC voltage of 170 V was applied to the laminated piezoelectric actuator with the number of driving times of 1 ⁇ 10 9 times, and the displacement of each sample was measured, before and after the driving test. was calculated. In the calculation, the displacement amount before the driving test was used as the numerator, and the displacement amount after the driving test was used as the denominator.
  • the diameter and the number of pillars that penetrate the internal electrodes and connect the piezoelectric bodies were measured as follows.
  • the length of lmm was measured in a cross-sectional photograph near the internal electrode 2 of the multilayer piezoelectric element as shown in Fig.
  • the maximum diameter of the column 18 and the diameter B of the joint portion 22 between the column 18 and the piezoelectric layer 1 are measured, and the (B / A) x 100 is calculated.
  • the ratio of the diameter B of the joint 22 with the layer 1 was determined.
  • we calculated what percentage of the measured number was 50% or more.
  • the minimum diameter of the column was measured by the same measurement as above. The measurement was performed at 10 points.
  • Table 4 shows the above results, the materials of the internal electrodes, the difference in thermal expansion between the piezoelectric body and the columns, and the like.
  • Example 4 in which a column penetrating the internal electrode and connecting the piezoelectric members facing each other with the internal electrode interposed therebetween, had a variation in the initial displacement of 10%. % Or less, the strength was smaller than that of the comparative example (No. 26). It was also found that the change in displacement after the continuous durability test was excellent in reliability and durability compared to the comparative example, which was as small as 5% or less.
  • sample No. 26 which does not have columns, is out of the scope of the present invention, and the variation in the initial displacement is as poor as 20%, and the variation in the displacement after the continuous durability test is as poor as 10%. In addition, the durability was inferior to the product of the present invention.
  • Example 5 a laminated piezoelectric actuator according to the present invention was produced as follows.
  • a slurry in which a calcined powder, a binder, and a plasticizer were mixed was prepared, and a ceramic green sheet to be a 150 ⁇ m-thick piezoelectric layer 1 was prepared by a doctor blade method.
  • a conductive paste obtained by adding a binder to a silver-palladium alloy formed at an arbitrary composition ratio, a conductive paste obtained by adding a binder to Ag, and a binder to Cu was selected, and 300 sheets formed to a thickness of 3 m by a screen printing method were prepared for a laminate. Separately, prepare a green sheet to serve as a protection section, and apply these to the protection section, 30 sheets for the protection section, 300 sheets for the drive lamination section, and 30 sheets for the protection section. Fired at ° C.
  • a groove having a width of 0 m and a width of 50 ⁇ m was formed.
  • the porosity of the external electrode at this time was determined by using an image analyzer for a cross-sectional photograph of the external electrode.
  • V was 40% when measured.
  • a lead wire was connected to the external electrodes, and a DC electric field of 3 kVZmm was applied to the external electrodes of the positive electrode and the negative electrode via the lead wires for 15 minutes to perform a polarization treatment.
  • a laminated piezoelectric actuator using the element was manufactured.
  • the laminated piezoelectric element is tested for continuous until the number of times of driving 1 X 10 9 times, it represents the number became poor by this time as a failure rate.
  • Table 5 shows the results.
  • the thickness of the piezoelectric body of the protection portion was changed from 50 to 200 m, and any of silver-palladium alloy, silver, copper, and nickel was used as the dummy layer.
  • the dummy layer contained PZT as an inorganic composition.
  • Example 5 As shown in Table 5, the shortest distance from the outer periphery of the dummy layer to the side surface of the protection portion on the same surface having a cross section perpendicular to the laminating direction is A, and AZB is 0.01-0.08 when the width of the protection portion is B.
  • Sample Nos. 1-6, 8-14, and 16-30 of Example 5 according to Example 5 had a failure rate of 2% or less after the continuous durability test, and were smaller than the comparative examples (Nos. 7 and 15). I was told to be excellent. [0209] In particular, Sample Nos. 1-6, 91-13, 16, and 18-3 of Example 5 in which AZB was 0.02-0.07
  • a rating of 0 indicates that the defect rate after the continuous durability test was 1% or less, which was even smaller and excellent in durability.
  • the dummy layer contains metal
  • the internal electrode is made of the same material as the dummy layer
  • the thickness of the piezoelectric body is 50 ⁇ m or more
  • the inorganic composition is applied to the dummy layer.
  • the multilayer piezoelectric element of the present invention can be used for a piezoelectric transformer.
  • the multilayer piezoelectric element of the present invention is used for a multilayer piezoelectric actuator used for a precision positioning device such as a fuel injection device for an automobile or an ink of an ink jet printer, a precision positioning device such as an optical device, a vibration prevention drive device, and the like. it can.
  • it is mounted on sensor elements mounted on combustion pressure sensors, knock sensors, acceleration sensors, load sensors, ultrasonic sensors, pressure-sensitive sensors, yorate sensors, etc., and on piezoelectric gyros, piezoelectric switches, piezoelectric transformers, piezoelectric breakers, etc. It can be used for a laminated piezoelectric element used for a circuit element to be used.

Abstract

 高電界、高圧力下で使用した場合でも変位のばらつきが小さく、また長期間連続駆動させた場合でも変位量の変化が小さく、信頼性、耐久性に優れた積層型圧電素子を提供するために、圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第1の側面と第2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の内部電極は第1の側面で外部電極に接続され、他方の内部電極は第2の側面で外部電極に接続された積層型圧電素子において、1×109回以上の連続駆動後における素子変位量の連続駆動前の素子変位量に対する変化率が5%以内であるとした。

