WO2005015647A1 - Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication - Google Patents

Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication Download PDF

Info

Publication number
WO2005015647A1
WO2005015647A1 PCT/KR2003/001600 KR0301600W WO2005015647A1 WO 2005015647 A1 WO2005015647 A1 WO 2005015647A1 KR 0301600 W KR0301600 W KR 0301600W WO 2005015647 A1 WO2005015647 A1 WO 2005015647A1
Authority
WO
WIPO (PCT)
Prior art keywords
pillars
high brightness
luminous
type gan
micro led
Prior art date
Application number
PCT/KR2003/001600
Other languages
English (en)
Inventor
Sang-Kyu Kang
Original Assignee
Vichel Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vichel Inc. filed Critical Vichel Inc.
Priority to AU2003257713A priority Critical patent/AU2003257713A1/en
Priority to JP2005507595A priority patent/JP4755901B2/ja
Priority to EP03818003A priority patent/EP1652238B1/fr
Priority to AT03818003T priority patent/ATE486374T1/de
Priority to CNB038268892A priority patent/CN100459180C/zh
Priority to DE60334745T priority patent/DE60334745D1/de
Priority to PCT/KR2003/001600 priority patent/WO2005015647A1/fr
Priority to US10/567,482 priority patent/US7595511B2/en
Priority to ES03818003T priority patent/ES2356606T3/es
Publication of WO2005015647A1 publication Critical patent/WO2005015647A1/fr
Priority to US12/545,795 priority patent/US7906787B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to a nitride micro light emitting diode (LED) with high brightness and a method of manufacturing the same, and specifically to a nitride micro light emitting diode (LED) with high brightness and a method of manufacturing the same, in which luminous efficiency is maximized by finely adjusting micro-sized nitride luminous elements and allowing an array of the elements to be driven at the same time.
  • LED nitride micro light emitting diode
  • a nitride semiconductor LED is widely studied. Specifically, in order to use the nitride LED for illumination as well as for display, the brightness limit of the commercialized LED should be overcome.
  • the nitride LED generally emits light in an element area having a diameter of 300 ⁇ m or more. The light emitted from a luminous layer may not get out of the element and be locked in the element, so that the nitride LED has a limit that its external luminous efficiency does not exceed 30%.
  • the internal luminous efficiency and the external luminous efficiency should be optimized, respectively.
  • Fig. 1 is a view illustrating a micro light emitting diode (LED) according to one embodiment of the present invention
  • Figs. 2 A to 2E are views illustrating a method of manufacturirig the micro LED shown in Fig. 1
  • Figs. 3 and 4 are views illustrating modifications of the micro LED according to one embodiment of the present invention
  • Fig. 5 is a view illustrating another modification of the micro LED according to one embodiment of the present invention
  • Figs. 6 A to 6D are views illustrating a method of manufacturing the micro LED using a selective re-growth method in place of a dry etching method in manufacturing the micro LED shown in Fig. 1.
  • the present invention is contrived to provided a nitride micro LED with high brightness improved using a nitride semiconductor having a previously-optimized and grown-into-thin-film structure. Therefore, it is an object of the present invention to provide a nitride micro LED with high brightness and a method of manufacturing the same, in which a luminous area is increased as large as possible to allow light emitted from an active layer to get out of an element, by controlling luminous elements in a micro size. It is another object of the present invention to provide a nitride micro LED with high brightness which consumes the same power as the conventional large-area LED and of which the luminous efficiency is more excellent, and a method for manufacturing the same.
  • a nitride micro LED with high brightness consuming the same power as the conventional large area LED but having more excellent luminous efficiency, and a method of manufacturing the same.
  • the present invention provides a nitride micro LED (Light Emitting Diode) with high brightness having a plurality of luminous pillars, the LED comprising: a plurality of micro-sized luminous pillars having an n-type GaN layer formed on a substrate, an active layer formed on the n-type GaN layer, and a p-type GaN layer formed on the active layer; a gap filling material filled between the luminous pillars to have substantially the same height as the luminous pillars; a p-type transparent electrode formed on a top surface of the gap filling material and the luminous pillars; a p-type electrode formed on the p-type transparent electrode; and an n-type electrode electrically connected to the a nitride micro LED (Light Emitting Diode) with high brightness having a pluralit
  • the gap filling material includes at least one selected from SiO 2 , Si N or a combination thereof, polyamide, and ZrO 2 /SiO 2 or HfO 2 /SiO 2 .
  • the gap filling material is formed to have substantially the same height as the luminous pillars through a CMP (Chemical Mechanical Polishing) process.
  • a top surface of the p-type GaN layer of the luminous pillars may have convex surfaces formed through the CMP process. In this case, the convex surfaces serve as lenses.
  • the transparent electrode comprises a combination of oxidized Ni/Au(NiO/Au) or an ITO (Indium Tin Oxide).
  • the nitride micro LED further comprises a pair of DBR (Distributed Bragg Reflectors) layers formed on a top surface of the transparent electrode and a bottom surface of the substrate, respectively.
  • the nitride micro LED may further comprise an AR (Anti- reflection) layer coated on a top surface of the transparent electrode or a bottom surface of the substrate.
  • the luminous pillars may have side surfaces formed obliquely.
  • the nitride micro LED further comprises a DBR layer made of ZrO 2 /SiO 2 or HfO 2 /SiO 2 and formed below the gap filling material within gaps between the luminous pillars.
  • the present invention provides a nitride micro LED with high brightness which is mounted through a flip-chip method, the nitride micro LED comprising: a sapphire substrate; a plurality of micro-sized luminous pillars having an n- type GaN layer grown on the sapphire substrate, an active layer formed on the n-type GaN layer and a p-type GaN layer formed on the active layer; a gap filling material filled between the luminous pillars to have substantially the same height as the luminous pillars; a metal electrode formed on a top surface of the gap filling material and the luminous pillars; a p-type electrode formed on the metal electrode; and an n-type electrode electrically connected to the n-type GaN layer, wherein an array of the luminous pillars is driven at the same time.
  • the present invention provides a method of manufacturing a nitride micro LED with high brightness having a plurality of micro luminous pillars, the method comprising: (a) a step of sequentially growing an n-type GaN layer, an active layer, and a p-type GaN layer on a wafer or substrate; (b) a step of dry-etching the processed wafer to form the luminous pillars having the n-type GaN layer, the active layer and the p-type GaN layer on the substrate; (c) a step of depositing a gap filling material in gaps between the luminous pillars; (d) a step of planarizing a top surface of an array of luminous pillars and a top surface of the gap filling material using a CMP process; and (e) a step of depositing a transparent electrode on all of the top surfaces of the array of luminous pillars and the gap filling material, depositing a p-type electrode and an n-type electrode at predetermined positions, respectively
  • the step (c) is carried out such that the gaps between the luminous pillars are completely filled with the gap filling material, and the step (d) is carried out such that the top surface of the luminous pillars and the top surface of the gap filling material have the same height as each other.
  • the step (c) may be carried out such that the gaps between the luminous pillars are completely filled with the gap filling material, and the step (d) may be carried out such that the top surface of the p-type GaN layer in the luminous pillars is formed to have convex surfaces.
  • the gap filling material includes at least one selected from SiO 2 , Si N 4 or a combination thereof, polyamide, and ZrO 2 /SiO 2 or HfO 2 /SiO 2 .
  • the transparent electrode comprises a combination of oxidized Ni/Au(NiO/Au) or an ITO (Indium Tin Oxide).
