WO2005019094A1 - Structure empilée, et procédé pour la fabriquer - Google Patents

Structure empilée, et procédé pour la fabriquer Download PDF

Info

Publication number
WO2005019094A1
WO2005019094A1 PCT/FR2004/001858 FR2004001858W WO2005019094A1 WO 2005019094 A1 WO2005019094 A1 WO 2005019094A1 FR 2004001858 W FR2004001858 W FR 2004001858W WO 2005019094 A1 WO2005019094 A1 WO 2005019094A1
Authority
WO
WIPO (PCT)
Prior art keywords
stacked structure
layer
silicon
structure according
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2004/001858
Other languages
English (en)
French (fr)
Inventor
Hubert Moriceau
Bernard Aspar
Jacques Margail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to US10/565,621 priority Critical patent/US8193069B2/en
Priority to JP2006520855A priority patent/JP2006528422A/ja
Priority to EP04767683A priority patent/EP1651560B1/fr
Priority to DE602004017875T priority patent/DE602004017875D1/de
Priority to CN2004800207567A priority patent/CN1826285B/zh
Publication of WO2005019094A1 publication Critical patent/WO2005019094A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/001Structures having a reduced contact area, e.g. with bumps or with a textured surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/11Treatments for avoiding stiction of elastic or moving parts of MEMS
    • B81C2201/112Depositing an anti-stiction or passivation coating, e.g. on the elastic or moving parts