Description

技術分野
[0001] 本発明は、積層型圧電素子および噴射装置に関し、例えば、自動車エンジンの燃 料噴射装置、インクジェット等の液体噴射装置、光学装置等の精密位置決め装置や 振動防止装置等に搭載される駆動素子、ならびに燃焼圧センサ、ノックセンサ、加速 度センサ、荷重センサ、超音波センサ、感圧センサ、ョーレートセンサ等に搭載され るセンサ素子、ならびに圧電ジャイ明ロ、圧電スィッチ、圧電トランス、圧電ブレーカー 等に搭載される回路素子に用いられる積田層型圧電素子および噴射装置に関するも のである。
背景技術
[0002] 従来より、積層型圧電素子としては、圧電体と電極を交互に積層した積層型圧電ァ クチユエータが知られている。積層型圧電ァクチユエータは、同時焼成タイプと、圧電 磁器と内部電極板を交互に積層したスタックタイプの 2種類に分類されるが、低電圧 ィ匕、製造コスト低減の面から同時焼成タイプの積層型圧電ァクチユエータが優位性を 示しつつある。また、この同時焼成タイプの積層型圧電ァクチユエ一タは薄層化及び 耐久性の面で有利である
[0003] 図 7は、従来の積層型圧電ァクチユエータの一例を示す断面図である。この積層型 圧電ァクチユエータは、圧電体 51と内部電極 52が交互に積層された駆動積層部 53 とその積層方向の両端面に設けられた不活性保護部 55によって構成される。この例 では、内部電極 52は、側面において、隣接する 2つの内部電極 52のうちの一方の端 部が駆動積層部 53の側面に露出し、他方の端部は、絶縁体 61により被覆されてい る。そして、内部電極 52の端部が露出した駆動積層部 53の側面に外部電極 70が形 成されて、その外部電極に端部が絶縁体 61で覆われていない内部電極 52が接続さ れる。
[0004] また、図 8は、従来の積層型圧電素子の他の例における断面を示すものである。こ の例では、圧電体 51と内部電極 52が交互に積層されているが、内部電極 52aは圧 電体 51の主面全体には形成されておらず、いわゆる部分電極構造となっている。こ の部分電極構造の内部電極 52を左右互い違いに積層することで、積層型電子部品 の側面に形成された外部電極 54に内部電極 52を一層おきに交互に接続される構 造となっている。そして積層型圧電ァクチユエータとして使用する場合には、外部電 極 54にさらにリード線(図示なし)を半田により接続固定する。
[0005] この図 8の積層型圧電素子においても、圧電体 51と内部電極 52が交互に積層さ れた駆動積層部 63と、その積層方向における上下の両端部に設けられた不活性保 護部 62とからなっている。この不活性保護部 62に電極層を含まないものが普通であ るが、駆動積層部 63と不活性保護部 62の間で焼成時に収縮の差が生じ、応力が発 生したり、クラックが発生したりすることを防止するために、不活性保護部 62に駆動積 層部 63と同様の電極層を積層し、焼成後〖こ起こるクラックや使用時〖こ起こるクラック を防止して 、る(例えば特許文献 4参照)
[0006] この積層型圧電素子は、圧電体となるセラミックグリーンシートに内部電極となる内 部電極ペーストを所定の電極構造となるようなパターンで印刷し、この内部電極ぺー ストが塗布されたグリーンシートを複数積層して得られた積層成形体を作製し、これを 焼成して、側面に外部電極となる導電性ペーストを焼き付けることによって製造される (例えば、特許文献 1参照)。
[0007] また、内部電極 52としては、銀とパラジウムの合金が用いられ、さらに、圧電体 51と 内部電極 52を同時焼成するために、内部電極 52の金属組成は、銀 70重量%、パラ ジゥム 30重量%にして用いて 、た (例えば、特許文献 2参照)。
しかしながら、内部電極が金属であるために圧電体との接合力が弱くまた、熱膨張 の差による内部応力の発生により内部電極と圧電体との界面でクラックが発生したり 、ひどい場合は、積層体が破壊するという問題も発生していた。そこでこの問題を解 決するために、例えば特許文献 3には、内部電極にセラミック粉末を混ぜ圧電体と内 部電極との接合強度を増す方法が示されて!/ヽる。
[0008] 近年においては、小型の圧電ァクチユエータで大きな圧力下において大きな変位 量を確保するため、より高い電界を印加し、長時間連続駆動させることが行われてい る。 特許文献 1 :特開昭 61— 133715号公報
特許文献 2:実開平 1 130568号公報
特許文献 3:特開平 4-299588号公報
特許文献 4:特開平 9— 270540号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、一般的に、圧電体は使用する環境温度により変位量が変化すること から、素子温度が上昇することで、圧電ァクチユエータの変位量が変化するという問 題があった。また、変位量が駆動中に変化することで電圧制御する電源に対する負 荷変動が生じ、電源に負担をかけるという問題が生じていた。さらには、変位量の変 化率が大きいと、変位量自体が急激に劣化するだけでなぐ素子温度上昇が放熱量 を上回ると熱暴走現象が生じて素子が破壊するという問題があった。
[0010] この素子温度の上昇を抑制するためには、比抵抗の小さい内部電極を用いること が効果的である。しカゝしながら、銀-パラジウム合金の比抵抗値は、その組成比によ つて銀、またはパラジウム単体の比抵抗よりも著しく高い抵抗となり、銀 70重量%、パ ラジウム 30重量0 /0の銀 パラジウム合金の組成では、パラジウム単体の 1. 5倍の抵 抗になるという問題があった。し力も、内部電極の焼結密度が低くなれば、さらに高い 抵抗になった。
また、従来の積層型圧電ァクチユエータでは、内部電極部分が圧電体に比べ柔ら 力 、ために圧電体で発生する変位の一部が吸収され、変位のばらつきが大きくなる と言う問題があった。また、耐久性においても問題があり、長時間の繰り返しの使用 後に変位量のばらつきが大きくなると言う問題もあった。これら問題は、上記特許文 献 3に示すように内部電極 52にセラミック粉末を混ぜて内部電極 52と圧電体 51との 接合強度向上する方法でも解決することはできな力つた。
[0011] 即ち、近年のように、ァクチユエータを小型化し、大きな圧力下で大きな変位量を確 保するために、より高い電界を印加し、長時間連続駆動させているが、この場合、使 用初期において個々のァクチユエータの変位のばらつきが問題となっている。更に、 長時間の運転での変位量の変化も問題となっている。 [0012] さらに、積層型圧電ァクチユエータは通常の積層型電子部品(例えば積層型セラミ ックコンデンサ)と異なり、通電に伴い圧電体の磁器が変形するものである。すなわち 駆動回数と圧電体の磁器変形回数が同じである。また、近年においては、小型の積 層型圧電ァクチユエータで大きな圧力下において大きな変位量を確保するためによ り高い電界を印加し、長時間連続駆動させることが望まれている。
[0013] し力しながら、特許文献 4に示された改善では、高い電圧を印加し、特に長時間連 続駆動を行った場合、クラックが発生し、ァクチユエータとしての機能が損なわれ、耐 久'性に問題があった。
そこで本発明は、高電界、高圧力下で使用した場合でも変位のばらつきが小さぐ また長期間連続駆動させた場合でも変位量の変化が小さぐ信頼性、耐久性に優れ た積層型圧電素子及び噴射装置を提供することを目的とする。
課題を解決するための手段
[0014] 以上の目的を達成するために、本発明に係る第 1の積層型圧電素子は、圧電体層 と内部電極とが交互に積層されてなる積層体と、その積層体の第 1の側面と第 2の側 面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の内部電極 は前記第 1の側面で前記外部電極に接続され、他方の内部電極は前記第 2の側面 で前記外部電極に接続された積層型圧電素子において、
1 X 109回以上の連続駆動後における素子変位量の連続駆動前の素子変位量に 対する変化率が 5%以内であることを特徴とする。
このように構成された本発明の第 1の積層型圧電素子は、連続駆動させても変位量 が実質的に変化しないため、装置の誤作動がなくなり、さらに、熱暴走のない優れた 耐久性を有している。
[0015] また、本発明に係る第 2の積層型圧電素子は、圧電体層と内部電極とが交互に積 層されてなる積層体と、その積層体の第 1の側面と第 2の側面にそれぞれ形成された 外部電極とを備え、隣接する内部電極の一方の内部電極は前記第 1の側面で前記 外部電極に接続され、他方の内部電極は前記第 2の側面で前記外部電極に接続さ れた積層型圧電素子において、
1 X 109回以上の連続駆動後における素子抵抗の連続駆動前の素子抵抗の変化 率が 5%以内であることを特徴とする。
以上のように構成された本発明に係る第 2の積層型圧電素子は、連続駆動前後の 素子抵抗の変化率を 5%以内とすることにより、装置の誤作動がなくなり、さらに、熱 暴走のな!、優れた耐久性を有して 、る。
[0016] 本発明に係る第 1と第 2の積層型圧電素子では、連続駆動中の素子変位量の最大 変化率が 5%以内であることが好ましぐこれにより、より効果的に装置の誤作動を防 止でき、熱暴走のな 、より優れた耐久性を持たせることができる。
[0017] 本発明に係る第 1と第 2の積層型圧電素子では、 1 X 109回以上の連続駆動後に おける圧電体層の厚み寸法の連続駆動前の圧電体層の厚み寸法に対する寸法変 化率が 5%以内であることが好ましい。
このように、圧電体の駆動前後の厚み寸法変化率を 5%以内とすることにより、装置 の誤作動をより効果的に防止でき、熱暴走のないより優れた耐久性を持たせることが できる。
[0018] 本発明に係る第 1と第 2の積層型圧電素子では、連続駆動中の素子抵抗の最大変 化率が 5%以内であることが好ましい。
このように、連続駆動中の素子抵抗の最大変化率を 5%以内とすることにより、装置 の誤作動を効果的に防止でき、さらに、熱暴走のないより優れた耐久性を持たせるこ とがでさる。
[0019] 本発明に係る第 3の積層型圧電素子は、圧電体層と内部電極とが交互に積層され てなる積層体と、その積層体の第 1の側面と第 2の側面にそれぞれ形成された外部 電極とを備え、隣接する内部電極の一方の内部電極は第 1の側面で外部電極に接 続され、他方の内部電極は第 2の側面で外部電極と接続された積層型圧電素子に おいて、
前記内部電極を貫き、この内部電極を挟んで対向する圧電体層をつなぐ柱を設け たことを特徴とする。
[0020] このように構成された本発明に係る第 3の積層型圧電素子は、内部電極中に圧電 体間をつなぐ柱を設けることで、変位量のばらつきを小さくすることができる。また、長 時間の連続運転後も変位量の変化が小さい、高信頼性で耐久性の向上した圧電ァ クチユエータを提供することができる。従って、例えば、耐久性に優れ、高信頼性の 噴射装置を提供することができる。
[0021] 本発明に係る第 3の積層型圧電素子では、上記柱と圧電体層の接合部分の径が 柱の最大径の 50%以上であるものの個数が全体の 30%以上を占めることが好まし い。
[0022] また、本発明に係る第 3の積層型圧電素子では、上記柱の最小径の平均値が 0. 2 μ m以上であることが好ましい。
[0023] さらに、本発明に係る第 3の積層型圧電素子では、上記柱が lmm当り 5— 150本 存在することが好ましい。
[0024] またさらに、本発明に係る第 3の積層型圧電素子では、上記柱と前記圧電体層を 構成する圧電体材料との熱膨張差が 3 X 10— 5Z°C以下であることが好ま 、。
[0025] また、本発明に係る第 3の積層型圧電素子では、上記柱が圧電体材料と同じ材料 力 なることが好ましい。
[0026] また、以上のように構成された本発明に係る第 1一第 3の積層型圧電素子では、前 記積層体は、その上下に前記圧電体層とダミー層とを交互に積層した不活性保護部 を含み、前記ダミー層の外周から前記不活性保護部の側面までの最短距離を A、不 活性保護部の幅を Bとした時に AZBが 0. 01-0. 08であることが好ましい。
ここで上述の最短距離 Aは保護部を積層方向と垂直な方向に切った面においてそ れぞれの長さを測ったものであり、不活性保護部の幅 Bはその最短距離 Aを測った 方向と同一の方向を測った長さとしている。
[0027] このように構成された積層型圧電素子によれば、焼成の収縮を均一にすること及び 圧電体層間の適切な接合領域が設けられることにより不活性保護部と駆動積層部と の間に生じる応力を低減できるため、高電圧、長時間の連続的な使用においても耐 久性を向上させることができ、耐久性に優れた積層型圧電素子を有する噴射装置を 提供することができる。
[0028] すなわち、本発明者は、ダミー層の外周から不活性保護部の側面までの最短距離 と耐久性に関し研究開発を行った結果、その最短距離と耐久性の間に関係があるの を見出した。つまり、ダミー層の不活性保護部の側面までの最短距離を制御すること で、耐久性が格段に向上することを見出した。
[0029] このダミー層を有する本発明に係る積層型圧電素子においては、前記ダミー層に 金属を含むことが好ましい。
[0030] また、前記ダミー層は前記内部電極と同じ物質力もなることが好ましい。
さらに、前記ダミー層が金属酸ィヒ物、窒化物及び炭化物のいずれかの無機組成物 を含んで!/、ることが好ましぐ前記ダミー層が無機組成物を 2wt%以上含有すること 力 り好ましい。
[0031] 前記圧電体層の厚みが 50 μ m以上であることが好ましい。
[0032] また、以上のように構成された本発明に係る第 1一第 3の積層型圧電素子において は、前記内部電極中の金属糸且成物が VIII族金属および Zまたは lb族金属を主成分 とすることが好ましい。
このように、前記内部電極中の金属組成物が VIII族金属および Zまたは lb族金属 を主成分とすることにより、前記内部電極を高 ヽ耐熱性を有する金属組成で形成で きるため、焼成温度の高い前記圧電体層との同時焼成が可能になる。
[0033] 内部電極が VIII族金属および Zまたは lb族金属を主成分とする第 1一第 3の積層 型圧電素子においては、前記内部電極中の VIII族金属の含有量を Ml (重量%)、 I b族金属の含有量を M2 (重量0 /0)としたとき、 0< M1≤15、 85≤M2< 100、 M1 + M2= 100を満足することが好ましい。このようにすると、前記内部電極の比抵抗を小 さくできるため、積層型圧電素子を長時間連続駆動させても、前記内部電極部の発 熱を抑制することができる。併せて、積層型圧電素子の温度上昇を抑制できるため、 素子変位量を安定化することができる。
[0034] さらに、本発明に係る積層型圧電素子においては、前記 VIII族金属が Ni、 Pt、 Pd 、 Rh、 Ir、 Ru、 Osのうち少なくとも 1種以上であり、 lb族金属が Cu、 Ag、 Auのうち少 なくとも 1種以上であることが好ましい。前記内部電極の原料として、このような範囲か ら選択すると、合金原料および混合粉原料の!/ヽずれでも使用することができる。
[0035] さらに、前記 VIII族金属が Pt、 Pdのうち少なくとも 1種以上であり、 lb族金属が Ag、 Auのうち少なくとも 1種以上であると、耐熱性および耐酸ィ匕性に優れた前記内部電 極を形成できる。 [0036] さらに、前記 VIII族金属が Niであることにより、駆動時の変位によって生じる応力を 緩和することができるとともに、耐熱性に優れた前記内部電極を形成できる。
[0037] さらに、前記 lb族金属が Cuであることにより、駆動時の変位によって生じる応力を 緩和することができるとともに、熱伝導性に優れた前記内部電極を形成できる。
[0038] さらに、前記内部電極中に金属組成物とともに酸ィ匕物、窒化物または炭化物を添 加することにより、前記内部電極と前記圧電体の界面の密着強度が増大するため、 前記内部電極と前記圧電体の界面における剥離を抑制することができる。
また、前記酸ィ匕物が PbZrO— PbTiOからなるぺロブスカイト型酸化物を主成分と
3 3
することが好ましい。
[0039] さらに、前記圧電体層はぺロブスカイト型酸化物を主成分とすることが好ましい。
[0040] また、前記圧電体が PbZrO -PbTiOからなるぺロブスカイト型酸化物を主成分と
3 3
したことにより、前記圧電体と前記内部電極を同時焼成することができるため、焼成 工程を短縮でき、併せて、前記内部電極の比抵抗を小さくできる。
[0041] また、前記積層体の焼成温度が 900°C以上 1000°C以下であることが好ましい。
[0042] さらに、前記内部電極中の組成のずれが焼成前後で 5%以下とすることにより、積 層型圧電素子の駆動による伸縮に追従可能とでき、内部電極の剥離を抑制すること ができる。
[0043] またさらに、本発明に係る第 1一第 3の積層型圧電素子では、前記積層体の側面に 端部が露出する前記内部電極と端部が露出しない前記内部電極とが交互に構成さ れており、前記端部が露出していない前記内部電極と前記外部電極間の前記圧電 体層部分に溝が形成されており、該溝に前記圧電体層よりもヤング率の低い絶縁体 が充填されて 、ることが好まし 、。