  • the method further comprises, after the step (e), a step of depositing a pair of DBR (Distributed Bragg Reflectors) layers on a top surface of the transparent electrode and a bottom surface of the substrate.
  • DBR Distributed Bragg Reflectors
  • the method further comprises, after the step (e), a step of coating an AR (Anti-reflection) layer on a top surface of the transparent electrode or a bottom surface of the substrate.
  • process variables may be controlled such that side surfaces of the luminous pillars are formed into oblique portions.
  • the method further comprises, between the step (b) and the step (c), a step of depositing a DBR layer within the gaps between the luminous pillars.
  • the present invention provides a method of manufacturing a nitride micro LED with high brightness having a plurality of micro luminous pillars, the method comprising: (a) a step of sequentially growing an n-type GaN layer, an active layer and a p- type GaN layer on a sapphire wafer or substrate; (b) a step of dry-etching the processed wafer to form the luminous pillars having the n-type GaN layer, the active layer and the p- type GaN layer on the substrate; (c) a step of depositing a gap filling material in gaps between the luminous pillars; (d) a step of planarizing a top surface of an array of luminous pillars and a top surface of the gap filling material using a CMP process; and (e) a step of depositing a metal electrode on the overall top surface of the array of luminous pillars, depositing a p-type electrode and an n-type electrode thereon, respectively, and heating the resultant structure
  • the present invention provides a method of manufacturing a nitride micro LED with high brightness having a plurality of micro luminous pillars, the method comprising: (a) a step of growing an n-type GaN buffer layer on a wafer or substrate; (b) a step of depositing an oxide film on the n-type GaN buffer layer; (c) a step of wet-etching and patterning the oxide film such that the oxide film has the plurality of pillars and gaps therebetween; (d) a step of sequentially re-growing an n-type GaN layer, an active layer and a p-type GaN layer up to a height of the oxide film pillars using the n-type GaN buffer layer exposed in a bottom surface of the gaps; and (e) a step of depositing a transparent electrode on the overall top surface of the array of luminous pillars re-grown, depositing a p-type electrode at a predetermined position, depositing an n-type electrode on the n-type
  • the method further comprises, after the step (e), a step of depositing a pair of DBR (Distributed Bragg Reflectors) layers on a top surface of the transparent electrode and a bottom surface of the substrate.
  • the method may further comprises, after the step (e), a step- of coating an AR (Anti-reflection) layer on a top surface of the transparent electrode or a bottom surface of the substrate.
  • the present invention as described above, by filling gaps between the luminous pillars in the nitride micro luminous pillar array with the gap filling material, planarizing the resultant structure using the CMP process, and forming the transparent electrode on the surface thereof, it is possible to maximize the luminous area and thus to externally use the light emitted from the active layer with a high efficiency.
  • by using the nitride micro LED with high brightness having an improved structure it is expected to promote demands of LEDs for display and illumination.
  • the present invention can apply to a method of manufacturing a micro LED for micro display.
  • Fig. 1 is a view illustrating a micro LED according to one embodiment of the present invention
  • Figs. 2A to 2E are views illustrating a method of manufacturing the micro LED shown in Fig. 1.
  • a nitride micro LED with high brightness according to the present invention comprises a substrate 1, a n-type GaN layer 2, an active layer 3, a p-type GaN layer 4, a gap filling material 5, a transparent electrode 6, a p-type electrode 7, an n- type electrode, and a DBR (Distributed Bragg Reflectors) layer 9.
  • the reference numeral 10 in Fig. 1 denotes micro-sized luminous pillars.
  • the n-type GaN layer 2, the InGaN/GaN active layer 3, the p-type GaN layer 4 sequentially grown and disposed on the sapphire (Al 2 O 3 ) substrate 1 grown in a predetermined direction constitutes a plurality of micro-sized luminous pillars or luminous element pillars 10.
  • the luminous element pillars 10 are formed to be a circular cylinder shape in order to maximize the area for emitting light.
  • the luminous element pillars 10 of the present invention may be formed to be a polygonal pillar shape other than the circular cylinder shape.
  • the diameter of the luminous element pillars 10 can be adjusted from 0.5 ⁇ m close to the wavelength of emitted light to several tens ⁇ m.
  • the height of the pillars 10 can be adjusted such that the active layer, the n-type doped layer and the p-type doped layer all are included in the pillars.
  • Such elements are formed using a dry etching method or a selective re-growth method.
  • a manufacturing method using the dry etching method will be first described, and then a manufacturing method using the selective re-growth method will be described in detail in an embodiment with reference to Figs. 6 A to 6D.
  • the gap filling material 5 is a material for filling in the gaps formed between the luminous element pillars 10, and facilitates the formation of electrodes of the respective pillars 10 through the planarization process.
  • Materials usable for the gap filling material include SiO , Si 3 N 4 , a combination of SiO and Si 3 N 4 , polyamide, ZrO 2 /SiO 2 , HfO 2 /SiO 2 and so on.
  • the method such as plasma enhanced chemical vapor deposition (PECVD), evaporation and sputtering is used for depositing the gap filling material.
  • PECVD plasma enhanced chemical vapor deposition
  • evaporation and sputtering is used for depositing the gap filling material.
  • a combination of oxidized Ni/Au(NiO/Au) or ITO (Indium Tin Oxide) is used for the transparent electrode 6.
  • the transparent electrode 6 is formed on a surface of the upper p-type GaN layer 4 of the luminous element pillars 10 and a top surface 11 of the gap filling material 5 to drive all the pillars 10 at the same time with the electrical pumping of the respective luminous element pillars 10.
  • the surface of the upper p-type GaN layer 4 of the luminous element pillars 10 and the top surface 11 of the gap filling material 5 should be planarized through a predetermined process in advance.
  • the p-type electrode 7 and the n-type electrode 8 are made of at least one conductive material selected from gold (Au), aluminum (Al), copper (Cu) or alloys thereof.
  • the DBR layer 9 is formed on the transparent electrode 6 and a back surface of the substrate 1 as a layer having a high reflectivity for formation of the micro LED having a resonant cavity.
  • the micro-sized nitride luminous element of the present invention basically comprises the micro-sized luminous pillars, the gap filling material to be filled in the gaps between the pillars, DBR layers for formation of the resonant cavity LED (RCLED), and electrodes for the electrical pumping.
  • RCLED resonant cavity LED
  • a point most different from the commercialized large-area LED is that the area for emitting light is enhanced by means of an array of micro-sized luminous elements in place of the large area as a plane.
  • a material such as silica is filled between the pillars, a structure having the transparent electrode is efficiently formed through a planarization process. More specifically, a method of manufacturing the nitride micro LED will be described with reference to Figs. 2A to 2E. First, as shown in Fig. 2A, a luminous layer excellent in an internal luminous efficiency is grown using a metal organic chemical vapor deposition (MOCND) method.
  • MOCND metal organic chemical vapor deposition
  • the n-type Ga ⁇ layer 2 is formed on a sapphire wafer or substrate 1 having a predetermined crystal direction, the InGa ⁇ /Ga ⁇ quantum well (QW) active layer 3 is formed thereon, and then the p-type Ga ⁇ layer 4 is formed thereon.
  • the wafer on which the semiconductor luminous element structure is formed like above is dry-etched into pillar shapes as shown in Fig. 2B. This etching is carried out by means of an ICP (Inductive Coupled Plasma) process using a reactive gas such as Cl 2 , BC1 2 or the like.
  • ICP Inductive Coupled Plasma
  • a reactive gas such as Cl 2 , BC1 2 or the like.
