WO2023038158A1 - 規則化合金強磁性ナノワイヤ構造体及びその製造方法 - Google Patents

規則化合金強磁性ナノワイヤ構造体及びその製造方法 Download PDF

Info

Publication number
WO2023038158A1
WO2023038158A1 PCT/JP2022/034863 JP2022034863W WO2023038158A1 WO 2023038158 A1 WO2023038158 A1 WO 2023038158A1 JP 2022034863 W JP2022034863 W JP 2022034863W WO 2023038158 A1 WO2023038158 A1 WO 2023038158A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowires
ordered alloy
ordered
group element
substrate
Prior art date
Application number
PCT/JP2022/034863
Other languages
English (en)
French (fr)
Inventor
豊 真島
淳一 山浦
史朗 河智
秀雄 細野
諒 遠山
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to JP2023547167A priority Critical patent/JPWO2023038158A1/ja
Priority to CN202280060454.0A priority patent/CN117916191A/zh
Publication of WO2023038158A1 publication Critical patent/WO2023038158A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to an ordered alloy ferromagnetic nanowire structure and a manufacturing method thereof.
  • Ferromagnetic materials with strong perpendicular magnetic crystalline anisotropy (PMA) and large coercive force (Hc) are used in magnetic random access memory (MRAM), ultra-high density hard disk drives (HHD).
  • MRAM magnetic random access memory
  • HHD ultra-high density hard disk drives
  • spintronics devices such as a TMR head (Tunnel Magneto Resistive Head) in a disk drive and a ferromagnetic single-electron transistor (FM-SET: Ferromagnetic Single-electron Transistor).
  • FM-SET Ferromagnetic Single-electron Transistor
  • an alloy of an iron group element and a platinum group element comprising an A1 disordered phase undergoes a phase transition and becomes an ordered alloy when subjected to heat treatment under predetermined conditions.
  • an L10 ordered CoPt alloy can be obtained.
  • an L1 2 -ordered CoPt alloy can be obtained.
  • Patent Document 1 describes "a magnetic recording medium comprising a substrate made of a non-magnetic material and a magnetic material layer formed on the substrate, wherein the magnetic material layer is directly on the substrate or an underlayer is formed on the substrate.
  • Ordered crystalline magnetic nanoparticles having an average particle size of 3 to 20 nm formed through the above-described method, and an inorganic material that coats the surfaces of the ordered crystalline magnetic nanoparticles and maintains the dispersed state of the ordered crystalline magnetic nanoparticles.
  • a magnetic recording medium (Claim 1) wherein the ordered crystalline magnetic nanoparticles are L10 ordered CoPt magnetic nanoparticles (Claim 3). It is
  • Non-Patent Document 1 and Non-Patent Document 2 were written by the present inventors.
  • a Ti layer with a thickness of 3.0 nm is formed as a base layer for improving adhesion on a SiO 2 /Si substrate by an electron beam evaporation method, followed by a Ti layer with a thickness of 6.6 nm.
  • An equiatomic bilayer film (Co 50 Pt 50 ) consisting of a Pt layer and a Co layer with a thickness of 4.8 nm was formed, and then, using an RTA apparatus, the heating rate was 30° C./s in vacuum, and the heat treatment temperature was 30° C./s.
  • Non-Patent Document 2 a 1.2 nm-thick Co layer and a 1.6 nm-thick Pt layer are repeatedly laminated four times on a SiO 2 /Si substrate by an electron beam evaporation method to form an equiatomic (Co/Pt)
  • This shows an experiment in which a 48 -layer thin film is formed, followed by heat treatment at 900° C. for 1 hour+30 seconds in vacuum using an RTA apparatus. After the heat treatment, spherical L10- ordered CoPt was observed, indicating that an in-plane coercive force of Hc 2.7 kOe was obtained.
  • HPT high pressure torsion
  • an object of the present invention is to provide an ordered alloy ferromagnetic nanowire structure and a suitable manufacturing method thereof.
  • the present inventors have made intensive studies and obtained the following findings.
  • nanowires composed of the iron group element and the platinum group element can be produced.
  • the line width of the nanowire is limited to a predetermined upper limit value or less and the nanowire is subjected to heat treatment under predetermined conditions, the iron group element and the platinum group element of the nanowire become an ordered alloy, and the ordered alloy ferromagnetic nanowire is formed. I found what I could get.
  • the line width of the nanowire is set to a predetermined lower limit value or more, and the ratio of the thickness to the line width (hereinafter referred to as "aspect ratio") in a cross section perpendicular to the extending direction of the nanowire is set to a predetermined value or more.
  • the iron group element and the platinum group element become an ordered alloy without breaking the nanowires, and an ordered alloy ferromagnetic nanowire with a sufficient wire length can be obtained.
  • “nanowire” means a nanowire composed of an iron group element and a platinum group element before heat treatment
  • “ordered alloy ferromagnetic nanowire” means the nanowire formed by heat treatment.
  • the nanowire is formed by alternately depositing the iron group element and the platinum group element by an electron beam evaporation method, so that the nanowire consists of the first layer made of the iron group element and the platinum group element.
  • the method for producing an ordered alloy ferromagnetic nanowire structure according to any one of the above [1] to [5], which is composed of alternate laminates of second layers.
  • the thickness of the first layer is 2.0 nm or more and 15 nm or less
  • the thickness of the second layer is 3.0 nm or more and 15 nm or less
  • the total number of layers of the first layer and the second layer is 2 or more. 24 or less, the method for producing an ordered alloy ferromagnetic nanowire structure according to the above [6].
  • the nanowire is made of a composite of the iron group element and the platinum group element by simultaneously depositing the iron group element and the platinum group element by electron beam evaporation or sputtering to form the nanowire.
  • the method for producing an ordered alloy ferromagnetic nanowire structure according to any one of the above [1] to [5].
  • a substrate An ordered alloy ferromagnetic nanowire formed on the substrate, having a line width of 100 nm or less and a line length of at least twice the line width, and made of an ordered alloy of an iron group element and a platinum group element. and, ordered alloy ferromagnetic nanowire structures with
  • the substrate is any one of a magnesium oxide substrate, an alumina substrate, a strontium titanate substrate, and a silicon substrate having a silicon oxide film formed thereon.
  • the contact width of the ordered alloy ferromagnetic nanowires with the substrate is smaller than the maximum width of the ordered alloy ferromagnetic nanowires.
  • the ordered alloy ferromagnetic nanowire structure according to any one of [14] to [19].
  • an ordered alloy ferromagnetic nanowire structure can be suitably manufactured.
  • FIG. 1 illustrates a method for fabricating an ordered CoPt ferromagnetic nanowire structure 100 according to one embodiment of the present invention.
  • FIG. 1 are diagrams showing cross-sectional shapes perpendicular to the extending direction of the CoPt nanowires 16 in Experimental Examples 1 to 3, respectively.
  • 1 shows the VSM measurement result (left side) and the SEM image (right side) of the upper surface of the sample in an example in which the heat treatment temperature is 650° C.
  • FIG. 1 shows the VSM measurement result (left side) and the SEM image (right side) of the upper surface of the sample in an example in which the heat treatment temperature is 650° C. and the heat treatment time is 300 minutes in Experimental Example 1.
  • FIG. 10 shows an SEM image (upper side) and a GI-XRD pattern (lower side) of the upper surface of a sample in Experimental Example 2 where the heat treatment temperature is 650° C. and the heat treatment time is 30 minutes, 60 minutes, and 90 minutes.
  • FIG. 10 is an SEM image of the top surface of a sample in Experimental Example 3, in which the heat treatment temperature is 650° C., and the heat treatment time is 30 minutes, 60 minutes, and 90 minutes.
  • FIG. 10 shows an SEM image (left side) and a GI-XRD pattern (right side) of the upper surface of a sample in an example in which the heat treatment temperature is 650° C. and the heat treatment time is 90 minutes in Experimental Example 3.
  • FIG. 10 shows the VSM measurement result (left side) and the SEM image (right side) of the upper surface of the sample in Experimental Example 3 in which the heat treatment temperature is 650° C. and the heat treatment time is 90 minutes.
  • Cross-sectional TEM image (left side) perpendicular to the extending direction of the ordered CoPt ferromagnetic nanowires and SEM image (right side) of the upper surface of the sample in Experimental Example 3, where the heat treatment temperature was 650° C. and the heat treatment time was 90 minutes. is.
  • FIG. 11B is a magnified STEM image of the top of the ordered CoPt ferromagnetic nanowires of FIG. 11A.
  • FIG. 11B is an enlarged STEM image of the bottom of the ordered CoPt ferromagnetic nanowires of FIG. 11A.
  • 10 is an STEM image obtained by enlarging and observing a side surface of ordered CoPt ferromagnetic nanowires in an example in which the heat treatment temperature is 650° C. and the heat treatment time is 90 minutes in Experimental Example 3.
  • FIG. 10 is an STEM image obtained by enlarging and observing a side surface of ordered CoPt ferromagnetic nanowires in an example in which the heat treatment temperature is 650° C. and the heat treatment time is 90 minutes in Experimental Example 3.
  • the method for producing an ordered alloy ferromagnetic nanowire structure of the present invention has a line width of 100 nm or less and a line length of at least twice the line width, and is composed of an iron group element and a platinum group element. and subjecting the nanowires to a heat treatment to form ordered alloy ferromagnetic nanowires made of an alloy in which the iron group element and the platinum group element are ordered on the substrate. and obtaining a magnetic nanowire structure.
  • any one of Co, Fe and Ni can be used as the iron group element, and platinum (Pt) and palladium (Pd) can be used as the platinum group element.
  • platinum (Pt) and palladium (Pd) can be used as the platinum group element.
  • Pt or Pd which has a low melting point, can be preferably used.
  • the combination of the iron group element and the platinum group element can be any combination selected from the above elements.
  • Co is adopted as an iron group element and Pt is adopted as a platinum group element to produce an ordered CoPt ferromagnetic nanowire structure
  • Pt is adopted as a platinum group element to produce an ordered CoPt ferromagnetic nanowire structure
  • a method for fabricating an ordered CoPt ferromagnetic nanowire structure 100 comprises: (I) the following steps (I-1) to (I-4), i.e., (I-1) Step of forming electron beam resist film 12 on substrate 10 (FIG. 1(A)); (I-2) A step of irradiating the electron beam resist film 12 with an electron beam and then developing it to form a nanowire-shaped mask pattern 14 exposing the substrate 10 (FIG. 1(B); (I-3) a step of depositing Co and Pt on the exposed portion 10A of the substrate 10 and the mask pattern 14 (FIG.
  • Step (I): Production of CoPt nanowires 16 The step (I) of forming the CoPt nanowires 16 on the substrate 10 will now be described in detail.