[0044] また、本発明に係る第 1一第 3の積層型圧電素子において、前記内部電極は空隙 を含み、前記内部電極の断面における全断面積に対する空隙の占める面積比が 5 一 70%であることが好ましい。このようにすると、圧電体が電界によって変形する際の 内部電極による拘束力を弱くでき、圧電体の変位量を大きくできる。また、空隙により 内部電極に加わる応力が緩和され、素子の耐久性が向上するという利点がある。さら に、素子内における熱伝導は内部電極が支配的である力 内部電極に空隙があると 、素子外部の急激な温度変化による素子内部の温度変化が緩和されるので、熱衝 撃に強い素子が得られる。
[0045] 本発明に係る噴射装置は、噴射孔を有する収納容器と、該収納容器に収納された 第 1一第 3のいずれかの積層型圧電素子と、該積層型圧電素子により前記噴射孔か ら液体を噴出させるバルブとを具備してなることを特徴とする。
これにより、耐久性の高い噴射装置を提供できる。
図面の簡単な説明
[0046] [図 1A]本発明の積層型圧電素子を示す斜視図である。
[図 1B]本発明の積層型圧電素子における圧電体層と内部電極層との積層状態を示 す斜視展開図である。
[図 2A]本発明に係る実施の形態 2の積層型圧電素子の斜視図である。
[図 2B]実施の形態 2の積層型圧電素子の側面図である。
[図 3]実施の形態 2に係る積層型圧電素子の断面の一部を拡大して示す断面図であ る。
[図 4A]外部電極の外面に導電性補助部材を形成した積層型圧電素子の斜視図で める。
[図 4B]外部電極の外面に導電性補助部材を形成した積層型圧電素子の断面図で める。
[図 5A]本発明に係る実施の形態 3の積層型圧電素子の斜視図である。
[図 5B]実施の形態 3の積層型圧電素子における圧電層、内部電極層、保護部、及び ダミー層の積層状態を示す断面図である。
[図 6]本発明の噴射装置を示す側面図である。
[図 7]従来の積層型圧電ァクチユエータの側面図である。
[図 8]従来の積層型圧電素子の断面の一部を示すものである。
符号の説明
[0047] 1 · · ·圧電体、
2· · ·内部電極、
3…絶縁体、 4· 外部電極、
13
14 20· · ·不活性保護部、
18 ■柱、
21 •ダミー層、
22 •柱と圧電体の接合部分、
31 •収納容器、
33 •噴射孔、
35 'ニードルバルブ、
37 •燃料通路、
39 'シリンダ、
41 'ピストン、
43 '圧電ァクチユエータ。
発明を実施するための最良の形態
[0048] 以下、本発明に係る実施の形態について図面を参照しながら説明する。
実施の形態 1.
図 1Aは、本発明に係る実施の形態 1の積層型圧電素子の構成を示す斜視図であ り、図 1Bは、圧電体層 1と内部電極層 2の積層状態を示す斜視展開図である。
本実施の形態 1の積層型圧電ァクチユエータは、図 1A, Βに示すように、複数の圧 電体層 1と複数の内部電極 2とを交互に積層してなる四角柱状の積層体と、その側面 に内部電極 2と一層おきに接続されるように形成された外部電極 4とによって構成さ れている。
[0049] 具体的には、内部電極 2の端部が外部電極 4が形成される側面において一層おき に露出するようにして、露出した内部電極 2の端部と外部電極 4とが導通するように構 成している。尚、積層体において、符号 14を付して示す部分は、内部電極を含むこと なく圧電体層 1を積層した不活性保護部である。尚、本実施の形態 1の積層型圧電 素子を積層型圧電ァクチユエータとして使用する場合には、外部電極 4にリード線を 半田により接続固定し、前記リード線を外部電圧供給部に接続すればよい。 [0050] 圧電体層 1間には内部電極 2が配されている力 この内部電極 2は、各圧電体層 1 に所定の電圧を印加し、圧電体層 1に逆圧電効果による変位を起こさせるために形 成されるものであり、例えば、銀—パラジウム等の金属材料により形成される。
[0051] また、不活性保護部 14は、内部電極 2が配されていない複数の圧電体層 1の層か らなり、不活性保護部 14は電圧を印カロしても変位しない。
[0052] そして、本実施の形態 1の積層型圧電素子は、連続して繰り返し駆動した場合であ つても、駆動前後の素子変位量の変化率が 5%以内になるように構成されている。す なわち、本実施の形態 1の積層型圧電素子は連続駆動前後の素子変位量の変化率 力 %以下に抑えられており、耐久性が極めて高い。
[0053] ここで、連続駆動前後の素子変位量の変化率とは、積層型圧電素子を作製した後 、連続使用する前における変位量に対する、繰り返し駆動した後における変位量の 変化の割合をいう。
[0054] 具体的には、まず、積層型圧電素子を作製した後、連続使用する前に、積層型圧 電素子に、ある直流電圧を印加して変位量 (初期変位量)を求める。
次に、積層型圧電素子に任意の交流電圧を印カロして、 1 X 109回程度連続駆動さ せた後、初期変位量を測定した時と同一の直流電圧を印加してその時の変位量を 求める (連続駆動後変位量)。
そして、初期変位量に対する連続駆動後変位量の変化率を算出し、その変化率を 連続駆動前後の素子変位量の変化率とする。
[0055] すなわち、連続駆動前後の素子変位量の変化率は、
{ 100 X (連続駆動後変位量 初期変位量) / (初期変位量) } %で与えられる。 さらに、本実施の形態 1の積層型圧電素子では、連続駆動中の素子変位量の最大 変化率が 5%以内となるように構成されている。これは、積層型圧電素子の連続駆動 中の素子変位量の最大変化率が 5%を超えると、積層型圧電素子の駆動中に劣化 し、積層型圧電素子の耐久性が低下する場合があるからである。
[0056] ここで、連続駆動中の素子変位量の最大変化率とは、積層型圧電素子に、ある直 流電圧を印加し、その際に起こる変位の量を連続駆動前の変位量 (初期状態の変位 量)とし、次に、初期状態の変位量を測定するために印加した直流電圧に等しい交 流電圧を積層型圧電素子に印加して、 1 X 108回程度連続駆動させて各サイクルご とに変位を測定し、その中の変位の最大値を連続駆動中の最大変位量として、その 最大変位量が前記連続駆動前の変位量に対して変化した割合で示している。
[0057] ここでは、交流電圧を印加して連続駆動させた場合について説明した力 ノ ルス電 圧を用いて連続駆動させてもよぐその場合であっても連続駆動中の素子変位量の 最大変化率が 5%以内となるように構成されている。例えば、積層型圧電素子に、 15 OVの直流電圧を印加して、そのときの変位量を初期状態の変位量とし、次に、 OVと 150Vのノ ルス電圧により積層型圧電素子を、 1 X 108回程度連続駆動させて各パ ルスごとに変位を測定したとき、本発明に係る素子では、その中の変位の最大値は、 5%以内となるように構成されて 、る。
[0058] 尚、初期状態を測定する直流電圧及び交流電圧若しくはパルス電圧は例えば、 10 OV— 200Vの間で任意に設定し得る。
また、本発明の積層型圧電素子では、連続駆動前後の圧電体の厚み寸法変化率 力 %以内としてある。これは、積層型圧電素子の連続駆動前後の圧電体の厚み寸 法変化率が 5%を超えると、駆動前後の積層型圧電素子の寸法自体が変化するた め、結果的に変位量が変動するために、積層型圧電素子の劣化が増大し、積層型 圧電素子の耐久性が著しく低下するためである。
[0059] 尚、圧電体の厚み寸法は、積層型圧電素子の断面や側面における圧電体を SEM で観察することにより測定することができる。
ここで、圧電体の駆動前後の厚み寸法変化率とは、積層型圧電素子に任意の交流 電圧を印加し、 1 X 109回程度連続駆動させた後の積層型圧電素子の積層方向に おける圧電体の厚み寸法が、連続駆動前の圧電体の厚み寸法に対して変化した割 合を示している。
[0060] また、圧電体の厚み寸法変化率は、駆動前の積層型圧電素子の側面を SEM等の 顕微鏡で観察して、任意の 10箇所の圧電体の厚み寸法を測定して平均値を算出し 、駆動後、同一箇所の厚み寸法を測定して平均値を算出することにより求めることが できる。
[0061] また、本実施の形態 1の積層型圧電素子では、積層型圧電素子の連続駆動前後 の素子抵抗の変化率が 5%以内としてある。これは、積層型圧電素子の連続駆動前 後の素子抵抗の変化率が 5%を超えると、積層型圧電素子の劣化が増大し、積層型 圧電素子の耐久性が著しく低下するためである。
[0062] ここで、連続駆動前後の素子抵抗の変化率とは、積層型圧電素子に任意の直流電 圧を印加し、その際に測定された素子の抵抗値を連続駆動前の素子抵抗とし、次に 、積層型圧電素子に任意の交流電圧を印力 tlして、 1 X 109回程度連続駆動させた後 の素子の抵抗値を連続駆動後の素子抵抗として、該連続駆動後の素子抵抗が前記 連続駆動前の素子抵抗に対して変化した割合を示している。
[0063] さらに、実施の形態 1の積層型圧電素子は連続駆動中の素子抵抗の最大変化率 力 %以内としてある。これは、積層型圧電素子の連続駆動中の素子抵抗の最大変 化率が 5%を超えると、積層型圧電素子の駆動中に劣化が増大し、積層型圧電素子 の耐久性が低下する場合があるからである。
[0064] ここで、連続駆動中の素子抵抗の最大変化率とは、積層型圧電素子に任意の直流 電圧を印加し、その際に測定された素子の抵抗値を連続駆動前の素子抵抗とし、次 に、積層型圧電素子に任意の交流電圧を印力 tlして、 1 X 108回程度連続駆動させて いる際に変化した素子抵抗の最大抵抗値を連続駆動中の素子抵抗として、該連続 駆動中の素子抵抗が前記連続駆動前の素子抵抗に対して変化した割合を示してい る。
[0065] 上記に示したような本発明の積層型圧電素子において、連続駆動前後や連続駆 動中の素子変化量、そして、連続駆動前後の圧電体の厚み寸法変化率、そして、連 続駆動前後や連続駆動中素子抵抗の変化率を 5%以内にするために以下のように すればよい。
[0066] これまで、素子変位量、圧電体の厚み寸法変化率、または素子抵抗の変化を抑制 する手段としては、連続駆動中の素子温度を一定に保つ方法や、素子温度に応じて 駆動電圧を細力べ制御する方法が用いられてきた。具体的には、素子温度をモニタ 一しながら駆動電圧を制御したり、素子周辺温度を制御するために、放熱を積極的 に行うヒートシンクを取り付けたりした。
[0067] これに対して、本発明に係る実施の形態 1においては、駆動により発生する素子自 身の発熱を抑制することにより、連続駆動中の素子温度を制御した (素子温度の変 化を抑制した)。前記素子温度を制御する(素子温度の変化を抑制する)ためには、 圧電体層 1の誘電損失 (tan δ )を小さくしたり、素子抵抗を小さくする必要がある。
[0068] また、分極の度合いにより圧電体の厚み寸法が変化することから、連続駆動前後の 圧電体の厚み寸法変化率を一定に保つには、連続駆動前後の分極状態が同一とな るように、圧電体の誘電損失 (tan δ )を小さくする必要がある。さらに、圧電体の温度 がキュリー点よりも高い温度になってしまうと、駆動前の分極状態と駆動中の分極状 態が変化してしま 、、連続駆動前後の圧電体の厚み寸法や変位量が変化しやすく なるため、素子温度の上昇を抑制する必要がある。そこで、電極材料の比抵抗を小さ くすることで駆動時に素子自身の温度上昇を抑止することが必要である。
[0069] 例えば、圧電体層 1を PbZrO— PbTiO等のぺロブスカイト型酸化物を主成分とし
3 3
て形成する場合、誘電損失 (tan δ )を小さくするためには、積層体を酸素過剰雰囲 気で焼成する方法や、また、積層体の焼成後の処理において、最大焼成温度からの 降温速度を遅くする方法がある。具体的には、降温速度を 600°CZ時以下にすれば よぐ好ましくは 300°CZ時以下にすればよい。また、誘電損失 (tan δ )の値としては 、 1. 5%未満であればよぐ好ましくは 0. 5%以下にすればよい。
[0070] また、素子抵抗を小さくするには、内部電極 2の材料として、比抵抗値が小さい組成 の材料を選択するとともに、電気伝導の経路を確保した緻密な構造にするとよい。 さらに、圧電体層 1を構成する材料の変位量の温度特性が、使用温度に関係なく 一定であることが望ましいので、連続駆動した時における素子の温度変化範囲にお Vヽて、変位量が小さ 、圧電体材料が好ま 、。
またさらに、効率良く素子内部の熱を素子の外側に放出するために、熱が伝わる主 要な経路となる内部電極 2を熱伝導特性の優れた組成にすることが好ましい。
[0071] 次に、本実施の形態 1の積層型圧電素子の製造方法を説明する。
本製造方法においては、まず、 PbZrO -PbTiO等力 なるぺロブスカイト型酸ィ匕
3 3
物の圧電セラミックスの仮焼粉末と、アクリル系、プチラール系等の有機高分子から 成るバインダーと、 DBP (フタル酸ジォチル)、 DOP (フタル酸ジブチル)等の可塑剤 とを混合してスラリーを作製する。そして、該スラリーを用いて、周知のドクターブレー ド法ゃカレンダーロール法等のテープ成型法により圧電体層 1となるセラミックダリー ンシートを作製する。
[0072] 次に、銀-パラジウム等の内部電極を構成する金属粉末にバインダー、可塑剤等を 添加混合して導電性ペーストを作製する。この導電性ペーストを前記各グリーンシー トの上面にスクリーン印刷等によって 1一 40 μ mの厚みに印刷する。
そして、上面に導電性ペーストが印刷されたグリーンシートを複数積層し、その積層 体を所定の温度で脱バインダーを行った後、 900— 1200°Cで焼成することによって 積層体を作製する。
[0073] 尚、積層体の製法は、上記製法に限定されるものではなぐ複数の圧電体層 1と複 数の内部電極 2とを交互に積層してなる積層体が作製できれば、どのような製法であ つてもよい。
[0074] 尚、積層体は、その側面に内部電極 2の端部が 1層おきに露出されるように作製さ れる。また、端部が露出していない内部電極 2と外部電極 4間の圧電体部分に溝を 形成して、この溝内に、圧電体層 1よりもヤング率の低い、榭脂またはゴム等の絶縁 体を形成するようにしてもよい。ここで、前記溝は内部ダイシング装置等で積層体の 側面に形成される。
[0075] 次に、ガラス粉末に、ノインダーを加えて銀ガラス導電性ペーストを作製し、これを シート状に成形して、乾燥し (シートの生密度が 6— 9gZcm3になるように制御し、溶 媒を飛散させる。)、このシートを、柱状積層体の外部電極形成面に転写する。そして 、ガラスの軟化点よりも高い温度、且つ銀の融点(965°C)以下の温度で、且つ焼成 温度 (°C)の 4Z5以下の温度で焼き付けを行う。これにより、銀ガラス導電性ペースト を用いて作製したシート中のバインダー成分が飛散消失し、 3次元網目構造をなす 多孔質導電体からなる外部電極 4が形成される。
外部電極 4を構成する導電材はァクチユエータの伸縮によって生じる応力を十分に 吸収するという点から、ヤング率の低い銀、若しくは銀が主成分の合金が望ましい。
[0076] また、前記銀ガラス導電性ペーストの焼き付け温度は、有効なネック部が形成され るように銀ガラス導電性ペースト中の銀と内部電極 2を拡散接合させ、また、外部電 極 4中の空隙を効果的に残存させ、さら〖こは、外部電極 4と柱状積層体側面とを部分 的に接合させるために、 550— 700°Cが望ましい。また、銀ガラス導電性ペースト中 のガラス成分の軟化点は、 500— 700°Cが望ましい。
[0077] 焼き付け温度が 700°Cより高 、場合には、銀ガラス導電性ペーストの銀粉末の焼結 が進みすぎ、有効な 3次元網目構造をなす多孔質導電体を形成することができない 。その結果、外部電極 4が緻密になりすぎてしまい、外部電極 4のヤング率が高くなり すぎるおそれがある。外部電極 4のヤング率が高くなると、駆動時の応力を十分に吸 収することができないので、外部電極 4が断線してしまう可能性がある。好ましくは、ガ ラスの軟化点の 1. 2倍以内の温度で焼き付けを行う。
[0078] 一方、焼き付け温度が 550°Cよりも低い場合には、内部電極 2端部と外部電極 4の 間で十分に拡散接合がなされないために、ネック部が形成されず、駆動時に内部電 極 2と外部電極 4の間でスパークを起こしてしまう可能性がある。
なお、銀ガラス導電性ペーストのシートの厚みは、圧電体層 1の厚みよりも薄いこと が望ましい。さらに好ましくは、ァクチユエータの伸縮に追従するという点から、 50 m以下がよい。以上の外部電極の一 4の形成により実施の形態 1の積層型圧電素子 は完成する。
[0079] また、側面に内部電極に達する溝を形成したものでは、外部電極 4を形成した積層 体をシリコーンゴム溶液に浸漬するとともに、シリコーンゴム溶液を真空脱気すること により、積層体の溝内部にシリコーンゴムを充填し、その後シリコーンゴム溶液力も積 層体を引き上げ、積層体の側面にシリコーンゴムをコーティングする。その後、溝内 部に充填、及び柱状積層体の側面にコーティングした前記シリコーンゴムを硬化させ ることにより、本発明の積層型圧電素子が完成する。
[0080] そして、外部電極 4にリード線を接続し、該リード線を介して一対の外部電極 4に 0.
1一 3kVZmmの直流電圧を印加し、積層体を分極処理することによって、本発明の 積層型圧電素子を利用した積層型圧電ァクチユエータが完成する。この積層型圧電 ァクチユエータにおいて、リード線を外部の電圧供給部に接続し、リード線及び外部 電極 4を介して内部電極 2に電圧を印加すれば、各圧電体層 1は逆圧電効果によつ て大きく変位する。このように構成された実施の形態 1の積層型圧電ァクチユエータ は、例えば、エンジンに燃料を噴射供給する自動車用燃料噴射弁に用いることがで きる。