  • a shape of the luminous pillars 10 a polygonal shape may be selected in addition to a circular shape expected to be excellent in the luminous efficiency.
  • the height of the luminous pillars 10 is about l ⁇ m more or less such that the QW structure, the n-type GaN layer and the p-type GaN layer are all included in the pillars, and the diameter of the luminous pillars 10 is about 0.4 ⁇ m to several tens ⁇ m for forming photonic crystals.
  • the gap filling material 5 is deposited in the gaps 12 between the luminous pillars 10. At that time, the filling material 5 is generally deposited in the same shape as shown in Fig. 2C.
  • the first deposition thickness of the gap filling material 5 should be at least the height of the luminous pillars 10 or more, and an accurate process selection and an accurate process control are required not to finally form voids in the gap filling layer due to deposition of the gap filling material.
  • the process of depositing the gap filling material 5 employs a high-density plasma enhanced deposition method.
  • the gap filling material 5 SiO 2 , Si N , a combination of SiO 2 and Si 3 N 4 , polyamide, ZrO 2 /SiO 2 , HfO 2 /SiO 2 and so on can be used.
  • the raw materials of the gap filling material 5 can surely provide insulation between the respective luminous pillars 10 and can be thermally stable for the heat treatment in later processes, and in addition the refraction indx thereof is higher than that of air to decrease a fresnel loss of the emitted light.
  • ZrO 2 or HfO 2 / is used for the first layer on side surfaces of the GaN layer, compared with a case of using only SiO2, difference in refraction index from the GaN is further decreased, thereby further decreasing the total reflection and the fresnel loss. As shown in Fig.
  • the deposited gap filling material 5 is subjected to a planarization process for providing the uniform transparent electrode all over the top surface of the array of luminous pillars 10.
  • the planarization process can include various methods, the CMP process is suggested as a most effective method in the present invention. Specifically, in order to make the heights of the luminous pillars 10 and the deposited gap filling material 5 equal to each other, the planarization process is carried out in the present invention.
  • the planarization process is carried out by depositing a thick photo resist (PR) film, and performing a dry etching method in which the oxide film and the PR film are etched at the same speed or the CMP (Chemical Mechanical Polishing) method.
  • PR photo resist
  • the controllability and the reproducibility are excellent.
  • GaN is very stable chemically and mechanically
  • the CMP method of removing the gap filling layer 5 deposited on the top surface of the luminous pillars 10 does not damage the GaN layer. That is, since the array of luminous pillars 10 themselves can be used as the end point layer of planarization, the reproducibility and the reliability of the planarization process can be considerably enhanced.
  • a solution used for the CMP process a general alkaline solution of softening the oxide film is used.
  • a commercialized product of the alkaline solution can be include Syton, in which the softness of oxide film can be controlled by adjusting the acidity (pH) of the alkaline solution.
  • Fine SiO2 or A12O3 can be used as the polishing particles, and in order to decrease difference in height between the top surface of the luminous pillars and the top surface of the gap filling material after finishing the planarization process, finer particles are more advantageous.
  • a hard polishing pad such as a glass is used and force applied to a sample is small.
  • the uppermost layer of the GaN layer (the top surface of the p-type GaN layer) can be processed into a lens shape 11a as shown in Fig. 3.
  • the lens shape 11a shown in Fig. 3 enhances the luminous efficiency and the straightness of light.
  • the transparent electrode 6 is formed.
  • the transparent electrode 6 is formed in a large area on the p-type GaN which is the top surface of the luminous pillars 10 exposed after finishing the planarization process, thereby forming a structure in which the respective luminous pillars are electrically pumped and all the pillars 10 are driven at the same time.
  • a material of the transparent electrode 6 a thin Ni/Au or ITO is used.
  • the p-type electrode 7 ad the n-type electrode 8 is formed and then the resultant structure is heated.
  • the slope of the side surfaces can be controlled.
  • an etching process without an oblique slope and with an excellent verticality can be preferred, but it may be necessary to form an oblique side surface, depending upon the selection of gap filling material. That is, when the DBR material is selected as the gap filling material, the oblique side surface is more advantageous than the vertical side surface from the point of view of process. For example, by forming the side surfaces of the luminous pillars 10 obliquely and filling the gaps therebetween with the gap filling material of DBR material, the shape shown in Fig. 4 can be obtained.
  • the DBR layer 9a is first formed in the internal side surfaces 10a and the bottom portion of the gaps 12 using ZrO 2 /SiO or HfO 2 /SiO 2 , and then the gap filling material comprising other material can be further filled therein. Then, although not shown in Fig. 4, the transparent electrode 6, the p-type electrode 7 and the n-type electrode 8 can be formed as described above. Furthermore, in the present invention, when the luminous element is used to have a flip-chip structure in which the substrate 1 of the semiconductor element is directed upward, a metal electrode 6a which allows the flip-chip mounting may be deposited in place of the transparent electrode.
  • the present invention is not limited to such structure, but may include a flip-chip structure in which light is emitted toward the substrate.
  • the flip-chip structure prevent a local discontinuity of the thin transparent electrode which may be generated due to a fine difference in height of the top surface of the gap filling material (the bottom surface of the gap filling material in Fig. 5) and the luminous pillars 10.
  • the luminous pillars are prevent from not being driven at the same time due to the local discontinuity.
  • the aforementioned problems can be completely solved, thereby obtaining a high light efficiency.
  • the emitted light necessarily passes through the substrate in the flip-chip structure, and thus it is possible to obtain a higher luminous efficiency compared with a structure in which the emitted light is directly discharged in air.
  • an AR (Anti-reflection) layer may be coated, or the DBR layers may be deposited on the top and bottom surfaces of the element, thereby obtain an RCLED (Resonant Cavity LED) structure.
  • the DBR layer having a proper reflectivity can enhance re-cyclability of the emitted light and thus is effective for improving quality of the emitted light.
  • FIG. 6A to 6D are views illustrating a method of manufacturing the micro LED using a selective re-growth method in place of a dry etching method in manufacturing the micro LED in the first embodiment.
  • the second embodiment employs a selective re-growth method, unlike the first embodiment employing the dry etching method for formation of the luminous pillars 10. In this case, the second embodiment does not require the CMP process.
  • a Ga ⁇ buffer layer 2a for re-growing the luminous pillars 10 is grown on the substrate 1, and then the oxide film 5 is deposited thereon in a thickness of the luminous pillars desired to obtain.
  • the oxide film 5 By patterning the oxide film 5 using a wet etching method, the shape shown in Fig.
  • the re- growth is carried out using the exposed Ga ⁇ buffer layer 2a (see Fig. 6C).
  • the n-type Ga ⁇ layer 2, the InGa ⁇ /Ga ⁇ QW active layer 3 and the p-type Ga ⁇ layer 4 are grown on the n-type Ga ⁇ buffer layer 2a (see Fig. 6D).
  • the thickness of the re-grown layer constituting the luminous pillars 10 is equal to that of the oxide film.
  • a pair of DBR layers may be formed on the substrate and the uppermost layer of the completed element to form a resonant cavity LED, or the substrate and the uppermost layer may be coated with the AR layer to further enhance the light efficiency.
  • the micro-sized nitride semiconductor LED is described in the above embodiments, the present invention may easily apply to all types of micro-sized light emitting diodes.

