WO2005022565A1 - ナノ粒子デバイス及びナノ粒子デバイスの製造方法 - Google Patents

ナノ粒子デバイス及びナノ粒子デバイスの製造方法 Download PDF

Info

Publication number
WO2005022565A1
WO2005022565A1 PCT/JP2004/012261 JP2004012261W WO2005022565A1 WO 2005022565 A1 WO2005022565 A1 WO 2005022565A1 JP 2004012261 W JP2004012261 W JP 2004012261W WO 2005022565 A1 WO2005022565 A1 WO 2005022565A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
underlying
nanoparticles
microcrystalline film
nanoparticle device
Prior art date
Application number
PCT/JP2004/012261
Other languages
English (en)
French (fr)
Inventor
Suguru Noda
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2005513452A priority Critical patent/JPWO2005022565A1/ja
Priority to US10/569,446 priority patent/US20070071964A1/en
Publication of WO2005022565A1 publication Critical patent/WO2005022565A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • Nanoparticle device and method for manufacturing nanoparticle device are described.
  • the present invention relates to a nanoparticle device and a method for manufacturing a nanoparticle device, and more particularly to a perpendicular magnetic recording medium used for a hard disk in which high-density arrangement is essential.
  • FePt is an alloy in which Fe and Pt have an element ratio of about 1: 1. By forming fct crystal, strong magnetic anisotropy can be imparted.
  • the fct phase is an abbreviation of face centered tetragonal (face-centered square) phase.
  • the fct phase in FePt basically has the same arrangement as the fee phase, but in the c-axis direction ( ⁇ 001> direction). In this structure, the Fe and Pt force Si layers appear alternately. This structure is called L1. This phase is safe at normal temperature and pressure.
  • the fct phase is produced as soon as the fee phase appears in the usual production method, and it is often realized by depositing at a high temperature or annealing and cooling.
  • the fee phase is an abbreviation for face centered cubic (face-centered cubic).
  • face-centered cubic face-centered cubic
  • FePt this phase in which Fe and Pt are randomly located at the atomic position of the fee is likely to appear.
  • this phase has a magnetic anisotropy!
  • the c-axis orientation is a state in which a plurality of crystallites are aligned in the ⁇ 001> direction, and is extremely important in the application of fct-FePt perpendicular magnetic recording media having magnetic anisotropy on the c-axis. .
  • Out-of-plane orientation refers to the regularity of the crystal orientation in the direction perpendicular to the substrate. Even in non-epitaxial growth, surface energy can be minimized, chemical etching rate can be minimized, plasma irradiation damage can be minimized, and so on. It occurs during stress minimization and competition between orientations with different growth rates.
  • In-plane orientation refers to the regularity of the crystal orientation in the horizontal direction with respect to the substrate. In non-epitaxial growth on a smooth substrate, the mechanism contributing to the in-plane orientation falls within the in-plane direction. It becomes non-oriented.
  • Grain growth is a process in which a crystal grows while taking in a surrounding crystal or amorphous phase, and is a phenomenon that becomes remarkable at a high temperature, and is one of the biggest obstacles to realizing a fine structure of FePt. The temperature obtained by standardizing the process temperature with the melting point is a measure. If a high melting point material is used, the same temperature can be suppressed.
  • the orientation with the minimum surface energy refers to non-epitaxial growth, which is one of the mechanisms by which the crystal orientation is aligned. Means that the internal energy of the crystallite does not depend on the orientation, and therefore tends to be aligned in a direction that minimizes the surface energy. It corresponds to the densest surface of the crystal structure.
  • Heteroepitaxy is a mode in which two different types of crystals grow while maintaining the same crystal orientation relationship, and have been actively studied, including the application of quantum dots.
  • the most active approach as a method for fabricating nanoparticle arrays on a substrate for realizing nanodevices is heteroepitaxial growth from a single crystal substrate.
  • a crystal having a specific orientation relationship with the single crystal substrate is grown.
  • the lattice constant between the single crystal substrate and the target layer is being developed by this method.
  • Patent Document 1 discloses a method in which a nonmagnetic underlayer having a hep structure is formed on a nonmagnetic substrate, and a magnetic material that is an alloy containing at least Co and Pt is formed thereon.
  • a technique for controlling the crystal grain size of a magnetic material and the mutual spacing of crystal grains by simultaneously supplying a certain non-magnetic material by a sputtering method to cause phase separation between the magnetic material and the oxide material is a low-temperature production technology that assumes the use of plastic resin. Due to the low temperature process, it is not possible to obtain CoPt or FePt alloys with fct structure using this technique, and large magnetic coercive force cannot be expected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-178413
  • the orientation of the 'crystal structure' of the deposited layer greatly depends on the growth conditions. Therefore, it is necessary to obtain a microcrystalline film with controlled out-of-plane orientation, such as growing a thin film under conditions of wetting on a substrate to a surface with the minimum surface energy, or using plasma irradiation together with a surface with high resistance. Can be.
  • the crystal size is determined by the balance between the melting point and the process temperature, and when combined with the melting point drop in the nano region, it is easy to produce microcrystals of around 10 nm.
  • in-plane orientation is non-oriented.
  • the present invention relates to a method of using the microcrystalline film obtained by this non-epitaxial growth, utilizing the surface of each microcrystal as a minute space, and producing nanoparticles for each minute space.
  • the nanoparticle can be locally epitaxially grown on each base microcrystal. This is because the in-plane orientation between the microcrystals is different, making it difficult for the nanoparticle to grow over multiple microcrystals.Therefore, it is possible to grow the nanoparticles one-on-one on the underlying microcrystal. Is used. On the other hand, since the underlying microcrystals are oriented out of plane, the nanoparticles are also oriented out of plane.
  • a method of laminating the nanoparticles there is a method of controlling the crystal orientation by using a polycrystalline seed layer as (1) a non-pitaxy technique. May be combined. Because of low cost, it is the most widely used method in practical use, but the size of crystal, number density, and spacing are controlled by trial and error, and controllability is low. (2) The epitaxy technique requires an expensive single-crystal substrate, and has low arbitrariness in material selection and low size controllability. (3) In the colloid particle coating and arranging method, it is difficult to control the crystal phase, and it is also difficult to control the crystal orientation, and the uniformity of a large area is low.
  • An object is to provide a method for manufacturing a particle device.
  • the present invention provides:
  • a single-layer or multi-layer substrate an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and individual underlying microcrystals of the underlying microcrystalline film. And individually local epitaxy nanoparticles.
  • a nanoparticle device In a nanoparticle device, a single-layer or multi-layer substrate, an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and individual submicrostructures of the underlying microcrystalline film
  • the present invention is characterized by comprising a microcrystalline film composed of microcrystals individually local-epitaxially grown on a crystal, and nanoparticles individually local-epitaxially grown on each microcrystal of the microcrystalline film.
  • nanoparticle device In a nanoparticle device, a single-layer or multi-layer substrate, an in-plane non-oriented and out-of-plane oriented underlying microcrystalline film deposited on the substrate, and individual underlying microcrystalline films of the underlying microcrystalline film Nano-particles individually local-epitaxially crystallized, microcrystalline films individually local-epitaxially grown on the nanoparticles, and laminated nanoparticles in which the nanoparticles and the microcrystalline film are repeatedly local-epitaxy in a direction perpendicular to the substrate. It is characterized by the following.
  • a single-layer or multi-layer substrate an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and individual underlying microcrystalline films of the underlying microcrystalline film It is characterized by comprising elongated nanoparticles that are locally epitaxied individually in a crystal, and microcrystalline material that is locally epitaxied individually in the nanoparticles so as to surround the nanoparticles.
  • a single-layer or multi-layer substrate an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and individual submicrostructures of the underlying microcrystalline film It is characterized in that it comprises vertically elongated nanoparticles individually local-epitaxially grown on a crystal, and a material different in composition from the nanoparticles, which fills the gaps between the nanoparticles.
  • the nanoparticle device according to any one of [1] to [6], wherein the multilayer substrate The plate can also act as either a magnetic control layer or a structure control layer or both.
  • the structure control layer is a layer that is not epitaxial with the underlying microcrystal.
  • the base microcrystal and the layer that is not epitaxy are amorphous.
  • the amorphous is a substance containing any one or a plurality of C, N, 0, Al, and Si.
  • the base microcrystal and the epitaxy are different from each other, and the layer is a crystal having a large lattice mismatch.
  • the layer is a crystal whose surface structure is disordered with the base microcrystal or epitaxy.
  • the base microcrystalline film is a high melting point material.
  • the high melting point material is a NaCl-type crystal.
  • the NaCl-type crystal is made of a nitride.
  • the nitride is TiN, VN, ZrN
  • the NaCl-type crystal is an oxide.
  • the oxide is MgO, CaO, Sr0, or BaO.
  • the high melting point material is Ti, V, Zr,
  • Nb, Mo, Hf, Ta, and W powers also increase.
  • the nanoparticles are a magnetic recording material.
  • the magnetic recording material has an L1 structure Is an alloy having
  • the alloy having the L1 structure is f
  • ct Transition metal Z is a precious metal alloy.
  • the fct transition metal Z noble metal alloy is FePt or CoPt.
  • nanoparticle device according to the above [3] or [4], wherein the nanoparticle is a metal alloy containing Ti, Fe, Co, Cr, Ag, Pt, etc., which is locally crystallized locally. It is characterized by being a material.
  • the material different from the components of the nanoparticles is a metal'alloy material containing Ti, Fe, Co, Cr, Ag, Pt, or the like. It is characterized by the following.
  • a base microcrystalline film having in-plane non-orientation and out-of-plane orientation is formed on a single-layer or multi-layer substrate by non-epitaxial growth.
  • the lattice constant of the material of the microcrystalline film and the lattice constant of the nanoparticle material are matched, and the surface of each underlying microcrystal of the underlying microcrystalline film is used as a minute space, and epitaxy is locally grown on the underlying microcrystal. It is characterized in that nanoparticles are generated for each minute space.
  • an in-plane non-oriented / out-of-plane oriented microcrystalline film is formed on a single-layer or multi-layer substrate by non-epitaxial growth.
  • the lattice constant of the material of the microcrystalline film and the lattice constant of the nanoparticle material are matched, and the surface of each underlying microcrystal of the underlying microcrystalline film is used as a minute space, and epitaxy is locally grown on the underlying microcrystal.
  • Nanoparticles are generated for each minute space, and the nanoparticle material Z and the nanoparticle material including the base material are alternately deposited in the vertical direction of the substrate on top of each other, and locally epitaxially grown, It is characterized by laminating nanoparticles.
  • a base microcrystalline film having in-plane non-orientation and out-of-plane orientation is formed on a single-layer or multi-layer substrate by non-epitaxial growth. Fine connection Matching the lattice constant of the material of the crystalline film with the lattice constant of the nanoparticle material, using the surface of each underlying microcrystal of the underlying microcrystalline film as a minute space, locally growing epitaxy on the underlying microcrystal, A nanoparticle is generated every time, a material having a different composition from the nanoparticle including the base material and having the same lattice constant is deposited, segregated so that each of the nanoparticles is locally epitaxy, and the nanoparticle material and the base material are separated. Nano particles are grown in the direction perpendicular to the substrate by simultaneously or alternately depositing materials having different components from the nano particles containing the material and having the same lattice constant.
  • a non-epitaxially grown non-epitaxially grown underlayer microcrystalline film is formed on a single-layer or multi-layer substrate.
  • the lattice constant of the material of the microcrystalline film and the lattice constant of the nanoparticle material are matched, and the surface of each underlying microcrystal of the underlying microcrystalline film is used as a minute space, and epitaxy is locally grown on the underlying microcrystal.
  • Nanoparticles are generated for each minute space, a material having a different component from the nanoparticles is deposited as powder, segregated between the nanoparticles, and the nanoparticle material and a material having a different component from the nanoparticles are simultaneously mixed.
  • the nanoparticles are grown in a direction perpendicular to the substrate by alternately depositing them.
  • the method for producing a nanoparticle device according to any one of [27] to [31]!
  • the underlying microcrystalline film suppresses grain growth and is oriented out-of-plane at any one of minimum surface energy, minimum chemical etching rate, minimum plasma irradiation damage, minimum stress, and maximum growth rate.
  • the method for producing a nanoparticle device according to any one of [27] to [32]! The nanoparticles are magnetic nanoparticles mainly composed of FePt.
  • nanoparticles are magnetic nanoparticles containing CoPt as a main component.
  • the crystal structure of the nanoparticle has an fct structure, and the crystal of the nanoparticle has a fct structure. 90% or more of the c-axis is oriented perpendicular to the underlying microcrystalline film.
  • FIG. 1 is a manufacturing process diagram of a nanoparticle device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the orientation of a base film.
  • FIG. 3 is a view showing a single metal element among materials of a base film.
  • FIG. 4 is a view showing an fct crystal structure of a FePt magnetic material.
  • FIG. 5 is a view showing NaCl-type TiN and TaN of metal nitride as a base film.
  • FIG. 6 is an electron micrograph showing a specific example of generation of FePt magnetic nanoparticles on a base film.
  • FIG. 7 is a view showing a cross-sectional transmission electron microscope image of single-layer nanoparticles.
  • FIG. 8 is a view showing magnetic properties (magnetization with respect to a magnetic field) of the single-layer nanoparticles in FIG. 7.
  • FIG. 9 is a diagram showing magnetic properties (magnetization with respect to a magnetic field) of single-layer nanoparticles as a comparative example.
  • FIG. 10 is a view showing a manufacturing process of a laminated nanoparticle device according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing a cross-sectional transmission electron microscopic image of a stacked nanoparticle device according to a second embodiment of the present invention.
  • FIG. 12 is a view showing a manufacturing process of a vertically long nanoparticle device according to a third embodiment of the present invention.
  • FIG. 13 is a view showing a manufacturing process of a nanoparticle device composed of a vertically long nanoparticle car according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic view showing the structure of a nanoparticle device according to a fifth embodiment of the present invention.
  • FIG. 15 is a schematic view showing a structure of a nanoparticle device having a laminated structure FeP nanoparticle showing a sixth embodiment of the present invention.
  • FIG. 16 is a schematic view showing the structure of a nanoparticle device having vertically elongated nanoparticles according to a seventh embodiment of the present invention.
  • the process itself is a dry process, and the nanoparticles can be ultra-miniaturized to about 3 lOnm, and a microelectronic, magneto-optical device having nanoparticles such as a semiconductor quantum dot device can be used. Obtainable.
  • the recording density of a FePt-based perpendicular magnetic recording medium which is considered as a next-generation recording medium, can be improved by one or two orders of magnitude compared to the recording density of a current hard disk. .
  • the synthesized nanoparticles have a fee structure in the crystal structure, and in order to obtain a large magnetic anisotropic energy, it is necessary to increase the process temperature to obtain an fct structure.
  • the aggregation of particles progresses, and particles around lOnm cannot be obtained.
  • the processing temperature should be 200-1600 ° C, especially 300-800 ° C.
  • the in-plane number density of the nanoparticles can be controlled independently by the crystal number density of the underlying microcrystalline film, and the volume of the nanoparticles can be controlled independently by the amount of FePt-based material deposited. Can be controlled to an appropriate distance. As a result, magnetic interference between nanoparticles can be suppressed, and the magnetic domain size, that is, the lbit size can be kept small.
  • the application to a magnetic recording medium is an example, and by controlling the nanoparticle structure of size, spacing, and orientation with the underlying microcrystalline film, the function of structure control can be shared.
  • the underlying microcrystalline film of the nanoparticle device on the substrate be made of a material that makes the surface that becomes epitaxy with the FePt (001) surface the surface with the smallest surface energy.
  • a stable nitride film having a high melting point and preferably a Na C1 type crystal, whose surface energy is minimum, that is, the closest surface is four-fold symmetrical to the FePt (001) surface is more preferable.
  • the lattice constant X of the underlying NaCl-type crystal must be smaller than the lattice constants a and c of FePt by c ⁇ 1.
  • TiN having a relation of a ⁇ x ⁇ 1.la is more preferable.
  • TiN and MgO in (1) and (2) above have a lattice mismatch of 9% or more with respect to the lattice constant a of FePt. If a microcrystalline film (intermediate layer) made of a material having a lattice constant between the underlying microcrystalline film and FePt is sandwiched and a local epitaxy is formed between the FePtZ intermediate layer and the Z underlying microcrystalline film, the controllability of FePt nanoparticles is further improved be able to. For example, Ag (0.
  • a metal film having a high melting point material strength can be used as the underlying microcrystalline film of the nanoparticle device on the substrate.
  • FePt (or CoPt) nanoparticles are grown on the above-mentioned underlying microcrystalline film under appropriate substrate heating conditions.
  • the grown nanoparticles are appropriately annealed. That is, it refers to annealing including all of substrate heating film formation, heating after film formation, and substrate heating film formation and subsequent heating.
  • FIG. 1 is a manufacturing process diagram of a nanoparticle device according to a first embodiment of the present invention.
  • FIG. 1 (a-l) cross-sectional view
  • FIG. 1 (a-2) plane view
  • a Si substrate or a Si substrate 1 with a SiO film is prepared.
  • a glass substrate is preferably used because it is inexpensive.
  • a film (base film) 2 made of a high melting point material, for example, a TiN material is formed on a Si substrate 1 with a sputtering method.
  • the high melting point material used at this time for example, TiN has a characteristic that it does not grow excessively even at room temperature or at a high temperature up to several nm even at a high temperature.