Definitions

  • the general field of the invention is that of the manufacture of microstructures from substrates ("wafer level" in English), for example by means of micromachining or chemical treatment techniques used in microelectronics (deposition and etching of layers, photolithography , And so on).
  • the invention relates more particularly to certain MEMS type microstructures (initials of the English words “Micro-Electro-Mechanical Systems”, ie “Microscopic Electro-Mechanical Systems”), such as various detectors and actuators, which are obtained by release of moving parts (for example membranes or earthquakes).
  • a first technique is thinning (mechanical by rectification and / or smoothing, and / or chemical, and / or mechanical-chemical).
  • a second technique is the fracture at the level of a fragile zone, this fragile zone having been created, before lad ite ad molecular hesitation, at a certain depth in one of the two plates, for example by implantation of one or more gaseous species:
  • patent application FR-2681472 discloses such a process, which is now known as the "Smart-Cut ®” (see for example the article of B. Aspar et al. entitled “the Nature of Generic the Smart-Cuf Process for Thin- Film Transfer ”, in Journal of Electronic Materials, vol. 30, n ° 7, 2001).
  • the material constituting a sacrificial layer is therefore different, from the chemical or crystallographic point of view, from the material constituting the “non-sacrificial” layers, ie intended to be kept after elimination of the sacrificial layer.
  • the layer of silicon oxide plays the role of “sacrificial layer”, and the layers of silicon that of “non-sacrificial layers”.
  • This embodiment is relatively simple to implement, and it makes it possible to obtain a variety of microstructures. For example, good quality pressure sensors can thus be produced.
  • This accelerometer comprises, within a thin layer, a first part cut from this thin layer and a second part constituted by the rest of the thin layer, the first part being connected to the second by means of flexible beams allowing this first part, or "sensitive" part, to move with a certain amplitude in the plane of the thin layer.
  • This device is used to measure the accelerations of any system of which it is integral, by means of a variation in electrical capacity caused by said displacement.
  • Other detailed examples of such microstructures can be found in the article by B. Diem et al., Entitled “SOI 'SIMOX'; from bulk to surface micromachining, a new age for silicon sensors and actuators ”, in Sensors and Actuators, vol. A 46 - 47, pages 8 to 16 (1995).
  • a first known means for preventing this sticking consists in reducing the sticking energy of the released layer and the substrate.
  • these techniques use methods of chemical preparation of surfaces which are incompatible with the high temperatures usually required for the subsequent stages of manufacturing MEMS.
  • a second known means for preventing this sticking consists in arranging so that, when these two surfaces are brought together, the effective contact area is small. Such a method has been disclosed in patent FR 9 508 882.
  • This method consists in keeping the released layer and the substrate at a distance by etching the intermediate sacrificial layer so as to create stops on each of the faces facing the released layer and of the substrate.
  • Another such method has been described in the article by RL Alley et al. «Surface Roughness Modification of Interfacial Contact Polysilicon in Microstructures” (Proceedings of the 7th International Conference on Sensors and Actuators Semiconductors).
  • This article proposes a process for developing components with movable parts including steps to lead to a component whose free facing faces have a "roughness” capable of avoiding undesirable sticking between said faces (for a statistical definition of "roughness , "We will refer to this article; we can for example make roughness measurements with an atomic force microscope exploring areas, for example, of 1 ⁇ m x 1 ⁇ m).
  • This process consists, during the chemical release stage of the structure, of roughening the surfaces concerned so that the effective contact area is limited to the tops of the roughness of these surfaces.
  • the article by RL Alley et al. Its main purpose is to study how the bonding strength decreases when the roughness increases.
  • this method provides for the deposition of a surface film on the substrate of the stacked structure;
  • this deposition is not always possible.
  • this method does not make it possible to obtain a surface film to be released which is monocrystalline if the material of the sacrificial layer is amorphous; it also does not make it possible to obtain a monocrystalline film, of silicon for example, on a sacrificial layer of polymer material due to the incompatibility between the deposition temperature of this silicon film and the temperatures that a polymer can usually withstand .
  • the present invention therefore relates to a method of manufacturing a stacked structure, if necessary of large dimensions, if necessary over the entire surface of a wafer having for example a diameter of 200 mm, and subsequently allowing the production of any which MEMS type component without bonding mobile or deformable mechanical structures.
  • This manufacturing process must be able to be applicable whatever the characteristics of said components, in particular their size or the materials used, in particular when the surface layer to be (at least partially) released is monocrystalline, or cannot be deposited simply on the structure. stacked required.
  • the invention therefore proposes, according to a first aspect, a method of manufacturing a stacked structure, said method being remarkable in that it comprises the following steps: a) a first plate and a second plate are taken, such that at least one of said first and second plates has a structured surface, at least in part, b) a sacrificial layer is produced on at least part of the surface of the first plate and / or the surface of the second plate, and c) the two plates are glued together.
  • the implementation of the method according to the invention provides a stacked structure comprising a sacrificial layer located between two substrates, and in which at least one of the two substrates is such that at least part of its surface in contact with said sacrificial layer is "structured".
  • a surface is "structured" when it is found to be essentially incapable of sticking to another predetermined substrate.
  • a surface can for example be structured due to the physicochemical nature of this surface, or of a coating applied to this surface; a surface can also be structured due to a roughness greater than a predetermined threshold, for example equal to approximately 0.2 nm RMS.
  • the production of structured surface (s) takes place before or during the manufacture of the stacked structure, and therefore independently of the manufacture of a MEMS type component. Thanks to the invention, it is advantageously possible to choose, to constitute the stacked structure, any set of materials which may subsequently be useful for the production of a MEMS component. For example, it is possible to obtain a stack comprising a thin layer of silicon on a sacrificial layer of polymer, or a thin layer of monocrystalline silicon on a sacrificial layer of silicon oxide. It will also be noted that the method according to the invention does not impose any limitation on the lateral dimensions of the stacked structure obtained.
  • the free surface of a sacrificial layer or, where appropriate, of the two sacrificial layers, and / or, where appropriate, is smoothed. of the free surface of one of said plates.
  • This bonding may for example be a molecular bonding, or else a bonding using a sacrificial glue, that is to say an adhesive capable of being subsequently removed, for example when using said stacked structure to manufacture a component comprising a part mobile or deformable.
  • step c) can be "assisted" for example by mechanical means and / or by plasma and / or heat treatment, these operations being carried out during or after this bonding, under a specific atmosphere or at 'outdoors. Thanks to these provisions, it is possible, in particular, to consolidate the various interfaces and / or make them compatible with the future stages of production of the MEMS components. It is also thus possible to make adherent two rough surfaces which would not stick to each other spontaneously. According to yet other particular characteristics of the invention, following step c), at least one of the two plates is thinned.
  • the parts of a MEMS type component which will become mobile after elimination of the sacrificial layer situated in contact with these parts.
  • the two plates as well as the sacrificial layer can, of course, be either simple or composite, that is to say formed themselves from a stack of layers of various materials.
  • the stacked structure thus obtained can advantageously be of the SOI type.
  • the first plate, as well as the second plate can be made of silicon, or of a semiconductor other than silicon, for example SiC, GaN, or InP, or else a non-semiconductor material, such as LiNbO 3 , LiTaO 3 , a glass, fused silica, or a superconductive material.
  • the first plate, as well as the second plate can also be any combination of these materials, in particular a stack of monocrystalline / Si polycrystalline, or SiC / Si, or InP / Si, or SiC monocrystalline / SiC polycrystalline, or else Polycrystalline SiC / SiO 2 / SiC.
  • the material constituting the sacrificial layer produced on the first plate and / or the material constituting the sacrificial layer produced on the second plate can be, for example, silicon oxide or a polymeric material.
  • at least one of said plates initially has a surface layer.
  • this surface layer can have the effect of structuring the surface of the plate on which it rests, due to the physicochemical nature of this surface layer.
  • the invention also relates to various stacked structures. It thus relates, firstly, to a stacked structure which has been manufactured by any of the methods succinctly described above.