[0081] 実施の形態 2.
図 2Aは、本発明に係る実施の形態 2の積層型圧電ァクチユエータの構成を示す斜 視図であり、図 2Bは、その側面図である。また、図 3は、内部電極 2部分の断面図で める。
[0082] 本実施の形態 2の積層型圧電素子力 なる積層型圧電ァクチユエータは、図 2A, Bに示すように、圧電体層 1と内部電極 2とを交互に積層してなる四角柱状の積層体 10の側面において、内部電極 2の端部を一層おきに絶縁体 3で被覆し、絶縁体 3で 被覆して ヽな 、内部電極 2の端部に接続されるように外部電極 4を設けて ヽる。外部 電極 4は、銀を主成分とする導電材とガラスからなる多孔質導電体であって、各外部 電極 4にはリード線 6が接続固定されている。
[0083] ここで、特に、本実施の形態 2の積層型圧電ァクチユエータでは、図 3に示すように 、内部電極 2を貫く複数の柱 18が設けられており、その柱 18によって対向する 2つの 圧電体層 1をつないでいることを特徴としている。このように、圧電体層 1間に例えば 、セラミックのように硬い物質で柱 18を形成することにより、内部電極 2の剛性が向上 し、内部電極 2で起こる変位量の吸収が抑制できるため、安定した変位量が得られる 。その結果、製品ごとの変位量のばらつきを小さくでき、かつ各製品の信頼性を向上 することができる。また、長時間の使用後の変位量の変化も小さくなり、耐久性を向上 することができる。
[0084] また、図 3に示すように柱 18と圧電体層 1との接合部分 22の径 Bが柱 18の最大径 Aの 50%以上であるような柱 18の個数が全体の 30%以上を占めることが好ましい。 これは、このようにすると、より安定した変位量が得られるからである。すなわち、柱 18 と圧電体層 1との接合部分 22の径 Bが柱 18の最大径 Aの 50%以上であるような柱 1 8の個数が 30%以上を占めることにより、柱 18と圧電体層 1の強度が大きくなり、また 剛性も大きくなる。これにより、内部電極 2で起こる変位量の吸収が少なくなり、変位 量が安定ィ匕するためである。その結果、各製品の変位量のばらつきをより抑えること ができ、より信頼性を向上させることができる。また、長時間の使用後の変位量の変 ィ匕も小さくなり、耐久性を向上させることができる。同様の理由から、柱 18と圧電体層 1との接合部分 22の径 Bが柱 18の最大径 Aの 50%以上である柱 18の個数力 柱 1 8全体の 50%以上であることがより好ましい。
[0085] 最大径 A及び径 Bは、以下のように測定される。まず、図 3のように積層型圧電素子 の内部電極 2付近の断面写真にお!、て、各柱 18につ!/、て最大径 Aと圧電体層 1との 接合部分の径 Bを測定する。その測定結果をもとに、(BZA) X 100の値を計算をし て、個々の柱 18に関して、柱 18の最大径 Aと柱 18と圧電体層 1との接合部分 22の 径 Bの割合を求める。そして、その値が 50%以上のものの個数が測定した数の何% あるかを計算する。このようなことを、 10箇所行って平均を取る。
[0086] また、本実施の形態 2では、柱 18の最小径の平均値が 0. 2 m以上であることが 好ましぐより好ましくは 0. 以上とする。このようにすることで、柱 18の強度を高 くでき、破壊しに《できる。従って、変位量のばらつきが抑制され、連続使用後の変 位量の変化も小さくでき、信頼性と耐久性が向上する。
[0087] また、本発明の積層型圧電素子では、内部電極 2付近の断面において、柱 18が 1 mm当り 5— 150本存在することが好ましぐより好ましくは、 10— 100本とする。これ は、柱 18の数を上記のようにすることで、剛性を高めることができ、変位量のばらつき の小さい信頼性に優れた積層型圧電素子が得られるためである。柱 18の数が 5本よ り少ないと柱を設けることによる効果が小さくなり、一方、柱 18の数が 100本より多い と内部電極 2の抵抗が大きくなり電極が加熱するなど電極としての機能が低下する。
[0088] さらに、柱 18と圧電体層 1との熱膨張差が 3 X 10— 5Z°C以下、特に 2 X 10— 5Z°Cで あることが好ましい。これにより、圧電体層 1と柱 18の間での内部応力が小さくなり、 界面での接合強度を大きくでき、耐久性を向上させることができる。圧電体層 1に PZ Tを用いた場合、熱膨張差が 3 X 10— 5Z°C以下の柱 18の材料として、 PZT、 Al Ο、
2 3
ZrO、 TiO、 SiO等を用いることができる。
2 2 2
[0089] 更には、柱 18が圧電体層 1とが同じ材料力も成ることが好ましい。これにより、柱 18 と圧電体層 1との間で発生する内部応力は、更に小さくなり、界面での接合強度が大 きくなり耐久性が向上できる。
[0090] 前記柱 18は、予め内部電極 2中に柱 18を成す材料の粉末を混合しておき、焼成 工程において、昇温中に焼成最高温度の 80%以上の温度で、一回以上保持するこ とによって形成することができる。つまり、従来の焼成とは異なり、脱脂をした後に、最 高焼成温度の 80%以上でー且保持することにより、内部電極 2に混合された柱 18を 成す材料の粉末が周囲の金属組成物の影響を受け、粒成長を生じやすい状態とな る。その後、最高焼成温度で焼成することで、圧電体層 1の間を連結するように粒成 長が起こり、内部電極 2を貫き、内部電極 2を挟んで対向する圧電体層 1をつなぐ柱 1 8を形成することができる。内部電極 2に添加する柱 18の材料粉末の添カ卩量は、 5— 40重量%が適当である。 40重量%よりも多くなると電極の抵抗が上がり過ぎ、加熱 する可能性があり、また 5重量%より小さいと柱を十分に設けることができず、内部電 極の剛性を向上する効果が小さくなり、信頼性及び耐久性を十分に向上させることが できなくなる。
[0091] 本実施の形態 2の積層型圧電素子の製造方法について以下に説明する。
最初に、実施の形態 1と同様にして、圧電体層 1となるセラミックグリーンシートを作 製する。
次に、例えば、銀-パラジウム等の内部電極を構成する金属粉末に柱 18の材料と して PZT、 Al O、 ZrO、 TiO、 SiO等のセラミック粉末をいずれか一種以上とバイ
2 3 2 2 2
ンダ一、可塑剤等を添加混合して導電性ペーストを作製する。この導電性ペーストを 前記各グリーンシートの上面にスクリーン印刷等によって 1一 40 μ mの厚みに印刷す る。
[0092] そして、上面に導電性ペーストが印刷されたグリーンシートを複数積層し、この積層 体を所定の温度で脱バインダー処理を行った後、最高温度の 80%以上の温度で一 且保持した後、最高温度である 900— 1200°Cで焼成する。最高温度の 80%以上で の保持時間は 0. 25hより長い方が好ましい。更に 2段以上のステップを設けても良い 。例えば、最高保持温度の 80%と 90%で保持するようにして、多段のパターンでカロ 熱しても良い。このように、柱の成長を促すためには、最高保持温度の 80%以上で 一旦保持することが必要である。これにより、対向する圧電体を強固に結合すること ができる。最高温度を 900°C以上 1200°C以下にするのは、 900°Cより低温では、緻 密な圧電体を作製することができず、 1200°Cを超えると焼成時の電極の収縮と圧電 体の収縮のずれを起因とした応力が大きくなり、連続駆動時にクラックが発生する理 由からである。
[0093] その後、積層型圧電素子の側面に端部が露出する内部電極が 1つ置きに表れるよ うにして、該端部が露出していない内部電極 2と側面間に溝を形成して、この溝内に 、圧電体層 1よりもヤング率の低い、例えば榭脂またはゴム等の絶縁体を形成する。 この溝 3は、ダイシング装置等により形成することができる。
[0094] 次に、実施の形態 1と同様にして、外部電極 4を形成する。
そして、外部電極 4を形成した積層体 10をシリコーンゴム溶液に浸漬するとともに、 シリコーンゴム溶液を真空脱気することにより、積層体 10の溝内部にシリコーンゴムを 充填し、その後シリコーンゴム溶液力も積層体 10を引き上げ、積層体 10の側面にシ リコーンゴムをコーティングする。その後、溝内部に充填、及び積層体 10の側面にコ 一ティングした前記シリコーンゴムを硬化させる。
その後、外部電極 4にリード線を接続することにより本発明の積層型圧電素子が完 成する。
[0095] そして、リード線を介して一対の外部電極 4に 0. 1— 3kVZmmの直流電圧を印加 し、積層体 10を分極処理することによって、製品としての積層型圧電ァクチユエータ が完成する。この完成品において、リード線を外部の電圧供給部に接続し、リード線 及び外部電極 4を介して内部電極 2に電圧を印加すれば、各圧電体層 1は逆圧電効 果によって大きく変位し、これによつて例えばエンジンに燃料を噴射供給する自動車 用燃料噴射弁として機能する。
[0096] 以上のように構成された積層型圧電素子は、内部電極 2の剛性が高くなり、また、 接合強度が向上するので、内部電極での変位量の吸収を少なくきる。更に連続駆動 させても、デラミネーシヨンが発生しないので、変位量の変化を小さくできる。ゆえに、 誤作動のな 、、高 、信頼性を有する圧電ァクチユエータを提供することができる。 本実施の形態 2の積層型圧電素子は、以上説明した具体例に限定されるものでは なぐ本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
[0097] 実施の形態 3.
図 5A, Bは、本発明に係る実施の形態 3の積層型圧電素子を示すもので、図 5Aは 斜視図、図 5Bは、圧電層、内部電極層、保護部、及びダミー層の積層状態を示す断 面図である。
[0098] 本実施の形態 3の積層型圧電素子は、図 5A, Bに示すように、圧電体層 1と内部電 極 2とを交互に積層してなる積層体 30の一対の対向する側面にそれぞれ外部電極 4 が設けられ、各外部電極 4に内部電極 2がー層おきに導通するように構成されている 。そして、本実施の形態 3の積層型圧電素子において、積層体 30は、駆動積層部 1 3の上下に圧電体層 1とダミー層 21が交互に積層された不活性保護部 20が積層さ れてなる。
[0099] 特に、本実施の形態 3の積層型圧電素子では、積層体 30において積層方向と垂 直な横断面において、ダミー層 21の外周と積層体の側面までの最短距離を A、その 最短距離となる方向における不活性保護部 20の幅を Bとした時に、 AZBが 0. 01— 0. 08となるように構成されている。すなわち、実施の形態 3に関する発明は、上述の ように最短距離 A、不活性保護部 20の幅 Bを設定することにより、耐久性を向上させ ることができ、長時間使用しても特性の変化がない信頼性の高い積層型圧電素子を 得ることができるのを見出して完成させたものである。
[0100] AZBが 0. 01より小さいと、積層される圧電体層 1同士の接合部分の領域が小さく なりすぎ、高電圧、長時間の連続使用中に、ダミー層 21部分において変形により受 ける応力が圧電体間の接合力より大きくなり、デラミネーシヨンが発生しやすい。
[0101] 一方、 AZBが 0. 08より大きいと不活性保護部 20と駆動積層部 13との焼成時の 収縮差や収縮のプロファイルが異なり、両者の間で大きな歪を生じ、圧電体間の接 合力より大きくなり、最悪の場合、焼成後にデラミナーシヨンが生じたり、長時間の使 用でデラミネーシヨンが生じたりする問題が発生する。
[0102] 本発明では、 A/Bの値は、 0. 02—0. 07であることが好ましい。更に 0. 03— 0.
06であることがより好ま 、。このようにすることで不活性保護部 20のデラミネーショ ンが発生しに《なり、耐久性を向上させることができる。
また、ダミー層 21に金属を含むことが好ましい。これにより、圧電体層 1間に発生し た応力を緩和でき、その結果、長時間の使用に対しても使用可能となり耐久性が向 上する。金属としては、 Ag、 Cu、 Ni、 Pd等、周期律表にある金属元素単体でも良い し、それらのうち 1つ以上の合金でも良い。さらにダミー層にガラスを含ませても良い。 [0103] また、ダミー層 21が内部電極 2と同じ物質力もなることが好ましい。このことにより、 不活性保護部 20と駆動積層部 13との焼成の挙動はほぼ同じとなり、両者間に発生 する応力を抑えられ、デラミネーシヨンを減少することができ、耐久性の向上した圧電 素子を得ることができる。
[0104] また、圧電体層 1の厚みは 50 μ m以上であることが好ましい。このように厚くすること で、発生する応力に耐えることができ、破壊を防止できる。
また、ダミー層 21が無機組成物として、金属酸化物、窒化物、炭化物のいずれか 1 又は 2以上を含むことが好ましい。ダミー層 21に無機組成物を入れることによって、 圧電体層 1間に無機組成物の架橋が生じ、焼成や使用時の応力に対し強くなり、デ ラミネーシヨンを生じ難くするので、耐久性が向上する。尚、無機組成物としては、 PZ T、 Al O、 ZrO、 TiO、 SiO、 TiN、 Si N、 A1N、 SiC及び TiC等を用いることが
2 3 2 2 2 3 4
できる。
[0105] 更に、ダミー層 21が無機組成物を 2wt%以上含有することが好ましい。これにより 圧電体層 1間の架橋が十分なものになり、圧電体層 1間の接合強度が増し、デラミネ ーシヨンを減少させ、耐久性を向上できる。
次に、本発明に係る実施の形態 3の積層型圧電素子の製法を説明する。 本方法では、まず、実施の形態 1と同様にして、圧電体層 1となるセラミックグリーン シートを作製する。
次にこのグリーンシートを適当な大きさにカットし、 AZBを制御するために枠に固 定する。
[0106] 次に、銀-パラジウム等の内部電極 2を構成する金属粉末にノ インダー、可塑剤等 を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面にスクリ ーン印刷等によって 1一 40 /z mの厚みに印刷し駆動積層部 13用のグリーンシートを 用意する。
次に、同様に銀-パラジユウム等を含むダミー層をグリーンシートの上面にスクリー ン印刷等によって 1一 40 m印刷し、不活性保護部 20用のグリーンシートを用意す る。印刷時には、焼成収縮を考慮し、 AZBが所定の値となるように制御し印刷する。
[0107] そして、 AZBを制御するために、上面に導電性ペーストが印刷された駆動積層部 13用のグリーンシートと不活性保護部 20用のグリーンシートを駆動積層部 13の上下 に不活性保護部 20がくるように複数積層し、同時に圧力をかけて密着させる。このよ うに、グリーンシートを枠に固定し、不活性保護部 20と駆動積層部 13を同時に密着 させることによって、ダミー層 21の外周から不活性保護部 20の側面までの最短距離 Aを制御することができる。
[0108] この後、グリーンシートを適当な大きさにカットし、所定の温度で脱バインダーを行つ た後、 900— 1200°Cで焼成することによって積層型圧電素子が作製される。
なお、積層型圧電素子は、上記製法によって作製されるものに限定されるものでは なぐダミー層 21の外周から不活性保護部 20の側面までの最短距離 Aを制御するこ とができる方法であれば、どのような製法によって形成されても良い。
その後、積層型圧電素子の側面に端部が露出する内部電極 2と端部が露出しない 内部電極 2とを交互に形成して、端部が露出していない内部電極 2と外部電極 4間の 圧電体層 1部分に溝 3を形成して、この溝 3内に、圧電体層 1よりもヤング率の低い、 榭脂またはゴム等の絶縁体を形成する。ここで、前記溝 3は内部ダイシング装置等で 駆動積層部 13の側面に外部電極 4は構成する導電材は積層型圧電素子の伸縮に よって生じる応力を十分に吸収するという点から、ヤング率の低い銀、若しくは銀が主 成分の合金が望ましい。
そして、実施の形態 1と同様にして、外部電極 4を形成する。
[0109] 次に、外部電極 4を形成した駆動積層部 13をシリコーンゴム溶液に浸漬するととも に、シリコーンゴム溶液を真空脱気することにより、駆動積層部 13の溝 3内部にシリコ ーンゴムを充填し、その後シリコーンゴム溶液力も駆動積層部 13を引き上げ、駆動積 層部 13の側面にシリコーンゴムをコーティングする。その後、溝 3内部に充填、及び 柱状駆動積層部 13の側面にコーティングした前記シリコーンゴムを硬化させることに より、本発明の積層型圧電素子が完成する。
[0110] そして、外部電極 4にリード線 6を接続し、該リード線 6を介して一対の外部電極 4に 0. 1一 3kVZmmの直流電圧を印加し、駆動積層部 13を分極処理することによって 、本発明の積層型圧電素子を利用した積層型圧電ァクチユエータが完成し、リード 線 6を外部の電圧供給部に接続し、リード線及び外部電極 4を介して内部電極 2に電 圧を印加させれば、各圧電体層 1は逆圧電効果によって大きく変位し、これによつて 例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
[0111] 以下、実施の形態 1一 3の積層型圧電素子の内部電極、外部電極その他の構成の より好ましい形態について説明する。
[0112] <内部電極 >