  • an electron beam resist film 12 is formed on a substrate 10 .
  • the electron beam resist film 12 can be formed by applying a photoresist composition for electron beam exposure onto the substrate 10 and drying it.
  • the coating method is not particularly limited, but a spin coating method can be preferably used.
  • the thickness of the electron beam resist film 12 may be appropriately set so as to be thicker than the thickness of the CoPt nanowires 16 to be formed.
  • the substrate 10 is not particularly limited as long as it has rigidity capable of supporting the CoPt nanowires 16 and has an insulating surface.
  • the substrate 10 includes a magnesium oxide (MgO) substrate, an alumina (Al 2 O 3 ) substrate, a strontium titanate (SrTiO 3 ) substrate (STO substrate), and a silicon substrate having a silicon oxide film formed on its surface (this specification).
  • MgO magnesium oxide
  • Al 2 O 3 alumina
  • STO substrate strontium titanate
  • SiO 2 /Si substrate silicon substrate having a silicon oxide film formed on its surface
  • the substrate 10 is preferably a SiO2 /Si substrate.
  • elements of various spintronics devices can be fabricated on the same substrate as ICs and ULSIs that integrate circuits using Si semiconductors.
  • the shape and dimensions of the substrate 10 are not particularly limited, but when using a substrate having a rectangular main surface shape, the dimensions are, for example, length: 4 to 300 mm x width: 4 to 300 mm x thickness: 0.3 to 1.2 mm. can be in the range of
  • step (I-2) an electron beam resist film 12 is irradiated with an electron beam and then developed to form a mask pattern 14 exposing the substrate 10 in a nanowire shape.
  • the mask pattern 14 is produced by exposing the electron beam resist film 12 by electron beam lithography and developing it.
  • the shape of the mask pattern 14 may be appropriately set according to the line width and line length of the CoPt nanowires 16 to be formed.
  • the portion of the mask pattern 14 from which the electron beam resist film 12 has been removed exposes the substrate 10 to form an exposed portion 10A.
  • step (I-3) Co and Pt are deposited on the exposed portion 10A of the substrate 10 and the mask pattern 14 to form a CoPt deposition layer.
  • the deposition method can be e-beam evaporation or sputtering, for example.
  • step (I-4) mask pattern 14 is removed. That is, the mask pattern 14 is peeled off and the CoPt deposited layer formed thereon is removed by the lift-off process, leaving the CoPt deposited layer formed on the exposed portion 10A of the substrate 10 and forming CoPt nanowires on the substrate 10 . 16 can be formed.
  • CoPt nanowires 16 are manufactured on the substrate 10 by combining the above steps (I-1) to (I-4), that is, the Co and Pt film formation by the electron beam lithography and the electron beam evaporation method. can be done.
  • the CoPt nanowires 16 have a rectangular cross-sectional shape perpendicular to the extending direction.
  • the mask pattern is formed by electron beam lithography, but the present invention is not limited to this, UV exposure method, nanoimprint method, ArF liquid immersion lithography.
  • the mask pattern can be formed by any method, such as a method, as long as it is a method capable of forming a nanometer-order fine mask pattern.
  • the line width of the CoPt nanowires 16 is set to 100 nm or less.
  • the line width of the CoPt nanowires 16 is set to 100 nm or less, preferably 50 nm or less.
  • the line width of the CoPt nanowires 16 is preferably 10 nm or more, preferably 20 nm or more. This is necessary to obtain ordered CoPt ferromagnetic nanowires 18 with sufficient line length.
  • the aspect ratio of the cross section perpendicular to the extending direction of the CoPt nanowires 16 is preferably 0.7 or more, more preferably 1.5 or more, preferably 3.0 or less, and 2.8. It is more preferably 2.5 or less, more preferably 2.5 or less.
  • the CoPt nanowires 16 have a line width of 10 nm or more and an aspect ratio of 0.7 or more, preferably 1.5 or more. can be ordered without discontinuity to obtain ordered CoPt ferromagnetic nanowires 18 with a sufficient wire length. That is, the aspect ratio is also necessary to obtain the ordered CoPt ferromagnetic nanowires 18 with a sufficient wire length.
  • the aspect ratio is preferably 3.0 or less, more preferably 2.8 or less, and even more preferably 2.5 or less.
  • the line length of the CoPt nanowires 16 is not particularly limited as long as it is at least twice the line width. That is, in the present invention, a structure having a line length that is at least twice as long as the line width is referred to as a "nanowire". However, from the viewpoint of obtaining ordered CoPt ferromagnetic nanowires 18 with a sufficient line length, the line length of CoPt nanowires 16 is preferably 800 nm or more, more preferably 1 ⁇ m or more, and even more preferably 10 ⁇ m or more. On the other hand, due to process constraints, the line length of the CoPt nanowires 16 is preferably 10 mm or less.
  • CoPt is L10 - ordered to obtain ordered CoPt ferromagnetic nanowires 18 that are L10 - ordered CoPt.
  • CoPt is L12 - ordered to obtain ordered CoPt ferromagnetic nanowires 18 that are L12 - ordered CoPt.
  • the step (I-3) is performed by alternately depositing Co and Pt by an electron beam evaporation method to form the first layer.
  • a CoPt nanowire 16 consisting of an alternating stack of Co layers 16A and Pt layers 16B as a second layer can be obtained.
  • the first deposited layer can be either a Co layer or a Pt layer.
  • the thickness of the Co layer, the thickness of the Pt layer, and the total number of Co layers and Pt layers may be appropriately determined so as to achieve a desired atomic composition ratio.
  • CoPt nanowires 16 are ordered without discontinuity, and the degree of freedom of the heat treatment conditions is very large to obtain the ordered CoPt ferromagnetic nanowires 18 with a sufficient wire length.
  • CoPt nanowires made of a CoPt composite can be obtained by performing step (I-3) by simultaneously depositing Co and Pt by electron beam evaporation or sputtering.
  • the supply ratio of Co and Pt may be appropriately determined so as to achieve a desired atomic composition ratio.
  • adhesion layer such as a Ti layer between the substrate 10 and the CoPt nanowires 16 . That is, it is preferable to form the CoPt nanowires 16 on and in contact with the substrate 10 . This prevents Ti from migrating to hinder the ordering of CoPt, so that the ordering of CoPt can be promoted.
  • the CoPt nanowires 16 are heat-treated to order CoPt and obtain ordered CoPt ferromagnetic nanowires 18 .
  • the heat treatment is preferably performed in an atmosphere containing hydrogen and an inert gas, more preferably in an atmosphere containing hydrogen with the balance being an inert gas and an unavoidable impurity gas that can optionally be contained. preferable.
  • the hydrogen content is preferably 1 to 5% by volume, and the rest of the inert gas may be, for example, one or more selected from argon (Ar), helium (He), and neon (Ne). can.
  • the heat treatment temperature is preferably 500°C or higher and 900°C or lower, and the heat treatment time is preferably 30 minutes or longer and 360 minutes or shorter.
  • heat treatment temperature means the ambient temperature during heat treatment.
  • heat treatment time means the holding time at the heat treatment temperature. If the heat treatment temperature is less than 500° C., Co and Pt do not interdiffusion and ordering does not occur. Moreover, when the heat treatment temperature exceeds 900° C., the ordered CoPt becomes disordered again due to thermal agitation. Further, if the heat treatment temperature is less than 30 minutes, interdiffusion necessary for ordering and surface diffusion do not occur sufficiently. Also, when the heat treatment temperature exceeds 360 minutes, the ordered CoPt becomes disordered again due to thermal agitation.
  • the above heat treatment temperature and heat treatment time are ranges necessary for ordering CoPt.
  • the structure of the CoPt nanowires 16 line width, aspect ratio, atomic composition ratio, Co layer , the thickness of the Pt layer, the total number of Co layers and Pt layers, etc.).
  • the means of heat treatment is not particularly limited, and a general heat treatment furnace may be used, or an RTA (Rapid Thermal Anneal) device may be used.
  • RTA Rapid Thermal Anneal
  • the ordered alloy ferromagnetic nanowire structure of the present invention comprises a substrate, a line width of 100 nm or less and a line length twice or more the line width formed on the substrate, and an ordered alloy ferromagnetic nanowire made of an alloy in which platinum group elements are ordered.
  • any one of Co, Fe and Ni can be used as the iron group element, and platinum (Pt) and palladium (Pd) can be used as the platinum group element.
  • platinum (Pt) and palladium (Pd) can be used as the platinum group element.
  • Pt or Pd which has a low melting point, can be preferably used.
  • the combination of the iron group element and the platinum group element can be any combination selected from the above elements.
  • an ordered CoPt ferromagnetic nanowire structure 100 is preferably manufactured by the manufacturing method according to the above embodiment.
  • Ordered CoPt ferromagnetic nanowires 18 having a line width of 100 nm or less and a line length greater than or equal to twice the line width formed on the substrate 10 .
  • the ordered CoPt ferromagnetic nanowires 18 are either L1 0 -ordered CoPt or L1 2- ordered CoPt, depending on the atomic composition ratio of the CoPt nanowires 16 before heat treatment.
  • L1 0 -ordered CoPt means superlattice reflection caused by L1 0 -ordered CoPt 001, 110 in a GI-XRD pattern obtained by GI-XRD measurement described in Examples below. shall mean that is confirmed.
  • L1 2- ordered CoPt means, in the case of L1 2- ordered Co 3 Pt, a Co-rich cubic crystal ordered structure with a small atomic radius.
  • the superlattice reflection caused by the L1 2 - ordered Co3Pt100,110 is confirmed on the high-angle side compared to the peak of the L1 0-ordered CoPt001,110. shall mean
  • the “L1 2- ordered CoPt” is obtained by the GI-XRD measurement described in the examples below because of the Pt-rich cubic crystal ordered structure with a large atomic radius.
  • the cross-sectional shape perpendicular to the extending direction of the ordered CoPt ferromagnetic nanowires 18 has a rounded shape as a whole except for the contact portion with the substrate 10 . That is, the cross-sectional shape is such that the contact width of the ordered CoPt ferromagnetic nanowires 18 with the substrate 10 is smaller than the maximum width of the ordered CoPt ferromagnetic nanowires 18 .
  • the line width of the ordered CoPt ferromagnetic nanowires 18 takes a maximum value near the center in the height direction, and takes this maximum value.
  • the surface tension of iron group elements and platinum group elements is about 2000 mN/m, and the pressure difference ⁇ P at which L10 ordering occurs is about 100 MPa.
  • Such a shape has the advantage that the c-axis of the crystal tends to be oriented radially in a cross section perpendicular to the extending direction of the ordered CoPt ferromagnetic nanowires 18, so that magnetization can be formed in all directions.
  • the line width of the ordered CoPt ferromagnetic nanowires 18 is 100 nm or less, preferably 10 nm or more, more preferably 20 nm or more, and preferably 50 nm or less.
