WO2005023921A1 - 機能性膜の連続製造方法 - Google Patents

機能性膜の連続製造方法 Download PDF

Info

Publication number
WO2005023921A1
WO2005023921A1 PCT/JP2004/006389 JP2004006389W WO2005023921A1 WO 2005023921 A1 WO2005023921 A1 WO 2005023921A1 JP 2004006389 W JP2004006389 W JP 2004006389W WO 2005023921 A1 WO2005023921 A1 WO 2005023921A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
resin film
polymer
film
precursor
Prior art date
Application number
PCT/JP2004/006389
Other languages
English (en)
French (fr)
Inventor
Hideki Hiraoka
Kouzou Kubota
Takeo Yamaguchi
Nobuo Ooya
Hiroshi Harada
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to CA002537795A priority Critical patent/CA2537795A1/en
Priority to US10/570,609 priority patent/US7674349B2/en
Publication of WO2005023921A1 publication Critical patent/WO2005023921A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5618Impregnating foam articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1168Gripping and pulling work apart during delaminating

Definitions

  • the present invention relates to a method for continuously producing a functional film. More specifically, the present invention relates to a method for continuously producing a functional film in which a functional film in which pores of a porous resin sheet are filled with a functional polymer can be efficiently and continuously obtained.
  • the present invention can be used in batteries such as fuel cells and redox flow batteries, various devices in electrolysis and the like, and separation membranes.
  • Functional membranes obtained by filling a porous membrane with various functional polymers such as a polymer obtained by polymerizing a monomer having an ion exchange group are used in many applications.
  • a fuel cell which is one type of an electrochemical device using an electrolyte membrane in which a polymer electrolyte body is filled in a porous membrane.
  • the performance of this fuel cell has been greatly improved due to improvements in electrolyte membrane and catalyst technology, and is being developed for use in low-emission vehicles.
  • Such a functional film is produced by impregnating a porous film with a functional monomer and the like, and then polymerizing the functional monomer and the like.
  • a method is known in which both sides of the porous film are covered with a polyester film as a release material during the polymerization, and then heated under nitrogen pressure (for example, see Patent Document 1).
  • Patent Document 1 JP-A-11-335473
  • Patent Document 1 describes that a porous film is sandwiched between films as a release material during polymerization. However, this document does not disclose a method for continuously and efficiently producing a functional film in which a polymer is filled in pores of a porous resin sheet.
  • the present invention has been made in view of the above-mentioned circumstances, and is intended to prevent a polymer precursor impregnated and continuously attached to a continuously conveyed porous resin sheet from dropping off, and particularly to reduce the vicinity of the surface.
  • Functional membranes that have no defects such as unfilled polymer It is an object of the present invention to provide a method for continuously producing a functional film that can be obtained continuously and efficiently.
  • the present invention is as follows.
  • a porous resin sheet is continuously conveyed, and the porous resin sheet is impregnated with a polymer precursor containing a monomer having a functional functional group, and is impregnated and adhered. Precursor impregnation with polymer precursor impregnated and attached
  • the first resin film is continuously supplied to one side of the adhered sheet and brought into contact with the precursor, and the precursor is impregnated.
  • the second resin film is continuously supplied and brought into contact with the other side of the adhered sheet to be impregnated with the precursor.
  • a method for continuously producing a functional film comprising:
  • At least one of the first resin film and the second resin film forms a closed loop in the longitudinal direction, and contacts the precursor-impregnated / adhered sheet while rotating as described in 1. or 2. 5.
  • At least one of the first resin film and the second resin film is a resin film through which active energy rays can pass, and the polymerization is carried out from the side of the resin film through which active energy rays can pass. 4.
  • the first resin film and the second resin film have different thicknesses, and the thin resin finolem can transmit active energy rays, and the active energy rays are irradiated from the thin resin film side. 4.
  • a resin film is continuously supplied to one side and the other side of a porous resin sheet, and the polymer is sandwiched between the resin films.
  • a functional polymer is filled in the pores of the porous resin sheet, and a functional film free from defects such as not filled with polymer in the vicinity of the surface can be continuously and efficiently obtained. be able to.
  • an electrolyte membrane which is one type of a functional membrane, can be efficiently produced.
  • the polymer is filled.
  • At least one of the first resin film and the second resin film is a resin film through which the active energy ray can pass, and the polymerization is performed by irradiating the active energy ray from the side of the resin film through which the active energy ray can pass.
  • the polymerization is performed by irradiating the active energy ray from the side of the resin film through which the active energy ray can pass.
  • the first resin film and the second resin film have different thicknesses, and the thin resin film can transmit active energy rays, and the active energy rays are thin. Polymerization can be carried out efficiently at the dose, and the precursor impregnated and adhered sheet can be sufficiently supported by the thick resin film.
  • the precursor-impregnated 'adhered sheet can be transported smoothly.
  • a functional film can be manufactured more efficiently.
  • Impregnation and adhesion process The above “porous resin sheet” is continuously conveyed.
  • the porous resin sheet usually, a long sheet wound around a core is used, and the long sheet is continuously conveyed at a predetermined speed.
  • the transport speed is not particularly limited, the force S can be set to 0.01 to 100 m / min, and it is preferable to set the transport speed to 1 to 50 mZ.
  • the resin used to form the porous resin sheet is not particularly limited.
  • Polyolefin resins such as polyethylene and polypropylene, polychlorinated vinyl, vinyl chloride monobutyl acetate copolymer, and vinyl chloride monochloride vinylidene copolymer ,
  • Vinyl chloride resins such as chlorofluoroethylene copolymer, polytetrafluoroethylene, polytrifluoroethylene, polychlorotrifluoroethylene, poly (tetrafluoroethylene-hexafluoroethylene) Fluorine resins such as propylene) and poly (tetrafluoroethylene-perfluoroalkyl ether), polyamide resins such as nylon 6 and nylon 66, aromatic polyimides, aramides, polysulfones and polyether ether ketones.
  • a polyolefin resin excellent in mechanical strength, chemical stability, chemical resistance and the like is preferable.
  • a porous resin sheet which is cross-linked by electron beam irradiation, chemical cross-linking with a cross-linking agent, etc. and has improved heat resistance and the like is preferable.
  • a porous resin sheet which increases strength by stretching or the like and suppresses deformation due to external force is preferable.
  • a porous resin sheet obtained by combining crosslinking and stretching is more preferable.
  • the porosity of the porous resin sheet is preferably 5 to 95%, particularly 5 to 90%, more preferably 20 to 80%, depending on the type of the polymer, the use of the porous resin sheet, and the product to be used. .
  • the average pore diameter is in a preferred range depending on the type of polymer, the product in which the porous resin sheet is used, etc.
  • Force S Different force 0.001 to 100 ⁇ , particularly 0.01 to lzm.
  • the porosity of the porous resin sheet is 595%, especially 5 to 90. /. And 20-80. /.
  • the average diameter of the mosquitoes is preferably 0.001 100 ⁇ , especially 0.011 xm.
  • the thickness of the porous resin sheet also depends on the type of the polymer, the use of the porous resin sheet, the product to be used, and the like, but is preferably 200 zm or less. It is preferable that the force S be 1 to 150 m, especially 5 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m. If the porous resin sheet is too thin, the strength is reduced.
  • the porous resin sheet when used as an electrolyte membrane for a fuel cell, the crossover amount of hydrogen and methanol increases, which is not preferable.
  • the thickness is too large, the membrane resistance becomes excessive and the output decreases, which is not preferable.
  • the thickness variation of the porous resin sheet is preferably ⁇ 5% or less, more preferably ⁇ 1% or less.
  • the tensile elastic modulus of the porous resin sheet is preferably 500 to 5000 MPa, particularly preferably 1000 to 5000 MPa.
  • the tensile strength at break of the porous resin sheet is preferably 50 500 MPa, particularly preferably 100 500 MPa.
  • the tensile elastic modulus of the porous resin sheet is preferably 500 to 5000 MPa, particularly 1000 to 5000 MPa, and the tensile strength at break is preferably 500 to 500 MPa, particularly 100 to 500 MPa. If the porous resin sheet has a tensile modulus of at least one of 500-5000 MPa and a tensile breaking strength of at least one of 50-500 MPa, the porous resin sheet has appropriate rigidity.
  • a functional membrane may be used as an electrolyte membrane for a fuel cell. Cracks do not occur due to pressure molding during electrode bonding and tightening during battery assembly when using.
  • the fuel cell is preferably a porous resin sheet that has sufficient heat resistance at this temperature to raise the temperature during operation and does not easily deform even when an external force is applied.
  • the "polymer precursor” contains a monomer having a functional functional group.
  • a monomer having a functional functional group As the above “monomer having a functional functional group” (hereinafter, referred to as “functional monomer”), various monomers can be used depending on the purpose and use of the functional film.
  • the functional monomer include a monomer having an ion exchange group used when the functional membrane is an electrolyte membrane in fuel cells and electrolysis, and a functional membrane used as a separation membrane in concentration and the like. Examples thereof include a monomer having a polar group or a non-polar group to be used.
  • the monomer having an ion-exchange group used when the functional membrane is an electrolyte membrane in a fuel cell or the like is preferably a monomer having a proton acid group which is excellent in performance when used as an electrolyte membrane for a fuel cell. .
  • the monomer having a protonic acid group is a compound having a polymerizable functional group and a protonic acid in one molecule, for example, 2_ (meth) atalinole Amido-2-methylpropanesulfonic acid, styrenesulfonic acid, (meth) arylsulfonic acid, vinylsulfonic acid, isoprenesulfonic acid, (meth) acrylic acid, maleic acid, crotonic acid, burphosphonic acid, containing an acidic phosphoric acid group (meth) Atarilate and the like. Only one of these functional monomers may be used, or two or more of them may be used.
  • “(meth) aryl” and “(meth) atalylate” mean “atalylate and / or metathalilate” (the same applies to the following).
  • a monomer having a functional group that can be converted into an ion exchange group can also be used.
  • the monomer include salts, anhydrides and esters of the above compounds.
  • the acid residue of the monomer used is a derivative such as a salt, an anhydride or an ester
  • proton conductivity can be imparted by converting the monomer into a proton acid type after polymerization.
  • a monomer having a site into which an ion exchange group can be introduced after polymerization may be used. Examples of this monomer include monomers having a benzene ring, such as styrene, ⁇ -methylstyrene, chloromethylstyrene, and t-butylstyrene.
  • Examples of a method for introducing an ion exchange group into these monomers include a method of sulfonating with a sulfonating agent such as chlorosulfonic acid, concentrated sulfuric acid, and sulfur trioxide.
  • a sulfonating agent such as chlorosulfonic acid, concentrated sulfuric acid, and sulfur trioxide.
  • One of these monomers may be used alone, or two or more thereof may be used.
  • a vinyl compound having a sulfonic acid group and a vinyl compound having a phosphoric acid group having excellent proton conductivity are preferred, and 2- (meth) acrylamide-2-methylpropane sulfone having high polymerizability is preferred. Les, especially preferred with acid.
  • Examples of the monomer having an ion exchange group used when the functional membrane is an electrolyte membrane for electrolysis and the like include 2- (meth) acrylamide-2-methylpropanesulfonic acid, styrenesulfonic acid, and (meth) Examples include monomers having a proton acidic group such as acrylsulfonic acid, butylsulfonic acid, maleic acid and crotonic acid, and basic monomers such as butylpyridine and p_butyl_N, N-dimethylbenzylamine. One of these monomers may be used alone, or two or more thereof may be used.
  • Examples of the monomer having a polar group or a non-polar group used when the functional membrane is a separation membrane for concentration or the like include unsaturated organic acids such as (meth) acrylic acid, maleic acid, crotonic acid, and esters thereof. , Amide, Derivatives such as imides and salts, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, cyclo (meth) acrylate (Meth) acrylates such as hexyl, lauryl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) atalinoleate, styrene, polymethylstyrene, N-vinylolepyrrolidone, and butylpyridine No.
  • One of these monomers may be used alone, or two or more thereof
  • the polymer precursor contains a functional monomer, which may be composed of only a functional monomer, and another monomer copolymerizable with the functional monomer (hereinafter, referred to as "other monomer"). May be. Further, the polymer precursor may contain a functional monomer which may or may not contain a functional monomer and a crosslinkable monomer, another monomer, and a crosslinkable monomer.
  • the functional monomer is a monomer having an ion exchange group used for forming an electrolyte membrane in a fuel cell or the like
  • a monomer having no proton acidic group can be contained as the other monomer.
  • the other monomer is not particularly limited as long as it is a monomer having an ion-exchange group, a monomer copolymerizable with a crosslinkable monomer, and the like.
  • Examples of the monomer include (meth) acrylates, (meth) acrylamides, maleimides, Examples include styrenes, organic acid burs, aryl compounds and methallyl compounds. One of these monomers may be used alone, or two or more thereof may be used.
  • the functional monomer when the functional monomer is a monomer having an ion-exchange group used for forming an electrolyte membrane in electrolysis or the like, an ion-exchange group may be used as another monomer to improve strength, adjust hydrophilicity, or the like.
  • Monomers that do not have, crosslinkable monomers and the like can be contained. One of these monomers may be used alone, or two or more thereof may be used.
  • a cross-linking monomer or the like When the functional monomer is a monomer having a polar group or a non-polar group used for forming a separation membrane during concentration or the like, a cross-linking monomer or the like may be added as another monomer to improve strength or the like. Can be. One of these monomers may be used alone, or two or more thereof may be used.
  • crosslinkable monomer a monomer having two or more polymerizable functional groups in one molecule. Nomers can be used.
  • the crosslinkable monomer include N, ⁇ ′-methylenebis (meth) acrylamide, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol propane diaryl ether, and pentaerythritol. Retarialine ethereol, dibutylbenzene, bisphenol di (meth) atalylate, isocyanuric acid di (meth) atalylate, tetraaryloxetane, triarinoleamine, diaryloxyacetate and the like.
  • the crosslinkable monomer is not limited to one having a carbon-carbon double bond, and a bifunctional or more functional epoxy conjugate may be used although the reaction rate is slightly lower.
  • a crosslink bond is formed by reacting with a carboxinole group or the like of the polymer.
  • the crosslinkable monomer only one kind may be used, or two or more kinds may be used.