  • the invention relates to a stacked structure, said structure being remarkable in that it comprises a sacrificial layer situated between a first substrate and a second substrate, and in that at least one of said first and second substrate has a structured surface , at least in part.
  • the two substrates as well as the sacrificial layer can, of course, be either simple or composite, that is to say formed themselves by a stack of layers of various materials.
  • the stacked structure thus obtained can in particular be of the SOI type.
  • the first substrate, as well as the second substrate can be made of silicon, or of a semiconductor other than silicon, for example SiC, GaN, or InP, or of a non-semi-material conductor, such as LiNbO 3 , LiTaO 3 , a glass, fused silica, or a superconductive material.
  • the first substrate, as well as the second substrate can also be any combination of these materials, in particular a stack of monocrystalline / Si polycrystalline, or SiC / Si, or InP / Si, or SiC monocrystalline / Si polycrystalline, or else Polycrystalline SiC / SiO 2 / SiC.
  • the material constituting the sacrificial layer can be, for example, silicon oxide or a polymeric material.
  • At least one of the two substrates is a thin layer.
  • the advantages offered by these materials are essentially the same as those offered by the corresponding manufacturing processes. Other aspects and advantages of the invention will appear on reading the detailed description, which will be found below, of particular embodiments given by way of nonlimiting examples.
  • This description refers to the accompanying drawings, in which: - Figure 1 shows a silicon wafer before the implementation of the invention, - Figure 2 shows the same silicon wafer after application of a first step of a manufacturing method according to an embodiment of the invention, - Figure 3 represents a second step of this method, - Figure 4 represents a third step of this method, - Figure 5 represents a fourth step of this method, and - Figure 6 shows a fifth step in this process.
  • a standard silicon wafer 1 whose surface 2 has a roughness r 2 which is usually of the order of 0.1 nm (FIG. 1).
  • This surface 2 is then "structured" (FIG. 2), for example by creating a roughness f 2 on the surface 2 of the plate 1.
  • a roughness r " 2 will be created in the range from 0.2 nm to a few
  • the roughness to choose depends in particular, for example, on the thickness of the sacrificial intermediate layer, on the geometric parameters of the future component with moving parts targeted, and stresses in the surface film. Those skilled in the art will be able to determine the roughness to be used to avoid any undesirable sticking within this component.
  • a sacrificial layer 3 is produced (FIG. 3), on the surface of this plate 1.
  • the layer 3 can for example be made of silicon oxide.
  • this layer 3 can be obtained by thermal oxidation in a dry or humid atmosphere, or by deposition (LPCVD, PECVD, or any other method adapted).
  • the roughness r at the surface 4 of this layer 3 can be of the same order of magnitude as the initial roughness of the plate 1, or higher (it is known to increase the roughness by depositing successive films, the roughness increasing with the number of films deposited and their thickness), or reduced by means, for example, of the deposition of a smoothing oxide (not shown) produced at low temperature and whose creep on the surface can be caused, for example, by a heat treatment adapted.
  • a smoothing oxide not shown
  • a roughness r, ⁇ somewhat less by performing, in a third step (figure 4), a surface smoothing, such as by a slight chemical mechanical polishing and / or by a heat treatment under a specific atmosphere and / or by depositing a smoothing layer (not shown).
  • a second plate 5 is taken, for example made of polycrystalline silicon (which may moreover possibly have on the surface a layer 9 of another material, for example monocrystalline silicon or SiC ), which is bonded to layer 3, preferably by molecular adhesion. Bonding can also be carried out using a type of sacrificial glue, that is to say which can be selectively removed, for example a photosensitive polymer.
  • a “bonding aid” firstly by bringing the surfaces into contact, where appropriate after application of a plasma treatment of these surfaces, then by applying mechanical stress and / or heat treatment to the stacked structure, under a specific atmosphere or in the open air.
  • a heat treatment, applied during or after bonding also makes it possible to consolidate the various interfaces and / or make it compatible with the future stages of production of MEMS components.
  • at least one of the two plates 1 and / or 5 can be thinned (plate 5 in FIG. 6), so as to obtain a stacked structure 100, for example of the type
  • Thinning can be carried out according to any of the known methods, such as those described in the introduction. It will be noted that it is perfectly possible, according to a variant of the invention, to place steps of the process for producing the microstructure, for example etching in the sacrificial layer of the areas in contact with the moving parts, in the middle of the steps. that we have just described, for example before the bonding step.
  • the movable parts may possibly also be defined before the bonding step in the subsequently thinned plate; after bonding and thinning of the plate comprising the movable parts, it is possible to apply a heat treatment to reinforce the bonding interface of the stacked structure without pressure constraint (said zones underlying the movable parts emerging at the surface) .
  • the method can relate to all or only part of the surface of at least one of the plates or of one of the treated films.
  • one can obtain a predetermined structure on a localized area using a lithography process.
  • the "structuring" of a given surface can be obtained without necessarily making this surface rough.
  • the surface to be structured can be treated by nitriding.
  • a layer of an “anti-sticking” material that is to say whose physicochemical nature is such that it opposes any undesirable subsequent sticking (naturally , we can optionally combine the roughness creation techniques and surface treatment or making an "anti-sticking” layer). It is thus possible, initially, to deposit a surface layer 6 (not shown), for example made of Si 3 N, on a first plate 1 of any roughness. We can then create on the surface 2 of this surface layer 6, as explained above, a roughness, for example due to the conformation by deposition on a rough surface.
  • the surface of this surface layer 6 so as to make it incompatible with an undesirable bonding with the substrate intended to be located opposite the surface layer 6; it is possible, for example, according to known methods, to make the surface of a surface layer 6 of Si 3 N hydrophobic; other materials than silicon nitride Si 3 N can be used here, such as diamond, or AI 2 O 3 or even ZrO 2 .
  • the sacrificial layer 3 is then deposited on the surface layer 6 which is, as explained above, suitable for bonding, for example molecular bonding, with the plate 5 (which is made of silicon in this embodiment), possibly after a step of planarization by means of chemical mechanical polishing or heat treatment.
  • the collage can be "assisted” as explained above.
  • the selective attack of the layer 3 will make it possible to free the structured surface of the surface layer 6: during this selective attack, for example using hydrofluoric acid, the material used for the sacrificial layer 3, for example silicon oxide SiO 2 , will be attacked, while that used for the surface layer 6, for example silicon nitride Si 3 N 4 , will not be.
  • the material used for the sacrificial layer 3 for example silicon oxide SiO 2
  • that used for the surface layer 6, for example silicon nitride Si 3 N 4 will not be.
  • Embodiments have been described above in which only the surface 2 of the first plate 1 has been structured; but it is clear that, in the context of the invention, it is equally possible, in addition or instead, to structure the surface 7 (not shown) of the second plate 5 (the latter optionally comprising a surface layer 9, as described above).
  • a sacrificial layer 3 was produced only on the first plate 1; but it is clear that, in the context of the invention, it is equally possible, in addition or instead, to produce a sacrificial layer 8 (not shown) on the second plate 5. Then the two plates are bonded as described above, after, optionally, smoothing the surface 10 (not shown) of this sacrificial layer 8. It is clear that it is possible, for example by localized deposition or by etching, to produce a sacrificial layer which n 'is not continuous; this makes it possible to define already stacked areas in the stacked structure.
  • any structure comprising a thin layer adhering to a buried layer to be sacrificed locally, for example of silicon oxide, the latter resting on a support which may be other than silicon.
  • a person skilled in the art can combine several of the methods described here for the production of specific stacked structures according to the invention.
  • the surface structure required by the invention is not necessarily homogeneous over the whole extent of the surfaces concerned: for certain applications, it may for example be advantageous to produce a surface whose structure is distributed randomly, or else respects a certain distribution on the surface of one of the plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)
  • Adornments (AREA)
  • Glass Compositions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
PCT/FR2004/001858 2003-07-21 2004-07-15 Structure empilée, et procédé pour la fabriquer Ceased WO2005019094A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/565,621 US8193069B2 (en) 2003-07-21 2004-07-15 Stacked structure and production method thereof
JP2006520855A JP2006528422A (ja) 2003-07-21 2004-07-15 積重ね構造およびそれの作成方法
EP04767683A EP1651560B1 (fr) 2003-07-21 2004-07-15 Structure empilée et procédé pour la fabriquer
DE602004017875T DE602004017875D1 (de) 2003-07-21 2004-07-15 Schichtstruktur und Herstellungsverfahren dafür
CN2004800207567A CN1826285B (zh) 2003-07-21 2004-07-15 堆叠结构及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/08865 2003-07-21
FR0308865A FR2857953B1 (fr) 2003-07-21 2003-07-21 Structure empilee, et procede pour la fabriquer