Abstract

L'invention concerne une micro-diode électroluminescente (DEL) au nitrure à haute brillance ainsi qu'un procédé permettant de la fabriquer. Elle concerne une micro DEL au nitrure et un procédé de fabrication de cette micro DEL. Plusieurs colonnes (10) lumineuses de l'ordre du micron sont formées sur un substrat. Un matériau de remplissage d'espaces, tel que SiO2, Si3N4, DBR(ZrO2/SiO2 HfO2/SiO2), polyamide ou analogue est versé dans les espaces entre lesdites colonnes. Une surface supérieure (11) du réseau de colonnes et le matériau de remplissage sont planarisés par un traitement CMP, sur lesquels on forme ensuite une électrode transparente (6) présentant une grande surface. ; Ainsi, toutes les colonnes lumineuses peuvent être entraînées simultanément. De plus, l'invention concerne une micro DEL au nitrure à haute brillance, où l'uniformité au niveau de la formation des électrodes sur le réseau de colonnes lumineuses de l'ordre du micron est renforcée par l'utilisation d'une structure par puce à protubérances.
PCT/KR2003/001600 2003-08-08 2003-08-08 Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication WO2005015647A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2003257713A AU2003257713A1 (en) 2003-08-08 2003-08-08 Nitride micro light emitting diode with high brightness and method of manufacturing the same
JP2005507595A JP4755901B2 (ja) 2003-08-08 2003-08-08 高輝度の窒化物マイクロ発光ダイオード及びその製造方法
EP03818003A EP1652238B1 (fr) 2003-08-08 2003-08-08 Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication
AT03818003T ATE486374T1 (de) 2003-08-08 2003-08-08 Nitrid-mikrolicht-emissionsdiode mit grosser helligkeit und herstellungsverfahren dafür
CNB038268892A CN100459180C (zh) 2003-08-08 2003-08-08 高亮度氮化物微发光二极管及其制造方法
DE60334745T DE60334745D1 (de) 2003-08-08 2003-08-08 Nitrid-mikrolicht-emissionsdiode mit grosser helligkeit und herstellungsverfahren dafür
PCT/KR2003/001600 WO2005015647A1 (fr) 2003-08-08 2003-08-08 Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication
US10/567,482 US7595511B2 (en) 2003-08-08 2003-08-08 Nitride micro light emitting diode with high brightness and method of manufacturing the same
ES03818003T ES2356606T3 (es) 2003-08-08 2003-08-08 Microdiodo emisor de luz de nitruro con alto brillo y procedimiento de fabricación del mismo.
US12/545,795 US7906787B2 (en) 2003-08-08 2009-08-21 Nitride micro light emitting diode with high brightness and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2003/001600 WO2005015647A1 (fr) 2003-08-08 2003-08-08 Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/567,482 A-371-Of-International US7595511B2 (en) 2003-08-08 2003-08-08 Nitride micro light emitting diode with high brightness and method of manufacturing the same
US12/545,795 Division US7906787B2 (en) 2003-08-08 2009-08-21 Nitride micro light emitting diode with high brightness and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2005015647A1 true WO2005015647A1 (fr) 2005-02-17

Family

ID=34132086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2003/001600 WO2005015647A1 (fr) 2003-08-08 2003-08-08 Micro-diode electroluminescente au nitrure a haute brillance et son procede de fabrication

Country Status (9)