  • the "line width of the ordered CoPt ferromagnetic nanowires 18" means the maximum width of the ordered CoPt ferromagnetic nanowires 18 in a cross section perpendicular to the extending direction.
  • the thickness of the ordered CoPt ferromagnetic nanowires 18 depends on the aspect ratio of the CoPt nanowires 16 before heat treatment, but in this embodiment, it is 10 nm or more and 100 nm or less, preferably 20 nm or more and 50 nm or less.
  • the line length of the ordered CoPt ferromagnetic nanowires 18 is not particularly limited as long as it is at least twice the line width. However, in the ordered CoPt ferromagnetic nanowires 18 with a sufficient line length, the line length is preferably 800 nm or longer, more preferably 1 ⁇ m or longer, and even more preferably 10 ⁇ m or longer. On the other hand, due to process constraints, the line length of the ordered CoPt ferromagnetic nanowires 18 is preferably 10 mm or less.
  • adhesion layer such as a Ti layer
  • the ordered CoPt ferromagnetic nanowires 18 are preferably located on and in contact with the substrate 10 .
  • the ordered CoPt ferromagnetic nanowires 18 are preferably L1 0 -ordered or L1 2- ordered as a whole. Further, details will be described with reference to FIG. 10 in Examples, but in this embodiment, the ordered CoPt ferromagnetic nanowires 18 are formed by connecting a plurality of grains. 11A, 11B, 11C and 11D in the examples, in which each of the grains of the ordered CoPt ferromagnetic nanowires 18 is a single crystal with twin crystals. consists of The c-axis is random for each grain. Since each grain is a single crystal, a high coercive force can be exhibited.
  • the ordered CoPt ferromagnetic nanowires 18 are formed by connecting a plurality of grains made of single crystals including twin crystals. Even if planarization is performed to expose the surface of the nanowires by polishing with CMP or the like thereafter, there is an effect that a single-crystal ordered ferromagnetic material can be used.
  • Example preparation> A Si(100) substrate (length: 6 mm, width: 4 mm, thickness: 525 ⁇ m) (hereinafter referred to as “SiO 2 /Si substrate”) having a surface layer of about 50 nm made of SiO 2 was prepared.
  • An electron beam resist (ZEP-520A manufactured by Nippon Zeon Co., Ltd.) was applied onto the SiO 2 /Si substrate by spin coating to form an electron beam resist film. After that, the electron beam resist film was irradiated with an electron beam using an electron beam lithography device (Elionix ELS-7500EX), and then developed to form a mask pattern in which the SiO 2 /Si substrate was exposed in the form of nanowires.
  • Elionix ELS-7500EX electron beam lithography device
  • Co and Pt were alternately deposited on the exposed portion of the SiO 2 /Si substrate and the mask pattern by electron beam evaporation. After that, CoPt nanowires were formed on the SiO 2 /Si substrate through a lift-off process for removing the mask pattern.
  • the cross-sectional shape perpendicular to the extending direction of the CoPt nanowires is shown in FIG. 2(A). That is, the CoPt nanowires were formed by alternately stacking Co layers with a thickness of 1.8 nm and Pt layers with a thickness of 2.4 nm six times, with a thickness of 25.2 nm ⁇ Co(1.8 nm)/Pt( 2.4 nm) ⁇ 6 laminate.
  • the cross-sectional shape is rectangular, the line width is 20 nm, and the aspect ratio is 1.3.
  • the line length of one CoPt nanowire is 75 ⁇ m, and 46000 of these were formed in parallel and at regular intervals.
  • the distance between adjacent CoPt nanowires is about 130 nm.
  • the heat treatment temperature was 650 ° C.
  • the heat treatment time was 120 minutes
  • 180 minutes Heat treatment was performed under four conditions of 300 minutes and 360 minutes.
  • VSM measurement magnetization characteristics
  • the magnetic properties of each sample were measured using a vibrating sample magnetometer (VSM) of a magnetic property measurement system (manufactured by Quantum Design, MPMS3) under vacuum at room temperature (27 ° C.) with an external magnetic field of up to 70 kOe (i ) the in-plane direction perpendicular to the wire axis, (ii) the in-plane direction parallel to the wire axis, and (iii) the perpendicular direction.
  • the coercive force Hc was defined as the absolute value of the magnetic field when the magnetization M was 0.
  • the saturation magnetization Ms was defined as the magnetization value when the applied magnetic field was +70 kOe.
  • 4A and 4B show magnetic hysteresis loops (M-H curves) of examples with heat treatment times of 180 minutes and 300 minutes, respectively, representing each sample.
  • the coercive force Hc when the heat treatment time is 180 minutes, the coercive force Hc is 13.3 to 13.4 kOe, and when the heat treatment time is 300 minutes, the coercive force Hc is 11.3 to 12.5 kOe. , a high coercive force was obtained. Although not shown, the coercive force Hc was 11.1 to 12.3 kOe when the heat treatment time was 120 minutes, and the coercive force Hc was 8.8 to 10.1 kOe when the heat treatment time was 360 minutes. .
  • the L10 ferromagnetic material is isotropically generated.
  • the saturation magnetization Ms is 400 to 480 emu/cm 3 at a heat treatment time of 120 minutes, 410 to 480 emu/cm 3 at a heat treatment time of 180 minutes, 390 to 450 emu/cm 3 at a heat treatment time of 300 minutes, and 380 to 380 emu/cm at a heat treatment time of 360 minutes. It was 450 emu/cm 3 .
  • the resulting L10- ordered CoPt ferromagnetic The nanowires had a line width of 20 to 30 nm and a line length more than twice the line width.
  • Example preparation> CoPt nanowires were formed on the SiO 2 /Si substrate under the same conditions as in Experimental Example 1, except that the cross-sectional shape perpendicular to the extending direction of the CoPt nanowires was as shown in FIG. 2(B). That is, the CoPt nanowires were formed by alternately stacking Co layers with a thickness of 1.8 nm and Pt layers with a thickness of 2.4 nm 12 times, with a thickness of 50.4 nm ⁇ Co(1.8 nm)/Pt( 2.4 nm) ⁇ 12 laminate.
  • the cross-sectional shape is rectangular, the line width is 18 nm, and the aspect ratio is 2.8.
  • the line length of one CoPt nanowire is 75 ⁇ m, and 46000 of these were formed in parallel and at regular intervals.
  • the distance between adjacent CoPt nanowires is about 130 nm.
  • the heat treatment temperature was 650 ° C.
  • the heat treatment time was 30 minutes, 60 minutes, and 90 minutes of heat treatment under three conditions.
  • the CoPt nanowires were discontinued when the heat treatment time was 60 minutes and 90 minutes. It was possible to obtain ordered CoPt ferromagnetic nanowires with sufficient hardness.
  • the obtained L10- ordered CoPt ferromagnetic nanowires had a line width of 20 to 30 nm and a line length of more than twice the line width.
  • Example preparation> CoPt nanowires were formed on a SiO 2 /Si substrate under the same conditions as in Experimental Example 1, except that the cross-sectional shape perpendicular to the extending direction of the CoPt nanowires was as shown in FIG. 2(C). That is, the CoPt nanowires were formed by alternately stacking Co layers with a thickness of 3.6 nm and Pt layers with a thickness of 4.8 nm six times, with a thickness of 50.4 nm ⁇ Co(3.6 nm)/Pt( 4.8 nm) ⁇ 6 laminate.
  • the cross-sectional shape is rectangular, the line width is 20 nm, and the aspect ratio is 2.5.
  • the line length of one CoPt nanowire is 75 ⁇ m, and 46000 of these were formed in parallel and at regular intervals.
  • the distance between adjacent CoPt nanowires is about 130 nm.
  • the heat treatment temperature was 650 ° C.
  • the heat treatment time was 30 minutes, 60 minutes, and 90 minutes of heat treatment under three conditions.
  • FIG. 7 shows the GI-XRD pattern obtained from the sample heat-treated for 90 minutes as a representative of each sample.
  • VSM measurement magnetization characteristics
  • the magnetic properties of each sample were measured using a vibrating sample magnetometer (VSM) of a magnetic property measurement system (manufactured by Quantum Design, MPMS3) under vacuum at room temperature (27 ° C.) with an external magnetic field of up to 70 kOe (i ) the in-plane direction perpendicular to the wire axis, (ii) the in-plane direction parallel to the wire axis, and (iii) the perpendicular direction.
  • VSM vibrating sample magnetometer
  • MPMS3 Quantum Design
  • FIG. 9 shows a cross-sectional TEM image perpendicular to the extending direction of the ordered CoPt ferromagnetic nanowires in the sample heat-treated for 90 minutes.
  • FIG. 10 shows a cross-sectional TEM image perpendicular to the width direction along the extending direction of the ordered CoPt ferromagnetic nanowires in the sample with the heat treatment time of 90 minutes.
  • 11A, 11B, 11C and 11D show STEM images of ordered CoPt ferromagnetic nanowires in a sample with a heat treatment time of 90 minutes.
  • 11B and 11C are magnified STEM images of the top (yellow-lined) and bottom (blue-lined) nanowires of FIG. 11A, respectively, and FIG. It is the STEM image which expanded and observed the side surface.
  • the cross-sectional shape perpendicular to the extending direction of the obtained ordered CoPt ferromagnetic nanowires was entirely rounded except for the contact portion with the substrate.
  • the ordered CoPt ferromagnetic nanowires were formed by connecting a plurality of grains. Looking at FIGS. 11A, 11B, 11C, and 11D, although the electron beam scattering is taken at the central portion, [001] and [110] scattering are visible, so the central portion is included. It can be seen that the whole is L1-0 regularized. Also, twin crystals were observed in FIGS. 11B, 11C, and 11D.
  • each layer of the Co layer and the Pt layer is doubled compared to Experimental Example 2, and the thickness of the CoPt nanowires is the same.
  • each layer is thick, inter-diffusion between layers is less likely to occur than when the layers are thin, and it takes a long time to complete the inter-diffusion between layers.
  • CoPt is L10 ordered at high temperature under stress conditions. Since the nanowire structure of this experimental example has a very small radius of curvature of 15 nm or less, L10 ordering proceeds as described in paragraph [0066].
  • the thickness of Co and Pt is small, inter-layer interdiffusion occurs in a short time, resulting in a mixed A1 disordered phase.
  • Pt is harder than Co and has a small surface self-diffusion coefficient. Therefore, in the state where inter-layer interdiffusion is not completed, the presence of the Pt layer makes it difficult to enter the disconnection mode due to Rayleigh instability. .
  • the thicknesses of the Co layer and the Pt layer are preferably thick as in this experimental example rather than thin as in experimental example 2 in order to promote the L10 ordering.
  • the ordered alloy ferromagnetic nanowire structure of the present invention may be applied to spintronics devices (magnetic devices) such as MRAM, TMR heads in HHD, and FM-SET, and is highly industrially useful.
  • REFERENCE SIGNS LIST 100 Ordered CoPt ferromagnetic nanowire structure 10 Substrate 10A Exposed portion of substrate 12 Electron beam resist film 14 Mask pattern 16 CoPt nanowires (Co/Pt alternate laminate) 16A Co layer (first layer) 16B Pt layer (second layer) 18 Ordered CoPt ferromagnetic nanowires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Thin Magnetic Films (AREA)

