WO2005024519A1 - ダミーパターンを考慮した光近接効果補正処理方法 - Google Patents

ダミーパターンを考慮した光近接効果補正処理方法 Download PDF

Info

Publication number
WO2005024519A1
WO2005024519A1 PCT/JP2003/011219 JP0311219W WO2005024519A1 WO 2005024519 A1 WO2005024519 A1 WO 2005024519A1 JP 0311219 W JP0311219 W JP 0311219W WO 2005024519 A1 WO2005024519 A1 WO 2005024519A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
area
optical proximity
correction processing
dummy pattern
Prior art date
Application number
PCT/JP2003/011219
Other languages
English (en)
French (fr)
Inventor
Mitsuo Sakurai
Masahiko Minemura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2005508776A priority Critical patent/JP4260806B2/ja
Priority to PCT/JP2003/011219 priority patent/WO2005024519A1/ja
Publication of WO2005024519A1 publication Critical patent/WO2005024519A1/ja
Priority to US11/357,118 priority patent/US7631288B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes

Definitions

  • the present invention generally relates to a mask pattern data processing method, a processing program, and a processing system for forming a mask pattern, and more particularly to a processing method, a processing program, and a processing system for optical proximity effect correction.
  • the pattern shape of a mask pattern is printed on a substrate by an optical transfer device.
  • phenomena such as contact between adjacent patterns, rounding of pattern corners, and thinning of lines occur due to the optical proximity effect. Therefore, by predicting such pattern deformation and processing the pattern data so as to cancel or reduce the deformation, a correction process is performed so that a desired pattern shape can be faithfully formed on the wafer. This is called Optical Proximity Correction (hereinafter OPC processing).
  • OPC processing Optical Proximity Correction
  • a capture pattern is generated for mask pattern data in order to correct a pattern on a reticle and realize a target wafer transfer image.
  • a pattern for correcting the design data is formed into a rule, and an auxiliary pattern is generated for the design data or the reticle pattern data based on the generation rule of the correction pattern.
  • FIG. 1 is a diagram showing an outline of the OPC process.
  • the processing flow shown on the left side of the drawing is for generating an auxiliary pattern for reticle pattern data
  • the processing flow shown on the right side of the drawing is for generating an auxiliary pattern for design data. It is.
  • auxiliary pattern When an auxiliary pattern is generated for the reticle pattern data, first in step ST1A, the auxiliary pattern is generated based on conversion information such as information indicating a layer in which the pattern is to be arranged and sizing information on the pattern size. Performs conversion processing on design data In this way, reticle pattern data is generated.
  • reticle pattern data 11; ⁇ can be obtained from CAD data 10 created by the designer.
  • step ST2A the OPC processing is performed on the reticle pattern data based on the correction information indicating the correction rule of the optical proximity effect including the correction value of the OPC process indicating the range of influence of the optical proximity effect.
  • Perform processing As a result, reticle pattern data 12 after correction is obtained from reticle / ° turn data 11. By drawing based on the reticle pattern data 12 after this correction, an actual reticle 15 is generated.
  • step ST 1 B correction information indicating a correction rule of the optical proximity effect including a correction value of the OPC process indicating an influence range of the optical proximity effect. Based on, OPC processing is performed on the design data. Thus, the corrected design data 13 force S is obtained from the CAD data 10 created by the designer.
  • step ST 2 B a conversion process is performed on the corrected design data based on conversion information such as information indicating a layer where patterns are to be arranged and sizing information regarding the size of the pattern.
  • conversion information such as information indicating a layer where patterns are to be arranged and sizing information regarding the size of the pattern.
  • Generate reticle pattern data after correction As a result, reticle pattern data 14 after correction is obtained from design data 13 after correction. By drawing based on the reticle pattern data 14 after this correction, an actual reticle 15 is generated.
  • the OPC process described above is performed not only on the actual wiring pattern of a semiconductor integrated circuit but also on a dummy pattern.
  • the optimum etching conditions differ depending on the position, and there is a problem that the effect of the etching process is not uniform.
  • the wiring density is low, the resist disappears and a hot spring occurs, the wiring width becomes narrower, and the wiring resistance is significantly increased.
  • the area ratio of the resist pattern is set to be substantially constant regardless of the position on the wafer.
  • FIG. 2 is a diagram for explaining a conventional OPC process when a dummy pattern exists.
  • the mask pattern data 21 is composed of a main pattern 32 corresponding to a wiring pattern or the like and actually functioning as a circuit, and a dummy pattern 31 inserted for adjusting etching conditions or the like without actually functioning as a circuit. Including.
  • the dummy pattern 31 is, for example, as shown in FIG. 2, composed of a plurality of rectangular patterns laid all over an empty area.
  • the OPC table information 22 stores information such as a correction value of the OPC process and a correction pattern generation rule in which a pattern to be corrected is made into a rule.
  • an OPC process 23 is executed over the entire mask pattern data 21.
  • the main pattern 32 and the dummy pattern 31 are not particularly distinguished, and the OPC processing is applied uniformly to all the patterns.
  • the OPC processing is applied uniformly to all the patterns.
  • a part of the mask pattern data 21 as mask pattern data 24 not only the main pattern 32 but also all the rectangular patterns constituting the dummy pattern 31 are corrected. Will be. Note that, here, a small rectangular pattern added to the vertex of each pattern indicates that the pattern has been corrected after the OPC process has been executed.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-210250 Disclosure of the invention
  • an object of the present invention is to solve one or more problems of the related art.
  • the optical proximity effect correction processing method defines a partial area that is a part of the ⁇ S area with respect to a mask pattern including an actual pattern and a dummy pattern, and restricts the partial area to the area. And performing the optical proximity effect correction process.
  • the time required for the optical proximity effect correction processing can be greatly improved. Further, since the number of dummy patterns to be corrected is greatly reduced as compared with the related art, the amount of data describing the pattern shape can be suppressed, and the mask pattern data can be prevented from becoming large.
  • the mask pattern data according to the present invention includes an actual pattern and a dummy pattern, and the optical proximity correction is performed except for at least a part of the dummy pattern.