Country Link
US (2) US7595511B2 (fr)
EP (1) EP1652238B1 (fr)
JP (1) JP4755901B2 (fr)
CN (1) CN100459180C (fr)
AT (1) ATE486374T1 (fr)
AU (1) AU2003257713A1 (fr)
DE (1) DE60334745D1 (fr)
ES (1) ES2356606T3 (fr)
WO (1) WO2005015647A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768196A2 (fr) * 2005-09-27 2007-03-28 LG Electronics Inc. Dispositif semi-conducteur d'émission de la lumière et sa méthode de fabrication
WO2008031338A1 (fr) * 2006-09-07 2008-03-20 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Dispositif électroluminescent à semi-conducteur
WO2008031339A1 (fr) * 2006-09-07 2008-03-20 Hongkong Applied Science And Technology Research Institute Co., Ltd Dispositif à diode lumineuse, sa fabrication et son utilisation
JP2008130656A (ja) * 2006-11-17 2008-06-05 Sony Corp 発光ダイオードおよびその製造方法ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器
WO2008101456A1 (fr) * 2007-02-21 2008-08-28 Osram Opto Semiconductors Gmbh Corps à semi-conducteurs émettant un rayonnement comportant une couche de contact électroconductrice perméable au rayonnement émis
JP2009188249A (ja) * 2008-02-07 2009-08-20 Nanoteco Corp 発光ダイオードおよびその製造方法、発光ダイオードアレイ
US7732822B2 (en) 2006-02-24 2010-06-08 Lg Electronics Inc. Light emitting device and method of manufacturing the same
JP2010283399A (ja) * 2010-09-24 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 発光ダイオード
WO2012049602A1 (fr) * 2010-10-12 2012-04-19 Koninklijke Philips Electronics N.V. Dispositif émetteur de lumière à contrainte epi réduite
WO2012086888A1 (fr) * 2010-12-24 2012-06-28 Seoul Opto Device Co., Ltd. Puce de diode électroluminescente et son procédé de fabrication
CN105590995B (zh) * 2016-02-19 2017-12-12 厦门市三安光电科技有限公司 一种垂直结构发光二极管及其制作方法
US10192809B2 (en) 2016-12-28 2019-01-29 Toyoda Gosei Co., Ltd. Semiconductor array and production method for micro device
US10205053B2 (en) 2016-12-28 2019-02-12 Toyoda Gosei Co., Ltd. Semiconductor structure and semiconductor device
GB2586066A (en) * 2019-08-01 2021-02-03 Plessey Semiconductors Ltd Light emitting diode with improved colour purity