  • the surface is oriented out of plane so that the surface energy is minimized, and the in-plane is not oriented.
  • the film (base microcrystalline film) 2 formed in this manner is used as a base film.
  • FIG. 2 is a schematic diagram of the orientation of the base film 2, in which the horizontal axis indicates the process temperature (the film formation temperature Z melting point), and the vertical axis indicates the thickness of the base film.
  • the orientation in which the surface energy governed by the equilibrium theory shown in FIG. That is, in the orientation control of the base film 2 in the present invention, as shown in FIG. 2A, the orientation control is performed so that the surface energy is minimized so that the orientation matches the surface and becomes smooth.
  • FIG. 2 (b) shows evolutionary selection growth, that is, although a kineticly fast plane is oriented, since irregularities are formed, it is not desirable as the orientation of the base film 2 of the present invention. .
  • the unevenness of the entire base film 2 can be suppressed to several nm or less.
  • the base film 2 in addition to the TiN shown in FIG. 1, as shown in FIG. 3, the base film 2 has a strong out-of-plane orientation that wets the SiO 2, High melting point material that can suppress
  • Ti, Hf, Mo, Nb, Ta, V, W, and Zr region II in FIG. 3 can be used.
  • a nanoparticle for example, an FePt magnetic nanoparticle having an fct structure in which the c-axis orientation is out of plane is selected. That is, as shown in Fig. 4, it is necessary to make a four-fold symmetric surface.
  • the closest-packed plane and symmetry of the typical crystal structure include force (111) six-fold symmetry, bcc (l lO) two-fold symmetry, and hep (0001) six-fold symmetry. Not compatible with FePt magnetic nanoparticles.
  • the closest-packed plane is the (100) plane, which has four symmetry, and matches the FePt magnetic nanoparticles.
  • the nano-particle material 4 for example, a FePt magnetic material is sputtered at a high temperature. It is deposited by a method.
  • the nanoparticles 4 can be locally epitaxially grown on each underlying microcrystalline film 2. This is because the in-plane orientation of the microcrystals is different, making it difficult for the nanoparticles to grow across multiple microcrystals. These are forces that take an equilibrium structure. On the other hand, since the underlying microcrystals are out-of-plane, the nanoparticles are also out-of-plane.
  • a target material and a microcrystalline film that can be epitaxially grown are grown thereon, and the target material is grown in an out-of-plane direction. Nanoparticles with a controlled size can be produced.
  • a FePt alloy was used, and NaCl-type TiN and TaN as metal nitrides were used as a base as shown in FIG.
  • the lattice constant X is 0.4242 nm TiN
  • the lattice mismatch of TiN—FePt: (001) // (001), () ⁇ ( ⁇ ) is + 9.2%
  • TiN is c ⁇ a ⁇ x ⁇ l.1a, so that it is preferable as a base.
  • BaO is also X 2 It has a relationship of Xa, and can be used as a base because epitaxy can be performed with a shift of 45 °.
  • FIG. 6 is an electron micrograph showing a specific example of the generation of FePt magnetic nanoparticles formed on the underlayer.
  • Fig. 7 shows a sample in which a TiN film was formed to 13 nm at 600 ° C on a Si substrate with a thermally oxidized film, and FePt was formed thereon at 700 ° C at a film conversion of 1.4 nm. It is a transmission electron microscope image of a cross section.
  • Fig. 7 (a) From Fig. 7 (a), it can be seen that the force of FePt nanoparticles having a particle size of about 10 nm is formed at high density and at intervals.
  • Fig. 7 (b) is an enlarged image, and Fig. 7 (c) is the result of further analyzing the crystal structure.
  • Fig. 8 is a diagram showing the results of evaluating the magnetic properties of this sample using a SQUID (superconducting quantum interference measurement device).
  • the solid line is the measurement result in the vertical direction of the substrate
  • the broken line is the measurement result in the horizontal direction of the substrate. From these results, it was concluded that at room temperature, it had a coercive force of 6.2 kOe in the direction perpendicular to the substrate, 0.8 kOe in the in-plane direction, and strong magnetic anisotropy out of the plane.
  • This high-density array of FePt nanoparticles with a magnetic property of around 10 nm is a promising medium for perpendicular magnetic recording.
  • the present invention can be applied to CoPt magnetic nanoparticles as well as FePt magnetic nanoparticles.
  • the essential conditions for a perpendicular magnetic recording medium for a hard disk include (l) fct phase (L1 structure), (2) c-axis orientation (out-of-plane or in-plane), (3) particle or crystallite size 3-10 nm, (4) structure with small contribution of interface (error prevention), (5) unevenness of several nm or less ( (6) Force that requires that the nanoparticle array has a large area and is uniform (recording area of about inch square).
  • the present invention can satisfy these conditions.
  • FIG. 10 is a manufacturing process diagram of a laminated nanoparticle device according to a second embodiment of the present invention.
  • the high surface is placed on the Si substrate 11 with the SiO film.
  • a film (base film) 12 made of a melting point material, for example, a TiN material is formed by a sputtering method.
  • the high melting point material used at this time for example, TiN, grows up to several nm even at around room temperature, but has the characteristic that it does not grow excessively at high temperatures. At this time, out-of-plane orientation is performed so that surface energy is minimized, and in-plane orientation is non-oriented.
  • the film (base microcrystalline film) 12 thus formed is used as a base film.
  • a nanoparticle material 13 for example, a FePt magnetic material is deposited at a high temperature by a sputtering method.
  • the nanoparticles 13 can be locally epitaxially grown on each underlying microcrystalline film 12. This is because the in-plane orientation differs between the microcrystals, making it difficult for the nanoparticles to grow across multiple microcrystals. It is the power to build. On the other hand, since the underlying microcrystals are out-of-plane, the nanoparticles are also out-of-plane.
  • a base microcrystalline film 12 is formed thereon by a sputtering method [process similar to FIG. 10 (a)].
  • a nanoparticle material 13 for example, The FePt magnetic material is deposited at a high temperature by a sputtering method. It repeats it sequentially.
  • a non-epitaxial growth of a base microcrystalline film of a base microcrystalline film is performed on the substrate to form a nanoparticle of the form of nanoparticle, and the nanoparticle Z base microcrystal is formed on the substrate in the vertical direction of the substrate.
  • the films are alternately deposited and local epitaxial growth is repeated.
  • FIG. 11 shows a transmission electron of a cross section of a sample in which a TiN base microcrystalline film was formed on a Si substrate with a thermal oxidation film, FePt nanoparticles were further formed thereon, and a TiN base microcrystalline film was formed thereon. It is a micrograph. Local epitaxy of the FePt nanoparticles and the TiN underlying microcrystalline film is confirmed on the individual crystal grains of the TiN underlying microcrystalline film. The same structure as the TiN underlayer microcrystalline film has been realized on FePt, and by subsequently supplying FePt and TiN in the same manner, c-axis orientation and in-plane size It can be seen that the particles can be laminated.
  • FIG. 12 is a view showing a manufacturing process of a nanoparticle device made of a vertically long FePt nanoparticle, showing a third embodiment of the present invention.
  • a film (base film) 22 made of a high melting point material, for example, a TiN material is formed on the Si substrate 21 with the two films by a sputtering method.
  • the high melting point material used at this time for example, TiN, grows up to several nm even at around room temperature, but has the characteristic that it does not grow excessively at high temperatures. At this time, out-of-plane orientation is performed so that surface energy is minimized, and in-plane orientation is non-oriented.
  • the film (base microcrystalline film) 22 thus formed is used as a base film.
  • a nanoparticle material 23 for example, a FePt magnetic material is deposited at a high temperature by a sputtering method.
  • the nanoparticles 23 can be locally epitaxially grown on the individual underlying microcrystalline film 22. . This is because the in-plane orientation differs between the microcrystals, making it difficult for the nanoparticles to grow across multiple microcrystals. It is the power to build. On the other hand, since the underlying microcrystals are out-of-plane, the nanoparticles are also out-of-plane.
  • a base microcrystalline film 22 is formed thereon by a sputtering method (process similar to FIG. 12 (a)).
  • a sputtering method process similar to FIG. 12 (a)
  • the ⁇ -type crystal of the base microcrystalline film is non-epitaxially grown on the substrate to form the ⁇ -type nanoparticle, and the nano-particles Z The films are alternately deposited and local epitaxial growth is repeated. Note that nanoparticle Z base microcrystals may be simultaneously deposited to cause spontaneous phase separation.
  • FIG. 13 is a view showing a manufacturing process of a nanoparticle device made of a vertically long nanoparticle car according to a fourth embodiment of the present invention.
  • the high surface is placed on the Si substrate 31 with the SiO film.
  • a film (base film) 32 made of a melting point material, for example, a TiN material is formed by a sputtering method.
  • a melting point material for example, TiN
  • TiN grows up to several nm even near room temperature, but has the characteristic that it does not grow excessively at high temperatures.
  • the surface is oriented out of plane so that the surface energy is minimized, and the in-plane is not oriented.
  • the film (underlying microcrystalline film) 32 formed in this manner is used as an underlayer.
  • a nanoparticle material 33 for example, a FePt magnetic material is deposited at a high temperature by a sputtering method.
  • the nanoparticle material 33 can be locally epitaxially grown on each of the underlying microcrystalline films 32. This is because the in-plane orientation differs between the microcrystals, making it difficult for the nanoparticles to grow across multiple microcrystals.Therefore, the nanoparticles grow one-on-one on the underlying microcrystals and have an equilibrium structure in the microreaction field. Because it takes On the other hand, since the underlying microcrystals are oriented out of plane, the nanoparticles are also oriented out of plane.
  • a dust (for example, an amorphous material or a metal-alloy material) 34 which is a material different from the components of the nanoparticles, is deposited thereon.
  • a powder 34 an amorphous material containing any one or more of C, N, 0, Al, and Si, and a metal / alloy material containing Ti, Fe, Co, Cr, Pt, etc. are suitable. These materials have the advantage of selectively moving to the crystal grain boundaries of the ⁇ -type polycrystalline film.
  • a nanoparticle material 33 for example, a FePt magnetic material is deposited thereon by a sputtering method at a high temperature. It repeats it sequentially. Note that the nanoparticle material 33 and the powder dust 34 may be simultaneously deposited.
  • the underlying microcrystalline film is formed by non-epitaxial growth, an arbitrary substrate can be used. Further, when it is desired to form an underlying microcrystalline layer on a specific crystal layer, a thin amorphous material is deposited, and the underlying microcrystalline layer is formed thereon, thereby forming a crystal of the specific crystal layer.
  • the underlying microcrystalline layer can be arbitrarily formed without being affected by the structure. Since the underlying microcrystalline layer is not oriented in the plane, the target nanoparticle on it is It is difficult to grow over the substrate, and local epitaxy grows one-on-one with respect to the underlying microcrystal.
  • the number density of the target nanoparticles can be controlled by the crystallite number density of the underlying microcrystals, and the out-of-plane orientation of the target nanoparticles can be controlled by the out-of-plane orientation of the underlying microcrystals.
  • the size of individual nanoparticles and their spacing can be controlled by adjusting the deposition amount of the desired nanoparticles. Furthermore, by filling the gap between the nanoparticles with the powder, the fusion of the nanoparticles can be prevented, and by continuing the deposition of the powder and the nanoparticle material, the nanoparticles can be continuously grown in the direction perpendicular to the substrate. In this way, the seemingly contradictory requirements of increasing the volume of individual nanoparticles while realizing a high areal density of the nanoparticles can be satisfied.
  • the nanoparticle device having the structure of the FePt nanoparticle ZTiN base microcrystalline film Z substrate has been described.
  • the configuration may be as follows.
  • FIG. 14 is a schematic view showing the structure of a nanoparticle device according to a fifth embodiment of the present invention. As shown in FIG. 14, the distance between the FePt nanoparticles and the TiN underlying microcrystalline film is shown. A structure in which another film (microcrystalline film) is interposed may be used. For example, the Si substrate 41 with FePt nanoparticles 44ZFe microcrystalline film 43ZTiN base microcrystalline film 42ZSiO film can be used.
  • FIG. 15 is a schematic diagram showing the structure of a nanoparticle device having a laminated structure FeP nanoparticle according to the sixth embodiment of the present invention.
  • the microcrystals from may not necessarily be the same material as the first underlying microcrystalline film (TiN).
  • the Si substrate 51 with the Fe microcrystal film 54ZFePt nanoparticle 53ZFe microcrystal film 54ZFePt nanoparticle 53ZTiN underlayer microcrystal film 52ZSiO film can be used.
  • FIG. 16 is a schematic view showing the structure of a nanoparticle device having vertically elongated FeP nanoparticles according to a seventh embodiment of the present invention.
  • microcrystals that locally epitaxy to the nanoparticles are used. Is not necessarily the same material as the first microcrystalline underlayer (TiN).
  • TiN first microcrystalline underlayer
  • the Si substrate 61 can be used.
  • the force used as Fe microcrystals is not limited to this. Microcrystals other than Fe may be used. [0137] Further, the present invention is not limited to the above embodiments, but extends to the following points.
  • a single-layer or multi-layer substrate an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and individual submicrostructures of the above-described underlying microcrystalline film.
  • the crystals comprise individually locally epitaxy nanoparticles.
  • nanoparticle device a single-layer or multi-layer substrate, an in-plane non-oriented and out-of-plane oriented sub-microcrystalline film deposited on the substrate, and individual sub-microstructures of the sub-microcrystalline film Nanoparticles that are individually locally epitaxy formed on crystals and laminated nanoparticles in which the base microcrystalline film and nanoparticles are repeatedly formed in a direction perpendicular to the substrate.
  • nanoparticle device a single-layer or multi-layer substrate, an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and individual submicrostructures of the submicrocrystalline film. Elongated nanoparticles individually local-epitaxially grown on the crystal, and microcrystalline materials individually local-epitaxially grown on the nanoparticles so as to surround the nanoparticles.
  • a single-layer or multi-layer substrate an in-plane non-oriented and out-of-plane oriented microcrystalline film deposited on the substrate, and an individual It comprises vertically elongated nanoparticles individually local-epitaxially grown in a crystal and a material different in composition from the nanoparticles, which fills the gaps between the nanoparticles.
  • the multilayer substrate serves as one or both of a magnetic control layer and a structure control layer, and the structure control layer is a layer that is not epitaxial with the underlying microcrystal.
  • the base microcrystal and the non-epitaxial layer are amorphous or a metal 'alloy', and the metal 'alloy is Ti, Fe, Co, Cr, Pt, or the like.
  • the layer which is not epitaxial with the underlying microcrystalline film, is a crystal having a large lattice mismatch.
  • the layer is a crystal whose surface structure is disordered.
  • the base microcrystalline film is a high melting point material, and the high melting point material is a NaCl type crystal.
  • the NaCl type crystal is a nitride, and the nitride is TiN, VN, ZrN, NbN, HfN, TaN, ThN.
  • the NaCl-type crystal is an oxide, and the oxide is made of MgO, CaO, SrO, and BaO.
  • the high melting point material is made of Ti, V, Zr, Nb, Mo, Hf, Ta, W.
  • the nanoparticles are a magnetic recording material, and the magnetic recording material has a LI structure.
  • the alloy having the L1 structure is a fct transition metal Z noble metal alloy.
  • the fct transition metal Z precious metal alloy is FePt and CoPt.
  • an in-plane non-oriented and out-of-plane oriented base microcrystalline film is formed on a single-layer or multi-layer substrate by non-epitaxial growth.
  • the material of the base microcrystal film and the lattice constant of the nanoparticle material are matched, the surface of each base microcrystal of the base microcrystal film is used as a minute space, and the epitaxy is locally grown on the base microcrystal. It is characterized in that nanoparticles are generated for each space.
  • a non-epitaxially grown in-plane non-oriented 'out-of-plane oriented microcrystalline film is formed on a single-layer or multi-layer substrate.
  • the material of the microcrystalline film is matched with the lattice constant of the nanoparticle material, the surface of each of the underlying microcrystals of the underlying microcrystalline film is used as a minute space, and the underlying microcrystals are locally epitaxially grown.
  • Nanoparticles are generated for each space, and the nanoparticle material Z and the nanoparticle material including the base material are alternately deposited on the substrate in a direction perpendicular to the substrate, and a material having a lattice constant is alternately deposited and locally grown by epitaxy. Laminate the nanoparticles.
  • a non-epitaxially grown underlayer microcrystalline film is formed on a single-layer or multilayer substrate by non-epitaxial growth, and the material of the underlayer microcrystalline film is The lattice constant of the nanoparticle material is adjusted, the surface of each underlying microcrystal of the underlying microcrystal film is used as a microspace, and the epitaxy is locally grown on the underlying microcrystal, and nanoparticles are deposited for each microspace.
  • a nanoparticle including the nanoparticle material and the underlayer material is deposited, and a material having a different component from the nanoparticles including the underlayer material and having a matching lattice constant is deposited, and segregated so that each of the nanoparticles is locally epitaxy.
  • the nanoparticles grow in the direction perpendicular to the substrate.
  • non-epitaxy is applied on a single-layer or multi-layer substrate.
  • In-plane non-oriented and out-of-plane oriented underlying microcrystalline films are formed by the thermal growth, and the material of the underlying microcrystalline film and the lattice constant of the nanoparticle material are matched to each other.
  • nanoparticles are grown in the vertical direction of the substrate by simultaneously or alternately depositing the nanoparticle material and a material having a different component from the nanoparticles.
  • the underlying microcrystalline film suppresses grain growth and is oriented out-of-plane by any of minimum surface energy, minimum chemical etching rate, minimum plasma irradiation damage, minimum stress, and maximum growth rate.
  • the nanoparticles are magnetic nanoparticles containing FePt or CoPt as a main component.
  • epitaxy is locally performed by forming a sputter film under heating the substrate at 200 to 1600 ° C.
  • the crystal structure of the nanoparticles has an fct structure, and 90% or more of the c-axis of the crystals of the nanoparticles are oriented perpendicular to the underlying microcrystalline film.
  • the process itself is It is a lithography process that can be applied to microelectronic devices with nanoparticles such as semiconductor quantum dot devices, and is particularly suitable for hard disk perpendicular magnetic recording media where high-density arrangement is essential.