  • the above-mentioned mask pattern is subjected to the optical proximity effect correction processing only to a portion requiring the optical proximity effect correction, including the actual pattern which is a portion actually functioning as a circuit. Therefore, the time required for the optical proximity effect correction processing for generating the mask pattern can be significantly reduced. Also, since the number of corrected dummy patterns is much smaller than in the past, the size of the mask pattern data is compact, saving storage space and reducing the time required for drawing processing. .
  • the present invention also provides a mask pattern data having only a part of which is subjected to optical proximity correction processing, a program for causing a computer to execute each step of the optical proximity correction processing method, and Provided is a system for performing a proximity effect correction process.
  • FIG. 1 is a diagram showing an outline of the OPC process.
  • FIG. 2 is a diagram for explaining a conventional OPC process when a dummy pattern exists.
  • FIG. 3 is a diagram for explaining the OPC process according to the present invention.
  • FIG. 4 is a diagram for explaining a process of generating a ⁇ PC processing region.
  • FIG. 5 is a diagram for explaining yet another process of generating a PC processing region.
  • FIG. 6 is a flowchart showing the OPC processing method according to the present invention.
  • FIG. 7 is a diagram showing a configuration of an apparatus for executing the OPC processing method according to the present invention.
  • FIG. 3 is a diagram for explaining the OPC process according to the present invention.
  • the mask pattern data 21 is inserted into the main pattern (actual pattern) 32, which actually functions as a circuit, with respect to the wiring pattern, etc., and for adjusting etching conditions without actually functioning as a circuit.
  • Dummy pattern 31 is included.
  • the dummy pattern 31 is, for example, as shown in FIG. 3, composed of a plurality of rectangular patterns spread over an empty area.
  • the OPC table information 22 stores information such as a correction value of the OPC process and a correction pattern generation rail which is a rule of a pattern to be corrected. Based on the mask pattern data 21 and the OPC table information 22, an OPC processing area 41 or an OPC processing prohibited area 42 is calculated. These calculation methods will be described in detail later.
  • the OPC processing area 41 is data indicating an area where the OPC processing is executed in the mask pattern data 21.
  • the OPC processing prohibited area 42 is a prohibited area where the OPC processing is not executed in the mask pattern data 21.
  • the data indicates By using either the OPC processing area 41 or the OPC processing prohibited area 42, the OPC processing is limited to a specific area of the mask pattern data 21 ⁇ . It is possible to execute.
  • the OPC processing 43 is limited to a specific area of the mask pattern data 21. Executed. At this time, only the area is limited based on the OPC processing area 41 or the OPC processing prohibited area 42, and the OPC processing is applied without particularly distinguishing the main pattern 32 and the dummy pattern 31. As a result, as shown in the mask pattern data 25 by enlarging a part of the mask pattern data 21, the main pattern 32 is corrected and a part of the rectangular pattern forming the dummy pattern 31 is corrected. Correction is also made for 31 A.
  • a small rectangular pattern attached to the vertex of each pattern indicates that the pattern has been corrected after the OPC process has been executed.
  • the dummy pattern 31 is not included in the OPC processing area specified by the OPC processing area 41 or the OPC processing prohibited area 42, no correction is performed on the dummy pattern 31. That is, the present invention defines an area in which the OPC processing is performed (or an area in which the OPC processing is not performed), and performs the OPC processing only on a portion designated by the area.
  • a dummy pattern is included inside the OPC processing. Whether the power is applied depends on the generation rule of the OPC processing area 41 or the OPC processing prohibited area 42.
  • FIG. 4 is a diagram for explaining a process of generating the OPC processing area 41.
  • the dummy pattern 51 is a pattern in which a rectangular pattern or the like is uniformly generated so as to be spread all over the mask pattern area.
  • the main pattern 52 is a pattern related to the function of an actual circuit such as a wiring pattern.
  • the dummy pattern 51 and the main pattern 52 are desired and a superposition pattern 53 is generated. In this superimposed pattern 53, the main pattern
  • the dummy pattern 51 overlapping with 52 is deleted from the data of the dummy pattern 51 as an unnecessary pattern. In this way, a dummy pattern can be generated around the main pattern.
  • the OPC processing area 41 A or the OPC processing area 41 B is generated by performing the logical processing 54 on the superposition pattern 53.
  • the generation method of the OPC processing area 41A and the OPC processing area 41B are slightly different, as described below.
  • the OPC processing area 41A In order to generate the OPC processing area 41A, first, when the dummy pattern 51 overlapping the main pattern 52 is deleted, the area where the deleted dummy pattern exists is calculated. Next, by adding the OPC maximum correction value corresponding to the maximum value of the influence range of the light replacement effect to the calculated area, the area is expanded so as to expand to the side. The enlarged area obtained in this way is the OPC treatment area 41A.
  • this OPC processing area generation method is referred to as a first raw dog method.
  • the OPC processing area 41B To generate the OPC processing area 41B, first, the dummy pattern 51 overlapping the main pattern 52 is deleted. Then, based on the information on the size of the dummy pattern and the interval between the roosters, a search is made for a portion where the dummy pattern does not exist within a predetermined distance, so that the dummy pattern located on the outer peripheral portion of the area where the dummy pattern has been deleted is searched. Identify The OPC processing area 41B is set to include these specified dummy patterns.
  • this OPC processing area generation method is referred to as a second generation method.
  • FIG. 5 is a diagram for explaining still another process of generating an OPC processing region.
  • the OPC processing area generation method shown in FIG. 5 is a third generation method.
  • mask pattern data 21 including a dummy pattern 31 and a main pattern 32 is shown.
  • a logic process of plus sizing is performed on the main pattern 32 to enlarge the pattern so as to make it thicker.
  • a process of expanding the pattern by the OPC maximum correction value is executed.
  • the main pattern 32 A after the plus sizing logic processing is obtained.
  • the OPC processing area 4 Determine 1C.
  • FIG. 6 is a flowchart showing the OPC processing method according to the present invention.