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250591B2 (en) * 2004-06-01 2007-07-31 Micron Technology, Inc. Photonic crystal-based filter for use in an image sensor
KR100576870B1 (ko) * 2004-08-11 2006-05-10 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
TWI442456B (zh) * 2004-08-31 2014-06-21 Sophia School Corp 發光元件
KR101138944B1 (ko) * 2005-01-26 2012-04-25 서울옵토디바이스주식회사 직렬 연결된 복수개의 발광셀들을 갖는 발광 소자 및그것을 제조하는 방법
WO2007001098A1 (fr) * 2005-06-25 2007-01-04 Seoul Opto Device Co., Ltd. Nanostructure comprenant un puits quantique à base de nitrure et diode électroluminescente l'utilisant
TWI309481B (en) 2006-07-28 2009-05-01 Epistar Corp A light emitting device having a patterned substrate and the method thereof
US8030664B2 (en) * 2006-12-15 2011-10-04 Samsung Led Co., Ltd. Light emitting device
KR100887139B1 (ko) * 2007-02-12 2009-03-04 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
CN101110461A (zh) * 2007-07-31 2008-01-23 欧阳征标 利用衍射效应的表面微柱阵列结构高效率发光二极管
TWI367577B (en) * 2007-10-05 2012-07-01 Delta Electronics Inc Light-emitting diode chip and manufacturing method thereof
KR101469972B1 (ko) * 2007-10-17 2014-12-05 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR100900288B1 (ko) * 2007-10-29 2009-05-29 엘지전자 주식회사 발광 소자
US9680058B2 (en) * 2007-11-27 2017-06-13 Sophia School Corporation Group-III nitride structure including a fine wall-shaped structure containing a group-III nitridesemiconductor crystal and method for producing a group-III nitride structure including a fine wall-shaped structure containing a group-III nitride semiconductor crystal
KR101478339B1 (ko) * 2008-06-19 2015-01-08 서울바이오시스 주식회사 발광 소자 및 그 제조 방법
US20090321758A1 (en) * 2008-06-25 2009-12-31 Wen-Huang Liu Led with improved external light extraction efficiency
CN102197596B (zh) * 2008-09-08 2014-10-29 3M创新有限公司 电像素化发光装置
WO2010056596A2 (fr) 2008-11-13 2010-05-20 3M Innovative Properties Company Dispositif luminescent électriquement pixelé comprenant des éléments optiques
KR101007128B1 (ko) * 2009-02-19 2011-01-10 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR101631599B1 (ko) * 2009-12-02 2016-06-27 삼성전자주식회사 발광 소자 및 그 제조 방법
KR101654340B1 (ko) * 2009-12-28 2016-09-06 서울바이오시스 주식회사 발광 다이오드
CN101807650B (zh) * 2010-03-19 2017-07-25 厦门市三安光电科技有限公司 具有分布布拉格反射层的氮化镓基高亮度发光二极管及其制作工艺
GB201012483D0 (en) * 2010-07-26 2010-09-08 Seren Photonics Ltd Light emitting diodes
US9287452B2 (en) * 2010-08-09 2016-03-15 Micron Technology, Inc. Solid state lighting devices with dielectric insulation and methods of manufacturing
WO2012020896A1 (fr) * 2010-08-11 2012-02-16 Seoul Opto Device Co., Ltd. Diode électroluminescente à uv et procédé de fabrication associé
CN102130251B (zh) * 2010-09-28 2014-09-03 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
CN102130249B (zh) * 2010-09-28 2013-05-01 映瑞光电科技(上海)有限公司 超亮度发光二极管及其制作方法
TWI540754B (zh) * 2010-12-27 2016-07-01 鴻海精密工業股份有限公司 發光二極體及其形成方法
JP5777879B2 (ja) * 2010-12-27 2015-09-09 ローム株式会社 発光素子、発光素子ユニットおよび発光素子パッケージ
TWI467805B (zh) * 2011-03-08 2015-01-01 Opto Tech Corp 具寬視角的發光二極體及其製造方法
CN102208502B (zh) * 2011-06-09 2012-12-12 中国科学院半导体研究所 氮化镓基垂直结构发光二极管隐形电极的制作方法
TWI529963B (zh) * 2011-07-25 2016-04-11 廣鎵光電股份有限公司 發光元件結構
DE102011112706B4 (de) * 2011-09-07 2021-09-02 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement
US8809875B2 (en) 2011-11-18 2014-08-19 LuxVue Technology Corporation Micro light emitting diode
US8518204B2 (en) 2011-11-18 2013-08-27 LuxVue Technology Corporation Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US8573469B2 (en) 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
JP5746601B2 (ja) * 2011-11-24 2015-07-08 株式会社東芝 半導体発光素子
WO2013077369A1 (fr) 2011-11-25 2013-05-30 株式会社 フジミインコーポレーテッド Composition de polissage
KR101719645B1 (ko) * 2011-12-21 2017-03-24 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩, 그것을 제조하는 방법 및 그것을 갖는 패키지
US8648328B2 (en) * 2011-12-27 2014-02-11 Sharp Laboratories Of America, Inc. Light emitting diode (LED) using three-dimensional gallium nitride (GaN) pillar structures with planar surfaces
US9773750B2 (en) 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
US9548332B2 (en) 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head
US9034754B2 (en) 2012-05-25 2015-05-19 LuxVue Technology Corporation Method of forming a micro device transfer head with silicon electrode
US8415771B1 (en) 2012-05-25 2013-04-09 LuxVue Technology Corporation Micro device transfer head with silicon electrode
US8383506B1 (en) 2012-07-06 2013-02-26 LuxVue Technology Corporation Method of forming a compliant monopolar micro device transfer head with silicon electrode
US8415768B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant monopolar micro device transfer head with silicon electrode
US8569115B1 (en) 2012-07-06 2013-10-29 LuxVue Technology Corporation Method of forming a compliant bipolar micro device transfer head with silicon electrodes
US8415767B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant bipolar micro device transfer head with silicon electrodes
US8933433B2 (en) 2012-07-30 2015-01-13 LuxVue Technology Corporation Method and structure for receiving a micro device
US8791530B2 (en) 2012-09-06 2014-07-29 LuxVue Technology Corporation Compliant micro device transfer head with integrated electrode leads
US9162880B2 (en) 2012-09-07 2015-10-20 LuxVue Technology Corporation Mass transfer tool
US8941215B2 (en) 2012-09-24 2015-01-27 LuxVue Technology Corporation Micro device stabilization post
US8835940B2 (en) 2012-09-24 2014-09-16 LuxVue Technology Corporation Micro device stabilization post
US9558721B2 (en) 2012-10-15 2017-01-31 Apple Inc. Content-based adaptive refresh schemes for low-power displays
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US9236815B2 (en) 2012-12-10 2016-01-12 LuxVue Technology Corporation Compliant micro device transfer head array with metal electrodes
US9255001B2 (en) 2012-12-10 2016-02-09 LuxVue Technology Corporation Micro device transfer head array with metal electrodes
US9159700B2 (en) 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
US9105714B2 (en) 2012-12-11 2015-08-11 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging bollards
US9166114B2 (en) 2012-12-11 2015-10-20 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging cavity
US9314930B2 (en) 2012-12-14 2016-04-19 LuxVue Technology Corporation Micro pick up array with integrated pivot mount
US9391042B2 (en) * 2012-12-14 2016-07-12 Apple Inc. Micro device transfer system with pivot mount
US9153171B2 (en) 2012-12-17 2015-10-06 LuxVue Technology Corporation Smart pixel lighting and display microcontroller
CN103887386A (zh) * 2012-12-22 2014-06-25 鸿富锦精密工业(深圳)有限公司 发光芯片及其制造方法
KR101603207B1 (ko) 2013-01-29 2016-03-14 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
KR102022266B1 (ko) 2013-01-29 2019-09-18 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
US9308649B2 (en) 2013-02-25 2016-04-12 LuxVue Techonology Corporation Mass transfer tool manipulator assembly
US9095980B2 (en) 2013-02-25 2015-08-04 LuxVue Technology Corporation Micro pick up array mount with integrated displacement sensor
WO2014138904A1 (fr) * 2013-03-14 2014-09-18 The Royal Institution For The Advancement Of Learning/Mcgill University Procédés et dispositifs pour dispositifs à nanofils à semi-conducteur
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
US9217541B2 (en) 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US9484504B2 (en) 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US9136161B2 (en) 2013-06-04 2015-09-15 LuxVue Technology Corporation Micro pick up array with compliant contact
CN105683872B (zh) 2013-06-12 2020-05-12 罗茵尼公司 安置有光产生源的键盘背后照明
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US8928021B1 (en) 2013-06-18 2015-01-06 LuxVue Technology Corporation LED light pipe
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9035279B2 (en) 2013-07-08 2015-05-19 LuxVue Technology Corporation Micro device with stabilization post
US9296111B2 (en) 2013-07-22 2016-03-29 LuxVue Technology Corporation Micro pick up array alignment encoder
US9087764B2 (en) 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
KR102073791B1 (ko) 2013-09-03 2020-02-05 삼성전자주식회사 가요성 전자 소자 및 그 제조 방법
US9966726B2 (en) * 2013-09-12 2018-05-08 Nanyang Technological University Emission source and method of forming the same
US9899793B2 (en) 2013-09-12 2018-02-20 Nanyang Technological University Emission source and method of forming the same
US9153548B2 (en) 2013-09-16 2015-10-06 Lux Vue Technology Corporation Adhesive wafer bonding with sacrificial spacers for controlled thickness variation
US9367094B2 (en) 2013-12-17 2016-06-14 Apple Inc. Display module and system applications
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
US9583466B2 (en) 2013-12-27 2017-02-28 Apple Inc. Etch removal of current distribution layer for LED current confinement
US9542638B2 (en) 2014-02-18 2017-01-10 Apple Inc. RFID tag and micro chip integration design