  • porous resin sheet can be impregnated and adhered with various components other than the polymer precursor such as a polymerization initiator, an antioxidant, an ultraviolet absorber, and a colorant, if necessary.
  • Impregnation and adhesion of the polymer precursor and the like are carried out by impregnating the polymer precursor and the like into the pores of a long porous resin sheet that is continuously conveyed, and attaching the polymer precursor to the surface of the porous resin sheet. And the like can be attached.
  • the method of impregnation and adhesion is not particularly limited, and a method of immersing the porous resin sheet in a polymer precursor or the like, or a solution or dispersion in which the polymer precursor or the like is dissolved or dispersed in a solvent, and Or a method of spraying a solution or dispersion obtained by dissolving or dispersing a polymer precursor or the like in a solvent onto a porous resin sheet.
  • a method for impregnation and adhesion a method in which the porous resin sheet is immersed in a solution or dispersion obtained by dissolving or dispersing a polymer precursor or the like in a solvent is preferable.
  • the polymer precursor and the like can be uniformly impregnated and adhered to the porous resin sheet.
  • the porosity and average pore diameter of the porous resin sheet and the polymer precursor and the like are preferably used.
  • the temperature, time, and the like during the impregnation and adhesion are not particularly limited, but the temperature is preferably 0 to 120 ° C, particularly 580 ° C, and more preferably 5 to 50 ° C.
  • Time is 0.1 second to 1 hour, especially 1 second Preferably, it is set to one ten minutes, more preferably one second to five minutes.
  • the temperature should be 0-120 ° C, especially 5-80 ° C, and 5-50 ° C, and the time should be 0.1 second-1 hour, especially 1 second-10 minutes, and 1 second-15 minutes. Is more preferable.
  • Each component such as the polymer precursor itself can be impregnated and adhered as it is if it is a liquid itself, especially a liquid having a viscosity low enough to be impregnable.
  • the preferred viscosity in this case is 11OOOOmPa's.
  • a solution or dispersion obtained by dissolving or dispersing each component such as a polymer precursor in a solvent can be impregnated and adhered.
  • the viscosity of this solution or dispersion is also preferably 11 OOOOmPa ⁇ s.
  • various components such as a polymerization initiator
  • they can be impregnated and adhered separately from the polymer precursor.
  • at least one of various components such as a polymerization initiator and a polymer precursor can be mixed and impregnated and adhered simultaneously.
  • all of various components such as a polymerization initiator can be mixed with a polymer precursor and simultaneously impregnated and adhered.
  • the respective components By simultaneously impregnating and adhering at least one of the various components such as the polymerization initiator, preferably all the components such as the polymerization initiator, and the polymer precursor, the respective components become porous resin. It can be more uniformly impregnated in the pores of the sheet.
  • Polymerization of the polymer precursor can be performed by irradiation with active energy rays such as ultraviolet rays, electron beams, and visible rays and thermal polymerization by heating.
  • active energy rays such as ultraviolet rays, electron beams, and visible rays and thermal polymerization by heating.
  • the “first resin film” is continuously supplied to one surface of the “precursor-impregnated 'adhered sheet'” impregnated and adhered with the polymer precursor and the like, and is contacted with the other surface.
  • Continuous supply of “resin film” The contact is carried out in a state where the precursor-impregnated adhesion sheet is sandwiched between the first resin film and the second resin film.
  • the state of this contact is not particularly limited as long as the porous resin sheet or the like can be smoothly conveyed at a predetermined speed, and the impregnated polymer precursor or the like does not fall off before polymerization. If the polymer precursor and the like are prevented from falling off in this way, the polymer is sufficiently filled in the pores up to the inside of the surface force, and a functional film without defects can be obtained. Further, it is preferable that the first and second resin films and the precursor-impregnated 'attachment sheet' are in close contact with each other so that gas such as air does not enter each interface. If the invasion of air or the like is prevented in this way, the polymerization is not hindered, particularly when a radical polymerizable polymer precursor is used, and a functional film can be produced more efficiently.
  • the first resin film 21 and the second resin film 22 can be continuously fed from the film supply sources 211 and 221, respectively, supplied and brought into contact with the precursor-impregnated / adhered sheet (see FIG. 2). ).
  • the film supply source a long film wound on a core is usually used, and the first and second resin films delivered from the film supply source and supplied are respectively impregnated with the precursor.
  • the “precursor-impregnated” adhering sheet that comes into contact with one surface of the adhering sheet 11 and the other surface is conveyed while being sandwiched between two resin films.
  • the polymer precursor can be polymerized by irradiating an active energy ray such as an ultraviolet ray or an electron beam from at least one resin finolem side. Further, each of the transported resin films and the precursor-impregnated / adhered sheet can be heated to thermally polymerize the polymer precursor. Also in Figure 2
  • the precursor-impregnated / adhered sheet is conveyed in the horizontal direction, but may be conveyed in a vertical direction or may be inclined. Further, it may be conveyed from below to above, or may be conveyed from above to below.
  • the first and second resin films can be separated from the precursor-impregnated / adhered sheet, wound around a core, and stored. Each resin film wound around this core can be reused until it becomes unusable due to fouling, wrinkles, elongation and the like.
  • the first resin film 21 is continuously fed from the film supply source 211, supplied and brought into contact with the precursor impregnated 'attachment sheet 11, and the second resin film 22 is closed in the longitudinal direction.
  • the film is formed into a loop, and the film can be brought into continuous contact with the precursor impregnated 'adhering sheet while rotating (see Fig. 3).
  • the first resin film sent from the film supply source and supplied is conveyed together with the precursor-impregnated 'adhesion sheet while being in contact with one surface of the precursor-impregnated' adhesion sheet.
  • the rotating second resin film is in continuous contact with the other surface of the precursor-impregnated / adhered sheet, and the precursor-impregnated / adhered sheet is conveyed sandwiched between the two resin films.
  • the polymer precursor can be polymerized by irradiating it with an active energy ray, or polymerized by heating.
  • the precursor-impregnated 'adhered sheet and the like are conveyed in the horizontal direction, but the conveyance direction may be inclined or may be conveyed in the vertical direction. Further, the lower force may be conveyed upward, or may be conveyed downward from above.
  • the first resin film can be peeled off from the precursor-impregnated / adhered sheet, wound around a core and stored.
  • the resin film wound around the core can be reused until it becomes unusable due to fouling, wrinkles, elongation and the like.
  • the second resin film can be continuously used until it becomes unusable due to staining, wrinkles, elongation, and the like.
  • first resin film 21 and the second resin film 22 are each a film forming a closed loop in the longitudinal direction, and these films facing each other at a predetermined interval are rotated, and the gap between the films is formed.
  • the precursor-impregnated / adhered sheet 11 to be conveyed may be brought into continuous contact with the first and second resin films, and the precursor-impregnated / adhered sheet may be conveyed while being sandwiched between two resin films. Yes (see Figure 4).
  • the polymer precursor can be polymerized by irradiating it with active energy rays, or polymerized by heating.
  • the precursor impregnated / adhered sheet and the like are conveyed in the horizontal direction, but the conveyance direction may be inclined or may be conveyed in the vertical direction. Further, it may be conveyed from below to above or from above to below.
  • the first resin film and the second resin film can be repeatedly used until they become unusable due to fouling, wrinkles, elongation and the like.
  • the first resin film and the second resin film are used to impregnate the precursor-impregnated sheet sandwiched between these films, and to prevent the polymer precursor adhering to the polymer sheet from adhering to the polymer sheet to smoothly progress the polymerization. It is desirable that the transmittance be low.
  • ASTM D 1434-72 of these films Oxygen permeability at 25 ° C measured according to the, 5000 ml / m ⁇ 24 hours' MPa or less, especially 3000 ml / m 2 'and the 24-hour' MPa or less, further 1500 ml / m 2 'Dearuko 24 hours' MPa preferable.
  • the resin forming each of the first resin film and the second resin film is not particularly limited. Further, the first resin film and the second resin film may be made of the same kind of resin, or may be made of different resin strengths.
  • the resin may be a thermoplastic resin or a thermosetting resin, but a thermoplastic resin that can easily form a film having high strength is preferred.
  • the thermoplastic resin include polyesters (eg, 770) such as polyethylene terephthalate and polybutylene terephthalate, polyolefins such as polyethylene (eg, 81000), polypropylene (eg, 16200), and polyamides (eg, nylon 6 and nylon 66).
  • polyvinyl chloride for example, 1400
  • polyvinylidene chloride for example, 300
  • regenerated cellulose for example, 60
  • polycarbonate for example, 36500
  • polyphenylene sulfide for example, 2070.
  • the value in parentheses is the oxygen permeability of each resin measured at 25 ° C measured by the above method. However, the thickness of the film used for measurement is 25 ⁇ , and the unit is ml / m 2 '24 hours' is MPa.
  • these thermoplastic resins there are compounds which are hardly deteriorated and hardly deformed due to irradiation of active compounds such as ultraviolet rays and electron beams, heating during thermal polymerization, etc.
  • Polyolefin and polyvinylidene chloride are preferred. Further, a film made of polyester and polyolefin is also preferable in that when it is polymerized by irradiation with active energy rays, it easily transmits active energy rays. Incidentally, polypropylene is more preferable as the polyolefin.
  • the same kind of resin means that the main repeating units constituting the molecule (for example, when all the repeating units are 100 mol%, the main repeating units are 80 mol% or more) from the same monomer. It may have a repeating unit composed of a small amount of another monomer, and may have different molecular weights, different degrees of crystallinity, and the like.
  • a film through which the active energy ray is transmitted ie, a film transparent to the active energy ray
  • the transmittance of this active energy ray is preferably 5% or more, particularly preferably 30% or more.
  • it may be colorless and transparent, which is preferably colorless and transparent.However, it is transparent in the wavelength region where the polymerization initiator function of the polymerization initiator is exhibited. It is preferable that the property is high.
  • an electron beam it may be opaque visually, but it is preferable that the transparent force is at least high because at least the appearance can be confirmed through a film at the time of polymerization or the like.
  • the thickness of each of the first resin film and the second resin film is not particularly limited. Also, the thickness of each of the first resin film and the second resin film may be the same or different. The thickness of each of the first and second resin films is preferably 3100 x m, particularly 5 to 80 ⁇ , and more preferably 760 ⁇ m. If the thickness of each film is less than 3 ⁇ m, wrinkles are likely to occur and the precursor impregnated / adhered sheet may not be sufficiently supported during polymerization, which is not preferable. On the other hand, when the thickness exceeds 100 / m, when active energy rays are used for polymerization, the amount of active energy rays absorbed by the film increases, which is not preferable.
  • the first resin film and the second resin film have different thicknesses, and it is preferable that one is thin and the other is thick.
  • the active energy dose absorbed by the resin film can be reduced, and sufficient polymerization can be achieved with a small amount of active energy dose.
  • the precursor impregnated and adhered sheet can be supported by the thick resin film.
  • the thickness of the thin resin film is preferably 1 / 10-1Z2, especially 1 / 8-1 / 3, and more preferably 1 / 6-1 / 4 of the thickness of the thick resin film.
  • the thickness of the thin wood S-finolem is preferably 3 30 xm, especially 5-20 ⁇ , and more preferably 7 15 ⁇ m. If the thickness of the thin resin film is 330 ⁇ m, the polymer precursor can be efficiently polymerized. On the other hand, the thickness of the thick resin film is 35-80 zm, especially 40-65 xm, and more preferably 45-55 ⁇ m. If the thickness of the thick layer is 35,80 xm, the precursor impregnated / adhered sheet can be reliably supported. Note that the thickness variation of each of the first resin film and the second resin film is preferably ⁇ 10% or less, more preferably ⁇ 2% or less.
  • the first and second resin films may be directly contacted with the precursor-impregnated / adhered sheet as long as the polymer-filled / adhered sheet can be easily peeled off after the polymerization of the polymer precursor.
  • Body impregnation-Release agent may be applied to the surface that comes into contact with the adhered sheet and treated.
  • the release agent various types such as a silicone release agent, a fluorine release agent, a higher aliphatic release agent and the like can be used.
  • Precursor impregnation The method of polymerizing the polymer precursor impregnated and adhered to the adhered sheet is not particularly limited, and as described above, irradiation with active energy rays such as ultraviolet rays, electron beams, and visible rays. It can be carried out by polymerization, thermal polymerization by heating, or the like. Among these methods, polymerization by irradiation with active energy rays is preferable, and according to this method, a functional film can be easily and efficiently continuously produced. Further, as the active energy ray, an ultraviolet ray and an electron beam are more preferable. When ultraviolet rays are used, the apparatus is simpler than an electron beam, and is advantageous in terms of irradiation cost.
  • active energy rays such as ultraviolet rays, electron beams, and visible rays. It can be carried out by polymerization, thermal polymerization by heating, or the like. Among these methods, polymerization by irradiation with active energy rays is preferable, and according
  • the electron beam has excellent transparency to the porous resin sheet, and particularly when the porous resin sheet is made of a hydrocarbon-based polymer, a crosslinked structure can be introduced into the polymer depending on the irradiation conditions. Further, the polymerization by electron beam irradiation is preferable in that a radical photopolymerization initiator or the like is not required.
  • a radical photopolymerization initiator that generates radicals by ultraviolet rays is previously attached to the surface of the pores of the porous resin sheet.
  • the method for attaching the radical-type photopolymerization initiator is not particularly limited. Force The solution or dispersion containing the initiator is impregnated into the pores of the porous resin sheet, and then is attached by removing the solvent. Is preferred. In this case, the initiator can be uniformly attached to the pores of the porous resin sheet.
  • the radical-type photopolymerization initiator is not particularly limited, but may be a benzophenone-type, thioxanthone-type, thioacridone-type, or the like by extracting hydrogen from a carbon-hydrogen bond. Is preferred.