  • step ST1 the design data 71 is subjected to a conversion process based on the conversion information, thereby generating real pattern and dummy pattern data 72 (retitano pattern data).
  • the conversion information includes layer / figure sizing information 61, which includes layer information about the pattern layer, fig information about the pattern, and sizing information about the size of the pattern, and the location and size of the dummy pattern. It consists of dummy information 62 containing the information of
  • step ST2 it is determined whether or not area information exists.
  • the area information is information on an area to which the OPC processing is applied, such as the OPC processing area 41 or the OPC processing prohibited area 42. That is, with respect to the mask pattern data for which the area information has already been extracted once, the area information is stored so that it is not necessary to extract the area information again.
  • step ST2 If it is determined in step ST2 that the area information exists, the process proceeds to step ST16. When it is determined that the area information does not exist, the process proceeds to the processing of executing the above-described first to third generation methods or still another fourth generation method in order to newly generate the area information.
  • step ST2 When the first generation method is applied, the process proceeds from step ST2 to step ST3.
  • step ST3 dummy occurrence information is obtained.
  • step ST4 a deletion area where the dummy pattern is deleted in a portion overlapping the actual pattern (main pattern) is calculated.
  • step ST5 an OPC maximum correction value is added to the deleted area from which the dummy pattern has been deleted, so that the area is enlarged so as to expand the area.
  • the OPC maximum correction value is the maximum space value of the OPC process defined in the correction rule of the correction information 63.
  • step ST6 the ⁇ PC processing area 41A is calculated by obtaining the outermost circumference of the enlarged area.
  • step ST2 When the second generation method is applied, the process proceeds from step ST2 to step ST7.
  • step ST7 dummy generation information is obtained.
  • step ST8 The size of the turn ⁇ ⁇ ⁇ Based on the dummy occurrence information related to the arrangement interval, the dummy pattern located in the outer peripheral portion of the area where the dummy pattern has been deleted is specified by searching for a place where the dummy pattern does not exist within a predetermined distance.
  • step ST9 the OPC processing area 41B is calculated by obtaining the outermost periphery of these specified dummy patterns.
  • step ST2 the process proceeds from step ST2 to step ST10.
  • step ST10 the OPC maximum correction value, which is the maximum space value of the OPC process, is obtained from the correction rule of the correction information 63.
  • step ST11 the logic processing of plus' sizing is performed for the actual pattern (main pattern), and the pattern is enlarged so as to be thicker by the PC maximum correction value. As a result, an actual pattern after the plus sizing logic processing is obtained.
  • step ST12 an OPC processing area 41C is calculated by obtaining an area defined by the outermost periphery of the actual pattern after the plus sizing logic processing.
  • step ST2 When the fourth generation method is applied, the process proceeds from step ST2 to step ST13.
  • step ST13 an OPC processing area is calculated by the first generation method, the second generation method, or the third generation method.
  • step ST14 the OPC processing area calculated in step ST13 is removed from the entire chip area.
  • step ST15 the OPC processing area is removed from the entire chip area, and the obtained area is determined as the OPC processing prohibited area.
  • the area information 73 for determining the OPC processing area or the OPC processing prohibited area based on coordinate values or the like is generated.
  • step ST16 the OPC process is performed on the actual pattern and the dummy pattern data 72 in the area specified by the area information 73 according to the correction rule specified in the correction information 63. As a result, the corrected real pattern and the dummy pattern data 74 are obtained.
  • An actual reticle pattern is generated by drawing based on the corrected real pattern and dummy pattern data 74 obtained in this manner.
  • the case where the PC correction is executed after converting the design data into the reticle data has been described.
  • the OPC process is directly applied to the design data. You may.
  • OPC processing is applied after generating the dummy pattern data on the design data.
  • FIG. 7 is a diagram showing a configuration of an apparatus for executing the OPC processing method according to the present invention.
  • an apparatus for executing the OPC processing method according to the present invention is realized by a computer such as a personal computer and an engineering workstation.
  • the device shown in FIG. 7 includes a computer 510, a display device 520 connected to the computer 510, a communication device 523, and an input device.
  • the input device includes, for example, a keyboard 52 1 and a mouse 52 2.
  • the computer 510 includes a CPU 511, a RAM 511, a ROM 513, a secondary storage device 514 such as a hard disk, a replaceable medium storage device 515, and an interface 516. Including.
  • the keyboard 521 and the mouse 522 provide an interface with the user, and various commands for operating the computer 510, a user response to requested data, and the like are input.
  • the display device 520 displays the results processed by the combi- ter 5 10 and the like, and displays various data to enable a dialogue with a user when operating the computer 5 10.
  • the communication device 523 is for performing communication with a remote place, and includes, for example, a modem / network interface.
  • the PC processing method according to the present invention is provided as a computer program that the computer 510 can execute.
  • This computer program is stored in a storage medium M that can be attached to the exchangeable medium storage device 5 15, and is stored in the storage medium M via the exchangeable medium storage device 5 15 through the RAM 5 12 or secondary storage. Loaded in devices 5 1 4.
  • the computer program is stored in a storage medium (not shown) at a remote place, and is stored in the storage medium (not shown) via the communication device 52 3 and the interface 5 16 6 from the RAM 5 1 2 Loaded to secondary storage 5 14.
  • the CPU 5 11 1 Upon receiving a program execution instruction from the user via the keyboard 5 21 and / or the mouse 5 22, the CPU 5 11 1 executes the storage medium M, the remote storage medium, or the secondary storage.
  • the program is loaded into the RAM 512 from the device 514.
  • the CPU 511 uses the free storage space of the RAM 512 as a work area, executes the program loaded in the RAM 512, and proceeds with the process while appropriately interacting with the user.
  • the ROM M513 stores a control program for controlling the basic operation of the computer 510.
  • a computer environment for executing the OPC processing method is an OPC processing system or an OPC processing device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