本発明において、内部電極 2中の金属組成物は、 VIII族金属および Zまたは lb族 金属を主成分とすることが望ましい。それらの金属組成物は高い耐熱性を有するた め、焼成温度の高 、圧電体層 1と内部電極 2を同時焼成することも可能である。
[0113] また、内部電極 2中の金属組成物が VIII族金属の含有量を Ml (重量%)、 lb族金 属の含有量を M2 (重量0 /0)としたとき、 0く Ml≤15、 85≤M2く 100、 Ml + M2 = 100を満足する金属組成物を主成分とすることが好ましい。これは、 VIII族金属が 15 重量%を超えると、内部電極 2の比抵抗が大きくなり、積層型圧電素子を連続駆動さ せた場合、内部電極 2が発熱する場合があるからである。また、内部電極 2中の lb族 金属の圧電体層 1へのマイグレーションを抑制するために、 VIII族金属が 0. 001重 量%以上 15重量%以下とすることが好ましい。また、積層型圧電素子の耐久性を向 上させるという点では、 0. 1重量%以上 10重量%以下が好ましい。また、熱伝導に 優れ、より高い耐久性を必要とする場合は 0. 5重量%以上 9. 5重量%以下がより好 ましい。また、さらに高い耐久性を求める場合は 2重量%以上 8重量%以下がさらに 好ましい。
[0114] ここで、 lb族金属を 85重量%以上が好ましいとしたのは、 lb族金属が 85重量%未 満になると、内部電極 2の比抵抗が大きくなり、積層型圧電素子を連続駆動させた場 合、内部電極 2が発熱する場合があるからである。また、内部金属 12中の lb族金属 の圧電体層 1へのマイグレーションを抑制するために、 lb族金属を 85重量%以上 99 . 999重量%以下とすることが好ましい。また、積層型圧電素子の耐久性を向上させ るという点では、 lb族金属を 90重量%以上 99. 9重量%以下とすることが好ましい。 また、より高い耐久性を必要とする場合は、 lb族金属を 90. 5重量%以上 99. 5重量 %以下とすることがより好ましい。また、さらに高い耐久性を求める場合は、 lb族金属 を 92重量%以上 98重量%以下とすることがさらに好ましい。 [0115] 上記の内部電極 2中の金属成分の重量%を示す VIII族金属、 lb族金属は ΕΡΜΑ (Electron Probe Micro Analysis)法等の分析方法で特定できる。
[0116] さらに、本発明の内部電極 2中の金属成分は、 VIII族金属が Ni、 Pt、 Pd、 Rh、 Ir、 Ru、 Osのうち少なくとも 1種以上であり、 lb族金属が Cu, Ag、 Auのうち少なくとも 1 種以上であることが好ましい。これは、近年における合金粉末合成技術において量 産性に優れた金属組成であるからである。
[0117] さらに、内部電極 2中の金属成分は、 VIII族金属が Pt、 Pdのうち少なくとも 1種以上 であり、 lb族金属が Ag、 Auのうち少なくとも 1種以上であることが好ましい。これにより 、耐熱性に優れ、比抵抗の小さな内部電極 2を形成できる可能性がある。
[0118] さらに、内部電極 2中の金属成分は、 VIII族金属が Niであり、 lb族金属が Cuである ことが好ましい。これにより、耐熱性および熱伝導性に優れた内部電極 2を形成でき る可能性がある。
[0119] さらに、内部電極 2中には、金属組成物とともに酸化物、窒化物または炭化物を添 加することが好ましい。これにより、内部電極 2と圧電体層 1を強固に結合でき、積層 型圧電素子の耐久性が向上する。
[0120] 前記酸化物が PbZrO— PbTiOからなるぺロブスカイト型酸化物を主成分とするこ
3 3
とが好ましい。尚、添加された酸ィ匕物等の含有量は、積層型圧電素子の断面 SEM 像における内部電極中の組成の面積比力 算出できる。
[0121] また、内部電極 2中の組成のずれが焼成前後で 5%以下であることが好ましい。こ れは、内部電極 2中の組成のずれが焼成前後で 5%を超えると、内部電極 2中の金 属材料が圧電体層 1へのマイグレーションが多くなり、積層型圧電素子の駆動による 伸縮に対して、内部電極 2が追従できなくなる可能性がある。また、電極中の組成の ずれが焼成前後で 5%以下であると、電極が硬くなることを抑制することができる。
[0122] ここで、内部電極 2中の組成のずれとは、内部電極 2を構成する元素が焼成によつ て蒸発、または圧電体層 1へ拡散することにより内部電極 2の組成が変わる変化率を 示している。
[0123] さらに、本発明に係る積層型圧電素子において、前記内部電極は空隙を含み、前 記内部電極の断面における全断面積に対する空隙の占める面積比が 5— 70%であ ることが好ましい。このようにすると、圧電体が電界によって変形する際の内部電極に よる拘束力を弱くでき、圧電体の変位量を大きくできる。また、空隙により内部電極に 加わる応力が緩和され、素子の耐久性が向上するという利点がある。さらに、素子内 における熱伝導は内部電極が支配的である力 内部電極に空隙があると、素子外部 の急激な温度変化による素子内部の温度変化が緩和されるので、熱衝撃に強い素 子が得られる。
[0124] 以上の実施の形態 1一 3において、内部電極 2は空隙を有し、内部電極 2の断面に おける全断面積に対する空隙の占める面積比(以下、空隙率という。)が 5— 70%で あることが好ましい。
[0125] このように、空隙を含む内部電極 2を用いて積層型圧電体素子を構成することによ り、耐久性の高い積層型圧電素子が得られる。内部電極 2における空隙率が 5%より 小さいと圧電体の変位に対する拘束力が強くなり、空隙の存在による効果が小さくな る。また、内部電極 2における空隙率が 70%より大きいと、内部電極 2の導電率が小 さくなりかつ強度が低下するので好ましくない。素子の耐久性を高めるためには、内 部電極 2の空隙率は 7— 70%であることがより好ましぐさらに好ましくは内部電極 2 の空隙率を 10— 60%とすることで高い変位量を確保しかつ高い耐久性を得ることが できる。
[0126] ここで、内部電極 2の空隙率とは、上述したように、内部電極 2の断面における全断 面積に対する空隙の占める面積比をいうが、具体的には以下のようにして求めること ができる。
[0127] すなわち、積層型圧電体素子を積層方向と平行に切断し、その縦断面に露出した 一内部電極 2における全断面積と空隙が占める空隙占有面積を、例えば、顕微鏡観 察により求める。そして、その面積比力 内部電極 2の空隙率((空隙占有面積 Z全 断面積) X 100)を算出する。
[0128] また、空隙を含む内部電極 2は以下のようにして作製することができる。
まず、内部電極 2を構成する金属粉末として、焼成後に内部電極 2に空隙ができる ように、融点の異なる 2種類以上の材料を用いる。この際、目的に応じて金属材料と して合金を用いることもできる。 [0129] そして、内部電極 2を構成する金属粉末中、最も融点が低い金属の融点以上で、 最も融点が高 、金属の融点以下の温度で仮焼する。このような温度で仮焼すると、 内部電極 2を構成する金属粉末中、その融点以上となって溶けた金属又は合金が毛 管現象により、溶けていない金属の隙間に移動し、溶けた金属のあった場所に空隙 が形成される。この方法では、内部電極 2を構成する 2種以上の金属粉末の混合割 合、及び温度を調整することにより、内部電極 2の空隙率を所望の割合に設定できる
[0130] 尚、内部電極 2の空隙は、例えば、内部電極 2を形成するために用いる導電性べ一 ストを調整する際に金属粉末間にできる僅かな隙間、または導電性ペーストに含まれ るバインダーが焼失した後に生じた隙間等を利用して形成してもよい。
[0131] また、内部電極 2を構成する材料と濡れ性の悪 ヽ物質を内部電極用の導電性べ一 ストに添加したり、内部電極用導電性ペーストが印刷される圧電体グリーンシートの 表面に内部電極 2を構成する材料と濡れ性の悪い物質をコートすることで内部電極 2 中に空隙を形成することもできる。ここで、内部電極 2を構成する材料と濡れ性の悪 い材料として、例えば、 BNが挙げられる。
[0132] <圧電体層 1 >
本発明にお ヽて、圧電体層 1がぺロブスカイト型酸化物を主成分とすることが好まし い。これは、例えば、チタン酸バリウム (BaTiO )を代表とするぺロブスカイト型圧電セ
3
ラミックス材料等で形成されると、その圧電特性を示す圧電歪み定数 d が高いことか
33
ら、変位量を大きくすることができ、さらに、圧電体層 1と内部電極 2を同時に焼成す ることもできる。上記に示した圧電体層 1としては、圧電歪み定数 d が比較的高い Pb
33
ZrO PbTiO力 なるぺロブスカイト型酸化物を主成分とすることが好ましい。
3 3
[0133] さらに、焼成温度が 900°C以上 1000°C以下であることが好ましい。これは、焼成温 度が 900°C以下では、焼成温度が低いため焼成が不十分となり、緻密な圧電体層 1 を作製することが困難になる。また、焼成温度が 1000°Cを超えると、焼成時の内部 電極 2の収縮と圧電体層 1の収縮のずれから起因した応力が大きくなり、積層型圧電 素子の連続駆動時にクラックが発生する可能性があるからである。
[0134] <内部電極と外部電極の間の接続及び絶縁 > また、本発明の積層型圧電素子の側面に端部が露出する内部電極 2と端部が露出 しない内部電極 2とが交互に構成されており、前記端部が露出して!/、ない内部電極 2 と外部電極 4間の圧電体部分に溝が形成されており、この溝内に、圧電体層 1よりも ヤング率の低い絶縁体が形成されていることが好ましい。これにより、このような積層 型圧電素子では、駆動中の変位によって生じる応力を緩和することができることから 、連続駆動させても、内部電極 2の発熱を抑制することができる。
[0135] <外部電極 4>
本発明において、外部電極 4は、図 4A, Bに示すように外部電極 4が 3次元網目構 造をなす多孔質導電体力 なるのが望ましい。外部電極 4が 3次元網目構造をなす 多孔質導電体で構成されて ヽなければ、外部電極 4はフレキシブル性を有しな 、た め、積層型圧電ァクチユエータの伸縮に追従できなくなるので、外部電極 4の断線や 外部電極 4と内部電極 2の接点不良が生じる場合がある。ここで、 3次元網目構造と は、外部電極 4にいわゆる球形のボイドが存在している状態を意味するのではなぐ 外部電極 4を構成する導電材粉末とガラス粉末が、比較的低温で焼き付けられて!/、 る為に、焼結が進みきらずにボイドがある程度連結した状態で存在し、外部電極 4を 構成する導電材粉末とガラス粉末が 3次元的に連結、接合した状態を示唆している。
[0136] あるいは、外部電極 4中の空隙率が 30— 70体積%であることが望ましい。ここで、 空隙率とは、外部電極 4中に占める空隙 4aの比率である。これは、外部電極 4中の 空隙率が 30体積%より小さければ、外部電極 4が積層型圧電ァクチユエータの伸縮 によって生じる応力に耐えきれずに、外部電極 4が断線する可能性がある。また、外 部電極 4中の空隙率が 70体積%を超えると、外部電極 4の抵抗値が大きくなるため、 大電流を流した際に外部電極 4が局所発熱を起こして断線してしまう可能性がある。
[0137] さらに、外部電極 4の圧電体層 1側表層部にガラスリッチ層が形成されていることが 望ましい。これは、ガラスリッチ層が存在しないと、外部電極 4中のガラス成分との接 合が困難になるため、外部電極 4が圧電体層 1との強固な接合が容易でなくなる可 能性がある。
[0138] また、外部電極 4を構成するガラスの軟化点 (°C)力 内部電極 2を構成する導電材 の融点 (°C)の 4Z5以下であることが望ましい。これは、外部電極 4を構成するガラス の軟化点が、内部電極 2を構成する導電材の融点の 4Z5を超えると、外部電極 4を 構成するガラスの軟化点と内部電極 2を構成する導電材の融点が同程度の温度にな るため、外部電極 4を焼き付ける温度が必然的に内部電極 2を構成する融点に近づ くので、外部電極 4の焼き付けの際に、内部電極 2及び外部電極 4の導電材が凝集し て拡散接合を妨げたり、また、焼き付け温度を外部電極 4のガラス成分が軟化するの に十分な温度に設定できないため、軟ィ匕したガラスによる十分な接合強度を得ること ができない場合がある。 さらに、外部電極 4の圧電体層 1側表層部にガラスリッチ層 が形成されていることが望ましい。これは、ガラスリッチ層が存在しないと、外部電極 4 中のガラス成分との接合が困難になるため、外部電極 4が圧電体層 1との強固な接 合が容易でなくなる可能性がある。
[0139] さらに、外部電極 4を構成するガラスを非晶質にすることが望ましい。これは、結晶 質のガラスでは、積層型圧電ァクチユエータの伸縮によって生じる応力を外部電極 4 が吸収できな 、ので、クラック等が発生する場合がある。
さらに、外部電極 4の厚みが圧電体層 1の厚みよりも薄いことが望ましい。これは、 外部電極 4の厚みが圧電体層 1の厚みよりも厚 ヽと、外部電極 4の強度が増大するた め、積層体が伸縮する際に、外部電極 4と内部電極 2の接合部の負荷が増大し、接 点不良が生じる場合がある。
[0140] さらに、外部電極 4の外面に、金属のメッシュ若しくはメッシュ状の金属板が埋設さ れた導電性接着剤からなる導電性補助部材を形成してもよ ヽ。このように外部電極 4 の外面に導電性補助部材を設けることにより、ァクチユエ一タに大電流を投入して高 速で駆動させる場合においても、電流が導電性補助部材にも流れるので、外部電極 4に流れる電流を低減できる。これにより、外部電極 4が局所発熱を起こし断線するこ とを防ぐことができ、耐久性を大幅に向上させることができる。さらには、導電性接着 剤中に金属のメッシュ若しくはメッシュ状の金属板を埋設して 、るため、前記導電性 接着剤にクラックが生じるのを防ぐことができる。
[0141] 金属のメッシュとは金属線を編み込んだものであり、メッシュ状の金属板とは、金属 板に孔を形成してメッシュ状にしたものを 、う。
さらに、前記導電性補助部材を構成する導電性接着剤は導電性粒子を分散させた ポリイミド榭脂からなることが望ま U、。
[0142] また、その導電性粒子は銀粉末であることが望ま 、。これは、導電性粒子に比較 的抵抗値の低い銀粉末を使用することによって、導電性接着剤における局所発熱を 抑制しやすいからである。また、比抵抗の低い銀粉末を、耐熱性の高いポリイミド榭 脂に分散させることにより、高温での使用に際しても、抵抗値が低く且つ高い接着強 度を維持した導電性補助部材を形成することができる。さらに望ましくは、前記導電 性粒子はフレーク状や針状などの非球形の粒子であることが望ましい。これは、導電 性粒子の形状をフレーク状や針状などの非球形の粒子とすることにより、該導電性粒 子間の絡み合いを強固にすることができ、該導電性接着剤のせん断強度をより高め ることができるためである。
[0143] また、本発明の積層型圧電素子は、単板あるいは積層数が 1またはそれ以上から なることが好ましい。これにより、素子に加えられた圧力を電圧に変換することも、素 子に電圧を加えることで素子を変位させることもできるため、素子駆動中に予期せぬ 応力を加えられたとしても、応力を分散して電圧変換することで、応力緩和させること ができるので、耐久性に優れた高信頼性の圧電ァクチユエータを提供することができ る。
[0144] 本発明の積層型圧電素子はこれらに限定されるものではなぐ本発明の要旨を逸 脱しな 、範囲であれば種々の変更は可能である。
[0145] また、上記では、積層体の対向する側面に外部電極 4を形成した例にっ 、て説明 したが、本発明では、例えば隣設する側面に一対の外部電極を形成してもよい。 尚、本発明では、積層体が必ずしも四角柱である必要は無ぐ円柱、多角柱等さま ざまな形であってもよい。
[0146] 実施の形態 4.
図 6は、本発明の噴射装置を示すもので、収納容器 31の一端には噴射孔 33が設 けられ、また収納容器 31内には、噴射孔 33を開閉することができる-一ドルバルブ 3
5が収容されている。
[0147] 噴射孔 33には燃料通路 37が連通可能に設けられ、この燃料通路 37は外部の燃 料供給源に連結され、燃料通路 37に常時一定の高圧で燃料が供給されている。従 つて、ニードルバルブ 35が噴射孔 33を開放すると、燃料通路 37に供給されていた 燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されて いる。
[0148] また、ニードルバルブ 35の上端部は直径が大きくなつており、収納容器 31に形成 されたシリンダ 39と摺動可能なピストン 41となっている。そして、収納容器 31内には 、上記した圧電ァクチユエータ 43が収納されている。
[0149] このような噴射装置では、圧電ァクチユエータ 43が電圧を印加されて伸長すると、 ピストン 41が押圧され、ニードルバルブ 35が噴射孔 33を閉塞し、燃料の供給が停止 される。また、電圧の印加が停止されると圧電ァクチユエータ 43が収縮し、皿パネ 45 がピストン 41を押し返し、噴射孔 33が燃料通路 37と連通して燃料の噴射が行われる ようになっている。
