WO2005015252A1 - 蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム - Google Patents

蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム Download PDF

Info

Publication number
WO2005015252A1
WO2005015252A1 PCT/JP2004/009105 JP2004009105W WO2005015252A1 WO 2005015252 A1 WO2005015252 A1 WO 2005015252A1 JP 2004009105 W JP2004009105 W JP 2004009105W WO 2005015252 A1 WO2005015252 A1 WO 2005015252A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
temperature
deterioration
secondary battery
value
Prior art date
Application number
PCT/JP2004/009105
Other languages
English (en)
French (fr)
Inventor
Noriyasu Iwane
Yuichi Watanabe
Takezo Sugimura
Toshiyuki Satoh
Atsushi Kimura
Fumikazu Iwahana
Katsumi Inaniwa
Tetsuya Kanou
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003326505A external-priority patent/JP4015092B2/ja
Priority claimed from JP2004032553A external-priority patent/JP4360621B2/ja
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to EP04746574A priority Critical patent/EP1650575A4/en
Publication of WO2005015252A1 publication Critical patent/WO2005015252A1/ja
Priority to US11/317,286 priority patent/US7362074B2/en
Priority to US11/770,359 priority patent/US7616003B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing

Definitions

  • the present invention relates to a method for determining deterioration of a storage battery, a device for determining deterioration of a storage battery, a method and apparatus for measuring an internal impedance of a secondary battery for supplying power to a load, and a secondary for determining a deterioration state of the secondary battery.
  • the present invention relates to a technical field such as a battery deterioration state determination method.
  • a technique for measuring the internal impedance has been proposed (for example, see Japanese Patent Application Laid-Open No. H10-56744).
  • the internal impedance of the secondary battery can be obtained by detecting the current and the response voltage flowing through the secondary battery, respectively, in a state where charging or discharging is not performed, and performing a predetermined calculation using both of them. .
  • Japanese Patent Laid-Open Publication No. Hei 10-56744 discloses a method for measuring the internal impedance of a secondary battery, in which a discharge current of a constant frequency is applied to the secondary battery, and the discharge current waveform and the response voltage waveform are Fourier-converted.
  • a method of obtaining an internal impedance by conversion has been proposed. With a powerful method, the internal impedance of the secondary battery can be obtained with relatively high accuracy, and the deterioration state of the secondary battery can be accurately determined.
  • a predetermined current is supplied to the secondary battery, the current and voltage of the secondary battery are detected, and a predetermined calculation is performed to reduce the internal impedance.
  • the configuration required may be adopted.
  • a sealed lead-acid battery a technique for obtaining an internal impedance from a discharge current and a battery voltage during discharge is known (see, for example, Japanese Patent Application Laid-Open No. 9232005).
  • a sealed lead-acid battery is discharged at a predetermined fixed cycle, a discharge current of a constant frequency flows, and the discharge current waveform of the discharge current is Fourier-transformed to obtain a discharge current waveform having a constant frequency as a basic frequency.
  • Fourier transform of the voltage response waveform of the battery voltage during discharge is performed, and the Fourier transform value of the voltage response waveform having a constant frequency as the basic frequency is obtained.
  • the internal impedance becomes long.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-185233
  • Patent Document 2 JP-A-10-56744
  • Patent Document 3 JP 2001-228226 A
  • Patent Document 4 JP-A-9-232005
  • the method disclosed in Japanese Patent Application Laid-Open No. 10-56744 applies a pulse current of a constant frequency to a secondary battery. Therefore, it is necessary to provide a circuit for generating a pulse current of a constant frequency, which leads to a complicated configuration and an increase in cost.
  • a periodic pulse current is passed through the secondary battery when calculating the internal impedance of the secondary battery, unnecessary charging and discharging may be repeated, which may increase the consumption of the secondary battery. You.
  • one object of the present invention is to provide a method for determining the deterioration of a storage battery that can accurately determine the deterioration state of a storage battery in use connected to a load in a short time.
  • Another object of the present invention is to measure an input current and a response voltage in a state where a charging / discharging current having various waveforms having no periodicity is applied to a secondary battery when measuring an internal impedance of the secondary battery. Since the internal impedance is measured by performing the Fourier transform, complicated configurations and increased costs are avoided.
  • Another object of the present invention is to measure the internal impedance of a secondary battery by removing the influence of polarization and obtaining a highly accurate internal impedance.
  • An object of the present invention is to provide an internal impedance measuring method and the like.
  • Another object of the present invention is to provide a secondary battery deterioration state determination method capable of accurately correcting the temperature characteristic of the internal impedance of the secondary battery and determining the deterioration state of the secondary battery with high accuracy. It is to realize.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on a measurement result of an internal resistance component of the storage battery.
  • a method for determining the deterioration of the storage battery wherein a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, and a change in the internal resistance component due to the temperature is obtained in advance as a resistance temperature correction coefficient.
  • the relationship between the internal resistance component at the reference temperature and the voltage between the terminals at the time of discharge of the storage battery when the storage battery power at the reference temperature also flows through a predetermined discharge current is defined as a resistance-voltage conversion coefficient.
  • the internal resistance component of the storage battery and the temperature of the storage battery at the time of measuring the internal resistance component are measured in advance, and the value of the measured internal resistance component is calculated by the resistance temperature compensation.
  • the value of the internal resistance component at the reference temperature is converted into a value of the internal resistance component at the reference temperature based on the positive coefficient, and the voltage of the storage battery at the reference temperature is discharged at the reference temperature based on the resistance-voltage conversion coefficient. At the reference temperature.
  • a method of determining deterioration of a storage battery comprising: determining a preset deterioration determination of a discharge-time terminal voltage of the storage battery and comparing the voltage with a value to determine a deterioration state of the storage battery.
  • a deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on a measurement result of an internal resistance component of the storage battery.
  • a method for determining the deterioration of the storage battery wherein a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, and a change in the internal resistance component due to the temperature is obtained in advance as a resistance temperature correction coefficient.
  • the relationship between the internal resistance component at the reference temperature and the storage battery power at the reference temperature and the voltage drop at the time of discharge of the storage battery when a predetermined discharge current is passed is defined as a resistance voltage conversion coefficient.
  • the internal resistance component of the storage battery and the temperature of the storage battery at the time of measuring the internal resistance component are measured, and the value of the measured internal resistance component is corrected by the resistance temperature correction.
  • the value of the internal resistance component at the reference temperature is converted into the value of the internal resistance component at the reference temperature based on the coefficient, and the value of the voltage drop during discharge of the storage battery at the reference temperature based on the resistance-voltage conversion coefficient.
  • the deterioration determination method of the storage battery is characterized in that the deterioration voltage of the storage battery at the reference temperature is converted into a predetermined value, and the voltage drop at the time of discharge of the storage battery is determined in advance and compared with a value to determine the deterioration state of the storage battery.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on a measurement result of an internal resistance component of the storage battery.
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, and a change due to the temperature of the internal resistance component is expressed as a resistance temperature correction coefficient.
  • the value of the internal resistance component at the reference temperature is compared with a predetermined deterioration determination threshold value to determine the deterioration state of the storage battery. This is a method for determining the deterioration of the storage battery.
  • the reference temperature includes A battery operating temperature range and a temperature at which the value of the inter-terminal voltage at the time of discharge when a predetermined discharge current is applied to the storage battery is set to the lowest temperature.
  • the predetermined discharge current waveform is substantially different from a current waveform representing a current consumption required during the operation time of the load. This is a method for judging deterioration of a storage battery, characterized in that the current waveform has a current waveform that can be regarded as equivalent.
  • the deterioration judgment threshold value is set to a value equal to or higher than the minimum voltage necessary for the operation of the load. It is a fixed method.
  • the deterioration determination threshold value is set to a value equal to or less than a voltage drop value that is a minimum voltage required for operation of the load. This is a method for determining the deterioration of a storage battery.
  • the deterioration judging threshold is set to a value equal to or less than a value of an internal resistance component which is a minimum voltage necessary for operation of the load. This is a method for determining the deterioration of a storage battery.
  • a ninth aspect of the storage battery deterioration determination method is that the storage battery at the reference temperature and the storage battery power at the reference temperature are supplied with a predetermined discharge current.
  • the voltage between the terminals of the storage battery at the time of discharging is the lowest voltage at the time of discharging of the storage battery in the step of obtaining the relationship between the terminal voltage at the time of discharging as a resistance voltage conversion coefficient. This is a determination method.
  • a tenth aspect of the method for judging deterioration of a storage battery according to the present invention is the storage battery according to the present invention, wherein the internal resistance component at the reference temperature and the storage battery power at the reference temperature also flow a predetermined discharge current.
  • the terminal voltage at the time of discharge of the storage battery in the step of roughly obtaining the relationship between the terminal voltage at the time of discharge as a resistance voltage conversion coefficient is a voltage after a predetermined time has elapsed from the discharge start force of the storage battery. This is a method for determining the deterioration of the storage battery.
  • An eleventh aspect of the storage battery deterioration determination method is a method for determining a deterioration state of at least one of two or more storage batteries, wherein the one storage battery is expected to be deteriorated. Or, when the battery is in a degraded state, the degradation state can be recognized.
  • the deterioration state of at least two of the storage batteries is determined, and if the storage batteries are in a state in which deterioration is expected or in a deteriorated state, charging or replacement is required. It has a display unit that displays information on compatible storage batteries and information on a continuously used storage battery that can be used continuously, and a storage unit that records the history of the storage batteries. Equipped with a control / judgment unit that retains the history of storage batteries that can be used by
  • a thirteenth aspect of the storage battery deterioration determination method of the present invention is a storage battery deterioration determination method for a storage battery in a system including a configuration in which the storage battery is connected to a load, based on the discharge performance of the storage battery.
  • a temperature range of 2 or more is determined, an arbitrary reference temperature is set for each temperature range, and a measurement temperature measured when determining the deterioration state of the storage battery is at least one corresponding to the temperature range. Select one reference temperature,
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, a correlation value having a correlation with the discharge performance of the storage battery is measured at a desired temperature, and a temperature correction equation of the correlation value obtained in advance is obtained. Converting the correlation value into a correlation value at the reference temperature based on the temperature at the time of measuring the correlation value and the correlation value, and a predetermined relational expression between the correlation value and the discharge performance and the converted The discharge performance of the storage battery is calculated based on the correlation value.
  • a method of determining deterioration of a storage battery comprising: comparing the obtained discharge performance at the reference temperature with a preset deterioration determination threshold to determine the deterioration state of the storage battery.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on the discharge performance of the storage battery.
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, a correlation value having a correlation with the discharge performance of the storage battery is measured at a desired temperature, and a temperature correction equation of the correlation value obtained in advance is obtained. Converting the correlation value into a correlation value at the reference temperature based on the temperature at the time of measuring the correlation value and the correlation value, and a predetermined relational expression between the correlation value and the discharge performance and the converted The discharge performance of the storage battery is calculated based on the correlation value.
  • a correlation value having a correlation with the discharge performance of the storage battery is measured at a desired temperature, and the values at the two or more reference temperatures are compared or a mutual correlation is determined to determine a deterioration state of the storage battery.
  • a method for judging deterioration of a storage battery is a method for judging deterioration of a storage battery.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on the discharge performance of the storage battery.
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, a correlation value having a correlation with the discharge performance of the storage battery is measured at a desired temperature, and a temperature correction equation of the correlation value obtained in advance is obtained. Converting the correlation value into a correlation value at the reference temperature based on the temperature at the time of measuring the correlation value and the correlation value, and a predetermined relational expression between the correlation value and the discharge performance and the converted The discharge performance of the storage battery is calculated based on the correlation value.
  • the deterioration state of the storage battery is determined by comparing the obtained discharge performance at the reference temperature with a predetermined deterioration determination threshold value.
  • the correlation value may be a DC resistance value or an AC impedance value of an internal resistance component of the storage battery, or an AC conductance value that is a reciprocal of the AC impedance.
  • a storage battery characterized by having a conductivity value of This is a deterioration determination method.
  • the predetermined relational expression is such that a voltage between terminals of the storage battery when a current corresponding to a time change pattern of a current consumption of a load flows, or
  • the present invention also provides a method of determining deterioration of a storage battery, characterized in that the voltage is a voltage between terminals of the storage battery when a current according to a time change pattern of a current consumption of a load is applied.
  • the reference temperature is set to a temperature at which the discharge performance of the battery is the lowest in a predetermined usable temperature range of the storage battery. This is a method for determining deterioration of a storage battery.
  • a nineteenth aspect of the storage battery deterioration judging method according to the present invention is the storage battery deterioration judging method, wherein the reference temperature is set to a temperature obtained by subtracting the desired temperature from a constant temperature. .
  • the reference temperature is set to a predetermined temperature corresponding to each temperature band to which the desired temperature belongs. This is a deterioration determination method.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on a measurement result of an internal resistance component of the storage battery.
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, and a change in the internal resistance component due to the temperature is obtained in advance as a resistance temperature correction coefficient. From the internal resistance component at the reference temperature and the storage battery at the reference temperature, The relation between the discharge terminal voltage of the storage battery when a predetermined discharge current is passed and the terminal voltage at the time of discharge is previously obtained as a resistance voltage conversion coefficient,
  • a battery temperature measurement unit that measures the internal resistance component of the storage battery and the temperature of the storage battery when measuring the internal resistance component
  • An internal resistance component conversion unit that converts the measured value of the internal resistance component into a value of the internal resistance component at the reference temperature based on the resistance temperature correction coefficient
  • a deterioration state determination unit that determines a deterioration state of the storage battery by comparing a discharge terminal voltage of the storage battery at the reference temperature with a preset deterioration determination threshold value. Is a deterioration determination device.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on a measurement result of an internal resistance component of the storage battery.
  • a deterioration determination device for a storage battery to be determined is
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, and a change in the internal resistance component due to the temperature is obtained in advance as a resistance temperature correction coefficient. From the internal resistance component at the reference temperature and the storage battery at the reference temperature, The relationship between the storage battery and the voltage drop at the time of discharge of the storage battery when a predetermined discharge current is passed is obtained in advance as a resistance voltage conversion coefficient,
  • a battery temperature measurement unit that measures the internal resistance component of the storage battery and the temperature of the storage battery when measuring the internal resistance component
  • An internal resistance component conversion unit that converts the measured value of the internal resistance component into a value of the internal resistance component at the reference temperature based on the resistance temperature correction coefficient
  • a discharge drop voltage conversion unit that converts a value of the internal resistance component at the reference temperature into a value of a discharge drop voltage of the storage battery at the reference temperature based on the resistance voltage conversion coefficient
  • a deterioration state determining unit that compares a voltage drop during discharging of the storage battery at the reference temperature with a preset deterioration determination threshold value to determine a deterioration state of the storage battery. It is a determination device.
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on a measurement result of an internal resistance component of the storage battery.
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, a change in the internal resistance component due to the temperature is obtained in advance as a resistance temperature correction coefficient, and the storage battery at the time of measuring the internal resistance component of the storage battery and the internal resistance component is measured.
  • An internal resistance component conversion unit that converts the measured value of the internal resistance component into a value of the internal resistance component at the reference temperature based on the resistance temperature correction coefficient
  • a deterioration state determination unit that compares the value of the internal resistance component at the reference temperature with a predetermined deterioration determination threshold value to determine the deterioration state of the storage battery
  • the deterioration state of the storage battery in a system including a configuration in which the storage battery is connected to a load is determined based on the discharge performance of the storage battery.
  • a temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, a correlation value having a correlation with the discharge performance of the storage battery is measured at a desired temperature, and a temperature correction equation of the correlation value obtained in advance is obtained.
  • a correlation value conversion unit that converts the correlation value into a correlation value at the reference temperature based on the temperature at the time of measuring the correlation value and the correlation value;
  • a discharge performance calculation unit that obtains the discharge performance of the storage battery based on a predetermined relational expression between the correlation value and the discharge performance and the converted correlation value
  • a deterioration state determination unit that compares the obtained discharge performance at the reference temperature with a predetermined deterioration determination threshold value to determine the deterioration state of the storage battery
  • a deterioration state is determined for at least one of the two or more storage batteries, and the one storage battery is expected to be deteriorated.
  • the deterioration determination device for a storage battery includes a display unit that can recognize the state.
  • the deterioration state of at least two of the storage batteries is determined, and when the storage batteries are in a state where deterioration is expected or in a deteriorated state, charging or replacement is required.
  • a charging current or a discharging current is used as an input current of the secondary battery, and an input current and a response voltage of the secondary battery are measured.
  • a plurality of current measurement values and a plurality of voltage measurement values on a time axis and performing a Fourier transform on each of the obtained plurality of current measurement values and the plurality of voltage measurement values, thereby obtaining the input current and the predetermined value at a predetermined frequency.
  • Determining a frequency component of the response voltage, and calculating an internal impedance of the secondary battery at the predetermined frequency by calculating a ratio between a frequency component of the input current and a frequency component of the response voltage.
  • the plurality of current measurement values and the plurality of voltage measurement values each include N number of samples sampled at a predetermined time interval At. And the frequency components of the input current and the response voltage at the predetermined frequency are obtained by discrete Fourier transform.
  • the frequency component I ( ⁇ ) of the input current and the frequency component V ( ⁇ ) of the response voltage include the predetermined frequency F ( ⁇ ).
  • V (o) Aty v (n 'At)' exp (j o 'n' At) dt
  • a fourth aspect of the method for measuring the internal impedance of a secondary battery according to the present invention a plurality of components corresponding to at least ⁇ ⁇ different frequencies are calculated as the internal impedance, and an equivalent circuit of the secondary battery is calculated. Calculating the ⁇ number of circuit constants by solving a simultaneous equation in which ⁇ number of circuit constants included in ⁇ are unknown numbers based on the plurality of components of the internal impedance. Is the way.
  • a fifth aspect of the method for measuring the internal impedance of a secondary battery includes a charging circuit for supplying a charging current when charging the secondary battery, and a discharging circuit for supplying a discharging current when discharging the secondary battery.
  • a circuit the charging current or the discharging current as an input current of the secondary battery, sensor means for measuring an input current and a response voltage of the secondary battery, and a time axis based on a measurement result of the sensor means.
  • a plurality of current measurement values and a plurality of voltage measurement values are obtained, and the obtained plurality of current measurement values and the plurality of voltage measurement values are subjected to Fourier transform, respectively, so that the input current and the response voltage at a predetermined frequency are respectively obtained.
  • An internal impedance measuring method for a secondary battery characterized by comprising and.
  • the control means includes the plurality of current measurement values and the plurality of voltage measurement values each having a predetermined time interval At.
  • a method for measuring the internal impedance of a secondary battery comprising: obtaining ⁇ sampled measurement values; and obtaining respective frequency components of the input current and the response voltage at the predetermined frequency by discrete Fourier transform. is there.
  • One aspect of the secondary battery deterioration determination device of the present invention is characterized in that the deterioration state of the secondary battery is determined based on the internal impedance calculated by the above-described internal impedance measurement device for the secondary battery. Is a secondary battery deterioration determination device.
  • One embodiment of the power supply system of the present invention is a power supply system including the above-described secondary battery internal impedance measuring device.
  • a seventh aspect of the method for measuring the internal impedance of a secondary battery it is determined whether the secondary battery that supplies power to the load is in a state of receiving charge polarization or discharge polarization.
  • a discharge current pulse having a constant period is applied to the secondary battery.
  • a charge current pulse having a constant period is generated. Applying the charging current pulse or the discharging current pulse to the secondary battery and applying the timing to start the application of the discharging current pulse.
  • the input current and the response voltage of the secondary battery after the timing at which a predetermined number of cycles have elapsed are measured.
  • a method for measuring the internal impedance of a secondary battery comprising calculating an internal impedance of the secondary battery using an input voltage and a response voltage.
  • the charging current pulse or the discharging current pulse is a rectangular wave having a predetermined cycle and a predetermined current amplitude. This is a method for measuring the internal impedance of a secondary battery.
  • the input current and the response voltage used for calculating the internal impedance are different from each other when the charging current pulse or the discharging current pulse is applied.
  • This is a method for measuring the internal impedance of a secondary battery, characterized in that measurement is started after a predetermined number of cycles set within a range of 10 to 50 cycles from a start timing.
  • a discharge current pulse having a constant cycle is applied to the secondary battery, while when it is determined that the battery has undergone the discharge polarization, a charge current pulse having a constant cycle is generated.
  • the input current and the response voltage of the secondary battery are measured within a predetermined time after the application of the charging current pulse or the discharge current pulse to the secondary battery, and the measured input voltage and the measured Using the response voltage, calculate the internal impedance of the plurality of secondary batteries on the time axis, and sequentially calculate using the plurality of internal impedances to approximate the time characteristic of the internal impedance.
  • a method for measuring the internal impedance of a secondary battery comprising determining a coefficient of the above exponential decay function and obtaining a convergence value of the internal impedance based on at least the determined coefficient.
  • the nth aspect of the method for measuring the internal impedance of a secondary battery according to the present invention is that the discharge is continuously performed at a variable frequency, a discharge current at each variable frequency is passed, and the discharge at each variable frequency is performed.
  • the Fourier transform of the discharge current waveform of the current is performed to obtain a Fourier transform value of the discharge current waveform for each frequency, and the voltage response waveform of the battery voltage being discharged is Fourier transformed to obtain the voltage response waveform of the variable frequency.
  • a Fourier transform value is obtained, the Fourier transform value of the voltage response waveform is divided by the Fourier transform value of the discharge current waveform to obtain an internal impedance for each variable frequency, and the internal impedance values calculated for each frequency are compared.
  • the rate of increase or decrease is below a certain value, it is determined that there is no noise, and a predetermined fundamental frequency is used, and the rate of increase or decrease is a certain value. If above, Mel internal impedance measuring method of the secondary battery and determines that noise exists.
  • a twelfth aspect of the method for measuring the internal impedance of a secondary battery according to the present invention at least three discharges having different periods of the discharge current waveform described above are repeatedly performed as one set, and at least three cycles are performed.
  • This is a method for measuring the internal impedance of a rechargeable battery, which calculates the impedance of the secondary battery and calculates the desired impedance based on the three impedances.
  • a thirteenth aspect of the method for measuring the internal impedance of a secondary battery according to the present invention is as follows.
  • F (T) Al exp (A3 ⁇ T) + ⁇ 2 exp (A4 ⁇ T) + A5
  • a function F (T) is used to determine five coefficients A1—A5. This is a method for measuring the internal impedance of a secondary battery.
  • the charging current pulse or the discharging current pulse has a rectangular shape having a predetermined cycle and a predetermined current amplitude. This is a method for measuring the internal impedance of a secondary battery, wherein the internal impedance is a shape wave.
  • the plurality of internal impedances used in the sequential calculation may be 5 to 5 times after the start of application of the charging current pulse or the discharging current pulse.
  • An internal impedance measurement method for a secondary battery characterized in that the internal impedance is calculated using the input current and the response voltage measured within a period up to a predetermined number of cycles set in a range of 50 cycles.
  • a first aspect of the internal impedance measuring device for a secondary battery is a sensor for measuring an input current and a response voltage of a secondary battery that supplies power to a load, and a charging current pulse or a charging current pulse having a constant period.
  • a charge / discharge circuit capable of applying a discharge current pulse to the secondary battery; and determining whether the secondary battery is in a state of being subjected to a difference between charge polarization and discharge polarization, and receiving the charge polarization. When it is determined that the discharge current pulse is applied to the secondary battery, the charge current pulse is applied to the secondary battery when it is determined that the battery is subjected to the discharge polarization.
  • a second embodiment of the internal impedance measuring device for a secondary battery is a sensor device for measuring an input current and a response voltage of a secondary battery for supplying power to a load, and a charging current pulse or a charging current pulse having a constant period.
  • a charge / discharge circuit capable of applying a discharge current pulse to the secondary battery; and determining whether the secondary battery is in a state of being subjected to a difference between charge polarization and discharge polarization, and receiving the charge polarization. When it is determined that the discharge current pulse is applied to the secondary battery, the charge current pulse is applied to the secondary battery when it is determined that the battery is subjected to the discharge polarization.
  • Controlling the discharging circuit acquiring the measurement result of the sensor means within a predetermined time after the application of the charging current pulse or the discharging current pulse, and using the acquired input voltage and the response voltage on the time axis. More than one Calculating the internal impedance of the next cell, the time characteristics of second or higher order of approximation of the plurality of the internal impedance by performing the sequential calculation using the internal impedance Control means for determining a coefficient of an exponential decay function and obtaining a convergence value of the internal impedance based at least on the determined coefficient.
  • One embodiment of the power supply system of the present invention is a power supply system including the above-described device for measuring the internal impedance of a secondary battery.
  • a first aspect of the secondary battery deterioration determination method of the present invention is a secondary battery deterioration determination for determining a deterioration state of the secondary battery based on an internal impedance of the secondary battery that supplies power to a load.
  • a method of determining deterioration of a secondary battery comprising calculating a reference internal impedance and determining the deterioration state of the secondary battery based on the calculated reference internal impedance.
  • the coefficient of each term of the third or higher order polynomial term is set in association with a common reference coefficient, and the obtained internal impedance and the above-mentioned internal impedance are set.
  • a secondary battery deterioration determination method comprising: calculating the reference coefficient based on a measured temperature; and determining the coefficients of the respective terms based on the calculated reference coefficient.
  • the function including the third-order or higher-order polynomial term is such that when the temperature is Tp, the internal impedance is ⁇ , and the reference coefficient is C. ,
  • the function fl (C) -fn (C) of each term included in the third or higher order polynomial is a first order of the reference coefficient C. Characterized by the formula This is a secondary electrification deterioration determination method.
  • a pre-stress judging threshold is set in accordance with the reference temperature, and the calculated reference internal impedance and the judging threshold are set.
  • a deterioration state of the secondary battery is determined according to a magnitude relation between the secondary battery and the secondary battery.
  • a first aspect of the secondary battery deterioration determination device of the present invention is a secondary battery deterioration determination for determining a deterioration state of the secondary battery based on an internal impedance of the secondary battery that supplies power to a load.
  • An apparatus comprising: a circuit capable of applying a current pulse to the secondary battery; sensor means for measuring a current and a voltage of the secondary battery; a temperature sensor for measuring a temperature of the secondary battery; and The internal impedance is obtained based on the measurement result of the sensor unit in a state where a current pulse is applied, and the temperature characteristic of the internal impedance is approximated based on the measured temperature of the temperature sensor and the obtained internal impedance.
  • a coefficient of each term of a function including at least a third-order or higher-order polynomial term is determined, and based on the determined coefficient, at a predetermined reference temperature of the function including the third-order or higher-order polynomial term.
  • Calculating a reference internal impedance is estimated value, a secondary battery deterioration determination device, characterized in that it comprises a control means for determining the deterioration state of the secondary battery based on the reference internal impedance with the calculated.
  • a second aspect of the secondary battery deterioration judging device of the present invention includes a non-volatile storage means for storing in advance setting information about a coefficient of each term of the third or higher order polynomial term, And determining the coefficient of each item using the setting information read from the non-volatile storage means.
  • the nonvolatile storage means in the nonvolatile storage means, a plurality of combinations corresponding to a plurality of combinations of coefficients of each term of the third or higher order polynomial are stored.
  • the control means is capable of selectively reading out the plurality of pieces of setting information.
  • the non-volatile storage means stores a judgment threshold value set in advance corresponding to the reference temperature
  • the control means Is the A secondary battery deterioration judging device characterized in that the deterioration state of the secondary battery is judged according to the magnitude relation between the calculated reference internal impedance and the judgment threshold value read out from the nonvolatile memory means.
  • the discharge is continuously performed at a variable frequency, a discharge current is supplied at each variable frequency, and the discharge current is discharged at each variable frequency.
  • Fourier-transform the current waveform to obtain a Fourier-transformed value of the discharge current waveform at each frequency
  • Fourier-transform the voltage response waveform of the battery voltage during discharge to obtain a Fourier-transformed value of the variable voltage response waveform at each frequency. Is calculated, and the Fourier transform value of the voltage response waveform is divided by the Fourier transform value of the discharge current waveform to obtain an internal impedance for each variable frequency, and the internal impedance values calculated for each frequency are compared. If the rate of increase or decrease is below a certain value, it is determined that there is no noise, and a predetermined fundamental frequency is used.
  • a secondary battery deterioration determination device characterized in that it comprises a determination unit that's the judgment.
  • the nonvolatile storage means stores a plurality of the determination threshold values
  • the control means stores the plurality of the determination threshold values.
  • a secondary battery deterioration determination device which is selectively readable.
  • a power supply system according to the present invention is a power supply system including the above-described secondary battery deterioration determination device.
  • the temperature at which the deterioration state of the storage battery is determined is set in advance as a reference temperature, and the measured storage battery is determined. Is converted to a value at the reference temperature, this value is converted to a voltage at the reference temperature at the time of discharging of the storage battery, and the voltage at the terminal of the storage battery at the reference temperature at the time of discharging is compared with the deterioration determination threshold value. Therefore, the deterioration state of the storage battery in use connected to the load can be determined in a short time and accurately.
  • the input current and the response voltage are measured at the time of charging or discharging, and a predetermined frequency is obtained by performing a Fourier transform. Since the internal impedance of the secondary battery is calculated in step (1), there is no need to provide a special current generator or use a current having a periodic waveform. Therefore, it is possible to realize a secondary battery internal impedance measuring device or the like which is useful in terms of simplification of the configuration and low cost and can suppress consumption of the secondary battery.
  • a current pulse is applied in accordance with the polarization state of the secondary battery, and the internal impedance is calculated by waiting until the time when the internal impedance stabilizes from the application start timing. Therefore, it is possible to measure the internal impedance with high accuracy by removing the influence of the polarization of the secondary battery.
  • a current pulse corresponding to the polarization state of the secondary battery is applied, and an application start timing force is sequentially calculated using a plurality of internal impedances within a predetermined time. Since the convergence value of the internal impedance is obtained by determining the coefficient of the above exponential decrement function, it is not affected by the polarization of the secondary battery! /, The internal impedance of the state can be accurately estimated, and The internal impedance can be measured with high accuracy.
  • FIG. 1-1 is an explanatory diagram showing a first example of a system to which the present invention is applied.
  • FIG. 1-2 is an explanatory diagram showing a second example of a system to which the present invention is applied.
  • FIG. 1-3 is an explanatory diagram showing an example of a power control device used in a system to which the present invention is applied.
  • FIG. 1-4 is a flowchart illustrating a flow of a first example of a storage battery deterioration determination method according to an embodiment of the present invention.
  • FIG. 1-5 is a flowchart illustrating a flow of a second example of the method for determining deterioration of a storage battery according to the embodiment of the present invention.
  • FIG. 1-6 is a flowchart for explaining the flow of a third example of the method for determining deterioration of a storage battery according to the embodiment of the present invention.
  • FIG. 1-7 is a graph showing a first example of a temporal change of a discharge current when a load is used.
  • FIG. 1-8 A graph showing a second example of a temporal change in discharge current when a load is used, where (A) is a current waveform representing current consumption required during the operation time of the load, and (B) is a current waveform. Shows a current waveform that can be considered substantially equivalent to the current waveform of (A).
  • FIG. 1-9 When the voltage at the discharge terminal of the storage battery when calculating the resistance-voltage conversion coefficient according to the method of the first example is the lowest voltage at the time of discharge of the storage battery, the voltage at the discharge terminal and the discharge current It is a graph which shows a relationship.
  • the discharge-terminal voltage of the storage battery is set to a voltage after a predetermined time after the discharge start force of the storage battery. It is a graph which shows the relationship of a discharge current.
  • FIG. 1-11 is a graph showing an example of the temperature dependence of an internal resistance component of a storage battery.
  • FIG. 12 is a graph showing an example of a resistance temperature correction coefficient.
  • FIG. 13 shows an example of a resistance-voltage conversion coefficient used in the method of the first example.
  • FIG. 14 shows an example of a resistance-voltage conversion coefficient used in the method of the second example.
  • FIG. 15 is a processing flowchart of the second embodiment.
  • FIG. 1-16 is a diagram showing a relationship between an internal resistance component (internal resistance value) and a minimum voltage during discharging a load current in the second embodiment.
  • FIG. 1-17 is a diagram showing a relationship between a battery capacity (5 hour rate capacity) and a minimum voltage during discharge of a load current, which is a conventional method.
  • FIG. 1-18 is a processing flowchart of a conventional method.
  • FIG. 1-19 is a system configuration diagram (part 1) of a modified example.
  • FIG. 1-20 is a system configuration diagram (part 2) of a modified example.
  • FIG. 1-21 is a system configuration diagram (part 3) of a modified example.
  • FIG. 1-22 is a system configuration diagram (part 4) of a modified example.
  • FIG. 1-23 illustrates an example of a conventional method.
  • FIG. 1-24 is a diagram explaining an example of the method of the present invention.
  • FIG. 2-1 is a block diagram showing a schematic configuration of a power supply system according to the present embodiment.
  • FIG. 2-2 is a diagram showing an equivalent circuit of a secondary battery.
  • FIG. 2-3 is a flowchart illustrating specific processing when measuring the internal impedance of a secondary battery in the power supply system according to the present embodiment.
  • FIG. 2-4 is a diagram illustrating the relationship between the internal impedance of a secondary battery and the state of deterioration.
  • FIG. 3-1 is a block diagram showing a schematic configuration of a power supply system according to the first embodiment.
  • FIG. 3-2 is a diagram showing an equivalent circuit of a secondary battery.
  • FIG. 3-3 is a diagram showing a specific example of a waveform of a current pulse applied to a secondary battery.
  • FIG. 3-4 is a flowchart illustrating specific processing when measuring the internal impedance of the secondary battery in the power supply system according to the first embodiment.
  • FIG. 3-5 is a flowchart showing a specific calculation process of an internal impedance in step S108 of FIG. 3-4.
  • FIG. 3-6 is a flowchart illustrating specific processing when measuring the internal impedance of a secondary battery in the power supply system according to the second embodiment.
  • FIG. 3-7 is a flowchart showing a specific process of calculating a convergence value of the internal impedance in step S212 of FIG. 3-6.