ダミーパターンを含むマスクパターンデータに対する光近接効果補正処理を効率的に実行する方法を提供することを目的とする。光近接効果補正処理方法は、実パターンとダミーパターンとを含むマスクパターンについて全領域の一部である部分領域を定め、該部分領域に限定して光近接効果補正処理を実行する各段階を含む。

Description

明 細 書 ダミ一パターンを考慮した光近接効果補正処理方法 技術分野
本発明は、一般にマスクパターン形成におけるマスクパターンデータ処理方法、 処理プログラム、 及び処理システムに関し、 特に光近接効果補正の処理方法、 処 理プログラム、 及ぴ処理システムに関する。 背景技術
半導体装置の製造においては、 光転写装置により、 マスクパターンのパターン 形状をゥヱハ上に焼き付ける。 半導体装置の微細化が進むと、 光近接効果の影響 で、 隣合うパターン同士が接触したり、 パターンの角が丸まったり、 線が細くな り切れてしまうといった現象が起こる。 そこでこのようなパターン変形を予測し て、 変形を相殺又は緩和するようにパターンデータを加工することで、 所望のパ ターン形状を忠実にウェハ上に形成できるような補正処理をする。 これを光近接 効果捕正 (以下 O P C処理: Optical Proximity Correction) と呼ぶ。
O P C処理は、 レチクル上のパターンを補正して目的とするゥェーハ転写ィメ ージを実現するために、マスクパターンデータに対して捕助パターンを発生する。 従来のパターン捕正方法では、 一般に、 設計データに対して補正を行うパターン をルール化し、 捕正パターンの発生ルールに基づレ、て設計データ又はレチクノレパ ターンデータに対して補助パターンを発生させる。
図 1は、 O P C処理の概要を示す図である。
図 1において、 図面左側に示す処理フローは、 レチクルパターンデータに対し て補助パターンを発生させる場合のものであり、 図面右側に示す処理フローは、 設計データに対して補助パターンを発生させる場合のものである。
レチクルパターンデータに対して補助パターンを発生させる場合には、 まずス テツプ S T 1 Aで、 パターンを配置する階層を示す情報やパターンの大きさに関 するサイジング情報等の変換情報に基づレヽて、 設計データに対して変換処理を施 すことで、 レチクルパターンデータを生成する。 これに り設計者により作成さ れた C ADデータ 1 0からレチクルパターンデータ 1 1 ;^得られる。
次にステップ S T 2 Aで、 光近接効果の影響範囲を示す O P C処理の捕正値等 を含み光近接効果の補正ルールを示した捕正情報に基づレヽて、 レチクルパターン データに対して O P C処理を施す。 これによりレチクルノ、°ターンデータ 1 1から 補正後のレチクルパターンデータ 1 2が得られることになる。 この補正後のレチ クルパターンデータ 1 2に基づいて描画をすることで、 実際のレチクル 1 5が生 成される。
設計データに対して補助パターンを発生させる場合にぼ、 まずステップ S T 1 Bで、 光近接効果の影響範囲を示す O P C処理の捕正値等を含み光近接効果の補 正ルールを示した補正情報に基づ 、て、 設計データに対して O P C処理を施す。 これにより設計者により作成された C A Dデータ 1 0から補正後の設計データ 1 3力 S得られる。
次にステップ S T 2 Bで、 パターンを配置する階層を示す情報やパターンの大 きさに関するサイジング情報等の変換情報に基づいて、 褕正後の設計データに対 して変換処理を施すことで、 捕正後のレチクルパターンデータを生成する。 これ により捕正後の設計データ 1 3から補正後のレチクルバターンデータ 1 4が得ら れることになる。 この補正後のレチクルパターンデータ 1 4に基づいて描画をす ることで、 実際のレチクル 1 5が生成される。
上記のような O P C処理は、 半導体集積回路の実配線のパターンだけでなくダ ミーパターンに対しても実行される。 一般に半導体集積回路を製造する場合、 配線密度が基板上の位置によつて大き く異なると、 位置によって最適なエッチング条件が異なってしまい、 エッチング 処理の効果が一様にならないという問題がある。 この結果、 配線密度が小さいと ころでは、 レジストが消滅して断泉が生じたり、 配線幅が狭くなつてくぴれてし まレ、配線抵抗が著しく増大するなどの弊害が生じる。 これを防ぎ種々の太さの配 線をそれぞれ所望の精度でエッチングするためには、 ウエノ、面積に占めるレジス トパターンの面積比を適切な所定の割合にしておく必要がある。 このため酉織パ ターンのゥェハ領域に対する面積比が少なレヽ部位では、 ダミーパターンを揷入す ることにより、 ウェハ上の部位に関わらずにレジストパターンの面積比が略一定 となるように設定する。
図 2は、 ダミーパターンが存在する場合の従来の O P C処理を説明するための 図である。
マスクパターンデータ 2 1は、 配線パターン等に対応し実際に回路として機能 するメインパターン 3 2と、 実際に回路として機能することなくエッチング条件 等の調整のために揷入されるダミーパターン 3 1を含む。ダミーパターン 3 1は、 例えば図 2に示されるように、 空き領域に敷き詰められる複数の矩形パターンか らなる。 O P Cテーブル情報 2 2は、 O P C処理の捕正値や、 補正を行うパター ンをルール化した捕正パターン発生ルール等の情報を格納する。
マスクパターンデータ 2 1と O P Cテーブル情報 2 2とに基づいて、 O P C処 理 2 3がマスクパターンデータ 2 1の全体に渡り実行される。 このときメインパ ターン 3 2とダミーパターン 3 1とを特に区別することはなく、 全てのパターン に対して一様に O P C処理を適用する。 この結果、 マスクパターンデータ 2 1の 一部を拡大してマスクパターンデータ 2 4として示すように、 メインパターン 3 2だけでなくダミーパターン 3 1を構成する全ての矩形パターンについても補正 が施されることになる。 なおここでは、 各パターンの頂点部分に付加された小さ な矩形パターンにより、 O P C処理が実行された補正後のパターンであることを 示している。
このように従来の O P C処理においては、 実際に回路として機能する部分に対 応するメインパターンだけでなく、 回路として機能しない部分に対応するダミー パターン全てについても処理対象としており、 O P C処理に時間がかかるという 問題がある。 またダミーパターンに捕正パターンが付加された場合 (ダミーパタ 一ンが捕正された場合) には、 パターン形状を記述するデータ量が増えることに なり、 マスクパターンデータが大きくなるという問題もある。
以上を鑑みて、 ダミーパターンを含むマスクパターンデータに対する O P C処 理を効率的に実行する方法が必要である。
(特許文献 1 ) 特開 2 0 0 1— 2 3 0 2 5 0号公報 発明の開示
従って、 本発明は、 上記関連技術の 1つ又はそれ以上の問題点を解決すること を目的とする。
また本発明は、 ダミーパターンを含むマスクパターンデータに対する O P C処 理を効率的に実行する方法を提供することを更なる具体的な目的とする。
上記目的を達成するために、 本発明による光近接効果補正処理方法は、 実パタ ーンとダミーパターンとを含むマスクパターンについて^ S域の一部である部分 領域を定め、該部 域に限定して光近接効果補正処理を実行する各段階を含む。 上記方法によれば、光近接効果捕正処理を実行する領域(又は実行しない領域) を規定して、 それにより指定される部分のみに光近接効果補正処理を施すことが できる。 従って、 実際に回路として機能する部分である実パターンを含む、 光近 接効果捕正が必要な部分だけに限定して光近接効果捕正処理を実行し、 ダミーパ ターンのうち光近接効果補正が不要な部分については光近接効果補正処理を適用 しないことが可能となる。 これにより、 光近接効果捕正処理にカゝかる時間を大 Ifi に改善することができる。 また補正されるダミーパターン数が従来と比較して大 幅に減少するので、 パターン形状を記述するデータ量を抑え、 マスクパターンデ ータが大きくなることを防ぐことができる。