US9583533B2 (en) 2014-03-13 2017-02-28 Apple Inc. LED device with embedded nanowire LEDs
US9522468B2 (en) 2014-05-08 2016-12-20 Apple Inc. Mass transfer tool manipulator assembly with remote center of compliance
US9318475B2 (en) 2014-05-15 2016-04-19 LuxVue Technology Corporation Flexible display and method of formation with sacrificial release layer
US9741286B2 (en) 2014-06-03 2017-08-22 Apple Inc. Interactive display panel with emitting and sensing diodes
US9624100B2 (en) 2014-06-12 2017-04-18 Apple Inc. Micro pick up array pivot mount with integrated strain sensing elements
US9425151B2 (en) 2014-06-17 2016-08-23 Apple Inc. Compliant electrostatic transfer head with spring support layer
US9570002B2 (en) 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
KR102203461B1 (ko) 2014-07-10 2021-01-18 삼성전자주식회사 나노 구조 반도체 발광 소자
US9705432B2 (en) 2014-09-30 2017-07-11 Apple Inc. Micro pick up array pivot mount design for strain amplification
US9828244B2 (en) 2014-09-30 2017-11-28 Apple Inc. Compliant electrostatic transfer head with defined cavity
GB201420452D0 (en) * 2014-11-18 2014-12-31 Mled Ltd Integrated colour led micro-display
US9478583B2 (en) 2014-12-08 2016-10-25 Apple Inc. Wearable display having an array of LEDs on a conformable silicon substrate
US9633883B2 (en) 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
JP7066610B2 (ja) * 2015-07-13 2022-05-13 クラヨナノ エーエス 発光ダイオードデバイス、光検出デバイス、およびグラファイト基板上のナノワイヤ又はナノピラミッドを含む組成物
KR20170059243A (ko) * 2015-11-20 2017-05-30 삼성전자주식회사 질화물 양자점을 갖는 발광 소자 및 그 제조방법
WO2017124109A1 (fr) 2016-01-15 2017-07-20 Rohinni, LLC Appareil et procédé de rétroéclairage à travers un couvercle sur l'appareil
JP7083230B2 (ja) * 2016-05-10 2022-06-10 ローム株式会社 半導体発光素子
US10141215B2 (en) 2016-11-03 2018-11-27 Rohinni, LLC Compliant needle for direct transfer of semiconductor devices
US10471545B2 (en) 2016-11-23 2019-11-12 Rohinni, LLC Top-side laser for direct transfer of semiconductor devices
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
CN110100309A (zh) * 2016-12-23 2019-08-06 株式会社流明斯 微型led模块及其制造方法
TWI646680B (zh) * 2017-01-10 2019-01-01 英屬開曼群島商錼創科技股份有限公司 微型發光二極體晶片以及顯示面板
US10062588B2 (en) 2017-01-18 2018-08-28 Rohinni, LLC Flexible support substrate for transfer of semiconductor devices
US11393963B2 (en) * 2017-09-13 2022-07-19 Sharp Kabushiki Kaisha LED unit, image display element, and method of manufacturing the same
US10559630B2 (en) 2017-12-21 2020-02-11 X Development Llc Light emitting devices featuring optical mode enhancement
JP7079106B2 (ja) * 2018-01-24 2022-06-01 シャープ株式会社 画像表示素子、及び画像表示素子の製造方法
US10410905B1 (en) 2018-05-12 2019-09-10 Rohinni, LLC Method and apparatus for direct transfer of multiple semiconductor devices
FR3083002B1 (fr) * 2018-06-20 2020-07-31 Aledia Dispositif optoelectronique comprenant une matrice de diodes
JP7044882B2 (ja) * 2018-07-27 2022-03-30 株式会社ジャパンディスプレイ 検出装置付き表示機器
CN108831979B (zh) * 2018-08-23 2024-02-06 中山市华南理工大学现代产业技术研究院 宽带高效的二维光子晶体led倒装阵列芯片及其制备方法
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
JPWO2020115851A1 (ja) * 2018-12-06 2021-10-14 堺ディスプレイプロダクト株式会社 マイクロledデバイスおよびその製造方法
US11322669B2 (en) 2018-12-21 2022-05-03 Lumileds Llc Color uniformity in converted light emitting diode using nano-structures
CN111430518A (zh) * 2019-12-13 2020-07-17 深圳第三代半导体研究院 一种Micro-LED芯片及其制造方法
CN111430400A (zh) * 2019-12-13 2020-07-17 深圳第三代半导体研究院 一种Micro-LED芯片及其制造方法
CN110911536A (zh) * 2019-12-13 2020-03-24 深圳第三代半导体研究院 一种Micro-LED芯片及其制造方法
JP7424038B2 (ja) * 2019-12-23 2024-01-30 セイコーエプソン株式会社 発光装置、および、プロジェクター
US11133439B1 (en) * 2020-05-03 2021-09-28 Black Peak LLC Light emitting device with reflector
CN113808937B (zh) * 2020-06-16 2023-11-21 重庆康佳光电科技有限公司 一种显示背板的制备方法、显示背板及显示装置
US11094846B1 (en) * 2020-08-31 2021-08-17 4233999 Canada Inc. Monolithic nanocolumn structures
CN116472653A (zh) * 2020-11-23 2023-07-21 苏州晶湛半导体有限公司 谐振腔发光二极管的制备方法
US11569414B2 (en) 2021-02-17 2023-01-31 Meta Platforms Technologies, Llc Self-aligned ITO DBR based p-contact for small pitch micro-LED
WO2023142138A1 (fr) * 2022-01-31 2023-08-03 Jade Bird Display (shanghai) Limited Panneau à micro-del à structure cristalline photonique et son procédé de fabrication
KR102654365B1 (ko) * 2022-04-18 2024-04-04 한국광기술원 발광 소자 및 그 제조 방법
US11799054B1 (en) 2023-02-08 2023-10-24 4233999 Canada Inc. Monochromatic emitters on coalesced selective area growth nanocolumns
CN116995172B (zh) * 2023-09-25 2023-12-26 江西兆驰半导体有限公司 一种绿光led芯片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294533A (ja) * 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体レーザ及びその製造方法
JP2001024222A (ja) * 1999-07-06 2001-01-26 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2001308380A (ja) * 2000-04-19 2001-11-02 Seiwa Electric Mfg Co Ltd 窒化ガリウム系半導体発光素子
KR20040008962A (ko) * 2002-07-20 2004-01-31 주식회사 비첼 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231049A (en) * 1990-11-05 1993-07-27 California Institute Of Technology Method of manufacturing a distributed light emitting diode flat-screen display for use in televisions
US5779924A (en) * 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
JP3691951B2 (ja) * 1998-01-14 2005-09-07 東芝電子エンジニアリング株式会社 窒化ガリウム系化合物半導体発光素子
US6091085A (en) * 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
EP0977280A3 (fr) * 1998-07-28 2008-11-26 Interuniversitair Micro-Elektronica Centrum Vzw Dispositifs émetteurs de radiation à rendement élevé et méthode pour fabriquer de tels dispositifs
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
JP2003152220A (ja) * 2001-11-15 2003-05-23 Sharp Corp 半導体発光素子の製造方法および半導体発光素子
US7279718B2 (en) * 2002-01-28 2007-10-09 Philips Lumileds Lighting Company, Llc LED including photonic crystal structure
US7083993B2 (en) * 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294533A (ja) * 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体レーザ及びその製造方法
JP2001024222A (ja) * 1999-07-06 2001-01-26 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2001308380A (ja) * 2000-04-19 2001-11-02 Seiwa Electric Mfg Co Ltd 窒化ガリウム系半導体発光素子
KR20040008962A (ko) * 2002-07-20 2004-01-31 주식회사 비첼 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768196A2 (fr) * 2005-09-27 2007-03-28 LG Electronics Inc. Dispositif semi-conducteur d'émission de la lumière et sa méthode de fabrication
EP1768196A3 (fr) * 2005-09-27 2013-07-10 LG Electronics Inc. Dispositif semi-conducteur d'émission de la lumière et sa méthode de fabrication
US7732822B2 (en) 2006-02-24 2010-06-08 Lg Electronics Inc. Light emitting device and method of manufacturing the same
EP1826833A3 (fr) * 2006-02-24 2010-11-10 LG Electronics Inc. Dispositif électroluminescent et son procédé de fabrication
WO2008031338A1 (fr) * 2006-09-07 2008-03-20 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Dispositif électroluminescent à semi-conducteur
WO2008031339A1 (fr) * 2006-09-07 2008-03-20 Hongkong Applied Science And Technology Research Institute Co., Ltd Dispositif à diode lumineuse, sa fabrication et son utilisation
US7800122B2 (en) 2006-09-07 2010-09-21 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Light emitting diode device, and manufacture and use thereof
US7829905B2 (en) 2006-09-07 2010-11-09 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Semiconductor light emitting device
JP2008130656A (ja) * 2006-11-17 2008-06-05 Sony Corp 発光ダイオードおよびその製造方法ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器
CN101617414B (zh) * 2007-02-21 2012-07-04 奥斯兰姆奥普托半导体有限责任公司 具有对所发射的辐射能透射的导电接触层的发射辐射的半导体本体
WO2008101456A1 (fr) * 2007-02-21 2008-08-28 Osram Opto Semiconductors Gmbh Corps à semi-conducteurs émettant un rayonnement comportant une couche de contact électroconductrice perméable au rayonnement émis
US8067783B2 (en) 2007-02-21 2011-11-29 Osram Opto Semiconductors Gmbh Radiation-emitting chip comprising at least one semiconductor body
JP2009188249A (ja) * 2008-02-07 2009-08-20 Nanoteco Corp 発光ダイオードおよびその製造方法、発光ダイオードアレイ
JP2010283399A (ja) * 2010-09-24 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 発光ダイオード
WO2012049602A1 (fr) * 2010-10-12 2012-04-19 Koninklijke Philips Electronics N.V. Dispositif émetteur de lumière à contrainte epi réduite
US9093630B2 (en) 2010-10-12 2015-07-28 Koninklijke Philips Electronics N.V. Light emitting device with reduced EPI stress
US9660164B2 (en) 2010-10-12 2017-05-23 Koninklijke Philips N.V. Light emitting device with reduced epi stress
WO2012086888A1 (fr) * 2010-12-24 2012-06-28 Seoul Opto Device Co., Ltd. Puce de diode électroluminescente et son procédé de fabrication
CN105590995B (zh) * 2016-02-19 2017-12-12 厦门市三安光电科技有限公司 一种垂直结构发光二极管及其制作方法
US10192809B2 (en) 2016-12-28 2019-01-29 Toyoda Gosei Co., Ltd. Semiconductor array and production method for micro device
US10205053B2 (en) 2016-12-28 2019-02-12 Toyoda Gosei Co., Ltd. Semiconductor structure and semiconductor device
GB2586066A (en) * 2019-08-01 2021-02-03 Plessey Semiconductors Ltd Light emitting diode with improved colour purity
GB2586066B (en) * 2019-08-01 2021-09-08 Plessey Semiconductors Ltd Light emitting diode with improved colour purity