  • FIG. 3-8 is a specific example of a time characteristic in a case where the internal impedance of the secondary battery is obtained in the second embodiment, and is a diagram showing an example in which calculation is performed using the absolute value of the internal impedance and a real part. It is.
  • FIG. 3-9 is a diagram showing a specific example of a time characteristic in a case where the internal impedance of the secondary battery is obtained in the second embodiment, showing an example in which calculation is performed using an imaginary part of the internal impedance.
  • FIG. 4-1 is a block diagram showing a schematic configuration of a power supply system according to the present embodiment.
  • FIG. 4-2 is a diagram showing a specific example of a waveform of a current pulse applied to a secondary battery.
  • FIG. 4-3 is a diagram showing a specific example of temperature characteristics of a secondary battery.
  • FIG. 4-4 is a diagram showing a relationship between approximation accuracy and a degree of a polynomial function when the temperature characteristic of the internal impedance is approximated by a polynomial function.
  • FIG. 4-5 is a flowchart showing a specific process for determining the deterioration state based on the internal impedance of the secondary battery in the power storage system according to the present embodiment. Explanation of symbols
  • the storage battery deterioration determination method of the present invention includes a system including a configuration in which the storage battery is connected to a load. In this method, the deterioration state of the storage battery in the system is determined based on the measurement result of the internal resistance component.
  • the method for determining deterioration of a storage battery according to the present invention is capable of determining the deterioration state almost accurately even for a storage battery used for an application in which the charging voltage or state of charge changes or for a purpose of performing rapid discharge. And is superior to the conventional method.
  • rapid discharge refers to a state in which the discharge current value (discharge current value) during actual discharge is greater than the discharge current value during rated discharge (rated current value: generally 5 hour rate or 10 hour rate). means.
  • the method of determining deterioration of a storage battery according to the embodiment of the present invention is characterized in that the following items (1) and (2) are preliminarily determined.
  • the temperature at which the deterioration state of the storage battery is determined is defined as a reference temperature.
  • the reference temperature is set, for example, to a temperature within the operating temperature range of the storage battery and at which the value of the terminal voltage at the time of discharge when the storage battery power has passed a predetermined discharge current is discharged. Is done.
  • the influence on the inter-terminal voltage (discharge performance) of the storage battery due to the temperature characteristics of the internal resistance component of the storage battery is usually dominant, but other factors (for example, current consumption on the load side, etc.) , Etc.) can also be considered.
  • a diode for preventing reverse connection may be connected between the storage battery and the load.
  • the temperature characteristics and the like can also be considered.
  • the method of determining deterioration of a storage battery according to the embodiment of the present invention performs the following processes (4) and (7) based on the above-described predetermined items (1) and (3). It is characterized by doing! /
  • the internal resistance component of the storage battery and the temperature of the storage battery at the time of measurement are measured.
  • the temperature of the storage battery does not need to be measured simultaneously with the measurement of the internal resistance component of the storage battery, it can be considered that the temperature of the storage battery has not substantially changed. It doesn't matter if they don't match!
  • the state of deterioration of the storage battery is determined by comparing the terminal voltage at the time of discharging of the storage battery at the reference temperature obtained in (6) with a preset deterioration determination threshold value.
  • the deterioration determination threshold can be, for example, a minimum voltage required for the operation of the load (hereinafter, referred to as a minimum operating voltage of the load). If the voltage between the terminals at the time of discharge of the storage battery is greater than the deterioration determination threshold, it is determined that the storage battery is capable of outputting the required power. It is impossible, and it is determined that the storage battery is in a deteriorated state.
  • the value of the internal resistance component at the reference temperature obtained in (5) above is converted into a voltage drop at the time of discharge of the storage battery at the reference temperature based on the resistance-voltage conversion coefficient, and this value is used to determine a preset deterioration judgment.
  • the deterioration state of the storage battery is determined by comparing with a threshold value.
  • This deterioration determination threshold value can be set to, for example, a value equal to or less than a drop voltage value which is a minimum voltage required for operation of the load. This enables comparison with the voltage drop of the storage battery It becomes.
  • the value of the internal resistance component at the reference temperature obtained by the above (5) is judged to be a predetermined deterioration judgment! And compared with the value to judge the deterioration state of the storage battery.
  • the value can be set to, for example, a value equal to or less than the value of the internal resistance component that becomes the minimum voltage necessary for the operation of the load. This enables comparison with the value of the internal resistance component of the storage battery.
  • the method for determining deterioration of a storage battery according to the embodiment of the present invention has the features of the above (1) and (9), more specifically, it is based on the measurement result of the internal resistance component of the storage battery.
  • the value of the storage battery in use connected to the load is used. The deterioration state can be determined accurately in a short time.
  • Discharge performance can be considered as the voltage between terminals of a storage battery when a certain current is applied.
  • a decrease in the discharge performance means a greater decrease in the terminal voltage for the same current output. Therefore, the discharge performance can be considered as a voltage drop for the same current output.
  • the value of the voltage drop of the storage battery is actually obtained as the changing power of the value of the internal resistance component of the storage battery, and a decrease in the discharge performance is determined based on the increase in the value of the internal resistance component.
  • the internal resistance component of the storage battery may be any one that can be an alternative index of the voltage drop of the storage battery.
  • the internal resistance component may be impedance (DC resistance component or reactance component only) or admittance (conductance component only or susceptance component only).
  • the value of the inter-terminal voltage at the time of discharge when the discharge current is within the operating temperature range of the storage battery and a predetermined discharge current flows from the storage battery is the lowest. It is desirable to determine the deterioration of the discharge performance at a certain temperature in order to reliably determine the deterioration state. For example, when the storage battery is a lead-acid battery, the discharge performance when the operating temperature range is set to 10 ° C-+ 40 ° C decreases as the temperature decreases, and becomes the most severe at the lower limit temperature of the operating temperature range of the storage battery. Become. Therefore, measurement of the internal resistance component measured with a storage battery at an arbitrary temperature It is desirable to determine the discharge performance at the temperature where the battery discharge performance is the strictest, that is, the lower limit temperature of the storage battery operating temperature range from the constant value.
  • the storage battery is controlled according to the temperature of the storage battery.
  • the reference temperature for determining the deterioration state may be changed.
  • the reference temperature does not necessarily need to be set to the lower limit of the operating temperature range of the storage battery, and the deterioration state may be determined using a temperature higher than the lower limit of the operating temperature range of the storage battery as the reference temperature.
  • the deterioration state may be determined using a temperature obtained by subtracting a certain temperature from the measured temperature of the storage battery as a reference temperature.
  • a temperature obtained by subtracting a certain temperature from the measured temperature of the storage battery as a reference temperature.
  • the reference temperature is 0 ° C.
  • the reference temperature is 15 ° C
  • the reference temperature is 30 ° C, and so on.
  • the history of the measured temperature of the storage battery is recorded throughout the year, and if the history temperature range of the storage battery is ⁇ 30 ° C— + 55 ° C, the reference temperature is ⁇ 30 ° C, and the storage temperature range of the storage battery is 0 ° C— + 25 ° C, the reference temperature is -15 ° C, the storage battery temperature range is + 25 ° C— + 55 ° C, the reference temperature is 0 ° C, the storage battery temperature range is If the temperature is between 30 ° C and 0 ° C, the reference temperature may be set according to the historical temperature range of the storage battery, such as 30 ° C.
  • the range is “30 ° C. or more, less than 0 ° C.”, “0 ° C. Above, + 30 ° C or less ”,“ Over + 30 ° C, + 55 ° C or less ”and select the reference temperature selection pattern according to the measured battery temperature.
  • a plurality may be set as in C.
  • the reference temperature may be set arbitrarily according to the temperature history of the storage battery installation site.
  • the reference temperature selection C uses 20 ° C as the reference temperature compared to the reference temperature selections A and B, the judgment at a low temperature (Category 1) is loose. This determination may be made to determine that the battery has deteriorated, and the battery may be charged or replaced. Also, on the high temperature side, for example, when the temperature reaches about the upper limit temperature of the storage battery, it is determined that the reference temperature is lower than the upper limit temperature and + 30 ° C. May be.
  • the reference temperature may be set from those in different sections of the measurement temperature range.
  • the reference temperature selection B even if the measured battery temperature is + 5 ° C, the reference temperature can be set to any value such as + 30 ° C (Category 3 of the reference temperature selection B in Table 1). You may choose.
  • the measurement temperature range may be divided into four or more. Also, the measurement temperature range is 30 ⁇ division 1-20 CC, ..., 0 ⁇ division m ⁇ 10 CC, ..., 50 ⁇ division n So that it can be divided into temperature ranges at approximately equal intervals. Naturally, the temperature range may be divided into arbitrary unequal intervals.
  • a plurality of reference temperatures are measured at one reference temperature (measurement result 1) and measured at another reference temperature (measurement results 2, 3, 4, ⁇ ' ⁇ ). Compare the voltage values at temperature and select the reference temperature that is the most severe.
  • the deterioration may be determined in consideration of the correlation such as the correlation of the voltage values at a plurality of reference temperatures and the use state such as the load condition and the environment.
  • the correlation such as mutual correlation, or ⁇
  • the usage state such as the load condition and the environment. Good.
  • the deterioration status lifetime of the storage batteries that have been replaced or charged at substantially the same time due to load conditions, the environment, and the like. The charging time can also be reported to the user.
  • the minimum operating voltage of the load has temperature dependency
  • FIG. 1-1 is an explanatory diagram showing a first example of a system to which the present invention is applied.
  • reference numeral 1 denotes a system to which the present invention is applied.
  • the system 1 includes a power source 2 for operating the system 1, a storage battery 3 charged by power from the power source 2, a load 4 operated by power from the power source 2 or the storage battery 3, and a power source 2 or A power control device 5 for controlling the supply of power from the storage battery 3 to the load 4 is provided.
  • the actual system 1 may be provided with a large number of loads, only the specific load 4 is focused on in FIG. 1-1, and illustration and description of other loads are omitted.
  • the power control device 5 includes a storage battery deterioration determination device 6 that determines the deterioration state of the storage battery 3 connected to the load 4.
  • a storage battery deterioration determination device 6 that determines the deterioration state of the storage battery 3 connected to the load 4.
  • any storage battery may be used.
  • a lead storage battery, a nickel-metal hydride secondary battery, a lithium ion secondary battery, or the like may be used. They can be used without distinction of their type, voltage, capacity and the like.
  • the storage battery deterioration determination device 6 has a function of determining the deterioration state of the storage battery 3 based on the measurement result of the internal resistance component of the storage battery 3.
  • the measurement result of the internal resistance component of the storage battery 3 is used to determine the deterioration state of the storage battery 3, for example, when the system 1 is a device with a large load variation and the power source 2 is a commercial power source, a solar battery, Even when the battery voltage of the storage battery 3 being charged fluctuates, such as when the power source 2 is a generator (alternator) in a vehicle, the state of deterioration of the storage battery 3 is more accurate than in the conventional technology. Can be determined.
  • FIG. 1-2 is an explanatory diagram showing a second example of the system to which the present invention is applied.
  • reference numeral 1 denotes a system to which the present invention is applied.
  • This system 1 is Power source 2 for operating the power source 1, the main storage battery 3A charged by the power from the power source 2, the load 4 operated by the power from the power source 2 or the main storage battery 3A, and the power source 2 or the main storage battery.
  • the 3A power is also provided with a power control device 5 for controlling the supply of power to the load 4.
  • the system 1 includes a spare storage battery 3B for backing up the main storage battery 3A.
  • FIG. 1-2 as in FIG. 1-1, attention is paid only to the specific load 4, and the illustration and description of other loads are omitted.
  • the power control device 5 includes a storage battery deterioration determination device 6 that determines the deterioration state of at least one of the main storage battery 3A and the spare storage battery 3B connected to the load 4.
  • a storage battery deterioration determination device 6 that determines the deterioration state of at least one of the main storage battery 3A and the spare storage battery 3B connected to the load 4.
  • any storage battery may be used, for example, a lead storage battery.
  • the storage battery deterioration determination device 6 has a function of determining the deterioration state of the main storage battery 3A or the backup storage battery 3B based on the measurement result of the internal resistance component of the main storage battery 3A or the backup storage battery 3B. Have.
  • the advantage of the storage battery deterioration determination device 6 having this function is as described above.
  • the main storage battery 3A, the spare storage battery 3B, and the plurality of storage batteries are provided, and the deterioration state of at least one storage battery is determined. In the case of, the information of the storage battery that needs to be charged or replaced is transmitted.
  • a display unit 103 as shown in FIG. 1-19 or FIG.
  • the main storage battery 3A, the spare storage battery 3B, and the plurality of storage batteries are provided, and the deterioration state of at least two storage batteries is determined.
  • the display unit 103 as shown in Fig. 1-19 or Fig. 1-20 displaying the information of the storage battery that needs to be charged or replaced and the information of the continuous use storage battery that can be used continuously, and the storage battery Control unit having a storage unit (not shown) for recording the history of the storage battery, at least storing the history of the storage battery used for charging or continuously usable, or having Z and a program for continuously determining.
  • Judgment unit power control unit in Fig.
  • Device 5 and a storage battery deterioration determination device 6) can determine the deterioration state of the storage battery.
  • at least one can be a storage battery that can always be used. Therefore, for example, it is effective to incorporate the present invention into a system or an apparatus that requires a constant power supply.
  • FIG. 13 is an explanatory diagram showing an example of a power control device used in a system to which the present invention is applied.
  • the power control device of FIG. 1-3 will be described as being used in the system of FIG. 1-1.
  • power control device 5 includes charging power detecting means 51 for detecting the presence or absence of charging power from power source 2 to storage battery 3 and a deterioration detection signal from storage battery deterioration determination device 6 as an alarm signal.
  • An alarm generating means 52 for converting and outputting the converted data to the outside is provided.
  • the charging power detection means 51 is means for making the storage battery deterioration determination device 6 determine the deterioration state of the storage battery 3 when the storage battery 3 is not charged.
  • the actual power control device 5 is provided with other functions such as a function of adjusting the charging power from the power source 2 to the storage battery 3 as necessary, but illustration and description are omitted here. I do.
  • the storage battery deterioration determination device 6 includes impedance measurement means 61 for measuring the internal impedance of the storage battery 3 and state detection means 62 for determining the deterioration of the storage battery 3 by using the measurement result from the impedance measurement means 61.
  • a temperature sensor 63 is connected to the state detection means 62, and can measure the temperature of the storage battery 3 or the temperature around the storage battery 3.
  • the state detecting means 62 has a function of controlling the impedance measuring means 61 and a function of transmitting a deterioration detection signal to the alarm generating means 52 when the storage battery 3 is deteriorated.
  • FIGS. 1 to 4 are flowcharts illustrating a flow of a first example of a method for determining deterioration of a storage battery according to an embodiment of the present invention. Hereinafter, description will be given for each step. Step 0: Initial value setting
  • the reference temperature, the resistance temperature correction coefficient, the resistance-voltage conversion coefficient, and the deterioration determination threshold are set as initial values.
  • the resistance-voltage conversion coefficient is a coefficient for converting the internal resistance component value at the reference temperature into a voltage between terminals at the time of discharging of the storage battery at the reference temperature. Further, a voltage value equal to or higher than the minimum operating voltage of the load is used as the deterioration determination threshold value.
  • Step 1 Measurement of internal resistance component
  • An alternating current is applied to both ends of the battery to measure the internal resistance component (specifically, the internal impedance).
  • This measurement is performed by the so-called AC four-terminal method or an improved method thereof.
  • the frequency of the alternating current can be appropriately selected, and the internal resistance component can be measured using a plurality of frequencies as necessary.
  • Step 2 Battery temperature measurement
  • the storage battery temperature is measured in parallel with the measurement of the internal resistance component value in step 1 described above. Instead of the pond temperature, the temperature around the storage battery may be measured. It is not necessary to measure the temperature of the storage battery simultaneously with the measurement of the internal resistance component of the storage battery.
  • Step 3 Conversion to internal resistance component value at reference temperature
  • the internal resistance component value of the storage battery actually measured in step 1 is used as a reference. Convert to internal resistance component value at temperature.
  • Step 4 Conversion to terminal voltage during discharge
  • the internal resistance component value at the reference temperature obtained in step 3 is converted into the discharge terminal voltage of the storage battery at the reference temperature by the resistance voltage conversion coefficient set in step 0.
  • Step 5 Discharge voltage between terminals and judgment of deterioration !, comparison with values
  • step 4 the terminal voltage at the time of discharge obtained in step 4 is compared with the value of the deterioration judgment set in step 0. If the former value is greater than the latter value, proceed to step 6; otherwise, proceed to step 7.
  • Step 6 Judgment result (1) It is judged that the storage battery is normal In step 5, if the terminal voltage at the time of discharge is larger than the deterioration determination threshold value, the storage battery is determined to be normal, and the flow of the deterioration determination ends.
  • Step 7 Judgment result (2) It is judged that the storage battery has deteriorated
  • step 5 if the voltage between the terminals at the time of discharge is equal to or smaller than the deterioration determination threshold value, it is determined that the storage battery has deteriorated!
  • step 6 the next or subsequent deterioration determination may be started after a while, and in this case, the deterioration determination is performed via step 7. Deterioration determination may be repeated until the flow of determination ends. Further, the sequence of the deterioration determination from Step 0 to Step 7 illustrated in FIG. 14 may be periodically repeated over time.
  • FIG. 15 is a flowchart illustrating the flow of a second example of the method for determining deterioration of a storage battery according to the embodiment of the present invention.
  • the description will be given for each step.
  • Step 0 Initial value setting
  • the reference temperature, the resistance temperature correction coefficient, the resistance-voltage conversion coefficient, and the deterioration determination threshold are set as initial values.
  • the resistance voltage conversion coefficient is a coefficient for converting the internal resistance component value at the reference temperature into a voltage drop at the time of discharge of the storage battery at the reference temperature.
  • the deterioration determination threshold use a value that is equal to or less than the value of the drop voltage that is the minimum voltage necessary for the operation of the load.
  • Step 1 Measurement of internal resistance component
  • Step 2 Battery temperature measurement
  • Step 3 Conversion to internal resistance component value at reference temperature
  • Step 4 Conversion to voltage drop during discharge
  • the internal resistance component value at the reference temperature obtained in step 3 is reduced by the resistance-to-voltage conversion coefficient set in step 0 when the storage battery is discharged at the reference temperature. Convert to lower voltage.
  • Step 5 Comparison between the voltage drop during discharge and the threshold value for determining deterioration
  • step 4 the voltage drop during discharge obtained in step 4 is compared with the value determined in step 0 for deterioration determination. If the former value is smaller than the latter value, proceed to step 6, otherwise proceed to step 7.
  • Step 6 Judgment result (1) It is judged that the storage battery is normal
  • step 5 If the voltage drop during discharge is smaller than the deterioration determination threshold in step 5, the storage battery is determined to be normal, and the flow of the deterioration determination ends.
  • Step 7 Judgment result (2) It is judged that the storage battery has deteriorated
  • step 5 when the voltage drop during discharge is equal to or higher than the deterioration determination threshold value, it is determined that the storage battery has deteriorated! /, And the flow of the deterioration determination ends.
  • Step 6 when the flow of the deterioration determination is completed via Step 6, the deterioration determination for the next and subsequent times may be started after a while. In this case, the deterioration determination may be repeated until the flow of the deterioration determination via Step 7 is completed. Also, the flow of the deterioration judgment from step 0 to step 7 illustrated in FIG.
  • FIG. 16 is a flowchart illustrating the flow of a third example of the method for determining deterioration of a storage battery according to the embodiment of the present invention.
  • description will be made for each step.
  • Step 0 Initial value setting
  • the reference temperature, the resistance temperature correction coefficient, the resistance-voltage conversion coefficient, and the deterioration determination threshold are set as initial values.
  • the deterioration determination threshold value a value equal to or less than the value of the internal resistance component that becomes the minimum voltage necessary for the operation of the load is used.
  • Step 2 Battery temperature measurement
  • Step 3 Conversion to internal resistance component value at reference temperature
  • the details are the same as in the first example, and thus the description is omitted.
  • Step 4 Comparison between the internal resistance component value at the reference temperature and the deterioration judgment value, and the value.
  • the internal resistance component value at the reference temperature obtained in Step 3 is compared with the deterioration judgment value set in Step 0. Compare. If the former value is greater than the latter value, proceed to step 5; otherwise, proceed to step 6.
  • Step 5 Judgment result (1) It is judged that the storage battery is normal
  • step 4 the internal resistance component value at the reference temperature is determined to be deteriorated. If the internal resistance component value is smaller than the value, the storage battery is determined to be normal, and the flow of the deterioration determination ends.
  • Step 6 Judgment result (2) It is judged that the storage battery has deteriorated
  • step 4 if the internal resistance component value at the reference temperature is equal to or greater than the deterioration determination threshold value, it is determined that the storage battery has deteriorated, and the flow of the deterioration determination ends.
  • step 5 when the flow of the deterioration determination is completed via step 5, the next and subsequent deterioration determinations may be started after a while. In this case, the deterioration judgment may be repeated until the flow of the deterioration judgment via Step 6 ends. In addition, the flow of a series of deterioration determinations from step 0 to step 6 illustrated in FIG. 16 may be periodically repeated at a certain time!
  • the discharge current value when the load is used will be described. Since the discharge current value when the load is used varies depending on the capacity of each storage battery and other conditions, it is desirable to collect data in advance using a plurality of storage batteries of the same type with different deterioration states.
  • examples will be described in which a lead storage battery is used as a storage battery and rapid discharge is performed, and a discharge current changes with time.
  • FIG. 1-7 is a graph showing a first example of a temporal change of a discharge current when a load is used.
  • Figures 1-7 also show the rated current values.
  • the method of determining the deterioration of a storage battery according to the embodiment of the present invention is almost accurate even when a large current (for example, IcA or more) with respect to the rated current flows in a relatively short time as shown in FIG.
  • the state of deterioration of the U can be determined in half.
  • FIG. 18 is a graph showing a second example of the time change of the discharge current when the load is used, where (A) is a current waveform representing the current consumption required during the operation time of the load, B) shows a current waveform that can be considered substantially equivalent to the current waveform of (A).
  • the method for determining the deterioration of a storage battery according to the embodiment of the present invention can determine the state of deterioration of a storage battery almost accurately even when a time-varying current flows as shown in FIG.
  • the present invention can be sufficiently applied to a case where the current value is larger than the rated current (for example, IcA or more).
  • the discharge current value when using the load when obtaining the resistance-voltage conversion coefficient is determined by the force exemplified in Figs. 17 and 18.
  • the resistance-voltage conversion coefficient is determined by the force exemplified in Figs. 17 and 18.
  • the relationship between the internal resistance component at the reference temperature and the voltage at the discharge terminal of the storage battery when a predetermined discharge current is applied to the storage battery power at the reference temperature If the voltage between terminals at the time of discharging of the storage battery in the step of previously obtaining as a resistance-voltage conversion coefficient is the lowest voltage at the time of discharging of the storage battery, it is possible to reliably determine the deterioration state of the storage battery.
  • Figure 1-9 shows a graph of the terminal voltage and discharge current during discharge in this case.
  • the internal resistance component at the reference temperature and the voltage between the terminals of the storage battery at the time of discharging the storage battery at the reference temperature when a predetermined discharge current is also applied.
  • the discharge terminal voltage of the storage battery in the step of preliminarily obtaining the relationship as a resistance-voltage conversion coefficient may be a voltage after a lapse of a predetermined time from the start of discharge of the storage battery.
  • Fig. 110 shows a graph of the voltage between terminals during discharge and the discharge current in this case.
  • step 1 Among the values set in step 0, the temperature dependence of the internal resistance component, the resistance temperature correction coefficient, the resistance-voltage conversion coefficient used in the first example method, and the resistance-voltage conversion coefficient used in the second example method are used. Graphs of the obtained resistance-voltage conversion coefficients are shown in FIGS. In FIGS. 1-13 and 1-14, the deterioration determination threshold is also shown.
  • Second embodiment The method for judging the deterioration of a storage battery and the device for judging the deterioration of a storage battery according to the second embodiment of the present invention are performed by using a storage battery (auxiliary battery) used in a device having a large load variation or a discharge performance of a storage battery (auxiliary battery) mounted on a vehicle. And a device for accurately determining the deterioration of the storage battery, that is, the state of deterioration of the storage battery.
  • the removability is also specified as the specification of the storage battery to be measured based on the measurement result at the desired temperature!
  • the discharge performance of the storage battery is the strictest in the usable temperature range, This is to determine the decrease in discharge performance at the lowest temperature where the performance of the storage battery decreases).
  • power specifications required for the operation of a load specify a time change of a consumed current as a current and a minimum guaranteed voltage as a voltage.
  • the battery has sufficient discharge performance to supply the power required for the operation of the load to the battery.
  • the required power may not be able to be supplied at the temperature after arrival, or before operation, before use, or after standing. Therefore, serious problems may occur when systems and devices that require a storage battery as a power source, or when vehicle devices are safety components that are important for driving.
  • a warning is given that various devices and vehicles must not be used, which inconveniences the user.
  • the discharge performance decreases at the temperature where the discharge performance of the battery is the strictest within the predetermined usable temperature range.
  • the reason for this is that If a storage battery installed in a central office or the like that houses a communication device, or a vehicle equipped with a storage battery is temporarily left unattended, the discharge of the storage battery depends on the temperature of the environment in which the storage battery is placed. This is because the performance changes. Therefore, since the state of deterioration of the storage battery after standing is unknown, the discharge performance is the strictest, and the discharge performance is judged at the temperature. If the discharge performance is degraded, it is possible to prompt the user or maintenance center to charge or replace the storage battery (auxiliary battery) in advance.
  • the discharge performance can be considered as a voltage drop for the same current output.
  • the voltage drop due to the decrease in the discharge performance is replaced with the internal resistance value (internal resistance component) of the storage battery, and the internal resistance value is set as a correlation value having a correlation with the discharge performance.
  • This correlation value is temperature-corrected, and the discharge performance is obtained by substituting the temperature-corrected correlation value into the previously obtained relational expression to determine a decrease in discharge performance (corresponding to an increase in the internal resistance value).
  • I do As for the internal resistance to be measured, any resistance can be used as long as it is an alternative index of voltage drop.
  • a DC resistance or an AC impedance may be used. It may be a value indicating a conductivity value such as an AC conductance which is a reciprocal of the AC impedance.
  • FIG. 1-15 is a processing flowchart of the second embodiment.
  • the temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature, and a correlation value having a correlation with the discharge performance of the storage battery, that is, the internal resistance component is set to a desired temperature.
  • this internal resistance component is corrected with the temperature at the time of measurement using the temperature correction formula obtained in advance, and the internal resistance component is converted to the internal resistance component at the reference temperature (Step S12).
  • the discharge performance of the storage battery at the reference temperature is determined based on a predetermined relational expression between the converted internal resistance component and the discharge performance (step S13). It is characterized in that the deterioration state of the storage battery is determined by comparing with a determination threshold value (step S14).
  • the predetermined relational expression is the voltage between the terminals of the storage battery when the current corresponding to the time variation pattern of the current consumption of the load or the time variation of the current consumption of the load.
  • the voltage may be the voltage between terminals of the storage battery when a current according to the pattern is applied.
  • the reference temperature may be set to a temperature at which the discharge performance of the storage battery is the lowest in a predetermined usable temperature range of the storage battery.
  • a decrease in the discharge performance at the temperature where the discharge performance of the battery is the severest in the operating temperature range is determined.
  • the usable temperature range of a storage battery installed at a predetermined location, a storage battery provided in a station or the like that houses an observation device or a communication device, or a storage battery (auxiliary battery) mounted on a vehicle is, for example, 30 ° C. C— + 55 ° C.
  • the discharge performance of the battery at the lower limit temperature of ⁇ 30 ° C. is the most severe. Therefore, it is necessary to determine the discharge performance at the temperature of -30 ° C, which is the strictest in the discharge performance of the battery, from the resistance value measured for the battery at an arbitrary temperature.
  • a temperature correction equation is obtained from the temperature characteristic of the resistance value that has been measured in advance, and the battery temperature and resistance value are substituted into this temperature correction equation to improve the discharge performance of the battery. Convert to a resistance value at the most severe temperature-30 ° C. By substituting the converted resistance value into a predetermined relational expression that expresses the relationship between the resistance value and the discharge performance, which was obtained in advance, the discharge performance at a temperature of 30 ° C where the discharge performance of the battery is the strictest Is obtained. If the obtained discharge performance is larger than a set threshold value for determining the deterioration state, it is determined that the battery can output necessary power. If the obtained discharge performance is equal to or lower than the threshold value set as the deterioration, it is determined that the battery cannot output necessary power.
  • the discharge performance is changed according to the battery temperature.
  • a method of changing the target temperature for determining the decrease may be used. That is, the reference temperature may be set to a temperature obtained by subtracting a certain temperature from a desired temperature force. Specifically, as the performance of the battery, the discharge performance decreases as the temperature goes down, and for example, the temperature drop of 20 ° C from the measured battery temperature is used as the target temperature to determine the reduction in the discharge performance. May be.
  • the reference temperature may be set to a predetermined temperature corresponding to each temperature band to which the desired temperature belongs. Specifically, if the battery temperature is + 25 ° C-+ 55 ° C, the target temperature is 0 ° C, and if the battery temperature is 0 ° C-+ 25 ° C, the target temperature is -15 ° C. Temperature is-30 ° C — 0 If it is ° C, the target temperature may be set for each temperature band, such as 30 ° C.
  • the resistance value is measured with a storage battery at a desired temperature, and the discharge performance at a reference temperature set in advance is determined from the measured resistance value.
  • a temperature correction formula is obtained for each target temperature from the temperature characteristics of the resistance value, and the battery temperature and the resistance value are substituted into the temperature correction formula. This converts it to a resistance value at the target temperature.
  • the discharge performance at the target temperature can be obtained. If the obtained discharge performance is larger than the threshold value set as the deterioration, it is determined that the battery can output necessary power. If the obtained discharge performance is equal to or less than the threshold value set as the deterioration, it is determined that the battery cannot output necessary power.
  • the relational expression expressing the relationship between the internal resistance component (internal resistance value) as the correlation value at the reference temperature and the discharge performance was determined in advance using batteries of various degrees of deterioration. Measure the voltage across the terminals of the storage battery (auxiliary battery) when a current of the specified current consumption time variation pattern flows, or when a current according to the specified current consumption time variation pattern flows. It can be easily derived by measuring the resistance value as an alternative index of voltage drop.
  • FIG. 1-16 is a diagram showing the relationship between the internal resistance component (internal resistance value) and the lowest voltage during discharge of the load current in the second embodiment.
  • Figure 1-17 shows the relationship between battery capacity (5 hour rate capacity) and the lowest voltage during discharge of load current, which is the conventional method.
  • the storage battery used was a lead sealed battery, and the rated battery capacity was 12Ah.
  • As storage battery samples storage batteries with various degrees of deterioration obtained by accelerated life tests were used.
  • the discharge performance of the storage battery (auxiliary battery) was evaluated as the minimum battery voltage when a 15 A discharge current was passed for 10 seconds as a current according to the time variation pattern of the current consumption of the load actually used. did. Also available for storage battery specifications The temperature range was 30 ° C-+ 55 ° C, and the discharge performance of the battery at the lower limit temperature of 30 ° C was determined.
  • a storage battery as a sample was placed in a constant temperature bath at 30 ° C., and left for a time necessary for the temperature of the storage battery to reach 30 ° C. Attach one end of the lead wire to the terminal of the storage battery and draw the other end out of the thermostat so that the sample battery can be discharged, and connect the electronic load device.
  • a voltmeter and an ammeter were connected to measure the battery voltage and the discharge current.
  • the electronic load was set so as to be able to discharge for only 10 seconds at a discharge current of 15A.
  • a discharge current of 15A flows from the storage battery, which is a sample in the thermostat, for 10 seconds.
  • the battery voltage and discharge current at this time were measured with a voltmeter and an ammeter, respectively.
  • an internal resistance value was measured with the storage battery as a sample at a normal temperature.
  • the measurement was performed with a 1 kHz AC impedance using a commercially available resistance measuring instrument.
  • the temperature characteristics of the resistance of the sample battery were determined in advance, and by substituting the measured resistance value and the battery temperature at the time of measurement into this temperature characteristic, the internal resistance value at the reference temperature of 30 ° C was obtained.
  • Minimum battery voltage arbitrary coefficient X internal resistance value + constant
  • FIG. 1-18 is a flowchart of a conventional process.
  • a voltmeter and an ammeter were connected to measure the battery voltage and the discharge current.
  • the electronic load was set so as to be able to discharge until the battery voltage reached 10.5 V at a discharge current of 2.4 A (12AX 0.2).
  • the lowest voltage during discharge of the load current which means discharge performance
  • the temperature for determining the deterioration state of the storage battery is set in advance as the reference temperature, and the internal resistance (correlation value) having a correlation with the discharge performance of the storage battery ( (Internal resistance component) at the desired temperature, and based on the temperature correction formula for the internal resistance value obtained in advance, the temperature at the time of measuring the internal resistance value, and the measured internal resistance value, the measured internal resistance value is used as the reference temperature.
  • the internal resistance correlation value having a correlation with the discharge performance of the storage battery (Internal resistance component) at the desired temperature
  • the discharge performance is defined as the time when a current having a time variation pattern of a current consumption specified assuming an actual load of a storage battery (auxiliary battery) is supplied, or a specified power consumption.
  • the remaining capacity of the battery for example, 5-hour rate capacity
  • the system 100 for determining the deterioration of the storage battery is a system that detects data such as current, voltage, resistance, and temperature of the storage battery B as a secondary battery.
  • a circuit 101, a control-judgment device 102 that receives data from the detection circuit 101 to judge the deterioration of the storage battery B, and a display unit 103 that displays the judgment result in various modes may be provided.
  • detection circuit 101 acquires data such as current, voltage, resistance, and temperature of storage battery B as a secondary battery, and outputs the measured data to control / determination device 102. Power.
  • control / determination device 102 receives the data, determines the deterioration of the storage battery B, and displays the determination result on the display unit 103 in various modes.
  • the user can easily grasp the state of the storage battery B as the secondary battery.