Abstract

規則化合金強磁性ナノワイヤ構造体の好適な製造方法を提供する。基板上に、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素からなるナノワイヤを形成する工程と、前記ナノワイヤに熱処理を施して、前記基板上に前記鉄族元素及び前記白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤが形成された規則化合金強磁性ナノワイヤ構造体を得る工程と、を有する規則化合金強磁性ナノワイヤ構造体の製造方法。

Description

規則化合金強磁性ナノワイヤ構造体及びその製造方法
 本発明は、規則化合金強磁性ナノワイヤ構造体及びその製造方法に関する。
 強い垂直磁気結晶異方性(PMA:Perpendicular Magnetic Anisotropy)と大きな保磁力(Hc)を有する強磁性体は、磁気ランダムアクセスメモリ(MRAM:Magnetoresistive Random Access Memory)、超高密度ハードディスクドライブ(HHD:Hard Disk Drive)内のTMRヘッド(Tunnel Magneto Resistive Head)、強磁性単電子トランジスタ(FM−SET:Ferromagnetic Single−electron Transistor)などのスピントロニクスデバイスへの応用を目指して広く研究されている。中でも、鉄族元素と白金族元素の規則化合金は、次世代の強磁性材料として有望視されている。A1不規則相からなる鉄族元素と白金族元素の合金は、所定の条件の熱処理を受けることにより相転移して、規則化合金となることが知られている。例えば、CoPtの原子組成比がCo:Pt=1:1の場合、L1規則化CoPt合金を得ることができる。また、CoPtの原子組成比がCo:Pt=1:3又は3:1の場合、L1規則化CoPt合金を得ることができる。なお、L1及びL1における「L」は、正式にはイタリック体で表記されるが、本明細書では通常の書体で表記する。
 規則化合金強磁性材料に関しては、以下のような技術が知られている。特許文献1には、「非磁性材料からなる基板と、該基板上に形成された磁性材料層とを備える磁気記録媒体であって、上記磁性材料層が、上記基板上に直接又は下地層を介して形成された平均粒子径が3~20nmの規則化結晶磁性ナノ粒子と、該規則化結晶磁性ナノ粒子表面を被覆して、該規則化結晶磁性ナノ粒子の分散状態を保持する無機材料からなる保護層とを含むことを特徴とする磁気記録媒体(請求項1)」が記載され、この規則化結晶磁性ナノ粒子がL1規則化CoPt磁性ナノ粒子であること(請求項3)が記載されている。
 非特許文献1及び非特許文献2は、本発明者らにより執筆されたものである。非特許文献1では、SiO/Si基板上に、電子ビーム蒸着法により、密着性を高めるための下地層として厚さ3.0nmのTi層を成膜し、引き続き、厚さ6.6nmのPt層と厚さ4.8nmのCo層からなる等原子二層膜(Co50Pt50)を形成し、続いて、RTA装置を用いて、真空中で昇温速度30℃/s、熱処理温度200~900℃の範囲の100℃刻み、熱処理時間30秒の熱処理を行う実験を示している。そして、熱処理温度が800℃の場合に、CoPt二層薄膜の相互拡散によって、L1規則化CoPt、L1規則化CoPt、及びL1規則化CoPtを含む傾斜薄膜が形成され、Hc=2.1kOeの面内保磁力とMs=600emu/cmの飽和磁化が得られたことが示されている。
 非特許文献2では、SiO/Si基板上に、電子ビーム蒸着法により、厚さ1.2nmのCo層と厚さ1.6nmのPt層を4回くり返し積層した等原子(Co/Pt)八層薄膜を形成し、続いて、RTA装置を用いて、真空中で900℃、1時間+30秒の熱処理を行う実験を示している。そして、熱処理後には球状のL1規則化CoPtが観察され、Hc=2.7kOeの面内保磁力が得られたことが示されている。
 非特許文献3には、Fe50Pd50−xNi(x=6,12,25,38,44)の混合粉末を6GPaの高圧下で高圧ねじり(HPT)加工を行い、巨大ひずみを導入して固溶体状態のバルク状に固化し、続く熱処理でL1規則化合金を得る方法が示されている。
特開2016−42399号公報
R.Toyama et al.,Formation of L1▲0▼−ordered CoPt during interdiffusion of electron−beam−deposited Pt/Co bilayer thin films on Si/SiO▲2▼ substrates by rapid thermal annealing,Mater.Res.Express 7(2020)066101 R.Toyama et al.,Ti underlayer effect on the ordering of CoPt in(Cp/Pt)▲4▼multilayer thin films on Si/SiO▲2▼ substrates,Jpn.J.Appl.Phys.59,075504(2020) 堀田善治、他5名"巨大ひずみ加工により作製したFe▲50▼Pd▲50−x▼Ni▲x▼合金の構造変化と顕微分光解析"、SPring−8/SACLA利用研究成果集、2021年1月、第8巻、第3号、493−496頁
 ナノスケールで効率良く規則化合金を製造できれば、種々のスピントロニクスデバイスへの応用の観点から非常に有利である。特に、ワイヤタイプの規則化合金を半導体プロセスの中で形成できれば、MTR素子の小型化が容易になるなど有用な応用が期待できる。しかしながら、特許文献1では、L1規則化CoPt磁性ナノ粒子を作製しており、非特許文献1及び2では、L1相を含むCoPt薄膜を作製しており、非特許文献3ではFePdNiのL1規則化合金のバルク状材料を作製しており、いずれも、規則化合金ナノワイヤを作製できていない。これまで、線幅が100nm以下といったナノメートルオーダーの規則化合金強磁性ナノワイヤを効率良く作製する好適な方法は見出されていなかった。
 そこで本発明は、上記課題に鑑み、規則化合金強磁性ナノワイヤ構造体と、その好適な製造方法を提供することを目的とする。
 上記課題を解決すべく、本発明者らは鋭意検討し、以下の知見を得た。鉄族元素及び白金族元素の成膜とリフトオフプロセスとを組み合わせることで、鉄族元素及び白金族元素からなるナノワイヤを製造することができる。このとき、ナノワイヤの線幅を所定の上限値以下に制限し、ナノワイヤに所定の条件の熱処理を施すと、ナノワイヤの鉄族元素及び白金族元素が規則化合金となり、規則化合金強磁性ナノワイヤを得ることができることを見出した。
 また、ナノワイヤの線幅を所定の下限値以上とし、かつ、ナノワイヤの延在方向に垂直な断面において、線幅に対する厚さの比(以下、「アスペクト比」と称する。)を所定値以上とし、ナノワイヤに所定の条件の熱処理を施すと、ナノワイヤが途切れることなく、鉄族元素及び白金族元素が規則化合金となり、線長さを十分に確保した規則化合金強磁性ナノワイヤを得ることができることを見出した。なお、本発明において、「ナノワイヤ」は、熱処理を受ける前の鉄族元素及び白金族元素からなるナノワイヤを意味し、「規則化合金強磁性ナノワイヤ」は、前記ナノワイヤが熱処理を受けて形成された、鉄族元素及び白金族元素が規則化した合金からなる強磁性ナノワイヤを意味するものとする。
 以上の知見に基づいて完成された本発明の要旨構成は以下のとおりである。
 [1]基板上に、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素からなるナノワイヤを形成する工程と、
 前記ナノワイヤに熱処理を施して、前記基板上に前記鉄族元素及び前記白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤが形成された規則化合金強磁性ナノワイヤ構造体を得る工程と、
を有する規則化合金強磁性ナノワイヤ構造体の製造方法。
 [2]前記ナノワイヤの延在方向に垂直な断面において、線幅に対する厚さの比(厚さ/線幅)が0.7以上3.0以下である、上記[1]に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [3]前記ナノワイヤの線長さを800nm以上とする、上記[1]又は[2]に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [4]前記基板上に接して前記ナノワイヤを形成する、上記[1]~[3]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [5]前記基板が、酸化マグネシウム基板、アルミナ基板、チタン酸ストロンチウム基板、及び酸化シリコン膜が表面に形成されたシリコン基板のいずれかである、上記[1]~[4]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [6]電子ビーム蒸着法により前記鉄族元素及び前記白金族元素を交互に堆積させて前記ナノワイヤを作製することで、前記ナノワイヤが前記鉄族元素からなる第一層及び前記白金族元素からなる第二層の交互積層体からなる、上記[1]~[5]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [7]前記第一層の厚さが2.0nm以上15nm以下、前記第二層の厚さが3.0nm以上15nm以下、前記第一層及び前記第二層の層数が合計で2以上24以下である、上記[6]に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [8]電子ビーム蒸着法又はスパッタリング法により前記鉄族元素及び前記白金族元素を同時に堆積させて前記ナノワイヤを作製することで、前記ナノワイヤが前記鉄族元素及び前記白金族元素の複合体からなる、上記[1]~[5]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [9]水素及び不活性ガスを含む雰囲気下にて前記熱処理を行う、上記[1]~[8]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [10]前記熱処理において、熱処理温度は500℃以上900℃以下、熱処理時間は30分以上360分以下とする、上記[1]~[9]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [11]前記ナノワイヤの原子組成比を前記鉄族元素:前記白金族元素=1:1として、前記規則化合金強磁性ナノワイヤを、L1規則化合金であるものとする、上記[1]~[10]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [12]前記ナノワイヤの原子組成比を前記鉄族元素:前記白金族元素=1:3又は3:1として、前記規則化合金強磁性ナノワイヤを、L1規則化合金であるものとする、上記[1]~[10]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [13]前記鉄族元素がCo、Fe及びNiのいずれかであり、前記白金族元素がPt及びPdのいずれかである、上記[1]~[12]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
 [14]基板と、
 前記基板上に形成された、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤと、
を有する規則化合金強磁性ナノワイヤ構造体。
 [15]前記規則化合金強磁性ナノワイヤの線長さが800nm以上である、上記[14]に記載の規則化合金強磁性ナノワイヤ構造体。
 [16]前記基板上に接して前記規則化合金強磁性ナノワイヤが形成された、上記[14]又は[15]に記載の規則化合金強磁性ナノワイヤ構造体。
 [17]前記基板が、酸化マグネシウム基板、アルミナ基板、チタン酸ストロンチウム基板、及び酸化シリコン膜が表面に形成されたシリコン基板のいずれかである、上記[14]~[16]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
 [18]前記規則化合金強磁性ナノワイヤがL1規則化合金である、上記[14]~[17]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