Also Published As

Publication number Publication date
ATE486374T1 (de) 2010-11-15
EP1652238A1 (fr) 2006-05-03
ES2356606T3 (es) 2011-04-11
JP2007519214A (ja) 2007-07-12
US20060208273A1 (en) 2006-09-21
US20090309107A1 (en) 2009-12-17
CN1820376A (zh) 2006-08-16
EP1652238A4 (fr) 2007-03-21
JP4755901B2 (ja) 2011-08-24
EP1652238B1 (fr) 2010-10-27
DE60334745D1 (de) 2010-12-09
US7595511B2 (en) 2009-09-29
CN100459180C (zh) 2009-02-04
US7906787B2 (en) 2011-03-15
AU2003257713A1 (en) 2005-02-25

Similar Documents

Publication Publication Date Title
US7595511B2 (en) Nitride micro light emitting diode with high brightness and method of manufacturing the same
KR100470904B1 (ko) 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법
US9000450B2 (en) Grown photonic crystals in semiconductor light emitting devices
US7485482B2 (en) Method for manufacturing vertical group III-nitride light emitting device
KR101370257B1 (ko) 광전자 반도체 소자
US8390007B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
KR20130102341A (ko) 개선된 광 추출 효율을 갖는 발광 다이오드 및 그것을 제조하는 방법
US9419176B2 (en) Three-dimensional light-emitting device and fabrication method thereof
JP5435523B1 (ja) 半導体発光素子及びその製造方法
CN115699324A (zh) 单片led阵列及其前体
CN114788003A (zh) 形成单片发光二极管前驱体的方法
CN105679904B (zh) 光泵浦发光器件及单片集成光泵浦发光器件的制备方法
JP5326643B2 (ja) 窒化物半導体素子の製造方法
US20230317892A1 (en) Selective optical filter for rgb led
KR20020081947A (ko) 다중반사막을 포함한 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03826889.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003818003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10567482

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005507595

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003818003

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10567482

Country of ref document: US