Abstract

高密度配列が可能なナノ粒子デバイス及びナノ粒子デバイスの製造方法を提供する。 基板(1)上に非エピタキシャル成長により下地微結晶膜(2)を形成し、この下地微結晶膜(2)の材料とナノ粒子材料(4)の格子定数を適合させ、前記下地微結晶膜(2)の個々の下地微結晶の表面を微小空間として用い、前記下地微結晶にローカルにエピタキシャル成長させ、前記微小空間毎にナノ粒子を生成する。  

Description

明 細 書
ナノ粒子デバイス及びナノ粒子デバイスの製造方法
技術分野
[0001] 本発明は、ナノ粒子デバイス及びナノ粒子デバイスの製造方法に係り、特に、高密 度配列が不可欠なハードディスクに用いられる垂直磁気記録媒体に関するものであ る。
背景技術
[0002] 以下の説明を行う前に、本発明にかかる主要な用語の説明を行う。
[0003] FePtとは、 Feと Ptが元素比で 1: 1付近の合金で、 fct結晶にすることで強い磁気 異方性を持たせることができる。
[0004] fct相とは、 face centered tetragonal (面心正方)相の略であり、 FePtにおける fct相は、基本的には fee相と同じ配置をとりながら、 c軸方向(〈001〉方向)に Feと Pt 力 S i層ずつ交互に現れる構造である。この構造を L1 という。この相は常温常圧で安
0
定相であるが、通常の作製法では fee相が現れやすぐ fct相の作製は、高温での堆 積、もしくはァニールと除冷により実現されることが多 、。
[0005] fee相とは、 face centered cubic (面心立方)の略であり、 FePtでは、 feeの原子 位置に Feと Ptがランダムに位置するこの相が現れやすい。また、磁気異方性をもた な!、のがこの相の特徴である。
[0006] c軸配向とは、複数の結晶子が〈001〉方向に揃っている状態であり、 c軸に磁気異 方性を持つ fct - FePtの垂直磁気記録媒体応用では非常に重要である。
[0007] 面外配向とは、基板に対して垂直方向の結晶方位の規則性を示しており、非ェピタ キシャル成長でも、表面エネルギー最小化や、化学エッチング速度最小化、プラズマ 照射損傷最小化、応力最小化、成長速度の異なる配向間の競争過程などで発現す る。
[0008] 面内配向とは、基板に対して水平方向の結晶方位の規則性を示しており、平滑な 基板上での非ェピタキシャル成長では、面内配向に寄与するメカニズムはなぐ面内 に非配向となる。 [0009] 粒成長とは、結晶が周囲の結晶ないしアモルファス相を取り込みながら成長する過 程であり、高温で顕著になる現象で、 FePtの微細構造実現の最大の障害の一つで ある。プロセス温度を融点で規格ィ匕した温度が一つの尺度になり、高融点材料を用 いれば、同一温度でも抑制できる。
[0010] 表面エネルギー最小の配向とは、非ェピタキシャル成長で、結晶方位が揃うメカ- ズムの一つに、系のエネルギーを最小にし、平衡構造に近づく過程がある力 歪等 が無視できる際は、結晶子の内部エネルギーは配向に依らないため、表面エネルギ 一を最小とする方位に揃う傾向があることを言う。結晶構造の最稠密面に対応する。
[0011] ヘテロエピタキシーとは、異種の 2つの結晶が、互いの結晶方位関係を等しく保ち ながら成長する様式であり、量子ドット応用を始め、盛んに研究されている。
[0012] 従来、ナノデバイス実現のための、基板上のナノ粒子配列作製方法として最も盛ん なアプローチは、単結晶基板からのヘテロェピタキシャル成長である。単結晶基板の 上に、超高真空下でゆっくりと原料を蒸着することで、単結晶基板と特定の方位関係 を持った結晶を育てる。その際、単結晶基板と目的層との格子定数を適切に設計す ることで、ナノ粒子構造をとらせることができる。現在、この方法で、量子ドットレーザ 一応用、磁気記録媒体等の多様な材料開発が進められている。
[0013] し力しながら、上記した従来の基板上のナノ粒子配列作製方法では、粒子サイズの 制御性が必ずしも良くな 、こと、作製プロセスおよび単結晶基板が高コストであること 、目的層と基板との組み合わせに制約が多いこと等の問題がある。
[0014] また、下記特許文献 1には、非磁性基体上に hep構造の非磁性下地層を形成し、 その上に少なくとも Coと Ptを含む合金である磁性体材料と、酸ィ匕物である非磁性材 料を、スパッタ法にて同時に供給し、磁性体材料と酸ィ匕物の相分離を起こさせること で、磁性体材料の結晶粒径と、結晶粒の相互間隔を制御する技術が示されているが 、これは、プラスチック榭脂の利用を想定した低温の製造技術である。低温プロセス であるため、この技術のままでは、 fct構造の CoPtもしくは FePt合金を得ることはで きず、大きな磁気的保持力を期待できない。 fct構造の合金を得るためには、プロセ ス温度を上げる必要がある力 その場合には合金の結晶粒径の制御が困難になると いった問題があった。また、 hep構造の非磁性下地層を用いると、その面外配向は 6 回対称の(001)になり易ぐその上の fct構造の合金は面外に(111)配向し易!ヽた め、垂直磁気記録媒体で不可欠な面外 c軸配向、即ち(001)配向させるのが困難で あると ヽつた問題があった。
特許文献 1:特開 2003—178413号公報
発明の開示
[0015] 一方、非ェピタキシャル成長では、堆積層の形状'結晶構造'配向は、成長条件に 大きく依存する。そのため、基板上に濡れる条件下で薄膜を成長させると表面エネル ギー最小の面に、またプラズマ照射を併用すると耐性の高い面に、といったように、 面外配向を制御した微結晶膜を得ることができる。この際、結晶のサイズは融点とプ ロセス温度のバランスで決められ、ナノ領域での融点降下とあわせると 10nm前後の 微結晶を作り易い。一方、面内配向については、非配向となる。
[0016] 本発明は、この非ェピタキシャル成長で得られる微結晶膜を用い、個々の微結晶 の表面を微小空間として利用し、この微小空間毎にナノ粒子を作製する方法に関す る。
[0017] つまり、下地微結晶とナノ粒子材料の格子定数が合うように設計することにより、ナ ノ粒子を個々の下地微結晶にローカルにェピタキシャル成長させることができる。こ れは、微結晶間で面内配向が異なるため、ナノ粒子は複数の微結晶に跨がって育 つのが困難になるので、下地微結晶上に一対一でナノ粒子を育てることができること を利用するものである。一方、下地微結晶は面外配向しているため、ナノ粒子も面外 に配向する。
[0018] また、ナノ粒子を積層する方法としては、(1)非ヱピタキシー技術として、多結晶シ ード層により結晶配向の制御を行う方法があり、多層構造の作製'相分離技術とも組 み合わされることがある。低コストなため、実用上は最も普及している方法であるが、 結晶のサイズ'数密度 ·間隔は試行錯誤的に制御しており、制御性が低い。(2)ェピ タキシー技術は、高価な単結晶基板が必要であり、材料選択に任意性が低い、また 、サイズ制御性も低い。(3)コロイド粒子塗布配列方法は結晶相の制御が困難であり 、また、結晶配向の制御も困難であり、大面積の均一性が低い。
[0019] 本発明では、上記状況に鑑みて、高密度配列が可能なナノ粒子デバイス及びナノ 粒子デバイスの製造方法を提供することを目的とする。
[0020] 本発明は、上記目的を達成するために、
〔1〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される面 内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微結 晶に個々にローカルエピタキシーしたナノ粒子とを具備することを特徴とする。
[0021] 〔2〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される 面内非配向かつ面外配向した下地微結晶膜と、この下地微結晶膜の個々の下地微 結晶に個々にローカルエピタキシーした微結晶からなる微結晶膜と、この微結晶膜 の個々の微結晶に個々にローカルエピタキシーしたナノ粒子とを具備することを特徴 とする。
[0022] 〔3〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される 面内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微 結晶に個々にローカルエピタキシーしたナノ粒子と、前記ナノ粒子に個々にローカル エピタキシーした微結晶膜と、前記基板の垂直方向に前記ナノ粒子と前記微結晶膜 が繰り返しローカルエピタキシーした積層ナノ粒子を具備することを特徴とする。
[0023] 〔4〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される 面内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微 結晶に個々にローカルエピタキシーした縦長のナノ粒子と、前記ナノ粒子を取り囲む ように、ナノ粒子に個々にローカルエピタキシーした微結晶材料を具備することを特 徴とする。
[0024] 〔5〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される 面内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微 結晶に個々にローカルエピタキシーした縦長のナノ粒子と、前記ナノ粒子間を埋める 、前記ナノ粒子と成分の異なる材料を打ち粉として具備することを特徴とする。
[0025] 〔6〕上記〔3〕、〔4〕又は〔5〕記載のナノ粒子デバイスにおいて、前記下地微結晶膜 と前記ナノ粒子の間に挟まれた下地微結晶膜の個々の下地微結晶に個々にロー力 ルエピタキシーした微結晶からなる微結晶膜を具備することを特徴とする。
[0026] 〔7〕上記〔1〕から〔6〕の何れか一項記載のナノ粒子デバイスにおいて、前記多層基 板は磁性制御層又は構造制御層の何れか又は双方力もなる。
[0027] 〔8〕上記〔7〕記載のナノ粒子デバイスにおいて、前記構造制御層は下地微結晶と ェピタキシャルでな 、層である。
[0028] 〔9〕上記〔8〕記載のナノ粒子デバイスにお 、て、前記下地微結晶とェピタキシャル でない層は非晶質である。
[0029] 〔10〕上記〔9〕記載のナノ粒子デバイスにおいて、前記非晶質は、 C、 N、 0、 Al、 S iの何れか、もしくは複数を含む物質である。
[0030] 〔11〕上記〔8〕記載のナノ粒子デバイスにお 、て、前記下地微結晶とェピタキシャ ルでな!/、層は格子ミスマッチの大き 、結晶である。
[0031] 〔12〕上記〔8〕記載のナノ粒子デバイスにおいて、前記下地微結晶とェピタキシャ ルでな!/、層は表面の構造が乱れた結晶である。
[0032] 〔13〕上記〔1〕から〔6〕の何れか一項記載のナノ粒子デバイスにおいて、前記下地 微結晶膜は高融点材料である。
[0033] 〔14〕上記〔13〕記載のナノ粒子デバイスにお 、て、前記高融点材料が NaCl型結 晶である。
[0034] 〔15〕上記〔14〕記載のナノ粒子デバイスにおいて、前記 NaCl型結晶は窒化物で める。
[0035] 〔16〕上記〔15〕記載のナノ粒子デバイスにおいて、前記窒化物は TiN、 VN、 ZrN
、 NbN、 HfN、 TaN、 ThNである。
[0036] 〔17〕上記〔13〕記載のナノ粒子デバイスにおいて、前記 NaCl型結晶は酸化物で める。
[0037] 〔18〕上記〔17〕記載のナノ粒子デバイスにおいて、前記酸化物は MgO、 CaO、 Sr 0、 BaOである。
[0038] 〔19〕上記〔13〕記載のナノ粒子デバイスにおいて、前記高融点材料が Ti、 V、 Zr、
Nb、 Mo、 Hf、 Ta、 W力もなる。
[0039] 〔20〕上記〔1〕から〔6〕の何れか一項記載のナノ粒子デバイスにおいて、前記ナノ 粒子は磁気記録材料である。
[0040] 〔21〕上記〔20〕記載のナノ粒子デバイスにお ヽて、前記磁気記録材料は L1 構造 を有する合金である。
[0041] 〔22〕上記〔21〕記載のナノ粒子デバイスにおいて、前記 L1 構造を有する合金は f
0
ct遷移金属 Z貴金属合金である。
[0042] 〔23〕上記〔22〕記載のナノ粒子デバイスにお!/、て、前記 fct遷移金属 Z貴金属合 金は FePt、 CoPtである。
[0043] 〔24〕上記〔3〕又は〔4〕記載のナノ粒子デバイスにおいて、前記ナノ粒子に個々に ローカルエピタキシーした微結晶力 Ti、 Fe、 Co、 Cr、 Ag、 Ptなどを含む金属'合金 材料であることを特徴とする。
[0044] 〔25〕上記〔5〕記載のナノ粒子デバイスにお 、て、前記ナノ粒子の成分と異なる材 料が C、 N、 0、 Al、 Siの何れか、もしくは複数を含む非結晶材料であることを特徴と する。
[0045] 〔26〕上記〔5〕記載のナノ粒子デバイスにお 、て、前記ナノ粒子の成分と異なる材 料が Ti、 Fe、 Co、 Cr、 Ag、 Ptなどを含む金属'合金材料であることを特徴とする。
[0046] [27]ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキ シャル成長により面内非配向 ·面外配向した下地微結晶膜を形成し、この下地微結 晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下 地微結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャ ル成長させ、前記微小空間毎にナノ粒子を生成することを特徴とする。