 [19]前記規則化合金強磁性ナノワイヤがL1規則化合金である、上記[14]~[17]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
 [20]前記規則化合金強磁性ナノワイヤの延在方向に垂直な断面において、前記規則化合金強磁性ナノワイヤの前記基板との接触幅が前記規則化合金強磁性ナノワイヤの最大幅よりも小さい、上記[14]~[19]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
 [21]前記規則化合金強磁性ナノワイヤは、複数のグレインが連結してなり、前記グレインの各々が、双晶を含む単結晶からなる、上記[14]~[20]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
 [22]前記鉄族元素がCo、Fe及びNiのいずれかであり、前記白金族元素がPt及びPdのいずれかである、上記[14]~[21]のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
 本発明の製造方法によれば、規則化合金強磁性ナノワイヤ構造体を好適に製造することができる。
(A)~(E)は、本発明の一実施形態による規則化CoPt強磁性ナノワイヤ構造体100の製造方法を説明する図である。 (A)~(C)は、それぞれ実験例1~3における、CoPtナノワイヤ16の延在方向に垂直な断面形状を示す図である。 実験例1において、熱処理温度を650℃、熱処理時間を120分、180分、300分、及び360分とした例の、サンプル上面のSEM画像(上側)と、GI−XRDパターン(下側)である。 実験例1において、熱処理温度を650℃、熱処理時間を180分とした例のVSM測定結果(左側)と、サンプル上面のSEM画像(右側)である。 実験例1において、熱処理温度を650℃、熱処理時間を300分とした例のVSM測定結果(左側)と、サンプル上面のSEM画像(右側)である。 実験例2において、熱処理温度を650℃、熱処理時間を30分、60分、及び90分とした例の、サンプル上面のSEM画像(上側)と、GI−XRDパターン(下側)である。 実験例3において、熱処理温度を650℃、熱処理時間を30分、60分、及び90分とした例の、サンプル上面のSEM画像である。 実験例3において、熱処理温度を650℃、熱処理時間を90分とした例の、サンプル上面のSEM画像(左側)と、GI−XRDパターン(右側)である。 実験例3において、熱処理温度を650℃、熱処理時間を90分とした例のVSM測定結果(左側)と、サンプル上面のSEM画像(右側)である。 実験例3において、熱処理温度を650℃、熱処理時間を90分とした例の、規則化CoPt強磁性ナノワイヤの延在方向に垂直な断面TEM画像(左側)と、サンプル上面のSEM画像(右側)である。 実験例3において、熱処理温度を650℃、熱処理時間を90分とした例の、規則化CoPt強磁性ナノワイヤの延在方向に沿った、幅方向に垂直な断面TEM画像(左側)と、サンプル上面のSEM画像(右側)である。 実験例3において、熱処理温度を650℃、熱処理時間を90分とした例の、規則化CoPt強磁性ナノワイヤの延在方向に垂直な断面STEM画像である。 図11Aの規則化CoPt強磁性ナノワイヤ上部の拡大STEM画像である。 図11Aの規則化CoPt強磁性ナノワイヤ下部の拡大STEM画像である。 実験例3において、熱処理温度を650℃、熱処理時間を90分とした例の、規則化CoPt強磁性ナノワイヤの側面を拡大して観察したSTEM画像である。
 (規則化合金強磁性ナノワイヤ構造体の製造方法)
 本発明の規則化合金強磁性ナノワイヤ構造体の製造方法は、基板上に、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素からなるナノワイヤを形成する工程と、前記ナノワイヤに熱処理を施して、前記基板上に前記鉄族元素及び前記白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤが形成された規則化合金強磁性ナノワイヤ構造体を得る工程と、を有する。
 化学的安定性と欠陥を含みにくい構造の観点から、鉄族元素としては、Co、Fe及びNiのいずれかを採用することができ、白金族元素としては、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、及びイリジウム(Ir)のいずれかを採用することができる。白金族元素としては、融点が低いPt及びPdのいずれかを好適に採用することができる。本発明において、鉄族元素と白金族元素の組み合わせは、上記した元素から選択した任意の組み合わせとすることができる。以下、鉄族元素としてCoを採用し、白金族元素としてPtを採用し、規則化CoPt強磁性ナノワイヤ構造体を製造する実施形態を典型例として説明するが、本発明はこの実施形態に限定されない。以下の説明は、鉄族元素と白金族元素の任意の組み合わせにも適用される。
 図1(A)~(E)を参照して、本発明の一実施形態による規則化CoPt強磁性ナノワイヤ構造体100の製造方法は、
 (I)以下の(I−1)から(I−4)の工程、すなわち、
 (I−1)基板10上に電子線レジスト膜12を形成する工程(図1(A));
 (I−2)前記電子線レジスト膜12に電子線を照射し、その後現像することによって、ナノワイヤ形状に前記基板10が露出したマスクパターン14を形成する工程(図1(B);
 (I−3)前記基板10の露出部10A及び前記マスクパターン14上に、Co及びPtを堆積させる工程(図1(C));
 (I−4)前記マスクパターン14を除去する工程(図1(D));
によって、前記基板10上にCoPtナノワイヤ16を形成する工程と、
 (II)前記CoPtナノワイヤ16に熱処理を施すことでCoPtを規則化させて、規則化CoPt強磁性ナノワイヤ18を得る工程(図1(E))と、
を有する。
 [工程(I):CoPtナノワイヤ16の作製]
 以下、基板10上にCoPtナノワイヤ16を形成する工程(I)について、詳細に説明する。
 [工程(I−1)]
 図1(A)を参照して、工程(I−1)では、基板10上に電子線レジスト膜12を形成する。電子線レジスト膜12は、電子ビーム露光用のフォトレジスト組成物を基板10上に塗布し、乾燥させることで形成することができる。塗布方法は特に限定されないが、スピンコート法を好適に用いることができる。電子線レジスト膜12の厚さは、形成しようとするCoPtナノワイヤ16の厚みよりも厚くなるように適宜設定すればよい。
 基板10は、CoPtナノワイヤ16を支持することができる剛性を有し、かつ、絶縁表面を有するものであれば、特に限定されない。ただし、基板10は、酸化マグネシウム(MgO)基板、アルミナ(Al)基板、チタン酸ストロンチウム(SrTiO)基板(STO基板)、及び酸化シリコン膜が表面に形成されたシリコン基板(本明細書において、「SiO/Si基板」と称する。)のいずれかであることが好ましい。これらの基板は、各種スピントロニクスデバイスの基板として好適に用いられるため、これらの基板上に規則化CoPt強磁性ナノワイヤを形成することで、各種スピントロニクスデバイスへの応用が期待できる。特に、基板10は、SiO/Si基板であることが好ましい。これにより、各種スピントロニクスデバイスの素子を、Si半導体を用いて回路を集積するICやULSIと同じ基板上に作製することが可能である。基板10の形状及び寸法は特に限定されないが、主表面形状が矩形である基板を用いる場合、寸法は例えば、縦:4~300mm×横:4~300mm×厚さ:0.3~1.2mmの範囲とすることができる。
 [工程(I−2)]
 次に、図1(B)を参照して、工程(I−2)では、電子線レジスト膜12に電子線を照射し、その後現像することによって、ナノワイヤ形状に基板10が露出したマスクパターン14を形成する。すなわち、マスクパターン14は、電子線レジスト膜12を電子ビームリソグラフィにより露光し、現像することによって作製される。マスクパターン14の形状は、形成しようとするCoPtナノワイヤ16の線幅及び線長さに応じて適宜設定すればよい。マスクパターン14において電子線レジスト膜12が除去された部分では、基板10が露出し、露出部10Aを形成している。
 [工程(I−3)]
 次に、図1(C)を参照して、工程(I−3)では、基板10の露出部10A及びマスクパターン14上に、Co及びPtを堆積させ、CoPt堆積層を形成する。堆積方法は、例えば電子ビーム蒸着法又はスパッタリング法とすることができる。
 [工程(I−4)]
 次に、図1(D)を参照して、工程(I−4)では、マスクパターン14を除去する。すなわち、マスクパターン14を剥離して、その上に形成されたCoPt堆積層を除去するリフトオフプロセスによって、基板10の露出部10A上に形成されたCoPt堆積層が残留し、基板10上にCoPtナノワイヤ16を形成することができる。
 [CoPtナノワイヤ16の構造]
 以上の(I−1)から(I−4)の工程、すなわち、電子線リソグラフィーと電子ビーム蒸着法によるCo及びPtの成膜とを組み合わせることで、基板10上にCoPtナノワイヤ16を製造することができる。図1(D)に示すように、CoPtナノワイヤ16の延在方向に垂直な断面形状は、矩形状となる。なお、図1(A)~(D)に示す本実施形態においては、電子線リソグラフィーによってマスクパターンを形成したが、本発明はこれに限定されず、UV露光法、ナノインプリント法、ArF液浸リソグラフィー法等、ナノメートルオーダーの微細なマスクパターンを形成可能な方法であれば、任意の方法でマスクパターンを形成することができる。
 本発明において、CoPtナノワイヤ16の線幅を100nm以下とすることが重要である。線幅が100nmを超える場合、ナノワイヤの形状を保ちながらCoPtを規則化することが困難である。そのため、CoPtナノワイヤ16の線幅は100nm以下とし、好ましくは50nm以下とする。これにより、CoPtナノワイヤ16に最適化された条件の熱処理を施すと、CoPtナノワイヤ16が規則化して、規則化CoPt強磁性ナノワイヤ18を得ることができる。また、CoPtナノワイヤ16を途切れにくくする観点から、CoPtナノワイヤ16の線幅は10nm以上とすることが好ましく、20nm以上とすることが好ましい。これは、線長さを十分に確保した規則化CoPt強磁性ナノワイヤ18を得るために必要である。
 CoPtナノワイヤ16の延在方向に垂直な断面におけるアスペクト比は、0.7以上とすることが好ましく、1.5以上とすることがより好ましく、3.0以下とすることが好ましく、2.8以下とすることがより好ましく、2.5以下とすることがさらに好ましい。CoPtナノワイヤ16の線幅を10nm以上とし、かつ、アスペクト比を0.7以上、好ましくは1.5以上とすることによって、CoPtナノワイヤ16に最適化された条件の熱処理を施すと、CoPtナノワイヤ16が途切れることなく規則化して、線長さを十分に確保した規則化CoPt強磁性ナノワイヤ18を得ることができる。すなわち、アスペクト比も線長さを十分に確保した規則化CoPt強磁性ナノワイヤ18を得るために必要である。他方で、アスペクト比が3.0を超える場合、リフトオフプロセスによりCoPtナノワイヤ16を形成することが難しくなる。この観点から、アスペクト比は3.0以下とすることが好ましく、2.8以下とすることがより好ましく、2.5以下とすることがさらに好ましい。
 CoPtナノワイヤ16の線長さは、線幅の2倍以上であれば特に限定されない。すなわち、本発明において、線幅の2倍以上の線長さを有する構造体を「ナノワイヤ」と称するものとする。ただし、線長さを十分に確保した規則化CoPt強磁性ナノワイヤ18を得る観点からは、CoPtナノワイヤ16の線長さは、好ましくは800nm以上であり、より好ましくは1μm以上であり、さらに好ましくは10μm以上である。他方で、プロセス上の制約から、CoPtナノワイヤ16の線長さは10mm以下であることが好ましい。
 一実施形態において、CoPtナノワイヤ16の原子組成比をCo:Pt=1:1とすることができる。この場合、CoPtナノワイヤ16に所定の条件の熱処理を施すことで、CoPtがL1規則化して、L1規則化CoPtである規則化CoPt強磁性ナノワイヤ18を得ることができる。