Publications (1)

Publication Number Publication Date
WO2005019094A1 true WO2005019094A1 (fr) 2005-03-03

Family

ID=33560963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001858 Ceased WO2005019094A1 (fr) 2003-07-21 2004-07-15 Structure empilée, et procédé pour la fabriquer

Country Status (8)

Country Link
US (1) US8193069B2 (enExample)
EP (1) EP1651560B1 (enExample)
JP (1) JP2006528422A (enExample)
CN (1) CN1826285B (enExample)
AT (1) ATE414673T1 (enExample)
DE (1) DE602004017875D1 (enExample)
FR (1) FR2857953B1 (enExample)
WO (1) WO2005019094A1 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8470712B2 (en) 1997-12-30 2013-06-25 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748851B1 (fr) 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
FR2861497B1 (fr) 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7643203B2 (en) 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
FR2911598B1 (fr) 2007-01-22 2009-04-17 Soitec Silicon On Insulator Procede de rugosification de surface.
FR2911597B1 (fr) 2007-01-22 2009-05-01 Soitec Silicon On Insulator Procede de formation et de controle d'interfaces rugueuses.
JP4290745B2 (ja) * 2007-03-16 2009-07-08 豊田合成株式会社 Iii−v族半導体素子の製造方法
US7733552B2 (en) 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US9418864B2 (en) * 2008-01-30 2016-08-16 Infineon Technologies Ag Method of forming a non volatile memory device using wet etching
WO2010042209A1 (en) * 2008-10-09 2010-04-15 Bandgap Engineering, Inc. Process for structuring silicon
EP2202795A1 (en) * 2008-12-24 2010-06-30 S.O.I. TEC Silicon Method for fabricating a semiconductor substrate and semiconductor substrate
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
WO2010151844A2 (en) * 2009-06-25 2010-12-29 Georgia Tech Research Corporation Metal oxide structures, devices, & fabrication methods
US9425622B2 (en) 2013-01-08 2016-08-23 Infineon Technologies Austria Ag Power converter circuit with AC output and at least one transformer
US9461474B2 (en) 2012-01-17 2016-10-04 Infineon Technologies Austria Ag Power converter circuit with AC output
US9401663B2 (en) 2012-12-21 2016-07-26 Infineon Technologies Austria Ag Power converter circuit with AC output
US9478989B2 (en) 2012-01-17 2016-10-25 Infineon Technologies Austria Ag Power converter circuit with AC output
US9484746B2 (en) 2012-01-17 2016-11-01 Infineon Technologies Austria Ag Power converter circuit with AC output
WO2014020387A1 (en) 2012-07-31 2014-02-06 Soitec Methods of forming semiconductor structures including mems devices and integrated circuits on opposing sides of substrates, and related structures and devices
US9112101B2 (en) * 2013-04-25 2015-08-18 Epistar Corporation Light-emitting device manufacturing method
JP6282342B2 (ja) * 2013-07-05 2018-02-21 エーファウ・グループ・エー・タルナー・ゲーエムベーハー 接触面の少なくとも一方において、接触面の一方に施与された犠牲層を溶解させながら金属接触面を接合する方法
JP2015061010A (ja) * 2013-09-20 2015-03-30 豊田合成株式会社 Iii族窒化物半導体発光素子とその製造方法と実装体の製造方法
WO2018125673A2 (en) * 2016-12-28 2018-07-05 Invensas Bonding Technologies, Inc Processing stacked substrates
JP6737378B2 (ja) * 2019-05-09 2020-08-05 信越化学工業株式会社 SiC複合基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259247A (en) * 1991-02-28 1993-11-09 Robert Bosch Gmbh Sensor
FR2797347A1 (fr) * 1999-08-04 2001-02-09 Commissariat Energie Atomique Procede de transfert d'une couche mince comportant une etape de surfragililisation
US6198159B1 (en) * 1997-03-28 2001-03-06 Ube Industries, Ltd. Bonded wafer, process for producing same and substrate
US20020145489A1 (en) * 2001-04-09 2002-10-10 Cornett Kenneth D. MEMS resonators and method for manufacturing MEMS resonators