  • Benzophenone-based initiators include methyl o-benzoylbenzoate, 4-phenylphenylbenzophenone, 4_benzoyl-4'-methyldiphenyl sulfide, 3, 3 ', 4,4'-tetra (t_butylperoxycarboninole) ) Benzophenone, 2,4,6_trimethylbenzophenone, 4-benzoyl_N, N-dimethyl_N— [2- (1_oxy_2-provenyloxy) ethyl] benzenemethanamide Benzylbenzyl) trimethylammonium chloride, 4,4'-dimethylaminobenzophenone, 4,4'-ethylaminobenzophenone, and the like.
  • Examples of the thioxanthone-based initiator include thioxanthone, 2-chlorothioxanthone, 2,4-getylthioxanthone, 2-ethylthioxanthone, and the like. Further, examples of the thioacridone-based initiator include thioacridone.
  • radical-based photopolymerization initiator a benzoin-based, acetophenone-based, benzyl-based initiator, or the like can also be used.
  • benzoin-based initiator examples include benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin ethyl ether, benzoin isobutyl ether and the like.
  • acetophenone initiator examples include acetophenone, propiophenone, jetoxyacetophenone, 2,2-dimethoxy-11,2-diphenylethane-one, one-hydroxycyclohexylphenyl ketone, and 2-methyl-1_ ( 4- (Methylthio) pheninole)-2-Monfolinopropane-1,2-benzyl-12-dimethylamino-1- (4-morpholinophene) butanone_1,2-Hydroxy-12-methinole-1 —Feninolepropane-1-one, 1— (4_ (2-hydroxyethoxy) -1-pheninole) _2-hydroxydi-2-methinole 1_propane-1-one, and the like.
  • radical photopolymerization initiator Only one radical photopolymerization initiator may be used, or two or more radical photopolymerization initiators may be used.
  • the radical photopolymerization initiator is preferably used as a solution or dispersion as described above.
  • the concentration of the initiator in this solution or dispersion is preferably from 0.01 to 10% by mass, particularly preferably from 0.1 to 5% by mass. If the concentration is less than 0.01% by mass, polymerization may not be sufficiently performed. On the other hand, if it exceeds 10% by mass, the crystals of the initiator may precipitate and partially block the pores of the porous resin sheet. If a part of the pores is closed as described above, the polymer precursor or the like may not be sufficiently filled. Also, the entire porous resin sheet In some cases, it may not be filled evenly, and it is not preferable even if it is misaligned.
  • the acceleration voltage of the irradiated electron beam is preferably 150 to 500 KeV, particularly preferably 150 to 200 KeV, depending on the type of the polymer precursor. If the accelerating voltage is too low, electron beams are hardly generated. If the accelerating voltage is too high, the porous resin sheet may be deteriorated and its strength may be reduced.
  • the irradiation dose is preferably from 10 to 10,000 mj / cm 2 , more preferably from 100 to 5000 mj / cm 2 , and further preferably from 200 to 2000 mjZcm 2 , depending on the type of the polymer precursor.
  • the irradiation amount is less than 10 mj / cm 2 , the polymerizing force cannot be sufficiently increased. If the irradiation amount exceeds 10,000 mj / cm 2 , the strength of the porous resin sheet may deteriorate and the strength may decrease, which is not preferable.
  • post-hardening can be performed by irradiation with ultraviolet light or heating, if necessary.
  • a polymerization initiator for that purpose may be previously blended with the polymer precursor.
  • the polymerization initiator include azo compounds such as 2,2, -azobis (2-amidinopropane) dihydrochloride, ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, and benzoyl peroxide.
  • a peroxide such as tert-hydroperoxide, di-t_butyl peroxide, or the above-mentioned peroxide
  • a reducing agent such as sulfite, bisulfite, thiosulfate, formamidin sulfinic acid, or ascorbic acid.
  • examples include initiators, azo-based radical polymerization initiators such as 2,2, -azobis_ (2-amidinopropane) dihydrochloride, and azobissianovaleric acid.
  • One type of these polymerization initiators may be used, or two or more types may be used.
  • a method of post-curing it is preferable to cure by irradiation with ultraviolet rays, which can provide a desired functional film with good productivity by a simple process in which the polymerization reaction can be easily controlled.
  • the radical photopolymerization initiator those described above and the like can be used.
  • the amount of the radical photopolymerization initiator in the case where the polymer precursor is 100 mass%, 0.1 001 1 wt%, especially 0.5 001-0. 5 mass 0/0, further 0.01 0.5 it is preferable mass 0/0.
  • the first resin film and the second resin film may be kept in contact with the precursor-impregnated and adhered sheet.
  • the polymer precursor is formed in the pores of the porous resin sheet.
  • At least one of the first resin film and the second resin film may be peeled off as long as the polymerization proceeds to such an extent that the resin is sufficiently held in the inside. Then, by irradiating active energy rays such as ultraviolet rays from the side from which the resin film has been peeled, the irradiation efficiency is improved and post-curing can be performed efficiently.
  • the excess polymer precursor adhering to the surface of the porous resin sheet comes into contact with air to suppress the polymerization, and the polymer is filled in the subsequent polymer removal step.
  • the polymer adhering to the surface of the adhering sheet can be more easily removed.
  • the polymer adhering to the surface of the “polymer-filled adhering sheet” can be removed by a method such as wiping with a plastic blade made of polypropylene or the like.
  • the polymer-filled adhering sheet can be removed by contacting an adhering polymer removing tool.
  • the tool for removing the adhered polymer may be any as long as the functional film is not damaged and does not cause damage such as deformation. Examples of the attached polymer removing tool include a brush roll and a rubber blade.
  • the polymer adhering to the surface can also be removed by passing the polymer-filled adhering sheet through a narrow gap slightly wider than its thickness.
  • the impregnation, adhesion step, polymerization step, film peeling step and polymer removal step are performed continuously.
  • a long porous resin sheet is continuously conveyed and impregnated and adhered with a polymer precursor or the like to form a precursor impregnated / adhered sheet.
  • the first resin film and the second resin film are continuously supplied and contacted on one side and the other side, and the precursor impregnated / adhered sheet is sandwiched between the first and second resin films in this manner.
  • the polymer precursor is polymerized to form a polymer-filled adhesive sheet, and then the first and second resin films are peeled from the polymer-filled adhesive sheet, and then adhered to the surface of the polymer-filled adhesive sheet.
  • the removed polymer is removed.
  • a series of operations are performed by a continuous process.
  • the obtained long functional film can be stored as a product by a method such as continuous winding on a core.
  • the process is continuously performed including the other process.
  • This continuous manufacturing method can be performed, for example, by the steps shown in FIG. That is, the continuous porous resin sheet 1 that is continuously conveyed is brought into contact with a solution or dispersion 3 containing a polymer precursor or the like contained in a container (impregnation and adhesion step), and then the polymer precursor is contacted.
  • Precursor-impregnated body and soaked precursor-adhered and adhered sheet 11 is brought into contact with first resin film 21 and second resin film 22 continuously supplied from resin film supply sources 211 and 221 to impregnate precursor. 'Conveyed with the adhered sheet sandwiched between two resin films, irradiated with an electron beam, ultraviolet light, etc. from an active energy ray irradiation source E to polymerize the polymer precursor (polymerization step).
  • the first and second resin films are peeled off from the polymer-filled / adhered sheet in which the polymer is filled and adhered to the porous resin sheet (film peeling step), and then applied to the surface of the polymer-filled / adhered sheet 12.
  • the removed polymer is removed by removing it with a plastic blade 4 (polymer removal step), and then the removed polymer is washed away with water sprayed from Noznore N, and then dried by a drying device H as necessary. Then, the obtained functional film 5 can be continuously wound on a core to efficiently manufacture the film. Furthermore, in order to protect the product, the functional film to be wound can be wound while a protective film 6 made of polyester, polyolefin, fluororesin, or the like is laminated on at least one surface (both surfaces in FIG. 1).
  • steps other than the impregnation, adhesion step, polymerization step, film peeling step and polymer removal step include a drying step after the polymer removal step, an inspection step after this drying step, and a humidity control step. Can be These other steps are also performed as a series of continuous steps along with the impregnation, adhesion, polymerization, film peeling and polymer removal steps.
  • the functional membrane produced by the method of the present invention is an electrolyte membrane
  • this electrolyte membrane is useful as an electrolyte membrane in a polymer electrolyte fuel cell, particularly a direct methanol fuel cell.
  • a catalyst such as platinum
  • the electrolyte membrane electrode assembly integrated by a hot press or the like. Once formed, the assembly can be used in a fuel cell unit.
  • a body impregnated / adhered sheet 11 was prepared and then, as shown in FIG. 2, a polyethylene terephthalate film having a thickness of 50 zm (25 ° measured according to ASTM D 1434-72) Oxygen permeability in C is 385ml / m 2 '24 hours * MPa), and the film is transported with the precursor-impregnated / adhered sheet sandwiched by these films, and is the source E of active energy rays.
  • the film UV after transparently is irradiated with ultraviolet rays so that the irradiation dose of 2000 mJ / cm 2 in total to polymerize the poly-mer precursor, then, peeling the polyethylene terephthalate film from both sides Then, the polymer adhering to the surface of the polymer-filled adhering sheet was removed with a polypropylene blade.
  • the obtained electrolyte membrane was translucent, and its surface was not damaged such as scratches, deformation, and tears.
  • the thickness of one side of the polyethylene terephthalate film was reduced to 10 ⁇ m, and ultraviolet light was irradiated only from the thin side. Then, an electrolyte membrane was produced in the same manner as in Example 1 except that the irradiation amount of the ultraviolet light after passing through the film was set to 2000 mj / cm 2 .
  • the obtained electrolyte membrane was translucent, and its surface had no damage such as scratches, deformation, or tears. Further, in Example 2, the thickness of the film that transmits ultraviolet light was 1/5 of that of Example 1, and thus the amount of ultraviolet light before transmission through the film could be reduced by half.
  • An electrolyte membrane was manufactured in the same manner as in Example 1 except that the polyethylene terephthalate film was not brought into contact with the film and that the film was not in contact.
  • the obtained electrolyte membrane was a non-homogeneous membrane having defects where the polymer was not filled. Therefore, it is not possible to evaluate as an electrolyte membrane described later I got it.
  • Example 1 50 ml of the solution prepared in Example 1 was placed in a Petri dish, and a test piece of 5 cm in length and width cut out from a porous polyethylene resin sheet was immersed in the solution to impregnate the polymer precursor and the like. Force The test piece taken out was sandwiched between glass plates, and irradiated with ultraviolet light at a dose of 1000 mj / cm 2 from one side after passing through the glass using a high-pressure mercury lamp for experiments. After that, it was turned upside down and irradiated with the same amount of ultraviolet rays from the opposite side. Next, the glass plate was removed, and the polymer adhering to the surface was removed with a polypropylene blade to obtain an electrolyte membrane. This electrolyte membrane was translucent, and its surface was not damaged such as scratches, deformation, and tears.
  • the electrolyte membrane was immersed in water at 25 ° C to swell, and then the electrolyte membrane was sandwiched between two platinum foil electrodes to prepare a specimen for measuring proton conductivity. Using this specimen, the impedance was measured by an impedance measuring device (Hewlett-Packard Co., model “HP4192A”).
  • the pervaporation experiment at 50 ° C was carried out using methanol / water at a mass ratio of 1/9 as a feed solution, reducing the pressure on the permeation side until the permeation flow rate became steady. Details are as follows.
  • the electrolyte membrane was sandwiched between stainless steel cells, and the above-mentioned supply liquid was poured into the upper surface of the electrolyte membrane and stirred.
  • a heater and a resistance temperature detector were charged into the supply liquid, and the temperature was controlled at 50 ° C.
  • a vacuum pump was connected to the lower surface of the electrolyte membrane via a cold trap. In this way, the lower surface of the electrolyte membrane, that is, the permeation side was depressurized, and the mixture of methanol and water vapor that had permeated the electrolyte membrane was collected in the cold trap.
  • the collected vapor solidified in the cold trap
  • the total permeation flux is determined from the mass thereof and the permeated vapor composition is determined by gas chromatography analysis. , Respectively. This measurement was continued until the membrane permeability became constant with respect to time, and the measured value at the time when the membrane permeability became constant was evaluated as steady-state permeability.
  • a polyimide precursor NMP solution containing a total of 8.3% by mass of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and oxydianiline in a molar ratio of 0.999 is mirror-polished.
  • the precursor impregnated 'adhesion sheet 11 is prepared, and then a 50 ⁇ m-thick polyethylene terephthalate film is brought into contact with both surfaces of the precursor impregnation-adhesion sheet as shown in FIG.
  • the film is conveyed with the precursor-impregnated and adhered sheet sandwiched between these films, and heated at 60 ° C. instead of the ultraviolet irradiation in Example 1 to polymerize the polymer precursor, and then both sides are irradiated.
  • the polyethylene terephthalate film was peeled off, and then the polymer adhering to the surface of the polymer-filled sheet was removed with a polypropylene blade.
  • the obtained electrolyte membrane was translucent and had a darker color than the polyimide porous film.
  • the surface had good appearance without damage such as scratches, deformation and tearing.
  • the mass of this electrolyte membrane was increased by 23% by mass compared to the polyimide porous film.
  • FIG. 1 is a flowchart showing an example of a process for manufacturing a functional film.
  • FIG. 2 The first resin film and the second resin film are each continuously fed and supplied with a film supply power, and are irradiated with an active energy ray in a state where the first resin film and the second resin film are in contact with the precursor-impregnated / adhered sheet. It is explanatory drawing which shows the method of superposing
  • FIG. 3 The first resin film is continuously fed and supplied with the film supply power.
  • the precursor is impregnated.
  • the second resin film is brought into contact with the adhesive sheet to form a closed loop in the longitudinal direction.
  • FIG. 4 is an explanatory view showing a method of polymerizing a polymer precursor by irradiating active energy rays in a state where the film is rotated and continuously contacted with a precursor impregnated / adhered sheet while rotating the film.
  • FIG. 4 is an explanatory view showing a method of polymerizing a polymer precursor by irradiating an active energy ray in a state where an agglutination sheet and both films are continuously contacted.
  • porous resin sheet polyethylene porous resin sheet
  • 11 precursor-impregnated 'attached sheet'
  • 12 polymer-filled 'adhered sheet
  • 21 first resin film
  • 22 second resin film
  • 211, 221 film source
  • 3 solution or dispersion containing a polymer precursor, etc .
  • E active energy ray irradiation source
  • 4 plastic blade
  • N spraying water for washing Nozzle
  • H drying equipment
  • 5 functional membrane
  • 6 protective film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Fuel Cell (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