  • the display unit 103 displays the state of the storage battery B as a secondary battery by combining the number or colors of the lamps, characters, sounds, and the like and two or more of them, Push It is also possible to configure so as to indicate the recommended replacement time and the like.
  • the display unit 103 may be a display on a screen such as a television monitor, a computer display, or a display unit of a GPS device (such as a car navigation system).
  • a detection circuit 101 for detecting and determining the state of the storage battery is provided.
  • control / judgment device 102 on the installation side of the storage battery and to provide the display unit 103 at a desired position.
  • a detection circuit 101 for detecting and determining the state of the storage battery For example, a detection circuit 101 for detecting and determining the state of the storage battery,
  • control / determination device 102 receives the data from the detection circuit 101 and determines the deterioration of the storage battery B, and sends the determination result data to the display unit 103 via the wireless device 110 Send.
  • the computer 112 or the like receives the determination result data via the wireless device 111 installed on the display unit 103 side, controls the display unit 103, and displays the determination result in various modes.
  • a plurality of display units are provided, or display unit power storage batteries (secondary batteries) provided for a plurality of locations (a storage battery manufacturer, a maintenance base, etc.).
  • the status of the battery can be monitored, or multiple storage batteries (secondary batteries) can be monitored and managed by one display unit. At that time, if a serial number or ID number for identifying the storage battery is given, individual identification of the storage battery can be easily performed.
  • degradation information of a storage battery is electronically transmitted via a network such as a telephone line or the Internet. Make it available as data (text, images, sounds) from information terminals such as mobile phones and computers.
  • a plurality of storage batteries are installed in remote places.
  • the deterioration can be determined by switching the circuit to the storage battery 106 (A, B, C).
  • electrical information (voltage, current, resistance, etc.) can be determined by a storage battery deterioration determination device at a distant location, but it is desirable to provide a temperature sensor 105 near the storage battery or for each storage battery 106 for temperature measurement. ,.
  • deterioration determination of at least one storage battery can be performed.
  • it can be managed by a single storage battery deterioration determination device or computer.
  • one of the storage battery deterioration determination devices 107 is near the storage battery 106a.
  • the other one is that the storage battery deterioration determination device 108 is attached to the storage battery 106b.
  • the remaining storage battery 106c is not judged to be degraded.
  • the device includes a GPS (Global Positioning).
  • the device 110, the lighting 111, the operating unit 112, and the like are connected.
  • the power is supplied or controlled by the power supply control device 109 of the device.
  • the GPS device 110 can detect time in addition to the position and the altitude, the GPS device 110 can be used for adjusting the time of another device, such as the power control device 109.
  • the plurality of storage batteries 106 can be managed by the device.
  • Power supply control device 109, and the deterioration state of the storage batteries 106 can be displayed on the display unit 103a.
  • information can be transmitted and received to and from external devices via a connector or wirelessly (infrared rays, etc.) to and from the device's power supply control device 109, storage battery deterioration determination devices 107 and 108, and computers (not shown).
  • the program may be installed or updated.
  • the display unit 103 may have a configuration in which a liquid crystal display (LCD), a lamp, or the like is attached to or incorporated in the device / power control device 109 or the storage battery deterioration determination devices 107 and 108.
  • LCD liquid crystal display
  • variable Discharge at a variable frequency a discharge current at each variable frequency is supplied, a discharge current waveform of the discharge current at each variable frequency is Fourier transformed, and a Fourier transform value of the discharge current waveform at each frequency is calculated.
  • Fourier transform of the voltage response waveform of the battery voltage during discharging is performed to determine the Fourier transform value of the voltage response waveform for each of the variable frequencies, and the Fourier transform value of the voltage response waveform is Fourier transformed of the discharge current waveform.
  • FIG. 1-23 is a diagram illustrating an example of a conventional method. According to the conventional method, it is difficult to distinguish when noise is present, or it is difficult to determine whether the noise is present. In this case, the noise is directly obtained as the internal impedance.
  • FIG. 124 is a view for explaining an example of the method of the present invention.
  • the discharge current waveform has three or more different cycles, even if noise enters at the basic frequency T3, the noise is compared with the internal impedance obtained from T2 and T4 before and after T3. This makes it possible to eliminate noise.
  • Tl and T5 can also be used as comparison controls
  • At least three discharge current waveforms having different cycles are repeatedly performed as one set. For example, impedances in three cycles including the fundamental frequency are obtained, and noise is determined based on the three impedances. No desired impedance can be obtained.
  • the three periods differ from each other by at least ⁇ 5% of the basic period. In this way, the magnitude of the three impedances increases monotonically due to the difference in the period.
  • the present invention measures the impedance almost at the same time. Can be determined more clearly. According to this method, the impedance is calculated at three different periods, and based on the three impedances, it is possible to obtain a desired impedance after confirming that there is no influence of noise. Deterioration determination can be performed.
  • the frequency is controlled and varied from the computer 112 or the control / judgment device 102 in Fig. 1-20, or from the device / power control device 109 or the storage battery deterioration judging devices 107, 108 in Fig. 1-22.
  • Flow the discharge current The Fourier transform of the discharge current waveform of the variable discharge current for each frequency was performed to obtain the Fourier transform value of the discharge current waveform for each frequency, and the voltage response waveform of the battery voltage during discharge was Fourier transformed and varied. Find the Fourier transform value of the voltage response waveform for each frequency.
  • the determination unit (computer 112, control 'determination device 102, device' power supply control device 109, storage battery deterioration determination device 107, etc.) divides the Fourier transform value of the voltage response waveform by the Fourier transform value of the discharge current waveform. Then, the internal impedance for each variable frequency is determined, and the internal impedance values calculated for each frequency are compared. If the increase or decrease rate is less than a certain value, it is determined that there is no noise, and the predetermined fundamental frequency is determined. If the rate of increase or decrease is equal to or more than a certain value, it is determined that noise is present.
  • the temperature for determining the deterioration state of the storage battery is set in advance as a reference temperature.
  • the measured internal resistance of the storage battery is converted to a value at the reference temperature, this value is converted to the voltage at the reference temperature when discharging the battery at the reference temperature, and the voltage at the discharge terminal of the storage battery at this reference temperature is determined for deterioration. Since the deterioration state of the storage battery is determined by comparing with the threshold value, the deterioration state of the storage battery in use connected to the load can be determined in a short time and accurately.
  • FIG. 2-1 is a block diagram showing a schematic configuration of the power supply system according to the present embodiment.
  • a power supply system is configured including a secondary battery 10, a current sensor 11, a voltage sensor 12, a control unit 13, a storage unit 14, a charging circuit 15, and a discharging circuit 16,
  • the rechargeable battery 10 is also configured to supply power to various loads 20.
  • the secondary battery 10 for supplying power to the load 20 for example, a secondary battery 10 used for an observation device or a communication device, or a lead storage battery for a vehicle is known.
  • FIG. 2-2 shows an equivalent circuit of the secondary battery 10.
  • the secondary battery 10 is represented by an equivalent circuit in which the resistors RQ, Rctl, Rct2, Rct3 and the capacitors Cdl, Cd2, Cd3 are combined, and the positive electrode, the electrolytic solution, and the negative electrode are sequentially connected. be able to.
  • the internal impedance of the secondary battery 10 is represented by a complex impedance that matches the configuration of the series-parallel circuit of each resistor and capacitor in FIG.
  • the input current and the response voltage are Fourier-transformed, and the resulting secondary components are used using the respective frequency components at a predetermined frequency.
  • the internal impedance of the battery 10 can be calculated.
  • the current sensor 11 detects a current flowing through the secondary battery 10 and sends a current value to the control unit 13.
  • the voltage sensor 12 detects the voltage across the secondary battery 10 and sends the voltage value to the control unit 13.
  • the control unit 13 functioning as control means of the present invention is configured by a CPU, controls the operation of the entire power supply system, and performs, at a predetermined timing, arithmetic processing necessary for calculating an internal impedance described later. Execute and send the obtained internal impedance to the control device of the vehicle.
  • the storage unit 14 connected to the control unit 13 stores each of the control programs and the like.
  • the ROM includes a ROM for storing the seed program and a RAM for temporarily storing data required for processing by the control unit 13.
  • the charging circuit 15 is a circuit that supplies a charging current when charging the secondary battery 10 is performed.
  • the discharge circuit 16 is a circuit that supplies a discharge current flowing from the secondary battery 10 to the load 20 when the secondary battery 10 performs a discharging operation.
  • the charging circuit 15 and the discharging circuit 16 are controlled by the control unit 15.
  • the charging circuit 15 is turned on during the charging operation, and the discharging circuit 16 is turned on during the discharging operation.
  • various waveforms can be used for the charging current supplied from the charging circuit 15 and the discharging current supplied to the load 20 via the discharging circuit 16. That is, the Fourier transform is performed instead of the Fourier expansion in the arithmetic processing described later, so that the Fourier transform can be calculated using various waveforms that do not have a periodicity and are not restricted by a pulse waveform of a constant frequency.
  • FIG. 2-3 is a flowchart mainly showing a flow of processing executed by the control unit 13 based on the control program stored in the storage unit 14. The calculation process shown in FIG. 2-3 is started at a predetermined timing when charging or discharging the secondary battery 10 in the power supply system.
  • step S 101 when processing in the power supply system is started, parameters required for calculation by the control unit 13 are initialized (step S 101).
  • the parameters to be initially set in step S101 include a sampling interval At and a sampling number N when acquiring a plurality of current measurement values and voltage measurement values, and a predetermined reference frequency F in the internal impedance measurement.
  • Step S 102 it is determined whether or not the charging operation or the discharging operation of the secondary battery 10 has started.
  • measurement during charging operation or measurement during discharging operation differs. In the case of a power supply system that always supplies a certain amount of power to the load when the equipment or the device is used, it is often desirable to measure it during the charging operation. Also, depending on the power supply system, the timing of charging and discharging may be set as much as possible. In that case, it is determined in S102 whether the charging or discharging timing has been reached.
  • step S102 If it is determined in step S102 that the charging operation or the discharging operation has started, then the measurement of the input current and the response voltage of the secondary battery 10 is started (step S103), and the conditions set in step S101 The measurement is performed in (Step S104). Specifically, the input current of the secondary battery 10 is detected by the current sensor 11, and N current measurement values are sequentially acquired at the sampling interval At, and at the same time, the response of the secondary battery 20 is detected by the voltage sensor 12. The voltage is detected, and N voltage detection values are sequentially acquired at the sampling interval At. As a result, on the time axis, N current measurement values corresponding to the input current of the secondary battery 10 and N voltage measurement values corresponding to the response voltage of the secondary battery 10 are obtained.
  • step S104 when the time function of the input current is represented by i (t) and the time function of the response voltage is represented by v (t), the integer n that changes in the range of 0, 2, 3, 1 N—1 is represented by
  • i (n'At) the integer n that changes in the range of 0, 2, 3, 1 N—1 is represented by
  • i (n'At) the integer n that changes in the range of 0, 2, 3, 1 N—1
  • the current measurement obtained in step S104 can be expressed as i (n'At), and the voltage measurement can be expressed as ⁇ ( ⁇ ⁇ At).
  • step S105 the frequency component of the input current at the reference frequency F is calculated using the N current measurement values obtained in step S104 (step S105).
  • step S106 the frequency component of the response voltage at the reference frequency F is calculated using the N voltage measurement values obtained in step S104 (step S106).
  • a frequency component Y ( ⁇ ) represented by the following equation (1) can be obtained by Fourier-transforming an arbitrary time function y (t).
  • the frequency component ⁇ ( ⁇ ) when the input current of the secondary battery 10 is Fourier-transformed can be expressed by the following equation (2) using the time function i (t).
  • the frequency component V (co) obtained by Fourier-transforming the response voltage of the secondary battery 10 can be expressed by the following equation (3) using the time function V (t).
  • V (ro) J v (t) -exp (jrot) dt (3)
  • step S104 when actually performing the calculation in step S104, a discrete Fourier transform using N current measurement values i (n * At) corresponding to the time function i (t) in the equation (2) is performed, and Calculate the frequency component I ( ⁇ ) of the input current at the reference frequency F as in equation (4).
  • step S105 when actually performing the calculation in step S105, a discrete Fourier transform using N current measurement values ⁇ ( ⁇ ⁇ At) corresponding to the time function v (t) in equation (3) is performed, and Calculate the frequency component V ( ⁇ ) of the response voltage at the reference frequency F as shown in equation (5).
  • ⁇ ( ⁇ ) At ⁇ , v (n .At) .exp (jco.n .At) dt
  • the internal impedance ⁇ ( ⁇ ) obtained by the equation (6) may be calculated as a real part, but may also be calculated as an imaginary part or an absolute value.
  • Equations can be solved. For example, in the equivalent circuit of the secondary battery 10 shown in FIG. You can also.
  • the internal impedance obtained based on the processing shown in Figs. 2-3 is used, for example, when detecting the deterioration state of the secondary battery 10 in the power supply system.
  • the degree of deterioration of the secondary battery 10 can be determined based on the measurement result of the internal impedance.
  • FIG. 2-4 is a diagram for explaining the relationship between the internal impedance of the secondary battery 10 and the state of deterioration.
  • FIG. 2-4 shows a change in the internal impedance of the secondary battery 10 and a change in the discharge voltage of the secondary battery 10 when a long-term deterioration test of the secondary battery 10 is performed.
  • the internal impedance was measured at 25 ° C
  • the discharge voltage was measured at 30 ° C for two types of large and small input currents (10A and 25A) 10 seconds after the start of discharge. .
  • the internal impedance of the secondary battery 10 has a stable force in the initial state.
  • the discharge voltage of the rechargeable battery 10 shows a sharp decrease in power as the time passes after 35 weeks, indicating that the discharge voltage greatly deteriorates.
  • the degree of deterioration of the secondary battery 10 increases as the input current increases. Based on these test results, the usage time of the secondary battery 10 reaches its limit around 35 to 40 weeks.
  • the charging current supplied from charging circuit 15 or the discharging current supplied from discharging circuit 16 is directly used. Since the power supply system is used, a special current generator and processing associated with operation control are not required, and the effect is large in simplifying the configuration and control of the entire power supply system and reducing costs.
  • the Fourier transform technique is used to calculate the internal impedance, so that the charging current or the discharging current does not need to use a periodic pulse waveform, so that the degree of freedom of measurement is increased, and no additional circuit configuration is required. It becomes. Also, since the internal impedance is measured during the normal charging operation or discharging operation of the secondary battery 10, unnecessary current application to the secondary battery 10 is repeated. The consumption of the secondary battery 10 that does not need to be returned can be prevented.
  • the input current and the response voltage are measured at the time of charging or discharging, and the internal impedance of the secondary battery at a predetermined frequency is determined by performing Fourier transform. Therefore, it is not necessary to provide a special current generator or to use a current having a periodic waveform. Therefore, it is possible to realize a secondary battery internal impedance measuring device or the like which is useful in terms of simplification of the configuration and low cost and can suppress consumption of the secondary battery.
  • FIG. 3-1 is a block diagram illustrating a schematic configuration of the power supply system according to the first embodiment.
  • the power supply system includes a secondary battery 10, a current sensor 11, a voltage sensor 12, a control unit 13, a storage unit 14, a charging circuit 15, and a discharging circuit 16, Power is supplied from the secondary battery 10 to various loads 20.
  • FIG. 3-2 shows an equivalent circuit of the secondary battery 10.
  • the secondary battery 10 has resistors RQ, Rctl, Rct2, and Rct3 and capacitors Cdl, Cd2, and Cd3, respectively, and the positive electrode, the electrolytic solution, and the negative electrode are sequentially connected. It can be represented by an equivalent circuit.
  • the internal impedance of the secondary battery 10 is represented by a complex impedance that matches the configuration of the series-parallel circuit of each resistor and capacitor in Fig. 3-2.
  • a current pulse having a constant period is applied to the secondary battery 10 represented by the equivalent circuit of FIG. 3-2, and the applied current pulse and its response voltage are subjected to Fourier expansion, respectively, to thereby obtain the secondary battery.
  • Ten internal impedances can be calculated.
  • the secondary battery 10 is in a state including polarization by constantly repeating charging and discharging. Then, under the influence of the polarization, the internal impedance of the secondary battery 10 fluctuates. Therefore, in order to obtain an accurate internal impedance, it is necessary to remove the influence of the polarization. In this case, in the state of polarization (charging polarization) after charging the secondary battery 10, In the state of polarization (discharge polarization) after discharging the secondary battery 10 while applying the discharge current pulse, the influence of the polarization can be reduced by applying the charge current pulse.
  • the polarization state of the secondary battery 10 is determined, and the discharge current pulse and the charging current pulse are switched according to the determination result.
  • the application of the current pulse to the secondary battery 10 is started, and the internal impedance is calculated after waiting for the internal impedance to stabilize, thereby further reducing the influence of polarization. ing.
  • the current sensor 11 detects a current flowing through the secondary battery 10 and sends a current value to the control unit 13.
  • the voltage sensor 12 detects the voltage across the secondary battery 10 and sends the voltage value to the control unit 13.
  • the control unit 13 is configured by a CPU and the like, controls the operation of the entire power supply system, executes an arithmetic process for calculating an internal impedance described later at a predetermined timing, and outputs the calculated internal impedance to the vehicle. Send it to the control device.
  • the storage unit 14 connected to the control unit 13 includes a ROM for temporarily storing various programs such as a control program, and a RAM for temporarily storing data necessary for processing by the control unit 13. ⁇
  • the charging circuit 15 is a circuit that supplies a charging current when performing a charging operation of the secondary battery 10.
  • the discharge circuit 16 is a circuit that supplies a discharge current flowing from the secondary battery 10 to the load 20 when the secondary battery 10 performs a discharging operation.
  • the charging circuit 15 and the discharging circuit 16 are controlled by the control unit 15. Only the charging circuit 15 is turned on during the charging operation, and only the discharging circuit 16 is turned on during the discharging operation.
  • the charging circuit 15 when measuring the internal impedance of the secondary battery 10
  • the charging circuit 15 has a configuration for supplying a charging current pulse
  • the discharging circuit 16 has a configuration for supplying a discharging current pulse.
  • FIG. 3-3 is a diagram showing a specific example of a waveform of a current pulse (a charging current pulse or a discharging current pulse) applied to the secondary battery 10.
  • the current pulse shown in Fig. 3-3 is a rectangular pulse with a constant period Tp and a constant current amplitude X, and shows an example of a waveform in which the current alternates between 0 and X in each period. I have. Note that the period Tp and the current amplitude X are The optimum value may be set according to the ten characteristics and the state of the calculation processing.
  • the control unit 13 holds an operation flag in the storage unit 14, and when the charging operation or the discharging operation to the secondary battery 10 is performed, the operation flag is identifiably recorded in the operation flag. Therefore, by referring to the operation flag at the time of processing by the control unit 13, the secondary battery 10 at that time is in a state of being subjected to charge polarization after the charge operation or a state of being subjected to discharge polarization after the discharge operation. It can be determined whether there is.
  • FIG. 3-4 is a flowchart mainly illustrating a flow of a process executed by the control unit 13 based on the control program stored in the storage unit 14.
  • the arithmetic processing shown in Fig. 3-4 is started to be executed at a predetermined timing after charging or discharging is completed in the power supply system.
  • step S101 when the processing in the power supply system is started, the control unit 13 initializes parameters necessary for the calculation (step S101).
  • the parameters to be initialized in step S101 include the sampling interval ts for acquiring the voltage sample value, the fundamental frequency fl of the pulse applied to the secondary battery 10, and the current pulse applied when measuring the internal impedance.
  • Step S102 the latest charge / discharge operation of the secondary battery 10 is determined. That is, the control unit 13 may read out the operation flag in the storage unit 14 and determine whether or not the charging operation and the discharging operation are in a state of! / Or a deviation. As a result, when it is determined in step S102 that the operation flag indicates the charging operation, pulse discharge is set as a current to be applied that avoids the influence of charge polarization (step S103). On the other hand, if it is determined in step S102 that the operation flag indicates a discharging operation, pulse charging is set as a current to be applied that avoids the influence of discharge polarization (step S104).
  • step S105 the application of a pulse current of either the pulse charge set in step S103 or the pulse discharge set in step S104 to the secondary battery 10 is started (step S105).
  • the pulse discharge current supplied from the discharging circuit 16 is applied, while after the discharging operation for the secondary battery 10 is performed, the charging circuit 15 The pulse charging current supplied from the controller is applied.
  • step S106 it is determined whether or not the force has reached the previously set measurement start timing. If it has reached (step S106; YES), the process proceeds to step S107. If the measurement start timing has not yet been reached (step S106; NO), the measurement continues to wait for the measurement start timing. As the measurement start timing in step S106, a predetermined time point within the cycle of the first pulse cycle C1 set in step S101 may be set.
  • step S107 the counter m indicating the order of the calculation process of the internal impedance is set to 1. As will be described later, this counter m is used to obtain a total of C2 measurement results by changing from the initial value 1 to C2.
  • FIG. 3-5 is a flowchart showing a specific calculation process of the internal impedance in step S108.
  • the current sensor 11 and the voltage sensor 12 of the secondary battery 10 are sequentially read at the sampling interval ts, and the current value I (n) and the voltage value V (n) of the secondary battery 10 are determined by a predetermined number.
  • step S301 2 ⁇ current values ⁇ ( ⁇ ) and voltage values V (n) are obtained in two cycles of the applied pulse.
  • the number of current values I (n) and voltage values V (n) to be read can be freely set according to the convenience of calculation processing.
  • step S303 using the voltage change amount a obtained in step S302, a corrected voltage value V, (n) in which the temporal variation of the voltage value V (n) is corrected is calculated (step S303).
  • the correction voltage value V '(n) shown by the following equation (8) may be calculated.
  • V '(n) V (n) + a- (n-l) / N
  • AI (2 / Tp) -cos (k-ro -n -ts) -I (n) -ts
  • the primary Fourier coefficients AV and BV of the voltage of the secondary battery 10 are calculated according to the following equations (11) and (12) (step S305).
  • step S306 the internal impedance of the secondary battery 10 is calculated using the calculation results of the equations (9) and (12) (step S306).
  • step S306 of the m-th internal impedance Z (m) the real part Z (m) real, the imaginary part Z (m) imag, and the absolute value Z (m) abs are calculated by the following equations (13) — (15). , Respectively.
  • step S109 it is determined whether or not the counter m for determining whether to continue or terminate the calculation processing of the internal impedance has reached C2 (step S109).
  • step S109 when m has reached C2 (step S109; YES), the process proceeds to step S112, and when m has not reached C2 (step S109; NO), the process proceeds to step S110. That is, when the internal impedance is obtained within the range of the number of measurement pulse cycles C2, the subsequent calculation processing is unnecessary, and thus the determination is made in step S109.
  • step S110 1 is added to the counter m that updates the order of the calculation process of the internal impedance. Then, it waits until the time of two cycles elapses from the timing of executing the previous step S108 (step Sill; NO), and when the time of two cycles elapses (step S111; YES), returns to step S108. And repeat the same process.
  • step S113 the real part Zreal, imaginary part Zimag, and absolute value Zabs of the internal impedance are calculated using the results of equations (13)-(15) according to the following equations (16)-(18). .
  • the time during which the influence of the polarization immediately after the application of the current pulse is large is large.
  • the internal impedance in a stable state can be measured, and the error can be sufficiently reduced.
  • the second embodiment differs from the first embodiment mainly in the process of calculating the internal impedance.
  • the power supply system according to the second embodiment has the same general configuration as that of the first embodiment shown in FIG. 3-1, and the current pulse applied to the secondary battery 10 is as shown in FIG. Since the waveform can be the same as that in the case of the first embodiment shown, the description thereof is omitted.
  • FIG. 3-6 is a flowchart illustrating a flow of a process mainly executed by the control unit 13 based on the control program stored in the storage unit 14.
  • the calculation processing shown in Fig. 36 is similar to the case of Fig. 3-4. After the end of the execution, execution is started at a predetermined timing.
  • step S201 when processing in the power supply system is started, parameters required for calculation by the control unit 13 are initialized (step S201).
  • the parameters to be initialized in step S201 include the sampling interval ts for acquiring the voltage sample value, the fundamental frequency fl of the pulse applied to the secondary battery 10, and the current pulse applied when measuring the internal impedance. , The total number of pulse cycles C3, the current amplitude value X, and the like.
  • step S201 ts, fl, X, and the like may use the same initial settings as in the first embodiment. On the other hand, it is desirable to set the total number of pulse cycles C3 in the range of 5 to 50 cycles.
  • the initial setting value in step S201 may be determined in advance according to the characteristics of the secondary battery 10 as in the case of the first embodiment, but may be appropriately determined according to the operation status and the like. You can make it changeable.
  • Step S202-S205 the state of the latest charge / discharge operation of the secondary battery 10 is determined, pulse discharge or pulse charge is set as a pulse current to be applied, and a series of steps up to application of the set pulse current are performed.
  • Steps S202-S205 are performed in the same manner as in the first embodiment (steps S102-S105 in FIG. 3-4).
  • the counter m indicating the order of the calculation process of the internal impedance is set to 1 (step S206). As described later, this counter m is used to obtain a total of C3 measurement results by changing the initial value from 1 to C3.
  • Step S207 a calculation process of the internal impedance of the secondary battery 10 is performed.
  • step S207 as in the first embodiment, the calculation processing shown in the flowchart of FIG. 3-5 is executed. However, in the second embodiment, the calculation process of FIG. 3-5 is performed for each cycle of the applied pulse for convenience of calculation as described later, so that the current value I (n) and the voltage value V (n) in step S301 are performed. Is obtained by a predetermined number in each cycle.
  • step S208 it is determined whether or not the counter m for determining whether to continue or terminate the calculation processing of the internal impedance has reached C3 (step S208). As a result, when m reaches C3 (step S208; YES), the process proceeds to step S211. When m reaches C3! / ⁇ !, When m reaches C3 (step S208; NO), the process proceeds to step S209.
  • step S208 When proceeding from step S208 to step S209, 1 is added to the counter m. Thereafter, wait until the time of one cycle elapses from the timing at which the above-described step S207 is executed (step S210; NO), and when the time of one cycle elapses (step S210; YES), return to step S207 and perform the same. Is repeatedly executed.
  • step S211 when the process proceeds from step S209 to step S211, the application of the nourse charge or the pulse discharge started to be applied in step S205 is stopped. At this stage, C3 internal impedances are obtained on the time axis. Then, the convergence values of these C3 internal impedances are obtained by successive calculation (step S212).
  • FIG. 3-7 is a flowchart showing a specific process of calculating the convergence value of the internal impedance in step S212.
  • a coefficient corresponding to a secondary exponential decay function for approximating the internal impedance of the secondary battery 10 is initialized (step S401).
  • F (T) with respect to time T is used as shown in the following equation (19).
  • step S401 the initial values stored in advance in the storage unit 14 are read and set for the five coefficients Al-A5 included in the equation (19). These coefficients A1 to A5 are used to derive an optimal solution based on the least squares method, and the values are sequentially updated in the course of calculation as described later. Note that, as initial values of the coefficients A1 to A5, predetermined values obtained experimentally in advance may be used.
  • the internal The case where the calculation is performed using the real part Z (m) real of the impedance will be described.However, the calculation may be performed using the imaginary part Z (m) imag or the absolute value Z (m) abs of the internal impedance. ,.
  • step S404 a partial differential term corresponding to each of the coefficients A1 to A5 when the least squares method is applied is calculated.
  • each coefficient A1—A expressed by the following equation (22)
  • step S404 using each partial differential term obtained in step S404, a matrix B that fits the simultaneous equations of the least squares method is calculated (step S405). Specifically, a matrix B expressed by the following equation (23) is obtained.
  • V is used to calculate dR represented by the following equation (24) (step S406) d R 1- ⁇ dDF A 1 (m) x R (m) ⁇
  • step S407 using the matrix B obtained in step S405 and dR obtained in step S407, a difference dd represented by the following equation (25) is calculated (step S407).
  • step S407 five differences ddl-dd5 corresponding to the respective coefficients A1-A5 are obtained, and based on these, the optimal solution of the least squares method can be evaluated.
  • each difference ddl-dd5 approaches sufficiently zero, and it is determined that the optimal solution of the least square method was obtained at that time. Proceed to step S409. On the other hand, if it is determined that the equation (26) is not satisfied (step S408; NO), it is determined that each difference ddl-dd5 is large and the optimal solution of the least squares method has not been obtained, and based on the following equation (27). Update each coefficient A1—A5 (Step S409) 0
  • step S409 When the coefficient Al-A5 is updated in step S409, the process returns to step S402, and the processing of steps S402-S408 in which the least squares method is applied using the new coefficients A1-A5 is continued.
  • step S410 the convergence value Z0 when the real part Z (m) real of the internal impedance is sufficiently stable for a long time is calculated by the following equation (28) (step S410).
  • is a stabilization time required for the internal impedance of the secondary battery 10 to stabilize, and it is necessary to set the value in a sufficiently long predetermined time.
  • the convergence value ⁇ 0 obtained in step S410 according to the expression (28) and the coefficients A1 to ⁇ 5 at this point are stored in the storage unit 14, and the power of the storage unit 14 can be read and used as needed. .
  • the internal impedance of the secondary battery 10 is
  • Fig. 3-8 shows an example of calculation using the absolute value Zabs and real part Zreal of the internal impedance
  • Fig. 3-9 shows the internal impedance. This is an example in which the calculation is performed using the imaginary part Zimag of the impedance.
  • Fig. 3-8 and Fig. 3-9 a plurality of internal impedances sequentially calculated on the time axis by the processing of Fig. 3-6 are shown by plots, and of these, by a sequential calculation within a predetermined time.
  • the time course of the internal impedance is approximated by a second-order exponential decay function with the determined coefficients.
  • FIGS. 3-8 and 3-9 since the number of cycles is set on the horizontal axis, the change in the internal impedance corresponding to the time of the number of cycles X period Tp is shown.
  • the force at which the change of the internal impedance increases during the initial period with a small number of cycles The time variation is approximated with high accuracy using a quadratic exponential decay function Therefore, the error can be sufficiently reduced.
  • a current pulse according to the polarization state of the secondary battery is applied, and the internal impedance is calculated by waiting until the time when the internal impedance stabilizes from the application start timing. Therefore, it is possible to measure the internal impedance with high accuracy by removing the influence of the polarization of the secondary battery.
  • a current pulse according to the polarization state of the secondary battery is applied, and an application start timing force is sequentially calculated using a plurality of internal impedances within a predetermined period of time. Since the convergence value of the internal impedance is obtained by determining the coefficient of the above exponential decrement function, it is not affected by the polarization of the secondary battery! /, The internal impedance of the state can be accurately estimated, and The internal impedance can be measured with high accuracy.
  • a method and an apparatus for determining the state of deterioration of a secondary battery will be described.
  • a function is provided for determining the deterioration state of a storage battery used in an outdoor station or the like that houses an observation device, a communication device, or the like, or a secondary battery mounted on a vehicle such as an automobile. The case where the present invention is applied to the obtained power supply system will be described.
  • FIG. 41 is a block diagram showing a schematic configuration of the power supply system according to the present embodiment.
  • the power supply system includes a secondary battery 10, a voltage sensor 11, a current sensor 12, a control unit 13, a storage unit 14, a charging circuit 15, a discharging circuit 16, and a temperature sensor 17. It is configured to supply electric power from the secondary battery 10 to a load 20 such as various devices of a vehicle or a motor.
  • a load 20 such as various devices of a vehicle or a motor.
  • a lead storage battery is used as the secondary battery 10 for supplying power to the load 20 mounted on the observation device, the communication device, and the vehicle.
  • the secondary battery 10 includes a positive electrode, an electrolytic solution, and a negative electrode, and is represented by an equivalent circuit combining a resistor and a capacitor.
  • the internal impedance of the secondary battery 10 is represented by a complex impedance that matches the configuration of the equivalent circuit.
  • FIG. 42 is a diagram illustrating a specific example of the waveform of the current pulse applied to the secondary battery 10.
  • the current pulse shown in Fig. 4-2 is a rectangular pulse with a constant period t and a constant current amplitude X.
  • the current alternates between 0 and X in each period. Is shown.
  • the internal impedance of the secondary battery 10 can be obtained by applying the current pulse and its response voltage to the secondary battery 10 by Fourier expansion.
  • the voltage sensor 11 detects the voltage between both ends of the secondary battery 10 and sends the voltage value to the control unit 13.
  • the current sensor 12 detects a current flowing through the secondary battery 10 and sends a current value to the control unit 13. As described above, when measuring the internal impedance of the secondary battery 10, it is necessary to obtain the voltage value of the voltage sensor 11 and the current value of the current sensor 12.
  • the control unit 13 is configured with a CPU and the like, controls the operation of the entire power supply system, executes a later-described arithmetic process at a predetermined timing, determines the deterioration state of the secondary battery 10, and sends the result to the control device and the like. Send out the judgment result.
  • the storage unit 14 connected to the control unit 13 includes a ROM for storing various programs such as a control program, and a RAM for temporarily storing data necessary for processing by the control unit 13. In. Note that the ROM of the storage unit 14 also functions as a non-volatile storage unit that stores setting information and the like about coefficients of each term of a polynomial function described later.
  • the charging circuit 15 is a circuit that supplies a charging current when charging the secondary battery 10 is performed.
  • the discharge circuit 16 is a circuit that supplies a discharge current flowing from the secondary battery 10 to the load 20 when the secondary battery 10 performs a discharging operation.
  • the charging circuit 15 and the discharging circuit 16 are controlled by the control unit 15, and during the charging operation, only the charging circuit 15 is turned on. During the discharging operation, only the discharging circuit 16 is turned on.
  • a configuration is provided in which the above-described current pulse can be supplied by the charging circuit 15 or the discharging circuit 16 when measuring the internal impedance of the secondary battery 10.
  • the temperature sensor 17 is installed near the secondary battery 10, detects the temperature of the secondary battery 10, and sends the detected temperature to the control unit 13. As will be described later, the temperature detected by the temperature sensor 17 is required when determining the deterioration state of the secondary battery 10 and when correcting the temperature of the internal impedance.
  • the internal impedance of the secondary battery 10 is a force used when determining the deterioration state of the secondary battery 10.