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915757A (en) 1972-08-09 1975-10-28 Niels N Engel Ion plating method and product therefrom
US3913520A (en) 1972-08-14 1975-10-21 Precision Thin Film Corp High vacuum deposition apparatus
US3993909A (en) 1973-03-16 1976-11-23 U.S. Philips Corporation Substrate holder for etching thin films
FR2245779B1 (enExample) 1973-09-28 1978-02-10 Cit Alcatel
US3901423A (en) 1973-11-26 1975-08-26 Purdue Research Foundation Method for fracturing crystalline materials
US4170662A (en) 1974-11-05 1979-10-09 Eastman Kodak Company Plasma plating
US4121334A (en) 1974-12-17 1978-10-24 P. R. Mallory & Co. Inc. Application of field-assisted bonding to the mass production of silicon type pressure transducers
US3957107A (en) 1975-02-27 1976-05-18 The United States Of America As Represented By The Secretary Of The Air Force Thermal switch
US4039416A (en) 1975-04-21 1977-08-02 White Gerald W Gasless ion plating
GB1542299A (en) 1976-03-23 1979-03-14 Warner Lambert Co Blade shields
US4028149A (en) 1976-06-30 1977-06-07 Ibm Corporation Process for forming monocrystalline silicon carbide on silicon substrates
US4074139A (en) 1976-12-27 1978-02-14 Rca Corporation Apparatus and method for maskless ion implantation
US4108751A (en) 1977-06-06 1978-08-22 King William J Ion beam implantation-sputtering
US4179324A (en) 1977-11-28 1979-12-18 Spire Corporation Process for fabricating thin film and glass sheet laminate
DE2849184A1 (de) 1978-11-13 1980-05-22 Bbc Brown Boveri & Cie Verfahren zur herstellung eines scheibenfoermigen silizium-halbleiterbauelementes mit negativer anschraegung
JPS55104057A (en) 1979-02-02 1980-08-09 Hitachi Ltd Ion implantation device
CH640886A5 (de) 1979-08-02 1984-01-31 Balzers Hochvakuum Verfahren zum aufbringen harter verschleissfester ueberzuege auf unterlagen.
US4244348A (en) 1979-09-10 1981-01-13 Atlantic Richfield Company Process for cleaving crystalline materials
FR2475068B1 (fr) 1980-02-01 1986-05-16 Commissariat Energie Atomique Procede de dopage de semi-conducteurs
FR2506344B2 (fr) 1980-02-01 1986-07-11 Commissariat Energie Atomique Procede de dopage de semi-conducteurs
US4342631A (en) 1980-06-16 1982-08-03 Illinois Tool Works Inc. Gasless ion plating process and apparatus
US4471003A (en) 1980-11-25 1984-09-11 Cann Gordon L Magnetoplasmadynamic apparatus and process for the separation and deposition of materials
FR2501727A1 (fr) 1981-03-13 1982-09-17 Vide Traitement Procede de traitements thermochimiques de metaux par bombardement ionique
US4361600A (en) 1981-11-12 1982-11-30 General Electric Company Method of making integrated circuits
US4412868A (en) 1981-12-23 1983-11-01 General Electric Company Method of making integrated circuits utilizing ion implantation and selective epitaxial growth
US4486247A (en) 1982-06-21 1984-12-04 Westinghouse Electric Corp. Wear resistant steel articles with carbon, oxygen and nitrogen implanted in the surface thereof
FR2529383A1 (fr) 1982-06-24 1983-12-30 Commissariat Energie Atomique Porte-cible a balayage mecanique utilisable notamment pour l'implantation d'ioris
FR2537768A1 (fr) 1982-12-08 1984-06-15 Commissariat Energie Atomique Procede et dispositif d'obtention de faisceaux de particules de densite spatialement modulee, application a la gravure et a l'implantation ioniques
FR2537777A1 (fr) 1982-12-10 1984-06-15 Commissariat Energie Atomique Procede et dispositif d'implantation de particules dans un solide
DE3246480A1 (de) 1982-12-15 1984-06-20 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur herstellung von halbleiterscheiben mit getternder scheibenrueckseite
US4500563A (en) 1982-12-15 1985-02-19 Pacific Western Systems, Inc. Independently variably controlled pulsed R.F. plasma chemical vapor processing
US4468309A (en) 1983-04-22 1984-08-28 White Engineering Corporation Method for resisting galling
GB2144343A (en) 1983-08-02 1985-03-06 Standard Telephones Cables Ltd Optical fibre manufacture
US4567505A (en) 1983-10-27 1986-01-28 The Board Of Trustees Of The Leland Stanford Junior University Heat sink and method of attaching heat sink to a semiconductor integrated circuit and the like
JPS6088535U (ja) 1983-11-24 1985-06-18 住友電気工業株式会社 半導体ウエハ
FR2558263B1 (fr) 1984-01-12 1986-04-25 Commissariat Energie Atomique Accelerometre directif et son procede de fabrication par microlithographie
GB2155024A (en) 1984-03-03 1985-09-18 Standard Telephones Cables Ltd Surface treatment of plastics materials
FR2563377B1 (fr) 1984-04-19 1987-01-23 Commissariat Energie Atomique Procede de fabrication d'une couche isolante enterree dans un substrat semi-conducteur, par implantation ionique
US4542863A (en) 1984-07-23 1985-09-24 Larson Edwin L Pipe-thread sealing tape reel with tape retarding element
US4566403A (en) 1985-01-30 1986-01-28 Sovonics Solar Systems Apparatus for microwave glow discharge deposition
US4837172A (en) 1986-07-18 1989-06-06 Matsushita Electric Industrial Co., Ltd. Method for removing impurities existing in semiconductor substrate
US4717683A (en) 1986-09-23 1988-01-05 Motorola Inc. CMOS process
US4764394A (en) 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
JPS63254762A (ja) 1987-04-13 1988-10-21 Nissan Motor Co Ltd Cmos半導体装置
US4847792A (en) 1987-05-04 1989-07-11 Texas Instruments Incorporated Process and apparatus for detecting aberrations in production process operations
SE458398B (sv) 1987-05-27 1989-03-20 H Biverot Ljusdetekterande och ljusriktningsbestaemmande anordning
FR2616590B1 (fr) 1987-06-15 1990-03-02 Commissariat Energie Atomique Procede de fabrication d'une couche d'isolant enterree dans un substrat semi-conducteur par implantation ionique et structure semi-conductrice comportant cette couche
US4956698A (en) 1987-07-29 1990-09-11 The United States Of America As Represented By The Department Of Commerce Group III-V compound semiconductor device having p-region formed by Be and Group V ions
US4846928A (en) 1987-08-04 1989-07-11 Texas Instruments, Incorporated Process and apparatus for detecting aberrations in production process operations
US4887005A (en) 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
US5015353A (en) 1987-09-30 1991-05-14 The United States Of America As Represented By The Secretary Of The Navy Method for producing substoichiometric silicon nitride of preselected proportions
US5138422A (en) 1987-10-27 1992-08-11 Nippondenso Co., Ltd. Semiconductor device which includes multiple isolated semiconductor segments on one chip
GB8725497D0 (en) 1987-10-30 1987-12-02 Atomic Energy Authority Uk Isolation of silicon
US5200805A (en) 1987-12-28 1993-04-06 Hughes Aircraft Company Silicon carbide:metal carbide alloy semiconductor and method of making the same
US4904610A (en) 1988-01-27 1990-02-27 General Instrument Corporation Wafer level process for fabricating passivated semiconductor devices
DE3803424C2 (de) 1988-02-05 1995-05-18 Gsf Forschungszentrum Umwelt Verfahren zur quantitativen, tiefendifferentiellen Analyse fester Proben
JP2666945B2 (ja) 1988-02-08 1997-10-22 株式会社東芝 半導体装置の製造方法
US4894709A (en) 1988-03-09 1990-01-16 Massachusetts Institute Of Technology Forced-convection, liquid-cooled, microchannel heat sinks
US4853250A (en) 1988-05-11 1989-08-01 Universite De Sherbrooke Process of depositing particulate material on a substrate
NL8802028A (nl) 1988-08-16 1990-03-16 Philips Nv Werkwijze voor het vervaardigen van een inrichting.
JP2670623B2 (ja) 1988-09-19 1997-10-29 アネルバ株式会社 マイクロ波プラズマ処理装置
US4952273A (en) 1988-09-21 1990-08-28 Microscience, Inc. Plasma generation in electron cyclotron resonance
US4996077A (en) 1988-10-07 1991-02-26 Texas Instruments Incorporated Distributed ECR remote plasma processing and apparatus
JPH02302044A (ja) 1989-05-16 1990-12-14 Fujitsu Ltd 半導体装置の製造方法