 多孔質樹脂シートの細孔内に機能性ポリマーが充填された機能性膜を連続的に且つ効率よく得ることができる機能性膜の連続製造方法を提供する。  本発明の機能性膜の連続製造方法は、連続的に搬送される多孔質樹脂シート(多孔質ポリエチレンシート等)に機能性官能基を有するポリマー前駆体(2−アクリルアミド−2−メチルプロパンスルホン酸等)を含浸させ、付着させる工程、多孔質樹脂シートにポリマー前駆体が含浸され且つ付着されてなるシートの一面及び他面に第1及び第2樹脂フィルム(いずれもポリエステルフィルム等)を連続的に供給して接触させ、シートを2枚の樹脂フィルムにより挟んだ状態でポリマー前駆体を重合(活性エネルギー線の照射等による。)させる重合工程、フィルム剥離工程、並びにポリマー除去工程を備える。

Description

明 細 書
機能性膜の連続製造方法
技術分野
[0001] 本発明は、機能性膜の連続製造方法に関する。更に詳しくは、多孔質樹脂シート の細孔内に機能性ポリマーが充填された機能性膜を効率よく連続的に得ることがで きる機能性膜の連続製造方法に関する。
本発明は、燃料電池、レドックスフロー電池等の電池、電気分解等における各種装 置、及び分離膜などにおいて利用することができる。
^景技術
[0002] イオン交換基を有するモノマーを重合させてなるポリマー等の各種の機能性ポリマ 一を多孔質膜に充填させた機能性膜が多くの用途において用いられている。例えば 、高分子電解質体を多孔質膜に充填させた電解質膜を用いた電気化学装置の 1種 である燃料電池が知られている。この燃料電池は、近年、電解質膜及び触媒技術の 改良等により性能が大きく向上し、低公害車両用等として開発が進められている。こ のような機能性膜は、多孔質膜に機能性モノマー等を含浸させ、その後、この機能性 モノマー等を重合させることにより製造されている。また、この重合時に、多孔質膜の 両側を剥離材であるポリエステルフィルムにより被覆し、次いで、窒素加圧下、加熱 する方法が知られている(例えば、特許文献 1参照。)。
[0003] 特許文献 1 :特開平 11一 335473号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1には、重合時に、剥離材であるフィルムにより多孔質膜を挟むことが記 載されている。しかし、この文献には、多孔質樹脂シートの細孔内にポリマーが充填 された機能性膜を連続的に且つ効率よく製造する方法は開示されていない。
本発明は、上記の状況に鑑みてなされたものであり、連続的に搬送される多孔質樹 脂シートに含浸され、付着されたポリマー前駆体の脱落等を防止することにより、特 に表面近傍においてポリマーが充填されていない等の欠陥を有さない機能性膜を連 続的に且つ効率よく得ることができる機能性膜の連続製造方法を提供することを目 的とする。
課題を解決するための手段
本発明は以下のとおりである。
1.多孔質樹脂シートを連続的に搬送し、該多孔質樹脂シートに機能性官能基を 有するモノマーを含有するポリマー前駆体を含浸させ、付着させる含浸 ·付着工程、 該多孔質樹脂シートに該ポリマー前駆体が含浸され且つ付着されてなる前駆体含侵
•付着シートの一面に第 1樹脂フィルムを連続的に供給して接触させ且つ該前駆体 含浸 ·付着シートの他面に第 2樹脂フィルムを連続的に供給して接触させ、該前駆体 含浸 ·付着シートを該第 1樹脂フィルムと該第 2樹脂フィルムとで挟んだ状態で該ポリ マー前駆体を重合させてポリマーを生成させる重合工程、該多孔質樹脂シートに該 ポリマーが充填され且つ付着されてなるポリマー充填 ·付着シートから該第 1樹脂フィ ルム及び該第 2樹脂フィルムを剥離するフィルム剥離工程、並びに該ポリマー充填. 付着シートの表面に付着したポリマーを除去するポリマー除去工程、を備えることを 特徴とする機能性膜の連続製造方法。
2.上記機能性官能基力 Sスルホン酸基及びリン酸基のうちの少なくとも一方である上 記 1.に記載の機能性膜の製造方法。
3.上記第 1樹脂フィルム及び上記第 2樹脂フィルムのうちの少なくとも一方は長さ 方向に閉じた輪を形成しており且つ回転しながら上記前駆体含浸 ·付着シートと接触 する上記 1.又は 2. に記載の機能性膜の連続製造方法。
4.上記第 1樹脂フィルム及び上記第 2樹脂フィルムのうちの少なくとも一方は活性 エネルギー線が透過可能な樹脂フィルムであり、上記重合は、活性エネルギー線が 透過可能な樹脂フィルムの側から活性エネルギー線を照射することによりなされる上 記 1.乃至 3.のうちのいずれか 1項に記載の機能性膜の連続製造方法。
5.上記第 1樹脂フィルムと上記第 2樹脂フィルムとの厚さが異なり、薄い樹脂フィノレ ムは活性エネルギー線が透過可能であり、上記活性エネルギー線が該薄レ、フィルム の側から照射される上記 4.に記載の機能性膜の連続製造方法。
6.上記第 1樹脂フィルム及び上記第 2樹脂フィルムの少なくとも上記前駆体含侵' 付着シートと接触する面が離型剤により処理されている上記 1.乃至 5.のうちのいず れか 1項に記載の機能性膜の連続製造方法。
発明の効果
[0006] 本発明の機能性膜の連続製造方法によれば、多孔質樹脂シートの一面及び他面 に樹脂フィルムを連続的に供給し、多孔質樹脂シートを樹脂フィルムにより挟んだ状 態でポリマー前駆体を重合させることによって、多孔質樹脂シートの細孔内に機能性 ポリマーが充填され、特に表面近傍においてポリマーが充填されていない等の欠陥 のない機能性膜を連続的に且つ効率よく得ることができる。
また、機能性官能基力 Sスルホン酸基及びリン酸基のうちの少なくとも一方である場 合は、機能性膜の 1種である電解質膜を効率よく製造することができる。
更に、第 1樹脂フィルム及び第 2樹脂フィルムのうちの少なくとも一方が長さ方向に 閉じた輪を形成しており且つ回転しながら前駆体含浸 ·付着シートと接触する場合は 、ポリマーが充填されていない等の欠陥を有さない機能性膜をより効率よく製造する こと力 Sできる。
また、第 1樹脂フィルム及び第 2樹脂フィルムのうちの少なくとも一方が活性エネノレ ギ一線が透過可能な樹脂フィルムであり、重合が、活性エネルギー線が透過可能な 樹脂フィルムの側から活性エネルギー線を照射することによりなされる場合は、重合 速度が大きぐ連続生産にも適している。
更に、第 1樹脂フィルムと第 2樹脂フィルムとの厚さが異なり、薄い樹脂フィルムは活 性エネルギー線が透過可能であり、活性エネルギー線が薄レ、フィルムの側から照射 される場合は、少ない線量で効率よく重合させることができ、且つ厚い樹脂フィルム によって前駆体含侵 ·付着シートを十分に支持することができる。
また、第 1樹脂フィルム及び第 2樹脂フィルムの少なくとも前駆体含浸'付着シートと 接触する面が離型剤により処理されている場合は、前駆体含侵'付着シートを円滑に 搬送することができ、機能性膜をより効率よく製造することができる。
発明を実施するための最良の形態
[0007] 以下、本発明を詳細に説明する。
( 1 )含浸、付着工程 上記「多孔質樹脂シート」は連続的に搬送される。この多孔質樹脂シートとしては、 通常、卷芯に捲回された長尺のシートが用いられ、この長尺のシートが所定の速度 で連続的に搬送される。搬送速度は特に限定されないが、 0. 01— 100m/分とす ること力 Sでき、 1一 50mZ分とすることが好ましい。
多孔質樹脂シートとしては、各種の樹脂からなるものを使用することができる。多孔 質樹脂シートの形成に用いられる樹脂は特に限定されず、ポリエチレン、ポリプロピレ ン等のポリオレフイン系樹脂、ポリ塩化ビュル、塩化ビュル一酢酸ビュル共重合体、塩 化ビュル一塩ィヒビ二リデン共重合体、塩化ビュルーォレフイン共重合体等の塩化ビニ ル系樹脂、ポリテトラフルォロエチレン、ポリトリフルォロエチレン、ポリクロ口トリフルォ 口エチレン、ポリ(テトラフルォロエチレン—へキサフルォロプロピレン)、ポリ(テトラフ ノレォロエチレン—パーフルォロアルキルエーテノレ)等のフッ素系樹脂、ナイロン 6、ナ ィロン 66等のポリアミド樹脂、芳香族ポリイミド、ァラミド、ポリスルホン及びポリエーテ ルエーテルケトン等が挙げられる。樹脂としては、機械的強度、化学的安定性、耐薬 品性等に優れるポリオレフイン系樹脂が好ましい。更に、電子線照射、架橋剤による 化学架橋等により架橋され、耐熱性等が向上された多孔質樹脂シートが好ましい。ま た、延伸すること等によって強度が大きくなり、外力による変形が抑えられる多孔質樹 脂シートが好ましい。更に、架橋と延伸等とを併せて施した多孔質樹脂シートがより 好ましい。
多孔質樹脂シートの空孔率はポリマーの種類、多孔質樹脂シートが用レ、られる製 品等にもよる力 5— 95%、特に 5— 90%、更に 20— 80%であることが好ましい。平 均孔径はポリマーの種類、多孔質樹脂シートが用いられる製品等により好ましい範囲 力 S異なる力 0. 001— 100 μ πι、特に 0. 01— l z mであること力 S好ましレヽ。また、多 孔質樹脂シートの空孔率が 5 95%、特に 5— 90。/。、更に 20— 80。/。であり、且つ平 均孑し径カ 0. 001 100 μ πι、特に 0. 01 1 x mであることカより好ましレ、。多孑し質 樹脂シートを、例えば、燃料電池の電解質膜用として使用した場合、空孔率が小さす ぎると面積当たりのイオン交換基が過少となって出力が低下する。一方、空孔率が大 きすぎると強度が低下し好ましくない。更に、多孔質樹脂シートの厚さもポリマーの種 類、多孔質樹脂シートが用レ、られる製品等によるが、 200 z m以下であることが好ま しく、 1一 150 m、特に 5— 100 /i m、更に 5— 50 μ mであること力 Sより好ましい。多 孔質樹脂シートが薄すぎると強度が低下し、例えば、燃料電池用電解質膜として用 いる場合は、水素やメタノールのクロスオーバー量も増加するため好ましくなレ、。一方 、 200 z mを越えて厚くする必要はなぐ例えば、燃料電池の場合、厚すぎると膜抵 抗が過大となり出力が低下するため好ましくない。
尚、多孔質樹脂シートの厚さのばらつきは、好ましくは ± 5%以下、より好ましくは ± 1 %以下である。
[0009] この多孔質樹脂シートの引張弾性率は 500 5000MPa、特に 1000— 5000MP aであることが好ましい。また、多孔質樹脂シートの引張破断強度は 50 500MPa、 特に 100 500MPaであることが好ましい。更に、多孔質樹脂シートの引張弾性率 カ 500 5000MPa、特に 1000— 5000MPaであり、且つ引張破断虽度カ 50 50 0MPa、特に 100— 500MPaであることがより好ましレ、。多孔質樹脂シートの引張弹 性率が 500— 5000MPa及び引張破断強度が 50— 500MPaのうちの少なくとも一 方であれば、適度な剛性を有し、例えば、機能性膜を燃料電池の電解質膜として用 レ、る場合の電極接合時の加圧成形及び電池組立時の締め付け等によって亀裂が生 じることがない。尚、燃料電池は運転時に昇温する力 この温度において十分な耐熱 性を有し、外力が加わっても容易に変形しない多孔質樹脂シートであることが好まし レ、。
[0010] 上記「ポリマー前駆体」には機能性官能基を有するモノマーが含有される。上記「機 能性官能基を有するモノマー」(以下、「機能性モノマー」という。)としては、機能性膜 の目的、用途等により各種のものを用いることができる。この機能性モノマーとしては 、例えば、機能性膜が燃料電池及び電気分解等における電解質膜である場合に用 レ、られるイオン交換基を有するモノマー、機能性膜が濃縮等における分離膜である 場合に用いられる極性基又は非極性基を有するモノマーなどが挙げられる。
[0011] 機能性膜が燃料電池等における電解質膜である場合に用いられるイオン交換基を 有するモノマーとしては、燃料電池用の電解質膜とした際の性能に優れるプロトン酸 性基を有するモノマーが好ましい。このプロトン酸性基を有するモノマーは 1分子中 に重合可能な官能基とプロトン酸とを有する化合物であり、例えば、 2_ (メタ)アタリノレ アミドー 2—メチルプロパンスルホン酸、スチレンスルホン酸、 (メタ)ァリルスルホン酸、 ビニルスルホン酸、イソプレンスルホン酸、 (メタ)アクリル酸、マレイン酸、クロトン酸、 ビュルホスホン酸、酸性リン酸基含有 (メタ)アタリレート等が挙げられる。これらの機 能性モノマーは 1種のみを用いてもよいし、 2種類以上を用いてもよレ、。尚、「(メタ)ァ リル」を、「(メタ)アタリレート」は「アタリレート及び/又はメタタリレート」を意味する(以 下も同様である)。
[0012] また、イオン交換基に変換し得る官能基を有するモノマーを用いることもできる。こ のモノマーとしては、上記の化合物の塩、無水物、エステル等が挙げられる。使用す るモノマーの酸残基が塩、無水物、エステル等の誘導体となっている場合は、重合後 にプロトン酸型にすることでプロトン伝導性を付与することができる。更に、重合後に イオン交換基を導入可能な部位を有するモノマーを用いることもできる。このモノマー としては、スチレン、 α—メチルスチレン、クロロメチルスチレン、 t—ブチルスチレン等 のベンゼン環を有するモノマーが挙げられる。これらのモノマーにイオン交換基を導 入する方法としては、クロロスルホン酸、濃硫酸、三酸化硫黄等のスルホン化剤により スルホン化する方法等が挙げられる。これらのモノマーは 1種のみを用いてもよいし、 2種類以上を用いてもよい。
プロトン酸性基を有するモノマーとしては、プロトン伝導性に優れるスルホン酸基を 有するビニル化合物及びリン酸基を有するビニル化合物が好ましぐ高い重合性を 有する 2- (メタ)アクリルアミド -2-メチルプロパンスルホン酸が特に好ましレ、。
[0013] 機能性膜が電気分解等における電解質膜である場合に用いられるイオン交換基を 有するモノマーとしては、 2— (メタ)アクリルアミド— 2—メチルプロパンスルホン酸、スチ レンスルホン酸、(メタ)ァリルスルホン酸、ビュルスルホン酸、マレイン酸、クロトン酸 等のプロトン酸性基を有するモノマー、及びビュルピリジン、 p_ビュル _N, N—ジメチ ルベンジルァミン等の塩基性モノマーなどが挙げられる。これらのモノマーは 1種の みを用いてもよいし、 2種類以上を用いてもよい。また、機能性膜が濃縮等における 分離膜である場合に用いられる極性基又は非極性基を有するモノマーとしては、(メ タ)アクリル酸、マレイン酸、クロトン酸等の不飽和有機酸又はそのエステル、アミド、 イミド、塩などの誘導体、(メタ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)ァク リル酸プロピル、 (メタ)アクリル酸ブチル、 (メタ)アクリル酸ペンチル、 (メタ)アクリル酸 シクロへキシル、 (メタ)アクリル酸ラウリル、 (メタ)アクリル酸ベンジル、 (メタ)アタリノレ 酸イソボルニル等の(メタ)アクリル酸エステル、スチレン、 ひ—メチルスチレン、 N—ビ 二ノレピロリドン、ビュルピリジンなどが挙げられる。これらのモノマーは 1種のみを用い てもよいし、 2種類以上を用レ、てもよい。 2種類以上を用いる場合、分離対象に対する 親和性の程度により種々組み合わせて用いることができる。
[0014] ポリマー前駆体は機能性モノマーのみからなるものでもよぐ機能性モノマーと、こ の機能性モノマーと共重合可能な他のモノマー(以下、「その他のモノマー」という。 ) とを含有していてもよい。更に、ポリマー前駆体は、機能性モノマーと架橋性モノマー とを含有していてもよぐ機能性モノマーと、その他のモノマーと、架橋性モノマーとを 含有していてもよい。
機能性モノマーが燃料電池等における電解質膜の形成に用いられるイオン交換基 を有するモノマーである場合、上記のその他のモノマーとしてプロトン酸性基を有さな いモノマーを含有させることができる。また、このその他のモノマーはイオン交換基を 有するモノマー及び架橋性モノマー等と共重合可能なモノマー等であれば特に限定 されず、 (メタ)アクリル酸エステル類、(メタ)アクリルアミド類、マレイミド類、スチレン類 、有機酸ビュル類、ァリル化合物及びメタリル化合物等が挙げられる。これらのモノマ 一は 1種のみを用いてもよいし、 2種類以上を用いてもよい。
[0015] 更に、機能性モノマーが電気分解等における電解質膜の形成に用いられるイオン 交換基を有するモノマーである場合、その他のモノマーとして、強度向上、親水性の 調整等のため、イオン交換基を有さないモノマー、架橋性モノマー等を含有させるこ とができる。これらのモノマーは 1種のみを用いてもよいし、 2種類以上を用いてもよい 。また、機能性モノマーが濃縮等における分離膜の形成に用レ、られる極性基又は非 極性基を有するモノマーである場合、その他のモノマーとして、強度向上等のため、 架橋性モノマー等を含有させることができる。これらのモノマーは 1種のみを用いても よいし、 2種類以上を用いてもよい。
[0016] 更に、架橋性モノマーとしては、 1分子中に重合可能な官能基を 2個以上有するモ ノマーを用いることができる。この架橋性モノマーとしては、例えば、 N, Ν '-メチレン ビス(メタ)アクリルアミド、ポリエチレングリコールジ (メタ)アタリレート、ポリプロピレン グリコールジ(メタ)アタリレート、トリメチロールプロパンジァリルエーテル、ペンタエリ スリトーノレトリァリノレエーテノレ、ジビュルベンゼン、ビスフエノールジ(メタ)アタリレート、 イソシァヌル酸ジ(メタ)アタリレート、テトラァリルォキシェタン、トリアリノレアミン、ジァリ ルォキシ酢酸塩等が挙げられる。また、架橋性モノマーは、炭素一炭素二重結合を有 するものに限られず、反応速度はやや小さいものの、 2官能以上のエポキシィ匕合物 等を使用することもできる。このエポキシ化合物を用いる場合は、ポリマーのカルボキ シノレ基等と反応することにより架橋結合が形成される。架橋性モノマーは 1種のみを 用いてもよいし、 2種類以上を用いてもよい。