[0047] 〔28〕ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキ シャル成長により面内非配向 ·面外配向した下地微結晶膜を形成し、この下地微結 晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下 地微結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャ ル成長させ、前記微小空間毎にナノ粒子を生成し、その上に基板垂直方向に前記 ナノ粒子材料 Z前記下地材料を含むナノ粒子材料と格子定数の適合する材料を交 互に堆積しローカルにェピタキシャル成長させ、ナノ粒子を積層することを特徴とす る。
[0048] 〔29〕ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキ シャル成長により面内非配向 ·面外配向した下地微結晶膜を形成し、この下地微結 晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下 地微結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャ ル成長させ、前記微小空間毎にナノ粒子を生成し、前記下地材料を含むナノ粒子と 成分が異なり格子定数が適合する材料を堆積し、前記ナノ粒子の個々にローカルェ ピタキシ一するよう偏析させ、前記ナノ粒子材料および前記下地材料を含むナノ粒 子と成分が異なり格子定数が適合する材料を同時もしくは交互に堆積することで、ナ ノ粒子を基板垂直方向に成長させることを特徴とする。
[0049] 〔30〕ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキ シャル成長により面内非配向 ·面外配向した下地微結晶膜を形成し、この下地微結 晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下 地微結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャ ル成長させ、前記微小空間毎にナノ粒子を生成し、前記ナノ粒子と成分の異なる材 料を打ち粉として堆積し、前記ナノ粒子の間に偏析させ、前記ナノ粒子材料および 前記ナノ粒子と成分の異なる材料を同時もしくは交互に堆積することで、ナノ粒子を 基板垂直方向に成長させることを特徴とする。
[0050] 〔31〕上記〔27〕一〔30〕の何れか一項記載のナノ粒子デバイスの製造方法にお!、 て、前記 (a)工程と (b)工程との間に下地微結晶膜の個々の下地微結晶に個々に口 一カルエピタキシーした微結晶からなる微結晶膜を形成する工程を施すことを特徴と する。
[0051] 〔32〕上記〔27〕一〔31〕の何れか一項記載のナノ粒子デバイスの製造方法にお!、 て、前記下地微結晶膜は粒成長を抑え、表面エネルギー最小、化学エッチング速度 最小、プラズマ照射損傷最小、応力最小、成長速度最大の何れかで面外配向させる
[0052] 〔33〕上記〔27〕一〔32〕の何れか一項記載のナノ粒子デバイスの製造方法にお! ' て、前記ナノ粒子が FePtを主成分とした磁性体ナノ粒子である。
[0053] 〔34〕上記〔27〕一〔32〕の何れか一項記載のナノ粒子デバイスの製造方法にお! ' て、前記ナノ粒子が CoPtを主成分とした磁性体ナノ粒子である。
[0054] 〔35〕上記〔33〕又は〔34〕記載のナノ粒子デバイスの製造方法にぉ 、て、 200—: 600°Cの基板加熱の下でローカルにェピタキシャル成長を行わせる。
[0055] 〔36〕上記〔35〕記載のナノ粒子デバイスの製造方法にぉ 、て、下地微結晶膜を作 製させた後、大気暴露なしに FePtないし CoPtを堆積することにより、ローカルにェピ タキシャル成長を行わせる。
[0056] 〔37〕上記〔33〕又は〔34〕記載のナノ粒子デバイスの製造方法にお!、て、下地微 結晶膜を基板上に堆積させ、その後 FePt又は CoPtを堆積させ、その後 200— 160
0°Cにてァニールを行 、、ローカルにェピタキシャル成長を行わせる。
[0057] 〔38〕上記〔37〕記載のナノ粒子デバイスの製造方法にぉ 、て、下地微結晶膜を作 製させた後、大気暴露なしに FePtないし CoPtを堆積させ、その後、ァニールするこ とでローカルにェピタキシャル成長を行わせる。
[0058] 〔39〕上記〔27〕一〔38〕の何れか一項に記載のナノ粒子デバイスの製造方法にお いて、前記ナノ粒子の結晶構造が fct構造をなし、前記ナノ粒子の結晶の c軸の 9割 以上が下地微結晶膜と垂直方向に配向する。
図面の簡単な説明
[0059] [図 1]本発明の第 1実施例を示すナノ粒子デバイスの製造工程図である。
[図 2]下地膜の配向の模式図である。
[図 3]下地膜の材料のうち、単体の金属元素を示す図である。
[図 4]FePt磁性体の fct結晶構造を示す図である。
[図 5]下地膜としての金属窒化物の NaCl型 TiN, TaNを示す図である。
[図 6]下地膜上への FePt磁性ナノ粒子を生成の具体例を示す電子顕微鏡写真であ る。
[図 7]単層ナノ粒子の断面透過型電子顕微鏡像を示す図である。
[図 8]図 7における単層ナノ粒子の磁気特性 (磁界に対する磁化)を示す図である。
[図 9]比較例としての単層ナノ粒子の磁気特性 (磁界に対する磁化)を示す図である
[図 10]本発明の第 2実施例を示す積層型のナノ粒子デバイスの製造工程図である。
[図 11]本発明の第 2実施例を示す積層型のナノ粒子デバイスの断面透過型電子顕 微鏡像を示す図である。 [図 12]本発明の第 3実施例を示す縦長のナノ粒子デバイスの製造工程図である。
[図 13]本発明の第 4実施例を示す縦長のナノ粒子カゝらなるナノ粒子デバイスの製造 工程図である。
[図 14]本発明の第 5実施例を示すナノ粒子デバイスの構造を示す模式図である。
[図 15]本発明の第 6実施例を示す積層構造 FePナノ粒子を有するナノ粒子デバイス の構造を示す模式図である。
[図 16]本発明の第 7実施例を示す縦長のナノ粒子を有するナノ粒子デバイスの構造 を示す模式図である。
発明を実施するための最良の形態
[0060] 本発明によれば、以下のような効果を奏することができる。
[0061] (1)プロセス自体がドライプロセスであり、ナノ粒子は 3— lOnm程度に超微小化する ことができ、半導体の量子ドットデバイスなどのナノ粒子を有する微小電子 ·磁気-光 デバイスを得ることができる。
[0062] (2)基板と下地微結晶膜が非エピタキシーの関係にあるため、基板選択の任意性が 高ぐ安価な基板を利用することができる。また、プロセスには、大面積での均一性を 有することが可能であり低コストィ匕を図ることができる、スパッタ法をはじめとしたドライ プロセスを利用することができる。
[0063] (3)次世代の記録媒体と考えられる FePt系の垂直磁気記録媒体の記録密度を、本 発明によれば、現在のハードディスクの記録密度に比べて 1一 2桁向上させることが できる。
[0064] すなわち、通常、合成後のナノ粒子は結晶構造が fee構造であり、大きな磁気異方 性エネルギーを得るためには、プロセス温度を高温にして fct構造を得る必要がある 力 高温では通常、粒子の凝集が進行し lOnm前後の粒子を得ることができない。し かし、本発明によれば、下地微結晶膜が高融点材料であるため、粒成長が起き難く 1 Onm前後の結晶粒径を保持することができ、個々の下地結晶上に FePt系材料が成 長することで、 lOnm前後の fct構造を有するナノ粒子を得ることができる。その場合 、処理温度を 200— 1600°C、特に、 300— 800°Cとするの力 S望まし ヽ。
[0065] (4)磁気記録媒体にお!、ては、ナノ粒子間の磁気的干渉の問題があるが、本発明に よれば、ナノ粒子の面内数密度を下地微結晶膜の結晶数密度により、また、ナノ粒子 の体積を FePt系材料の堆積量により、独立に制御できるため、ナノ粒子間の距離を 数 nmの適切な距離に制御することができる。これにより、ナノ粒子間の磁気干渉を抑 制することができ、磁区サイズ、つまり lbitのサイズを小さく保つことが可能となる。
[0066] (5)配向した下地微結晶膜とローカルエピタキシーさせることで、ナノ粒子の結晶の c 軸の 9割以上を基板と垂直方向に配向させることにより、高密度垂直磁気記録媒体 を得ることができる。
[0067] (6)磁気記録媒体への応用は一例であり、サイズ ·間隔 *配向というナノ粒子構造を、 下地微結晶膜で制御させることで、構造制御の機能分担が可能となる。
[0068] (7)高価な単結晶基板が必要な従来のエピタキシー法などに比べて、作製コストの 大幅な低コストィ匕を図ることができる。
[0069] (8)高度な構造制御 (既存の非エピタキシーでは試行錯誤的なナノ結晶サイズ'数密 度'間隔制御)を実施することができる。
[0070] 以下、本発明を実施するための最良の形態を述べる。
(1)基板上のナノ粒子デバイスの下地微結晶膜には、 FePt (001)面とェピタキシャ ルになる面を、表面エネルギー最小の面にする材料が好ましい。そのためには、表 面エネルギー最小の面、即ち最稠密面が FePt (001)面と同じく 4回対称である、 Na C1型結晶が好ましぐ融点が高く安定な窒化膜がより好ましい。更に、 FePtの(100) 面でなぐ(001)面が下地微結晶膜にェピタキシャル成長するためには、下地 NaCl 型結晶の格子定数 Xが、 FePtの格子定数 a, cに対し、 c< a< xく 1. laの関係を有 する TiNがより好ましい。
[0071] (2)また、基板上のナノ粒子デバイスの下地微結晶膜には、表面エネルギー最小の 面が FePtの(001)と同じく 4回対称をし、融点が高い酸化物が好ましい。更に、 FeP tに対し、 c< a<x< l. laの格子定数の関係を示す MgOがより好ましい。
[0072] (3)上記(1)および(2)での TiN, MgOは、 FePtの格子定数 aに対し、 9%強の格子 不整合を有する。下地微結晶膜と FePtの間の格子定数を有する材料の微結晶膜( 中間層)を挟み、 FePtZ中間層 Z下地微結晶膜間のローカルエピタキシーを作製 すると、 FePtナノ粒子の制御性をより高めることができる。例えば、 fee結晶の Ag (0. 4087nm)、 Pt (0. 3924nm)力 S候ネ甫材料になり、また、 bcc結晶の Fe (0. 2867nm )も 45° ずれると、 0. 4055nmの格子の働きをするため好ましい。
[0073] 更に、基板上のナノ粒子デバイスの下地微結晶膜には、高融点材料力もなる金属 膜を用いることちできる。
[0074] (4)上記の下地微結晶膜上に適切な基板加熱条件下で FePt (または CoPt)ナノ粒 子を成長させる。また、成長したナノ粒子を適切にァニールする。即ち、基板加熱成 膜、成膜後の加熱、基板加熱成膜とその後の加熱の全てを含むァニールを指してい る。
実施例
[0075] 以下、本発明の実施の形態を詳細に説明する。
[0076] 図 1は本発明の第 1実施例を示すナノ粒子デバイスの製造工程図である。
[0077] (1)まず、図 l (a-l) (断面図)及び図 1 (a—2) (平面図)に示すように、 Si基板ないし SiO膜付き Si基板 1を用意する。なお、ガラス基板を用いると安価であり好ましい。
2
[0078] (2)次に、図 l (b— 1) (断面図)及び図 l (b— 2) (平面図)に示すように、その SiO膜
2 付き Si基板 1上に高融点材料、例えば、 TiN材料カゝらなる膜 (下地膜) 2をスパッタ法 により成膜する。このとき用いる高融点材料、例えば、 TiNは、室温付近でも数 nmま では成長する力 高温でも過度の粒成長をしないという特徴がある。また、このとき、 表面エネルギーが最小となるように面外配向させ、面内は非配向とする。このように 形成された膜 (下地微結晶膜) 2を下地膜とする。
[0079] ここで、図 2は下地膜 2の配向の模式図であり、横軸にプロセス温度 (成膜温度 Z融 点)、縦軸に下地膜の厚さを示している。本発明では、図 2 (a)に示す平衡論支配の 表面エネルギーが最小の配向を行う。すなわち、本発明での下地膜 2の配向制御は 、図 2 (a)に示すように、配向と表面が一致して平滑となるように表面エネルギー最小 配向制御を行う。一方、図 2 (b)は evolutionary selection成長を示しており、つま り、速度論的に速い面が配向されるが、凹凸が形成されるので、本願発明の下地膜 2 の配向としては望ましくない。
[0080] つまり、図 2 (a)に示すような配向を行うことで、下地膜 2全体での凹凸を数 nm以下に 抑えることができる。 [0081] 下地膜 2の材料としては、図 1に示した TiN以外にも、図 3に示すように、下地膜 2が S iO に濡れる強い面外配向を有し、下地膜 2の粒成長を抑制できる高融点材料、例
2
えば、金属では Ti, Hf, Mo, Nb, Ta, V, W, Zr (図 3の領域 II)を用いることができ る。