また本発明によるマスクパターンデータは、 実パターンとダミーパターンとを 含み、 少なくとも一部の該ダミーパターンを除いて光近接効果補正が施されたこ とを特徴とする。
上記マスクパターンは、 実際に回路として機能する部分である実パターンを含 む、 光近接効果補正が必要な部分だけに限定して光近接効果補正処理が施されて いる。 従って、 このマスクパターンを生成する光近接効果補正処理にかかる時間 を大幅に改善することができる。 また補正されたダミーパターン数が従来と比較 して大幅に少ないので、 コンパクトなサイズのマスクパターンデータとなってお り、 格納する記憶スペースを取らず又描画処理にかかる時間を少なくすることが できる。
また本発明は、 一部にのみ光近接効果補正処理が施されたマスクパターンデー タ、 光近接効果補正処理方法の各段階を計算機に実行させるプログラム、 及び光 近接効果捕正処理を実行するシステムを提供する。 図面の簡単な説明
図 1は、 O P C処理の概要を示す図である。
図 2は、 ダミーパターンが存在する場合の従来の O P C処理を説明するための 図である。
図 3は、本発明による O P C処理について説明するこめの図である。
図 4は、 〇 P C処理領域を生成する処理について説明するための図である。 図 5は、◦ P C処理領域を生成する更に別の処理について説明するための図で ある。
図 6は、 本発明による O P C処理方法を示すフローチヤ一トである。
図 7は、 本発明による O P C処理方法を実行する装置の構成を示す図である。 発明を実施するための最良の形態
以下に、 本発明の実施例を添付の図面を用いて詳細【こ説明する。
図 3は、本発明による O P C処理について説明するだめの図である。
マスクパターンデータ 2 1は、 配線パターン等に対) ^し実際に回路として機能 するメインパターン (実パターン) 3 2と、 実際に回綹として機能することなく エッチング条件等の調整のために挿入されるダミーパターン 3 1を含む。 ダミー パターン 3 1は、 例えば図 3に示されるように、 空き镇域に敷き詰められる複数 の矩形パターンからなる。 O P Cテーブル情報 2 2は、 O P C処理の補正値や、 捕正を行うパターンをルール化した捕正パターン発生ノレール等の情報を格納する。 マスクパターンデータ 2 1と O P Cテーブル情報 2 2とに基づいて、 O P C処 理領域 4 1又は O P C処理禁止領域 4 2を算出する。 これらの算出方法について は後程詳細に説明する。 O P C処理領域 4 1は、 マスクパターンデータ 2 1内に おいて O P C処理を実行する領域を示すデータであり、 O P C処理禁止領域 4 2 は、 マスクパターンデータ 2 1内において O P C処理を実行しない禁止領域を示 すデータである。 O P C処理領域 4 1又は O P C処理禁止領域 4 2の何れかを用 いることで、 O P C処理をマスクパターンデータ 2 1內の特定の領域に限定して 実行することが可能になる。
O P C処理領域 4 1又は O P C処理禁止領域 4 2と、 マスクパターンデータ 2 1と、 O P Cテーブル情報 2 2とに基づいて、 O P C処理 4 3がマスクパターンデ ータ 2 1の特定の領域に限定して実行される。 このとき O P C処理領域 4 1又は O P C処理禁止領域 4 2に基づレ、て領域を限定するのみであり、 メインパターン 3 2とダミーパターン 3 1とを特に区別することなく O P C処理を適用する。 こ の結果、 マスクパターンデータ 2 1の一部を拡大してマスクパターンデータ 2 5 として示すように、 メインパターン 3 2について捕正が行われると共に、 ダミー パターン 3 1を構成する一部の矩形パターン 3 1 Aについても補正が施されるこ とになる。 なおここでは、 各パターンの頂点部分に付カロされた小さな矩形パター ンにより、 O P C処理が実行された補正後のパターンであることを示している。 図 3の例では、 ダミーパターン 3 1の一部についても O P C処理による補正が 施されているが、 必ずしもその必要はない。 O P C処理領域 4 1又は O P C処理 禁止領域 4 2が指定する O P C処理領域内にダミーパターン 3 1が含まれていな ければ、 ダミーパターン 3 1について補正が施されることはない。 即ち、 本発明 は、 O P C処理を実行する領域 (又は実行しない領域) を規定して、 それにより 指定される部分のみに O P C処理を施すものであり、 O P C処理を実行する内部 にダミーパターンが含まれている力否かは、 O P C処理領域 4 1又は O P C処理 禁止領域 4 2の生成ルールに依存する問題である。
図 4は、 O P C処理領域 4 1を生成する処理について説明するための図である。 マスクパターンデータにおいてメインパターンの周りにダミーパターンを発生 させるためには、 予め一様に発生させたダミーパターンを用意しておき、 これと メィンパターンとを重ね合わせて、 不要なダミーパターンを削除する処理が一般 に行われる。
図 4において、 ダミーパターン 5 1は、 マスクパターン領域一面に渡り、 敷き 詰めるように矩形等のパターンを一様に発生させたものである。 またメインパタ ーン 5 2は、 配線パターン等の実際の回路の機能に関係するパターンである。 こ れらのダミーパターン 5 1とメインパターン 5 2とを望ね合わせ、 重ね合わせパ ターン 5 3を生成する。 この重ね合わせパターン 5 3において、 メインパターン 5 2と重なるダミーパターン 5 1は、 不要なパターンであるとしてダミーパター ン 5 1のデータから削除する。 このようにして、 メインパターンの周りにダミー パターンを発生させることができる。
重ね合わせパターン 5 3に対して論理処理 5 4を施すことにより、 O P C処理 領域 4 1 A又は O P C処理領域 4 1 Bを生成する。 O P C処理領域 4 1 Aと O P C処理領域 4 1 Bとでは、 以下に説明するように、 その生成の方法が若干異なつ ている。
O P C処理領域 4 1 Aを生成するには、 まずメインパターン 5 2と重なるダミ 一パターン 5 1を削除したときに、 その削除したダミ一パターンの存在する領域 を算出する。 次に、 算出された領域に対して、 光近換効果の影響範囲の最大値に 対応する O P C最大捕正値を加えることで、 領域を 側に広げるようにして拡大 する。 このようにして得られた拡大領域が、 O P C 理領域 4 1 Aである。 以下 において、 この O P C処理領域生成方法を第 1の生戌方法と呼ぶ。
また O P C処理領域 4 1 Bを生成するには、 まずメインパターン 5 2と重なる ダミーパターン 5 1を削除する。 その後に、 ダミーノ ターンの大きさ '酉己置間隔 に関する情報に基づいて、 所定距離内にダミーパターンが存在しない箇所を検索 することで、 ダミーパターンが削除された領域の外周部分に位置するダミーパタ ーンを特定する。 これらの特定されたダミーパターンを含むようにして、 O P C 処理領域 4 1 Bを設定する。 以下において、 この O P C処理領域生成方法を第 2 の生成方法と呼ぶ。
図 5は、 O P C処理領域を生成する更に別の処理について説明するための図で ある。 図 5に示す O P C処理領域生成方法は、 第 3の生成方法である。
図 5の最上部には、 ダミーパターン 3 1とメインノ ターン 3 2とを含むマスク パターンデータ 2 1が示される。 このマスクパターンデータ 2 1において、 メイ ンパターン 3 2についてプラス ·サイジングの論理処理を実行し、 パターンを太 らせるように拡大する。 具体的には、 例えば O P C最大捕正値分だけパターンを 拡大する処理を実行する。 これにより、 プラス ·サイジング論理処理後のメイン パターン 3 2 Aが得られる。 最後に、 このプラス ·サイジング論理処理後のメイ ンパターン 3 2 Aの最外周で規定される領域を求めることで、 O P C処理領域 4 1 Cを決定する。