  • the internal impedance has a strong correlation with the temperature around the secondary battery 10. Therefore, in order to accurately determine the deterioration state of the secondary battery 10, it is important to correct the temperature dependence of the internal impedance.
  • FIG. 4-3 is a diagram illustrating a specific example of the temperature characteristics of the secondary battery 10.
  • the temperature characteristic of FIG. 43 plots the actual measurement result of the temperature characteristic of the internal impedance according to the deterioration state of the secondary battery 10 of a specific type.
  • the example of FIG. 43 shows a case where the real part of the internal impedance of the secondary battery 10 is measured using a rectangular current pulse having a period of 20 Hz.
  • secondary batteries 10 for vehicles used for observation devices and communication devices and for vehicles are used over a wide temperature range, and it is necessary to secure an appropriate internal impedance of the secondary batteries 10 within that range.
  • the internal impedance of the secondary battery 10 tends to increase remarkably in a low-temperature region and gradually decrease in a high-temperature region.
  • FIG. 4 3 the case where the secondary battery 10 is unused (new), the case where the secondary battery 10 has been used for a relatively short time and the deterioration is small, and the case where the secondary battery 10 has been used for a relatively long time 3 shows three plots in the case of 10 secondary batteries with large deterioration.
  • FIG. 4-3 it can be seen that as the secondary battery 10 deteriorates, the internal impedance gradually increases.
  • the internal impedance of the secondary battery 10 changes depending on both the temperature and the degree of deterioration, it is necessary to perform temperature correction to remove the influence of the temperature dependency. Become.
  • the temperature dependence of the internal impedance is approximated by using a function described later, and the internal impedance at a predetermined temperature is calculated based on the function, and the deterioration state of the secondary battery 10 is determined based on the calculation result. Make a decision.
  • a polynomial function is assumed as a function for approximating the temperature characteristics of the internal impedance of the secondary battery 10.
  • the internal impedance Z of the secondary battery 10 is expressed as an n-th order polynomial function with respect to the temperature Tp, it is generally expressed as the following equation (29).
  • the internal impedance Z in equation (29) may be an imaginary part or an absolute value that assumes a real part.
  • Equation (29) in addition to the case where the temperature characteristic of the internal impedance is approximated using the polynomial function shown in Equation (29), a complex function including at least the polynomial term shown in Equation (29) is used.
  • the present invention can also be applied to a case where the temperature characteristics of the internal impedance are approximated by using the same. However, the case where the temperature characteristic of the internal impedance is approximated using only a polynomial function as shown in equation (29) will be described below.
  • each coefficient AO-An in the polynomial function of equation (29) is set in association with the reference coefficient C commonly included in each of them. That is, the polynomial function of the equation (29) is expressed by the following equation (30).
  • f 1 (C) and f2 (C) ⁇ ' ⁇ ⁇ (C) are appropriate functions including the reference coefficient C, respectively.
  • the coefficient AO in equation (29) is made to correspond to the reference coefficient C
  • each of the other coefficients A1—An is made to correspond to the function of the reference coefficient C fl (C) -fn (C).
  • Each of these functions f 1 (C) must be determined beforehand in conformity with the temperature characteristics of the internal impedance Z. For example, it can be set to include a linear expression of C, a quadratic expression, an exponential function, and the like.
  • Fig. 44 shows the correlation coefficients of the calculated values of the respective orders with the actually measured values.
  • C which is commonly included in each coefficient of the polynomial function
  • equation (31) corresponding to equation (30), it is expressed in a form that includes the functions f (C), g (C), h (C), i (C), and j (C) of the reference coefficient C. ing. Then, in the present embodiment, from the viewpoint of simplification of the arithmetic processing, a case where each function of Expression (31) is represented by a linear expression of the reference coefficient C will be examined. In this case, equation (31) is expressed as the following equation (32).
  • the coefficients al-a5 and bl-b5 may be set in advance so as to match the temperature characteristics of the internal impedance Z.
  • each coefficient of the polynomial function by the linear expression of the reference coefficient C, it is possible to perform the temperature correction by a relatively simple calculation process.
  • FIG. 4-5 is a flowchart showing a flow of arithmetic processing mainly executed by the control unit 13 based on the control program stored in the storage unit 14.
  • the arithmetic processing shown in FIG. 44 is started to be executed at a predetermined timing set in the power supply system.
  • step S101 when the calculation process is started by the control unit 13, parameters required for the calculation are initialized (step S101).
  • the parameters to be initialized in step S101 include a reference temperature TpX as a reference when calculating the internal impedance, a threshold for determining the internal impedance when determining the deterioration state of the secondary battery 10, and a value Zth.
  • an appropriate initial set value according to the characteristics of the secondary battery 10 is Although it can be set in advance, the initial set value may be appropriately changed according to the operation status and the like.
  • reference temperature TpX be set to the lower limit of the operating temperature range in consideration of the temperature characteristics of secondary battery 10 as shown in FIG. However, if the determination threshold value Zth is set appropriately, an arbitrary temperature can be set as the reference temperature TpX.
  • step S102 while applying a predetermined current such as a pulse current from the charging circuit 15 or the discharging circuit 16, the voltage value output from the voltage sensor 11 and the current value output from the current sensor 12 at a predetermined timing are changed. It is acquired (step S102). Then, the internal impedance Z of the secondary battery 10 is calculated by a method such as Fourier expansion using the voltage value and the current value acquired in step S102 (step S103). In step S103, it is assumed that the internal impedance Z is a real part (internal resistance). However, it is also possible to calculate an imaginary part and an absolute value.
  • Step S104 the temperature detected by the temperature sensor 17 is read (Step S104), and the temperature Tp around the secondary battery 10 is obtained.
  • the above-described reference coefficient C is calculated using the internal impedance ⁇ calculated in step S103 and the temperature ⁇ obtained in step S104 (step S105).
  • the reference coefficient C can be obtained by calculating the following equation (33) given based on the above equation (4).
  • coefficients al-a5 and bl-b5 included in the equation (33) values suitable for the temperature characteristics of the secondary battery 10 are obtained, and the setting information is stored in the ROM of the storage unit 14 in advance. What is necessary is just to memorize and hold. Further, the coefficients al-a5 and bl-b5 can be set arbitrarily, and the combination thereof can also be set arbitrarily.
  • the reference internal impedance ZX calculated by the equation (33) is based on the actual measurement results of the temperature Tp and the internal impedance ⁇ , and in accordance with a desired polynomial function, the reference temperature X X
  • step S106 the reference internal impedance ZX calculated in step S106 is compared with the judgment threshold value Zth set in step S101 (step S107), and processing according to the magnitude relation is performed. If the reference internal impedance ZX exceeds the determination threshold value Zth, that is, if it is determined that ZX> Zth is satisfied (step S107; YES), whether or not the same determination continues for a predetermined number of consecutive times Is determined (step S108). That is, step S108 is provided to suppress the influence of the fluctuation of the internal impedance and wait for the determination result to stabilize.
  • the temperature of the internal impedance Z obtained in step S103 is corrected to obtain the reference internal impedance ZX, and the determination threshold value Zth is fixed.
  • the decision threshold Zth is expressed as a function including at least a third-order or higher-order polynomial term relating to temperature, and the decision is made at an arbitrary temperature, and the value Zth is calculated, the equivalent value of the present invention can be obtained. The effect can be obtained.
  • step S109 it is determined that the secondary battery 10 is in a deteriorated state.
  • step S109 it is determined that the secondary battery 10 is in a deteriorated state. If it is determined in step S109 that the battery is in a deteriorated state, for example, the user is prompted to replace the secondary battery 10. If you do something like this,
  • the present invention is not limited to this.
  • a plurality of polynomial functions corresponding to a plurality of different types of secondary batteries 10 may be used to separately perform arithmetic processing. That is, as the setting information stored in the ROM of the storage unit 14, a combination of coefficients of each term corresponding to a plurality of polynomial functions is prepared, and, for example, by switching a dip switch or the like, the control unit 13 What is necessary is just to comprise so that information may be read selectively.
  • a plurality of determination thresholds Zth of step S107 are stored, and according to the type of the secondary battery 10,
  • the control unit 13 may be configured to selectively read.
  • a battery system provided with a configuration for determining the deterioration state of a storage battery provided in a station or the like containing an observation device, a communication device, or the like, or a vehicle secondary battery mounted on a vehicle.
  • the present invention can be widely applied to various power supply systems equipped with a general secondary battery which is not limited to these uses. Industrial applicability
  • the internal impedance of the secondary battery at the reference temperature is calculated using a function including a third-order or higher-order polynomial term that approximates the temperature characteristic of the secondary battery, and calculates the secondary internal impedance. Since the deterioration state of the battery is determined, it is possible to accurately correct the temperature characteristics of the internal impedance of the secondary battery and accurately determine the deterioration state of the secondary battery at high accuracy. Become.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 蓄電池が負荷に接続された構成を含むシステムにおける蓄電池の劣化状態を判定するに際し、蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、実測された蓄電池の内部抵抗成分を基準温度における値に変換し、この値を基準温度における蓄電池の放電時端子間電圧に変換し、この基準温度における蓄電池の放電時端子間電圧を劣化判定しきい値と比較して蓄電池の劣化状態を判定する。

Description

明 細 書
蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次 電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム 技術分野
[0001] 本発明は、蓄電池の劣化判定方法および蓄電池の劣化判定装置、負荷に電力を 供給する二次電池の内部インピーダンスを測定する方法及び装置、二次電池の劣 化状態を判定する二次電池劣化状態判定方法等の技術分野に関する。
背景技術
[0002] 蓄電池の残留容量ならびに劣化状態の検査方法に関しては、種々の方法が知ら れている。例えば、蓄電池を完全に放電させて容量を測定し、その容量から劣化状 態を判定する方法がある。し力しながら、この方法は、完全に放電することが必要な ため、負荷に接続されて使用中の蓄電池に用いることは難しぐ測定時間も長いこと から、実用的な方法ではない。そこで、使用中の蓄電池の劣化状態の判定を短時間 で行うことができる方法が開発されてきた。
[0003] 例えば、蓄電池の使用温度が変化する状況で、蓄電池の電池電圧および使用温 度を検出し、検出された温度における電池電圧を基準温度における電池電圧に補 正することにより蓄電池の劣化状態の判定を行う方法が知られている(特開 2001— 1 85233号公報参照)。
[0004] 更に、自動車等に搭載される鉛蓄電池等の二次電池に関し、その内部インピーダ ンスを測定する技術が提案されている(例えば、特開平 10-56744号公報参照)。一 般に、二次電池の内部インピーダンスを測定することにより、二次電池の劣化状態を 判別できるので、重要度の高い技術となっている。二次電池の内部インピーダンスは 、充電又は放電を行っていない状態で、二次電池に流れる電流及び応答電圧をそ れぞれ検出し、両者を用いて所定の演算を行うことにより求めることができる。
[0005] 上記特開平 10— 56744号公報には、二次電池の内部インピーダンスを測定する方 法として、一定周波数の放電電流を二次電池に印加し、放電電流波形と応答電圧波 形をフーリエ変換することにより内部インピーダンスを求める方法が提案されている。 力かる方法により、比較的高い精度で二次電池の内部インピーダンスを求めることが でき、二次電池の劣化状態を的確に判定することができる。
[0006] 更に、自動車等に搭載される鉛蓄電池等の二次電池に関し、その劣化状態を判定 する技術が知られている(例えば、特開 2001— 228226号公報参照)。一般に、二次 電池の内部インピーダンスは二次電池の劣化状態と強い相関があるため、二次電池 の内部インピーダンスを測定すれば、その測定結果から二次電池の劣化の度合を判 断可能となる。これにより、ユーザに対しては、劣化の度合が大きい二次電池の交換 を促すことができる。二次電池の劣化状態を判定可能な電源システムに実現する場 合、二次電池に所定の電流を供給し、二次電池の電流及び電圧を検出し、所定の 演算を行うことにより内部インピーダンスを求める構成を採用すればよい。
[0007] 更に、密閉型鉛蓄電池に関し、その放電電流と放電中の電池電圧から内部インピ 一ダンスを求める技術が知られている(例えば、特開平 9 232005号公報参照)。一 般に、密閉型鉛蓄電池をあらかじめ定めた一定の周期で放電させて一定周波数の 放電電流を流し、その放電電流の放電電流波形をフーリエ変換して、一定周波数を 基本周波数とする放電電流波形のフーリエ変換値を求め、放電中の電池電圧の電 圧応答波形をフーリエ変換して、一定周波数を基本周波数とする電圧応答波形のフ 一リエ変換値を求め、電圧応答波形
のフーリエ変換値を放電電流波形のフーリエ変換値で除して内部インピーダンスが 永まる。
[0008] 一般に、観測装置や通信装置等を収納する屋外局舎等にて使用する場合や、自 動車等に二次電池を搭載する場合、多様な地域や使用環境が想定されることから、 非常に広い温度範囲にわたって二次電池の正常な動作を保証することが重要にな る。一方、二次電池の内部インピーダンスは、温度に依存して大きく変化し、特に低 温で著しく増大する傾向がある。そのため、常温では許容範囲の内部インピーダンス であっても、低温では二次電池の使用に支障を来たすこともある。従って、確実に二 次電池の劣化状態を判定するためには、何らかの方法で二次電池の温度補正を行 つた上で内部インピーダンスを求める必要がある。
特許文献 1:特開 2001— 185233号公報 特許文献 2:特開平 10— 56744号公報
特許文献 3:特開 2001— 228226号公報
特許文献 4:特開平 9— 232005号公報
発明の開示
発明が解決しょうとする課題
[0009] 上述した特開 2001-185233号公報に記載された方法は、充電電圧や充電状態 が変化する用途または急速放電を行う用途に用いられる蓄電池や、負荷変動の大き V、あるいは負荷変動が不規則なものや環境変化が大き!/、等の場合に使われる蓄電 池、あるいは、自動車等の車両に搭載される蓄電池に適用すると、検出される電池 電圧が変動するため、正確に蓄電池の劣化状態の判定を行うことができないという問 題点を有する。
[0010] 更に、特開平 10— 56744号公報に開示された方法は、二次電池に一定周波数の パルス電流を印加するものである。そのため、一定周波数のパルス電流を生成する ための回路を設ける必要があり、構成の複雑化とコストの上昇を招く。また、二次電池 の内部インピーダンスを求める際に周期的なパルス電流を二次電池に流すことは、 本来は不要な充放電を繰り返す可能性があり、二次電池の消耗を大きくする恐れも める。
[0011] 一般に、二次電池は充放電を繰り返すため、電極の近傍に分極が発生することが 知られている。そして、上記従来の方法で、充放電を終えた後に二次電池の内部ィ ンピーダンスを測定する際、分極の影響を強く受けることが問題となる。このように分 極の影響を受けた状態で測定した二次電池の内部インピーダンスは誤差を生じるた め、従来の方法では、高い精度で内部インピーダンスを求めることは困難であった。
[0012] 更に、二次電池の内部インピーダンスの温度特性は単純に近似するのは難しぐ 高い精度で内部インピーダンスの温度補正を行うことは容易ではない。また、温度特 性に加えて、二次電池の使用状態によっても内部インピーダンスが変化して温度特 性がシフトすることが問題となる。すなわち、新品の二次電池に比べ、所定期間使用 した二次電池は、相対的に内部インピーダンスが増大する。このように、温度特性と 使用状態に応じて変化する二次電池の内部インピーダンスを測定したとしても、二次 電池の劣化状態を正確に判断することは困難である。
課題を解決するための手段
[0013] そこで、本発明の 1つの目的は、負荷に接続された使用中の蓄電池の劣化状態の 判定を短時間にかつ正確に行うことができる蓄電池の劣化判定方法を提供すること にある。本発明の他の 1つの目的は、二次電池の内部インピーダンスを測定する際、 周期性を持たない多様な波形を持つ充放電電流を二次電池に流した状態で入力電 流と応答電圧のフーリエ変換を行って内部インピーダンスを測定するようにしたので 、複雑な構成やコストの上昇を
回避するとともに二次電池の消耗を抑えることが可能な二次電池の内部インピーダン ス測定方法等を提供することにある。
[0014] また、本発明の他の 1つの目的は、二次電池の内部インピーダンスを測定する際、 分極の影響を除去して高 、精度の内部インピーダンスを求めることが可能な二次電 池の内部インピーダンス測定方法等を提供することにある。本発明の他の 1つの目的 は、二次電池の内部インピーダンスの温度特性を的確に補正し、高い精度で二次電 池の劣化状態を判定することが可能な二次電池劣化状態判定方法等を実現するこ とにある。
[0015] この発明の蓄電池の劣化判定方法の第 1の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の内部抵抗成分 の測定結果に基づ!、て判定する蓄電池の劣化判定方法であって、前記蓄電池の劣 化状態を判定する温度を基準温度としてあらかじめ設定し、前記内部抵抗成分の温 度による変化を抵抗温度補正係数としてあらかじめ求め、前記基準温度における内 部抵抗成分と、前記基準温度における前記蓄電池力もあら力じめ定められた放電電 流を流した際の前記蓄電池の放電時端子間電圧との関係を抵抗電圧変換係数とし てあらかじめ求め、前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の 前記蓄電池の温度を測定し、前記測定された内部抵抗成分の値を、前記抵抗温度 補正係数に基づいて前記基準温度における内部抵抗成分の値に変換し、前記基準 温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて前記基準温 度における前記蓄電池の放電時端子間電圧の値に変換し、前記基準温度における 前記蓄電池の放電時端子間電圧を、あらかじめ設定した劣化判定しき 、値と比較し て前記蓄電池の劣化状態を判定することを特徴とする蓄電池の劣化判定方法である
[0016] この発明の蓄電池の劣化判定方法の第 2の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の内部抵抗成分 の測定結果に基づ!、て判定する蓄電池の劣化判定方法であって、前記蓄電池の劣 化状態を判定する温度を基準温度としてあらかじめ設定し、前記内部抵抗成分の温 度による変化を抵抗温度補正係数としてあらかじめ求め、前記基準温度における内 部抵抗成分と、前記基準温度における前記蓄電池力もあら力じめ定められた放電電 流を流した際の前記蓄電池の放電時降下電圧との関係を抵抗電圧変換係数として あら力じめ求め、前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前 記蓄電池の温度を測定し、前記測定された内部抵抗成分の値を、前記抵抗温度補 正係数に基づいて前記基準温度における内部抵抗成分の値に変換し、前記基準温 度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて前記基準温度 における前記蓄電池の放電時降下電圧の値に変換し、前記基準温度における前記 蓄電池の放電時降下電圧を、あらかじめ設定した劣化判定しき 、値と比較して前記 蓄電池の劣化状態を判定することを特徴とする蓄電池の劣化判定方法である。
[0017] この発明の蓄電池の劣化判定方法の第 3の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の内部抵抗成分 の測定結果に基づ!、て判定する蓄電池の劣化判定方法であって、前記蓄電池の劣 化状態を判定する温度を基準温度としてあらかじめ設定し、前記内部抵抗成分の温 度による変化を抵抗温度補正係数としてあら力じめ求め、前記蓄電池の内部抵抗成 分および前記内部抵抗成分測定時の前記蓄電池の温度を測定し、前記測定された 内部抵抗成分の値を、前記抵抗温度補正係数に基づいて前記基準温度における内 部抵抗成分の値に変換し、前記基準温度における内部抵抗成分の値を、あらかじめ 設定した劣化判定しきい値と比較して前記蓄電池の劣化状態を判定することを特徴 とする蓄電池の劣化判定方法である。
[0018] この発明の蓄電池の劣化判定方法の第 4の態様は、前記基準温度は、前記蓄電 池の使用温度範囲内であって、かつ前記蓄電池力 あらかじめ定められた放電電流 を流した際の放電時端子間電圧の値が最も低くなる温度に設定されることを特徴と する蓄電池の劣化判定
方法である。
[0019] この発明の蓄電池の劣化判定方法の第 5の態様は、前記あらかじめ定められた放 電電流の電流波形は、前記負荷の動作時間中に必要とされる消費電流を表す電流 波形と実質的に等価とみなせる電流波形であることを特徴とする蓄電池の劣化判定 方法である。
[0020] この発明の蓄電池の劣化判定方法の第 6の態様は、前記劣化判定しきい値は、前 記負荷の動作に必要な最低電圧以上の値とすることを特徴とする蓄電池の劣化判 定方法である。
[0021] この発明の蓄電池の劣化判定方法の第 7の態様は、前記劣化判定しきい値は、前 記負荷の動作に必要な最低電圧となる降下電圧値以下の値とすることを特徴とする 蓄電池の劣化判定方法である。
[0022] この発明の蓄電池の劣化判定方法の第 8の態様は、前記劣化判定しきい値は、前 記負荷の動作に必要な最低電圧となる内部抵抗成分の値以下の値とすることを特徴 とする蓄電池の劣化判定方法である。