 他の実施形態において、CoPtナノワイヤ16の原子組成比をCo:Pt=1:3又は3:1とすることができる。この場合、CoPtナノワイヤ16に所定の条件の熱処理を施すことで、CoPtがL1規則化して、L1規則化CoPtである規則化CoPt強磁性ナノワイヤ18を得ることができる。
 一実施形態において、図1(C)及び(D)に示すように、(I−3)工程を、電子ビーム蒸着法によりCo及びPtを交互に堆積させて行うことで、第一層としてのCo層16A及び第二層としてのPt層16Bの交互積層体からなるCoPtナノワイヤ16を得ることができる。この場合、最初に堆積する層は、Co層であってもPt層であってもよい。Co層の厚さ、Pt層の厚さ、並びに、Co層及びPt層の合計層数は、所望の原子組成比を達成するように適宜決定すればよい。
 ただし、例えば図2(C)に示すように、Co層の厚さが2.0nm以上15nm以下、Pt層の厚さが3.0nm以上15nm以下、Co層及びPt層の層数が合計で2以上24以下であることが好ましい。この場合に、CoPtナノワイヤ16が途切れることなく規則化して、線長さを十分に確保した規則化CoPt強磁性ナノワイヤ18を得ることができる熱処理条件の自由度が非常に大きいことが分かった。
 他の実施形態において、(I−3)工程を、電子ビーム蒸着法又はスパッタリング法によりCo及びPtを同時に堆積させて行うことで、CoPt複合体からなるCoPtナノワイヤを得ることができる。Co及びPtの供給比率は、所望の原子組成比を達成するように適宜決定すればよい。
 本実施形態において、基板10とCoPtナノワイヤ16との間には、Ti層のような接着層は無いことが好ましい。すなわち、基板10上に接してCoPtナノワイヤ16を形成することが好ましい。これにより、TiがマイグレーションしてCoPtの規則化を阻害するということがないため、CoPtの規則化を促進することができる。
 [工程(II):熱処理]
 続いて、図1(D)及び(E)を参照して、工程(II)では、CoPtナノワイヤ16に熱処理を施すことでCoPtを規則化させて、規則化CoPt強磁性ナノワイヤ18を得る。これにより、基板10上に規則化CoPt強磁性ナノワイヤ18が形成された規則化CoPt強磁性ナノワイヤ構造体100が作製される。
 熱処理は、水素及び不活性ガスを含む雰囲気下にて行うことが好ましく、水素を含み、残部が不活性ガス、及び、任意に含まれ得る不可避的不純物ガスからなる雰囲気下にて行うことがより好ましい。水素を含む雰囲気下で熱処理を行うことで、CoPtの規則化を促進することができる。水素の含有量は、1~5体積%とすることが好ましく、残部の不活性ガスは、例えばアルゴン(Ar)、ヘリウム(He)、及びネオン(Ne)から選択される一種以上とすることができる。
 工程(II)において、熱処理温度は500℃以上900℃以下、熱処理時間は30分以上360分以下とすることが好ましい。ここで、「熱処理温度」とは、熱処理時の雰囲気温度を意味する。また、「熱処理時間」とは、熱処理温度での保持時間を意味する。熱処理温度が500℃未満の場合、CoとPtが相互拡散せず、規則化が起きない。また、熱処理温度が900℃超えの場合、規則化したCoPtが熱擾乱により再び不規則化する。また、熱処理温度が30分未満の場合、規則化するために必要な相互拡散、さらには表面拡散が十分に起こらない。また、熱処理温度が360分超えの場合、規則化したCoPtが熱擾乱により再び不規則化する。
 以上の熱処理温度及び熱処理時間は、CoPtを規則化するために必要な範囲である。CoPtナノワイヤ16が途切れることなく規則化して、線長さを十分に確保した規則化CoPt強磁性ナノワイヤ18を得るためには、CoPtナノワイヤ16の構造(線幅、アスペクト比、原子組成比、Co層の厚さ、Pt層の厚さ、Co層及びPt層の合計層数など)に応じて、上記範囲の中で最適化された範囲を適宜選択することが好ましい。
 熱処理の手段は特に限定されず、一般的な熱処理炉を使用してもよいし、RTA(Rapid Thermal Anneal)装置を使用してもよい。
 (規則化合金強磁性ナノワイヤ構造体)
 本発明の規則化合金強磁性ナノワイヤ構造体は、基板と、前記基板上に形成された、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤと、を有する。
 化学的安定性と欠陥を含みにくい構造の観点から、鉄族元素としては、Co、Fe及びNiのいずれかを採用することができ、白金族元素としては、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、及びイリジウム(Ir)のいずれかを採用することができる。白金族元素としては、融点が低いPt及びPdのいずれかを好適に採用することができる。本発明において、鉄族元素と白金族元素の組み合わせは、上記した元素から選択した任意の組み合わせとすることができる。以下、鉄族元素としてCoを採用し、白金族元素としてPtを採用した、規則化CoPt強磁性ナノワイヤ構造体の実施形態を典型例として説明するが、本発明はこの実施形態に限定されない。以下の説明は、鉄族元素と白金族元素の任意の組み合わせにも適用される。
 図1(E)を参照して、本発明の一実施形態による規則化CoPt強磁性ナノワイヤ構造体100は、上記の実施形態による製造方法により好適に製造されるものであり、基板10と、この基板10上に形成された、線幅が100nm以下で、かつ、線長さが線幅の2倍以上である規則化CoPt強磁性ナノワイヤ18と、有する。
 [基板]
 基板10については、既述の記載を援用する。
 [規則化CoPt強磁性ナノワイヤ]
 規則化CoPt強磁性ナノワイヤ18は、熱処理前のCoPtナノワイヤ16の原子組成比によって、L1規則化CoPtであるか、又は、L1規則化CoPtである。なお、本発明において、「L1規則化したCoPt」とは、後述の実施例に記載のGI−XRD測定によって得られるGI−XRDパターンにおいて、L1規則化CoPt001,110に起因する超格子反射が確認されることを意味するものとする。同様に、本発明において、「L1規則化したCoPt」とは、L1規則化CoPtの場合、原子半径の小さいCo−richの立方晶規則構造のため、後述の実施例に記載のGI−XRD測定によって得られるGI−XRDパターンにおいて、L1規則化CoPt001,110のピークと比較して高角側に、L1規則化CoPt100,110に起因する超格子反射が確認されることを意味するものとする。また、「L1規則化したCoPt」とは、L1規則化CoPtの場合、原子半径の大きいPt−richの立方晶規則構造のため、後述の実施例に記載のGI−XRD測定によって得られるGI−XRDパターンにおいて、L1規則化CoPt001,110のピークと比較して低角側に、L1規則化CoPt100,110に起因する超格子反射が確認されることを意味するものとする。
 図9に例示するように、規則化CoPt強磁性ナノワイヤ18の延在方向に垂直な断面形状は、基板10との接触部以外は全体的に丸みを帯びた形状となる。すなわち、当該断面形状は、規則化CoPt強磁性ナノワイヤ18の基板10との接触幅が規則化CoPt強磁性ナノワイヤ18の最大幅よりも小さい形状である。さらに言い換えると、規則化CoPt強磁性ナノワイヤ18の延在方向に垂直な断面において、規則化CoPt強磁性ナノワイヤ18の線幅は、高さ方向の中央付近で最大値を取り、この最大値を取る高さ位置から高さ方向に離れるにしたがって漸減する。このような形状となる理由は、延在方向に垂直な断面形状が矩形のCoPtナノワイヤ16が熱処理を受ける過程で、CoPtナノワイヤ16内に非常に大きな応力(圧力)が加わることに起因する。すなわち、CoPtナノワイヤ16内に加わる圧力差をΔPとして、表面張力をγ、曲率半径をrとすると、
 ΔP=2γ/r
が成り立つ。鉄族元素や白金族元素の表面張力は2000mN/m程度であり、L1規則化が発生する圧力差ΔPは100MPa程度となる。このような大きな圧力差がある状況で、Co及びPtが相互拡散し、さらには表面張力を受けて表面拡散する際に、L1規則化する。規則化する際、表面エネルギーを低減するために曲率半径が大きくなる方向にCoPtナノワイヤ16の角が取れるように断面形状は変形し、わずかに潰れた形状となる。したがって、曲率半径rが50nm以内であればL1規則化が発生する。これはナノワイヤの線幅が100nm以下という本実施形態の知見と一致する。このような形状では、規則化CoPt強磁性ナノワイヤ18の延在方向に垂直な断面において、結晶のc軸が放射状に向く傾向があるため、全ての方向に磁化を形成できるという利点を有する。
 規則化CoPt強磁性ナノワイヤ18の線幅は、100nm以下であり、好ましくは10nm以上であり、より好ましくは20nm以上であり、好ましくは50nm以下である。なお、「規則化CoPt強磁性ナノワイヤ18の線幅」とは、規則化CoPt強磁性ナノワイヤ18の延在方向に垂直な断面における最大幅を意味するものとする。
 規則化CoPt強磁性ナノワイヤ18の厚さは、熱処理前のCoPtナノワイヤ16のアスペクト比に依存するが、本実施形態では、10nm以上100nm以下であり、好ましくは20nm以上50nm以下である。
 規則化CoPt強磁性ナノワイヤ18の線長さは、線幅の2倍以上であれば特に限定されない。ただし、線長さが十分に確保された規則化CoPt強磁性ナノワイヤ18においては、線長さは、好ましくは800nm以上であり、より好ましくは1μm以上であり、さらに好ましくは10μm以上である。他方で、プロセス上の制約から、規則化CoPt強磁性ナノワイヤ18の線長さは10mm以下であることが好ましい。
 本実施形態において、基板10と規則化CoPt強磁性ナノワイヤ18との間には、Ti層のような接着層は無いことが好ましい。すなわち、基板10上に接して規則化CoPt強磁性ナノワイヤ18が位置することが好ましい。
 本実施形態において、規則化CoPt強磁性ナノワイヤ18は、その全体がL1規則化、又は、L1規則化していることが好ましい。また、詳細は実施例において図10を参照して説明するが、本実施形態において、規則化CoPt強磁性ナノワイヤ18は、複数のグレインが連結してなる。そして、詳細は実施例において図11A、図11B、図11C及び図11Dを参照して説明するが、本実施形態において、規則化CoPt強磁性ナノワイヤ18のグレインの各々は、双晶を含む単結晶からなる。グレインごとにc軸はランダムになっている。各グレインが単結晶となっているため、高い保磁力を発揮することができる。また、本実施形態では、規則化CoPt強磁性ナノワイヤ18が、双晶を含む単結晶からなる複数のグレインが連結してなるため、規則化CoPt強磁性ナノワイヤ18上に絶縁体薄膜を形成し、その後CMPなどでポリッシュすることによりナノワイヤ表面を出すような平坦化を行っても、単結晶の規則化強磁性体を使うことができるという効果がある。
 [実験例1]
 <サンプル作製>
 表層約50nmがSiOからなるSi(100)基板(縦:6mm×横:4mm×厚さ525μm)(以下、「SiO/Si基板」と称する。)を用意した。SiO/Si基板上に、電子線レジスト(日本ゼオン株式会社製、ZEP−520A)をスピンコート法で塗布し、電子線レジスト膜を形成した。その後、電子線描写装置(エリオニクス社製 ELS−7500EX)で電子線レジスト膜に電子線を照射し、その後現像することによって、ナノワイヤ形状にSiO/Si基板が露出したマスクパターンを形成した。その後、電子ビーム蒸着法により、SiO/Si基板の露出部及びマスクパターン上にCo及びPtを交互に堆積させた。その後、マスクパターンを剥離するリフトオフプロセスを経て、SiO/Si基板上にCoPtナノワイヤを形成した。
 CoPtナノワイヤの延在方向に垂直な断面形状は、図2(A)に示すものとした。すなわち、CoPtナノワイヤは、厚さ1.8nmのCo層と厚さ2.4nmのPt層を交互に6回積層して形成した、厚さ25.2nmの{Co(1.8nm)/Pt(2.4nm)}積層体である。CoPtナノワイヤの原子組成比はCo:Pt=1:1である。断面形状は矩形であり、線幅は20nm、アスペクト比は1.3である。1本のCoPtナノワイヤの線長さは75μmであり、これを平行かつ等間隔に46000本形成した。隣り合うCoPtナノワイヤ間の距離は約130nmである。