図 6は、 本発明による O P C処理方法を示すフローチヤ一トである。
ステップ S T 1において、 設計データ 7 1に対して、 変換情報に基づいて変換 処理を施すことで、 実パターン及びダミーパターンデータ 7 2 (レチタノレパター ンデータ) を生成する。 ここで変換情報は、 パターンのレイヤーに関するレイヤ 一情報、 パターンに関するフィグ情報、 及びパターンの大きさに関するサイジン グ情報を含むレイヤ/フィグ Zサイジング情報 6 1と、 ダミーパターンの発生位 置や大きさ等の情報を含むダミー情報 6 2からなる。
ステップ S T 2において、 領域情報が存在するか否かを判断する。 ここで領域 情報とは、 O P C処理領域 4 1又は O P C処理禁止領域 4 2等の O P C処理を適 用する領域に関する情報である。 即ち、 既に一度領域情報を抽出したマスクパタ ーンデータに関しては、 領域情報を保存しておき、 再度領域情報を抽出する必要 がないようにしている。
ステップ. S T 2で領域情報が存在すると判断された場合には、 処理はステップ S T 1 6に進む。 領域情報が存在しないと判断された場合には、 領域情報を新た に生成するために、 前述の第 1乃至第 3の生成方法又は更に別の第 4の生成方法 を実行する処理に進む。
第 1の生成方法を適用する場合には、 処理はステップ S T 2からステップ S T 3に進む。
ステップ S T 3で、ダミー発生情報を獲得する。ステップ S T 4で、実パターン (メインパターン) に重なった部分においてダミーパターンが削除された削除領 域を算出する。 ステップ S T 5で、 ダミーパターンが削除された削除領域に O P C最大補正値を加えることで、 領域を広げるように拡大する。 ここで O P C最大 補正値とは、 補正情報 6 3の補正ルールに規定される O P C処理の最大スペース 値である。 次にステップ S T 6で、 拡大された領域の最外周を求めることで〇P C処理領域 4 1 Aを算出する。
また第 2の生成方法を適用する場合には、 処理はステップ S T 2からステップ S T 7に進む。
ステップ S T 7で、 ダミー発生情報を獲得する。 ステップ S T 8で、 ダミーパ ターンの大きさ '配置間隔に関するダミー発生情報に基づいて、 所定距離内にダ ミーパターンが存在しない箇所を検索することで、 ダミーパターンが削除された 領域の外周部分に位置するダミーパターンを特定する。 ステップ ST 9で、 これ らの特定されたダミーパターンの最外周を求めることで O PC処理領域 41 Bを 算出する。
また第 3の生成方法を適用する場合には、 処理はステップ ST 2からステップ ST 10に進む。
ステップ S T 10で、 補正情報 63の捕正ルールから O P C処理の最大スぺー ス値である O PC最大補正値を獲得する。 ステップ ST 11で、 実パターン (メ インパターン) についてプラス 'サイジングの論理処理を実行し、 〇 PC最大補 正値分だけパターンを太らせるように拡大する。 これにより、 プラス ·サイジン グ論理処理後の実パターンが得られる。 ステップ ST 12で、 このプラス 'サイ ジング論理処理後の実パターンの最外周で規定される領域を求めることで、 O P C処理領域 41 Cを算出する。
また第 4の生成方法を適用する場合には、 処理はステップ ST 2からステップ ST 13に進む。
ステップ ST 13で、 上記第 1の生成方法、 第 2の生成方法、 又は第 3の生成 方法により、 OPC処理領域を算出する。 ステップ ST14で、 チップ領域の全 体から、 ステップ ST13で算出した OPC処理領域を取り除く。 ステップ ST 15で、 チップ領域の全体から O P C処理領域を取り除レ、て得られた領域を O P C処理禁止領域として決定する。
以上の第 1乃至第 4の生成方法により、 O P C処理領域又は O P C処理禁止領 域を座標値等により確定する領域情報 73が生成される。
次にステップ ST16において、 実パターン及びダミーパターンデータ 72に 対して、 領域情報 73が指定する領域内で、 補正情報 63に規定される補正ルー ルに従って O PC処理を実行する。 これにより、 補正後の実パターン及ぴダミー パターンデータ 74が得られる。
こうして得られた補正後の実パターン及びダミーパターンデータ 74に基づい て描画をすることで、 実際のレチクルパターンが生成される。 なお上記実施例は、 設計データをレチクルデータに変換した後に〇 P C補正を 実行する場合について説明したが、 図 1で説明したように、 O P C処理は設計デ ータに対して直接適用するのであってもよい。 伹しこの場合、 設計データ上でダ ミ一パターンデータを生成してから、 O P C処理を適用することになる。
図 7は、 本発明による O P C処理方法を実行する装置の構成を示す図である。 図 7に示されるように、 本発明による O P C処理方法を実行する装置は、 例え ばパーソナルコンピュータやエンジニアリングワークステーション等のコンビュ ータにより実現される。 図 7の装置は、 コンピュータ 5 1 0と、 コンピュータ 5 1 0に接続されるディスプレイ装置 5 2 0、 通信装置 5 2 3、 及び入力装置より なる。 入力装置は、 例えばキーボード 5 2 1及びマウス 5 2 2を含む。 コンビュ ータ 5 1 0は、 C P U 5 1 1、 RAM 5 1 2、 R OM 5 1 3、 ハードディスク等 の二次記憶装置 5 1 4、 可換媒体記憶装置 5 1 5、 及びインターフェース 5 1 6 を含む。
キーボード 5 2 1及びマウス 5 2 2は、 ユーザとのインターフェースを提供す るものであり、 コンピュータ 5 1 0を操作するための各種コマンドや要求された データに対するユーザ応答等が入力される。 ディスプレイ装置 5 2 0は、 コンビ ユータ 5 1 0で処理された結果等を表示すると共に、 コンピュータ 5 1 0を操作 する際にユーザとの対話を可能にするために様々なデータ表示を行う。 通信装置 5 2 3は、 遠隔地との通信を行なうためのものであり、 例えばモデムゃネットヮ 一クインターフェース等よりなる。
本発明による〇 P C処理方法は、 コンピュータ 5 1 0が実行可能なコンビユー タプログラムとして提供される。 このコンピュータプログラムは、 可換媒体記憶 装置 5 1 5に装着可能な記憶媒体 Mに記憶されており、 記憶媒体 Mから可換媒体 記憶装置 5 1 5を介して、 RAM 5 1 2或いは二次記憶装置 5 1 4にロードされ る。 或いは、 このコンピュータプログラムは、遠隔地にある記憶媒体 (図示せず) に記憶されており、 この記憶媒体から通信装置 5 2 3及ぴィンターフェース 5 1 6を介して、 RAM 5 1 2或いは二次記憶装置 5 1 4にロードされる。
キーボード 5 2 1及び/又はマウス 5 2 2を介してユーザからプログラム実行 指示があると、 C P U 5 1 1は、 記憶媒体 M、 遠隔地記憶媒体、 或いは二次記憶 装置 514からプログラムを RAM512にロードする。 CPU511は、 RA M512の空き記憶空間をワークエリアとして使用して、 RAM 512にロード されたプログラムを実行し、 適宜ユーザと対話しながら処理を進める。 なお RO M513は、 コンピュータ 510の基本動作を制御するための制御プログラムが 格納されている。
上記コンピュータプログラムを実行することで、 上記各実施例で説明されたよ うに、 O P C処理方法を実行する。 またこの O P C処理方法を実行する計算機環 境が、 O PC処理システム又は O PC処理装置である。
以上、 本発明を実施例に基づいて説明したが、 本発明は上記実施例に限定され るものではなく、 特許請求の範囲に記載の範囲内で様々な変形が可能である„