[0150] また、本発明は、積層型圧電素子および噴射装置に関するものであるが、上記実 施例に限定されるものではなぐ例えば、自動車エンジンの燃料噴射装置、インクジ ット等の液体噴射装置、光学装置等の精密位置決め装置や振動防止装置等に搭 載される駆動素子、または、燃焼圧センサ、ノックセンサ、加速度センサ、荷重センサ 、超音波センサ、感圧センサ、ョーレートセンサ等に搭載されるセンサ素子、ならびに 圧電ジャイロ、圧電スィッチ、圧電トランス、圧電ブレーカ一等に搭載される回路素子 以外であっても、圧電特性を用いた素子であれば、実施可能であることは言うまでも ない。
実施例
[0151] 実施例 1一 3.
実施例 1一 3として、本発明に係る積層型圧電ァクチユエータを以下のようにして作 製した。
まず、チタン酸ジルコン酸鉛(PbZrO— PbTiO )を主成分とする圧電セラミックの
3 3
仮焼粉末、ノ インダー、及び可塑剤を混合したスラリーを作製し、ドクターブレード法 で厚み 150 μ mの圧電体層 1になるセラミックグリーンシートを作製した。
[0152] このセラミックグリーンシートの片面に、任意の組成比で形成された銀-パラジウム 合金にバインダーをカ卩えた導電性ペーストが、スクリーン印刷法により 3 mの厚み に形成されたシートを 300枚積層し、 1000°Cで焼成した。
次に、ダイシング装置により積層体の側面の内部電極の端部に一層おきに深さ 50 μ m、幅 50 μ mの溝を形成した。
[0153] 次に、平均粒径 2 μ mのフレーク状の銀粉末を 90体積%と、残部が平均粒径 2 μ mのケィ素を主成分とする軟ィ匕点が 640°Cの非晶質のガラス粉末 10体積%との混合 物に、バインダーを銀粉末とガラス粉末の合計重量 100質量部に対して 8質量部添 加し、十分に混合して銀ガラス導電性ペーストを作製した。このようにして作製した銀 ガラス導電性ペーストを離型フィルム上にスクリーン印刷によって形成し、乾燥後、離 型フィルムより剥がして、銀ガラス導電性ペーストのシートを得た。このシートの生密 度をアルキメデス法にて測定したところ、 6. 5gZcm3であった。
[0154] 次に、前記銀ガラスペーストのシートを積層体の外部電極 4面に転写し、 650°Cで 3 0分焼き付けを行い、 3次元網目構造をなす多孔質導電体からなる外部電極 4を形 成した。なお、この時の外部電極 4の空隙率は、外部電極 4の断面写真を画像解析 装置を用いて測定したところ 40%であった。
[0155] その後、外部電極 4にリード線を接続し、正極及び負極の外部電極 4にリード線を 介して 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 1に示すような 積層型圧電素子を用いた積層型圧電ァクチユエータを作製した。
[0156] 実施例 1.
上記の製法に加えて、素子抵抗の抵抗値や圧電体層 1の誘電損失 (tan δ )を抑 制して作製された本発明の積層型圧電ァクチユエータにおいて、積層型圧電ァクチ ユエータの連続駆動前後における素子変位量の変化率、圧電体の厚み寸法変化率
、素子抵抗の変化率、および素子温度の変化率を測定し、それらと積層型圧電ァク チュエータの長期駆動による劣化の度合との関連につ 、て検証した。
[0157] ここで、劣化の度合とは、積層型圧電ァクチユエータを任意の回数で駆動させた後 の素子変位量 (連続駆動後の素子変位量)を測定し、さらに、上記の積層型圧電ァク チユエータを所定の回数で駆動させた後の素子変位量 (長期駆動後の素子変位量) を測定して、該長期駆動後の素子変位量が前記連続駆動後の素子変位量に対して 変化した割合で示している。これにより、任意の回数で駆動した積層型圧電ァクチュ エータを、さらに所定回数で駆動させて、これによつて引き起こされる劣化の様子を ½認することができる。
[0158] また、比較例として、上記の積層型圧電ァクチユエータの連続駆動前後における素 子変位量の変化率、または素子抵抗の変化率が 5%を超える範囲で形成した試料を 作製した。
[0159] 上記のようにして得られた積層型圧電ァクチユエータに対して、 170Vの直流電圧 を印加したところ、すべての積層型圧電ァクチユエータにおいて、積層方向に 45 mの変位量が得られた。さらに、この積層型圧電ァクチユエータを室温で 0— + 170 Vの交流電圧を 150Hzの周波数で印加して、 1 X 109回まで連続駆動し、さらに、 1 X 101(>回まで長期駆動した試験を行った。結果は表 1に示すとおりである。圧電体の 厚み寸法変化率を測定するには、駆動前の積層型圧電素子の側面を SEMを用い て任意の 10箇所の圧電体の厚み寸法を測定して平均値を算出し、駆動後、同一箇 所の厚み寸法を測定して平均値を算出し、駆動前後の圧電体の厚み寸法の変化率 を算出した。
[0160] 表 1 1
Figure imgf000035_0001
[0161] 表 1 2 N o
連続駆動後 (1 X 10 連続駆動後 (1 X 10 連続駆動後 (1 X 10
9回) 圧電体厚み寸 s回) 素子抵抗の変 9回) 最大変位量 ( 法の変化率 (%) 化率 (%) m = B
1 0 . 0 0 . 0 4 5 . 0
2 0 . 2 0 . 2 4 4 . 9
3 0 . 4 0 . 4 4 4 . 8
4 0 . 6 0 . 7 4 4 . 7
5 0 . 8 0 . 9 4 4 . 6
6 1 . 2 1 . 3 4 4 . 4
7 2 . 6 2 . 9 4 3 . 7
8 5 . 0 5 . 0 4 2 . 8
* 9 6 . 4 6 . 9 4 1 . 9
[0162] 表 1 3
N o 初期状態に対する連続駆
長期駆動後 (1 X 101D 劣化の度合 (% 動後の変位量変化率 (%
回) の変位量 (/x m
) = 1 (A-B) /AX 100 ) = 1 (B- 0
) =c /BX 100
1 0. 0 4 5 . 0 0 . 0 0
2 0. 2 4 4 . 9 0 . 0 0
3 0. 4 4 4 . 7 0 . 2 2
4 0. 7 4 4 . 6 0 . 2 2
5 0. 9 4 4 . 4 0 . 4 5
6 1 . 3 4 4 . 1 0 . 6 8
7 2. 9 4 3 . 2 1 . 1 4
8 5. 0 4 1 . 9 2 . 1 0 氺 9 6. 9 3 8 . 5 8 . 1 1 表中、 *を付した試料は、比較例である。
[0163] この表 1から、比較例である試料番号 9は、連続駆動前後における素子変位量の変 化率が 5%よりも大きいため、積層型圧電ァクチユエータを 1 X 109回まで連続駆動さ せた後に 1 x io1C)回まで長期駆動させると、 1 X 109回まで連続駆動させた後の素子 変位量に比べて、 1 X io1C)回まで長期駆動させた後の素子変位量が著しく低下した ので、劣化の度合が増大し、積層型圧電ァクチユエータの連続駆動が困難になった
[0164] また、連続駆動前後における素子抵抗の変化率が 5%よりも大きいため、積層型圧 電ァクチユエータを 1 X 109回連続駆動させた後に 1 X io1C)回まで長期駆動させると 、 1 X 109回連続駆動させた後の素子変位量に比べて、 ι χ ιο1()回まで長期駆動さ せた後の素子変位量が著しく減少したので、劣化の度合が増大し、積層型圧電ァク チユエータの連続駆動が困難になった。
[0165] さらに、連続駆動前後における圧電体寸法の変化率が 5%よりも大きいため、積層 型圧電ァクチユエータを 1 X 109回連続駆動させた後に 1 X io1C)回まで長期駆動させ ると、 I X 109回連続駆動させた後の素子変位量に比べて、 ι χ ιο1()回まで長期駆動 させた後の素子変位量が著しく減少したので、劣化の度合が増大し、積層型圧電ァ クチユエータの連続駆動が困難になった。
[0166] これに対して、本発明に係る実施例 1の試料番号 1一 8では、連続駆動前後におけ る素子変位量の変化率が 5%以内の範囲で形成した積層型圧電ァクチユエータであ つたため、 1 X 109回連続駆動させた後に 1 X 101(>回まで長期駆動させても、素子変 位量が著しく低下することなぐ積層型圧電ァクチユエータとして必要とする実効的な 変位量を有し、また、熱暴走や誤作動が生じない優れた耐久性を有した積層型圧電 ァクチユエータを作製できた。
[0167] 同様に、実施例 1の試料番号 1一 8では、連続駆動前後における素子抵抗の変化 率が 5%以内であったため、 1 X 109回連続駆動させた後に 1 X 101(>回まで長期駆動 させても、素子変位量が著しく低下することなぐ積層型圧電ァクチユエータとして必 要とする実効的な変位量を有し、また、熱暴走や誤作動が生じない優れた耐久性を 有した積層型圧電ァクチユエータを作製できた。
[0168] 同様に、実施例 1の試料番号 1一 8では、連続駆動前後における圧電体寸法の変 化率が 5%以内であったため、 1 X 109回連続駆動させた後に 1 X 101(>回まで長期駆 動させても、素子変位量が著しく低下することなぐ積層型圧電ァクチユエータとして 必要とする実効的な変位量を有し、また、熱暴走や誤作動が生じない優れた耐久性 を有した積層型圧電ァクチユエータを作製できた。
[0169] 実施例 2.
上記の製法に加えて、素子抵抗の抵抗値や圧電体層 1の誘電損失 (tan δ )を抑 制して作製された本発明の積層型圧電ァクチユエータにおいて、積層型圧電ァクチ ユエータの連続駆動中における素子変位量の最大変化率、素子抵抗の最大変化率
、および素子温度の変化率を測定し、それらと積層型圧電ァクチユエータの耐久性と の関連について検証した。
[0170] ここで、劣化の度合とは、積層型圧電ァクチユエータを任意の回数で駆動中の最大 素子変位量 (連続駆動中の最大素子変位量)を測定し、さらに、上記の積層型圧電 ァクチユエータを所定の回数で駆動させた後の素子変位量 (連続駆動後の素子変位 量)を測定して、該連続駆動後の素子変位量が前記連続駆動中の最大素子変位量 に対して変化した割合で示している。これにより、任意の回数で駆動中の積層型圧電 ァクチユエータを所定回数で連続駆動させたことによって引き起こされる劣化の様子 を確認することができる。
[0171] また、比較例として、上記の積層型圧電ァクチユエータの連続駆動中における素子 変位量の変化率、または素子抵抗の変化率が 5%を超える範囲で形成した試料を作 製した。
[0172] 上記のようにして得られた積層型圧電ァクチユエータに対して、 170Vの直流電圧 を印加したところ、すべての積層型圧電ァクチユエータにおいて、積層方向に 45 mの変位量が得られた。さらに、この積層型圧電ァクチユエータを室温で 0— + 170 Vの交流電圧を 150Hzの周波数で印カロして、 1 X 109回まで連続駆動させた駆動試 験を行った。結果は表 2に示すとおりである。
[0173] 表 2— 1 銀 100%の抵抗を
1と して規格化 圧電体の誘電体損 初期状態の变位量
No
大 t a η ΰ ι, /ο ) ( m ) = A 抗
1 2 0. 5 4 o
2 3 0 5 4 o
3 4 0. 5 45. 0
4 5 0. 5 4 5. 0
5 8 0. 5 4 o
6 10 0. 5 4 5. 0
7 5 1. 5 4 5. 0
* 8 8 1. 5 45. 0
* 9 10 2. 5 4 5. 0
[0174] 表 2— 2
N o . 連続駆動中 連続駆動中 連続駆動中
( 1 X 108回) (1 X 108回) (1 X 108回) 素子温度の最大 素子抵抗の最大 最大変位量 ( ii m 変化率 (%) 変化率 (%) ) =B
1 0. 0 0. 0 4 5 . 0
2 0. 2 0. 2 4 4 . 9
3 0. 4 0. 4 4 4 . 8
4 0. 6 0. 7 4 4 . 7
5 0. 8 0. 9 4 4 . 6
6 1 . 8 2. 0 4 4 . 1
7 4. 5 5. 0 4 2 . 8
* 8 7. 0 7. 8 4 1 . 5
氺 9 5. 0 5. 6 4 7 . 5
[0175] 表 2— 3 N o .
初期状態に対する連続
連続駆動後 (1 > : 108回 劣化の度合 (%) = 駆動中の変位量の最大
) の変位量 ( μ m ) = ( B - C ) / B X 10 変化率 (%) =
1 C 0
( A— B ) / A X 100 1
1 0 4 5 . 0 0 0 0
2 0 2 4 4 . 9 0 0 0
3 0 4 4 4 . 7 0 2 2
4 0 7 4 4 . 6 0 2 2
5 0 9 4 4 . 4 0 4 5
6 2 0 4 3 . 7 0 9 1
7 5 0 4 1 . 9 1 9 9
* 8 7 8 3 8 . 0 8 4 3
* 9 5 6 熱暴走発生
*を付した試料番号は本発明の請求範囲外のものである。
[0176] この表 2から、比較例である試料番号 8および 9は、連続駆動中における素子変位 量の最大変化率が 5%よりも大きいため、積層型圧電ァクチユエータを 1 X 109回まで 連続駆動させて、 I X 108回まで連続駆動中の最大素子変位量に比べて、 1 X 109 回まで連続駆動させた後の素子変位量が著しく低下したので劣化の度合が増大し、 また、試料番号 9は熱暴走によって素子が破壊したため、積層型圧電ァクチユエータ の連続,駆動が困難になった。
[0177] また、連続駆動中における素子抵抗の最大変化率が 5%よりも大きいため、積層型 圧電ァクチユエータを 1 X 109回まで連続駆動させて、 1 X 108回まで連続駆動中の 最大素子変位量に比べて、 1 X 109回まで連続駆動させた後の素子変位量が著しく 低下したので、劣化の度合が増大し、積層型圧電ァクチユエータの連続駆動が困難 になった。
[0178] これらに対して、本発明に係る実施例 2の試料番号 1一 7では、連続駆動中におけ る素子変位量の最大変化率が 5%以内の範囲で形成した積層型圧電ァクチユエ一 タであったため、 1 X 109回連続駆動させた後でも、素子変位量が著しく低下すること なぐ積層型圧電ァクチユエータとして必要とする実効的な変位量を有し、また、熱暴 走や誤作動が生じない優れた耐久性を有した積層型圧電ァクチユエータを作製でき た。
[0179] 同様に、実施例 2の試料番号 1一 7では、連続駆動前後における素子抵抗の変化 率が 5%以内であったため、 1 X 109回まで連続駆動させた後でも、積層型圧電ァク チユエータとして必要とする実効的な変位量を有し、また、熱暴走や誤作動が生じな い優れた耐久性を有した積層型圧電ァクチユエータを作製できた。
[0180] 実施例 3.
上記の製法にぉ ヽて、様々な電極材料組成で形成した内部電極 2を有する積層型 圧電ァクチユエータにおいて、積層型圧電ァクチユエータの連続駆動中における素 子変位量の最大変化率を測定し、内部電極 2の電極材料組成と積層型圧電ァクチュ エータの連続駆動による劣化の度合との関連につ 、て検証した。
[0181] 上記のようにして得られた積層型圧電ァクチユエータに対して、 170Vの直流電圧 を印加したところ、すべての積層型圧電ァクチユエータにおいて、積層方向に 45 mの変位量が得られた。さらに、この積層型圧電ァクチユエータを室温で 0— + 170 Vの交流電圧を 150Hzの周波数で印カロして、 1 X 109回まで連続駆動させた駆動試 験を行った。結果は表 2に示すとおりである。
[0182] 表 3— 1
内部電極金 内部電極金属中 内部電極金属 内部電極金 λ INί 0 g V U f^! rh ? W
(重量%) (重量%) (重量%) (重量%)
1 o 100 0 o
2 0. 00 1 99. 9 9 9 0 o
3 0. 01 99. 9 9 0 o
4 0. 1 99. 9 0 o
5 0. 5 99 5 0 o
6 1 99 0 o
7 2 98 0 0
8 4 95 1 o
9 5 95 0 o
10 8 92 0 o
1 l 9 91 0 o
12 9. 5 90. 5 0 0
13 10 90 0 o
14 15 5 0 o
15 0 0 1 00 o
16 0 0 9 9. 9 0. 1
17 0 0 0 1 00
18 20 80 0 0
19 30 70 0 0 3— 2
初期状態に対する
Χϊ- El ¾fUi W. (T)\ 1 L 、 /o j
変位量変化率 (%)
1 マイグレーシ ^! ンで破損
2 0 . 7 0 . 2 2
3 0 . 7 0 . 2 2
4 0 . 4 0 . 2 2
5 0 . 2 0 . 0 0
6 0 . 2 0 . 0 0
7 0 0 . 0 0
8 ο 0 . 0 0
9 0 0 . 0 0
1 0 0 0 . 0 0
1 1 0 . 2 0 . 0 0
1 2 0 . 2 0 . 0 0
1 3 0 . 4 0 . 2 2
1 4 0 , 7 0 . 2 2
1 5 0 . 2 0 . 0 0
1 6 0 0 . 0 0
1 7 0 . 4 0 . 2 2
1 8 0 . 9 0 . 4 5
1 9 0 . 9 0 . 4 5
[0184] この表 3から、試料番号 1は内部電極 2を銀 100%で形成したため、シルバ一 ·マイ グレーシヨンが起こり、積層型圧電ァクチユエータの破損が発生するので、連続駆動 が困難となった。
また、試料番号 18、 19は内部電極 2中の金属組成物において、 VIII族金属の含 有量が 15重量%を超えており、また、 lb族金属の含有量が 85重量%未満であるた め、連続駆動によって劣化が増大するので、積層型圧電ァクチユエータの耐久性が 低下した。