 その後、RTA装置(アドバンス理工株式会社製、MILA−5000UHV)を用いて、3体積%の水素を含み、残部がアルゴンガスからなる雰囲気下で、熱処理温度650℃、熱処理時間120分、180分、300分、及び360分の4条件の熱処理を行った。
 <特性評価>
 (1)SEM観察
 各サンプルの表面をSEM観察した。結果を図3に示す。
 (2)GI−XRD測定
 各サンプルにおいて、熱処理後のCoPtナノワイヤの結晶構造をすれすれ入射X線回折法(GI−XRD:Grazing Incidence X−ray Diffraction)によって評価した。11.7keVのエネルギーを持つX線放射光を、サンプルに水平に入射させ、サンプルを0~2°揺動させながら、測定を行った。回折像は湾曲イメージングプレートにより撮影し、2次元回折パターンを得た。各サンプルにおいて、得られたGI−XRDパターンを図3に示す。
 (3)VSM測定(磁化特性)
 各サンプルの磁気特性を、磁気特性測定システム(カンタム・デザイン社製、MPMS3)の試料振動型磁力計(VSM)を用いて、室温(27℃)の真空下で最大70kOeの外部磁場を(i)ワイヤ軸に垂直な面内方向、(ii)ワイヤ軸に平行な面内方向、及び(iii)面直方向に掃引して測定した。保磁力Hcは、磁化Mが0となるときの磁場の絶対値と定義した。また、飽和磁化Msは、印加磁場が+70kOeのときの磁化の値と定義した。各サンプルを代表して、熱処理時間をそれぞれ180分及び300分とした例の磁気ヒステリシスループ(M−Hカーブ)を図4A及び図4Bに示す。
 <考察>
 図3(下側)のGI−XRDパターンを参照すると、熱処理時間が120分、180分、300分、及び360分のいずれにおいても、L1規則化CoPt001,110に起因する超格子反射が確認された。このことから、いずれのサンプルでも、CoPtがL1規則化して、L1規則化CoPt強磁性ナノワイヤが得られていることが確認された。
 図4A及び図4Bから、熱処理時間が180分の場合、保磁力Hcが13.3~13.4kOeであり、熱処理時間が300分の場合、保磁力Hcが11.3~12.5kOeであり、いずれも高い保磁力が得られた。図示は省略するが、熱処理時間が120分の場合、保磁力Hcは11.1~12.3kOeであり、熱処理時間が360分の場合、保磁力Hcは8.8~10.1kOeであった。保磁力Hcが、ワイヤ軸に垂直な面内方向、ワイヤ軸に平行な面内方向、面直方向の3方向で等しくなっていることから、L1強磁性体は等方的に生成している。また、飽和磁化Msは、熱処理時間120分で400~480emu/cm、熱処理時間180分で410~480emu/cm、熱処理時間300分で390~450emu/cm、熱処理時間360分で380~450emu/cmであった。
 図3(上側)のSEM画像を参照すると、熱処理時間が120分、180分、300分、及び360分のいずれにおいても、CoPtナノワイヤが途切れてしまうものの、得られたL1規則化CoPt強磁性ナノワイヤは、線幅が20~30nm、線長さは線幅の2倍以上となっていた。
 [実験例2]
 <サンプル作製>
 CoPtナノワイヤの延在方向に垂直な断面形状を、図2(B)に示すものとしたこと以外は、実験例1と同じ条件で、SiO/Si基板上にCoPtナノワイヤを形成した。すなわち、CoPtナノワイヤは、厚さ1.8nmのCo層と厚さ2.4nmのPt層を交互に12回積層して形成した、厚さ50.4nmの{Co(1.8nm)/Pt(2.4nm)}12積層体である。CoPtナノワイヤの原子組成比はCo:Pt=1:1である。断面形状は矩形であり、線幅は18nm、アスペクト比は2.8である。1本のCoPtナノワイヤの線長さは75μmであり、これを平行かつ等間隔に46000本形成した。隣り合うCoPtナノワイヤ間の距離は約130nmである。
 その後、RTA装置(アドバンス理工株式会社製、MILA−5000UHV)を用いて、3体積%の水素を含み、残部がアルゴンガスからなる雰囲気下で、熱処理温度650℃、熱処理時間30分、60分、及び90分の3条件の熱処理を行った。
 <特性評価>
 (1)SEM観察
 各サンプルの表面をSEM観察した。結果を図5に示す。
 (2)GI−XRD測定
 各サンプルにおいて、熱処理後のCoPtナノワイヤの結晶構造をGI−XRDによって評価した。具体的な測定方法は実験例1と同じである。各サンプルにおいて、得られたGI−XRDパターンを図5に示す。
 <考察>
 図5(下側)のGI−XRDパターンを参照すると、熱処理時間が30分、60分、及び90分のいずれにおいても、L1規則化CoPt001,110に起因する超格子反射が確認された。このことから、いずれのサンプルでも、CoPtがL1規則化して、L1規則化CoPt強磁性ナノワイヤが得られていることが確認された。
 図5(上側)に示すように、熱処理時間60分及び90分の場合、CoPtナノワイヤが途切れてしまったのに対して、熱処理時間が30分の場合、CoPtナノワイヤがほぼ途切れることなく、線長さを十分に確保した規則化CoPt強磁性ナノワイヤを得ることができた。いずれのサンプルにおいても、得られたL1規則化CoPt強磁性ナノワイヤは、線幅が20~30nm、線長さは線幅の2倍以上となっていた。
 [実験例3]
 <サンプル作製>
 CoPtナノワイヤの延在方向に垂直な断面形状を、図2(C)に示すものとしたこと以外は、実験例1と同じ条件で、SiO/Si基板上にCoPtナノワイヤを形成した。すなわち、CoPtナノワイヤは、厚さ3.6nmのCo層と厚さ4.8nmのPt層を交互に6回積層して形成した、厚さ50.4nmの{Co(3.6nm)/Pt(4.8nm)}積層体である。CoPtナノワイヤの原子組成比はCo:Pt=1:1である。断面形状は矩形であり、線幅は20nm、アスペクト比は2.5である。1本のCoPtナノワイヤの線長さは75μmであり、これを平行かつ等間隔に46000本形成した。隣り合うCoPtナノワイヤ間の距離は約130nmである。
 その後、RTA装置(アドバンス理工株式会社製、MILA−5000UHV)を用いて、3体積%の水素を含み、残部がアルゴンガスからなる雰囲気下で、熱処理温度650℃、熱処理時間30分、60分、及び90分の3条件の熱処理を行った。
 <特性評価>
 (1)SEM観察
 各サンプルの表面をSEM観察した。結果を図6に示す。
 (2)GI−XRD測定
 各サンプルにおいて、熱処理後のCoPtナノワイヤの結晶構造をGI−XRDによって評価した。具体的な測定方法は実験例1と同じである。各サンプルを代表して、熱処理時間が90分のサンプルで得られたGI−XRDパターンを図7に示す。
 (3)VSM測定(磁化特性)
 各サンプルの磁気特性を、磁気特性測定システム(カンタム・デザイン社製、MPMS3)の試料振動型磁力計(VSM)を用いて、室温(27℃)の真空下で最大70kOeの外部磁場を(i)ワイヤ軸に垂直な面内方向、(ii)ワイヤ軸に平行な面内方向、及び(iii)面直方向に掃引して測定した。保磁力Hc及び飽和磁化Msの定義は、実験例1に記載したとおりである。各サンプルを代表して、熱処理時間を90分とした例の磁気ヒステリシスループ(M−Hカーブ)を図8に示す。
 (4)TEM及びSTEM観察
 各サンプルをTEM及びSTEM観察に供した。各サンプルを代表して、図9に、熱処理時間を90分としたサンプルにおける、規則化CoPt強磁性ナノワイヤの延在方向に垂直な断面TEM画像を示す。図10に、熱処理時間を90分としたサンプルにおける、規則化CoPt強磁性ナノワイヤの延在方向に沿った、幅方向に垂直な断面TEM画像を示す。また、図11A、図11B、図11C及び図11Dに、熱処理時間を90分としたサンプルにおける、規則化CoPt強磁性ナノワイヤのSTEM画像を示す。図11B及び図11Cは、それぞれ図11Aのナノワイヤの上部(黄色線で囲った部分)及び下部(青色線で囲った部分)の拡大STEM画像であり、図11Dは、規則化CoPt強磁性ナノワイヤの側面を拡大して観察したSTEM画像である。
 <考察>
 図7のGI−XRDパターンを参照すると、熱処理時間が90分の例において、L1規則化CoPt001,110に起因する超格子反射が確認された。このことから、CoPtがL1規則化して、L1規則化CoPt強磁性ナノワイヤが得られていることが確認された。熱処理時間が30分及び60分のサンプルでも同様であった。
 図8から、熱処理温度が90分の場合、保磁力Hcが10.8kOeであり、高い保磁力が得られ、飽和磁化Msは440~560emu/cmであった。図示は省略するが、熱処理温度が30分の場合、保磁力Hcは8.3kOeであり、飽和磁化Msは400~500emu/cmであった。熱処理温度が60分の場合、保磁力Hcは9.5kOeであり、飽和磁化Msは410~550emu/cmであった。
 図6のSEM画像を参照すると、熱処理時間が30分、60分、及び90分のいずれにおいても、CoPtナノワイヤがほぼ途切れることなく、線長さを十分に確保した規則化CoPt強磁性ナノワイヤを得ることができた。線幅は20~30nmであった。
 図9及び図11Aに示すように、得られた規則化CoPt強磁性ナノワイヤの延在方向に垂直な断面形状は、基板との接触部以外は全体的に丸みを帯びた形状となっていた。また、図10に示すように、規則化CoPt強磁性ナノワイヤは複数のグレインが連結してなるものであった。図11A、図11B、図11C及び図11Dを見ると、中心部分で電子線散乱をとっているにも関わらず、[001]と[110]の散乱が見えていることから、中心部分も含めた全体がL1規則化していることがわかる。また、図11B、図11C及び図11Dには、双晶が観察された。すなわち、同一グレインの上部(図11B)と下部(図11C)で、双晶により2つのc軸(白矢印と緑矢印で示した。)が存在することが分かる。上部の白矢印及び緑矢印と、下部の白矢印及び緑矢印とを比較すると、それぞれが全く同じ方向となっている。このことから、グレイン内は双晶を含む単結晶となっていることが分かる。なお、図11C及び図11Dにおいて、双晶の境界は赤線で示した。また、図11Dには、グレイン境界も観察された。右側のグレインでは、鮮明な格子縞が見えないことから、単結晶のc軸が別の方向を向いていることが分かる。
 Co層とPt層の各層の厚さは、実験例2と比較すると2倍になっており、CoPtナノワイヤの厚さは同一となっている。各層が厚いと、薄い場合と比較して層間における相互拡散は起きづらく、層間相互拡散が終了するまでに長い時間を要する。
 CoPtは、高温下で応力が存在する条件下でL1規則化する。本実験例のナノワイヤ構造は、曲率半径は15nm以下で極めて小さいため、段落[0066]で説明したようにL1規則化が進行する。
 矩形の断面形状を有するナノワイヤ構造が丸みを帯びた形状の断面に変化する際、Co原子とPt原子はナノワイヤ表面を拡散する。この極めて大きな引張応力が加わる状況で、表面拡散する際にL1規則化が促進されることになる。CoとPtの厚さが薄いと、短い時間で層間相互拡散が起きA1不規則相化して混ざった状態となる。各層の膜厚が厚くなると、PtはCoと比較して硬く、表面自己拡散係数が小さいため、層間相互拡散が終わっていない状態では、Pt層の存在により、レイリー不安定性により断線モードに入りづらい。さらに、Co原子とPt原子がL1規則化しやすい状態で、それぞれ表面自己拡散することによりL1規則化する。これが、ナノ構造誘起L1規則化プロセスである。したがって、Co層とPt層の膜厚は、L1規則化を促進するためには、本実験例のように厚い方が、実験例2の薄い状態よりも好ましい。
 本発明の規則化合金強磁性ナノワイヤ構造体は、MRAM、HHD内のTMRヘッド、FM−SETなどのスピントロニクスデバイス(磁性体デバイス)に応用できる可能性があり、産業上の有用性が高い。
 100  規則化CoPt強磁性ナノワイヤ構造体
  10  基板
  10A 基板の露出部
  12  電子線レジスト膜
  14  マスクパターン
  16  CoPtナノワイヤ(Co/Pt交互積層体)
  16A Co層(第一層)
  16B Pt層(第二層)
  18  規則化CoPt強磁性ナノワイヤ