[0023] この発明の蓄電池の劣化判定方法の第 9の態様は、前記基準温度における内部 抵抗成分と、前記基準温度における前記蓄電池力もあら力じめ定められた放電電流 を流した際の前記蓄電池の放電時端子間電圧との関係を抵抗電圧変換係数として あら力じめ求める工程における前記蓄電池の放電時端子間電圧は、前記蓄電池の 放電時の最低電圧であることを特徴とする蓄電池の劣化判定方法である。
[0024] この発明の蓄電池の劣化判定方法の第 10の態様は、前記基準温度における内部 抵抗成分と、前記基準温度における前記蓄電池力もあら力じめ定められた放電電流 を流した際の前記蓄電池の放電時端子間電圧との関係を抵抗電圧変換係数として あら力じめ求める工程における前記蓄電池の放電時端子間電圧は、前記蓄電池の 放電開始力 所定時間経過後の電圧であることを特徴とする蓄電池の劣化判定方 法である。 [0025] この発明の蓄電池の劣化判定方法の第 11の態様は、 2つ以上の蓄電池のうち、少 なくとも 1つの蓄電池について劣化状態を判定し、前記 1つの蓄電池が劣化の見込 まれる状態又は劣化状態である場合、その状態を認識できることを特徴とする蓄電池 の劣化判定方法である。
[0026] この発明の蓄電池の劣化判定方法の第 12の態様は、少なくとも 2つの前記蓄電池 の劣化状態を判定し、蓄電池が劣化の見込まれる状態又は劣化状態である場合、 充電又は交換を要する要対応蓄電池の情報と、継続して使用可能な継続使用蓄電 池の情報とを表示する表示部と、前記蓄電池の履歴を記録する記憶部を有し、少な くとも充電して使用する又は継続して使用可能する蓄電池の履歴を保持、又は Z及 び、 «続して判定するプログラムを有する制御 ·判定部を備える
ことを特徴とする蓄電池の劣化判定方法である。
[0027] この発明の蓄電池の劣化判定方法の第 13の態様は、蓄電池が負荷に接続された 構成を含むシステムにおける前記蓄電池の劣化状態を、該蓄電池の放電性能に基 づいて判定する蓄電池の劣化判定方法であって、
あら力じめ 2以上の温度範囲を定め、該温度範囲ごとに任意の基準温度を設定し、 前記蓄電池の劣化状態を判定する際に測定される測定温度を、前記温度範囲に 対応する少なくとも 1つの基準温度を選択し、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換し、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求め、
求めた前記基準温度における放電性能を、あらかじめ設定した劣化判定しきい値と 比較して前記蓄電池の劣化状態を判定することを特徴とする蓄電池の劣化劣化判 定方法。
[0028] この発明の蓄電池の劣化判定方法の第 14の態様は、蓄電池が負荷に接続された 構成を含むシステムにおける前記蓄電池の劣化状態を、該蓄電池の放電性能に基 づいて判定する蓄電池の劣化判定方法であって、
前記蓄電池の劣化状態を判定する際に測定される測定温度と、該測定温度の値 から 2以上の基準温度を設定し、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換し、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求め、
前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 前記 2以上の基準温度における値を比較又は互いの相関関係を判定して前記蓄 電池の劣化状態を判定する
ことを特徴とする蓄電池の劣化判定方法。
[0029] この発明の蓄電池の劣化判定方法の第 15の態様は、蓄電池が負荷に接続された 構成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の放電性能に 基づ!/、て判定する蓄電池の劣化判定方法であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換し、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求め、
求めた前記基準温度における放電性能を、あらかじめ設定した劣化判定しきい値と 比較して前記蓄電池の劣化状態を判定する
ことを特徴とする蓄電池の劣化判定方法である。
[0030] この発明の蓄電池の劣化判定方法の第 16の態様は、前記相関値は、前記蓄電池 の内部抵抗成分の直流抵抗値、交流インピーダンス値あるいは前記交流インピーダ ンスの逆数である交流コンダクタンス値等の導電値であることを特徴とする蓄電池の 劣化判定方法である。
[0031] この発明の蓄電池の劣化判定方法の第 17の態様は、前記所定の関係式は、負荷 の消費電流の時間変化パターンに相当する電流を流した際の前記蓄電池の端子間 電圧、あるいは、負荷の消費電流の時間変化パターンに準じた電流を流した際の前 記蓄電池の端子間電圧であることを特徴とする蓄電池の劣化判定方法である。
[0032] この発明の蓄電池の劣化判定方法の第 18の態様は、前記基準温度は、前記蓄電 池の所定の使用可能温度範囲の内、電池の放電性能が最も低下する温度に設定さ れることを特徴とする蓄電池の劣化判定方法である。
[0033] この発明の蓄電池の劣化判定方法の第 19の態様は、前記基準温度は、前記所望 の温度力 一定温度を差し引いた温度に設定されることを特徴とする蓄電池の劣化 判定方法である。
[0034] この発明の蓄電池の劣化判定方法の第 20の態様は、前記基準温度は、前記所望 の温度が属する温度帯域毎に対応する所定の温度に設定されることを特徴とする蓄 電池の劣化判定方法である。
[0035] この発明の蓄電池の劣化判定装置の第 1の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の内部抵抗成分 の測定結果に基づいて判定する蓄電池の劣化判定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時端子間電圧との関 係を抵抗電圧変換係数としてあらカゝじめ求め、
前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定する電池温度測定部と、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換する内部抵抗成分変換部と、
前記基準温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて 前記基準温度における前記蓄電池の放電時端子間電圧の値に変換する端子間電 圧変換部と、
前記基準温度における前記蓄電池の放電時端子間電圧を、あらかじめ設定した劣 化判定しきい値と比較して前記蓄電池の劣化状態を判定する劣化状態判定部と、 を備えたことを特徴とする蓄電池の劣化判定装置である。
[0036] この発明の蓄電池の劣化判定装置の第 2の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の内部抵抗成分 の測定結果に基づいて判定する蓄電池の劣化判定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時降下電圧との関係 を抵抗電圧変換係数としてあらカゝじめ求め、
前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定する電池温度測定部と、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換する内部抵抗成分変換部と、
前記基準温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて 前記基準温度における前記蓄電池の放電時降下電圧の値に変換する放電時降下 電圧変換部と、
前記基準温度における前記蓄電池の放電時降下電圧を、あらかじめ設定した劣化 判定しきい値と比較して前記蓄電池の劣化状態を判定する劣化状態判定部と、 を備えたことを特徴とする蓄電池の劣化判定装置である。
[0037] この発明の蓄電池の劣化判定装置の第 3の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の内部抵抗成分 の測定結果に基づいて判定する蓄電池の劣化判定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定す
る電池温度測定部と、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換する内部抵抗成分変換部と、
前記基準温度における内部抵抗成分の値を、あらかじめ設定した劣化判定しきい 値と比較して前記蓄電池の劣化状態を判定する劣化状態判定部と、
を備えたことを特徴とする蓄電池の劣化判定装置である。
[0038] この発明の蓄電池の劣化判定装置の第 4の態様は、蓄電池が負荷に接続された構 成を含むシステムにおける前記蓄電池の劣化状態を、前記蓄電池の放電性能に基 づ 、て判定する蓄電池の劣化判定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換する相 関値変換部と、
相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求める放電性能算出部と、
求めた前記基準温度における放電性能を、あらかじめ設定した劣化判定しきい値と 比較して前記蓄電池の劣化状態を判定する劣化状態判別部と、
を備えたことを特徴とする蓄電池の劣化判定装置である。
[0039] この発明の蓄電池の劣化判定装置の第 5の態様は、 2つ以上の蓄電池のうち、少 なくとも 1つの蓄電池について劣化状態を判定し、前記 1つの蓄電池が劣化の見込 まれる状態又は劣化状態である場合、その状態を認識できる表示部を備える ことを特徴とする蓄電池の劣化判定装置である。
[0040] この発明の蓄電池の劣化判定装置の第 6の態様は、少なくとも 2つの前記蓄電池の 劣化状態を判定し、蓄電池が劣化の見込まれる状態又は劣化状態である場合、充 電又は交換を要する要対応蓄電池の情報と、継続して使用可能な継続使用蓄電池 の情報とを表示する表示部と、前記蓄電池の履歴を記録する記憶部を有し、少なくと も充電して使用する又は継続して使用可能する蓄電池の履歴を保持、又は Z及び、 «続して判定するプログラムを有する制御 ·判定部、
を備えたことを特徴とする蓄電池の劣化判定装置である。
[0041] この発明の二次電池の内部インピーダンス測定方法の第 1の態様は、充電電流又 は放電電流を二次電池の入力電流とし、前記二次電池の入力電流と応答電圧を測 定し、時間軸上で複数の電流測定値及び電圧測定値を取得し、前記取得された複 数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変換することにより、所 定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を求 め、前記入力電流の周波数成分と前記応答電圧の周波数成分の比をとつて前記所 定周波数における前記二次電池の内部インピーダンスを算出することを特徴とする 二次電池の内部インピーダンス測定方法である。
[0042] この発明の二次電池の内部インピーダンス測定方法の第 2の態様は、前記複数の 電流測定値及び前記複数の電圧測定値は、それぞれ所定の時間間隔 A tでサンプ リングされた N個の測定値からなり、前記所定周波数における前記入力電流及び前 記応答電圧のそれぞれの周波数成分は、離散フーリエ変換により求められることを特 徴とする二次電池の内部インピーダンス測定方法である。
[0043] この発明の二次電池の内部インピーダンス測定方法の第 3の態様は、前記入力電 流の周波数成分 I ( ω )及び前記応答電圧の周波数成分 V ( ω )は、前記所定周波数 を Fとし、整数 n(n=0, 2—Ν— 1)に対し前記 Ν個の電流測定値を i (n' A t)、前記 N 個
の電圧測定値を ν(η· A t)としたとき、
N-1
Ι(ω) = At ι(η ' At) ' expf ιω ' n ' At)dt
i =0
V( o) = Aty v(n ' At) ' exp( j o ' n ' At)dt
n = 0
(た し、 CO = 2 F)
によりそれぞれ求められ、前記内部インピーダンス Z ( ω )は、 ν(ω)
Ζ(ω) =
Ι(ω) により算出されることを特徴とする二次電池の内部インピーダンス測定方法である。
[0044] この発明の二次電池の内部インピーダンス測定方法の第 4の態様は、前記内部ィ ンピーダンスとして、少なくとも Μ個の異なる周波数に対応する複数の成分を算出し 、前記二次電池の等価回路に含まれる Μ個の回路定数を未知数とする連立方程式 を前記内部インピーダンスの複数の成分に基づき解くことにより、前記 Μ個の回路定 数を算出することを特徴とする二次電池の内部インピーダンス測定方法である。
[0045] この発明の二次電池の内部インピーダンス測定方法の第 5の態様は、二次電池の 充電時に充電電流を供給する充電回路と、前記二次電池の放電時に放電電流を供 給する放電回路と、前記充電電流又は前記放電電流を前記二次電池の入力電流と し、前記二次電池の入力電流と応答電圧を測定するセンサ手段と、前記センサ手段 の測定結果に基づき時間軸上で複数の電流測定値及び電圧測定値を取得し、当前 記取得された複数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変換す ることにより、所定周波数における前記入力電流及び前記応答電圧のそれぞれの周 波数成分を求め、前記入力電流の周波数成分と前記応答電圧の周波数成分の比を とって前記所定周波数における前記二次電池の内部インピーダンスを算出する制御 手段とを備えることを特徴とする二次電池の内部インピーダンス測定方法である。
[0046] この発明の二次電池の内部インピーダンス測定方法の第 6の態様は、前記制御手 段は、前記複数の電流測定値及び前記複数の電圧測定値として、それぞれ所定の 時間間隔 A tでサンプリングされた Ν個の測定値を取得し、前記所定周波数における 前記入力電流及び前記応答電圧のそれぞれの周波数成分を離散フーリエ変換によ り求めることを特徴とする二次電池の内部インピーダンス測定方法である。
[0047] この発明の二次電池劣化判定装置の 1つの態様は、上述した二次電池の内部イン ピーダンス測定装置によって算出された内部インピーダンスに基づき前記二次電池 の劣化状態を判定することを特徴とする二次電池劣化判定装置である。 [0048] この発明の電源システムの 1つの態様は、上述した二次電池の内部インピーダンス 測定装置を備えて 、る電源システムである。
[0049] この発明の二次電池の内部インピーダンス測定方法の第 7の態様は、負荷に電力 を供給する二次電池が充電分極と放電分極のいずれを受けた状態にあるかを判定 し、前記充電分極を受けていると判定された場合、一定周期の放電電流パルスを前 記二次電池に印加する一方、前記放電分極を受けていると判定された場合、一定周 期の充電電流パルスを前記二次電池に印加し、前記充電電流パルス又は前記放電 電流パルスの印加開始タイミング力 所定の周期数が経過したタイミング以降の前記 二次電池の入力電流と応答電圧を測定し、前記測定された入力電圧と応答電圧を 用いて前記二次電池の内部インピーダンスを算出することを特徴としている二次電 池の内部インピーダンス測定方法である。
[0050] この発明の二次電池の内部インピーダンス測定方法の第 8の態様は、前記充電電 流パルス又は前記放電電流パルスは、所定の周期と所定の電流振幅を有する矩形 波であることを特徴とする二次電池の内部インピーダンス測定方法である。
[0051] この発明の二次電池の内部インピーダンス測定方法の第 9の態様は、前記内部ィ ンピーダンスの算出に用いる前記入力電流と前記応答電圧は、前記充電電流パル ス又は前記放電電流パルスの印加開始タイミングから、 10— 50周期の範囲に設定さ れた所定周期数の経過後に測定開始することを特徴とする二次電池の内部インピー ダンス測定方法である。
[0052] この発明の二次電池の内部インピーダンス測定方法の第 10の態様は、負荷に電 力を供給する二次電池が充電分極と放電分極のいずれを受けた状態にあるかを判 定し、前記充電分極を受けていると判定された場合、一定周期の放電電流パルスを 前記二次電池に印加する一方、前記放電分極を受けていると判定された場合、一定 周期の充電電流パルスを前記二次電池に印加し、前記充電電流パルス又は前記放 電電流パルスの印加開始後の所定時間内に前記二次電池の入力電流と応答電圧 をそれぞれ測定し、前記測定された入力電圧と前記応答電圧を用いて時間軸上で 複数の前記二次電池の内部インピーダンスを算出し、前記複数の内部インピーダン スを用いて逐次計算を行って前記内部インピーダンスの時間特性を近似する 2次以 上の指数減衰関数の係数を決定し、少なくとも前記決定した係数に基づき前記内部 インピーダンスの収束値を求めることを特徴とする二次電池の内部インピーダンス測 定方法である。
[0053] この発明の二次電池の内部インピーダンス測定方法の第 nの態様は、可変した周 波数にて連続して放電させ、可変した周波数ごとの放電電流を流し、前記可変した 周波数ごとの放電電流の放電電流波形をフーリエ変換して、前記周波数ごとの放電 電流波形のフーリエ変換値を求め、放電中の電池電圧の電圧応答波形をフーリエ変 換して前記可変した周波数ごとの電圧応答波形のフーリエ変換値を求め、前記電圧 応答波形のフーリエ変換値を前記放電電流波形のフーリエ変換値で除して可変した 周波数ごとの内部インピーダンスを求め、周波数ごとに算出した内部インピーダンス 値を比較し、その増加あるいは減少割合が一定値以下であれば、ノイズ無しと判断し 、予め定めた基本周波数を用い、その増加あるいは減少割合が一定値以上であれ ば、ノイズ有と判断することを特徴とする二次電池の内部インピーダンス測定方法で める。
[0054] この発明の二次電池の内部インピーダンス測定方法の第 12の態様は、上述した放 電電流波形の周期が異なる少なくとも 3回の放電を 1セットとして繰り返し実施し、少 なくとも 3つの周期でのインピーダンスを計算し、 3つのインピーダンスに基づいて所 望のインピーダンスを求めることを特徴とする二次電池の内部インピーダンス測定方 法である。
[0055] この発明の二次電池の内部インピーダンス測定方法の第 13の態様は、内部前記 指数減衰関数として時間 Tに対し、
F(T) = Al exp( A3 · T) + Α2 exp( A4 · T) + A5 により表される関数 F (T)を用い、 5個の係数 A1— A5を決定することを特徴とする 二次電池の内部インピーダンス測定方法である。
[0056] この発明の二次電池の内部インピーダンス測定方法の第 14の態様は、前記充電 電流パルス又は前記放電電流パルスは、所定の周期と所定の電流振幅を有する矩 形波であることを特徴とする二次電池の内部インピーダンス測定方法である。
[0057] この発明の二次電池の内部インピーダンス測定方法の第 15の態様は、前記逐次 計算に用いる複数の内部インピーダンスは、前記充電電流パルス又は前記放電電 流パルスの印加開始後から、 5— 50周期の範囲に設定された所定周期数までの時 間内に測定された前記入力電流と前記応答電圧を用いて算出されることを特徴とす る二次電池の内部インピーダンス測定方法である。
[0058] この発明の二次電池の内部インピーダンス測定装置の第 1の態様は、負荷に電力 を供給する二次電池の入力電流と応答電圧を測定するセンサ手段と、一定周期の 充電電流パルス又は放電電流パルスを前記二次電池に印加可能な充放電回路と、 前記二次電池が充電分極と放電分極の 、ずれを受けて 、る状態にあるかを判定し、 前記充電分極を受けていると判定された場合は前記放電電流パルスを前記二次電 池に印加する一方、前記放電分極を受けていると判定された場合は前記充電電流 パルスを前記二次電池に印加するように前記充放電回路を制御し、前記充電電流 パルス又は前記放電電流パルスの印加開始タイミング力 所定の周期数が経過した タイミング以降の前記センサ手段の測定結果を取得し、取得された前記入力電圧と 前記応答電圧を用いて前記二次電池の内部インピーダンスを算出する制御手段とを 備えることを特徴とする二次電池の内部インピーダンス測定装置である。
[0059] この発明の二次電池の内部インピーダンス測定装置の第 2の態様は、負荷に電力 を供給する二次電池の入力電流と応答電圧を測定するセンサ手段と、一定周期の 充電電流パルス又は放電電流パルスを前記二次電池に印加可能な充放電回路と、 前記二次電池が充電分極と放電分極の 、ずれを受けて 、る状態にあるかを判定し、 前記充電分極を受けていると判定された場合は前記放電電流パルスを前記二次電 池に印加する一方、前記放電分極を受けていると判定された場合は前記充電電流 パルスを前記二次電池に印加するように前記充放電回路を制御し、前記充電電流 パルス又は前記放電電流パルスの印加後の所定時間内の前記センサ手段の測定 結果を取得し、取得された前記入力電圧と前記応答電圧を用いて時間軸上で複数 の前記二次電池の内部インピーダンスを算出し、前記複数の内部インピーダンスを 用いて逐次計算を行って前記内部インピーダンスの時間特性を近似する 2次以上の 指数減衰関数の係数を決定し、少なくとも前記決定した係数に基づき前記内部イン ピーダンスの収束値を求める制御手段とを備えることを特徴とする二次電池の内部ィ ンピーダンス測定装置である。
[0060] この発明の電源システムの 1つの態様は、上述した二次電池の内部インピーダンス 測定装置を備えて 、る電源システムである。
[0061] この発明の二次電池劣化判定方法の第 1の態様は、負荷に電力を供給する二次 電池の内部インピーダンスに基づいて前記二次電池の劣化状態を判定する二次電 池劣化判定方法であって、前記二次電池に所定の電流を印加した状態で電流及び 電圧を測定し、測定結果に基づいて前記内部インピーダンスを求め、前記二次電池 の温度を測定し、前記求めた内部インピーダンスと前記測定した温度とに基づき、前 記内部インピーダンスの温度特性を近似する少なくとも 3次以上の多項式項を含む 関数の各項の係数を決定し、前記決定した係数に基づき、前記 3次以上の多項式項 を含む関数の所定の基準温度における推測値である
基準内部インピーダンスを算出し、前記算出した基準内部インピーダンスに基づき前 記二次電池の劣化状態を判定することを特徴とする二次電池劣化判定方法である。
[0062] この発明の二次電池劣化判定方法の第 2の態様は、前記 3次以上の多項式項の 各項の係数は共通の基準係数に関連付けて設定され、前記求めた内部インピーダ ンスと前記測定した温度とに基づき前記基準係数を算出し、算出した基準係数に基 づき前記各項の係数を決定することを特徴とする二次電池劣化判定方法である。
[0063] この発明の二次電化劣化判定方法の第 3の態様は、前記 3次以上の多項式項を含 む関数は、温度を Tp、前記内部インピーダンスを Ζ、前記基準係数を Cとしたとき、
Ζ = C + fl(C)-Tp + f2(C)-Tp 2+… ·+ fn(C Tpn
(ただし、 η: 3以上の整数、;^ー^:所定の関数)
により表されることを特徴とする二次電ィ匕劣化判定方法である。
[0064] この発明の二次電池劣化判定方法の第 4の態様は、前記 3次以上の多項式に含ま れる各項の関数 fl (C)一 fn(C)は、前記基準係数 Cの 1次式で表されることを特徴と する二次電化劣化判定方法である。
[0065] この発明の二次電池劣化判定方法の第 5の態様は、前記基準温度に対応してあら 力じめ判定しきい値が設定され、前記算出した基準内部インピーダンスと前記判定し きい値との大小関係に応じて前記二次電池の劣化状態を判定することを特徴とする 二次電化劣化判定方法である。
[0066] この発明の二次電池劣化判定装置の第 1の態様は、負荷に電力を供給する二次 電池の内部インピーダンスに基づいて前記二次電池の劣化状態を判定する二次電 池劣化判定装置であって、前記二次電池に電流パルスを印加可能な回路と、前記 二次電池の電流と電圧を測定するセンサ手段と、前記二次電池の温度を測定する 温度センサと、前記回路から電流パルスを印加した状態における前記センサ手段の 測定結果に基づ 、て前記内部インピーダンスを求め、前記温度センサの測定温度と 前記求めた内部インピーダンスとに基づき、前記内部インピーダンスの温度特性を近 似する少なくとも 3次以上の多項式項を含む関数の各項の係数を決定し、前記決定 した係数に基づき、前記 3次以上の多項式項を含む関数の所定の基準温度におけ る推測値である基準内部インピーダンスを算出し、前記算出した基準内部インピーダ ンスに基づき前記二次電池の劣化状態を判定する制御手段と、を備えることを特徴と する二次電池劣化判定装置である。
[0067] この発明の二次電池劣化判定装置の第 2の態様は、前記 3次以上の多項式項の 各項の係数についての設定情報をあらかじめ記憶する不揮発性記憶手段を備え、 前記制御手段は、前記不揮発性記憶手段から読み出した設定情報を用いて前記各 項の係数を決定することを特徴とする二次電池劣化判定装置である。
[0068] この発明の二次電池劣化判定装置の第 3の態様は、前記不揮発性記憶手段には 、前記 3次以上の多項式の各項の係数につ 、ての複数の組合せに対応する複数の 設定情報が記憶され、前記制御手段は前記複数の設定情報を選択的に読み出し可 能であることを特徴とする二次電池劣化判定装置である。
[0069] この発明の二次電池劣化判定装置の第 4の態様は、前記不揮発性記憶手段には 、前記基準温度に対応してあらかじめ設定される判定しきい値が記憶され、前記制 御手段は、前記 算出した基準内部インピーダンスと前記不揮発性記憶手段力 読み出した判定しき い値との大小関係に応じて前記二次電池の劣化状態を判定することを特徴とする二 次電池劣化判定装置である。
[0070] この発明の二次電池劣化判定装置の第 5の態様は、可変した周波数にて連続して 放電させ、可変した周波数ごとの放電電流を流し、前記可変した周波数ごとの放電 電流の放電電流波形をフーリエ変換して、前記周波数ごとの放電電流波形のフーリ ェ変換値を求め、放電中の電池電圧の電圧応答波形をフーリエ変換して前記可変 した周波数ごとの電圧応答波形のフーリエ変換値を求め、前記電圧応答波形のフー リエ変換値を前記放電電流波形のフーリエ変換値で除して可変した周波数ごとの内 部インピーダンスを求め、周波数ごとに算出した内部インピーダンス値を比較し、そ の増加あるいは減少割合が一定値以下であれば、ノイズ無しと判断し、予め定めた 基本周波数を用い、その増加あるいは減少割合が一定値以上であれば、ノイズと判 断する判断部を備えることを特徴とする二次電池劣化判定装置である。
[0071] この発明の二次電池劣化判定装置の第 6の態様は、前記不揮発性記憶手段には 、複数の前記判定しきい値が記憶され、前記制御手段は前記複数の判定しきい値を 選択的に読み出し可能であることを特徴とする二次電池劣化判定装置である。 この発明の電源システムの :Lつの態様は、上述した二次電池劣化判定装置を備え て 、る電源システムである。
発明の効果
[0072] 本発明によれば、蓄電池が負荷に接続された構成を含むシステムにおける蓄電池 の劣化状態を判定するに際し、蓄電池の劣化状態を判定する温度を基準温度として あらかじめ設定し、実測された蓄電池の内部抵抗成分を基準温度における値に変換 し、この値を基準温度における蓄電池の放電時端子間電圧に変換し、この基準温度 における蓄電池の放電時端子間電圧を劣化判定しきい値と比較して蓄電池の劣化 状態を判定するため、負荷に接続された使用中の蓄電池の劣化状態の判定を短時 間かつ正確に行うことができる。
[0073] 本発明によれば、二次電池の内部インピーダンスを測定する際、充電時又は放電 時において入力電流と応答電圧を測定し、フーリエ変換を行うことにより所定周波数 における二次電池の内部インピーダンスを算出するようにしたので、特別な電流発生 器を設けることや周期的な波形の電流を用いることはいずれも不要となる。よって、構 成の簡素化及び低コストィヒの面で有益であって二次電池の消耗を抑えることが可能 な二次電池の内部インピーダンス測定装置等を実現することが可能となる。
[0074] 本発明によれば、二次電池の分極状態に応じた電流パルスを印加し、印加開始タ イミングから内部インピーダンスが安定する時間が経過するまで待ち、内部インピー ダンスを算出するようにしたので、二次電池の分極の影響を除去して高い精度で内 部インピーダンスを測定することが可能となる。
[0075] また、本発明によれば、二次電池の分極状態に応じた電流パルスを印加し、印加 開始タイミング力 所定時間内の複数の内部インピーダンスを用いて逐次計算を行 V、、 2次以上の指数減数関数の係数を決定して内部インピーダンスの収束値を求め るようにしたので、二次電池の分極の影響を受けな!/、状態の内部インピーダンスを正 確に推定でき、高 、精度で内部インピーダンスを測定することが可能となる。
図面の簡単な説明
[0076] [図 1-1]本発明が適用されるシステムの第 1例を示す説明図である。
[図 1-2]本発明が適用されるシステムの第 2例を示す説明図である。
[図 1-3]本発明が適用されるシステムにおいて用いられる電力制御装置の一例を示 す説明図である。
[図 1-4]本発明の実施形態である蓄電池の劣化判定方法の第 1例の流れを説明する 流れ図である。
[図 1-5]本発明の実施形態である蓄電池の劣化判定方法の第 2例の流れを説明する 流れ図である。
[図 1-6]本発明の実施形態である蓄電池の劣化判定方法の第 3例の流れを説明する 流れ図である。
[図 1-7]負荷使用時の放電電流の時間変化の第 1例を示すグラフである。
[図 1-8]負荷使用時の放電電流の時間変化の第 2例を示すグラフであって、 (A)は 負荷の動作時間中に必要とされる消費電流を表す電流波形、 (B)は (A)の電流波 形と実質的に等価とみなせる電流波形を示す。 [図 1-9]第 1例の方法による、抵抗電圧変換係数を求める際の蓄電池の放電時端子 間電圧を蓄電池の放電時の最低電圧とする場合の、放電時端子間電圧と放電電流 の関係を示すグラフである。
[図ト 10]第 1例の方法による、抵抗電圧変換係数を求める際の蓄電池の放電時端子 間電圧を蓄電池の放電開始力 所定時間経過後の電圧とする場合の、放電時端子 間電圧と放電電流の関係を示すグラフである。
[図 1-11]蓄電池の内部抵抗成分の温度依存性の一例を示すグラフである。
[図ト 12]抵抗温度補正係数の一例を示すグラフである。
[図ト 13]第 1例の方法において用いられる抵抗電圧変換係数の一例を示- める。
[図ト 14]第 2例の方法において用いられる抵抗電圧変換係数の一例を示- める。
[図ト 15]第 2実施形態の処理フローチャートである。
[図 1-16]第 2実施形態における内部抵抗成分(内部抵抗値)と負荷電流を放電して いる最中の最低電圧の関係を示す図である。
[図 1-17]従来方法である電池容量(5時間率容量)と負荷電流を放電している最中の 最低電圧の関係を示す図である。
[図 1-18]従来方法の処理フローチャートである。
[図 1-19]変形例のシステム構成図(その 1)である。
[図 1-20]変形例のシステム構成図(その 2)である。
[図 1-21]変形例のシステム構成図(その 3)である。
[図 1-22]変形例のシステム構成図(その 4)である。
[図 1-23]従来の方法の一例を説明する図である。
[図 1-24]この発明の方法の一例を説明する図である。
[図 2-1]本実施形態に係る電源システムの概略の構成を示すブロック図である。
[図 2-2]二次電池の等価回路を示す図である。
[図 2-3]本実施形態に係る電源システムにおいて二次電池の内部インピーダンスを 測定する際の具体的な処理を説明するフローチャートである。 [図 2-4]二次電池の内部インピーダンスと劣化状態の関係を説明する図である。
[図 3-1]第 1実施形態に係る電源システムの概略の構成を示すブロック図である。
[図 3-2]二次電池の等価回路を示す図である。
[図 3-3]二次電池に印加される電流パルスの波形の具体例を示す図である。
[図 3-4]第 1実施形態に係る電源システムにおいて二次電池の内部インピーダンスを 測定する際の具体的な処理を説明するフローチャートである。
[図 3-5]図 3— 4のステップ S 108における内部インピーダンスの具体的な計算処理を 示すフローチャートである。
[図 3-6]第 2実施形態に係る電源システムにおいて二次電池の内部インピーダンスを 測定する際の具体的な処理を説明するフローチャートである。
[図 3-7]図 3— 6のステップ S212における内部インピーダンスの収束値計算の具体的 な処理を示すフローチャートである。
[図 3-8]第 2実施形態において二次電池の内部インピーダンスを求める場合の時間 特性の具体例であって、内部インピーダンスの絶対値と実数部を用いて計算を行う 場合の例を示す図である。
[図 3-9]第 2実施形態において二次電池の内部インピーダンスを求める場合の時間 特性の具体例であって、内部インピーダンスの虚数部を用いて計算を行う場合の例 を示す図である。
[図 4-1]本実施形態に係る電源システムの概略の構成を示すブロック図である。
[図 4-2]二次電池に印加される電流パルスの波形の具体例を示す図である。
[図 4-3]二次電池の温度特性の具体例を示す図である。
[図 4-4]多項式関数により内部インピーダンスの温度特性を近似する場合、近似精度 と多項式関数の次数との関係を示す図である。
[図 4-5]本実施形態に係る蓄電源システムにお 、て、二次電池の内部インピーダンス に基づく劣化状態の判定を行う際の具体的な処理を示すフローチャートである。 符号の説明
1.本発明のシステム
2.電力源 3、 106.蓄電池
4、 20.負荷
5、力制御装置
6、 104、 107、 108.蓄電池劣化判定装置
10.二次電池
11. 12.電流センサ
12. 11.電圧センサ
13.制御部
14.記憶部
15.充電回路
16.放電回路
17.温度センサ
61.インピーダンス測定手段
62.状態検知手段
63.温度センサ
100.蓄電池の劣化判定を行うためのシステム
101.検知回路
102.制御 ·判定装置
103.表示部
105.温度センサ
109.装置 ·電源制御装置
110. GPS装置
111.照明
112.稼動部
発明を実施するための最良の形態
本発明の実施形態を、図面を用いて説明する。
先ず、本発明の蓄電池の劣化判定方法について説明する。
本発明の蓄電池の劣化判定方法は、蓄電池が負荷に接続された構成を含むシス テムにおける蓄電池の劣化状態を、その内部抵抗成分の測定結果に基づいて判定 する方法である。
[0079] 本発明の蓄電池の劣化判定方法は、充電電圧や充電状態が変化する用途または 急速放電を行う用途に用いられる蓄電池に対しても、ほぼ正確に劣化状態を判定す ることができる点で従来の方法より優れている。ここで、急速放電とは、実際の放電時 における放電電流の値 (放電電流値)が、定格放電時の放電電流値 (定格電流値: 一般には 5時間率または 10時間率)より大きい状態を意味する。
[0080] また、本発明の実施形態である蓄電池の劣化判定方法は、下記(1) (2)の事項を あら力じめ定めておくことを特徴としている。
(1)蓄電池の劣化状態を判定する温度を基準温度として規定すること。この基準温 度は、例えば蓄電池の使用温度範囲内であって、かつ前記蓄電池力もあら力じめ定 められた放電電流を流した際の放電時端子間電圧の値が最も低くなる温度に設定さ れる。ここで、蓄電池の放電時端子間電圧 (放電性能)に与える影響について、通常 は蓄電池の内部抵抗成分の温度特性によるものが支配的であるが、他の要因(例え ば負荷側の消費電流等の温度特性等)についての影響も考慮することができる。具 体的には、蓄電池と負荷との間に逆接続防止用のダイオードが接続されることがある 力 その温度特性等を考慮することもできる。
(2)蓄電池の内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじ め求めること。この抵抗温度補正係数は、(1)で規定された基準温度における蓄電 池の内部抵抗成分を求めるために用いられる。
[0081] また、必要に応じて、下記(3)の事項をあら力じめ定めておくことが望ましい。
(3)基準温度における内部抵抗成分と、基準温度における蓄電池力 負荷に対し て定められた電流を流した際の放電時端子間電圧との関係を抵抗電圧変換係数と してあら力じめ求めること。上記(1)のように、蓄電池の放電性能に与える影響につい て、通常は蓄電池の内部抵抗成分の温度特性によるものが支配的であるため、この 影響を直接的に示す係数として抵抗電圧変換係数が用いられる。また、定められた 電流の値として、前述の急速放電時の放電電流値を定めることが可能である。この場 合には、定格電流の数倍一数十倍の電流を短時間(たとえば数秒以下)流す場合な どがある。また、基準温度における放電時端子間電圧の代わりに、基準温度におけ る放電時降下電圧を用いて抵抗電圧変換係数を求めることもできる。
[0082] また、本発明の実施形態である蓄電池の劣化判定方法は、あらかじめ定められた 上記(1)一 (3)の事項に基づ 、て、下記 (4)一 (7)の処理を行うことを特徴として!/、る
(4)蓄電池の内部抵抗成分およびその測定時の前記蓄電池の温度を測定する。こ こで、蓄電池の温度の測定は、蓄電池の内部抵抗成分の測定と同時に行う必要はな ぐ蓄電池の温度が実質的に変化していないとみなしうる場合においては、両者の測 定のタイミングが一致して ヽなくても問題はな!/、。
(5)上記 (4)にお 、て測定された内部抵抗成分の値を、上記(2)の抵抗温度補正 係数に基づいて、基準温度における内部抵抗成分の値に変換する。
(6)上記(5)により求められた基準温度における内部抵抗成分の値を、上記(3)の 抵抗電圧変換係数に基づいて基準温度における蓄電池の放電時端子間電圧に変 換する。このことにより、負荷の動作電圧との対比が可能となる。
(7)上記(6)により求められた基準温度における蓄電池の放電時端子間電圧を、あ らかじめ設定した劣化判定しきい値と比較して前記蓄電池の劣化状態を判定する。 劣化判定しきい値は、例えば負荷の動作に必要な最低電圧 (以下、負荷の最低動 作電圧とする)とすることができる。蓄電池の放電時端子間電圧が劣化判定しきい値 より大きい場合は、蓄電池は必要な電力出力が可能であると判断され、劣化判定しき V、値以下であれば、蓄電池は必要な電力出力が不可能であって蓄電池は劣化状態 であると判断される。
[0083] なお、上記(6) (7)の処理のかわりに、下記の(8)または(9)の処理を行うこともでき る。その効果は、(6) (7)の処理を行った場合と実質的に同等である。
(8)上記(5)により求められた基準温度における内部抵抗成分の値を、抵抗電圧 変換係数に基づいて基準温度における蓄電池の放電時降下電圧に変換し、この値 をあらかじめ設定した劣化判定しきい値と比較して前記蓄電池の劣化状態を判定す る。この劣化判定しきい値は、例えば負荷の動作に必要な最低電圧となる降下電圧 値以下の値とすることができる。このことにより、蓄電池の降下電圧値との対比が可能 となる。
(9)上記(5)により求められた基準温度における内部抵抗成分の値を、あらかじめ 設定した劣化判定しき!、値と比較して前記蓄電池の劣化状態を判定する。この劣化 判定しき 、値は、例えば負荷の動作に必要な最低電圧となる内部抵抗成分の値以 下の値とすることができる。このことにより、蓄電池の内部抵抗成分の値との対比が可 能となる。