また、多孔質樹脂シートには必要に応じて重合開始剤、酸化防止剤、紫外線吸収 剤、着色剤等のポリマー前駆体以外の各種の成分を含浸、付着させること力 Sできる。
[0017] ポリマー前駆体等の含浸、付着は、連続的に搬送される長尺の多孔質樹脂シート の細孔内にポリマー前駆体等を含浸させ、且つ多孔質樹脂シートの表面にポリマー 前駆体等を付着させることにより行うことができる。この含浸、付着の方法は特に限定 されず、ポリマー前駆体等、又はポリマー前駆体等を溶媒に溶解又は分散させた溶 液又は分散液などに多孔質樹脂シートを浸漬する方法、及びポリマー前駆体等、又 はポリマー前駆体等を溶媒に溶解又は分散させた溶液又は分散液などを多孔質榭 脂シートに吹き付ける方法等が挙げられる。含浸、付着の方法としては、ポリマー前 駆体等、又はポリマー前駆体等を溶媒に溶解又は分散させた溶液又は分散液など に多孔質樹脂シートを浸漬する方法が好ましい。この方法であれば、ポリマー前駆体 等を多孔質樹脂シートにより均一に含浸、付着させることができる。尚、ポリマー前駆 体等は特に多孔質樹脂シートの細孔内に均一に含浸させることが好ましぐそのため には多孔質樹脂シートの空孔率及び細孔の平均孔径等と、ポリマー前駆体等又は 溶液等の粘度などとを勘案しながら含浸させる方法を選択し、且つ含浸させる条件 等を設定することが好ましい。
[0018] この含浸、付着の際の温度、時間等は特に限定されないが、温度は 0— 120°C、特 に 5 80°C、更に 5— 50°Cとすることが好ましレ、。時間は 0. 1秒一 1時間、特に 1秒 一 10分、更に 1秒一 5分とすることが好ましい。また、温度を 0— 120°C、特に 5— 80 °C、更に 5— 50°Cとし、且つ時間を 0. 1秒一 1時間、特に 1秒一 10分、更に 1秒一 5 分とすることがより好ましい。
[0019] ポリマー前駆体等の各々の成分は、そのもの自体が液体、特に含浸可能な程度の 低い粘度を有する液体であればそのまま含浸、付着させること力 Sできる。この場合の 好ましい粘度は 1一 lOOOOmPa' sである。更に、そのままでは含浸、付着させること ができない場合は、ポリマー前駆体等の各々の成分を、それぞれ溶媒に溶解又は分 散させた溶液又は分散液を含浸、付着させることもできる。この溶液又は分散液の粘 度も 1一 1 OOOOmPa · sであることが好ましレヽ。
また、重合開始剤等の各種の成分を用いる場合、これらはそれぞれポリマー前駆 体とは別個に含浸、付着させること力できる。更に、重合開始剤等の各種の成分のう ちの少なくとも 1種とポリマー前駆体とを混合して同時に含浸、付着させることもできる 。また、重合開始剤等の各種の成分のすべてを、ポリマー前駆体と混合して同時に 含浸、付着させることもできる。
更に、溶液又は分散液として含浸、付着させる場合、これらはそれぞれポリマー前 駆体とは別個の溶液又は分散液として含浸、付着させることができる。また、重合開 始剤等の各種の成分のうちの少なくとも 1種とポリマー前駆体とを含有する溶液又は 分散液を使用し、各々の成分を同時に含浸、付着させることもできる。更に、重合開 始剤等の各種の成分のすべてとポリマー前駆体とを含有する溶液又は分散液を使 用し、各々の成分を同時に含浸、付着させることもできる。
このように重合開始剤等の各種の成分のうちの少なくとも 1種、好ましくは重合開始 剤等のすべての成分と、ポリマー前駆体とを同時に含浸、付着させれば、それぞれ の成分を多孔質樹脂シートの細孔内により均一に含浸させることができる。
[0020] (2)重合工程
ポリマー前駆体の重合は、紫外線、電子線、可視光線等の活性エネルギー線の照 射及び加熱による熱重合などにより行うことができる。この重合は、ポリマー前駆体等 が含浸、付着された上記「前駆体含浸 '付着シート」の一面に上記「第 1樹脂フィルム 」を連続的に供給して接触させ、他面に上記「第 2樹脂フィルム」を連続的に供給して 接触させて、前駆体含浸 '付着シートを第 1樹脂フィルムと第 2樹脂フィルムとで挟ん だ状態で行われる。この接触の状態は、多孔質樹脂シート等を所定の速度で円滑に 搬送することができ、且つ含浸されたポリマー前駆体等が重合前に脱落することがな い限り特に限定されない。このようにポリマー前駆体等の脱落が防止されれば、表面 力 内部まで細孔内にポリマーが十分に充填され、欠陥のない機能性膜とすることが できる。また、第 1及び第 2樹脂フィルムと前駆体含浸 '付着シートとは、各々の界面 に空気等の気体が侵入しなレ、ように密着してレ、ることが好ましレ、。このように空気等の 侵入が防止されれば、特にラジカル重合性のポリマー前駆体を用いる場合に重合が 阻害されず、機能性膜をより効率よく製造することができる。
[0021] 第 1樹脂フィルム 21及び第 2樹脂フィルム 22は、それぞれフィルム供給源 211、 22 1から連続的に送出し、供給して前駆体含浸 ·付着シートと接触させることができる( 図 2参照)。フィルム供給源としては、通常、卷芯に捲回された長尺のフィルムが使用 され、このフィルム供給源から送出され、供給された第 1及び第 2樹脂フィルムは、そ れぞれ前駆体含浸'付着シート 11の一面と他面とに接触し、前駆体含浸'付着シート は 2枚の樹脂フィルムに挟持されて搬送される。そして、少なくとも一方の樹脂フィノレ ムの側から紫外線、電子線等の活性エネルギー線を照射することによりポリマー前駆 体を重合させることができる。また、搬送されている各々の樹脂フィルムと前駆体含浸 •付着シートとを加熱してポリマー前駆体を熱重合させることもできる。また、図 2では
、前駆体含浸 ·付着シート等は水平方向に搬送されているが、この搬送方向は傾斜 していてもよぐ垂直方向に搬送してもよい。更に、下方から上方へ搬送してもよぐ 上方から下方へ搬送してもよレ、。
尚、重合後、第 1及び第 2樹脂フィルムはそれぞれ前駆体含浸 ·付着シートから剥 離させ、卷芯に捲回して保管することができる。この卷芯に捲回された各々の樹脂フ イルムは汚損、皺、伸び等により使用不可となるまで再利用することができる。
[0022] また、第 1樹脂フィルム 21は、フィルム供給源 211から連続的に送出し、供給して前 駆体含浸 '付着シート 11と接触させ、第 2樹脂フィルム 22は、長さ方向に閉じた輪を 形成しているフィルムとし、このフィルムを回転させながら前駆体含浸'付着シートと連 続的に接触させることができる(図 3参照)。フィルム供給源 211としては上記と同様の ものが使用され、このフィルム供給源から送出され、供給された第 1樹脂フィルムは、 前駆体含浸'付着シートの一面に接触した状態で前駆体含浸'付着シートとともに搬 送される。一方、前駆体含浸 ·付着シートの他面には回転する第 2樹脂フィルムが連 続的に接触し、前駆体含浸'付着シートは 2枚の樹脂フィルムに挟持されて搬送され る。そして、上記と同様にしてポリマー前駆体に活性エネルギー線を照射して重合、 又は加熱して重合させることができる。更に、図 3では、前駆体含浸'付着シート等は 水平方向に搬送されているが、この搬送方向は傾斜していてもよぐ垂直方向に搬送 してもよレ、。また、下方力 上方へ搬送してもよぐ上方から下方へ搬送してもよい。 尚、重合後、第 1樹脂フィルムは前駆体含浸 ·付着シートから剥離させ、卷芯に捲 回して保管することができる。この卷芯に捲回された樹脂フィルムは汚損、皺、伸び 等により使用不可となるまで再利用することができる。一方、第 2樹脂フィルムは、汚 損、皺、伸び等により使用不可となるまで連続して使用することができる。
[0023] 更に、第 1樹脂フィルム 21及び第 2樹脂フィルム 22を、それぞれ長さ方向に閉じた 輪を形成しているフィルムとし、所定の間隔で対向するこれらのフィルムをそれぞれ 回転させ、その間を搬送される前駆体含浸'付着シート 11と第 1及び第 2の両樹脂フ イルムとを連続的に接触させ、前駆体含浸 ·付着シートを 2枚の樹脂フィルムにより挟 持して搬送することもできる(図 4参照)。そして、上記と同様にしてポリマー前駆体に 活性エネルギー線を照射して重合、又は加熱して重合させることができる。また、図 4 では、前駆体含浸 ·付着シート等は水平方向に搬送されているが、この搬送方向は 傾斜していてもよぐ垂直方向に搬送してもよい。更に、下方から上方へ搬送してもよ ぐ上方から下方へ搬送してもよい。
尚、第 1樹脂フィルム及び第 2樹脂フィルムは、汚損、皺、伸び等により使用不可と なるまで繰り返し使用することができる。
図 2— 4において、各々の図の左側の矢印は次工程であるポリマー除去工程へと 搬送される方向を表す。
[0024] 第 1樹脂フィルムと第 2樹脂フィルムとは、これらのフィルムに挟まれた前駆体含浸' 付着シートに含浸、付着されたポリマー前駆体の重合を円滑に進行させるために、そ の酸素透過度が小さいことが望ましレ、。これらのフィルムの、 ASTM D 1434-72 に準じて測定した 25°Cにおける酸素透過度は、 5000ml/m · 24時間 'MPa以下、 特に 3000ml/m2' 24時間 'MPa以下、更に 1500ml/m2' 24時間 'MPaであるこ とが好ましい。
[0025] 第 1樹脂フィルム及び第 2樹脂フィルムの各々を形成する樹脂は特に限定されない 。更に、第 1樹脂フィルムと第 2樹脂フィルムは同種の樹脂からなるものでもよいし、異 なる樹脂力らなるものでもよレ、。また、樹脂は、熱可塑性樹脂でもよぐ熱硬化性樹脂 でもよいが、強度の大きいフィルムを容易に形成することができる熱可塑性樹脂が好 ましレ、。この熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフ タレート等のポリエステル(例えば、 770)、ポリエチレン(例えば、 81000)、ポリプロ ピレン(例えば、 16200)等のポリオレフイン、ナイロン 6、ナイロン 66等のポリアミド( 例えば、 200)、ポリ塩化ビュル(例えば、 1400)、ポリ塩化ビニリデン(例えば、 300) 、再生セルロース(例えば、 60)、ポリカーボネート(例えば、 36500)、ポリフエ二レン スルフイド (例えば、 2070)などが挙げられる(括弧内の数値は、上記の方法により測 定した各々の樹脂の 25°Cにおける酸素透過度である。但し、測定に用いたフィルム の厚さは 25 μ ΐηであり、単位は ml/m2' 24時間 'MPaである。)。これらの熱可塑性 樹脂のうちでは、含浸、付着される化合物等及び紫外線、電子線等の活性エネルギ 一線の照射、熱重合の際の加熱などにより変質し難ぐ且つフィルムが変形し難いポ リエステル、ポリオレフイン及びポリ塩化ビニリデンが好ましレ、。また、ポリエステル及 びポリオレフインからなるフィルムは、活性エネルギー線の照射により重合させる場合 に、活性エネルギー線を透過させ易いという点でも好ましい。尚、ポリオレフインとして はポリプロピレンがより好ましい。
尚、同種の樹脂とは、分子を構成する主たる繰り返し単位 (例えば、全繰り返し単位 を 100モル%とした場合に、この主たる繰り返し単位が 80モル%以上である。)が同 じ単量体からなるものであり、少量の他の単量体からなる繰り返し単位を有していても よぐ分子量、結晶化度等が異なっていてもよい。
[0026] また、活性エネルギー線を照射して重合させる場合は、第 1樹脂フィルム及び第 2 樹脂フィルムとして活性エネルギー線が透過する、即ち、活性エネルギー線に対して 透明なフィルムを用いることが好ましレ、。この活性エネルギー線の透過度 [ (フィルム を透過した後の線量/フィルムに照射された線量) X 100 (%) ]は 5%以上、特に 30 %以上であることが好ましい。更に、紫外線及び可視光線を用いる場合は無色透明 であることが好ましぐ着色透明であってもよいが、重合開始剤の重合開始機能が発 現される波長域においては透明であるカ 少なくとも透明性が高いことが好ましい。ま た、電子線を用いる場合は目視では不透明でもよいが、重合時等にフィルムを通して 外観等を確認することができるため透明である力 \少なくとも透明性が高いことが好ま しい。
[0027] 第 1樹脂フィルム及び第 2樹脂フィルムの各々の厚さは特に限定されない。また、第 1樹脂フィルムと第 2樹脂フィルムのそれぞれの厚さは同じでもよぐ異なっていてもよ レ、。これら第 1及び第 2樹脂フィルムの各々の厚さは 3 100 x m、特に 5— 80 μ πι、 更に 7 60 μ mであることが好ましレ、。各々のフィルムの厚さが 3 μ m未満であると、 皺が発生し易ぐ重合時に前駆体含侵 ·付着シートを十分に支持することができない こともあり好ましくなレ、。一方、厚さが 100 / mを越えると、重合に活性エネルギー線 を用いる場合に、フィルムに吸収されてしまう活性エネルギー線が多くなり、好ましく ない。
[0028] 更に、重合に活性エネルギー線を用いる場合は、第 1樹脂フィルム及び第 2樹脂フ イルムの各々の厚さが異なっており、一方が薄ぐ他方が厚いことが好ましい。このよう に異なる厚さとし、薄い樹脂フィルムの側から活性エネルギー線を照射することにより 、樹脂フィルムに吸収される活性エネルギー線量を低減することができ、少なレ、活性 エネルギー線量で十分に重合させることができる。一方、厚い樹脂フィルムにより前 駆体含浸 ·付着シートを支持することができる。薄い樹脂フィルムの厚さは、厚い樹脂 フィルムの厚さの 1/10— 1Z2、特に 1/8— 1/3、更に 1/6— 1/4であることが 好ましレヽ。また、薄レヽ樹 S旨フイノレムの厚さは 3 30 x m、特に 5— 20 μ πι、更に 7 1 5 μ mであることが好ましレ、。薄い樹脂フィルムの厚さが 3 30 μ mであればポリマー 前駆体を効率よく重合させることができる。一方、厚い樹脂フィルムの厚さは 35— 80 z m、特に 40一 65 x m、更に 45— 55 μ mであること力 S好ましレヽ。厚レヽ樹月旨フイノレム の厚さが 35 80 x mであれば前駆体含浸 ·付着シートを確実に支持することができ る。 尚、第 1樹脂フィルム及び第 2樹脂フィルムの各々の厚さのばらつきは、それぞれ好 ましくは ± 10%以下、より好ましくは ± 2%以下である。
[0029] 第 1及び第 2樹脂フィルムは、ポリマー前駆体の重合後、ポリマー充填'付着シート 力 容易に剥離することができれば、そのまま前駆体含浸 ·付着シートと接触させても よいが、少なくとも前駆体含浸 ·付着シートと接触する面に離型剤を塗布し、処理して もよレ、。この離型剤としては、シリコン系離型剤、フッ素系離型剤、高級脂肪族系離型 剤等の各種のものを用いることができる。このように離型剤により処理することにより、 重合後、第 1及び第 2樹脂フィルムとポリマー充填 ·付着シートとを速やかに剥離させ ること力 Sでき、前駆体含浸 ·付着シート等を円滑に搬送することができる。
[0030] 前駆体含浸 '付着シートに含侵、付着されたポリマー前駆体を重合させる方法は特 に限定されず、前記のように、紫外線、電子線、可視光線等の活性エネルギー線の 照射による重合、加熱による熱重合等により行うことができる。これらの方法のうちで は活性エネルギー線の照射による重合が好ましく、この方法によれば機能性膜を容 易に且つ効率よく連続生産することができる。また、活性エネルギー線としては紫外 線及び電子線がより好ましい。紫外線を用いる場合は、電子線に比べて装置が簡易 であり、照射コストの面でも有利である。一方、電子線を用いた場合、多孔質樹脂シ ートとの間に結合が生じ易く好ましい。更に、電子線は多孔質樹脂シートに対する透 過性に優れ、特に多孔質樹脂シートが炭化水素系ポリマーからなるときは、照射条 件によってはポリマーに架橋構造を導入することもできる。また、電子線照射による重 合はラジカル系光重合開始剤等を必要としないという点でも好ましい。
[0031] 紫外線を照射してポリマー前駆体を重合させる場合、多孔質樹脂シートの細孔の 表面に予め紫外線によりラジカルを発生するラジカル系光重合開始剤を付着させて おくことが好ましい。ラジカル系光重合開始剤を付着させる方法は特に限定されない 力 この開始剤を含有する溶液又は分散液を多孔質樹脂シートの細孔内に含侵させ 、その後、溶剤を除去することによって付着させることが好ましい。このようにすれば、 開始剤を多孔質樹脂シートの細孔内に均一に付着させることができる。
[0032] ラジカル系光重合開始剤は特に限定されないが、ベンゾフヱノン系、チォキサント ン系、チオアクリドン系等の炭素一水素結合から水素を引き抜くことによってラジカル を生成させることができる芳香族ケトン系ラジカル重合開始剤が好ましい。
ベンゾフエノン系開始剤としては、 ο—ベンゾィル安息香酸メチル、 4一フエニルベン ゾフエノン、 4_ベンゾィルー 4'ーメチルジフエ二ルサルファイド、 3, 3' , 4, 4 '—テトラ( t_ブチルパーォキシカルボ二ノレ)ベンゾフエノン、 2, 4, 6_トリメチルベンゾフエノン、 4—ベンゾィル _N, N—ジメチル _N— [2— (1_ォキシ _2—プロべニルォキシ)ェチル] ベンゼンメタナミ二ゥムブ口ミド、 (4—ベンゾィルベンジル)トリメチルアンモニゥムクロリ ド、 4, 4'—ジメチルァミノべンゾフエノン、 4, 4'—ジェチルァミノべンゾフエノン等が挙 げられる。また、チォキサントン系開始剤としては、チォキサントン、 2_クロロチォキサ ントン、 2, 4_ジェチルチオキサントン、 2—ェチルチオキサントン等が挙げられる。更 に、チオアクリドン系開始剤としては、チオアクリドン等が挙げられる。
[0033] ラジカル系光重合開始剤としては、ベンゾイン系、ァセトフヱノン系、ベンジル系等 の開始剤を用いることもできる。