US4929566A (en) 1989-07-06 1990-05-29 Harris Corporation Method of making dielectrically isolated integrated circuits using oxygen implantation and expitaxial growth
JPH0355822A (ja) 1989-07-25 1991-03-11 Shin Etsu Handotai Co Ltd 半導体素子形成用基板の製造方法
US4948458A (en) 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
US5036023A (en) 1989-08-16 1991-07-30 At&T Bell Laboratories Rapid thermal processing method of making a semiconductor device
US5013681A (en) 1989-09-29 1991-05-07 The United States Of America As Represented By The Secretary Of The Navy Method of producing a thin silicon-on-insulator layer
US5310446A (en) 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
JPH0650738B2 (ja) 1990-01-11 1994-06-29 株式会社東芝 半導体装置及びその製造方法
US5034343A (en) 1990-03-08 1991-07-23 Harris Corporation Manufacturing ultra-thin wafer using a handle wafer
CN1018844B (zh) 1990-06-02 1992-10-28 中国科学院兰州化学物理研究所 防锈干膜润滑剂
JPH0719739B2 (ja) 1990-09-10 1995-03-06 信越半導体株式会社 接合ウェーハの製造方法
US5198371A (en) 1990-09-24 1993-03-30 Biota Corp. Method of making silicon material with enhanced surface mobility by hydrogen ion implantation
US5618739A (en) 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5300788A (en) 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
JP2812405B2 (ja) 1991-03-15 1998-10-22 信越半導体株式会社 半導体基板の製造方法
US5110748A (en) 1991-03-28 1992-05-05 Honeywell Inc. Method for fabricating high mobility thin film transistors as integrated drivers for active matrix display
US5256581A (en) 1991-08-28 1993-10-26 Motorola, Inc. Silicon film with improved thickness control
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JPH05160087A (ja) * 1991-12-04 1993-06-25 Fujitsu Ltd 半導体基板の製造方法
JP3416163B2 (ja) 1992-01-31 2003-06-16 キヤノン株式会社 半導体基板及びその作製方法
JPH05235312A (ja) 1992-02-19 1993-09-10 Fujitsu Ltd 半導体基板及びその製造方法
US5234535A (en) 1992-12-10 1993-08-10 International Business Machines Corporation Method of producing a thin silicon-on-insulator layer
US5400458A (en) 1993-03-31 1995-03-28 Minnesota Mining And Manufacturing Company Brush segment for industrial brushes
FR2714524B1 (fr) 1993-12-23 1996-01-26 Commissariat Energie Atomique Procede de realisation d'une structure en relief sur un support en materiau semiconducteur
EP0942161B1 (en) 1993-12-28 2003-03-19 Honda Giken Kogyo Kabushiki Kaisha Gas fuel supply mechanism and amount of gas fuel determining and indicating means for gas combustion engine
FR2715502B1 (fr) 1994-01-26 1996-04-05 Commissariat Energie Atomique Structure présentant des cavités et procédé de réalisation d'une telle structure.
FR2715503B1 (fr) 1994-01-26 1996-04-05 Commissariat Energie Atomique Substrat pour composants intégrés comportant une couche mince et son procédé de réalisation.
FR2715501B1 (fr) 1994-01-26 1996-04-05 Commissariat Energie Atomique Procédé de dépôt de lames semiconductrices sur un support.
JP3293736B2 (ja) 1996-02-28 2002-06-17 キヤノン株式会社 半導体基板の作製方法および貼り合わせ基体
JPH0851103A (ja) 1994-08-08 1996-02-20 Fuji Electric Co Ltd 薄膜の生成方法
US5524339A (en) 1994-09-19 1996-06-11 Martin Marietta Corporation Method for protecting gallium arsenide mmic air bridge structures
FR2725074B1 (fr) 1994-09-22 1996-12-20 Commissariat Energie Atomique Procede de fabrication d'une structure comportant une couche mince semi-conductrice sur un substrat
US5567654A (en) 1994-09-28 1996-10-22 International Business Machines Corporation Method and workpiece for connecting a thin layer to a monolithic electronic module's surface and associated module packaging
DE69502709T2 (de) 1994-10-18 1998-12-24 Philips Electronics N.V., Eindhoven Verfahren und herstellung einer dünnen silizium-oxid-schicht
ATE216802T1 (de) 1994-12-12 2002-05-15 Advanced Micro Devices Inc Verfahren zur herstellung vergrabener oxidschichten
JP3381443B2 (ja) 1995-02-02 2003-02-24 ソニー株式会社 基体から半導体層を分離する方法、半導体素子の製造方法およびsoi基板の製造方法
FR2736934B1 (fr) 1995-07-21 1997-08-22 Commissariat Energie Atomique Procede de fabrication d'une structure avec une couche utile maintenue a distance d'un substrat par des butees, et de desolidarisation d'une telle couche
FR2738671B1 (fr) 1995-09-13 1997-10-10 Commissariat Energie Atomique Procede de fabrication de films minces a materiau semiconducteur
CN1132223C (zh) 1995-10-06 2003-12-24 佳能株式会社 半导体衬底及其制造方法
FR2744285B1 (fr) 1996-01-25 1998-03-06 Commissariat Energie Atomique Procede de transfert d'une couche mince d'un substrat initial sur un substrat final
FR2746919B1 (fr) * 1996-03-28 1998-04-24 Commissariat Energie Atomique Capteur a jauge de contrainte utilisant l'effet piezoresistif et son procede de fabrication
FR2747506B1 (fr) 1996-04-11 1998-05-15 Commissariat Energie Atomique Procede d'obtention d'un film mince de materiau semiconducteur comprenant notamment des composants electroniques
FR2748851B1 (fr) 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
FR2748850B1 (fr) 1996-05-15 1998-07-24 Commissariat Energie Atomique Procede de realisation d'un film mince de materiau solide et applications de ce procede
US5863832A (en) 1996-06-28 1999-01-26 Intel Corporation Capping layer in interconnect system and method for bonding the capping layer onto the interconnect system
WO1998009804A1 (en) * 1996-09-04 1998-03-12 Sibond L.L.C. Flattening process for bonded semiconductor substrates
US5897331A (en) 1996-11-08 1999-04-27 Midwest Research Institute High efficiency low cost thin film silicon solar cell design and method for making
US6127199A (en) 1996-11-12 2000-10-03 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US6054363A (en) 1996-11-15 2000-04-25 Canon Kabushiki Kaisha Method of manufacturing semiconductor article
SG65697A1 (en) 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
DE19648501A1 (de) 1996-11-22 1998-05-28 Max Planck Gesellschaft Verfahren für die lösbare Verbindung und anschließende Trennung reversibel gebondeter und polierter Scheiben sowie eine Waferstruktur und Wafer
KR100232886B1 (ko) 1996-11-23 1999-12-01 김영환 Soi 웨이퍼 제조방법
DE19648759A1 (de) 1996-11-25 1998-05-28 Max Planck Gesellschaft Verfahren zur Herstellung von Mikrostrukturen sowie Mikrostruktur
FR2756847B1 (fr) 1996-12-09 1999-01-08 Commissariat Energie Atomique Procede de separation d'au moins deux elements d'une structure en contact entre eux par implantation ionique
CA2225131C (en) 1996-12-18 2002-01-01 Canon Kabushiki Kaisha Process for producing semiconductor article
FR2758907B1 (fr) 1997-01-27 1999-05-07 Commissariat Energie Atomique Procede d'obtention d'un film mince, notamment semiconducteur, comportant une zone protegee des ions, et impliquant une etape d'implantation ionique
JPH10223870A (ja) * 1997-02-04 1998-08-21 Shin Etsu Handotai Co Ltd 半導体装置製造用ウェーハ
JP3114643B2 (ja) 1997-02-20 2000-12-04 日本電気株式会社 半導体基板の構造および製造方法
JP4000615B2 (ja) * 1997-03-21 2007-10-31 日産自動車株式会社 微小機械の製造方法
US6013954A (en) 1997-03-31 2000-01-11 Nec Corporation Semiconductor wafer having distortion-free alignment regions
US6033974A (en) 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US6048411A (en) 1997-05-12 2000-04-11 Silicon Genesis Corporation Silicon-on-silicon hybrid wafer assembly
US5877070A (en) 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US6150239A (en) 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate
US6054369A (en) 1997-06-30 2000-04-25 Intersil Corporation Lifetime control for semiconductor devices
US6534380B1 (en) 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
US6103599A (en) 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
FR2767416B1 (fr) 1997-08-12 1999-10-01 Commissariat Energie Atomique Procede de fabrication d'un film mince de materiau solide
FR2767604B1 (fr) 1997-08-19 2000-12-01 Commissariat Energie Atomique Procede de traitement pour le collage moleculaire et le decollage de deux structures
JP3697034B2 (ja) 1997-08-26 2005-09-21 キヤノン株式会社 微小開口を有する突起の製造方法、及びそれらによるプローブまたはマルチプローブ