[0084] すなわち、本発明の実施形態である蓄電池の劣化判定方法は、上記(1)一 (9)の 特徴を有するため、さらに具体的には、蓄電池の内部抵抗成分の測定結果に基づ いて、蓄電池の放電時端子間電圧や放電時降下電圧に変換し、または蓄電池の内 部抵抗成分の値のままそれぞれ劣化判定しき 、値と比較するため、負荷に接続され た使用中の蓄電池の劣化状態の判定を短時間にかつ正確に行うことができる。
[0085] ここで、蓄電池の放電性能について説明する。放電性能とは、ある定められた電流 を流した時の蓄電池の端子間電圧として考えることができる。つまり、放電性能が低 下するということは、同一の電流出力に対して端子間電圧の低下が大きくなることで ある。従って、放電性能とは、同一の電流出力に対する電圧降下として考えることが できる。
[0086] 本発明においては、蓄電池の電圧降下の値を実際に蓄電池の内部抵抗成分の値 の変化力 求め、この内部抵抗成分の値の増加に基づいて放電性能の低下を判断 する。ここで、蓄電池の内部抵抗成分とは、蓄電池の電圧降下の代替指標となるもの であればよい。例えば、内部抵抗成分として、インピーダンス(直流抵抗成分のみま たはリアクタンス成分のみでも可)を用いてもよぐアドミタンス(コンダクタンス成分の みまたはサセプタンス成分のみでも可)を用いてもょ 、。
[0087] また、本発明においては、蓄電池の使用温度範囲内であって、かつ前記蓄電池か らあら力じめ定められた放電電流を流した際の放電時端子間電圧の値が最も低くな る温度での放電性能低下を判断することが、劣化状態を確実に判断する点から望ま れる。例えば、蓄電池が鉛蓄電池である場合、使用温度範囲を 10°C— +40°Cとし たときの放電性能は、低温にいくほど低下し、蓄電池の使用温度範囲の下限温度に おいて最も厳しくなる。そこで、任意の温度の蓄電池で測定した内部抵抗成分の測 定値から、電池の放電性能が最も厳しい温度、すなわち蓄電池の使用温度範囲の 下限温度における放電性能を求めることが望ましい。
[0088] また、本発明では、上述の例のように、蓄電池の使用温度範囲の下限温度におけ る劣化状態を判断すると蓄電池の特性保証が過剰となる場合には、蓄電池の温度に 応じて劣化状態を判断する基準温度を変化させてもよい。この基準温度は、必ずしも 蓄電池の使用温度範囲の下限温度に設定する必要はなぐ蓄電池の使用温度範囲 の下限温度より高い温度を基準温度として劣化状態を判断してもよい。
[0089] 例えば、測定した蓄電池の温度から、一定の温度を差し引いた温度を基準温度と して劣化状態を判断してもよい。また、例えば蓄電池の使用温度範囲が— 30°C— + 55°Cである場合にぉ 、て、蓄電池の温度が + 25°C— + 55°Cであれば基準温度を 0°C、蓄電池の温度が 0°C— + 25°Cであれば基準温度を 15°C、蓄電池の温度が— 30°C— 0°Cであれば基準温度を 30°C、というように、測定した蓄電池の温度に応じ て基準温度を設定
してもよい。また、例えば蓄電池の測定温度の履歴を年間を通して記録し、蓄電池の 履歴温度範囲が - 30°C— + 55°Cである場合には基準温度を - 30°C、蓄電池の履 歴温度範囲が 0°C— + 25°Cであれば基準温度を - 15°C、蓄電池の履歴温度範囲が + 25°C— + 55°Cであれば基準温度を 0°C、蓄電池の履歴温度範囲が 30°C— 0°C であれば基準温度を 30°C、というように、蓄電池の履歴温度範囲に応じて基準温 度を設定してもよい。
[0090] また、例えば、蓄電池の使用温度範囲を 30°C— + 55°Cとしたとき、その範囲を表 1のように、 " 30°C以上、 0°C未満"、 "0°C以上、 +30°C以下"、 " + 30°C超、 +55 °C以下"の 3つに区分し、測定した蓄電池の温度に応じて基準温度の選定パターン を基準温度選定 Aと B又は Cのように複数設定してもよい。例えば、蓄電池の設置場 所の温度履歴に応じて基準温度を任意にしてもょ 、。
[0091] また、基準温度選定 Cは、基準温度選定 Aと Bに比べ、 20°Cを基準温度とするの で、低い温度(区分 1)での判定が緩いものとなる。この判定により劣化と判定し、蓄電 池を充電又は交換をするようにしてよい。また、高温側においても、例えば、蓄電池 の上限温度程度になった場合、上限温度より低!、 + 30°Cを基準温度とする判定をし てよい。
[0092] また、基準温度は測定温度範囲の異なる区分のものから設定してもよい。例えば、 基準温度選定 Bのとき、測定した蓄電池の温度が + 5°Cであっても、基準温度として + 30°C (表 1の基準温度選定 Bの区分 3)等、基準温度を任意に選択してもよい。な お、測定温度範囲の区分は 4つ以上あってもよい。また、測定温度範囲を 30≤区 分 1く— 20°C, · · , 0≤区分 m< 10°C, · · · , 50≤区分 nく 60°Cのように 10°C程度 毎のようにほぼ等間隔に温度範囲に区分してよく。当然に、任意の不等間隔に温度 範囲を区分してよい。
[0093] [表 1]
Figure imgf000030_0001
[0094] さらに、基準温度は複数、 1つの基準温度で測定し (測定結果 1)、他の基準温度で の測定し (測定結果 2, 3, 4, · 'η)、例えば、複数の基準温度での電圧値について 比較し、最も厳し ヽ判定となる基準温度を選択してょ ヽ。
また、 1つの蓄電池において、複数の基準温度での電圧値についての相関等の関 係と、負荷状況や環境等の使用状態とを考慮し、劣化判定をするようにしてよい。 また、複数の蓄電池について、 1つの蓄電池において 1以上の基準温度を設定し、 互いの相関等の関係、又は Ζ及び、負荷状況や環境等の使用状態を考慮し、劣化 判定をするようにしてよい。さらに、複数の蓄電池を判定することにより、ほぼ同時に 交換や充電をした蓄電池につ ^、て、負荷状況や環境等による劣化状況 (寿命)を予 測することも可能となり、予測される交換や充電時期をユーザに報せることもできる。
[0095] ここで、負荷の最低動作電圧が温度依存性を有する場合には、基準温度の設定の 他に負荷の最低動作電圧の温度依存性についても考慮することが望ましい。例えば 、蓄電池の劣化状態を確実に判断する点からは、負荷の最低動作電圧を、負荷の 使用温度範囲における最高電圧値に設定することが望ましい。また蓄電池の特性保 証が過剰となる場合には、負 荷の最低動作電圧を、劣化状態判断時の負荷の温度における最低動作電圧として ちょい。
[0096] 次に、本発明が適用されるシステムの例を説明する。図 1-1は、本発明が適用され るシステムの第 1例を示す説明図である。図 1—1において、 1は本発明が適用される システムである。このシステム 1は、システム 1を動作させる電力源 2と、電力源 2から の電力により充電される蓄電池 3と、電力源 2または蓄電池 3からの電力により動作す る負荷 4と、電力源 2または蓄電池 3から負荷 4への電力の供給を制御する電力制御 装置 5を備えている。なお、実際のシステム 1には、負荷が多数設けられている場合も あるが、図 1—1においては特定の負荷 4にのみ着目し、他の負荷については図示お よび説明を省略する。
[0097] また、電力制御装置 5は、負荷 4に接続された蓄電池 3の劣化状態を判定する蓄電 池劣化判定装置 6を備えている。蓄電池 3としては、どのような蓄電池を用いてもよく 、例えば鉛蓄電池や、ニッケル水素二次電池、リチウムイオン二次電池等を用いても よい。それらの種類、電圧、容量等の区別なく用いることができる。
[0098] ここで、蓄電池劣化判定装置 6は、蓄電池 3の劣化状態を、蓄電池 3の内部抵抗成 分の測定結果に基づ 、て判定する機能を有する。蓄電池 3の劣化状態を判定する ために蓄電池 3の内部抵抗成分の測定結果を利用すると、例えばシステム 1が負荷 変動の大きい装置であって電力源 2が商用電源や太陽電池、あるいは、自動車等の 車両であって電力源 2が発電機 (オルタネータ)である場合などのように、充電中の蓄 電池 3の電池電圧が変動する場合にも、従来技術と比較して正確に蓄電池 3の劣化 状態を判定することができる。
[0099] また、本発明が適用されるシステムとしては、通常使用される蓄電池と予備の蓄電 池を併用するシステムも考えられる。なお、通常使用される蓄電池と予備の蓄電池の 数量についての制限は特になぐそれぞれ少なくとも 1個以上用いたシステムであれ ば、どのように蓄電池を組み合わせたシステムであっても、本発明を適用することが 可能である。
[0100] 図 1—2は、本発明が適用されるシステムの第 2例を示す説明図である。
図 1—2において、 1は本発明が適用されるシステムである。このシステム 1は、システ ム 1を動作させる電力源 2と、電力源 2からの電力により充電される主蓄電池 3Aと、電 力源 2または主蓄電池 3Aからの電力により動作する負荷 4と、電力源 2または主蓄電 池 3A力も負荷 4への電力の供給を制御する電力制御装置 5を備えている。また、シ ステム 1は、主蓄電池 3Aをバックアップする予備蓄電池 3Bを備えている。なお、図 1 —2においては、図 1—1と同様に特定の負荷 4にのみ着目し、他の負荷については図 示および説明を省略する。
[0101] また、電力制御装置 5は、負荷 4に接続された主蓄電池 3Aまたは予備蓄電池 3Bの うち少なくとも一方の劣化状態を判定する蓄電池劣化判定装置 6を備えている。主蓄 電池 3Aおよび予備蓄電池 3Bとしては、どのような蓄電池を用いてもよぐ例えば鉛 蓄電池を用いてもよい。
[0102] ここで、蓄電池劣化判定装置 6は、主蓄電池 3Aまたは予備蓄電池 3Bの劣化状態 を、主蓄電池 3Aまたは予備蓄電池 3Bの内部抵抗成分の測定結果に基づ!/、て判定 する機能を有する。蓄電池劣化判定装置 6がこの機能を有する利点は、前述のとおり である。
[0103] また、図 1 2では主蓄電池 3Aと予備蓄電池 3Bと複数の蓄電池を備えるものであり 、少なくとも 1つの蓄電池について劣化状態を判定するようにし、その蓄電池が劣化 の見込まれる状態又は劣化状態である場合、充電又は交換を要する蓄電池の情報 を伝えるものである。また、蓄電池の情報を表示する図 1—19又は図 1—20のような表 示部 103
を設け、ユーザー他に蓄電池の状態を伝え、充電又は交換することを促すことができ る。
[0104] さらに、図 1 2では主蓄電池 3Aと予備蓄電池 3Bと複数の蓄電池を備えるものであ り、少なくとも 2つの蓄電池について劣化状態を判定するようにし、蓄電池が劣化の 見込まれる状態又は劣化状態である場合、充電又は交換を要する要対応蓄電池の 情報と、継続して使用可能な継続使用蓄電池の情報とを表示する図 1 - 19又は図 1 -20のような表示部 103と、前記蓄電池の履歴を記録する記憶部(図示しない)を有 し、少なくとも充電して使用する又は継続して使用可能する蓄電池の履歴を保持、又 は Z及び、 «続して判定するプログラムを有する制御 ·判定部(図 1 2の電力制御装 置 5や蓄電池劣化判定装置 6等)を備え、蓄電池の劣化状態を判定することができる 。このようにすれば、少なくとも 1つは常に使用可能な蓄電池とすることが可能である 。従って、例えば、常時電源が活きている必要があるようなシステムや装置に本発明 を取り入れると有効である。
[0105] 次に、本発明が適用されるシステムにおいて用いられる電力制御装置 5の例を説 明する。
図 1 3は、本発明が適用されるシステムにおいて用いられる電力制御装置の一例 を示す説明図である。ここで、図 1—3の電力制御装置は、図 1—1のシステムに用いら れるものとして説明する。
[0106] 図 1 3において、電力制御装置 5は、電力源 2から蓄電池 3への充電電力の有無 を検知する充電電力検出手段 51と、蓄電池劣化判定装置 6からの劣化検知信号を 警報信号に変換して外部に発出する警報発生手段 52を備えている。なお、充電電 力検出手段 51は、蓄電池劣化判定装置 6による蓄電池 3の劣化状態の判定を蓄電 池 3が充電されていないときに行わせるための手段である。
[0107] なお、実際の電力制御装置 5には、必要に応じて電力源 2から蓄電池 3への充電電 力を調整する機能などの他の機能が設けられるが、ここでは図示および説明を省略 する。
また、蓄電池劣化判定装置 6は、蓄電池 3の内部インピーダンスを測定するインピ 一ダンス測定手段 61と、インピーダンス測定手段 61からの測定結果を用 V、て蓄電池 3の劣化判断を行う状態検知手段 62を備えている。状態検知手段 62には温度セン サ 63が接続されており、蓄電池 3の温度または蓄電池 3の周辺の温度を測定するこ とができる。また、状態検知手段 62はインピーダンス測定手段 61を制御する機能と、 蓄電池 3が劣化している場合の劣化検知信号を警報発生手段 52に送出する機能を 有する。
[0108] 次に、本発明の実施形態である蓄電池の劣化判定方法の具体的一例について説 明する。
図 1 - 4は、本発明の実施形態である蓄電池の劣化判定方法の第 1例の流れを説 明する流れ図である。以下、ステップごとに分けて説明する。 ステップ 0 :初期値設定
基準温度、抵抗温度補正係数、抵抗電圧変換係数、劣化判定しきい値を、それぞ れ初期値として設定する。ここで、抵抗電圧変換係数は、基準温度における内部抵 抗成分値を基準温度における蓄電池の放電時端子間電圧に変換する係数である。 また、劣化判定しきい値としては、負荷の最低動作電圧以上の電圧値を用いる。
[0109] ステップ 1:内部抵抗成分の測定
蓄電池の両端に交流電流を流して、内部抵抗成分 (具体的には内部インピーダン ス)を測定する。この測定は、いわゆる交流 4端子法、またはその改良方法により行う 。また、交流電流の周波数は適宜選択することができ、必要に応じて複数の周波数 を用いて内部抵抗成分を測定することも可能である。
ステップ 2:蓄電池温度の測定
前述のステップ 1の内部抵抗成分値の測定と並行して、蓄電池温度の測定を行う。 池温度の代わりに、蓄電池の周囲の温度を測定してもよい。なお、蓄電池の温度の 測定は、蓄電池の内部抵抗成分の測定と同時に行う必要はない。
[0110] ステップ 3:基準温度における内部抵抗成分値への変換
ステップ 0にお 、て設定された抵抗温度補正係数と、ステップ 2にお 、て実測され た蓄電池温度の値を用いて、ステップ 1にお 、て実測された蓄電池の内部抵抗成分 値を、基準温度における内部抵抗成分値に変換する。
ステップ 4:放電時端子間電圧への変換
ステップ 3において求められた基準温度における内部抵抗成分値を、ステップ 0に おいて設定された抵抗電圧変換係数により、基準温度における蓄電池の放電時端 子間電圧に変換する。
[0111] ステップ 5:放電時端子間電圧と劣化判定しき!、値との比較
ステップ 4にお 、て求められた放電時端子間電圧と、ステップ 0にお ヽて設定された 劣化判定しき 、値とを比較する。前者の値が後者の値より大き 、場合はステップ 6へ 進み、それ以外の場合はステップ 7へ進む。
ステップ 6 :判定結果(1) 蓄電池を正常であると判定 ステップ 5において、放電時端子間電圧が劣化判定しきい値より大きい場合は、蓄 電池は正常であると判定され、劣化判定の流れは終了する。
ステップ 7:判定結果 (2) 蓄電池を劣化して 、ると判定
ステップ 5において、放電時端子間電圧が劣化判定しきい値以下である場合は、蓄 電池は劣化して!/、ると判定され、劣化判定の流れは終了する。
[0112] ここで、ステップ 6を経由して劣化判定の流れが終了した場合には、時間をおいて 次回以降の劣化判定が開始されることがあり、この場合はステップ 7を経由して劣化 判定の流れが終了するまで、劣化判定が繰り返されることがある。また、図 1 4に例 示されたステップ 0からステップ 7までの一連の劣化判定の流れを、時間をお ヽて周 期的に繰り返し行ってもよい。
[0113] 次に、本発明の実施形態である蓄電池の劣化判定方法の第 2例を説明する。図 1 5は、本発明の実施形態である蓄電池の劣化判定方法の第 2例の流れを説明する流 れ図である。以下、第 1例の説明と同様に、ステップごとに分けて説明する。
ステップ 0 :初期値設定
基準温度、抵抗温度補正係数、抵抗電圧変換係数、劣化判定しきい値を、それぞ れ初期値として設定する。ここで、抵抗電圧変換係数は、基準温度における内部抵 抗成分値を基準温度における蓄電池の放電時降下電圧に変換する係数である。ま た、劣化判定しきい値としては、負荷の動作に必要な最低電圧となる降下電圧の値 以下の値を用いる。
[0114] ステップ 1 :内部抵抗成分の測定
内容は第 1例と同様であるため、説明を省略する。
ステップ 2:蓄電池温度の測定
内容は第 1例と同様であるため、説明を省略する。
ステップ 3:基準温度における内部抵抗成分値への変換
内容は第 1例と同様であるため、説明を省略する。
ステップ 4:放電時降下電圧への変換
ステップ 3において求められた基準温度における内部抵抗成分値を、ステップ 0に おいて設定された抵抗電圧変換係数により、基準温度における蓄電池の放電時降 下電圧に変換する。
[0115] ステップ 5 :放電時降下電圧と劣化判定しきい値との比較
ステップ 4にお 、て求められた放電時降下電圧と、ステップ 0にお 、て設定された劣 化判定しき 、値とを比較する。前者の値が後者の値より小さ 、場合はステップ 6へ進 み、それ以外の場合はステップ 7へ進む。
ステップ 6 :判定結果(1) 蓄電池を正常であると判定
ステップ 5において、放電時降下電圧が劣化判定しきい値より小さい場合は、蓄電 池は正常であると判定され、劣化判定の流れは終了する。
ステップ 7:判定結果 (2) 蓄電池を劣化して 、ると判定
ステップ 5において、放電時降下電圧が劣化判定しきい値以上である場合は、蓄電 池は劣化して!/、ると判定され、劣化判定の流れは終了する。
[0116] なお、図 1 4に例示した第 1例と同様、ステップ 6を経由して劣化判定の流れが終 了した場合には、時間をおいて次回以降の劣化判定が開始されることがあり、この場 合はステップ 7を経由して劣化判定の流れが終了するまで、劣化判定が繰り返される ことがある。また、図 1—5に例示されたステップ 0からステップ 7までの一連の劣化判 定の流れを、時間をお!/、て周期的に繰り返し行ってもよ!、。
[0117] 次に、本発明の実施形態である蓄電池の劣化判定方法の第 3例を説明する。図 1 6は、本発明の実施形態である蓄電池の劣化判定方法の第 3例の流れを説明する流 れ図である。以下、第 1例、第 2例の説明と同様に、ステップごとに分けて説明する。
[0118] ステップ 0 :初期値設定
基準温度、抵抗温度補正係数、抵抗電圧変換係数、劣化判定しきい値を、それぞ れ初期値として設定する。ここで、劣化判定しきい値としては、負荷の動作に必要な 最低電圧となる内部抵抗成分の値以下の値を用いる。
ステップ 1:内部抵抗成分の測定
内容は第 1例と同様であるため、説明を省略する。
ステップ 2:蓄電池温度の測定
内容は第 1例と同様であるため、説明を省略する。
ステップ 3:基準温度における内部抵抗成分値への変換 内容は第 1例と同様であるため、説明を省略する。
ステップ 4:基準温度における内部抵抗成分値と劣化判定しき 、値との比較 ステップ 3において求められた基準温度における内部抵抗成分値と、ステップ 0に ぉ 、て設定された劣化判定しき 、値とを比較する。前者の値が後者の値より大き 、 場合はステップ 5へ進み、それ以外の場合はステップ 6へ進む。
[0119] ステップ 5 :判定結果(1) 蓄電池を正常であると判定
ステップ 4にお 、て、基準温度における内部抵抗成分値が劣化判定しき 、値より小 さい場合は、蓄電池は正常であると判定され、劣化判定の流れは終了する。
ステップ 6:判定結果 (2) 蓄電池を劣化して 、ると判定
ステップ 4において、基準温度における内部抵抗成分値が劣化判定しきい値以上 である場合は、蓄電池は劣化していると判定され、劣化判定の流れは終了する。
[0120] なお、図 1 4に例示した第 1例と同様、ステップ 5を経由して劣化判定の流れが終 了した場合には、時間をおいて次回以降の劣化判定が開始されることがあり、この場 合はステップ 6を経由して劣化判定の流れが終了するまで、劣化判定が繰り返される ことがある。また、図 1 6に例示されたステップ 0からステップ 6までの一連の劣化判 定の流れを、時間をお!/、て周期的に繰り返し行ってもよ!、。
[0121] 以上、本発明の実施形態である蓄電池の劣化判定方法の例を説明した。ここで、 各例におけるステップ 0で設定される値などについて説明する。
まず、負荷使用時の放電電流値について説明する。負荷使用時の放電電流値は、 各蓄電池の容量その他の条件により異なるので、あらかじめ劣化状態の異なる複数 の同種の蓄電池を用いてデータを収集しておくことが望ましい。以下、蓄電池として 鉛蓄電池を用いて、急速放電する場合、放電電流が時間により変化する場合などの 例を説明する。
[0122] 図 1—7は、負荷使用時の放電電流の時間変化の第 1例を示すグラフである。なお、 図 1—7においては、定格電流値をあわせて示している。本発明の実施形態である蓄 電池の劣化判定方法は、図 1 7のような比較的短時間に定格電流に対して大きい 電流 (例えば IcA以上)が流れる場合であっても、ほぼ正確に蓄電池の劣化状態を 半 U定することができる。 [0123] 図 1 8は、負荷使用時の放電電流の時間変化の第 2例を示すグラフであって、 (A )は負荷の動作時間中に必要とされる消費電流を表す電流波形、 (B)は (A)の電流 波形と実質的に等価とみなせる電流波形を示す。本発明の実施形態である蓄電池 の劣化判定方法は、図 1 8のような時間変化をする電流が流れる場合であっても、 ほぼ正確に蓄電池の劣化状態を判定することができる。もちろん、電流値が定格電 流に対して大きい電流値 (例えば IcA以上)である場合にも十分適用することができ る。
[0124] また、ステップ 0で設定される値のうち、抵抗電圧変換係数を求める場合の負荷使 用時の放電電流値については、図 1 7および図 1 8に例示されるものとなる力 この 放電電流値から抵抗電圧変換係数を求める場合、各蓄電池の容量その他の条件に より変換係数が異なるので、あらかじめ劣化状態の異なる複数の同種の蓄電池を用 V、てデータを収集しておくことが望ま 、。
[0125] 例えば、第 1例の方法において、基準温度における内部抵抗成分と、基準温度に おける蓄電池力もあら力じめ定められた放電電流を流した際の蓄電池の放電時端子 間電圧との関係を抵抗電圧変換係数としてあらカゝじめ求める工程における蓄電池の 放電時端子間電圧は、蓄電池の放電時の最低電圧としておくと、確実に蓄電池の劣 化状態を判定することができる。この場合の放電時端子間電圧と放電電流のグラフを 図 1—9に示す。
[0126] また、第 1例の方法において、基準温度における内部抵抗成分と、基準温度にお ける蓄電池力もあら力じめ定められた放電電流を流した際の蓄電池の放電時端子間 電圧との関係を抵抗電圧変換係数としてあらカゝじめ求める工程における蓄電池の放 電時端子間電圧は、前記蓄電池の放電開始から所定時間経過後の電圧とすることも できる。この場合の放電時端子間電圧と放電電流のグラフを図 1 10に示す。
[0127] また、ステップ 0で設定される値のうち、内部抵抗成分の温度依存性、抵抗温度補 正係数、第 1例の方法において用いられる抵抗電圧変換係数、第 2例の方法におい て用いられる抵抗電圧変換係数について、それぞれグラフを図 1 11一図 1 14に 示す。なお、図 1—13および図 1—14においては劣化判定しきい値をあわせて示す。
[0128] 第 2実施形態 第 2実施形態にかかる本発明の蓄電池の劣化判定方法及び蓄電池の劣化判定装 置は、負荷変動の大きい装置に用いられる蓄電池 (補助電池)、あるいは、車載され た蓄電池 (補助電池)の放電性能の低下、すなわち、蓄電池の劣化状態を精度良く 判別する方法および装置である。
[0129] し力も、所望の温度における測定結果に基づいて、測定対象の蓄電池の仕様とし て規定されて!、る使用可能温度範囲の中で蓄電池の放電性能が最も厳 、温度 (も つとも蓄電池の性能が低下する最も低温側の温度)における放電性能低下を判別す るものであり、実際
に蓄電池 (補助電池)から電力を供給する負荷の動作に必要な電力仕様に対する補 助電池の性能低下として判断するものである。
[0130] 一般に負荷の動作に必要な電力仕様としては、電流として消費電流の時間変化を 規定し、電圧として最低保証電圧が規定されている。
[0131] 従って、規定された消費電流の時間変化パターンの電流、あるいは規定された消 費電流の時間変化パターンに準じた電流を流した時に、蓄電池 (補助電池)の端子 間電圧が最低保証電圧に対してどの程度の余裕度が有るのかによって、蓄電池の 放電性能を判断する。
[0132] ところで、実際の測定温度で蓄電池の放電性能を判断する場合、各種装置や所定 の場所に設置した蓄電池、あるいは、車両に搭載される鉛蓄電池等が、実際に稼動 するまでのある期間放置される前や、出荷までの保管される前や輸送される前 (以後 、放置前という)、この放置前の温度では負荷の動作に必要な電力が電池力 供給 できる様な放電性能を有して 、る電池であっても、到着後あるいは稼動前や使用前 等である放置後の温度では、必要な電力が供給できない場合がある。従って、蓄電 池が電源として必要なシステムや装置、あるいは、車両の装置等が走行上重要な安 全部品の場合は重大な問題となる可能性がある。あるいは、放置後の温度で放電性 能の低下が判断できたとして、各種装置や車両を使用してはいけないと警告する事 となり、ユーザーに対して不便を強いることとなる。
[0133] そこで、本実施形態では、所定の使用可能温度範囲の中で電池の放電性能が最 も厳しい温度での放電性能低下を判断している。この理由は、所定の場所に設置し た蓄電池、通信装置等を収納した局舎等に備える蓄電池、あるいは、蓄電池を搭載 している車両が一時的に放置される場合を想定すると、蓄電池がおかれた環境の温 度により蓄電池の放電性能は変化してしまうからである。従って、放置後における蓄 電池の劣化状態が不明であることから、放電性能が最も厳 、温度で放電性能を判 断するものである。もし、放電性能が低下している場合は、事前にユーザーや保守' メンテナンス拠点等に対して蓄電池 (補助電池)の充電、あるいは、交換することを促 すことができる。
[0134] 第 1実施形態で述べたように、放電性能とは、同一の電流出力に対する電圧降下と して考免ることがでさる。
[0135] 本願発明にお 、ては、この放電性能の低下に伴う電圧降下を蓄電池の内部抵抗 値 (内部抵抗成分)に置き換え、この内部抵抗値を放電性能に相関関係を有する相 関値とし、この相関値の温度補正を行い、温度補正後の相関値をあら力じめ求めた 関係式に代入することにより放電性能を求め、放電性能の低下(内部抵抗値の増加 に相当)を判断する。測定の対象となる内部抵抗値としては、電圧降下の代替指標と なるもので有れば、どの様な抵抗値でも力まわない。具体的には、直流抵抗でも良い し、交流インピーダンスでも良い。交流インピーダンスの逆数である交流コンダクタン ス等の導電値を示すものでも良 、。
[0136] 図 1—15は、第 2実施形態の処理フローチャートである。
本発明の蓄電池の劣化判定方法は、蓄電池の劣化状態を判定する温度を基準温 度としてあらかじめ設定し、蓄電池の放電性能に相関関係を有する相関値、すなわ ち、内部抵抗成分を所望の温度で測定し (ステップ S 11)、この内部抵抗成分をあら 力じめ求めた温度補正式により測定時の温度で補正し、内部抵抗成分を基準温度 における内部抵抗成分に変換し (ステップ S12)、変換後の内部抵抗成分と放電性 能との所定の関係式に基づいて基準温度における蓄電池の放電性能を求め (ステツ プ S13)、求めた基準温度における放電性能を、あら力じめ設定した劣化判定しきい 値と比較して蓄電池の劣化状態を判定する (ステップ S 14)ことを特徴としている。
[0137] この場合において、所定の関係式は、負荷の消費電流の時間変化パターンに相当 する電流を流した際の蓄電池の端子間電圧、あるいは、負荷の消費電流の時間変 ィ匕パターンに準じた電流を流した際の蓄電池の端子間電圧であるようにしてもょ 、。 また、基準温度は、蓄電池の所定の使用可能温度範囲の内、蓄電池の放電性能 が最も低下する温度に設定してもよい。
[0138] 本実施形態においても、使用温度範囲の中で電池の放電性能が最も厳しい温度 での放電性能低下を判断して 、る。
[0139] 所定の場所に設置した蓄電池、観測装置や通信装置等を収納した局舎等に備え る蓄電池、あるいは、車載される蓄電池 (補助電池)の使用可能温度範囲としては、 例えば、 30°C— + 55°Cが挙げられる。この場合には、下限温度である- 30°Cでの 電池の放電性能が最も厳しい。従って、任意の温度の電池で測定した抵抗値から、 電池の放電性能が最も厳 、温度- 30°Cでの放電性能を求める必要がある。この方 法の例としては、あらかじめ計測してお!ヽた抵抗値の温度特性から温度補正式を求 めておき、この温度補正式に電池の温度と抵抗値を代入して電池の放電性能が最も 厳しい温度- 30°Cでの抵抗値に変換する。変換した抵抗値を、あらカゝじめ求められ た、抵抗値と放電性能の関係を現した所定の関係式に代入することで、電池の放電 性能が最も厳しい温度 30°Cでの放電性能が得られる。得られた放電性能が、劣化 状態を判別するための設定したしき 、値より大き 、場合は、電池は必要な電力出力 が可能と判断される。得られた放電性能が、劣化として設定したしきい値以下で有れ ば、電池は必要な電力出力が不可能と判断される。
[0140] また、常に使用可能温度範囲の中で電池の放電性能が最も厳しい温度での放電 性能低下を判断することによる、過剰な放電性能保証を避ける為に、電池温度に従 つて、放電性能低下を判断する対象温度を替える方法としても良い。すなわち、基準 温度は、所望の温度力も一定温度を差し引いた温度に設定してもよい。具体的には 、電池の性能としては、低温にいくほどに放電性能が低下するため、例えば、測定し た電池温度から、 20°Cを差し引いた温度を、対象温度として放電性能低下を判断し ても良い。
[0141] あるいは、基準温度は、所望の温度が属する温度帯域毎に対応する所定の温度に 設定してもよい。具体的には、電池温度が + 25°C— + 55°Cであれば対象温度を 0 °C、電池温度が 0°C— + 25°Cであれば対象温度を - 15°C、電池温度が - 30°C— 0 °Cであれば対象温度を 30°C、というように、温度帯域毎に対象温度を設定しても良 い。
[0142] V、ずれにしても、所望の温度の蓄電池で抵抗値を測定し、この測定した抵抗値から 、あら力じめ設定した基準温度での放電性能を求める。この方法の例としては、あら 力じめ計測してぉ 、た抵抗値の温度特性から、対象温度毎に温度補正式を求めて おき、この温度補正式に電池の温度と抵抗値を代入することで、対象温度での抵抗 値に変換する。変換した抵抗値を、あらカゝじめ求められた、基準温度における抵抗値 と放電性能の関係を現した式に代入することで、対象温度での放電性能が得られる 。得られた放電性能が、劣化として設定したしきい値より大きい場合は、電池は必要 な電力出力が可能と判断される。得られた放電性能が、劣化として設定したしきい値 以下で有れば、電池は必要な電力出力が不可能と判断される。
[0143] これらの場合において、基準温度における相関値としての内部抵抗成分(内部抵 抗値)と放電性能の関係を現した関係式については、事前にいろいろな劣化程度の 電池を用いて、規定された消費電流の時間変化パターンの電流を流した時に、ある いは規定された消費電流の時間変化パターンに準じた電流を流した時に、蓄電池( 補助電池)の端子間電圧を測定し、また、電圧降下の代替指標となる抵抗値を測定 することで、容易に導くことが出来る。
[0144] 以下に第 2実施形態を詳細に説明する。
まず本第 2実施形態の従来例に対する優位性を比較する。
図 1—16は、本第 2実施形態における内部抵抗成分(内部抵抗値)と負荷電流を放 電している最中の最低電圧の関係を示す図である。図 1—17は、従来方法である電 池容量(5時間率容量)と負荷電流を放電している最中の最低電圧の関係を示す図 である。
[0145] 本比較のために、使用した蓄電池は鉛シール式電池であり、定格電池容量は 12A hである。蓄電池の試料としては、加速寿命試験により得られたいろいろな劣化程度 の蓄電池を使用した。また、蓄電池 (補助電池)の放電性能としては、実際に使用さ れる負荷の消費電流の時間変化パターンに準じた電流として、 15Aの放電電流を 1 0秒間流した時の、最低電池電圧として評価した。また、蓄電池の仕様上の使用可能 温度範囲としては、 30°C— + 55°Cであり、下限温度である 30°Cでの電池の放電 性能を求めることとした。
[0146] まず、試料である蓄電池を 30°Cの恒温槽内に設置して、蓄電池の温度が 30°C になるのに必要な時間放置した。また、試料である蓄電池力 放電が可能な様に、 蓄電池の端子に、リード線の一方端を取り付け、他方端を恒温槽外に引き出してお き、電子負荷装置を接続しておく。
また、電池電圧及び放電電流を測定するため、電圧計と電流計を接続した。電子 負荷装置には、放電電流 15Aで 10秒間のみ放電が可能なようにあら力じめ設定し た。
[0147] そして、電子負荷装置を動作させることにより、恒温槽内の試料である蓄電池から、 15Aの放電電流が 10秒間流れる。このときの電池電圧と放電電流をそれぞれ電圧 計と電流計で測定した。
次に、試料である蓄電池を常温の状態として、内部抵抗値の測定を行った。測定は 、巿販の抵抗測定機を用いて、 1kHzの交流インピーダンスにより行った。サンプル 電池の抵抗の温度特性は、あらカゝじめ求めてあり、この温度特性に測定した抵抗値と 測定時の電池温度を代入することで、基準温度である 30°Cにおける内部抵抗値を 算出し 7こ。
[0148] この算出した内部抵抗値と負荷電流を放電している最中の最低電圧の関係は、図 1 16に示すように、両者の関係は非常に相関性が高ぐ任意の相関式を当てはめ ると、相関係数 Rの 2乗値は、 0. 9654となっている。また、このときに得られる任意の 相関式は、次式の通りに現される。
最低電池電圧 =任意の係数 X内部抵抗値 +定数
従って、相関式に測定した内部抵抗値を代入することで、容易に放電性能に対応す る負荷電流の放電最中における最低電圧を算出することができる。さらに、蓄電池の 劣化を判断する電圧しき ヽ値 (劣化判定しき ヽ値)を設定することにより、電池が必要 な電力出力が可能か否かを高精度、かつ、容易に判定することが出来る。
[0149] 図 1—18は従来の処理フローチャートである。
一方、従来の電池容量を測定する方法では、試料である蓄電池を - 30°Cの恒温槽 内に設置して、電池温度カ 30°Cになり平衡状態となるのに必要な時間放置した。 このとき、試料である蓄電池力も放電が可能となる様に、蓄電池の端子に、一方端 が取り付けられたリード線の他方端を恒温槽外に引き出しておき、電子負荷装置を 接続しておく。
[0150] また、電池電圧及び放電電流を測定するため、電圧計と電流計を接続した。電子 負荷装置には、放電電流 2. 4A(12AX 0. 2)で電池電圧が 10. 5Vとなるまで放電 が可能なようにあら力じめ設定した。
[0151] そして、電子負荷装置を動作させることにより、恒温槽内のサンプル電池から、 2. 4 Aの放電電流が連続して流れ、電池電圧が 10. 5Vとなるまで放電を継続した。放電 開始力も放電停止までの放電時間に、放電電流 2. 4Aを乗算することで、各々の試 料である蓄電池の電池容量を求めた(ステップ S21—ステップ S23)。電池容量(5時 間率容量)と負荷電流を放電している最中の最低電圧の関係を、図 1 17に示す。 両者の関係は相関性が高いものの、図 1—16の第 2実施形態の場合に比較して相関 性は低くなつた。すなわち、任意の相関式を当てはめると、相関係数 Rの 2乗値は、 0 . 9018であった。
[0152] 本従来方法によれば、電池容量を代入することで、放電性能を意味する負荷電流 を放電している最中の最低電圧を求めることができるものの、実際の使用時、各種装 置の駆動時や車載時においては、所定の電圧まで放電を継続することはできず、電 池容量を測定することは困難であることから、他の測定方法による測定結果から電池 容量を推定する必要がある。
[0153] 従って、この点においても、負荷電流を放電している最中の最低電圧を求めるにあ たっては誤差が増加し、実用的ではないと考えられる。
以上の説明のように、本第 2実施形態によれば、蓄電池の劣化状態を判定する温 度を基準温度としてあらかじめ設定し、蓄電池の放電性能に相関関係を有する相関 値としての内部抵抗値(内部抵抗成分)を所望の温度で測定し、あらかじめ求めた内 部抵抗値の温度補正式、内部抵抗値の測定時の温度および測定した内部抵抗値に 基づいて、測定した内部抵抗値を基準温度における内部抵抗値に変換する。
[0154] そして、内部抵抗値と放電性能との所定の関係式及び変換後の内部抵抗値に基 づいて蓄電池の放電性能を求める。そして求めた基準温度における放電性能が、劣 化判定しきい値より大きい場合は、電池は必要な電力出力が可能と判断される。得ら れた放電性能が、劣化判定しきい値以下で有れば、電池は必要な電力出力が不可 能と判断される。
[0155] この場合にお 、て、放電性能としては、蓄電池 (補助電池)の実際の負荷を想定し て規定された消費電流の時間変化パターンの電流を流した時、あるいは、規定され た消費電流の時間変化パターンに準じた電流を流した時の、最低保証電圧に対す る補助電池の端子間電圧として ヽるため、従来方法の様な電池の残存容量 (例えば 、 5時間率容量)の低下として判断するよりも、はるかに精度良く使用時、各種装置の 駆動時や車載された蓄電池 (補助電池)の放電性能の低下を判断することができる。
[0156] 以上、本発明の蓄電池の劣化判定方法および蓄電池の劣化判定装置について、 具体例を挙げて説明したが、本発明の蓄電池の劣化判定方法は、上述の実施形態 に限られることはなぐ特許請求の範囲に記載した事項の範囲内において、適宜変 更が可能であることは 、うまでもな!/、。
[0157] また、例えば、図 1—19に示すように、蓄電池の劣化判定を行うためのシステム 100 は、二次電池である蓄電池 Bの電流、電圧、抵抗、温度等のデータを取得する検知 回路 101と、検知回路 101から、データを受取って蓄電池 Bの劣化判定を行う制御- 判定装置 102と、判定結果を各種態様で表示する表示部 103とを備えるようにしても よい。
[0158] このような構成とすることにより、検知回路 101は、二次電池である蓄電池 Bの電流 、電圧、抵抗、温度等のデータを取得し、測定したデータを制御 ·判定装置 102に出 力する。
[0159] これにより制御 ·判定装置 102は、データを受取って蓄電池 Bの劣化判定を行い、 判定結果を各種態様で表示部 103に表示する。
この結果、ユーザーは、二次電池である蓄電池 Bの状態を容易に把握することがで きる。