ベンゾイン系開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインィ ソプロピルエーテル、ベンゾインェチルエーテル、ベンゾインイソブチルエーテル等 が挙げられる。また、ァセトフエノン系開始剤としては、ァセトフエノン、プロピオフエノ ン、ジェトキシァセトフエノン、 2, 2—ジメトキシ一 1 , 2—ジフエニルェタン一 1一オン、 1一 ヒドロキシシクロへキシルフェニルケトン、 2—メチルー 1_ (4- (メチルチオ)フエ二ノレ) - 2—モンフォリノプロパン一 1、 2—ベンジル一2—ジメチルァミノ一 1— (4—モルフォリノフエ 二ノレ)ブタノン _1、 2—ヒドロキシ一2—メチノレ一1—フエ二ノレプロパン一 1—オン、 1— (4_ ( 2—ヒドロキシェトキシ)一フエ二ノレ) _2—ヒドロキシジ一 2—メチノレー 1_プロパン一 1_オン 等が挙げられる。更に、ベンジル系開始剤としては、ベンジル等が挙げられる。
ラジカル系光重合開始剤は 1種のみを用いてもよいし、 2種類以上を用いてもよい。
[0034] ラジカル系光重合開始剤は、上記のように溶液又は分散液として用いることが好ま しい。この溶液又は分散液における開始剤の濃度は 0. 01— 10質量%、特に 0. 1— 5質量%であることが好ましい。この濃度が 0. 01質量%未満であると十分に重合し ないことがある。一方、 10質量%を越えると開始剤の結晶が析出して多孔質樹脂シ ートの細孔の一部を塞いでしまうことがある。このように細孔の一部が塞がれてしまうと ポリマー前駆体等が十分に充填されないことがある。また、多孔質樹脂シートの全体 に渡って均等に充填されなレ、こともあり、レ、ずれにしても好ましくなレ、。
[0035] 電子線を照射してポリマー前駆体を重合させる場合、照射する電子線の加速電圧 はポリマー前駆体の種類等にもよる力 150— 500KeV、特に 150— 200KeVであ ることが好ましい。加速電圧が低すぎると電子線が発生し難ぐ高すぎると多孔質樹 脂シートが劣化して強度が低下することがある。また、照射量もポリマー前駆体の種 類による力 10一 10000mj/cm2、特に 100一 5000mj/cm2、更に 200一 2000 mjZcm2であることが好ましい。照射量が 10mj/cm2未満であると十分に重合させ ること力 Sできず、 10000mj/cm2を越えると多孔質樹脂シートが劣化して強度が低 下することがあり好ましくない。
[0036] 電子線を照射して重合させた後、必要に応じて紫外線の照射又は加熱等により後 硬ィ匕させることもできる。そのための重合開始剤を予めポリマー前駆体に配合してお くこともできる。この重合開始剤としては、 2, 2,—ァゾビス(2—アミジノプロパン)二塩 酸塩等のァゾ化合物、過硫酸アンモニゥム、過硫酸カリウム、過硫酸ナトリウム、過酸 化水素、過酸化べンゾィル、タメンヒドロパーオキサイド、ジ _t_ブチルパーオキサイド 等の過酸化物、上記過酸化物と亜硫酸塩、重亜硫酸塩、チォ硫酸塩、ホルムアミジ ンスルフィン酸、ァスコルビン酸等の還元剤とを組み合わせたレドックス開始剤、 2, 2 ,—ァゾビス _ (2—アミジノプロパン)二塩酸塩、ァゾビスシァノ吉草酸等のァゾ系ラジ カル重合開始剤などが挙げられる。これらの重合開始剤は 1種のみを用いてもよぐ 2 種類以上を用いてもよい。
[0037] 後硬化の方法としては、重合反応の制御がし易ぐ簡便なプロセスで生産性よく所 望の機能性膜が得られる紫外線の照射による硬化が好ましい。また、紫外線の照射 により後硬化させる場合、モノマー前駆体を含有する溶液又は分散液にラジカル系 光重合開始剤を予め溶解又は分散させておくことがより好ましい。このラジカル系光 重合開始剤としては前記のもの等を使用することができる。更に、このラジカル系光 重合開始剤の配合量はポリマー前駆体を 100質量%とした場合に、 0. 001— 1質量 %、特に 0. 001—0. 5質量0 /0、更に 0.01— 0.5質量0 /0であることが好ましい。
[0038] 後硬化の際、第 1樹脂フィルム及び第 2樹脂フィルムは、前駆体含浸.付着シートに そのまま接触させておいてもよい。また、ポリマー前駆体が多孔質樹脂シートの細孔 内に十分に保持される程度に重合が進んでおれば、第 1樹脂フィルム及び第 2樹脂 フィルムの少なくとも一方が剥離されていてもよい。そして、樹脂フィルムが剥離され た側から紫外線等の活性エネルギー線を照射すれば、照射効率が向上し、効率よく 後硬化させることができる。一方、樹脂フィルムが剥離されることで、多孔質樹脂シー トの表面に付着していた余剰のポリマー前駆体は空気と接触して重合が抑制され、 後工程であるポリマー除去工程においてポリマー充填'付着シートの表面に付着した ポリマーをより容易に除去することができる。
[0039] (3)ポリマー除去工程
上記「ポリマー充填'付着シート」の表面に付着したポリマーはポリプロピレン等から なるプラスチックブレードなどにより搔き取る等の方法により除去することができる。ま た、ポリマー充填'付着シートに、付着ポリマー除去用具を接触させて除去することも できる。この付着ポリマー除去用具は、機能性膜に傷が付かず、且つ変形等の損傷 を生じることがなければどのようなものであってもよい。この付着ポリマー除去用具とし ては、ブラシロール、ゴムブレード等が挙げられる。更に、ポリマー充填'付着シートを 、その厚さより僅かに広い狭少な間隙間を通過させることによつても、表面に付着した ポリマーを除去することができる。
[0040] 含浸、付着工程、重合工程、フィルム剥離工程及びポリマー除去工程は、連続して 行われる。この連続製造方法では、長尺の多孔質樹脂シートが連続的に搬送され、 ポリマー前駆体等が含浸、付着されて前駆体含浸 ·付着シートが形成され、その後、 この前駆体含浸'付着シートの一面と他面とに第 1樹脂フィルムと第 2樹脂フィルムと が連続的に供給されて接触し、このように前駆体含浸 ·付着シートが第 1及び第 2樹 脂フィルムにより挟まれた状態でポリマー前駆体の重合がなされ、ポリマー充填'付 着シートが形成され、次いで、このポリマー充填'付着シートから第 1及び第 2樹脂フ イルムが剥離され、その後、ポリマー充填'付着シートの表面に付着したポリマーが除 去される。このように一連の操作が連続した工程によりなされる。また、得られた長尺 の機能性膜は卷芯に連続的に巻き取る等の方法により製品として保管することがで きる。更に、機能性膜を効率よく製造するため、その他の工程がある場合はその他の 工程も含めて連続して行われる。 [0041] この連続製造方法は、例えば、図 1のような工程により行うことができる。即ち、連続 的に搬送される長尺の多孔質樹脂シート 1を、容器に入れられたポリマー前駆体等を 含有する溶液又は分散液 3と接触させ (含浸、付着工程)、その後、このポリマー前駆 体等が含浸され、付着した前駆体含浸 ·付着シート 11に、樹脂フィルム供給源 211、 221から連続的に供給される第 1樹脂フィルム 21及び第 2樹脂フィルム 22を接触さ せ、前駆体含浸'付着シートが 2枚の樹脂フィルムにより挟持された状態で搬送し、 活性エネルギー線の照射源 Eから電子線、紫外線等を照射してポリマー前駆体を重 合させ (重合工程)、次いで、第 1及び第 2樹脂フィルムを、多孔質樹脂シートにポリ マーが充填され且つ付着されてなるポリマー充填 ·付着シートから剥離し (フィルム剥 離工程)、その後、ポリマー充填'付着シート 12の表面に付着したポリマーをプラスチ ックブレード 4により搔き取って除去し (ポリマー除去工程)、その後、ノズノレ Nから吹き 付けられる水によって搔き取られたポリマーを洗い流し、次いで、必要に応じて乾燥 装置 Hにより乾燥させ、得られた機能性膜 5を卷芯に連続的に巻き取って効率よく製 造すること力 Sできる。更に、製品保護のため、巻き取られる機能性膜の少なくとも片面 (図 1では両面)に、ポリエステル、ポリオレフイン、フッ素樹脂等からなる保護フィルム 6を積層させながら卷き取ることもできる。
尚、含浸、付着工程、重合工程、フィルム剥離工程及びポリマー除去工程以外の その他の工程としては、ポリマー除去工程の後の乾燥工程、この乾燥工程の後の検 查工程、調湿工程等が挙げられる。これらの他の工程も含浸、付着工程、重合工程、 フィルム剥離工程及びポリマー除去工程とともに連続した一連の工程として実施され る。
[0042] 本発明の方法により製造される機能性膜が電解質膜である場合、この電解質膜は 、固体高分子型燃料電池、特に直接メタノール形燃料電池における電解質膜として 有用である。このように、燃料電池に電解質膜を用いる際は、電解質膜を、白金等の 触媒が付与された 2枚の電極間に挟持し、その後、加熱プレス等によって一体化した 電解質膜電極接合体を形成し、この接合体を燃料電池セルに組み込んで使用する こと力 Sできる。
実施例 [0043] 実施例 1
ポリマー前駆体として 2—アクリルアミドー 2—メチルプロパンスルホン酸 90質量部と、 N, Ν' -メチレンビスアクリルアミド 10質量部とを使用し、このポリマー前駆体と、紫外 線重合開始剤(チバスペシャルティーケミカル社製、商品名「ダロキュア 1173」 ) 2質 量部と、界面活性剤 2質量部とを、水 100質量部に溶解させて溶液を調製した。その 後、図 1のように、ポリエチレン製多孔質樹脂シート 1を連続的に搬送して上記溶液 3 が入れられた容器中を通過させて多孔質樹脂シートにポリマー前駆体等を含浸させ 、前駆体含浸 ·付着シート 11を作製し、次いで、図 2のように、前駆体含浸'付着シー トの両面に厚さ 50 z mのポリエチレンテレフタレートフィルム(ASTM D 1434-72 に準じて測定された 25°Cにおける酸素透過度は 385ml/m2' 24時間 *MPaである 。)を接触させ、これらのフィルムにより前駆体含浸 ·付着シートを挟んだ状態で搬送 し、活性エネルギー線の発生源 Eである高圧水銀ランプにより両面から、フィルム透 過後の紫外線が合計で 2000mj/cm2の照射量となるように紫外線を照射してポリ マー前駆体を重合させ、その後、両面からポリエチレンテレフタレートフィルムを剥離 し、次いで、ポリマー充填'付着シートの表面に付着したポリマーをポリプロピレン製 のブレードにより除去した。得られた電解質膜は半透明であり、その表面には傷、変 形、破れ等の損傷はなかった。
[0044] 実施例 2
ポリエチレンテレフタレートフィルムの一方の厚さを 10 μ mと薄くし、この薄いフィル ム側からのみ紫外線を照射した。そして、フィルム透過後の紫外線が 2000mj/cm2 の照射量となるようにした他は、実施例 1と同様にして電解質膜を製造した。得られた 電解質膜は半透明であり、その表面には傷、変形、破れ等の損傷はなかった。また、 この実施例 2では、紫外線を透過させるフィルムの厚さが実施例 1と比べて 1/5であ るため、フィルム透過前の紫外線量は半減させることができた。
[0045] 比較例 1
ポリエチレンテレフタレートフィルムを接触させな力、つた以外は実施例 1と同様にし て電解質膜を製造した。得られた電解質膜にはポリマーが充填されていない欠陥個 所があり、不均質な膜であった。そのため、後記の電解質膜としての評価ができなか つた。
[0046] 参考例 1
実施例 1におレ、て調製した溶液 50mlをシャーレに入れ、ポリエチレン製多孔質榭 脂シートから切り出した縦横 5cmの試験片を溶液に浸漬してポリマー前駆体等を含 浸させ、その後、溶液力 取り出した試験片をガラス板で挟持し、実験用の高圧水銀 ランプによりガラスを透過した後の照射量で 1000mj/cm2の紫外線を片側から照射 した。その後、裏返して反対側から同量の紫外線を照射した。次いで、ガラス板を取 り外し、表面に付着したポリマーをポリプロピレン製のブレードにより除去し、電解質 膜を得た。この電解質膜は半透明であり、その表面には傷、変形、破れ等の損傷は なかった。
[0047] 以上、実施例 1一 2及び参考例 1の各々の電解質膜のプロトン伝導度及びメタノー ル透過流束を、それぞれ下記の方法により測定した。結果を表 1に示す。
(1)プロトン伝導度の測定
電解質膜を 25°Cの水に浸漬して膨潤させ、その後、電解質膜を 2枚の白金箔電極 により挟持し、プロトン伝導度を測定するための試片を作製した。この試片を使用し、 インピーダンス測定装置(ヒューレット 'パッカード社製、型式「HP4192A」)によりィ ンピーダンスを測定した。
(2)メタノール透過流束の測定
50°Cにおける浸透気化実験を、供給液として質量比で 1/9のメタノール/水を使 用し、透過側を減圧とし、透過流速が定常になるまで行った。詳細は以下の通りであ る。
電解質膜をステンレス鋼製のセルに挟持し、電解質膜の上面に上記の供給液を入 れ、攪拌した。また、供給液にはヒータ及び測温抵抗体を投入し、温度を 50°Cに制 御した。更に、電解質膜の下面にはコールドトラップを経由して真空ポンプを接続し た。このようにして、電解質膜の下面、即ち、透過側を減圧とし、コールドトラップ中に 電解質膜を透過したメタノールと水蒸気との混合物を捕集した。その後、捕集した蒸 気(コールドトラップ中では固化している。)を加熱し、溶解させて液体として取り出し、 その質量から全透過フラックスを、また、ガスクロマトグラフ分析により透過蒸気組成を 、それぞれ測定した。この測定を膜透過性能が時間に対して一定となるまで継続し、 一定となった時点の測定値を定常状態の透過性として評価した。
[0048] [表 1] fへ J-
CM CM O
O o
CO LO
AJ
[0049] 表 1の結果によれば、実施例 1一 2の電解質膜では、プロトン伝導度は 53— 54S/
2_— ,八 ί ,, ヽ^、 八
cmであり、メタノール透過流束は 0. 72-0. 73kg/m 'hであり、優れた性能を有 していることが分かる。また、外観も良好であった。更に、連続法ではなぐ試験片を 用いて行った参考例 1では、プロトン伝導度は 53S/cm2であり、メタノール透過流束 は 0. 73の kg/m2'hであって、連続的に効率よく製造された実施例の電解質膜は、 この参考例 1と比べてまったく遜色のない性能を有していることが分かる。一方、比較 例 1の電解質膜は欠陥を有し測定不可能であった。
[0050] 参考例 2
モル比で 0. 999の 3, 3 ', 4, 4 '—ビフエニルテトラカルボン酸二無水物とォキシジ ァニリンとを、合計で 8. 3質量%含有するポリイミド前駆体 NMP溶液を、鏡面研磨し たステンレス鋼製ベルト上に流延させ、その後、溶媒置換速度調整材としての作用を 有するポリオレフイン製微多孔膜 (宇部興産社製、グレード名「UP— 3025」)で表面 を覆い、この積層物をメタノール中に、次いで水中に浸漬し、次いで、大気中にて 32 0°Cで熱処理を行い、膜厚 20 x m、空孔率 39%、平均細孔径 0. 14 z m、透気度 1 30秒/ lOOmLの特性を有するポリイミド多孔質フィルムを得た。
[0051] 実施例 3
ポリマー前駆体として 2_アクリルアミド— 2—メチルプロパンスルホン酸と N, N,一メチ レンビスアクリルアミド、及び重合開始剤として和光純薬社製、商品名「V_50」を、質 量比 93 : 3 : 4で純水に溶解させて溶液を調製した。その後、図 1のように、参考例 2で 作製したポリイミド多孔質フィルム(多孔質樹脂シート) 1を連続的に搬送して上記溶 液 3が入れられた容器中を通過させてポリイミド多孔質フィルムにポリマー前駆体等を 含浸させ、前駆体含浸 '付着シート 11を作製し、次いで、図 2のように、前駆体含浸 · 付着シートの両面に厚さ 50 μ mのポリエチレンテレフタレートフィルムを接触させ、こ れらのフィルムにより前駆体含浸 ·付着シートを挟んだ状態で搬送し、実施例 1にお ける紫外線照射に代えて 60°Cで加熱することによりポリマー前駆体を重合させ、その 後、両面からポリエチレンテレフタレートフィルムを剥離し、次いで、ポリマー充填'付 着シートの表面に付着したポリマーをポリプロピレン製のブレードにより除去した。得 られた電解質膜は半透明であり、ポリイミド多孔質フィルムより色が濃くなつていた。ま た、その表面には傷、変形、破れ等の損傷はなぐ外観は良好であった。尚、この電 解質膜の質量はポリイミド多孔質フィルムより 23質量%増加していた。
[0052] 尚、本発明では、上記の実施例に限られず、 目的、用途等によって本発明の範囲 内で種々変形した実施例とすることができる。
図面の簡単な説明
[0053] [図 1]機能性膜を製造するための工程の一例を示すフロチャートである。
[図 2]第 1樹脂フィルム及び第 2樹脂フィルムを、それぞれフィルム供給源力 連続的 に送出し、供給して前駆体含浸 ·付着シートと接触させた状態で活性エネルギー線 を照射し、ポリマー前駆体を重合させる方法を示す説明図である。
[図 3]第 1樹脂フィルムを、フィルム供給源力 連続的に送出し、供給して前駆体含浸 •付着シートと接触させ、第 2樹脂フィルムを、長さ方向に閉じた輪を形成しているフィ ノレムとし、このフィルムを回転させながら連続的に前駆体含浸 ·付着シートと接触させ た状態で活性エネルギー線を照射し、ポリマー前駆体を重合させる方法を示す説明 図である。
[図 4]第 1樹脂フィルム及び第 2樹脂フィルムを、それぞれ長さ方向に閉じた輪を形成 しているフィルムとし、これらのフィルムを所定の間隔で回転させ、その間を搬送され る前駆体含侵 ·付着シートと両フィルムとを連続的に接触させた状態で活性エネルギ 一線を照射し、ポリマー前駆体を重合させる方法を示す説明図である。
符号の説明
[0054] 1;多孔質樹脂シート (ポリエチレン製多孔質樹脂シート)、 11;前駆体含浸'付着シ ート、 12 ;ポリマー充填'付着シート、 21 ;第 1樹脂フィルム、 22 ;第 2樹脂フィルム、 2 11、 221 ;フィルム供給源、;3 ;ポリマー前駆体等を含有する溶液又は分散液、 E ;活 性エネルギー線の照射源、 4;プラスチックブレード、 N;水洗のための水を吹き付け るためのノズル、 H ;乾燥装置、 5 ;機能性膜、 6 ;保護フィルム。