[0185] これらに対して、本発明に係る実施例 3の試料番号 2— 17では内部電極 2中の金 属組成物が VIII族金属の含有量を Ml (重量%)、 lb族金属の含有量を M2 (重量% )としたとき、 0く Ml≤15、 85≤M2く 100、 Ml + M2= 100を満足する金属組成 物を主成分としたため、内部電極 2の比抵抗を小さくでき、連続駆動させても内部電 極 2で発生する発熱を抑制できたので、素子変位量が安定した積層型ァクチユエ一 タを作製できた。
[0186] なお、本発明は、上記実施例に限定されるものではなぐ本発明の要旨を逸脱しな V、範囲内で種々の変更を行うことは何等差し支えな!/、。
[0187] 実施例 4.
実施例 4として、本発明に係る積層型圧電ァクチユエータを以下のようにして作製し た。
[0188] まず、柱状積層体を作製した。圧電体は厚み 150 mのチタン酸ジルコン酸鉛 (Pb
ZrO PbTiO )、で形成し、これに、内部電極は厚み 3 mにて形成し、圧電体及
3 3
び内部電極の各々の積層数は 300層とした。内部電極には、表 4に示すような金属( 例えば 90Ag— lOPd)とセラミック等の粉末の混合物を用いた。セラミック粉末として は、 PZT、 ZrO
2、 TiO
2、 PZTと ZrOの混合物、 PZTと TiOの混合物等を用いること
2 2
が好ましい。ここでは、表 4 3に示す材料を表に示す割合で用いた。また、セラミック 等の粉末の粒径は、 1. 5 m以下の柱を成す粒子はアスペクト比が 3以下のものを 用いた。その後、積層体は 400— 700°Cで脱脂した後、 850°Cで 20分保持した後に 1000°C保持し焼結体を得た。内部電極の金属組成物が Niの場合は、積層体は 40 0— 700°Cで脱脂した後、 1050°Cで 20分保持した後に 1200°C保持し焼結体を得 た。
[0189] その後、ダイシング装置により柱状積層体の側面の内部電極の端部に一層おきに 深さ 50 μ m、幅 50 μ mの溝を形成した。
次に、平均粒径 2 mのフレーク状の銀粉末を 90体積%と、残部が平均粒径 2 mのケィ素を主成分とする軟ィ匕点が 640°Cの非晶質のガラス粉末 10体積%との混合 物に、バインダーを銀粉末とガラス粉末の合計重量 100質量部に対して 8質量部添 加し、十分に混合して銀ガラス導電性ペーストを作製した。このようにして作製した銀 ガラス導電性ペーストを離型フィルム上にスクリーン印刷によって形成し、乾燥後、離 型フィルムより剥がして、銀ガラス導電性ペーストのシートを得た。このシートの生密 度をアルキメデス法にて測定したところ、 6. 5gZcm3であった。
[0190] 次に、前記銀ガラスペーストのシートを柱状積層体の外部電極面に転写し、 650°C で 30分焼き付けを行い、 3次元網目構造をなす多孔質導電体からなる外部電極を 形成した。なお、この時の外部電極の空隙率は、外部電極の断面写真を画像解析装 置を用いて測定したところ 40%であった。
その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介し て 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 1に示すような積層 型圧電素子からなる積層型圧電ァクチユエータを作製した。
[0191] 得られた積層型圧電素子力もなる積層型圧電ァクチユエータに 170Vの直流電圧 を印加し、それぞれの試料における変位量を測定し、そのばらつきを計算して、表 4 に示した。さら〖こ、この積層型圧電素子からなる積層型圧電ァクチユエータに室温で 0— + 170Vの交流電圧を 150Hzの周波数にて印加し駆動試験を行った。
[0192] 駆動回数が 1 X 109回に達した積層型圧電素子力 なる積層型圧電ァクチユエ一 タに 170V印加の直流電圧を印加し、それぞれの試料における変位量を測定し、駆 動試験前後の変位量の変化を算出した。計算は、駆動試験前の変位量を分子とし、 駆動試験後の変位量を分母とし、これに 100を乗じて%で表した。
尚、内部電極を貫き圧電体間をつなぐ柱の径、個数は、下記のようにして測定した
[0193] 接合部分が最大径の 50%以上である柱の割合については、図 2のように積層型圧 電素子の内部電極 2付近の断面写真において lmmの長さを測定し、各柱 18につい て最大径八、柱 18と圧電体層 1の接合部分 22の径 Bを測定し、 (B/A) X 100の計 算をして、柱 18の最大径 Aと柱 18と圧電体層 1との接合部分 22の径 Bの割合を求め た。そして、その値が 50%以上のものが測定した数の何%あるかを計算した。このよ うなことを、 10箇所行って平均を取って数値として表した。また、柱の最小径は、上記 と同様の測定で行った。また測定は 10箇所で行った。
以上の結果及び内部電極の材質、圧電体と柱との熱膨張差等を表 4に示した。
[0194] 表 4 1 接合部分が最
大径の 5 0 %
以上である柱 柱の最小径の 1 m m当り の
N o 柱 の割合 平均値 柱の個数
― % μ m 個
1 有り 2 0 1 6 5
2 有り 3 0 1 7 7
3 有り 5 0 1 8 3
4 有り 7 0 1 7 6
5 有り 9 0 1 6 8
6 有り 5 0 0 . 1 9 5
7 有り 5 0 0 . 2 8 4
8 有り 5 0 0 . 5 6 3
9 有り 5 0 1 6 1
1 0 有り 5 0 3 5 0
1 1 有り 5 0 5 3 4
1 2 有り 5 0 2 5
1 3 有り 5 0 2 1 1
1 4 有り 5 0 2 5 4
1 5 有り 5 0 2 9 9
1 6 有り 5 0 2 1 4 8
1 7 有り 5 0 1 8 4
1 8 有り 5 0 1 9 0
1 9 有り 5 0 1 7 9
2 0 有り 5 0 1 7 6
2 1 有り 5 0 1 8 6
2 2 有り 5 0 1 8 3
2 3 有り 5 0 1 7 6
2 4 有り 5 0 1 8 9
2 5 有り 5 0 1 8 3
2 6 無し 4 2
N o 圧電体
圧電体と柱の熱膨 と柱の
張差 χ 1 0— 6 Z °C 材料 内部電極の材質
1 0 同じ 90 A g - 1 0 P d
2 0 同じ 90 A g - 1 0 P d
3 0 同じ 90 A g - 1 0 P d
4 0 同じ 90 A g - 1 0 P d
5 0 同じ 90 A g - 1 0 P d
6 0 同じ 90 A g - 1 0 P d
7 0 同じ 90 A g - 1 0 P d
8 0 同じ 90 A g - 1 0 P d
9 0 同じ 90 A g - 1 0 P d
1 0 0 同じ 90 A g - 1 0 P d
1 1 0 同じ 90 A g - 1 0 P d
1 2 0 同じ 90 A g - 1 0 P d
1 3 0 同じ 90 A g - 1 0 P d
14 0 同じ 90 A g - 1 0 P d
1 5 0 同じ 90 A g - 1 0 P d
1 6 0 同じ 90 A g - 1 0 P d
1 7 2 異なる 90 A g - 1 0 P d
1 8 5 異なる 90 A g - 1 0 P d
1 9 6 異なる 90 A g - 1 0 P d
20 0 同じ 8 5 A g - 1 5 P d
2 1 0 同じ 95 Ag - 5 P d
22 0 同じ 99 Ag - l P d
23 99. 9 A g - 0. I P
0 同じ d
24 0 同じ 1 0 0 C u
25 0 同じ 1 0 0 N i
26 70 Ag - 3 0 P d 表 4— 3
N o 柱の材質 添加量 (重量%)
1 P Z T 2 0
2 P Z T 2 3
3 P Z T 2 4
4 P Z T 2 2
5 P Z T 2 0
6 P Z T 2 7
7 P Z T 2 4
8 P Z T 1 9
9 P Z T 1 9
1 0 P Z T 1 6
1 1 P Z T 1 2
1 2 P Z T 5
1 3 P Z T 6
1 4 P Z T 1 7
1 5 P Z T 2 8
1 6 P Z T 4 0
1 7 P Z T 2 0 % + Z r O 2 8 0 % 2 4
1 8 P Z T 5 0 % + Z r O 2 5 0 % 2 6
1 9 P Z T 5 0 % + T i O 2 5 0 % 2 3
2 0 P Z T 2 2
2 1 P Z T 2 5
2 2 P Z T 2 4
2 3 P Z T 2 2
2 4 P Z T 2 6
2 5 P Z T 2 4
2 6 4 4
N o
連続耐久試験後
変位量のばらつき の変位量の変化
% 率%
1 1 0 5
2 8 4
3 5 2 . 5
4 5 1
5 4 0 . 5
6 8 4
7 7 4
8 6 3
9 5 . 5 2 . 5
1 0 4 1
1 1 3 0 . 5
1 2 7 4
1 3 6 3
1 4 4 2
1 5 3 0 . 5
1 6 2 0 . 5
1 7 3 0 . 5
1 8 3 0 . 5
1 9 3 0 . 5
2 0 3 1
2 1 3 0 . 5
2 2 3 0 . 5
2 3 3 0 . 5
2 4 3 0 . 5
2 5 3 0 . 5
2 6 2 0 1 0 内部電極を貫き、内部電極を挟んで対向する圧電体をつなぐ柱を設けた本発明に 係る実施例 4の試料 No. 1— 25は、初期の変位量のばらつきは 10%以下で、比較 例 (No. 26)に比べて小さ力つた。また、連続耐久試験後の変位量の変化も 5%以下 と小さぐ比較例に比べ信頼性及び耐久性に優れることがわかった。
特に接合部分が最大径の 50%以上である柱の個数が 30%以上の場合である実 施形 4の試料 No. 2— 25は、初期の変位量のばらつきが 8%以下、連続耐久試験後 の変位量の変化も 4%以下と更に小さぐ信頼性及び耐久性が更に優れることがわ かった。 [0198] 更に接合部分が最大径の 50%以上である柱の個数が 50%以上、柱の最小径の 平均値が 0. 2 mの場合である実施例 4の試料 No. 3— 5及び 7— 25は、初期の変 位量のばらつきが 7%以下と更に小さぐ信頼性が更に優れることがわ力つた。
一方、本発明の範囲外である柱を設けていない試料 No. 26は、初期の変位量の ばらつきが 20%と悪くまた、連続耐久試験後の変位量の変化も 10%と悪ぐ信頼性 及び耐久性にぉ 、て本発明品に比べ劣って 、た。
[0199] 実施例 5.
実施例 5として、本発明に係る積層型圧電ァクチユエータを以下のようにして作製し た。
まず、チタン酸ジルコン酸鉛(PbZrO— PbTiO )を主成分とする圧電セラミックの
3 3
仮焼粉末、ノ インダー、及び可塑剤を混合したスラリーを作製し、ドクターブレード法 で厚み 150 μ mの圧電体層 1になるセラミックグリーンシートを作製した。
[0200] このセラミックグリーンシートの片面に、任意の組成比で形成された銀-パラジウム 合金にバインダーをカ卩えた導電性ペースト、 Agにノ インダーをカ卩えた導電性ペース ト、 Cuにバインダーを加えた導電性ペースト、 Niにバインダーを加えた導電性ペース トのいずれかを選択し、スクリーン印刷法により 3 mの厚みに形成されたシートを 30 0枚、積層体用として用意した。これとは別に保護部になるグリーンシートを用意し、こ れらを下力も保護部用の 30枚、駆動積層部用の 300枚、保護部用の 30枚を積層し 、プレスした後、 1000°Cで焼成した。
[0201] その後、ダイシング装置により積層体の側面の内部電極の端部に一層おきに深さ 5
0 m、幅 50 μ mの溝を形成した。
[0202] 次に、平均粒径 2 μ mのフレーク状の銀粉末を 90体積%と、残部が平均粒径 2 μ mのケィ素を主成分とする軟ィ匕点が 640°Cの非晶質のガラス粉末 10体積%との混合 物に、バインダーを銀粉末とガラス粉末の合計重量 100質量部に対して 8質量部添 加し、十分に混合して銀ガラス導電性ペーストを作製した。このようにして作製した銀 ガラス導電性ペーストを離型フィルム上にスクリーン印刷によって形成し、乾燥後、離 型フィルムより剥がして、銀ガラス導電性ペーストのシートを得た。このシートの生密 度をアルキメデス法にて測定したところ、 6. 5gZcm3であった [0203] そして、銀ガラスペーストのシートを積層体の外部電極面に転写し、 650°Cで 30分 焼き付けを行い、 3次元網目構造をなす多孔質導電体からなる外部電極を形成した
。なお、この時の外部電極の空隙率は、外部電極の断面写真の画像解析装置を用
V、て測定したところ 40%であった。
[0204] その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介し て 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 5に示すような積層 型圧電素子を用いた積層型圧電ァクチユエータを作製した。
得られた積層型圧電素子に 170Vの直流電圧を印加した結果、積層方向に 45 μ mの変位量が得られた。さらに、この積層型圧電素子に室温で 0— + 170Vの交流 電圧を 150Hzの周波数にて印加し駆動試験を行った。
[0205] そして、この積層型圧電素子が駆動回数 1 X 109回まで連続のテストを行って、この 時までに不良になった数を不良率として表した。
結果を表 5に示す。尚、表 5に示すように保護部の圧電体の厚みは 50— 200 m まで変化させ、ダミー層としては銀ーパラジュゥム合金、銀、銅、ニッケルのいずれか を用いた。また、ダミー層には、無機組成物として PZTを含有させた。
[0206] 表 5— 1
S— S挲 [Z020]
Figure imgf000052_0001
t8 0請 Zdf/ェ:) d 09 9ΐ£贿 SOOZ OAV N o ダミ一層中 連続耐久試
圧電体 の無機組成 験後の不良
内部電極 の厚み 物の含有量 率
( μ m
) (w t %) (%)
1 ダミー層と同じ 1 00 2 0 0. 3
2 ダミー層と同じ 1 00 2 0 0. 1
3 ダミー層と同じ 1 00 2 0 0. 2
4 ダミー層と同じ 1 00 2 0 0. 2
5 ダミー層と同じ 1 00 2 0 0. 4
6 ダミー層と同じ 1 00 2 0 0. 8
7 ダミー層と同じ 1 00 2 0 3
8 ダミー層と同じ 1 00 2 0 2
9 ダミー層と同じ 1 00 2 0 1
1 0 ダミー層と同じ 1 00 2 0 0. 5
1 1 ダミー層と同じ 1 00 2 0 0. 4
1 2 ダミー層と同じ 1 00 2 0 0. 5
1 3 ダミー層と同じ 1 00 2 0 0. 8
14 ダミー層と同じ 1 00 2 0 2
1 5 ダミー層と同じ 1 00 2 0 3. 5
1 6 ダミー層と同じ 1 00 2 0 0. 8
1 7 ダミー層と同じ 1 00 2 0 1. 8
1 8 ダミー層と同じ 50 2 0 0. 2
1 9 ダミー層と同じ 70 2 0 0. 2
20 ダミー層と同じ 1 50 2 0 0. 3
2 1 ダミー層と同じ 200 2 0 0. 2
22 ダミー層と同じ 1 00 2 0. 4
23 ダミー層と同じ 1 00 1 0 0. 2
24 ダミー層と同じ 1 00 3 0 0. 2
25 ダミー層と同じ 1 00 4 0 0. 4
26 7 0A g - 3 0 P d 1 00 2 0 1
27 ダミー層と同じ 1 00 2 0 0. 2
28 ダミー層と同じ 1 00 2 0 0. 2
29 ダミー層と同じ 1 00 2 0 0. 2
30 7 0A g - 3 0 P d 1 00 2 0 1
表 5より、積層方向と垂直な断面の同一面で前記ダミー層の外周から保護部の側 面までの最短距離を A、保護部の幅を Bとした時に AZBが 0.01-0.08である本 発明に係る実施例 5の試料 No.1— 6、 8— 14、 16— 30は、連続耐久試験後の不良 率は 2%以下で比較例 (No.7、 15)に比べて小さく耐久性に優れることがわ力つた。 [0209] 特に AZBが 0. 02—0. 07である実施例 5の試料 No. 1— 6、 9一 13、 16、 18— 3
0は、連続耐久試験後の不良率が 1%以下で更に小さく耐久性に優れることがわかつ た。
[0210] 更に AZBが 0. 02-0. 07で、ダミー層に金属を含み、内部電極がダミー層と同じ 物質からなり、圧電体の厚みが 50 μ m以上、ダミー層に無機組成物を 2wt%以上含 む実施例 5の試料 No. 1— 6、 10— 13、 16、 18— 25、 27— 29は、連続耐久試験後 の不良率が 0. 8%以下で更に小さく耐久性が更に優れることがわ力つた。
[0211] 一方、本発明の範囲外である AZBが 0. 01より小さい試料 No. 7、 AZBが 0. 08 より大きい試料 No. 15は、耐久試験後の不良率が 3%以上と悪ぐ耐久性において 本発明品に比べ劣って!/、た。
産業上の利用可能性
[0212] 本発明の積層型圧電素子は、圧電トランスに利用できる。また、本発明の積層型圧 電素子は、自動車用燃料やインクジェットプリンタのインク等の噴射装置、光学装置 等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電ァクチ ユエータに利用できる。さらに、燃焼圧センサ、ノックセンサ、加速度センサ、荷重セ ンサ、超音波センサ、感圧センサ、ョーレートセンサ等に搭載されるセンサ素子、なら びに圧電ジャイロ、圧電スィッチ、圧電トランス、圧電ブレーカ一等に搭載される回路 素子に用いられる積層型圧電素子に利用できる。