[0160] この場合において、表示部 103は、ランプの数や色、文字、音声等とそれらを 2つ 以上組合せて、二次電池である蓄電池 Bの状態、例えば、交換の必要の有無や、推 奨される交換時期等を示すように構成することも可能である。
[0161] さらに、表示部 103は、テレビモニタ、コンピュータディスプレイ、 GPS装置(カーナ ピゲーシヨン等)の表示部等の画面での表示であってよ 、。
なお、音声のみで伝える方式であってよい。
[0162] また、図 1—20に示すように、蓄電池の状態を検知、判別するための検知回路 101
、制御 ·判定装置 102を蓄電池の設置側に配置し、表示部 103を所望の位置に設け るように構成することも可能である。
[0163] 例えば、蓄電池の状態を検知、判別するための検知回路 101、制御'判定装置 10
2を蓄電池 Bの設置側に配置し、制御'判定装置 102は、検知回路 101からデータを 受取って蓄電池 Bの劣化判定を行 、、判定結果データを無線装置 110を介して表示 部 103側に送信する。
[0164] この結果、表示部 103側に設置された無線装置 111を介して、コンピュータ 112等 が判定結果データを受信し、表示部 103を制御して判定結果を各種態様で表示す る。
[0165] なお、図 1 20の蓄電池設置側に制御 ·判定装置 102が無くてもよぐ検知回路 10 1にて得られる温度、電圧や抵抗等のデータにっ ヽて無線装置 110を介し表示側で 受け、表示側に制御 ·判定装置を設ける、あるいは、コンピュータ 112にて劣化判定 をするようにしてもよ 、。
[0166] このように構成することにより、例えば、複数の表示部を設ける、又は、複数箇所 (蓄 電池製造メーカ、保守'メンテナンス拠点等)毎に設けた表示部力 蓄電池(二次電 池)の状態を監視し、あるいは、 1箇所の表示部により、複数の蓄電池(二次電池)の 監視や管理を行える。それらの際、蓄電池を区別するシリアル番号や ID番号等を付 与しておけば、蓄電池の個体識別を容易に行うことが可能となる。
[0167] また、図 1 19のような有線式、図 1 20のような無線式等の伝送路の形態に係らず 、例えば、電話回線やインターネット等のネットワークを介して蓄電池の劣化情報を 電子データ (文字、画像、音声)として、携帯電話やコンピュータ等の情報端末等から 見られるようにしてちょい。
[0168] また、その他の実施例として、図 1—21のように複数の蓄電池が離れた場所にあつ て、 l箇所の回路を切り換える、又は Z及び回路制御することが可能な蓄電池劣化 判定装置 104において、蓄電池 106 (A, B, C)に回路を切換えて劣化判定をするこ とができる。その際、電気的情報 (電圧、電流、抵抗等)は離れた場所の蓄電池劣化 判定装置で判定可能であるが、温度測定は蓄電池の近傍や蓄電池 106毎に温度セ ンサ 105を備えることが望ま 、。
[0169] このようにすれば、例えば、観測装置や通信装置毎に設置した複数の蓄電池の劣 化判定
を行える。また、車両においても座席の下や前後の収納スペース等に複数個設置し た場合に、少なくとも 1つの蓄電池の劣化判定を行うことができる。さらに、 1箇所の蓄 電池劣化判定装置やコンピュータで管理することもできる。
[0170] また、その他の実施例として、図 1—22のように複数の蓄電池 106のうち、 1っは蓄 電池劣化判定装置 107が蓄電池 106aの近傍にある。他の 1つは蓄電池劣化判定 装置 108が蓄電池 106bに取付けられるものである。なお、図 1—22では残る蓄電池 106cは劣化判定をしな!、ものである。
[0171] また、図 1—22では、装置'電源制御装置 109には、 GPS (Global Positioning
System)装置 110、照明 111、稼動部 112等が接続される。装置'電源制御装置 10 9よって電源を供給又は Z及び制御をする。例えば、照明 111の点灯'消灯、稼動部 112の動作制御やエネルギ消費量の制御等をするものである。なお、 GPS装置 110 は位置や標高の他に時間も検出できるので、装置'電源制御装置 109他の時刻合 わせに利用することができる。
[0172] このようにすれば、装置.電源制御装置 109によって複数の蓄電池 106を管理し、 表示部 103aに蓄電池 106の劣化状態を表示することができる。さらに、装置'電源 制御装置 109、蓄電池劣化判定装置 107, 108や図示しないコンピュータ等にはコ ネクタや無線 (赤外線等)を介して外部機器と情報の送受信ができ、劣化判定情報の 授受や制御プログラムのインストールや更新ができるようにしてよい。また、表示部 10 3は、装置 ·電源制御装置 109や蓄電池劣化判定装置 107, 108に、液晶画面 (LC D)やランプ等が付いている、または、内蔵する構成であってよい。
[0173] 更に、インピーダンスを測定するには、次の方法を用いることもできる。即ち、可変し た周波数にて連続して放電させ、可変した周波数ごとの放電電流を流し、前記可変 した周波数ごとの放電電流の放電電流波形をフーリエ変換して、前記周波数ごとの 放電電流波形のフーリエ変換値を求め、放電中の電池電圧の電圧応答波形をフー リエ変換して前記可変した周波数ごとの電圧応答波形のフーリエ変換値を求め、前 記電圧応答波形のフーリエ変換値を前記放電電流波形のフーリエ変換値で除して 可変した周波数ごとの内部インピーダンスを求め、周波数ごとに算出した内部インピ 一ダンス値を比較し、その増加あるいは減少割合が一定値以下であれば、ノイズ無し と判断し、予め定めた基本周波数を用い、その増加あるいは減少割合が一定値以上 であれば、ノイズ有りと判断し、求めた内部インピーダンスを用いず再度測定する方 法である。
[0174] 図 1—23は従来の方法の一例を説明する図である。従来の方法によると、ノイズが 入った場合にも見分けがつかない、あるいは、ノイズかどうかの判別することが難しか つた。この場合、ノイズを内部インピーダンスとしてそのまま求めることになる。
[0175] 図 1 24はこの発明の方法の一例を説明する図である。この発明の方法によると、 3 つ以上の異なる周期の放電電流波形としているので、基本周波数 T3のときにノイズ が入った場合にも、 T3の前後の T2や T4から求めた内部インピーダンスと比較するこ とでノイズの排除が可能である。なお、この際、 Tl, T5も比較対照とすることができる
[0176] この方法においては、周期が異なる少なくとも 3回の放電電流波形を 1セットとして 繰り返し実施し、例えば、基本周波数を含む 3つの周期でのインピーダンスを求め、 3 つのインピーダンスに基づ 、てノイズの無!、所望のインピーダンスを求めることができ る。
[0177] また、 3つの周期は、基本周期の少なくとも ± 5%以上異なる様にするのが望ましい 。このようにすれば、周期の違いにより、 3つのインピーダンスの大きさは、単調増加ま た
は単調減少等の単純な傾向を示す。従って、凸となる傾向や凹となる傾向があった 場合、ノイズの影響の有無を考慮できるため、ノイズの入った測定値を採用しないと 判断することが可能となる。 [0178] また、 3つの周期で個別に(1つの周期毎に)それぞれインピーダンスを測定する場 合に比較して、本発明は、ほとんど同時間に測定しているため、 3つのインピーダンス に及ぼすノイズの影響をより明確に判断することが可能となる。この方法によると、 3つ の異なる周期でインピーダンスを計算し、その 3つのインピーダンスに基づいて、ノィ ズの影響が無 ヽことを確認した上で、所望のインピーダンスを求めることが可能となり 、正確な劣化判定を行うことが可能となる。
[0179] また、図 1—20のコンピュータ 112や制御 ·判定装置 102から、あるいは、図 1—22の 装置 ·電源制御装置 109や蓄電池劣化判定装置 107, 108かから、制御して周波数 を可変して放電電流を流す。および、可変した周波数ごとの放電電流の放電電流波 形をフーリエ変換して、周波数ごとの放電電流波形のフーリエ変換値を求め、放電中 の電池電圧の電圧応答波形をフーリエ変換して、可変した周波数ごとの電圧応答波 形のフーリエ変換値を求める。
[0180] さらに、判定部(コンピュータ 112、制御'判定装置 102、装置'電源制御装置 109 や蓄電池劣化判定装置 107等)では、電圧応答波形のフーリエ変換値を放電電流 波形のフーリエ変換値で除して可変した周波数ごとの内部インピーダンスを求め、周 波数ごとに算出した内部インピーダンス値を比較し、その増加あるいは減少割合が 一定値以下であれば、ノイズ無しと判断し、予め定めた基本周波数を用い、その増加 あるいは減少割合が一定値以上であれば、ノイズと判断するものである。
[0181] 以上のとおり、本発明によれば、蓄電池が負荷に接続された構成を含むシステムに おける蓄電池の劣化状態を判定するに際し、蓄電池の劣化状態を判定する温度を 基準温度としてあらかじめ設定し、実測された蓄電池の内部抵抗成分を基準温度に おける値に変換し、この値を基準温度における蓄電池の放電時端子間電圧に変換 し、この基準温度における蓄電池の放電時端子間電圧を劣化判定しきい値と比較し て蓄電池の劣化状態を判定するため、負荷に接続された使用中の蓄電池の劣化状 態の判定を短時間かつ正確に行うことができる。
[0182] また、基準温度における蓄電池の放電時端子間電圧のかわりに、基準温度におけ る蓄電池の放電時降下電圧を用いて劣化判定しきい値と比較してもほぼ同様の効 果が得られ、基準温度における内部抵抗成分の値を劣化判定しきい値と比較しても ほぼ同様の効果が得られる。
[0183] 次に、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス 測定装置、二次電池劣化判定装置及び電源システムについて説明する。ここでは、 二次電池の内部インピーダンスを測定する機能を備えた電源システムに対して本発 明を適用する場合を説明する。
[0184] 図 2— 1は、本実施形態に係る電源システムの概略の構成を示すブロック図である。
図 2— 1においては、二次電池 10と、電流センサ 11と、電圧センサ 12と、制御部 13と 、記憶部 14と、充電回路 15と、放電回路 16を含んで電源システムが構成され、二次 電池 10力も各種の負荷 20に電力を供給する構成になっている。
[0185] 図 2— 1の構成において、負荷 20に電力を供給するための二次電池 10としては、例 えば、観測装置や通信装置等に用いられるものや車両用の鉛蓄電池が知られてい る
で、図 2— 2に二次電池 10の等価回路を示す。図 2— 2に示すように、二次電池 10は、 それぞれ抵抗 RQ、 Rctl、 Rct2、 Rct3とコンデンサ Cdl、 Cd2、 Cd3が組み合わさ れ、正極、電解液、負極が順次接続された等価回路で表すことができる。この場合、 二次電池 10の内部インピーダンスは、図 2— 2における各抵抗及びコンデンサの直並 列回路の構成に適合するような複素インピーダンスで表される。後述するように、図 2 2の等価回路で表される二次電池 10において、入力電流と応答電圧をそれぞれフ 一リエ変換し、その結果得られる所定周波数における各々の周波数成分を用いて二 次電池 10の内部インピーダンスを算出することができる。
[0186] 次に、図 2— 1において、電流センサ 11は、二次電池 10を流れる電流を検出して、 制御部 13に電流値を送出する。また、電圧センサ 12は、二次電池 10の両端の電圧 を検出して、制御部 13に電圧値を送出する。これら電流センサ 11と電圧センサ 12は 、本発明のセンサ手段として機能する。
[0187] 本発明の制御手段として機能する制御部 13は、 CPUにより構成され、電源システ ム全体の動作を制御するとともに、所定のタイミングで後述の内部インピーダンス算 出のために必要な演算処理を実行し、求めた内部インピーダンスを車両の制御装置 等に送出する。そして、制御部 13に接続された記憶部 14は、制御プログラム等の各 種プログラムをあら力じめ記憶する ROMや、制御部 13による処理に必要なデータを 一時的に記憶する RAMなどを含んで 、る。
[0188] 充電回路 15は、二次電池 10の充電動作を行うときに充電電流を供給する回路で ある。また、放電回路 16は、二次電池 10の放電動作を行うときに二次電池 10から負 荷 20に流れる放電電流を供給する回路である。これらの充電回路 15及び放電回路 16は、制御部 15によって制御され、充電動作時は充電回路 15がオンの状態となり、 放電動作時は放電回路 16がオンの状態となる。
[0189] 本実施形態においては、充電回路 15から供給される充電電流と放電回路 16を経 由して負荷 20に供給される放電電流は、いずれも多様な波形を用いることができる。 すなわち、後述の演算処理に際してフーリエ展開ではなくフーリエ変換を施すので、 一定周波数のパルス波形に制約されることなぐ周期性を持たない多様な波形を用 いてフーリエ変換の計算を行うことができる。ただし、放電電流又は充電電流に対す るフーリエ変換の計算精度を高めるには、求める周波数成分を十分に含む波形バタ ーンを用いることが好まし 、。後述するように周波数が 20Hz程度に設定されることか ら、波形の時間的な変化が多い充電電流又は放電電流を用いることにより、計算精 度を高めることができる。
[0190] 次に、本実施形態に係る電源システムにおいて二次電池 10の内部インピーダンス を測定する際の具体的な処理を説明する。図 2— 3は、主に制御部 13が記憶部 14に 保持される制御プログラムに基づき実行する処理の流れを示すフローチャートである 。図 2— 3に示す演算処理は、電源システムにおいて二次電池 10の充電又は放電を 実行している際に所定のタイミングで実行開始される。
[0191] 図 2— 3において、電源システムにおける処理が開始されると、制御部 13による演算 に必要なパラメータの初期設定を行う(ステップ S 101)。ステップ S 101の初期設定の 対象となるパラメータとしては、複数の電流測定値及び電圧測定値を取得する際の サンプリング間隔 A t及びサンプリング個数 N、内部インピーダンス測定における所定 の基準周波数 Fなどがある。
[0192] ステップ S101においては、例えば、 A t=0. 001 (秒、)、 N= 100 (個)、 F = 20 (H z)などの初期設定値を用いればよい。なお、二次電池 10の特性に応じた 適切な固定的な初期設定値をあらかじめ定めておくこともできるが、動作状況等に応 じて初期設定値を適宜に変更できるようにしてもょ 、。
[0193] 次に、二次電池 10の充電動作又は放電動作の開始の有無を判断する (ステップ S 102)。電源システムによって、充電動作時に測定するか、放電動作時に測定するか は異なる。機器或 ヽは装置の使用時にある程度の電力を常に負荷に供給する電源 システムの場合には充電動作時に測定するのが望ましい場合が多い。また、電源シ ステムによってはあら力じめ充電と放電のタイミングが設定されて 、る場合もある。そ の場合には充電或いは放電のタイミングに達しているかどうかを S 102にて判断する
[0194] ステップ S102で充電動作又は放電動作の開始が有りと判断された場合、続いて、 二次電池 10の入力電流と応答電圧の測定を開始し (ステップ S103)ステップ S101 で設定された条件にて測定を行う(ステップ S104)。具体的には、電流センサ 11によ り二次電池 10の入力電流を検出し、サンプリング間隔 A tで N個の電流測定値を順 次取得すると同時に、電圧センサ 12により二次電池 20の応答電圧を検出し、サンプ リング間隔 A tで N個の電圧検出値を順次取得する。これにより、時間軸上で、二次 電池 10の入力電流に対応する N個の電流測定値と、二次電池 10の応答電圧に対 応する N個の電圧測定値が得られることになる。
[0195] ここで、入力電流の時間関数を i(t)、応答電圧の時間関数を v(t)と表したとき、 0, 2, 3,一 N— 1の範囲で変化する整数 nを用いて、ステップ S104で得られた電流測定 値は i (n' A t)と表すことができ、電圧測定値は ν(η· A t)と表すことができる。
[0196] 次に、ステップ S 104で得られた N個の電流測定値を用いて、基準周波数 Fにおけ る入力電流の周波数成分を計算する (ステップ S105)。同様に、ステップ S104で得 られた N個の電圧測定値を用いて、基準周波数 Fにおける応答電圧の周波数成分を 計算する(ステップ S 106)。
[0197] 一般に、任意の時間関数 y(t)をフーリエ変換することにより、次の(1)式で表される 周波数成分 Y ( ω )を求めることができる。
Υ(ω) = J y(t) - exp( jrot)dt (1)
ただし、 ω=2πί(ί:周波数)
従って、二次電池 10の入力電流をフーリエ変換したときの周波数成分 Ι(ω)は、時 間関数 i (t)を用いて次の(2)式にように表すことができる。
Ι(ω) = J i(t) . exp( jcot)dt (2)
また、二次電池 10の応答電圧をフーリエ変換したときの周波数成分 V(co)は、時 間関数 V (t)を用いて次の(3)式にように表すことができる。
V(ro) = J v(t)-exp( jrot)dt (3)
そして、実際にステップ S 104の計算を行う場合は、(2)式の時間関数 i(t)に対応 する N個の電流測定値 i(n* At)を用いた離散フーリエ変換を行い、次の (4)式のよう に、基準周波数 Fにおける入力電流の周波数成分 I ( ω )を計算する。
N-1
ω^ = Δί> iin - At) exp( j o n . At t
n = 0
(4)
ただし、
Figure imgf000053_0001
基準周波数)
同様に、実際にステップ S105の計算を行う場合は、(3)式の時間関数 v(t)に対応 する N個の電流測定値 ν(η· At)を用いた離散フーリエ変換を行い、次の(5)式のよ うに、基準周波数 Fにおける応答電圧の周波数成分 V ( ω )を計算する。
N-1
ν(ω) = At〉, v(n .At).exp( jco.n .At)dt
i=0
(5)
ただし、
Figure imgf000053_0002
基準周波数) [0199] そして、上述の (4)式及び (5)式の計算結果に基づいて、基準周波数 Fにおける二 次電池 10の内部インピーダンス Ζ(ω)を算出する (ステップ S107)。すなわち、入力 電流の周波数成分 I ( ω )と応答電圧の周波数成分 V ( ω )の比をとり、次の(6)式に 従って、基準周波数 Fにおける内部インピーダンス Ζ ( ω )を求めればよ!、。
Ζ(ω) = ν(ω)
Ι(ω)
N-l
At ν(η *At)*exp( jo*n *At)dt
一 n = 0
― -l
Δΐ > i(n .At).exp( j o.n .At)dt
n = 0
(6)
ただし、
Figure imgf000054_0001
基準周波数)
なお、(6)式で求める内部インピーダンス Ζ(ω)は、実数部を算出してもよいが、虚 数部や絶対値を算出することも可能である。
[0200] 上記(6)式に従って算出される内部インピーダンス Ζ(ω)は、例えば、 F = 20(Hz) に対応する 1成分のみを求めてもよいが、複数の周波数に対応する複数成分を求め てもよい。つまり、あらかじめ M個の周波数 Fl、 F2、一 FMを設定し、それぞれにつ いて(6)式の計算を行い、 M個の内部インピーダンス Zl、 Z2、一 ZMを求めてもよい
[0201] この場合、 M個の内部インピーダンスの算出結果を用いれば、 M個の未知数を含 む 立
方程式を解くことができる。例えば、図 2—1に示す二次電池 10の等価回路において M個の回路定数を未知数とする連立方程式を立て、 M個の内部インピーダンスの算 出結果を代入して、回路定数を決定することもできる。
[0202] 図 2— 3に示す処理に基づき得られた内部インピーダンスは、例えば、電源システム において二次電池 10の劣化状態を検知する際に用いられる。一般に二次電池 10の 内部インピーダンスは、二次電池 10の劣化状態と強い相関があるので、内部インピ 一ダンスの測定結果に基づき二次電池 10の劣化の度合を判断することができる。
[0203] 図 2— 4は、二次電池 10の内部インピーダンスと劣化状態の関係を説明する図であ る。図 2— 4においては、二次電池 10の長期間の劣化試験を行った際、二次電池 10 の内部インピーダンスの変化と二次電池 10の放電電圧の変化をそれぞれ示している 。図 2— 4の劣化試験では、内部インピーダンスは 25°Cで測定し、放電電圧は入力電 流の大小 2種(10A、 25A)について 30°Cで放電開始から 10秒後に測定したもの である。
[0204] 図 2— 4に示すように、二次電池 10の内部インピーダンスは、初期状態においては 安定している力 時間経過が 30— 35週の付近力も増加している。一方、二次電池 1 0の放電電圧は、時間経過が 35週を過ぎる頃力も急激に低下しており、大きく劣化 することがわ力る。また、入力電流が大きい方が二次電池 10の劣化の度合も大きくな る。このような試験結果から、二次電池 10の使用時間は 35— 40週に達する頃に限 界に達する。
[0205] 図 2— 4に示すような劣化状態の変化に基づいて、上述のように算出した内部インピ 一ダンスが大きくなることを監視し、二次電池 10の劣化状態を把握することが可能で ある。例えば、算出した内部インピーダンスが所定の設定値を超えたとき、二次電池 10が劣化状態にあると判定し、ユーザに二次電池 10の交換を促すような表示を行え ばよい。
[0206] 以上説明したように本発明によれば、二次電池 10の内部インピーダンスを測定す る際、充電回路 15から供給される充電電流、あるいは放電回路 16から供給される放 電電流をそのまま利用するようにしたので、特別な電流発生器や動作制御に伴う処 理が不要となり、電源システム全体の構成及び制御の簡素化及びコスト低減の面で 効果が大きい。
[0207] この場合、内部インピーダンスの算出にフーリエ変換の手法を用いるので、充電電 流又は放電電流は周期的なパルス波形を用いる必要がなぐ測定の自由度を高め、 付加的な回路構成が不要となる。また、二次電池 10の通常の充電動作中又は放電 動作中に内部インピーダンスを測定するので、二次電池 10に不要な電流印加を繰り 返す必要がなぐ二次電池 10の消耗を防止することができる。
[0208] 本発明によれば、二次電池の内部インピーダンスを測定する際、充電時又は放電 時において入力電流と応答電圧を測定し、フーリエ変換を行うことにより所定周波数 における二次電池の内部インピーダンスを算出するようにしたので、特別な電流発生 器を設けることや周期的な波形の電流を用いることはいずれも不要となる。よって、構 成の簡素化及び低コストィヒの面で有益であって二次電池の消耗を抑えることが可能 な二次電池の内部インピーダンス測定装置等を実現することが可能となる。
[0209] 更に、二次電池の内部インピーダンスを測定する機能を備えた電源システムに対し て本発明を適用する場合として、 2つの実施形態について説明する。
(第 1実施形態)
図 3— 1は、第 1実施形態に係る電源システムの概略の構成を示すブロック図である 。図 3— 1においては、二次電池 10と、電流センサ 11と、電圧センサ 12と、制御部 13 と、記憶部 14と、充電回路 15と、放電回路 16を含んで電源システムが構成され、 二次電池 10から各種の負荷 20に電力を供給する構成になっている。
[0210] 図 3—1の構成において、負荷 20に電力を供給するための二次電池 10としては、例 えば、観測装置や通信装置等に用いられるものや車両用の鉛蓄電池が知られてい る。ここで、図 3—2に二次電池 10の等価回路を示す。図 3— 2に示すように、二次電 池 10は、それぞれ抵抗 RQ、 Rctl、 Rct2、 Rct3とコンデンサ Cdl、 Cd2、 Cd3力 S糸且 み合わされ、正極、電解液、負極が順次接続された等価回路で表すことができる。
[0211] この場合、二次電池 10の内部インピーダンスは、図 3—2における各抵抗及びコン デンサの直並列回路の構成に適合するような複素インピーダンスで表される。後述 するように、図 3— 2の等価回路で表される二次電池 10に一定周期の電流パルスを印 加し、印加した電流パルスとその応答電圧をそれぞれフーリエ展開することにより、二 次電池 10の内部インピーダンスを計算することができる。
[0212] 一般に、二次電池 10は、絶えず充放電を繰り返すことにより、分極を含んだ状態に ある。そして、分極の影響を受けた状態では、二次電池 10の内部インピーダンスが 変動するので、正確な内部インピーダンスを求めるには、分極の影響を除去する必 要がある。この場合、二次電池 10の充電を行った後の分極の状態(充電分極)では、 放電電流パルスを印加するとともに、二次電池 10の放電を行った後の分極の状態( 放電分極)では、充電電流パルスを印加することにより、分極の影響を小さくすること ができる。
[0213] よって、第 1実施形態では、二次電池 10の分極状態を判定し、判定結果に応じて 放電電流パルスと充電電流パルスを切り換えるようにしている。また、第 1実施形態で は、二次電池 10への電流パルスの印加を開始し、内部インピーダンスが安定するだ けの時間を待った後に内部インピーダンスを算出することにより、分極の影響を一層 小さくしている。
[0214] 次に、図 3— 1において、電流センサ 11は、二次電池 10を流れる電流を検出して、 制御部 13に電流値を送出する。また、電圧センサ 12は、二次電池 10の両端の電圧 を検出して、制御部 13に電圧値を送出する。
[0215] 制御部 13は、 CPU等により構成され、電源システム全体の動作を制御するとともに 、所定のタイミングで後述の内部インピーダンス算出のための演算処理を実行し、求 めた内部インピーダンスを車両の制御装置等に送出する。そして、制御部 13に接続 された記憶部 14は、制御プログラム等の各種プログラムをあら力じめ記憶する ROM や、制御部 13による処理に必要なデータを一時的に記憶する RAMなどを含んで ヽ る。
[0216] 充電回路 15は、二次電池 10の充電動作を行うときに充電電流を供給する回路で ある。また、放電回路 16は、二次電池 10の放電動作を行うときに二次電池 10から負 荷 20に流れる放電電流を供給する回路である。これらの充電回路 15及び放電回路 16は、制御部 15によって制御され、充電動作時は充電回路 15のみがオンの状態と なり、放電動作時は放電回路 16のみがオンの状態となる。第 1実施形態では、二次 電池 10の内部インピーダンスの測定に際し、充電回路 15は充電電流パルスを供給 する構成を備え、放電回路 16は放電電流パルスを供給する構成を備えて 、る。
[0217] 図 3— 3は、二次電池 10に印加される電流パルス(充電電流パルス又は放電電流パ ルス)の波形の具体例を示す図である。図 3— 3に示す電流パルスは、一定の周期 Tp と一定の電流振幅 Xを有する矩形波のパルスであり、各周期内で電流が 0と Xの間を 交互に繰り返す波形の例を示している。なお、周期 Tp及び電流振幅 Xは、二次電池 10の特性と計算処理の状況に応じて最適値を設定すればよい。
[0218] なお、制御部 13は記憶部 14には動作フラグを保持し、二次電池 10に対する充電 動作又は放電動作を行った際、それを識別可能に動作フラグに記録する。よって、 制御部 13による処理に際し、動作フラグを参照することにより、その時点の二次電池 10が充電動作の後に充電分極を受けた状態にあるか、放電動作の後に放電分極を 受けた状態にあるかを判定することができる。
[0219] 次に、第 1実施形態に係る電源システムにおいて二次電池 10の内部インピーダン スを測定する際の具体的な処理を説明する。図 3— 4は、主に制御部 13が記憶部 14 に保持される制御プログラムに基づき実行する処理の流れを示すフローチャートであ る。図 3— 4に示す演算処理は、電源システムにおいて充電又は放電が終了した後、 所定のタイミングで実行開始される。
[0220] 図 3— 4において、電源システムにおける処理が開始されると、制御部 13による演算 に必要なパラメータの初期設定を行う(ステップ S 101)。ステップ S 101の初期設定の 対象となるパラメータとしては、電圧サンプル値を取得する際のサンプリング間隔 ts、 二次電池 10に印加するパルスの基本周波数 fl、内部インピーダンスの測定時に印 カロされる電流パルスに関しての先頭パルスサイクル C1及び測定パルスサイクル数 C 2、電流値又は電圧値の連続読み取り個数 α、電流振幅値 Xなどがある。
[0221] ステップ S11においては、例えば、 ts = 0. 001 (秒、)、 fl = 20 (Hz)、 Cl = 10、 C2
= 5, a = 5などの初期設定値を用いればよい。なお、二次電池 10の特性に応じた 適切な固定的な初期設定値をあらかじめ定めておくこともできるが、動作状況等に応 じて初期設定値を適宜に変更できるようにしてもょ 、。
[0222] 次に、二次電池 10の直近の充放電動作を判定する (ステップ S102)。すなわち、 制御部 13が記憶部 14の動作フラグを読み出し、充電動作と放電動作の!/、ずれの状 態を示しているかを判定すればよい。その結果、ステップ S102において動作フラグ が充電動作を示していると判断された場合、充電分極の影響を避けるベぐ印加す べき電流としてパルス放電を設定する(ステップ S 103)。一方、ステップ S102におい て動作フラグが放電動作を示して ヽると判断された場合、放電分極の影響を避ける ベぐ印加すべき電流としてパルス充電を設定する (ステップ S 104)。 [0223] 続いて、ステップ S 103で設定されたパルス充電又はステップ S 104で設定された パルス放電のいずれかのパルス電流を、二次電池 10に印加開始する(ステップ S10 5)。この場合、二次電池 10に対する充電動作を行った後においては、放電回路 16 から供給されるパルス放電電流が印加される一方、二次電池 10に対する放電動作 を行った後においては、充電回路 15から供給されるパルス充電電流が印加されるこ とになる。
[0224] 次に、二次電池 10の内部インピーダンス算出に先立って、あら力じめ設定されてい る測定開始タイミングに達した力否かを判断する (ステップ S106)、その結果、測定 開始タイミングに達した時は (ステップ S106 ;YES)、ステップ S107に進み、まだ測定 開始タイミングに達して ヽな ヽ間は (ステップ S 106; NO)、測定開始タイミングを待ち 続ける。ステップ S106における測定開始タイミングとしては、ステップ S 101で設定さ れた先頭パルスサイクル C1の周期内における所定の時点を設定すればよい。
[0225] ステップ S107に進んだときは、内部インピーダンスの計算処理の順番を示すカウン タ mを 1に設定する。後述するように、このカウンタ mは、初期値 1から C2まで変化さ せて全部で C2個の測定結果を得るために用いられる。
次に、二次電池 10の内部インピーダンスの計算処理を実行する (ステップ S108)。 図 3— 5は、ステップ S 108における内部インピーダンスの具体的な計算処理を示すフ ローチャートである。図 3-5においては、まず二次電池 10の電流センサ 11と電圧セ ンサ 12をサンプリング間隔 tsで順次読み取り、二次電池 10の電流値 I (n)及び電圧 値 V (n)を所定個数だけ取得する (ステップ S301)。例えば、印力!]パルスの 1周期内 のサンプリング個数を Nとしたとき、サンプリング間隔 ts毎に n= l、 2、 3、一 N+ αの 範囲内で電流値 I (η)及び電圧値 V (η)を取得すればょ ヽ。この場合、印加パルスの 2周期内で 2 α個ずつの電流値 Ι (η)及び電圧値 V (n)が得られることになる。なお、 ステップ S301にお 、て電流値 I (n)及び電圧値 V (n)を読み取る個数は、計算処理 の便宜に合わせて自在に設定可能である。
[0226] 次に、ステップ S301で取得した複数の電圧値 V (n)を用いて、電圧変化量を計算 する(ステップ S302)。例えば、 n= l、 2、 3、一 N+ aに対応する電圧値 V (n)を用 いて、以下の(7)式で示される電圧変化量 aを計算すればよい。この電圧変化量 aに より、 1周期進んだ時点における電圧値 V(n)の変化を判別することができる。
Figure imgf000060_0001
+ 1)+ V(N + 2) + --- V(N +a)}la
(7)
次に、ステップ S302で求めた電圧変化量 aを用いて、電圧値 V(n)の時間的変動 を補正した補正電圧値 V,(n)を算出する (ステップ S303)。上述の(1)式により求め た電圧変化量 aを用いる場合、以下の (8)式で示される補正電圧値 V' (n)を計算す ればよい。
V'(n) = V(n) + a-(n-l)/N
(8)
次に、二次電池 10の電流の 1次フーリエ係数 AI、 BIを次の(9)、(10)式に従って 計算する(ステップ S 304)。
AI = (2/Tp)-cos(k-ro -n -ts)-I(n)-ts
(9)
BI = (2/Tp)-sin(k-ro - -ts)-I(n)-ts
(10)
同様に、二次電池 10の電圧の 1次フーリエ係数 AV、 BVを次の(11)、(12)式に 従って計算する (ステップ S305)。
AV = (2/Tp)-cos(k-ro ·η -ts)-V'(n)-ts
(11)
BV = (2/Tp)-sin(k-ro ·η -ts)- V'(n)-ts
(12) なお、第 1実施形態では 1次フーリエ展開を行う場合を説明するが、より次数の高い フーリエ展開を行うようにしてもよい。その場合は、(9)一(12)式は、高次のフーリエ 係数に置き換えて計算すればょ 、。
[0228] そして、(9)一(12)式の計算結果を用いて、二次電池 10の内部インピーダンスを 計算する(ステップ S306)。ステップ S306では、 m番目の内部インピーダンス Z (m) のうち、実数部 Z (m)real、虚数部 Z (m) imag、絶対値 Z (m) absを次の(13)—(15) 式に従ってそれぞれ算出するものとする。
Z(m)real = (AV ·ΑΙ + BV · ΒΙ) /(ΑΙ2 + ΒΙ2 )
(13)
Z(m)imag = (AV ·ΒΙ - AI -BV ) /(AI 2 + BI2 )
(14)
Z(m)abs = (Z(m)real 2 + Z(m)imag 2 )1 2
(15)
[0229] 次に、図 3— 4に戻って、内部インピーダンスの計算処理を継続するか終了するかを 判断すベぐカウンタ mが C2に達したか否かを判断する (ステップ S 109)。その結果 、 mが C2に達したときは(ステップ S109 ;YES)、ステップ S112に進み、 mが C2に 達していないときは (ステップ S109 ;NO)、ステップ S110に進む。すなわち、測定パ ルスサイクル数 C2までの範囲内で内部インピーダンスが得られた場合、それ以降の 計算処理は不要になるため、ステップ S109で判断を行っている。
[0230] ステップ S109からステップ S110に進んだ場合は、内部インピーダンスの計算処理 の順番を更新すベぐカウンタ mに 1を加える。そして、前回ステップ S 108を実行した タイミングから 2周期分の時間が経過するまで待ち (ステップ Si l l ;NO)、 2周期分の 時間が経過した時点で (ステップ S111; YES)、ステップ S108に戻って同様の処理 を繰り返し実行する。
[0231] 一方、ステップ S109からステップ S112に進んだ場合は、ステップ S105で印加開 始されたノ ルス充電又はパルス放電の印加を停止する。この段階においては、時間 軸上で C2個の内部インピーダンスが得られることになる。そして、これら C2個の内部 インピーダンスの平均値を計算する(ステップ S 113)。ステップ S 113においては、 (1 3)—(15)式の結果を用いて内部インピーダンスの実数部 Zreal、虚数部 Zimag、絶 対値 Zabsを次の(16)—(18)式に従ってそれぞれ算出する。
Z(m)real = {Z(l)real + Z(2)real 十… + Z(C2)real }/ C2
(16)
Z(m lunag = {Z(l)imag + Zf2)unag + Z(C2)imag }/ C2
(17)
Z(m)abs = {Z(l)abs + Z(2)abs + · + Z(C2)abs }/ C2
(18)
[0232] このように、第 1実施形態によれば、二次電池 10に分極の状態に適合するような電 流パルスを印加するとともに、電流パルスを印加した直後の分極の影響が大きい時 間範囲を避けることにより、安定した状態の内部インピーダンスを測定することができ 、その誤差を十分小さくすることができる。
[0233] (第 2実施形態)
第 2実施形態は、第 1実施形態の場合と比べると、主に内部インピーダンスを算出 する過程に相違がある。なお、第 2実施形態に係る電源システムは、図 3-1に示す第 1実施形態の場合と概略の構成が共通するとともに、二次電池 10に印加される電流 パルスは、図 3— 3に示す第 1実施形態の場合の波形と同様とすることができるため、 これらの説明につ 、ては省略する。
[0234] 以下、第 2実施形態に係る電源システムにおいて二次電池 10の内部インピーダン ス測定時の具体的な処理を説明する。図 3—6は、主に制御部 13が記憶部 14に保持 される制御プログラムに基づき実行する処理の流れを示すフローチャートである。図 3 6に示す演算処理は、図 3— 4の場合と同様、電源システムにおいて充電又は放電 が終了した後、所定のタイミングで実行開始される。
[0235] 図 3— 6において、電源システムにおける処理が開始されると、制御部 13による演算 に必要なパラメータの初期設定を行う(ステップ S 201)。ステップ S 201の初期設定の 対象となるパラメータとしては、電圧サンプル値を取得する際のサンプリング間隔 ts、 二次電池 10に印加するパルスの基本周波数 fl、内部インピーダンスの測定時に印 カロされる電流パルスに関しての総パルスサイクル数 C3、電流振幅値 Xなどがある。
[0236] ステップ S201において、 ts、 fl、 Xなどは、第 1実施形態の場合と同様の初期設定 値を用いればよい。一方、総パルスサイクル数 C3としては、 5— 50サイクルの範囲に 設定することが望ましい。なお、ステップ S201における初期設定値は、第 1実施形態 の場合と同様に、二次電池 10の特性に応じてあら力じめ定めておいてもよいが、動 作状況等に応じて適宜に変更可能できるようにしてもょ 、。
[0237] 次に、二次電池 10の直近の充放電動作の状態を判定し、印加すべきパルス電流と してパルス放電又はパルス充電を設定し、設定されたパルス電流を印加するまでの 一連の処理 (ステップ S202— S205)については、第 1実施形態の場合と同様に行 われる(図 3— 4のステップ S102— S105)。次いで、内部インピーダンスの計算処理 の順番を示すカウンタ mを 1に設定する(ステップ S206)。後述するように、このカウン タ mは、初期値 1から C3まで変化させて全部で C3個の測定結果を得るために用いら れる。