Claims

請求の範囲
[1] 多孔質樹脂シートを連続的に搬送し、該多孔質樹脂シートに機能性官能基を有す るモノマーを含有するポリマー前駆体を含浸させ、付着させる含浸 '付着工程、該多 孔質樹脂シートに該ポリマー前駆体が含浸され且つ付着されてなる前駆体含浸-付 着シートの一面に第 1樹脂フィルムを連続的に供給して接触させ且つ該前駆体含浸 •付着シートの他面に第 2樹脂フィルムを連続的に供給して接触させ、該前駆体含浸 '付着シートを該第 1樹脂フィルムと該第 2樹脂フィルムとで挟んだ状態で該ポリマー 前駆体を重合させてポリマーを生成させる重合工程、該多孔質樹脂シートに該ポリマ 一が充填され且つ付着されてなるポリマー充填'付着シートから該第 1樹脂フィルム 及び該第 2樹脂フィルムを剥離するフィルム剥離工程、並びに該ポリマー充填 ·付着 シートの表面に付着したポリマーを除去するポリマー除去工程、を備えることを特徴と する機能性膜の連続製造方法。
[2] 上記機能性官能基がスルホン酸基及びリン酸基のうちの少なくとも一方である請求 項 1に記載の機能性膜の連続製造方法。
[3] 上記第 1樹脂フィルム及び上記第 2樹脂フィルムのうちの少なくとも一方は長さ方向 に閉じた輪を形成しており且つ回転しながら上記前駆体含浸 ·付着シートと接触する 請求項 1又は 2に記載の機能性膜の連続製造方法。
[4] 上記第 1樹脂フィルム及び上記第 2樹脂フィルムのうちの少なくとも一方は活性エネ ルギ一線が透過可能な樹脂フィルムであり、上記重合は、活性エネルギー線が透過 可能な樹脂フィルムの側から活性エネルギー線を照射することによりなされる請求項 1乃至 3のうちのいずれか 1項に記載の機能性膜の連続製造方法。
[5] 上記第 1樹脂フィルムと上記第 2樹脂フィルムとの厚さが異なり、薄い樹脂フィルム は活性エネルギー線が透過可能であり、上記活性エネルギー線が該薄レ、フィルムの 側から照射される請求項 4に記載の機能性膜の連続製造方法。
[6] 上記第 1樹脂フィルム及び上記第 2樹脂フィルムの少なくとも上記前駆体含浸'付 着シートと接触する面が離型剤により処理されている請求項 1乃至 5のうちのいずれ 力 1項に記載の機能性膜の連続製造方法。
PCT/JP2004/006389 2003-09-03 2004-05-12 機能性膜の連続製造方法 WO2005023921A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002537795A CA2537795A1 (en) 2003-09-03 2004-05-12 Method for continuous production of functional film
US10/570,609 US7674349B2 (en) 2003-09-03 2004-05-12 Method for continuous production of a functional film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-311841 2003-09-03
JP2003311841A JP4427291B2 (ja) 2003-09-03 2003-09-03 機能性膜の連続製造方法

Publications (1)

Publication Number Publication Date
WO2005023921A1 true WO2005023921A1 (ja) 2005-03-17

Family

ID=34269714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006389 WO2005023921A1 (ja) 2003-09-03 2004-05-12 機能性膜の連続製造方法

Country Status (4)

Country Link
US (1) US7674349B2 (ja)
JP (1) JP4427291B2 (ja)
CA (1) CA2537795A1 (ja)
WO (1) WO2005023921A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094279A1 (ja) 2006-02-15 2007-08-23 Toagosei Co., Ltd. 機能性膜の製造方法
EP1890351A1 (en) * 2005-05-18 2008-02-20 Toagosei Co., Ltd. Membrane electrode assembly and direct liquid fuel type fuel cell
WO2008081802A1 (ja) * 2006-12-26 2008-07-10 Toyo Boseki Kabushiki Kaisha 高分子電解質膜の製造方法
EP2149172A1 (en) * 2007-05-15 2010-02-03 LG Chem, Ltd. Secondary battery and manufacturing method of the same
CN110197919A (zh) * 2018-02-27 2019-09-03 湖南省银峰新能源有限公司 一种全钒液流电池用离子传导型多孔隔膜及其制备法和用途