[0082] また、ナノ粒子、例えば、 FePt磁性体ナノ粒子が面外で c軸配向となる fct構造をと れるものを選定する。つまり、図 4に示すように、 4回対称の面を出す必要がある。因 みに、代表的な結晶構造の最稠密面と対称性には、 fee (111) 6回対称、 bcc (l lO) 2回対称、 hep (0001) 6回対称がある力 これらはいずれも FePt磁性体ナノ粒子と は合わない。一方で、 NaCl型の XY結晶では、最稠密面が(100)面であり、 4回対 称を有し、 FePt磁性体ナノ粒子と合う。よって、 NaCl型結晶である窒化物の TiN、 V N、 ZrN、 NbN、 HfN、 TaN、 ThN、酸化物の MgO、 CaO、 SrO、 BaOを用いること ができる。
[0083] (3)次に、図 1 (c 1) (断面図)及び図 1 (c 2) (平面図)に示すように、ナノ粒子材料 4、例えば、 FePt磁性体材料を高温でスパッタ法により堆積させる。
[0084] 下地微結晶膜 2とナノ粒子材料 4の格子定数が合うように設計することで、ナノ粒子 4 を個々の下地微結晶膜 2にローカルにェピタキシャル成長させることができる。これは 微結晶間で面内配向が異なるために、ナノ粒子は複数の微結晶に跨がって育つの が困難になるので、下地微結晶上に一対一で育ち、微小反応場 3内で平衡構造をと る力らである。一方、下地微結晶は面外配向しているため、ナノ粒子も面外に配向す る。
[0085] すなわち、この方法によれば、安価なガラスも含めた任意の基板から出発し、目的材 料とェピタキシャル成長できる微結晶膜を成長させ、その上に目的材料で、面外配 向しサイズの制御されたナノ粒子を作製することができる。
[0086] 以下、具体的応用の一例として、垂直磁気記録媒体を挙げる。
[0087] FePt合金を用い、下地として、図 5に示すように金属窒化物としての NaCl型の TiN , TaNを用いた。格子定数 Xが 0. 4242nmの TiNの場合、 TiN— FePt: (001) // (001) , (ΙΟΟ)ΖΖ(ΙΟΟ)の格子不整合が + 9. 2%であり、 TiNは c< a<x^ l . 1 aの関係を満たすため、下地として好ましい。また、図示していないが、 BaOも X 2 X aの関係を有し、 45° ずれてエピタキシーできるため下地にすることができる。
[0088] 上記のように構成することにより、(l) fct結晶構造、(2) c軸配向、(3) 10nm前後の ナノ粒子サイズ、(4)ナノ粒子間が数 nm離れる、(5)全体の凹凸を数 nm以下に抑え る、(6)大面積での均一性という効果を、本発明はスパッタ装置を用いることで、低コ ストで、かつ普及した装置で実現することが可能になる。
[0089] 以下に具体例を用いてこれらを示す。
[0090] 図 6は下地膜上へ生成した FePt磁性ナノ粒子の生成の具体例を示す電子顕微鏡 写真である。
[0091] ここで、 FP—SiO 〔SiO ZSi (100)上に FePt磁性ナノ粒子を生成した場合〕〔図 6 (
2 2
a)参照〕は FePt堆積量が厚さ 2nm相当で 800°Cでの処理、同じく FP—SiO 〔図 6 (d
2
)参照〕は FePt堆積量が厚さ 2nm相当で 600°Cでの処理、 FTN3 [TiN (002) /Si O ZSi (100)上に FePt磁性ナノ粒子を生成した場合〕〔図 6 (b)参照〕は FePt堆積
2
量が厚さ 2nm相当で 800°Cでの処理、同じく FTN3〔図 6 (e)参照〕は FePt堆積量が 厚さ 2nm相当で 600°Cでの処理、 LTN [TiN (002) ZSi (l l l)上に FePt磁性ナノ 粒子を生成した場合〕〔図 6 (c)参照〕は FePt堆積量が厚さ 2nm相当で 800°Cでの 処理を行ったものをそれぞれ示している。ただし、下地として高融点材料と FePtナノ 粒子を用いるようにしたので、処理温度は 200— 1600°Cとすることができ、特に、 30 0— 800°Cとすることにより、良好な FePt磁性ナノ粒子を生成させることができる。
[0092] FP-SiO 〔図 6 (a)、図 6 (d)参照〕と FTN3〔図 6 (b)、図 6 (e)参照〕の FESEM (電
2
界放射走査型電子顕微鏡)写真の結果から、 TiNを用いた方が基板温度によらず F ePtの数密度(下地 TiN結晶子サイズに相当する数密度)が一定に制御できることが 分かる。
[0093] 図 7は熱酸ィ匕膜付き Si基板上に 600°Cにて TiN膜を 13nm成膜し、その上に FePtを 700°Cにて膜厚換算 1. 4nm成膜した試料の断面の透過型電子顕微鏡像である。
[0094] 図 7 (a)から、粒径 10nm前後の FePtナノ粒子力 高密度に、かつ間隔を持って形 成されていることが分かる。図 7 (b)はその拡大像であり、図 7 (c)は更に結晶構造を 解析した結果である。
[0095] 図 7 (c)から TiN下地微結晶は、 10nm前後の結晶粒径を持ち、面外に(200)配向 していることが分かる。その上の FePtは、 fct構造を取り、多くの粒子が面外に(001) 配向 =c軸配向し、かつ TiN下地微結晶一つに FePtナノ粒子が一つ乗っていること が分かる。
[0096] 図 8はこの試料の磁気特性を SQUID (超伝導量子干渉計測器)で評価した結果を 示す図である。ここで、実線が基板垂直方向の測定結果、破線が基板水平方向の測 定結果である。この結果から、常温で、基板垂直方向に 6. 2kOeの、面内方向に 0. 8kOeの保磁力を有し、面外に強い磁気異方性を有することが分力つた。この磁気特 性を有する、 10nm前後の FePtナノ粒子の高密度配列は、垂直磁気記録の有望な 媒体であると言える。
[0097] 比較例として、 TiN下地微結晶膜なしで、熱酸ィ匕膜付き Si基板上に FePtを 700°Cに て膜厚換算 1. 4nm成膜した試料の磁気特性を SQUID (超伝導量子干渉計測器) で評価した結果を、図 9に示す。この図から明らかなように、面外、面内何れに対して もヒステリシスは観測されなカゝつた。走査型電子顕微鏡による観察から SiO上では F
2 ePtナノ粒子のサイズ制御が行えな力つたことが分力つており、これは超常磁性を示 したことが原因である。また、結晶配向に関しても X線回折力も非配向であることが分 かっており、もし仮に保磁力を有する lOnm前後のナノ粒子が形成されたとしても、基 板垂直方向に異方性を持たせることは本発明の TiN下地微結晶膜を用いずには不 可能である。
[0098] 従来の技術の多くは、 fct結晶構造を実現するために 350— 800°Cの高温にした場 合、ナノ粒子の凝集が進み、 lOnm前後の粒子サイズを維持できない。
[0099] 本発明では、下地材料に高融点材料を用いることにより、下地微結晶膜の粒成長を 抑制し、個々の微結晶上にナノ粒子を生成させることで、 lOnm前後の粒子サイズを 維持することが可能となる。すなわち、ハードディスクに関しては、記録密度を現在の もの(lOOnm四方で lbit= lOGbit/cm2 )に比して 100倍向上させるものであり、そ の他のナノデバイスに関しても強力な汎用的ナノ粒子を得ることができる。
[0100] なお、本発明は FePt磁性体ナノ粒子と同様に CoPt磁性体ナノ粒子にも適用できる
[0101] 特に、ハードディスクの垂直磁気記録媒体の必須条件として、(l) fct相(L1構造)、 (2) c軸配向(面外もしくは面内)、(3)粒子あるいは結晶子サイズ 3— 10nm、(4)界 面の寄与が小さい構造 (エラー防止)、(5)凹凸は数 nm以下 (磁気ヘッドによる読み 書き)、 (6)ナノ粒子配列が大面積で均一 (インチ四方前後の記録面積)であることが 必要である力 本発明はこれらの条件を満足することができる。
[0102] 図 10は本発明の第 2実施例を示す積層型のナノ粒子デバイスの製造工程図である
[0103] まず、図 1に示したと同様のプロセスを繰り返し用いる。
[0104] (1)図 10 (a)に示すように、 Si基板ないし SiO膜付き Si基板 11を用意する。なお、
2
ガラス基板を用いると安価であり好ましい。次に、その SiO膜付き Si基板 11上に高
2
融点材料、例えば、 TiN材料カゝらなる膜 (下地膜) 12をスパッタ法により成膜する。こ のとき用いる高融点材料、例えば、 TiNは、室温付近でも数 nmまでは成長するが、 高温でも過度の粒成長をしないという特徴がある。また、このとき、表面エネルギーが 最小となるように面外配向させ、面内は非配向とする。このように形成された膜 (下地 微結晶膜) 12を下地膜とする。
[0105] (2)次に、図 10 (b)に示すように、ナノ粒子材料 13、例えば、 FePt磁性体材料を 高温でスパッタ法により堆積させる。
[0106] 下地微結晶膜 12とナノ粒子材料 13の格子定数が合うように設計することで、ナノ粒 子 13を個々の下地微結晶膜 12にローカルにェピタキシャル成長させることができる 。これは微結晶間で面内配向が異なるために、ナノ粒子は複数の微結晶に跨がって 育つのが困難になるので、下地微結晶上に一対一で育ち、微小反応場内で平衡構 造をとる力らである。一方、下地微結晶は面外配向しているため、ナノ粒子も面外に 配向する。
[0107] すなわち、この方法によれば、安価なガラスも含めた任意の基板から出発し、目的 材料とェピタキシャル成長できる微結晶膜を成長させ、その上に目的材料で、面外 配向しサイズの制御されたナノ粒子を作製することができる。
[0108] (3)次に、その上に、図 10 (c)に示すように、下地微結晶膜 12をスパッタ法により成 膜する〔図 10 (a)と同様のプロセス〕。
[0109] (4)次に、図 10 (d)に示すように、下地微結晶膜 12上にナノ粒子材料 13、例えば 、 FePt磁性体材料を高温でスパッタ法により堆積させる。それを順次繰り返す。
[0110] このように、基板上に、下地微結晶膜の铸型結晶を非ェピタキシャル成長させてナ ノ粒子の铸型を作製し、その上に基板の垂直方向にナノ粒子 Z下地微結晶膜を交 互に堆積しローカルェピタキシャル成長を繰り返す。
[0111] このように構成することにより、サイズ'数密度 ·間隔'配向が制御された、ナノ粒子 の縦方向の充填物を形成することができる。これにより、磁気記録媒体として用いる 場合は、垂直方向にナノ粒子の体積を稼ぐことができ、熱揺らぎ等による磁気エラー を抑制することができる。
[0112] 図 11は熱酸ィ匕膜付き Si基板上に TiN下地微結晶膜を、その上に FePtナノ粒子を 、更にその上に TiN下地微結晶膜を形成した試料の断面の透過型電子顕微鏡写真 である。 TiN下地微結晶膜の個々の結晶粒の上に、 FePtナノ粒子と TiN下地微結 晶膜がローカルエピタキシーしている様子が確認される。 TiN下地微結晶膜と同じ構 造が FePt上にも実現されており、以下同様に FePt、 TiNを順次供給することで、 c軸 配向 ·面内サイズ lOnm前後のサイズを保ったまま、 FePtナノ粒子を積層できること が分かる。
[0113] 図 12は本発明の第 3実施例を示す縦長の FePtナノ粒子カゝらなるナノ粒子デバイス の製造工程図である。
[0114] (1)図 12 (a)に示すように、 Si基板ないし SiO膜付き Si基板 21を用意する。なお、
2
ガラス基板を用いると安価であり好ましい。次に、その SiO
2膜付き Si基板 21上に高 融点材料、例えば、 TiN材料カゝらなる膜 (下地膜) 22をスパッタ法により成膜する。こ のとき用いる高融点材料、例えば、 TiNは、室温付近でも数 nmまでは成長するが、 高温でも過度の粒成長をしないという特徴がある。また、このとき、表面エネルギーが 最小となるように面外配向させ、面内は非配向とする。このように形成された膜 (下地 微結晶膜) 22を下地膜とする。
[0115] (2)次に、図 12 (b)に示すように、ナノ粒子材料 23、例えば、 FePt磁性体材料を 高温でスパッタ法により堆積させる。
[0116] 下地微結晶膜 22とナノ粒子材料 23の格子定数が合うように設計することで、ナノ粒 子 23を個々の下地微結晶膜 22にローカルにェピタキシャル成長させることができる 。これは微結晶間で面内配向が異なるために、ナノ粒子は複数の微結晶に跨がって 育つのが困難になるので、下地微結晶上に一対一で育ち、微小反応場内で平衡構 造をとる力らである。一方、下地微結晶は面外配向しているため、ナノ粒子も面外に 配向する。
[0117] すなわち、この方法によれば、安価なガラスも含めた任意の基板から出発し、目的 材料とェピタキシャル成長できる微結晶膜を成長させ、その上に目的材料で、面外 配向しサイズの制御されたナノ粒子を作製することができる。
[0118] (3)次に、その上に、図 12 (c)に示すように、下地微結晶膜 22をスパッタ法により成 膜する〔図 12 (a)と同様のプロセス〕が、この際、下地微結晶 22の堆積量を小さくする ことで、下地微結晶 22とナノ粒子 23がローカルエピタキシーしつつも、ナノ粒子 23の 表面が出た構造を作ることができる。
[0119] (4)次に、図 12 (d)に示すように、ナノ粒子材料 23と下地微結晶膜材料 22を順次 高温でスパッタ法により堆積させると、ナノ粒子材料 23はナノ粒子の上に、下地微結 晶材料 22は下地微結晶の上に育ち、縦長のナノ粒子材料 23を得ることができる。
[0120] このように、基板上に、下地微結晶膜の铸型結晶を非ェピタキシャル成長させてナ ノ粒子の铸型を作製し、その上に基板の垂直方向にナノ粒子 Z下地微結晶膜を交 互に堆積しローカルェピタキシャル成長を繰り返す。なお、ナノ粒子 Z下地微結晶を 同時に堆積させ、自発的に相分離をさせても良い。