Claims (22)

  1.  基板上に、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素からなるナノワイヤを形成する工程と、
     前記ナノワイヤに熱処理を施して、前記基板上に前記鉄族元素及び前記白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤが形成された規則化合金強磁性ナノワイヤ構造体を得る工程と、
    を有する規則化合金強磁性ナノワイヤ構造体の製造方法。
  2.  前記ナノワイヤの延在方向に垂直な断面において、線幅に対する厚さの比が0.7以上3.0以下である、請求項1に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  3.  前記ナノワイヤの線長さを800nm以上とする、請求項1又は2に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  4.  前記基板上に接して前記ナノワイヤを形成する、請求項1~3のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  5.  前記基板が、酸化マグネシウム基板、アルミナ基板、チタン酸ストロンチウム基板、及び酸化シリコン膜が表面に形成されたシリコン基板のいずれかである、請求項1~4のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  6.  電子ビーム蒸着法により前記鉄族元素及び前記白金族元素を交互に堆積させて前記ナノワイヤを作製することで、前記ナノワイヤが前記鉄族元素からなる第一層及び前記白金族元素からなる第二層の交互積層体からなる、請求項1~5のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  7.  前記第一層の厚さが2.0nm以上15nm以下、前記第二層の厚さが3.0nm以上15nm以下、前記第一層及び前記第二層の層数が合計で2以上24以下である、請求項6に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  8.  電子ビーム蒸着法又はスパッタリング法により前記鉄族元素及び前記白金族元素を同時に堆積させて前記ナノワイヤを作製することで、前記ナノワイヤが前記鉄族元素及び前記白金族元素の複合体からなる、請求項1~5のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  9.  水素及び不活性ガスを含む雰囲気下にて前記熱処理を行う、請求項1~8のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  10.  前記熱処理において、熱処理温度は500℃以上900℃以下、熱処理時間は30分以上360分以下とする、請求項1~9のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  11.  前記ナノワイヤの原子組成比を前記鉄族元素:前記白金族元素=1:1として、前記規則化合金強磁性ナノワイヤを、L1規則化合金であるものとする、請求項1~10のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  12.  前記ナノワイヤの原子組成比を前記鉄族元素:前記白金族元素=1:3又は3:1として、前記規則化合金強磁性ナノワイヤを、L1規則化合金であるものとする、請求項1~10のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  13.  前記鉄族元素がCo、Fe及びNiのいずれかであり、前記白金族元素がPt及びPdのいずれかである、請求項1~12のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体の製造方法。
  14.  基板と、
     前記基板上に形成された、線幅が100nm以下で、かつ、線長さが線幅の2倍以上であり、鉄族元素及び白金族元素が規則化した合金からなる規則化合金強磁性ナノワイヤと、
    を有する規則化合金強磁性ナノワイヤ構造体。
  15.  前記規則化合金強磁性ナノワイヤの線長さが800nm以上である、請求項14に記載の規則化合金強磁性ナノワイヤ構造体。
  16.  前記基板上に接して前記規則化合金強磁性ナノワイヤが形成された、請求項14又は15に記載の規則化合金強磁性ナノワイヤ構造体。
  17.  前記基板が、酸化マグネシウム基板、アルミナ基板、チタン酸ストロンチウム基板、及び酸化シリコン膜が表面に形成されたシリコン基板のいずれかである、請求項14~16のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
  18.  前記規則化合金強磁性ナノワイヤがL1規則化合金である、請求項14~17のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
  19.  前記規則化合金強磁性ナノワイヤがL1規則化合金である、請求項14~17のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
  20.  前記規則化合金強磁性ナノワイヤの延在方向に垂直な断面において、前記規則化合金強磁性ナノワイヤの前記基板との接触幅が前記規則化合金強磁性ナノワイヤの最大幅よりも小さい、請求項14~19のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
  21.  前記規則化合金強磁性ナノワイヤは、複数のグレインが連結してなり、前記グレインの各々が、双晶を含む単結晶からなる、請求項14~20のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
  22.  前記鉄族元素がCo、Fe及びNiのいずれかであり、前記白金族元素がPt及びPdのいずれかである、請求項14~21のいずれか一項に記載の規則化合金強磁性ナノワイヤ構造体。
PCT/JP2022/034863 2021-09-13 2022-09-12 規則化合金強磁性ナノワイヤ構造体及びその製造方法 WO2023038158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023547167A JPWO2023038158A1 (ja) 2021-09-13 2022-09-12
CN202280060454.0A CN117916191A (zh) 2021-09-13 2022-09-12 有序合金铁磁性纳米线结构体及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-148986 2021-09-13
JP2021148986 2021-09-13
JP2022-043216 2022-03-17
JP2022043216 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023038158A1 true WO2023038158A1 (ja) 2023-03-16

Family

ID=85506494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034863 WO2023038158A1 (ja) 2021-09-13 2022-09-12 規則化合金強磁性ナノワイヤ構造体及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023038158A1 (ja)
WO (1) WO2023038158A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052956A (ja) * 2003-08-07 2005-03-03 Canon Inc ナノ構造体、及びその製造方法
WO2007081381A2 (en) * 2005-05-10 2007-07-19 The Regents Of The University Of California Spinodally patterned nanostructures
JP2008115469A (ja) * 2006-11-01 2008-05-22 Korea Univ Industry & Academy Collaboration Foundation 鉄−金のバーコードナノワイヤー及びその製造方法
JP2009301699A (ja) * 2008-06-16 2009-12-24 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置の駆動方法
JP2016042399A (ja) 2014-08-18 2016-03-31 学校法人早稲田大学 磁気記録媒体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052956A (ja) * 2003-08-07 2005-03-03 Canon Inc ナノ構造体、及びその製造方法
WO2007081381A2 (en) * 2005-05-10 2007-07-19 The Regents Of The University Of California Spinodally patterned nanostructures
JP2008115469A (ja) * 2006-11-01 2008-05-22 Korea Univ Industry & Academy Collaboration Foundation 鉄−金のバーコードナノワイヤー及びその製造方法
JP2009301699A (ja) * 2008-06-16 2009-12-24 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置の駆動方法
JP2016042399A (ja) 2014-08-18 2016-03-31 学校法人早稲田大学 磁気記録媒体及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
R. TOYAMA ET AL.: "Formation of Llo-ordered CoPt during interdiffusion of electron-beam-deposited Pt/Co bilayer thin films on Si/SiO substrates by rapid thermal annealing", MATER. RES. EXPRESS, vol. 7, 2020
R. TOYAMA ET AL.: "Ti underlayer effect on the ordering of CoPt in (Cp/Pt) multilayer thin films on Si/Si0 substrates", JPN. J. APPL. PHYS., vol. 59, 2020
TOYAMA ET AL.: "Ti underlayer effect on the ordering of CoPt in (Cp/Pt) multilayer thin films on Si/SiO substrates", JPN. J. APPL. PHYS., vol. 59, 2020
YOSHIHARU HOTTA ET AL.: "Phase Transformation and Photoemission Electron Microscopy of FesoPdso- Ni Processed by Severe Plastic Deformation", SPRING-8/SACLA RESEARCH REPORT, vol. 8, no. 3, January 2021 (2021-01-01), pages 493 - 496

Also Published As

Publication number Publication date
JPWO2023038158A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
US10749105B2 (en) Monocrystalline magneto resistance element, method for producing the same and method for using same
JP2962415B2 (ja) 交換結合膜
Harp et al. Seeded epitaxy of metals by sputter deposition
JP2023014198A (ja) 磁気抵抗効果素子及び磁気抵抗効果素子を製造する方法
JP2001273622A (ja) ナノグラニュラー薄膜および磁気記録媒体
WO1997005664A1 (fr) Element magnetoresistant et sa fabrication
WO2023038158A1 (ja) 規則化合金強磁性ナノワイヤ構造体及びその製造方法
Marciniak et al. L 1 0 FePt thin films with tilted and in-plane magnetic anisotropy: A first-principles study
JP3961887B2 (ja) 垂直磁気記録媒体の製造方法
CN117916191A (zh) 有序合金铁磁性纳米线结构体及其制造方法
JPWO2005022565A1 (ja) ナノ粒子デバイス及びナノ粒子デバイスの製造方法
JP4953064B2 (ja) ホイスラー合金とそれを用いたtmr素子又はgmr素子
JP4621899B2 (ja) 磁気媒体
JP2006294121A (ja) 磁気記録媒体およびその製造方法
Shamis et al. Materials science asPects of fePt-baseD thin filMs’ forMation
JP2003099920A (ja) FePt磁性薄膜の製造方法
JP2001044025A (ja) グラニュラー硬磁性薄膜及びグラニュラー硬磁性薄膜の製造方法
JP2005194591A (ja) FePt合金、及びFePt合金の作製方法
JP2000216453A (ja) 磁気抵抗効果膜及びその製造方法並びにそれを用いた磁気ヘッド
JP3274440B2 (ja) 磁気抵抗効果素子、ならびに、前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
JP3255901B2 (ja) 交換結合膜の製造方法
JPH07263773A (ja) 磁気抵抗効果素子及びその製造方法
JP2003289005A (ja) 高配向磁性薄膜の製造方法
WO2020110360A1 (ja) 磁気抵抗効果素子、磁気センサ、再生ヘッドおよび磁気記録再生装置
JP2002171012A (ja) 交換結合素子及びスピンバルブ型薄膜磁気素子並びに磁気ヘッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547167

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060454.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022867479

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867479

Country of ref document: EP

Effective date: 20240415