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160837A (ja) * 2004-12-03 2006-06-22 Toagosei Co Ltd 電解質膜の製造方法
JP4525329B2 (ja) * 2004-12-13 2010-08-18 東亞合成株式会社 電解質膜の連続製造方法
JP2007273450A (ja) * 2006-03-08 2007-10-18 Toyota Motor Corp 電解質膜及びその製造方法
JP4997625B2 (ja) * 2006-03-24 2012-08-08 独立行政法人日本原子力研究開発機構 燃料電池用高分子電解質膜の製造方法、その電解質膜、およびその膜を使用した燃料電池用膜電極接合体
US20090098359A1 (en) * 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
GB0812187D0 (en) * 2008-07-03 2008-08-13 Dow Corning Modified polyethylene
GB0812186D0 (en) * 2008-07-03 2008-08-13 Dow Corning Modified polyolefins
US20130056415A1 (en) * 2009-02-27 2013-03-07 Mikhail Kozlov Negatively charged porous medium for removing protein aggregates
US8211335B2 (en) * 2009-08-31 2012-07-03 General Electric Company Method for making polymer, coating electrode, and associated polymer and electrode
GB0915109D0 (en) * 2009-09-01 2009-10-07 Fujifilm Mfg Europe Bv Process for preparing composite membranes
GB0921951D0 (en) 2009-12-16 2010-02-03 Fujifilm Mfg Europe Bv Curable compositions and membranes
GB0921949D0 (en) 2009-12-16 2010-02-03 Fujifilm Mfg Europe Bv Curable compositions and membranes
JP2011170690A (ja) * 2010-02-19 2011-09-01 Sony Corp 情報処理装置、情報処理方法、およびプログラム。
JP2012046566A (ja) * 2010-08-24 2012-03-08 Toagosei Co Ltd 電子線硬化型組成物及び樹脂フィルム又はシート
US9713792B2 (en) 2011-07-25 2017-07-25 Fujifilm Manufacturing Europe Bv Composite membranes
JP6016197B2 (ja) * 2011-11-22 2016-10-26 住友電気工業株式会社 レドックスフロー電池用隔膜
CN102582200B (zh) * 2011-11-27 2014-07-09 中国海诚工程科技股份有限公司 一种锂电池隔膜预干燥薄膜转移涂布的装置和方法
SG10201701383VA (en) * 2012-09-07 2017-04-27 Gen Electric Methods for manufacturing ion exchange membranes
EP2842620A1 (en) * 2013-08-26 2015-03-04 Agfa-Gevaert A method for preparing a composite membrane
KR101511990B1 (ko) * 2013-09-24 2015-04-14 한국에너지기술연구원 역전기투석 장치용 이온 교환막 및 이를 포함하는 역전기투석 장치
CN110054661A (zh) 2013-12-12 2019-07-26 Emd密理博公司 使用含丙烯酰胺的过滤器分离蛋白
JP2015153653A (ja) * 2014-02-17 2015-08-24 株式会社Screenホールディングス 電解質膜改質装置および電解質膜改質方法、並びに、膜・触媒層接合体の製造システムおよび製造方法
EP3192816B1 (en) * 2014-09-11 2020-01-08 Fujifilm Corporation Composition for forming polymeric functional membrane, polymeric functional membrane and production process therefor, separation membrane module, and ion exchanger
JP6132071B2 (ja) * 2015-03-31 2017-05-24 東レ株式会社 分離膜
JP2016207610A (ja) * 2015-04-28 2016-12-08 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池
JP2016207609A (ja) * 2015-04-28 2016-12-08 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池
CN106362599A (zh) * 2016-08-29 2017-02-01 无锡零界净化设备有限公司 一种无支撑层微孔平板滤膜的制备方法
CN107785613B (zh) * 2016-12-01 2020-05-19 万向一二三股份公司 锂电池隔膜在线干燥方法
KR102133787B1 (ko) 2018-05-02 2020-07-15 도레이첨단소재 주식회사 표면 이온 교환 고분자 전해질이 제거된 세공충진 이온 교환 고분자 전해질 복합막 및 이의 제조방법
KR102036766B1 (ko) * 2018-05-24 2019-10-25 도레이케미칼 주식회사 바나듐 이온 저투과를 목적으로 하는 세공충진형 양쪽성막 및 이의 제조방법
US11791479B2 (en) * 2018-08-10 2023-10-17 Ess Tech, Inc. Methods and system for manufacturing a redox flow battery system by roll-to-roll processing
CN109927220A (zh) * 2019-01-29 2019-06-25 浙江隆劲电池科技有限公司 一种连续制备及转移固态电解质膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198640A (ja) * 1987-10-12 1989-04-17 Sumitomo Electric Ind Ltd 親水性四弗化エチレン樹脂多孔質膜の製造方法
JP2000053788A (ja) * 1998-08-12 2000-02-22 Japan Atom Energy Res Inst 放射線グラフト重合方法
JP2000235849A (ja) * 1998-12-14 2000-08-29 Sumitomo Electric Ind Ltd 電池用隔膜
JP2000273229A (ja) * 1999-03-25 2000-10-03 Nitto Denko Corp 親水化した疎水性基材の製造方法
JP2001135328A (ja) * 1999-11-01 2001-05-18 Tokuyama Corp 固体高分子電解質型燃料電池用隔膜

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1192394B (de) * 1968-02-07 1965-05-06 Fmc Corp Vorrichtung zur Herstellung von armierten Kunststoffrohren
US3612282A (en) * 1969-08-14 1971-10-12 Sing Wang Cheng Supporting structures and containing vessels for reverse osmosis and filtration
US3648845A (en) * 1969-09-02 1972-03-14 Us Interior Thin film separation membranes and processes for making same
US3951815A (en) * 1974-09-05 1976-04-20 Universal Oil Products Company Composite semipermeable membranes made from polyethylenimine
US4151053A (en) * 1975-07-09 1979-04-24 Asahi Kasei Kogyo Kabushiki Kaisha Cation exchange membrane preparation and use thereof
DE2925969A1 (de) * 1979-06-27 1981-01-29 Fraunhofer Ges Forschung Poroese membranen und adsorbentien, verfahren zu ihrer herstellung und ihre verwendung zur stofftrennung
DE3066996D1 (en) * 1979-09-19 1984-04-19 Aligena Ag Porous semipermeable cellulose acetate membranes modified by ionic groups, process for their production and their use
US4707265A (en) * 1981-12-18 1987-11-17 Cuno Incorporated Reinforced microporous membrane
US4529646A (en) * 1984-07-30 1985-07-16 E. I. Du Pont De Nemours And Company Production of composite membranes
US4610762A (en) * 1985-05-31 1986-09-09 The Dow Chemical Company Method for forming polymer films having bubble release surfaces
EP0247597B1 (en) * 1986-05-30 1990-08-29 Mitsubishi Rayon Co., Ltd. Process for producing porous membranes
USRE34115E (en) * 1986-07-25 1992-10-27 Albany International Corp. Method for modifying asymmetric membranes by endo-treating
US4784880A (en) * 1986-07-25 1988-11-15 Albany International Corp. Method for modifying asymmetric membranes by endo-treating
US5030355A (en) * 1987-10-14 1991-07-09 Exxon Research & Engineering Company Thin film composite membrane prepared by suspension deposition
JPH0761428B2 (ja) * 1989-03-09 1995-07-05 松下電器産業株式会社 選択透過性膜およびその製造方法
US4996098A (en) * 1989-02-28 1991-02-26 E. I. Du Pont De Nemours And Company Coated cation exchange fabric and process
US5202025A (en) * 1989-04-12 1993-04-13 Terumo Kabushiki Kaisha Porous membrane and method for preparing the same
WO1993006992A1 (en) * 1991-10-04 1993-04-15 Alcan International Limited Peelable laminated structures and process for production thereof
JPH08510274A (ja) * 1993-04-27 1996-10-29 サイトセラピュティックス インコーポレイテッド アクリロニトリルベースのポリマーにより形成された膜
AU697188B2 (en) * 1994-09-20 1998-10-01 Smart (Isle Of Man) Limited Improved membrane
US5837365A (en) * 1996-04-08 1998-11-17 The Penn State Research Foundation Hydrophilic polypropylene membranes
KR19990082415A (ko) * 1996-12-10 1999-11-25 고지마 아끼로, 오가와 다이스께 다공질막, 그의 제조 방법, 및 그를 사용하여 제조한 적층 필름및 기록용 시트
US6264044B1 (en) * 1997-04-11 2001-07-24 Cuno, Inc. Reinforced, three zone microporous membrane
US6354443B1 (en) * 1997-05-01 2002-03-12 Millipore Corporation Surface modified porous membrane and process
US6723758B2 (en) * 1997-11-12 2004-04-20 Ballard Power Systems Inc. Graft polymeric membranes and ion-exchange membranes formed therefrom
US6015495A (en) * 1998-02-18 2000-01-18 Saehan Industries Incorporation Composite polyamide reverse osmosis membrane and method of producing the same
JPH11335473A (ja) 1998-05-26 1999-12-07 Tokuyama Corp イオン交換膜およびその用途
US6287717B1 (en) * 1998-11-13 2001-09-11 Gore Enterprise Holdings, Inc. Fuel cell membrane electrode assemblies with improved power outputs
US6468657B1 (en) * 1998-12-04 2002-10-22 The Regents Of The University Of California Controllable ion-exchange membranes
AU747646B2 (en) * 1999-01-22 2002-05-16 3M Innovative Properties Company Method for producing an integrally asymmetrical polyolefin membrane
AU2831000A (en) * 1999-03-08 2000-09-28 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
US6337018B1 (en) * 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
JP4228062B2 (ja) 2002-10-24 2009-02-25 東洋紡績株式会社 多孔膜、複合イオン交換膜およびその製造方法
US7338692B2 (en) * 2003-09-12 2008-03-04 3M Innovative Properties Company Microporous PVDF films
US7259208B2 (en) * 2003-11-13 2007-08-21 3M Innovative Properties Company Reinforced polymer electrolyte membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198640A (ja) * 1987-10-12 1989-04-17 Sumitomo Electric Ind Ltd 親水性四弗化エチレン樹脂多孔質膜の製造方法
JP2000053788A (ja) * 1998-08-12 2000-02-22 Japan Atom Energy Res Inst 放射線グラフト重合方法
JP2000235849A (ja) * 1998-12-14 2000-08-29 Sumitomo Electric Ind Ltd 電池用隔膜
JP2000273229A (ja) * 1999-03-25 2000-10-03 Nitto Denko Corp 親水化した疎水性基材の製造方法
JP2001135328A (ja) * 1999-11-01 2001-05-18 Tokuyama Corp 固体高分子電解質型燃料電池用隔膜

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1890351A1 (en) * 2005-05-18 2008-02-20 Toagosei Co., Ltd. Membrane electrode assembly and direct liquid fuel type fuel cell
EP1890351A4 (en) * 2005-05-18 2010-11-03 Toagosei Co Ltd MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL OF DIRECT LIQUID FUEL TYPE
WO2007094279A1 (ja) 2006-02-15 2007-08-23 Toagosei Co., Ltd. 機能性膜の製造方法
JPWO2007094279A1 (ja) * 2006-02-15 2009-07-09 東亞合成株式会社 機能性膜の製造方法
JP4640503B2 (ja) * 2006-02-15 2011-03-02 東亞合成株式会社 機能性膜の製造方法
WO2008081802A1 (ja) * 2006-12-26 2008-07-10 Toyo Boseki Kabushiki Kaisha 高分子電解質膜の製造方法
US8304133B2 (en) 2006-12-26 2012-11-06 Toyo Boseki Kabushiki Kaisha Method for producing a polymer electrolyte membrane
EP2149172A1 (en) * 2007-05-15 2010-02-03 LG Chem, Ltd. Secondary battery and manufacturing method of the same
EP2149172A4 (en) * 2007-05-15 2010-11-03 Lg Chemical Ltd RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME
US8603682B2 (en) 2007-05-15 2013-12-10 Lg Chem, Ltd. Secondary battery and manufacturing method of the same
CN110197919A (zh) * 2018-02-27 2019-09-03 湖南省银峰新能源有限公司 一种全钒液流电池用离子传导型多孔隔膜及其制备法和用途

Also Published As

Publication number Publication date
JP2005076012A (ja) 2005-03-24
JP4427291B2 (ja) 2010-03-03
US7674349B2 (en) 2010-03-09
US20080216942A1 (en) 2008-09-11
CA2537795A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
WO2005023921A1 (ja) 機能性膜の連続製造方法
JP4150180B2 (ja) 燃料電池用リン酸基含有固体高分子電解質(複合)膜及びその製造方法
KR20030090779A (ko) 중합체 전해질 막
AU2017254972B2 (en) Asymmetric composite membranes and modified substrates used in their preparation
KR20060134197A (ko) 전해질막 및 막전극 접합체의 제조 방법, 및 연료 전지
CN101497001A (zh) 一种单片型双极性离子交换膜及其制备方法
WO2020080113A1 (ja) 積層体、積層体の製造方法および形状制御デバイス
JP5120543B2 (ja) 陽イオン交換膜およびその製造方法
WO2005076396A1 (ja) 電解質膜および当該電解質膜を用いた燃料電池
CA2560377A1 (en) Electrolyte membrane and fuel cell
JP4192730B2 (ja) 機能性膜の連続製造方法
JP2004335119A (ja) 電解質膜および当該電解質膜を用いた燃料電池
JP4525329B2 (ja) 電解質膜の連続製造方法
JP3423765B2 (ja) イオン交換膜の積層方法
KR20130020650A (ko) 이온성 막 제조
JP2006160837A (ja) 電解質膜の製造方法
JP2008189864A (ja) 機能性膜の製造方法
US11291215B2 (en) Durable asymmetric composite membranes and modified substrates used in their preparation
JP2006073495A (ja) ポリアクリロニトリル多孔質膜にリン酸基含有不飽和単量体(組成物)を含浸させ、(共)重合してなる固体高分子電解質複合膜及びその用途
JP3626650B2 (ja) イオン性膜の製造方法
JP2009093919A (ja) 芳香族ポリエーテル系電解質膜の製造方法
Muftuoglu et al. Photografting of polymeric materials
WO2008029761A1 (fr) Procédé de fabrication d'une membrane fonctionnelle
JP2006172764A (ja) 電解質膜の製造方法
KR102211640B1 (ko) Uv 반응성 관능기가 함유된 고분자를 이용한 uv 가교 기체 분리막의 제조방법 및 이에 따라 제조되는 기체 분리막

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2537795

Country of ref document: CA

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10570609

Country of ref document: US