[0121] このように構成することにより、サイズ'数密度 ·間隔'配向が制御された、縦長に成 長したナノ粒子を形成することができる。これにより、磁気記録媒体として用いる場合 は、垂直方向にナノ粒子の体積を稼ぐことができ、熱揺らぎ等による磁気エラーを抑 ff¾することができる。
[0122] 図 13は本発明の第 4実施例を示す縦長のナノ粒子カゝらなるナノ粒子デバイスの製 造工程図である。
[0123] まず、図 1に示したと同様のプロセスを用いる。
[0124] (1)図 13 (a)に示すように、 Si基板ないし SiO膜付き Si基板 31を用意する。なお、
2
ガラス基板を用いると安価であり好ましい。次に、その SiO膜付き Si基板 31上に高
2
融点材料、例えば、 TiN材料カゝらなる膜 (下地膜) 32をスパッタ法により成膜する。こ のとき用いる高融点材料、例えば、 TiNは、室温付近でも数 nmまでは成長するが、 高温でも過度の粒成長をしないという特徴がある。また、このとき、表面エネルギーが 最小となるように面外配向させ、面内は非配向とする。このように形成された膜 (下地 微結晶膜) 32を下地膜とする。
[0125] (2)次に、図 13 (b)に示すように、ナノ粒子材料 33、例えば、 FePt磁性体材料を高 温でスパッタ法により堆積させる。
[0126] 下地微結晶膜 32とナノ粒子材料 33の格子定数が合うように設計することで、ナノ粒 子材料 33を個々の下地微結晶膜 32にローカルにェピタキシャル成長させることがで きる。これは微結晶間で面内配向が異なるために、ナノ粒子は複数の微結晶に跨が つて育つのが困難になるので、下地微結晶上に一対一で育ち、微小反応場内で平 衡構造をとるからである。一方、下地微結晶は面外配向しているため、ナノ粒子も面 外に配向する。
[0127] (3)次に、その上に、図 13 (c)に示すように、ナノ粒子の成分と異なる材料である打 ち粉 (例えば、非結晶材料や金属'合金材料) 34を堆積する。ここで、打ち粉 34とし ては C、 N、 0、 Al、 Siの何れか、もしくは複数を含む非晶質材料や、 Ti、 Fe、 Co、 C r、 Pt等を含む金属 ·合金材料が適している。これらの材料は、铸型多結晶膜の結晶 粒界に選択的に移動する利点がある。
[0128] (4)次に、その上に、図 13 (d)に示すように、ナノ粒子材料 33、例えば、 FePt磁性 体材料を高温でスパッタ法により堆積させる。それを順次繰り返す。なお、ナノ粒子 材料 33と打ち粉 34を同時に堆積させても良い。
[0129] このように、相分離を起こすナノ粒子の成分と異なる材料である打ち粉を堆積させる ことにより、ナノ粒子間を打ち粉で埋めることができ、ナノ粒子同士が面内方向に融 合することなぐ基板垂直方向に成長させることができる。
[0130] このように、下地微結晶膜を非ェピタキシャル成長により作製するので、任意基板が 利用可能である。さらに、特定の結晶層の上に下地微結晶層を作製したい場合にも 、薄い非晶質材料を堆積し、その上に、下地微結晶層を作製することで、特定の結 晶層の結晶構造に影響されず、任意に下地微結晶層を作製することができる。下地 微結晶層は、面内に非配向なため、その上の目的のナノ粒子は複数の下地微結晶 に跨がって成長するのが困難で、下地微結晶に対して一対一でローカルェピタキシ ャル成長する。即ち、下地微結晶の結晶子数密度により目的のナノ粒子の数密度を 、下地微結晶の面外配向により目的のナノ粒子の面外配向を制御できる。その上で 目的のナノ粒子の堆積量を調整することで、個々のナノ粒子のサイズ、ならびに相互 間隔を制御できる。さらに、ナノ粒子間を打ち粉で埋めることにより、ナノ粒子同士の 融合を防ぎ、ナノ粒子材料と打ち粉の堆積を続けることで、ナノ粒子を基板垂直方向 に成長させ続けることができる。このように、ナノ粒子の高い面密度を実現しつつ、個 々のナノ粒子の体積を増やすという、一見相反する要求を満足することができる。
[0131] また、上記薄膜構造の作製は、スパッタ法等の既存の多くの堆積法が利用でき、大 面積での均一性や低コスト化には問題がな!、。
[0132] 上記実施例では、 FePtナノ粒子 ZTiN下地微結晶膜 Z基板の構造を有するナノ粒 子デバイスにつ 、て述べたが、以下のように構成することもできる。
[0133] 図 14は本発明の第 5実施例を示すナノ粒子デバイスの構造を示す模式図であり、こ の図に示すように、上記した FePtナノ粒子と TiN下地微結晶膜との間に別の膜 (微 結晶膜)が挟まった構造であってもよい。例えば、 FePtナノ粒子 44ZFe微結晶膜 4 3ZTiN下地微結晶膜 42ZSiO膜付き Si基板 41とすることができる。
2
[0134] 図 15は本発明の第 6実施例を示す積層構造 FePナノ粒子を有するナノ粒子デバィ スの構造を示す模式図であり、この図に示すように、積層構造としては、 2層目からの 微結晶は、最初の下地微結晶膜 (TiN)とは必ずしも同じ材料でなくともよい。例えば 、Fe微結晶膜 54ZFePtナノ粒子 53ZFe微結晶膜 54ZFePtナノ粒子 53ZTiN下 地微結晶膜 52ZSiO膜付き Si基板 51とすることができる。
2
[0135] 図 16は本発明の第 7実施例を示す縦長の FePナノ粒子を有するナノ粒子デバイス の構造を示す模式図であり、この図に示すように、ナノ粒子にローカルエピタキシー する微結晶としては、最初の下地微結晶膜 (TiN)とは必ずしも同じ材料でなくともよ い。例えば、 Fe微結晶 64ZFePtナノ粒子 63ZTiN下地微結晶膜 62ZSiO膜付
2 き Si基板 61とすることができる。
[0136] なお、上記実施例(図 14および図 15、および図 16とその説明)では、 Fe微結晶とし た力 これに限定するものではなぐ Fe以外の微結晶であってもよい。 [0137] また、本発明は上記実施例に限定されるものではなぐ本発明は下記の点にも及ぶ ものである。
[0138] 〔A〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される面 内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微結 晶に個々にローカルエピタキシーしたナノ粒子とを具備する。
[0139] 〔B〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される面 内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微結 晶に個々にローカルエピタキシーしたナノ粒子と、前記基板の垂直方向に前記下地 微結晶膜とナノ粒子を繰り返し形成した積層ナノ粒子を具備する。
[0140] 〔C〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される面 内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微結 晶に個々にローカルエピタキシーした縦長のナノ粒子と、前記ナノ粒子を取り囲むよ うに、ナノ粒子に個々にローカルエピタキシーした微結晶材料を具備する。
[0141] 〔D〕ナノ粒子デバイスにおいて、単層ないし多層基板と、この基板上に堆積される面 内非配向かつ面外配向した下地微結晶膜と、前記下地微結晶膜の個々の下地微結 晶に個々にローカルエピタキシーした縦長のナノ粒子と、前記ナノ粒子間を埋める、 前記ナノ粒子と成分の異なる材料を打ち粉として具備する。
[0142] 〔E〕前記多層基板は磁性制御層又は構造制御層の何れか又は双方力 なり、その 構造制御層は下地微結晶とェピタキシャルでな 、層である。
[0143] 前記下地微結晶とェピタキシャルでない層は非晶質または金属 '合金であり、その金 属'合金は Ti、 Fe, Co, Cr、 Ptなどであり、その非晶質は、 C、 N、 0、 Al、 Siの何れ 力 もしくは複数を含む物質である。
[0144] 前記下地微結晶膜とェピタキシャルでな 、層は格子ミスマッチの大き 、結晶である。
また、前記下地微結晶とェピタキシャルでな!、層は表面の構造が乱れた結晶である
[0145] 〔F〕前記下地微結晶膜は高融点材料であり、その高融点材料は NaCl型結晶である 。その NaCl型結晶は窒化物であり、その窒化物は TiN、 VN、 ZrN、 NbN、 HfN、 T aN、 ThNである。 [0146] また、前記 NaCl型結晶は酸化物であり、その酸化物は MgO、 CaO、 SrO、 BaOで める。
[0147] さらに、前記高融点材料は Ti、 V、 Zr、 Nb、 Mo、 Hf、 Ta、 Wからなる。
[0148] 〔G〕前記ナノ粒子は磁気記録材料であり、その磁気記録材料は LI 構造を有する合
0
金である。また、その L1 構造を有する合金は fct遷移金属 Z貴金属合金であり、そ
0
の fct遷移金属 Z貴金属合金は FePt、 CoPtである。
[0149] [H]ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキシ ャル成長により面内非配向,面外配向した下地微結晶膜を形成し、この下地微結晶 膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下地 微結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャル 成長させ、前記微小空間毎にナノ粒子を生成することを特徴とする。
[0150] 〔I〕ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキシャ ル成長により面内非配向 '面外配向した下地微結晶膜を形成し、この下地微結晶膜 の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下地微 結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャル成 長させ、前記微小空間毎にナノ粒子を生成し、その上に基板垂直方向に前記ナノ粒 子材料 Z前記下地材料を含むナノ粒子材料と格子定数の適合する材料を交互に堆 積しローカルにェピタキシャル成長させ、ナノ粒子を積層する。
[0151] Ci〕ナノ粒子デバイスの製造方法において、単層ないし多層基板上に非ェピタキシャ ル成長により面内非配向 '面外配向した下地微結晶膜を形成し、この下地微結晶膜 の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下地微 結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャル成 長させ、前記微小空間毎にナノ粒子を生成し、前記下地材料を含むナノ粒子と成分 が異なり格子定数が適合する材料を堆積し、前記ナノ粒子の個々にローカルェピタ キシ一するよう偏析させ、前記ナノ粒子材料および前記下地材料を含むナノ粒子と 成分が異なり格子定数が適合する材料を同時もしくは交互に堆積することで、ナノ粒 子を基板垂直方向に成長させる。
[0152] 〔K〕ナノ粒子デバイスの製造方法にぉ 、て、単層な 、し多層基板上に非ェピタキシ ャル成長により面内非配向,面外配向した下地微結晶膜を形成し、この下地微結晶 膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結晶膜の個々の下地 微結晶の表面を微小空間として用い、前記下地微結晶にローカルにェピタキシャル 成長させ、前記微小空間毎にナノ粒子を生成し、非結晶材料を打ち粉として堆積し、 前記ナノ粒子の間に偏析させ、前記ナノ粒子材料および前記ナノ粒子と成分の異な る材料を同時もしくは交互に堆積することで、ナノ粒子を基板垂直方向に成長させる
[0153] 〔L〕前記下地微結晶膜は粒成長を抑え、表面エネルギー最小、化学エッチング速度 最小、プラズマ照射損傷最小、応力最小、成長速度最大の何れかで面外配向させる
[0154] 〔M〕前記ナノ粒子は FePt、または CoPtを主成分とした磁性体ナノ粒子である。
[0155] 〔N〕上記ナノ粒子デバイスの製造方法において、 200— 1600°Cの基板加熱の下で スパッタ成膜することで、ローカルにェピタキシャル成長を行わせる。
[0156] [O]前記ナノ粒子デバイスの製造方法にぉ 、て、下地微結晶膜を作製した後、大気 暴露なしに FePtないし CoPtを堆積することにより、ローカルにェピタキシャル成長を 行わせる。
[0157] 〔P〕前記ナノ粒子デバイスの製造方法において、基板上に下地微結晶膜を作製させ た後、 FePt又は CoPtを堆積させ、その後 200— 1600°Cにてァニールを行ない、口 一カルにェピタキシャル成長を行わせる。
[0158] 〔Q〕前記ナノ粒子デバイスの製造方法において、下地微結晶膜を作製させた後、大 気暴露なしに FePtな!、し CoPtを堆積させた後、ァニールすることでローカルにェピ タキシャル成長を行わせる。
[0159] 〔R〕前記ナノ粒子の結晶構造が fct構造をなし、前記ナノ粒子の結晶の c軸の 9割以 上が下地微結晶膜と垂直方向に配向する。
[0160] なお、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲か ら排除するものではない。
産業上の利用可能性
[0161] 本発明のナノ粒子デバイス及びナノ粒子デバイスの製造方法は、プロセス自体がド ライプロセスであり、半導体の量子ドットデバイスなどのナノ粒子を有する微小電子デ バイスなどへの展開ができ、特に、高密度配列が不可欠なハードディスク垂直磁気 記録媒体に好適である。