Claims

請求の範囲
[1] 圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第 1の側面 と第 2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の 内部電極は前記第 1の側面で前記外部電極に接続され、他方の内部電極は前記第 2の側面で前記外部電極に接続された積層型圧電素子において、
1 X 109回以上の連続駆動後における素子変位量の連続駆動前の素子変位量に 対する変化率が 5%以内であることを特徴とする積層型圧電素子。
[2] 圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第 1の側面 と第 2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の 内部電極は前記第 1の側面で前記外部電極に接続され、他方の内部電極は前記第 2の側面で前記外部電極に接続された積層型圧電素子において、
1 X 109回以上の連続駆動後における素子抵抗の連続駆動前の素子抵抗の変化 率が 5%以内であることを特徴とする積層型圧電素子。
[3] 連続駆動中の素子変位量の最大変化率が 5%以内であることを特徴とする請求項 1 又は 2に記載の積層型圧電素子。
[4] 1 X 109回以上の連続駆動後における圧電体層の厚み寸法の連続駆動前の圧電体 層の厚み寸法に対する寸法変化率が 5%以内であることを特徴とする請求項 1又は 2 に記載の積層型圧電素子。
[5] 連続駆動中の素子抵抗の最大変化率が 5%以内であることを特徴とする請求項 1又 は 2に記載の積層型圧電素子。
[6] 圧電体層と内部電極とが交互に積層されてなる積層体と、その積層体の第 1の側面 と第 2の側面にそれぞれ形成された外部電極とを備え、隣接する内部電極の一方の 内部電極は第 1の側面で外部電極に接続され、他方の内部電極は第 2の側面で外 部電極と接続された積層型圧電素子において、
前記内部電極を貫き、この内部電極を挟んで対向する圧電体層をつなぐ柱を設け たことを特徴とする積層型圧電素子。
[7] 上記柱と圧電体層の接合部分の径が柱の最大径の 50%以上であるものの個数が全 体の 30%以上を占めることを特徴とする請求項 61記載の積層型圧電素子。
[8] 上記柱の最小径の平均値が 0. 2 μ m以上であることを特徴とする請求項 6又は 7に 記載の積層型圧電素子。
[9] 上記柱が lmm当り 5— 150本存在することを特徴とする請求項 6— 8のうちのいずれ 力 1つに記載の積層型圧電素子。
[10] 上記柱と前記圧電体層を構成する圧電体材料との熱膨張差が 3 X 10— 5Z°C以下で あることを特徴とする請求項 6— 9のうちのいずれ力 1つに記載の積層型圧電素子。
[11] 上記柱が圧電体材料と同じ材料力もなることを特徴とする請求項 6— 10のうちのいず れか 1つに記載の積層型圧電素子。
[12] 前記積層体は、その上下に、前記圧電体層とダミー層とを交互に積層した不活性保 護部を含み、
前記ダミー層の外周から前記不活性保護部の側面までの最短距離を A、不活性保 護部の幅を Bとした時に AZBが 0. 01-0. 08であることを特徴とする請求項 1一 11 のうちのいずれか 1つに記載の積層型圧電素子。
[13] 前記ダミー層に金属を含むことを特徴とする請求項 12に記載の積層型圧電素子。
[14] 前記ダミー層が前記圧電層の内部電極と同じ物質力 なることを特徴とする請求項 1
2または 13に記載の積層型圧電素子。
[15] 前記圧電体層の厚みが 50 m以上であることを特徴とする請求項 12— 14のうちの いずれか 1つに記載の積層型圧電素子。
[16] 前記ダミー層が、金属酸化物、窒化物及び炭化物のいずれかの無機組成物を含む ことを特徴とする請求項 12— 15のうちのいずれか 1つに記載の積層型圧電素子。
[17] 前記ダミー層が無機組成物を 2wt%以上含有することを特徴とする請求項 12— 16 のうちのいずれか 1つに記載の積層型圧電素子。
[18] 前記内部電極中の金属組成物が VIII族金属および Zまたは lb族金属を主成分とす ることを特徴とする請求項 1一 17のうちのいずれか 1つに記載の積層型圧電素子。
[19] 前記内部電極中の VIII族金属の含有量を Ml (重量%)、 lb族金属の含有量を M2 ( 重量0 /0)としたとき、 0く Ml≤15、 85≤M2く 100、 Ml + M2= 100を満足すること を特徴とする請求項 18記載の積層型圧電素子。
[20] 前記 VIII族金属が Ni、 Pt、 Pd、 Rh、 Ir、 Ru、 Osのうち少なくとも 1種以上であり、 lb 族金属が Cu、 Ag、 Auのうち少なくとも 1種以上であることを特徴とする請求項 18また は 19に記載の積層型圧電素子。
[21] 前記 VIII族金属が Pt、 Pdのうち少なくとも 1種以上であり、 lb族金属が Ag、 Auのうち 少なくとも 1種以上であることを特徴とする請求項 18— 20のうちのいずれか 1つに記 載の積層型圧電素子。
[22] 前記 VIII族金属が Niであることを特徴とする請求項 18— 20のうちのいずれか 1つに 記載の積層型圧電素子。
[23] 前記 lb族金属が Cuであることを特徴とする請求項 18— 20のいずれか 1つに記載の
[24] 前記内部電極中に金属組成物とともに酸ィ匕物、窒化物または炭化物を添加したこと を特徴とする請求項 1一 23のうちのいずれか 1つに記載の積層型圧電素子。
[25] 前記酸ィ匕物が PbZrO— PbTiOからなるぺロブスカイト型酸化物を主成分とすること
3 3
を特徴とする請求項 24記載の積層型圧電素子。
[26] 前記圧電体層がぺロブスカイト型酸化物を主成分とすることを特徴とする請求項 1一 25のうちのいずれか 1つに記載の積層型圧電素子。
[27] 前記圧電体層が PbZrO -PbTiOからなるぺロブスカイト型酸化物を主成分とするこ
3 3
とを特徴とする請求項 26記載の積層型圧電素子。
[28] 前記積層体の焼成温度が 900°C以上 1000°C以下であることを特徴とする請求項 1 一 27のうちのいずれか 1つに記載の積層型圧電素子。
[29] 前記内部電極中の糸且成のずれが焼成前後で 5%以下であることを特徴とする請求項 1一 25のうちのいずれか 1つに記載の積層型圧電素子。
[30] 前記積層体の側面に端部が露出する前記内部電極と端部が露出しない前記内部電 極とが交互に構成されており、前記端部が露出していない前記内部電極と前記外部 電極間の前記圧電体層部分に溝が形成されており、該溝に前記圧電体層よりもヤン グ率の低い絶縁体が充填されていることを特徴とする請求項 1一 29のうちのいずれ 力 1つに記載の積層型圧電素子。
[31] 前記内部電極は空隙を含み、前記内部電極の断面における全断面積に対する空隙 の占める面積比が 5— 70%である請求項 1一 30のうちのいずれ力 1つに記載の積層
3士峯篡 ϊί面 t Sl0/t00Zd£/∑Jd 99 9ΐ£贿 SOOZ OAV
PCT/JP2004/015849 2003-10-27 2004-10-26 積層型圧電素子 WO2005041316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004029076T DE602004029076D1 (de) 2003-10-27 2004-10-26 Mehrschichtiges piezoelektrisches bauelement
US10/577,843 US20070080612A1 (en) 2003-10-27 2004-10-26 Multi-layer piezoelectric element
EP04792970A EP1686633B1 (en) 2003-10-27 2004-10-26 Multilayer piezoelectric device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-366564 2003-10-27
JP2003366564A JP2005129871A (ja) 2003-10-27 2003-10-27 積層型圧電素子及びこれを用いた噴射装置
JP2003369689 2003-10-29
JP2003-369689 2003-10-29
JP2004-021948 2004-01-29
JP2004021948A JP2005217180A (ja) 2004-01-29 2004-01-29 積層型圧電素子およびこれを用いた噴射装置
JP2004152308A JP2005159274A (ja) 2003-10-29 2004-05-21 積層型圧電素子およびこれを用いた噴射装置
JP2004-152308 2004-05-21

Publications (1)

Publication Number Publication Date
WO2005041316A1 true WO2005041316A1 (ja) 2005-05-06

Family

ID=34528117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015849 WO2005041316A1 (ja) 2003-10-27 2004-10-26 積層型圧電素子

Country Status (4)

Country Link
US (1) US20070080612A1 (ja)
EP (1) EP1686633B1 (ja)
DE (1) DE602004029076D1 (ja)
WO (1) WO2005041316A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012589A1 (de) * 2005-07-26 2007-02-01 Robert Bosch Gmbh Piezokeramischer aktor
WO2007036444A1 (de) * 2005-09-28 2007-04-05 Robert Bosch Gmbh Brennstoffeinspritzventil

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125977A1 (en) * 2003-11-26 2007-06-07 Tomohiro Kawamoto Piezoelectric ceramic and laminated piezoelectric element
JP4885869B2 (ja) * 2005-09-29 2012-02-29 京セラ株式会社 積層型圧電素子およびこれを用いた噴射装置
CN101790803B (zh) * 2007-08-29 2012-07-18 京瓷株式会社 层叠型压电元件、具备该层叠型压电元件的喷射装置及燃料喷射系统
EP2190042A4 (en) * 2007-09-18 2012-04-11 Kyocera Corp STACKED PIEZOELECTRIC ELEMENT, SPRAY DEVICE AND FUEL JET SYSTEM EQUIPPED WITH SAME
AT10312U1 (de) * 2007-11-19 2009-01-15 Blum Gmbh Julius Tragekonstruktion zur befestigung wenigstens eines möbelantriebs
EP2359419B1 (de) * 2008-11-20 2013-01-09 CeramTec GmbH Vielschichtaktor mit aussenelektroden als metallische, poröse, dehnbare leitschicht
DE102009001938A1 (de) * 2009-03-27 2010-09-30 Robert Bosch Gmbh Piezoaktor mit einem Mehrlagenaufbau und ein Verfahren zu dessen Herstellung
DE102010008775A1 (de) * 2010-02-22 2011-08-25 Epcos Ag, 81669 Piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung eines piezoelektrischen Vielschichtbauelements
BR112017016013A2 (pt) * 2015-03-31 2018-03-20 Halliburton Energy Services Inc objeto liberável para liberação em um poço de petróleo e gás, método para realizar uma operação em um poço e sistema para realização de uma operação em um poço
US11309481B2 (en) * 2018-01-30 2022-04-19 Taiyo Yuden Co., Ltd Multi-layer piezoelectric ceramic component-mounted piezoelectric device
JP7036604B2 (ja) * 2018-01-30 2022-03-15 太陽誘電株式会社 積層圧電セラミック部品及び圧電デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270540A (ja) * 1996-03-29 1997-10-14 Chichibu Onoda Cement Corp 積層型圧電アクチュエータ素子及びその製造方法
JP2002299710A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 積層型圧電素子及び噴射装置
JP2003258328A (ja) * 2002-02-27 2003-09-12 Kyocera Corp 積層型圧電アクチュエータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567046B2 (ja) * 1987-09-25 1996-12-25 日立金属株式会社 積層型変位素子
ES2087089T3 (es) * 1989-11-14 1996-07-16 Battelle Memorial Institute Metodo para fabricar un accionador piezoelectrico apilado multicapa.
JPH04299588A (ja) * 1991-03-28 1992-10-22 Nec Corp 電歪効果素子
US6414417B1 (en) * 1999-08-31 2002-07-02 Kyocera Corporation Laminated piezoelectric actuator
US6700306B2 (en) * 2001-02-27 2004-03-02 Kyocera Corporation Laminated piezo-electric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270540A (ja) * 1996-03-29 1997-10-14 Chichibu Onoda Cement Corp 積層型圧電アクチュエータ素子及びその製造方法
JP2002299710A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 積層型圧電素子及び噴射装置
JP2003258328A (ja) * 2002-02-27 2003-09-12 Kyocera Corp 積層型圧電アクチュエータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1686633A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012589A1 (de) * 2005-07-26 2007-02-01 Robert Bosch Gmbh Piezokeramischer aktor
WO2007036444A1 (de) * 2005-09-28 2007-04-05 Robert Bosch Gmbh Brennstoffeinspritzventil

Also Published As

Publication number Publication date
DE602004029076D1 (de) 2010-10-21
EP1686633A4 (en) 2009-01-21
EP1686633B1 (en) 2010-09-08
US20070080612A1 (en) 2007-04-12
EP1686633A1 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
EP2337104B1 (en) Multilayer piezoelectric element, injection apparatus, and fuel injection system
US20100066211A1 (en) Multi-Layer Electronic Component and Method for Manufacturing the Same, Multi-Layer Piezoelectric Element
EP1753039A1 (en) Multilayer piezoelectric element and its manufacturing method
WO2005031887A1 (ja) 積層型圧電素子
WO2005041316A1 (ja) 積層型圧電素子
WO2005029603A1 (ja) 積層型圧電素子
WO2006001334A1 (ja) 積層型電子部品及びこれを用いた噴射装置
JP2006013437A (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP5027448B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4817610B2 (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
CN100583480C (zh) 叠层型压电元件
JP4956054B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2003318458A (ja) 積層型圧電素子及びその製法並びに噴射装置
JP4925563B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005129871A (ja) 積層型圧電素子及びこれを用いた噴射装置
JP4868707B2 (ja) 積層型圧電素子および噴射装置
JP5153095B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4741197B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4986486B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005217180A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4873837B2 (ja) 積層型圧電素子および噴射装置
JP5449433B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2011109119A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005150369A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005150548A (ja) 積層型圧電素子およびこれを用いた噴射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031494.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792970

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007080612

Country of ref document: US

Ref document number: 10577843

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10577843

Country of ref document: US