US5882987A (en) 1997-08-26 1999-03-16 International Business Machines Corporation Smart-cut process for the production of thin semiconductor material films
US5981400A (en) 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
US5920764A (en) 1997-09-30 1999-07-06 International Business Machines Corporation Process for restoring rejected wafers in line for reuse as new
JP2998724B2 (ja) 1997-11-10 2000-01-11 日本電気株式会社 張り合わせsoi基板の製造方法
FR2771852B1 (fr) 1997-12-02 1999-12-31 Commissariat Energie Atomique Procede de transfert selectif d'une microstructure, formee sur un substrat initial, vers un substrat final
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
JP3501642B2 (ja) 1997-12-26 2004-03-02 キヤノン株式会社 基板処理方法
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
FR2774510B1 (fr) 1998-02-02 2001-10-26 Soitec Silicon On Insulator Procede de traitement de substrats, notamment semi-conducteurs
TW437078B (en) 1998-02-18 2001-05-28 Canon Kk Composite member, its separation method, and preparation method of semiconductor substrate by utilization thereof
JPH11307747A (ja) 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
US6057212A (en) 1998-05-04 2000-05-02 International Business Machines Corporation Method for making bonded metal back-plane substrates
JP3697106B2 (ja) * 1998-05-15 2005-09-21 キヤノン株式会社 半導体基板の作製方法及び半導体薄膜の作製方法
US5909627A (en) 1998-05-18 1999-06-01 Philips Electronics North America Corporation Process for production of thin layers of semiconductor material
DE19840421C2 (de) * 1998-06-22 2000-05-31 Fraunhofer Ges Forschung Verfahren zur Fertigung von dünnen Substratschichten und eine dafür geeignete Substratanordnung
US6054370A (en) 1998-06-30 2000-04-25 Intel Corporation Method of delaminating a pre-fabricated transistor layer from a substrate for placement on another wafer
US6118181A (en) 1998-07-29 2000-09-12 Agilent Technologies, Inc. System and method for bonding wafers
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
FR2781925B1 (fr) 1998-07-30 2001-11-23 Commissariat Energie Atomique Transfert selectif d'elements d'un support vers un autre support
EP0989593A3 (en) 1998-09-25 2002-01-02 Canon Kabushiki Kaisha Substrate separating apparatus and method, and substrate manufacturing method
FR2784795B1 (fr) 1998-10-16 2000-12-01 Commissariat Energie Atomique Structure comportant une couche mince de materiau composee de zones conductrices et de zones isolantes et procede de fabrication d'une telle structure
JP2000150915A (ja) * 1998-11-06 2000-05-30 Japan Aviation Electronics Industry Ltd 半導体加速度センサチップ及びその製造方法
JP2000187041A (ja) * 1998-12-24 2000-07-04 Mitsubishi Electric Corp 容量式加速度センサ及びその製造方法
US6346458B1 (en) 1998-12-31 2002-02-12 Robert W. Bower Transposed split of ion cut materials
FR2789518B1 (fr) 1999-02-10 2003-06-20 Commissariat Energie Atomique Structure multicouche a contraintes internes controlees et procede de realisation d'une telle structure
WO2000063965A1 (en) 1999-04-21 2000-10-26 Silicon Genesis Corporation Treatment method of cleaved film for the manufacture of substrates
JP2001015721A (ja) 1999-04-30 2001-01-19 Canon Inc 複合部材の分離方法及び薄膜の製造方法
US6664169B1 (en) 1999-06-08 2003-12-16 Canon Kabushiki Kaisha Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
US6362082B1 (en) 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
FR2796491B1 (fr) 1999-07-12 2001-08-31 Commissariat Energie Atomique Procede de decollement de deux elements et dispositif pour sa mise en oeuvre
US6323108B1 (en) 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
US6263941B1 (en) 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
AU6905000A (en) 1999-08-10 2001-03-05 Silicon Genesis Corporation A cleaving process to fabricate multilayered substrates using low implantation doses
US6500694B1 (en) * 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
DE19958803C1 (de) 1999-12-07 2001-08-30 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Handhaben von Halbleitersubstraten bei der Prozessierung und/oder Bearbeitung
JP2001196566A (ja) 2000-01-07 2001-07-19 Sony Corp 半導体基板およびその製造方法
US6902987B1 (en) * 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US6586841B1 (en) * 2000-02-23 2003-07-01 Onix Microsystems, Inc. Mechanical landing pad formed on the underside of a MEMS device
FR2809867B1 (fr) 2000-05-30 2003-10-24 Commissariat Energie Atomique Substrat fragilise et procede de fabrication d'un tel substrat
FR2811807B1 (fr) 2000-07-12 2003-07-04 Commissariat Energie Atomique Procede de decoupage d'un bloc de materiau et de formation d'un film mince
US6573126B2 (en) * 2000-08-16 2003-06-03 Massachusetts Institute Of Technology Process for producing semiconductor article using graded epitaxial growth
US6600173B2 (en) 2000-08-30 2003-07-29 Cornell Research Foundation, Inc. Low temperature semiconductor layering and three-dimensional electronic circuits using the layering
FR2816445B1 (fr) * 2000-11-06 2003-07-25 Commissariat Energie Atomique Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible
FR2818010B1 (fr) 2000-12-08 2003-09-05 Commissariat Energie Atomique Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses
US7139947B2 (en) 2000-12-22 2006-11-21 Intel Corporation Test access port
FR2819099B1 (fr) 2000-12-28 2003-09-26 Commissariat Energie Atomique Procede de realisation d'une structure empilee
JP2002222961A (ja) * 2001-01-24 2002-08-09 Murata Mfg Co Ltd 真空容器の製造方法
FR2823373B1 (fr) 2001-04-10 2005-02-04 Soitec Silicon On Insulator Dispositif de coupe de couche d'un substrat, et procede associe
FR2823599B1 (fr) * 2001-04-13 2004-12-17 Commissariat Energie Atomique Substrat demomtable a tenue mecanique controlee et procede de realisation
US6759282B2 (en) 2001-06-12 2004-07-06 International Business Machines Corporation Method and structure for buried circuits and devices
FR2828428B1 (fr) 2001-08-07 2003-10-17 Soitec Silicon On Insulator Dispositif de decollement de substrats et procede associe
US6593212B1 (en) 2001-10-29 2003-07-15 The United States Of America As Represented By The Secretary Of The Navy Method for making electro-optical devices using a hydrogenion splitting technique
FR2834820B1 (fr) 2002-01-16 2005-03-18 Procede de clivage de couches d'une tranche de materiau
FR2838865B1 (fr) * 2002-04-23 2005-10-14 Soitec Silicon On Insulator Procede de fabrication d'un substrat avec couche utile sur support de resistivite elevee
JP4199504B2 (ja) 2002-09-24 2008-12-17 イーグル工業株式会社 摺動部品及びその製造方法
US7279369B2 (en) * 2003-08-21 2007-10-09 Intel Corporation Germanium on insulator fabrication via epitaxial germanium bonding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259247A (en) * 1991-02-28 1993-11-09 Robert Bosch Gmbh Sensor
US6198159B1 (en) * 1997-03-28 2001-03-06 Ube Industries, Ltd. Bonded wafer, process for producing same and substrate
FR2797347A1 (fr) * 1999-08-04 2001-02-09 Commissariat Energie Atomique Procede de transfert d'une couche mince comportant une etape de surfragililisation
US20020145489A1 (en) * 2001-04-09 2002-10-10 Cornett Kenneth D. MEMS resonators and method for manufacturing MEMS resonators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU X H ET AL: "Investigation of interface in silicon-on-insulator by fractal analysis", APPLIED SURFACE SCIENCE, 28 FEB. 2002, ELSEVIER, NETHERLANDS, vol. 187, no. 3, 28 February 2002 (2002-02-28), pages 187 - 191, XP002272808, ISSN: 0169-4332 *
YEE Y ET AL: "Polysilicon surface-modification technique to reduce sticking of microstructures", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 52, no. 1, 1 March 1996 (1996-03-01), pages 145 - 150, XP004007044, ISSN: 0924-4247 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609514B2 (en) 1997-12-10 2013-12-17 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US8470712B2 (en) 1997-12-30 2013-06-25 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer

Also Published As

Publication number Publication date
CN1826285A (zh) 2006-08-30
FR2857953A1 (fr) 2005-01-28
US8193069B2 (en) 2012-06-05
EP1651560A1 (fr) 2006-05-03
US20060281212A1 (en) 2006-12-14
JP2006528422A (ja) 2006-12-14
ATE414673T1 (de) 2008-12-15
CN1826285B (zh) 2010-10-20
FR2857953B1 (fr) 2006-01-13
DE602004017875D1 (de) 2009-01-02
EP1651560B1 (fr) 2008-11-19

Similar Documents

Publication Publication Date Title
EP1651560B1 (fr) Structure empilée et procédé pour la fabriquer
EP1155442B1 (fr) Procede de realisation d'une structure multicouche a contraintes internes controlees
EP1923912B1 (fr) Procédé de fabrication d'une structure microtechnologique mixte
EP2138454B1 (fr) Procédé de réalisation d'un composant à partir d'un substrat comportant une couche sacrificielle en silicium monocristallin
EP2764535B1 (fr) Procédé de double report de couche
EP2342744A1 (fr) Procede de formation d'une couche monocristalline dans le domaine micro-electronique
WO2002005344A1 (fr) Procede de decoupage d'un bloc de materiau et de formation d'un film mince
FR2856192A1 (fr) Procede de realisation de structure heterogene et structure obtenue par un tel procede
WO2009087290A1 (fr) Procédé de fabrication d'une structure micro-électronique impliquant un collage moléculaire
EP3593376A1 (fr) Procédé d'auto-assemblage de composants microélectroniques
EP3900064B1 (fr) Procede de transfert d'une couche superficielle sur des cavites
FR2858461A1 (fr) Realisation d'une structure comprenant une couche protegeant contre des traitements chimiques
EP2105958B1 (fr) Procédé de réalisation d'une couche contrainte
EP3898503B1 (fr) Procede de fabrication d'un dispositif comprenant une membrane surplombant une cavite
EP4128330B1 (fr) Procede de fabrication d'une structure empilee
EP3925930B1 (fr) Procédé de fabrication d'un dispositif microélectronique comprenant une membrane suspendue au-dessus d'une cavité
EP3552226B1 (fr) Procédé de transfert de couches minces
FR2911597A1 (fr) Procede de formation et de controle d'interfaces rugueuses.
EP4163958A1 (fr) Procede de fabrication de composants sur les deux faces d'un substrat
EP4280261A1 (fr) Procede de collage temporaire
WO2024184336A1 (fr) Procede de fabrication d'une structure comprenant une pluralite de cavites enterrees
FR3057101A1 (fr) Procede de fabrication d'un substrat composite

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020756.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004767683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006520855

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004767683

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006281212

Country of ref document: US

Ref document number: 10565621

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10565621

Country of ref document: US