Claims

請求の範囲
[1] (a)単層ないし多層基板と、
(b)該基板上に堆積される面内非配向かつ面外配向した下地微結晶膜と、
(c)前記下地微結晶膜の個々の下地微結晶に個々にローカルエピタキシーしたナノ 粒子とを具備することを特徴とするナノ粒子デバイス。
[2] (a)単層ないし多層基板と、
(b)該基板上に堆積される面内非配向かつ面外配向した下地微結晶膜と、
(c)該下地微結晶膜の個々の下地微結晶に個々にローカルエピタキシーした微結 晶からなる微結晶膜と、
(d)該微結晶膜の個々の微結晶に個々にローカルエピタキシーしたナノ粒子とを具 備することを特徴とするナノ粒子デバイス。
[3] (a)単層ないし多層基板と、
(b)該基板上に堆積される面内非配向かつ面外配向した下地微結晶膜と、
(c)前記下地微結晶膜の個々の下地微結晶に個々にローカルエピタキシーしたナノ 粒子と、
(d)前記ナノ粒子に個々にローカルエピタキシーした微結晶膜と、
(e)前記基板の垂直方向に前記ナノ粒子と前記微結晶膜が繰り返しローカルェピタ キシ一した積層ナノ粒子を具備することを特徴とするナノ粒子デバイス。
[4] (a)単層ないし多層基板と、
(b)該基板上に堆積される面内非配向かつ面外配向した下地微結晶膜と、
(c)前記下地微結晶膜の個々の下地微結晶に個々にローカルエピタキシーした縦 長のナノ粒子と、
(d)前記ナノ粒子を取り囲むように、ナノ粒子に個々にローカルエピタキシーした微 結晶材料を具備することを特徴とするナノ粒子デバイス。
[5] (a)単層ないし多層基板と、
(b)該基板上に堆積される面内非配向かつ面外配向した下地微結晶膜と、
(c)前記下地微結晶膜の個々の下地微結晶に個々にローカルエピタキシーした縦 長のナノ粒子と、 (d)前記ナノ粒子間を埋める、前記ナノ粒子と成分の異なる材料を打ち粉として具備 することを特徴とするナノ粒子デバイス。
[6] 請求項 3、 4又は 5記載のナノ粒子デバイスにお 、て、前記下地微結晶膜と前記ナ ノ粒子の間に挟まれた下地微結晶膜の個々の下地微結晶に個々にローカルェピタ キシ一した微結晶力ゝらなる微結晶膜を具備することを特徴とするナノ粒子デバイス。
[7] 請求項 1から 6の何れか一項記載のナノ粒子デバイスにおいて、前記多層基板は 磁性制御層又は構造制御層の何れか又は双方力 なるナノ粒子デバイス。
[8] 請求項 7記載のナノ粒子デバイスにお 、て、前記構造制御層は下地微結晶とェピ タキシャルでな!/、層であるナノ粒子デバイス。
[9] 請求項 8記載のナノ粒子デバイスにおいて、前記下地微結晶とェピタキシャルでな Vヽ層は非晶質であるナノ粒子デバイス。
[10] 請求項 9記載のナノ粒子デバイスにお 、て、前記非晶質は、 C、 N、 0、 Al、 Siの何 れか、もしくは複数を含む物質であるナノ粒子デバイス。
[11] 請求項 8記載のナノ粒子デバイスにお 、て、前記下地微結晶とェピタキシャルでな
V、層は格子ミスマッチの大き 、結晶であるナノ粒子デバイス。
[12] 請求項 8記載のナノ粒子デバイスにおいて、前記下地微結晶とェピタキシャルでな
V、層は表面の構造が乱れた結晶であるナノ粒子デバイス。
[13] 請求項 1から 6の何れか一項記載のナノ粒子デバイスにおいて、前記下地微結晶 膜は高融点材料であるナノ粒子デバイス。
[14] 請求項 13記載のナノ粒子デバイスにおいて、前記高融点材料が NaCl型結晶であ るナノ粒子デバイス。
[15] 請求項 14記載のナノ粒子デバイスにおいて、前記 NaCl型結晶は窒化物であるナ ノ粒子デバイス。
[16] 請求項 15記載のナノ粒子デバイスにおいて、前記窒化物は TiN、 VN、 ZrN、 Nb
N、 HfN、 TaN、 ThNであるナノ粒子デバイス。
[17] 請求項 13記載のナノ粒子デバイスにおいて、前記 NaCl型結晶は酸ィ匕物であるナ ノ粒子デバイス。
[18] 請求項 17記載のナノ粒子デバイスにおいて、前記酸化物は MgO、 CaO、 SrO、 B aOであるナノ粒子デバイス。
[19] 請求項 13記載のナノ粒子デバイスにお 、て、前記高融点材料が Ti、 V、 Zr、 Nb、
Mo、 Hf、 Ta、 Wからなるナノ粒子デバイス。
[20] 請求項 1から 6の何れか一項記載のナノ粒子デバイスにおいて、前記ナノ粒子は磁 気記録材料であるナノ粒子デバイス。
[21] 請求項 20記載のナノ粒子デバイスにおいて、前記磁気記録材料は L1 構造を有
0
する合金であるナノ粒子デバイス。
[22] 請求項 21記載のナノ粒子デバイスにおいて、前記 L1 構造を有する合金は fct遷
0
移金属 Z貴金属合金であるナノ粒子デバイス。
[23] 請求項 22記載のナノ粒子デバイスにおいて、前記 fct遷移金属 Z貴金属合金は F ePt、 CoPtであるナノ粒子デバイス。
[24] 請求項 3又は 4記載のナノ粒子に個々にローカルエピタキシーした微結晶力 Ti、
Fe、 Co、 Cr、 Ag、 Ptなどを含む金属'合金材料であることを特徴とするナノ粒子デ バイス。
[25] 請求項 5記載のナノ粒子デバイスにおいて、前記ナノ粒子の成分と異なる材料が C 、 N、 0、 Al、 Siの何れか、もしくは複数を含む非結晶材料であることを特徴とするナ ノ粒子デバイス。
[26] 請求項 5記載のナノ粒子デバイスにおいて、前記ナノ粒子の成分と異なる材料が Ti 、 Fe、 Co、 Cr、 Ag、 Ptなどを含む金属'合金材料であることを特徴とするナノ粒子デ バイス。
[27] (a)単層ないし多層基板上に非ェピタキシャル成長により面内非配向 ·面外配向した 下地微結晶膜を形成し、
(b)該下地微結晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結 晶膜の個々の下地微結晶の表面を微小空間として用い、前記下地微結晶にロー力 ルにェピタキシャル成長させ、前記微小空間毎にナノ粒子を生成することを特徴とす るナノ粒子デバイスの製造方法。
[28] (a)単層ないし多層基板上に非ェピタキシャル成長により面内非配向 ·面外配向した 下地微結晶膜を形成し、 (b)該下地微結晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結 晶膜の個々の下地微結晶の表面を微小空間として用い、前記下地微結晶にロー力 ルにェピタキシャル成長させ、前記微小空間毎にナノ粒子を生成し、
(c)その上に基板垂直方向に前記ナノ粒子材料 Z前記下地材料を含むナノ粒子材 料と格子定数の適合する材料を交互に堆積しローカルにェピタキシャル成長させ、 ナノ粒子を積層することを特徴とするナノ粒子デバイスの製造方法。
[29] (a)単層ないし多層基板上に非ェピタキシャル成長により面内非配向 ·面外配向した 下地微結晶膜を形成し、
(b)該下地微結晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結 晶膜の個々の下地微結晶の表面を微小空間として用い、前記下地微結晶にロー力 ルにェピタキシャル成長させ、前記微小空間毎にナノ粒子を生成し、
(c)前記下地材料を含むナノ粒子と成分が異なり格子定数が適合する材料を堆積し 、前記ナノ粒子の個々にローカルエピタキシーするよう偏析させ、
(d)前記ナノ粒子材料および前記下地材料を含むナノ粒子と成分が異なり格子定数 が適合する材料を同時もしくは交互に堆積することで、ナノ粒子を基板垂直方向に 成長させることを特徴とするナノ粒子デバイスの製造方法。
[30] (a)単層ないし多層基板上に非ェピタキシャル成長により面内非配向 ·面外配向した 下地微結晶膜を形成し、
(b)該下地微結晶膜の材料とナノ粒子材料の格子定数を適合させ、前記下地微結 晶膜の個々の下地微結晶の表面を微小空間として用い、前記下地微結晶にロー力 ルにェピタキシャル成長させ、前記微小空間毎にナノ粒子を生成し、
(c)前記ナノ粒子と成分の異なる材料を打ち粉として堆積し、前記ナノ粒子の間に偏 析させ、
(d)前記ナノ粒子材料および前記ナノ粒子と成分の異なる材料を同時もしくは交互 に堆積することで、ナノ粒子を基板垂直方向に成長させることを特徴とするナノ粒子 デバイスの製造方法。
[31] 請求項 27— 30の何れか一項記載のナノ粒子デバイスの製造方法において、前記
(a)工程と (b)工程との間に下地微結晶膜の個々の下地微結晶に個々にローカルェ ピタキシ一した微結晶からなる微結晶膜を形成する工程を施すことを特徴とするナノ 粒子デバイスの製造方法。
[32] 請求項 27— 31の何れか一項記載のナノ粒子デバイスの製造方法にぉ 、て、前記 下地微結晶膜は粒成長を抑え、
(a)表面エネルギー最小
(b)化学エッチング速度最小
(c)プラズマ照射損傷最小
(d)応力最小
(e)成長速度最大
の何れかで面外配向させるナノ粒子デバイスの製造方法。
[33] 請求項 27— 32の何れか一項記載のナノ粒子デバイスの製造方法にぉ 、て、前記 ナノ粒子が FePtを主成分とした磁性体ナノ粒子であるナノ粒子デバイスの製造方法
[34] 請求項 27— 32の何れか一項記載のナノ粒子デバイスの製造方法にぉ 、て、前記 ナノ粒子が CoPtを主成分とした磁性体ナノ粒子であるナノ粒子デバイスの製造方法
[35] 請求項 33又は 34記載のナノ粒子デバイスの製造方法において、 200— 1600°C の基板加熱の下でローカルにェピタキシャル成長を行わせるナノ粒子デバイスの製 造方法。
[36] 請求項 35記載のナノ粒子デバイスの製造方法にぉ 、て、下地微結晶膜を作製さ せた後、大気暴露なしに FePtないし CoPtを堆積することにより、ローカルにェピタキ シャル成長を行わせるナノ粒子デバイスの製造方法。
[37] 請求項 33又は 34記載のナノ粒子デバイスの製造方法にぉ 、て、下地微結晶膜を 基板上に堆積させ、その後 FePt又は CoPtを堆積させ、その後 200— 1600°Cにて ァニールを行 、、ローカルにェピタキシャル成長を行わせるナノ粒子デバイスの製造 方法。
[38] 請求項 37記載のナノ粒子デバイスの製造方法にぉ 、て、下地微結晶膜を作製さ せた後、大気暴露なしに FePtないし CoPtを堆積させ、その後ァニールすることで口 一カルにェピタキシャル成長を行わせるナノ粒子デバイスの製造方法。
[39] 請求項 27— 38の何れか一項に記載のナノ粒子デバイスの製造方法において、前 記ナノ粒子の結晶構造が fct構造をなし、前記ナノ粒子の結晶の c軸の 9割以上が下 地微結晶膜と垂直方向に配向するナノ粒子デバイスの製造方法。
PCT/JP2004/012261 2003-08-29 2004-08-26 ナノ粒子デバイス及びナノ粒子デバイスの製造方法 WO2005022565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513452A JPWO2005022565A1 (ja) 2003-08-29 2004-08-26 ナノ粒子デバイス及びナノ粒子デバイスの製造方法
US10/569,446 US20070071964A1 (en) 2003-08-29 2004-08-26 Nano-particle device and method for manufacturing nano-particle device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003306045 2003-08-29
JP2003-306045 2003-08-29
JP2004105046 2004-03-31
JP2004-105046 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005022565A1 true WO2005022565A1 (ja) 2005-03-10