Claims

請 求 の 範 囲
1 . 実パターンとダミーパターンとを含むマスクパターンについて全領域の一部 である部分領域を定め、
該部分領域に限定して光近接効果補正処理を実行する
各段階を含むことを特徴とする光近接効果補正処理方法。
2. 該部 域を定める段階は、 該実パターンの情報と該ダミーパターンの情報 とに基づレヽて該部分領域を求めることを特徴とする請求項 1記載の光近接効果補 正処理方法。
3. 該部 ^HH域を定める段階は、 該実パターンと該実パターンに隣接する該ダミ 一パターンとを含む領域を該部分領域として求めることを特徴とする請求項 2記 載の光近接効果補正処理方法。
4. 該部分領域を定める段階は、 該実パターンに対応してダミーパターンを削除 した領域を光近接効果補正処理の補正値に応じて拡大することで該部 域を求 めることを特徴とする請求項 2記載の光近接効果補正処理方法。
5 . 該部分領域を定める段階は、 該実パターンに対応してダミーパターンを削除 した領域の周囲の該ダミーパターンを、 該ダミーパターンの配置情報に基づいて 特定することにより該部 域を求めることを特徴とする請求項 2記載の光近接 効果補正処理方法。
6 . 該部 域を定める段階は、 該実パターンを光近接効果捕正処理の補正値に 応じて太らせるように拡大することにより該部^ 域を求めることを特徴とする 請求項 2記載の光近接効果補正処理方法。
7. 実パターンと、 ダミーパターンと、
を含み、 少なくとも一部の該ダミーパターンを除いて光近接効果補正が施された マスクパターンデータ。
8. 実パターンとダミーパターンとを含むマスクパターンについて全領域の一部 である部分領域を定め、
該部分領域に限定して光近接効果捕正処理を実行する
各段階をコンピュータに実行させることを特徴とする光近接効果補正処理プログ ラム。
9 . 実パターンとダミーパターンとを含むマスクパターンについて全領域の一部 である部分領域を定めるュニットと、
該部分領域に限定して光近接効果補正処理を実行するュニット
を含むことを特徴とする光近接効果捕正処理システム。
1 0. 実パターンとダミーパターンとを含むマスクパターンの全領域を、 該実パ ターンを少なくとも含む第 1の領域と該ダミーパターンの少なくとも一部を含む 第 2の領域とに分離し、
該第 1の領域に限定して光近接効果補正処理を実行する
各段階を含むことを特徴とする光近接効果補正処理方法。
PCT/JP2003/011219 2003-09-02 2003-09-02 ダミーパターンを考慮した光近接効果補正処理方法 WO2005024519A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005508776A JP4260806B2 (ja) 2003-09-02 2003-09-02 ダミーパターンを考慮した光近接効果補正処理方法
PCT/JP2003/011219 WO2005024519A1 (ja) 2003-09-02 2003-09-02 ダミーパターンを考慮した光近接効果補正処理方法
US11/357,118 US7631288B2 (en) 2003-09-02 2006-02-21 Optical proximity correction performed with respect to limited area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011219 WO2005024519A1 (ja) 2003-09-02 2003-09-02 ダミーパターンを考慮した光近接効果補正処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/357,118 Continuation US7631288B2 (en) 2003-09-02 2006-02-21 Optical proximity correction performed with respect to limited area

Publications (1)

Publication Number Publication Date
WO2005024519A1 true WO2005024519A1 (ja) 2005-03-17

Family

ID=34260119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011219 WO2005024519A1 (ja) 2003-09-02 2003-09-02 ダミーパターンを考慮した光近接効果補正処理方法

Country Status (3)

Country Link
US (1) US7631288B2 (ja)
JP (1) JP4260806B2 (ja)
WO (1) WO2005024519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176303A (ja) * 2006-12-19 2008-07-31 Nec Electronics Corp マスク生成方法、マスク形成方法、パターン形成方法および半導体装置
JP2012150214A (ja) * 2011-01-18 2012-08-09 Renesas Electronics Corp マスクの製造方法ならびに光近接効果補正の補正方法および半導体装置の製造方法
US8299943B2 (en) 2007-05-22 2012-10-30 Tegic Communications, Inc. Multiple predictions in a reduced keyboard disambiguating system
JP2012212154A (ja) * 2005-04-26 2012-11-01 Renesas Electronics Corp 半導体装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260803B2 (en) * 2003-10-10 2007-08-21 Lsi Corporation Incremental dummy metal insertions
US7302673B2 (en) * 2005-09-15 2007-11-27 International Business Machines Corporation Method and system for performing shapes correction of a multi-cell reticle photomask design
KR100881130B1 (ko) * 2007-05-28 2009-02-02 주식회사 하이닉스반도체 주변회로를 위한 게이트 패턴 형성 방법 및 이에 따른반도체 소자
WO2009093102A1 (en) * 2008-01-23 2009-07-30 Freescale Semiconductor, Inc. Method of forming openings in a semiconductor device and a semiconductor device fabricated by the method
KR20110057600A (ko) * 2009-11-24 2011-06-01 삼성전자주식회사 반도체 소자 및 이의 제조 방법
CN103576442B (zh) * 2012-07-26 2016-05-11 无锡华润上华半导体有限公司 一种光学邻近矫正装置及矫正方法
US9330224B2 (en) * 2014-04-30 2016-05-03 Oracle International Corporation Method and apparatus for dummy cell placement management
US9740092B2 (en) * 2014-08-25 2017-08-22 Globalfoundries Inc. Model-based generation of dummy features
US9977325B2 (en) * 2015-10-20 2018-05-22 International Business Machines Corporation Modifying design layer of integrated circuit (IC)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553273A (en) * 1995-04-17 1996-09-03 International Business Machines Corporation Vertex minimization in a smart optical proximity correction system
JPH09292701A (ja) * 1996-03-01 1997-11-11 Fujitsu Ltd マスクの製造方法
JPH10301255A (ja) * 1997-04-23 1998-11-13 Hitachi Ltd 電子線マスク描画方法
JP2000338646A (ja) * 1999-05-27 2000-12-08 Oki Electric Ind Co Ltd マスクパターンの作成方法
US6168891B1 (en) * 1998-11-30 2001-01-02 Matsushita Electric Industrial Co., Ltd. Method for correcting mask pattern for use in manufacturing of semiconductor integrated circuit
US6183916B1 (en) * 1999-09-13 2001-02-06 Taiwan Semiconductor Manufacturing Company Method for proximity effect compensation on alternative phase-shift masks with bias and optical proximity correction
US20010004122A1 (en) * 1999-12-13 2001-06-21 Nec Corporation Semiconductor device having dummy gates and its manufacturing method
JP2001230250A (ja) * 2000-02-14 2001-08-24 Hitachi Ltd 半導体装置およびその製造方法並びにマスクパターンの生成方法
JP2001324796A (ja) * 2000-05-15 2001-11-22 Dainippon Printing Co Ltd マスクパタンの形成方法、およびフォトマスク