Family

ID=34277652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012261 WO2005022565A1 (ja) 2003-08-29 2004-08-26 ナノ粒子デバイス及びナノ粒子デバイスの製造方法

Country Status (3)

Country Link
US (1) US20070071964A1 (ja)
JP (1) JPWO2005022565A1 (ja)
WO (1) WO2005022565A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331582A (ja) * 2005-05-27 2006-12-07 Toshiba Corp 垂直磁気記録媒体及び垂直磁気記録再生装置
JP2007026558A (ja) * 2005-07-15 2007-02-01 Univ Of Tokyo 磁気記録媒体及びその製造方法
JP2009146558A (ja) * 2007-12-14 2009-07-02 Samsung Electronics Co Ltd 磁気薄膜構造体、磁気記録媒体及びその製造方法
JP2013511397A (ja) * 2009-11-30 2013-04-04 インダストリー−ユニバーシティ コーポレーション ファウンデーション ソガン ユニバーシティ ナノ粒子を柱形態で組織化させるための配列装置及びその配列方法
WO2013172260A1 (ja) * 2012-05-14 2013-11-21 昭和電工株式会社 磁気記録媒体及び磁気記録再生装置
US8668833B2 (en) 2008-05-21 2014-03-11 Globalfoundries Singapore Pte. Ltd. Method of forming a nanostructure
JP2020080375A (ja) * 2018-11-13 2020-05-28 東京エレクトロン株式会社 磁気抵抗素子の製造方法及び製造装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685549B2 (en) * 2010-08-04 2014-04-01 Ut-Battelle, Llc Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same
JP6317896B2 (ja) * 2013-07-26 2018-04-25 昭和電工株式会社 磁気記録媒体および磁気記憶装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302242A (ja) * 1996-10-18 1998-11-13 Komag Inc 組織化された核生成層を有する磁性合金とその製造方法
JP2001189010A (ja) * 1999-12-28 2001-07-10 Toshiba Corp 磁気記録媒体
JP2001319314A (ja) * 2000-02-29 2001-11-16 Hitachi Ltd 磁気記録媒体とその製法およびそれを用いた磁気記録装置
JP2002133646A (ja) * 2000-10-25 2002-05-10 Fujitsu Ltd 多結晶構造膜およびその製造方法
JP2002170227A (ja) * 2000-12-04 2002-06-14 Fujitsu Ltd 高密度磁気記録媒体
JP2002208129A (ja) * 2000-11-09 2002-07-26 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法並びに磁気記録装置
JP2003036514A (ja) * 2001-07-19 2003-02-07 Toyota Gakuen 垂直磁化膜の作成及び垂直磁化膜、磁気記録媒体並びに磁気デイスク

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302242A (ja) * 1996-10-18 1998-11-13 Komag Inc 組織化された核生成層を有する磁性合金とその製造方法
JP2001189010A (ja) * 1999-12-28 2001-07-10 Toshiba Corp 磁気記録媒体
JP2001319314A (ja) * 2000-02-29 2001-11-16 Hitachi Ltd 磁気記録媒体とその製法およびそれを用いた磁気記録装置
JP2002133646A (ja) * 2000-10-25 2002-05-10 Fujitsu Ltd 多結晶構造膜およびその製造方法
JP2002208129A (ja) * 2000-11-09 2002-07-26 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法並びに磁気記録装置
JP2002170227A (ja) * 2000-12-04 2002-06-14 Fujitsu Ltd 高密度磁気記録媒体
JP2003036514A (ja) * 2001-07-19 2003-02-07 Toyota Gakuen 垂直磁化膜の作成及び垂直磁化膜、磁気記録媒体並びに磁気デイスク

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331582A (ja) * 2005-05-27 2006-12-07 Toshiba Corp 垂直磁気記録媒体及び垂直磁気記録再生装置
JP4580817B2 (ja) * 2005-05-27 2010-11-17 株式会社東芝 垂直磁気記録媒体及び垂直磁気記録再生装置
JP2007026558A (ja) * 2005-07-15 2007-02-01 Univ Of Tokyo 磁気記録媒体及びその製造方法
JP2009146558A (ja) * 2007-12-14 2009-07-02 Samsung Electronics Co Ltd 磁気薄膜構造体、磁気記録媒体及びその製造方法
KR101496171B1 (ko) * 2007-12-14 2015-02-27 시게이트 테크놀로지 엘엘씨 자기박막구조체, 자기기록매체 및 그 제조방법
US8668833B2 (en) 2008-05-21 2014-03-11 Globalfoundries Singapore Pte. Ltd. Method of forming a nanostructure
JP2013511397A (ja) * 2009-11-30 2013-04-04 インダストリー−ユニバーシティ コーポレーション ファウンデーション ソガン ユニバーシティ ナノ粒子を柱形態で組織化させるための配列装置及びその配列方法
WO2013172260A1 (ja) * 2012-05-14 2013-11-21 昭和電工株式会社 磁気記録媒体及び磁気記録再生装置
JP2013257930A (ja) * 2012-05-14 2013-12-26 Showa Denko Kk 磁気記録媒体及び磁気記録再生装置
US9361924B2 (en) 2012-05-14 2016-06-07 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing apparatus
JP2020080375A (ja) * 2018-11-13 2020-05-28 東京エレクトロン株式会社 磁気抵抗素子の製造方法及び製造装置
JP7208767B2 (ja) 2018-11-13 2023-01-19 東京エレクトロン株式会社 磁気抵抗素子の製造方法及び製造装置

Also Published As

Publication number Publication date
US20070071964A1 (en) 2007-03-29
JPWO2005022565A1 (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
JP3981732B2 (ja) 垂直磁気異方性を有するFePt磁性薄膜とその製造方法
JPH07101495B2 (ja) 磁気記録媒体
US9899050B2 (en) Multiple layer FePt structure
JP6491882B2 (ja) 磁気スタック
KR100216086B1 (ko) 자성체박막과 그 제조방법 및 자기헤드
US20040127130A1 (en) Magnetic material-nanomaterial heterostructural nanorod
WO2005022565A1 (ja) ナノ粒子デバイス及びナノ粒子デバイスの製造方法
JPH09106514A (ja) 強磁性トンネル素子及びその製造方法
JP2001256631A (ja) 磁気記録媒体およびその製造方法
EP1372140B1 (en) A perpendicular magnetic memory medium, a manufacturing method thereof, and a magnetic memory storage
JP2009536688A (ja) 基板上に多数のナノシリンダーを有する部材の製造方法および該部材の使用
JP3670119B2 (ja) 機能性粒子分散型薄膜とグラニュラー磁性薄膜およびそれらの製造方法
JP4673735B2 (ja) 磁気記録媒体及びその製造方法
JP4621899B2 (ja) 磁気媒体
US5728421A (en) Article comprising spinel-structure material on a substrate, and method of making the article
JP3559332B2 (ja) 磁性多層膜およびその製造方法ならびに光磁気記録媒体
Foley et al. Control of Magnetic Coercivity in epitaxial Ni/VO2/YSZ/Si (001) heterostructures by manipulation of Ni thin film growth modes
JP2006294121A (ja) 磁気記録媒体およびその製造方法
WO2023038158A1 (ja) 規則化合金強磁性ナノワイヤ構造体及びその製造方法
JP2003099920A (ja) FePt磁性薄膜の製造方法
JPH07263773A (ja) 磁気抵抗効果素子及びその製造方法
Salahpour et al. The structure of L10-FePt nanoparticles in the presence of Ag
JP2003289005A (ja) 高配向磁性薄膜の製造方法
JPH11329882A (ja) 交換結合膜の製造方法および磁気抵抗効果素子
JP3172652B2 (ja) 磁性体薄膜とその製造方法及び磁気ヘッド

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513452

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007071964

Country of ref document: US

Ref document number: 10569446

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10569446

Country of ref document: US