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796801B2 (en) * 1999-08-26 2010-09-14 Nanogeometry Research Inc. Pattern inspection apparatus and method
KR100378195B1 (ko) * 2001-02-21 2003-03-29 삼성전자주식회사 패턴의 밀도에 연속적으로 조절되는 밀도를 갖는 더미패턴군들을 포함하는 마스크용 데이터 생성 방법 및그러한 생성 방법이 저장된 기록매체
TWI315027B (en) * 2002-04-23 2009-09-21 Canon Kabushiki Kaish Mask designing method, and exposure method for illuminatiing a mask and exposing an object
US7363099B2 (en) * 2002-06-07 2008-04-22 Cadence Design Systems, Inc. Integrated circuit metrology
US20040009409A1 (en) * 2002-07-11 2004-01-15 Jiunn-Ren Hwang Optical proximity correction method
US7063923B2 (en) * 2002-07-11 2006-06-20 United Electronics Corp. Optical proximity correction method
JP2004077824A (ja) * 2002-08-19 2004-03-11 Toshiba Corp パターン形成方法、パターン形成プログラム、及び半導体装置の製造方法
JP4620942B2 (ja) * 2003-08-21 2011-01-26 川崎マイクロエレクトロニクス株式会社 半導体集積回路のレイアウト方法、そのレイアウト構造、およびフォトマスク
US7794897B2 (en) * 2004-03-02 2010-09-14 Kabushiki Kaisha Toshiba Mask pattern correcting method, mask pattern inspecting method, photo mask manufacturing method, and semiconductor device manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553273A (en) * 1995-04-17 1996-09-03 International Business Machines Corporation Vertex minimization in a smart optical proximity correction system
JPH09292701A (ja) * 1996-03-01 1997-11-11 Fujitsu Ltd マスクの製造方法
JPH10301255A (ja) * 1997-04-23 1998-11-13 Hitachi Ltd 電子線マスク描画方法
US6168891B1 (en) * 1998-11-30 2001-01-02 Matsushita Electric Industrial Co., Ltd. Method for correcting mask pattern for use in manufacturing of semiconductor integrated circuit
JP2000338646A (ja) * 1999-05-27 2000-12-08 Oki Electric Ind Co Ltd マスクパターンの作成方法
US6183916B1 (en) * 1999-09-13 2001-02-06 Taiwan Semiconductor Manufacturing Company Method for proximity effect compensation on alternative phase-shift masks with bias and optical proximity correction
US20010004122A1 (en) * 1999-12-13 2001-06-21 Nec Corporation Semiconductor device having dummy gates and its manufacturing method
JP2001230250A (ja) * 2000-02-14 2001-08-24 Hitachi Ltd 半導体装置およびその製造方法並びにマスクパターンの生成方法
JP2001324796A (ja) * 2000-05-15 2001-11-22 Dainippon Printing Co Ltd マスクパタンの形成方法、およびフォトマスク

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212154A (ja) * 2005-04-26 2012-11-01 Renesas Electronics Corp 半導体装置の製造方法
US8719740B2 (en) 2005-04-26 2014-05-06 Renesas Electronics Corporation Semiconductor device which is subjected to optical proximity correction
JP2015028636A (ja) * 2005-04-26 2015-02-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2008176303A (ja) * 2006-12-19 2008-07-31 Nec Electronics Corp マスク生成方法、マスク形成方法、パターン形成方法および半導体装置
US8299943B2 (en) 2007-05-22 2012-10-30 Tegic Communications, Inc. Multiple predictions in a reduced keyboard disambiguating system
US8692693B2 (en) 2007-05-22 2014-04-08 Nuance Communications, Inc. Multiple predictions in a reduced keyboard disambiguating system
US9086736B2 (en) 2007-05-22 2015-07-21 Nuance Communications, Inc. Multiple predictions in a reduced keyboard disambiguating system
JP2012150214A (ja) * 2011-01-18 2012-08-09 Renesas Electronics Corp マスクの製造方法ならびに光近接効果補正の補正方法および半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2005024519A1 (ja) 2006-11-02
US7631288B2 (en) 2009-12-08
JP4260806B2 (ja) 2009-04-30
US20060190920A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US7631288B2 (en) Optical proximity correction performed with respect to limited area
JP5243958B2 (ja) マスク・レイアウトの設計する方法、該設計のためのプログラム、設計パラメータを伝達する方法、および、これらの方法を実現するプログラムならびにシステム
JP4266189B2 (ja) 半導体集積回路パターンの検証方法、フォトマスクの作成方法、半導体集積回路装置の製造方法、及び半導体集積回路パターンの検証方法を実現するためのプログラム
US8365108B2 (en) Generating cut mask for double-patterning process
US8307310B2 (en) Pattern generating method, method of manufacturing semiconductor device, computer program product, and pattern-shape-determination-parameter generating method
TW516077B (en) Method of creating design rule, design rule creating system, and recording medium
JP2005181524A (ja) 設計レイアウト作成方法、設計レイアウト作成システム、マスクの製造方法、半導体装置の製造方法、及び設計レイアウト作成プログラム
JP2002318448A (ja) 露光マスクのパターン補正方法、パターン形成方法およびプログラム
US10732499B2 (en) Method and system for cross-tile OPC consistency
JP2006053248A (ja) 設計パターンデータ作成方法、マスクパターンデータ作成方法、マスク製造方法、半導体装置の方法およびプログラム
US20090077529A1 (en) Design pattern correcting method, design pattern forming method, process proximity effect correcting method, semiconductor device and design pattern correcting program
JP4195825B2 (ja) プロセスパラメータまたはデザインルールとプロセスパラメータとの両方を決定する方法、半導体集積回路装置の製造方法、プロセスパラメータまたはデザインルールとプロセスパラメータとの両方を決定するシステム、および、プログラム
US6800428B2 (en) Wavelength-independent exposure pattern generation method and exposure pattern generation system for lithography
JP2003017388A (ja) ブロックマスク製造方法、ブロックマスク、および、露光装置
US7926005B1 (en) Pattern-driven routing
JP2002006475A (ja) マスクパターン設計方法及びその方法により形成されるマスク
US20230408901A1 (en) Optical proximity correction for free form shapes
US20100218159A1 (en) Data Flow Branching in Mask Data Preparation
US20220292249A1 (en) Efficient scheduling of tasks for resolution enhancement technique operations
US8609303B2 (en) Mask pattern generating method and computer program product
JP2009092779A (ja) 半導体装置の設計方法及び半導体装置の製造方法、並びにプログラム
JP2000293559A (ja) フォトマスクの製造方法、描画データの作成方法および記録媒体
JPH07254012A (ja) 露光データ作成方法及びその装置
JP2003029392A (ja) 描画用データの作成方法および描画方法
JP2001042503A (ja) データ処理方法および装置、露光方法および装置、記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2005508776

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11357118

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11357118

Country of ref document: US