[0238] 次に、二次電池 10の内部インピーダンスの計算処理を実行する (ステップ S207)。
ステップ S207においては、第 1実施形態と同様、図 3— 5のフローチャートで示す計 算処理を実行する。ただし、第 2実施形態では、後述するように計算の便宜上、印加 パルスの 1周期ごとに図 3—5の計算処理を行うので、ステップ S301における電流値 I (n)及び電圧値 V (n)は、 1周期ごとに所定個数だけ取得することになる。
[0239] 次に、図 3—6において、内部インピーダンスの計算処理を継続するか終了するかを 判断すベぐカウンタ mが C3に達したか否かを判断する (ステップ S208)。その結果 、 mが C3に達したときは(ステップ S208 ;YES)、ステップ S211に進み、 m が C3に達して!/ヽな!、ときは(ステップ S 208; NO)、ステップ S209に進む。
[0240] そして、ステップ S208からステップ S209に進んだ場合は、カウンタ mに 1を加えた 後、上記ステップ S207を実行したタイミングから 1周期分の時間が経過するまで待ち (ステップ S210 ;NO)、 1周期分の時間が経過した時点で (ステップ S210 ; YES)、 ステップ S207に戻って同様の処理を繰り返し実行する。
[0241] 一方、ステップ S209からステップ S211に進んだ場合は、ステップ S205で印加開 始されたノ ルス充電又はパルス放電の印加を停止する。この段階においては、時間 軸上で C3個の内部インピーダンスが得られることになる。そして、これら C3個の内部 インピーダンスの収束値を逐次計算によって求める (ステップ S212)。
[0242] 図 3—7は、ステップ S212における内部インピーダンスの収束値計算の具体的な処 理を示すフローチャートである。図 3-7においては、まず二次電池 10の内部インピー ダンスを近似するための 2次の指数減衰関数に対応する係数の初期設定を行う(ス テツプ S401)。ここで、図 3—7の処理で用いる 2次の指数減衰関数としては、次の(1 9)式で示すように、時間 Tに対する F (T)を用いるものとする。
F(T) = Al exp( Α3· Τ) + Α2 exp( Α4· Τ) + A5
(19)
ステップ S401においては(19)式に含まれる 5個の係数 Al— A5について、あらか じめ記憶部 14に記憶されている初期値を読み出して設定する。これらの係数 A1— A5は、最小二乗法に基づく最適解を導き出すために用いられ、後述するように計算 の過程で値が順次更新されていく。なお、各係数 A1— A5の初期値としては、あらか じめ実験的に得られた所定値を用いればょ 、。
[0243] 次に、(19)式で表される指数減衰関数 F (T)を、 m番目の内部インピーダンスの実 数部 Z (m) realに対し適用することにより、次の(20)式で表される F (m)を計算する( ステップ S402)
F(m)= Alexp(A3-m-Tp) + A2 exp(A4-m- Tp)+A5
(20)
ステップ S402においては、(20)式の F (m)を用いて、 m= 1— C3の範囲で変化さ せ、全部で C3個の計算値が得られることになる。なお、図 3—7の処理では、内部イン ピーダンスの実数部 Z (m) realを用いて計算を行う場合を説明するが、内部インピー ダンスの虚数部 Z (m) imag、又は絶対値 Z (m) absを用いて計算を行ってもょ 、。
[0244] 次に、ステップ S402で得られた F (m)と、ステップ S 207で求めた内部インピーダン スの実数部 Z (m)realとの差である R(m)を m= 1— C3の範囲で計算する(ステップ S 403)。すなわち、次の(21)式で表される C3個の R(m)を求める。
R(m) = F(m)- V(m)
(21)
[0245] 次に、最小二乗法の適用に際しての各係数 A1— A5に対応する偏微分項を計算 する(ステップ S404)。ステップ S404では、次の(22)式で表される各係数 A1— A
5に対応する偏微分項を m= 1— C3の範囲で求める。
dDFAlin) = exp(A3- Tp -m)
dDFA2(m)= exp(A4- Tp -m)
dDF^(m) = Al- Tp -m . exp(A3- Tp -m)
dDFAl(m) = A2- Tp -m · exp( - Tp -m)
dDF^(m) = l
(22)
[0246] そして、ステップ S404で得られた各偏微分項を用いて最小二乗法の連立方程式 に適合する行列 Bを計算する (ステップ S405)。具体的には、次の(23)式で表される 行列 Bを求める。
B(l ,l ) = ^ {dDFAl(m)} 2
B(l ,2) = y {dDF Al(m) x dDFA2(m) }
B(l ,3) = Y {dDF Al(m) x dDFA3(m) }
B(5,5) = ^ {dDFA5(m)}2
(23)
なお、(23)式に示される行列 Bは、 5 X 5の正方行列であり、かつ、 B (x, y) =B (y, X)の対称行列である。
[0247] 次に、ステップ S403で得られた R (m)と、ステップ S404で得られた偏微分項とを用 V、て、次の(24)式で表される dRを計算する(ステップ S406) d R 1 - { dDF A 1 ( m ) x R(m)}
1
d R 2 = - 2 { dDF A 2 ( m ) x R(m)} d R 3 = - ^ { dDF A 3 ( m ) x R(m)} d R 4 { dDF A 4 ( m ) x R(m)} d R 5 = - 2 { dDF A 5 ( m ) x R(m)}
(24)
[0248] 続!、て、ステップ S405で得られた行列 Bと、ステップ S407で得られた dRとを用い て、次の(25)式で表される差分 ddを計算する (ステップ S407)。
Figure imgf000066_0002
Figure imgf000066_0001
(25)
このように、ステップ S407においては、係数 A1— A5のそれぞれに対応する 5個の 差分 ddl— dd5が得られ、これらに基づき最小二乗法の最適解を評価することができ る。
[0249] そして、ステップ S407で得られた 5個の差分 ddl— dd5について、次の(26)式を 満たすか否かを判断する (ステップ S408)。 ddl, dd2, -■ - dd5 < k
(26)
なお、(26)式の右辺の kとしては、ゼロに近いと判断し得る所定値を用いることがで きる。そして、(26)式を満たすと判断されると (ステップ S408 ; YES)、各差分 ddl— dd5が十分ゼロに近づき、その時点で最小二乗法の最適解が得られたものとしてス テツプ S409に進む。一方、(26)式を満たさないと判断されると (ステップ S408 ; NO )、各差分 ddl— dd5が大きく最小二乗法の最適解が得られていないものとして、次 の(27)式に基づき各々の係数 A1— A5を更新する(ステップ S409) 0
Figure imgf000067_0001
(27)
ステップ S409において係数 Al— A5が更新されると、再びステップ S402に移行し て、新しい係数 A1— A5を用いて最小二乗法を適用したステップ S402— S408の処 理を継続する。
[0250] 一方、ステップ S408からステップ S410に移行する場合は、内部インピーダンスの 実数部 Z (m)realが長期的に十分安定するときの収束値 Z0を次の(28)式により計算 する(ステップ S410)。
Z0 = Al exp(A3- Tx)+ A2 exp(A4- Tx)+ Α5
(28)
ただし、 Τχは二次電池 10の内部インピーダンスが安定するまでに要する安定時間 であり、十分長い所定の時間にあら力じめ設定する必要がある。力かる(28)式により ステップ S410で得られた収束値 Ζ0と、この時点の係数 A1— Α5は、それぞれ記憶 部 14に保存され、必要に応じて記憶部 14力も読み出して利用することができる。
[0251] 次に、第 2実施形態において、上述の処理を適用して二次電池 10の内部インピー ダン
スを求めた場合の時間特性の具体例を説明する。ここでは、周期 20Hzの矩形波の 電流パルスを二次電池 10に印加し、 2次の指数減衰関数を用 、て内部インピーダン スを近似する場合を想定する。このような条件下で、図 3—8は、内部インピーダンスの 絶対値 Zabs及び実数部 Zrealを用いて計算を行う場合の例であり、図 3— 9は、内部ィ ンピーダンスの虚数部 Zimagを用いて計算を行う場合の例である。
[0252] 図 3— 8及び図 3— 9においては、図 3— 6の処理によって時間軸上で順次算出された 複数の内部インピーダンスをプロットで示すとともに、そのうち所定の時間内で逐次計 算により決定した係数を有する 2次の指数減衰関数により近似される内部インピーダ ンスの時間変化を示している。なお、図 3— 8及び図 3—9においては、横軸にサイクル 数を設定して ヽるので、サイクル数 X周期 Tpの時間に対応する内部インピーダンス の変化を示している。図 3— 8及び図 3— 9のいずれの場合も、サイクル数が小さい初 期の時間内における内部インピーダンスの変化が大きくなる力 その時間変動を 2次 の指数減衰関数を用いて高精度に近似し得るため、誤差を十分に小さくすることが できる。
[0253] 本発明によれば、二次電池の分極状態に応じた電流パルスを印加し、印加開始タ イミングから内部インピーダンスが安定する時間が経過するまで待ち、内部インピー ダンスを算出するようにしたので、二次電池の分極の影響を除去して高い精度で内 部インピーダンスを測定することが可能となる。
[0254] また、本発明によれば、二次電池の分極状態に応じた電流パルスを印加し、印加 開始タイミング力 所定時間内の複数の内部インピーダンスを用いて逐次計算を行 V、、 2次以上の指数減数関数の係数を決定して内部インピーダンスの収束値を求め るようにしたので、二次電池の分極の影響を受けな!/、状態の内部インピーダンスを正 確に推定でき、高 、精度で内部インピーダンスを測定することが可能となる。
[0255] 次に、二次電池劣化状態判定方法および装置について説明する。本実施形態に おいては、観測装置や通信装置等を収納する屋外局舎等にて使用される蓄電池、 あるいは、自動車等の車両に搭載される二次電池の劣化状態を判定する機能を備 えた電源システムに対して本発明を適用する場合を説明する。
[0256] 図 4 1は、本実施形態に係る電源システムの概略の構成を示すブロック図である。
図 4 1においては、二次電池 10と、電圧センサ 11と、電流センサ 12と、制御部 13と 、記憶部 14と、充電回路 15と、放電回路 16と、温度センサ 17を含んで電源システム が構成され、二次電池 10から車両の各種装置やモータ等の負荷 20に電力を供給 するように構成されている。 [0257] 図 4 1の構成において、観測装置や通信装置等や車両に搭載される負荷 20に電 力を供給するための二次電池 10としては、例えば、鉛蓄電池が用いられる。二次電 池 10は、正極、電解液、負極からなり、抵抗とコンデンサを組み合わせた等価回路で 表される。この場合、二次電池 10の内部インピーダンスは、かかる等価回路の構成 に適合する複素インピーダンスで表される。
[0258] 本実施形態では、所定のタイミングで二次電池 10に電流パルスを印加し、その内 部インピーダンスを測定する。図 4 2は、二次電池 10に印加される電流パルスの波 形の具体例を示す図である。図 4 - 2に示す電流パルスは、一定の周期 tと一定の電 流振幅 Xを有する矩形波のパルスであり、各周期内で電流が 0と Xの間を交互に繰り 返す波形の例を示している。そして、二次電池 10に印加して電流パルスとその応答 電圧をそれぞれフーリエ展開することにより、二次電池 10の内部インピーダンスを求 めることができる。
[0259] 次に図 4—1において、電圧センサ 11は、二次電池 10の両端の電圧を検出して、制 御部 13に電圧値を送出する。また、電流センサ 12は、二次電池 10を流れる電流を 検出して、制御部 13に電流値を送出する。上述したよう二次電池 10の内部インピー ダンスを測定する際は、電圧センサ 11の電圧値と電流センサ 12の電流値を取得す る必要がある。
[0260] 制御部 13は、 CPU等により構成され、電源システム全体の動作を制御し、所定の タイミングで後述の演算処理を実行し、二次電池 10の劣化状態を判定して制御装置 等に判定結果を送出する。そして、制御部 13に接続された記憶部 14は、制御プログ ラム等の各種プログラムをあら力じめ記憶する ROMや、制御部 13による処理に必要 なデータを一時的に記憶する RAMなどを含んでいる。なお、記憶部 14の ROMは、 後述の多項式関数の各項の係数についての設定情報等を記憶する不揮発性記憶 手段としても機能する。
[0261] 充電回路 15は、二次電池 10の充電動作を行うときに充電電流を供給する回路で ある。また、放電回路 16は、二次電池 10の放電動作を行うときに二次電池 10から負 荷 20に流れる放電電流を供給する回路である。これらの充電回路 15及び放電回路 16は、制御部 15によって制御され、充電動作時は充電回路 15のみがオンの状態と なり、放電動作時は放電回路 16のみがオンの状態となる。本実施形態では、二次電 池 10の内部インピーダンスの測定に際し、充電回路 15又は放電回路 16により、上 述したような電流パルスを供給可能な構成を備えている。
[0262] 温度センサ 17は、二次電池 10の近傍に設置され、二次電池 10の温度を検出して 、検出温度を制御部 13に送出する。この温度センサ 17における検出温度は、後述 するように、二次電池 10の劣化状態を判定する際、内部インピーダンスの温度補正 を行う際に必要となる。
[0263] 次に、本実施形態に係る電源システムにおいて、二次電池 10の内部インピーダン スの温度依存性について説明する。二次電池 10の内部インピーダンスは、二次電池 10の劣化状態を判定する際に利用される力 内部インピーダンスは二次電池 10の 周囲の温度と強い相関関係を持っている。そのため、二次電池 10の劣化状態を正 確に判定するためには、内部インピーダンスの温度依存性を補正することが重要とな る。
[0264] 図 4— 3は、二次電池 10の温度特性の具体例を示す図である。図 4 3の温度特性 は、特定種別の二次電池 10に関し、劣化状態に応じた内部インピーダンスの温度特 性の実測結果をプロットしたものである。なお、図 4 3の例では、周期 20Hzの矩形 波の電流パルスを用いて二次電池 10の内部インピーダンスの実数部を測定した場 合を示している。一般に観測装置や通信装置等に用いられるものや車両用の二次 電池 10は、広い温度範囲にわたって使用され、その範囲内で二次電池 10の適正な 内部インピーダンスを確保する必要がある。図 4 3に示すように、二次電池 10の内 部インピーダンスは、特に低温の領域で顕著に増大し、高温の領域で徐々に減少す る傾向がある。
[0265] 一方、図 4 3においては、二次電池 10が未使用(新品)である場合と、比較的短期 間使用済みで劣化小の二次電池 10の場合と、比較的長期間使用済みで劣化大の 二次電池 10場合の 3通りのプロットを示している。そして、図 4— 3からわ力るように、 二次電池 10が劣化するにつれ、徐々に内部インピーダンスが増大していくことがわ かる。このように、二次電池 10の内部インピーダンスは、温度及び劣化の度合の双方 に依存して変化するので、温度依存性の影響を除去するための温度補正が必要に なる。そこで、本実施形態では、あら力じめ内部インピーダンスの温度依存性を後述 する関数を用いて近似し、これにより所定温度の内部インピーダンスを算出し、算出 結果に基づき二次電池 10の劣化状態の判定を行う。
[0266] 本実施形態にぉ 、ては、二次電池 10の内部インピーダンスの温度特性を近似す るための関数として、多項式関数を想定している。ここで、二次電池 10の内部インピ 一ダンス Zを温度 Tpに対する n次の多項式関数として表すと、一般的に次の(29)式 のように表現される。
Z = A0 + Α1· Τρ + Α2· Τρ +—— + Αη ·Τρ
(29)
(29)式において、最適な次数 ηと各係数 AO— Anの値を決定することにより、内部 インピーダンス Zを高精度に近似することが可能となる。なお、(29)式の内部インピ 一ダンス Zとしては、実数部を想定している力 虚数部又は絶対値であってもよい。
[0267] 本実施形態において、(29)式に示す多項式関数を用いて内部インピーダンスの 温度特性を近似する場合に加え、少なくとも (29)式に示すような多項式項を含む複 合的な関数を用いて内部インピーダンスの温度特性を近似する場合に対しても、本 発明の適用が可能である。ただし、以下では、(29)式に示すような多項式関数のみ を用いて内部インピーダンスの温度特性を近似する場合を説明する。
[0268] 一方、本実施形態では、(29)式の多項式関数における各係数 AO— Anを、それ ぞれに共通に含まれる基準係数 Cに関連付けて設定する。すなわち、(29)式の多 項式関数は、次の(30)式に示す形で表される。
Z = C + fl(C)-T + f2(C)-T 2+… ·+ fn(C)-Tn
(30)
ただし、 f 1 (C)、 f2 (C) · ' ·ίη (C)は、それぞれ基準係数 Cを含む適宜の関数であ る。(30)式においては、(29)式の係数 AOを基準係数 Cに対応させ、それ以外の各 係数 A1— Anを基準係数 Cの関数 fl (C) -fn(C)に対応させている。これらの各関 数 f 1 (C)は、内部インピーダンス Zの温度特性に適合してあら力じめ定めておく必要 があり、例えば、 Cの 1次式、 2次式、指数関数などを含む形に設定することができる。 このように、(30)式を用いることにより、温度及び内部インピーダンスの実測値力 基 準係数 Cを算出した上で、(30)式に従って変化する温度補正を行うことができる。
[0269] 次に、図 4 4は、(29)式又は(30)式で表される多項式関数により内部インピーダ ンス Zの温度特性を近似する場合、近似精度と多項式関数の次数 nとの関係を示す 図である。図 4 4においては、所望の n次の多項式関数において、 n= 2— 5の範囲 で変化させ、それぞれ適切な係数を決定した上で内部インピーダンス Zを算出すると もに、二次電池 10の内部インピーダンスの実測値をプロットした。図 4 4からわ力るよ うに、次数 nが大きくなるにつれ内部インピーダンスの誤差が次第に大きくなる。
[0270] ここで、次の表 2において、図 4 4に各次数の算出値の実測値に対する相関係数 をそれぞれ示す。
[表 2]
Figure imgf000072_0001
[0271] 表 2に示されるように、次数 nが 2のときは、誤差がかなり大きくなる力 少なくとも次 数 nを 3以上にすることが望ましい。この場合、内部インピーダンスの推測誤差を実用 上十分小さく抑えることができ、高い精度で近似計算を行うことができる。また、次数 n 5の場合、ほぼ推測誤差を無視し得る程度の高い精度を確保することができる。実 際に(29)式ある 、は (30)式に基づく温度補正を適用する場合には、必要な精度と 演算量のバランスを考慮して多項式関数の次数 nを決定することが望ましい。
[0272] 以下では、図 4 4の結果を踏まえ、次数 n= 5に設定して(30)式に基づく温度補 正を適用する場合を説明する。ここで、 (30)式において n= 5と設定する場合、この 多項式関数の各係数に共通して含まれる上述の基準係数 Cを設定した上で、次の( 31)式で表現される 5次の多項式関数を想定する。 Z = C + f(C)-T + g(C)-T 2+ h(C T3 + i(C T4 + j(C> T5
(31)
(31)式においては、(30)式に対応して、基準係数 Cの関数 f (C)、 g (C)、 h(C)、 i (C)、 j (C)を含む形で表している。そして、本実施形態においては、演算処理の簡 素化の観点から、(31)式の各関数を基準係数 Cの 1次式で表す場合を検討する。こ の場合、(31)式は、次の(32)式のように表される。
Z = C + (al + bl-C)-T + (a2 + b2-C)-T 2
+ (a3 + b3-C)-T3 + (a4 + b4-C)-T4 + (a5 +b5-C)-T5
(32)
(32)式において、係数 al— a5、 bl— b5は、内部インピーダンス Zの温度特性に 適合するようにあらかじめ設定すればよい。このように、多項式関数の各係数を基準 係数 Cの 1次式で表すことにより、比較的簡単な演算処理で温度補正を行うことがで きる。
[0273] 次に、本実施形態に係る電源システムにおいて、二次電池 10の内部インピーダン スに基づく劣化状態の判定を行う際の具体的な処理について説明する。図 4-5は、 主に制御部 13が記憶部 14に保持される制御プログラムに基づき実行する演算処理 の流れを示すフローチャートである。図 4 4に示す演算処理は、電源システムにおい て、あらかじめ設定された所定のタイミングで実行開始される。
[0274] 図 4 5において、制御部 13により演算処理が開始されると、演算に必要なパラメ一 タの初期設定を行う(ステップ S101)。ステップ S101の初期設定の対象となるパラメ ータとしては、内部インピーダンスを算出する際の基準となる基準温度 TpX、二次 電池 10の劣化状態を判定する際の内部インピーダンスの判定しき 、値 Zthなどがあ る。ステップ S 101においては、例えば、基準温度 TpX=— 30(°C)、判定しきい値 Zth = 100 (πιΩ )のような初期設定値を用いればよい。一般に二次電池 10の内部インピ 一ダンスの最悪条件となる使用温度範囲の下限を基準温度 ΤρΧに設定するのが好 ましい。なお、二次電池 10の特性に応じた適切な初期設定値をあら力じめ固定的に 定めておくこともできるが、動作状況等に応じて初期設定値を適宜に変更できるよう にしてもよい。
[0275] なお、基準温度 TpXは、図 4 2に示すような二次電池 10の温度特性を考慮すると 、使用温度範囲の下限に設定するのが望ましい。ただし、判定しきい値 Zthを適切に 設定すれば、任意の温度を基準温度 TpXとして設定することも可能である。
[0276] 次に、充電回路 15又は放電回路 16からパルス電流等の所定の電流を印加しつつ 、所定のタイミングで電圧センサ 11から出力される電圧値と電流センサ 12から出力さ れる電流値を取得する(ステップ S 102)。そして、ステップ S 102で取得された電圧値 及び電流値を用いたフーリエ展開等の手法で計算し、二次電池 10の内部インピー ダンス Zを算出する (ステップ S 103)。なお、ステップ S103では、内部インピーダンス Z が実数部(内部抵抗)であるとするが、虚数部や絶対値を算出することも可能である。
[0277] 次に、温度センサ 17の検出温度を読み取り(ステップ S104)、二次電池 10の周囲 の温度 Tpを取得する。そして、ステップ S 103で算出された内部インピーダンス Ζと、 ステップ S104で取得された温度 Τρとを用いて、上述の基準係数 Cを算出する (ステ ップ S 105)。ステップ S 105では、上述の(4)式に基づいて与えられる次の(33)式を 計算することにより、基準係数 Cを求めることができる。
^ _ Z + al-Tp + a2-Tp 2+a3-Tp3 +a4+Tp4 +a5+Tp
l + bl-Tp + b2-Tp 2+b3+Tp3 +b4'Tp4 +b5+TpJ
(33)
[0278] ここで、(33)式に含まれる係数 al— a5、bl— b5としては、二次電池 10の温度特 性に適合する値が求めておき、あらかじめ記憶部 14の ROMに設定情報として記憶 保持すればよい。また、係数 al— a5、 bl— b5は任意に設定でき、それらの組み合 わせにつ 、ても任意に設定することができる。
[0279] 次に、ステップ S 101で設定された基準温度 TpXと、ステップ S105で算出された基 準係数 Cとを用いて、上述の(32)式に対応する次の(34)式を計算し、基準内部イン ピーダンス ZXを算出する(ステップ S 106)。 ZX = C + (al + bl'C)'TpX+ (a2 + b2-C)-TpX 2
+ (a3 + b3-C)-TpX3(a4 + b4-C)-TpX4 + (a5 + b5-C)-TpX5
(34)
[0280] すなわち、この(33)式で算出される基準内部インピーダンス ZXは、温度 Tp及び内 部インピーダンス Ζの各実測結果を元にして、所望の多項式関数に従 、基準温度 Τ ΡΧ
における内部インピーダンスを近似計算で推測したものである。例えば、基準温度 Τ pX=-30 (°C)に設定されて!、る場合、 (34)式により内部インピーダンスの温度 30 °Cにおける推測値が得られることになる。
[0281] 次に、ステップ S106で算出された基準内部インピーダンス ZXを、ステップ S101で 設定された判定しきい値 Zthと比較し (ステップ S 107)、その大小関係に応じた処理 を行う。そして、基準内部インピーダンス ZXが判定しきい値 Zthを超えている場合、 すなわち ZX>Zthを満たすと判定されるときは (ステップ S 107 ; YES)、所定回数連 続で同様の判定が続くか否かを判断する (ステップ S108)。すなわち、内部インピー ダンスの変動の影響を抑え、判定結果が安定するのを待っためにステップ S 108を 設けている。
[0282] なお、本実施形態にぉ 、ては、ステップ S103で求めた内部インピーダンス Zの温 度補正を行い、基準内部インピーダンス ZXを求めるようにし、判定しきい値 Zthは固 定に設定する場合を説明したが、判定しきい値 Zthの方を温度に関する少なくとも 3 次以上の多項式項を含む関数として表し、任意の温度における判定しき 、値 Zthを 計算するようにしても、本発明と同等の効果を得ることができる。
[0283] ステップ S 108において「NO」と判断された場合は、図 4 4の演算処理を終える。
その後は、次に図 4 4の演算処理を実行するタイミングが到来すると、再び図 4 4に 示す演算処理の実行を開始することになる。一方、二次電池 10が劣化状態にあるも のと判定する(ステップ S109)。一方、ステップ S108において「YES」と判断された 場合、二次電池 10が劣化状態にあるものと判定する (ステップ S109)。ステップ S10 9において劣化状態と判定された場合、例えば、ユーザに二次電池 10の交換を促す ような表示を行えばょ 、。
[0284] 本実施形態においては、所定の特性を備えた 1種の二次電池 10に対応する 1種の 多項式関数を用いて演算処理を行う場合を説明したが、これに限られず、特性が異 なる複数種の二次電池 10に対応する複数の多項式関数を使!、分けて演算処理を 行うようにしてもよい。すなわち、記憶部 14の ROMに記憶される設定情報として、複 数の多項式関数に対応する各項の係数の組み合わせを用意し、例えば、ディップス イッチ等を切り替えることにより、制御部 13が所望の設定情報を選択的に読み出すよ うに構成すればよい。
[0285] また、記憶部 14の ROMには、多項式関数の係数についての設定情報に加え、ス テツプ S 107の判定しきい値 Zthを複数記憶しておき、二次電池 10の種類に応じて 制御部 13が選択的に読み出すように構成してもよい。これにより、電源システムにお V、て、内部インピーダンスの温度特性が異なる二次電池 10に交換した場合であって も、内部インピーダンスの的確な温度補正を行うことができる。
[0286] なお、本実施形態では、観測装置や通信装置等を収納した局舎等に備える蓄電 池、あるいは、車両に搭載される車両二次電池の劣化状態を判定する構成を備えた 電池システムの場合を説明した力 本発明はこれらの用途に限られることなぐ一般 的な二次電池を搭載した各種電源システムに対して広く適用することができる。 産業上の利用可能性
[0287] 本発明によれば、二次電池の内部インピーダンスを求め、その温度特性を近似す る 3次以上の多項式項を含む関数を用いて基準温度における基準内部インピーダン スを算出し、二次電池の劣化状態を判定するようにしたので、二次電池の内部インピ 一ダンスの温度特性を的確に補正し、高 1、制度で二次電池の劣化状態を確実に判 定することが可能となる。

Claims

請求の範囲
[1] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の内部抵抗成分の測定結果に基づ 、て判定する蓄電池の劣化判 定方法であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時端子間電圧との関 係を抵抗電圧変換係数としてあらカゝじめ求め、
前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定し、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!/、て前記基 準温度における内部抵抗成分の値に変換し、
前記基準温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて 前記基準温度における前記蓄電池の放電時端子間電圧の値に変換し、
前記基準温度における前記蓄電池の放電時端子間電圧を、あらかじめ設定した劣 化判定しきい値と比較して前記蓄電池の劣化状態を判定することを特徴とする蓄電 池の劣化判定方法。
[2] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の内部抵抗成分の測定結果に基づ 、て判定する蓄電池の劣化判 定方法であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時降下電圧との関係 を抵抗電圧変換係数としてあらカゝじめ求め、
前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定し、 前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換し、
前記基準温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて 前記基準温度における前記蓄電池の放電時降下電圧の値に変換し、
前記基準温度における前記蓄電池の放電時降下電圧を、あらかじめ設定した劣化 判定しきい値と比較して前記蓄電池の劣化状態を判定することを特徴とする蓄電池 の劣化判定方法。
[3] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の内部抵抗成分の測定結果に基づ 、て判定する蓄電池の劣化判 定方法であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定し、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換し、
前記基準温度における内部抵抗成分の値を、あらかじめ設定した劣化判定しきい 値と比較して前記蓄電池の劣化状態を判定することを特徴とする蓄電池の劣化判定 方法。
[4] 前記基準温度は、前記蓄電池の使用温度範囲内であって、かつ前記蓄電池から あらかじめ定められた放電電流を流した際の放電時端子間電圧の値が最も低くなる 温度に設定されることを特徴とする、請求項 1一 3のいずれ力 1つに記載の蓄電池の 劣化判定方法。
[5] 前記あら力じめ定められた放電電流の電流波形は、前記負荷の動作時間中に必 要とされる消費電流を表す電流波形と実質的に等価とみなせる電流波形であること を特徴とする、請求項 4に記載の蓄電池の劣化判定方法。
[6] 前記劣化判定しき!、値は、前記負荷の動作に必要な最低電圧以上の値とすることを 特徴とする、請求項 1または 5に記載の蓄電池の劣化判定方法。
[7] 前記劣化判定しき!、値は、前記負荷の動作に必要な最低電圧となる降下電圧値 以下の値とすることを特徴とする、請求項 2または 5に記載の蓄電池の劣化判定方法
[8] 前記劣化判定しきい値は、前記負荷の動作に必要な最低電圧となる内部抵抗成 分の値以下の値とすることを特徴とする、請求項 3または 5に記載の蓄電池の劣化判 定方法。
[9] 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時端子間電圧との関 係を抵抗電圧変換係数としてあらかじめ求める工程における前記蓄電池の放電時端 子間電圧は、前記蓄電池の放電時の最低電圧であることを特徴とする、請求項 1ま たは 5に記載の蓄電池の劣化判定方法。
[10] 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時端子間電圧との関 係を抵抗電圧変換係数としてあらかじめ求める工程における前記蓄電池の放電時端 子間電圧は、前記蓄電池の放電開始力 所定時間経過後の電圧であることを特徴と する、請求項 1または 5に記載の蓄電池の劣化判定方法。
[11] 2つ以上の蓄電池のうち、少なくとも 1つの蓄電池について劣化状態を判定し、前 記 1つの蓄電池が劣化の見込まれる状態又は劣化状態である場合、その状態を認 識する
ことを特徴とする請求項 1一請求項 10のいずれかに記載の蓄電池の劣化判定方法
[12] 少なくとも 2つの前記蓄電池の劣化状態を判定し、蓄電池が劣化の見込まれる状 態又は劣化状態である場合、充電又は交換を要する要対応蓄電池の情報と、継続し て使用可能な継続使用蓄電池の情報とを表示する表示部と、前記蓄電池の履歴を 記録する記憶部を有し、少なくとも充電して使用する又は継続して使用可能する蓄 電池の履歴を保持、又は Z及び、継続して判定するプログラムを有する制御 ·判定部 を備えることを特徴とする請求項 1一請求項 11のいずれかに記載の蓄電池の劣化判 定方法。
[13] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態を 、該蓄電池の放電性能に基づ!、て判定する蓄電池の劣化判定方法であって、 あら力じめ 2以上の温度範囲を定め、該温度範囲ごとに任意の基準温度を設定し、 前記蓄電池の劣化状態を判定する際に測定される測定温度を、前記温度範囲に対 応する少なくとも 1つの基準温度を選択し、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および前 記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換し、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求め、
求めた前記基準温度における放電性能を、あらかじめ設定した劣化判定しきい値と 比較して前記蓄電池の劣化状態を判定する
ことを特徴とする蓄電池の劣化判定方法。
[14] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態を
、該蓄電池の放電性能に基づ!、て判定する蓄電池の劣化判定方法であって、 前記蓄電池の劣化状態を判定する際に測定される測定温度と、該測定温度の値 から 2以上の基準温度を設定し、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換し、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求め、
前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 前記 2以上の基準温度における値を比較又は互いの相関関係を判定して前記蓄 電池の劣化状態を判定する
ことを特徴とする蓄電池の劣化判定方法。
[15] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の放電性能に基づ 、て判定する蓄電池の劣化判定方法であって、 前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換し、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求め、
求めた前記基準温度における放電性能を、あらかじめ設定した劣化判定しきい値と 比較して前記蓄電池の劣化状態を判定する
ことを特徴とする蓄電池の劣化判定方法。
[16] 前記相関値は、前記蓄電池の内部抵抗成分の直流抵抗値、交流インピーダンス値 あるいは前記交流インピーダンスの逆数である交流コンダクタンス値等の導電値であ ることを特徴とする請求項 14または請求項 15のいずれか 1項に記載の蓄電池の劣 化判定方法。
[17] 前記所定の関係式は、負荷の消費電流の時間変化パターンに相当する電流を流 した際の前記蓄電池の端子間電圧、あるいは、負荷の消費電流の時間変化パター ンに準じた電流を流した際の前記蓄電池の端子間電圧であることを特徴とする、請 求項 14から請求項 16のいずれか 1項に記載の蓄電池の劣化判定方法。
[18] 前記基準温度は、前記蓄電池の所定の使用可能温度範囲の内、電池の放電性能 が最も低下する温度に設定されることを特徴とする請求項 14から請求項 17のいずれ 力 1項に記載の蓄電池の劣化判定方法。
[19] 前記基準温度は、前記所望の温度から一定温度を差し引いた温度に設定されるこ とを特徴とする請求項 14から請求項 17のいずれか 1項に記載の蓄電池の劣化判定 方法。
[20] 前記基準温度は、前記所望の温度が属する温度帯域毎に対応する所定の温度に 設定されることを特徴とする請求項 14力 請求項 17のいずれ力 1項に記載の蓄電池 の劣化判定 方法。
[21] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の内部抵抗成分の測定結果に基づ 、て判定する蓄電池の劣化判 定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時端子間電圧との関 係を抵抗電圧変換係数としてあらカゝじめ求め、
前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定する電池温度測定部と、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換する内部抵抗成分変換部と、
前記基準温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて 前記基準温度における前記蓄電池の放電時端子間電圧の値に変換する端子間電 圧変換部と、
前記基準温度における前記蓄電池の放電時端子間電圧を、あらかじめ設定した劣 化判定しきい値と比較して前記蓄電池の劣化状態を判定する劣化状態判定部と、 を備えたことを特徴とする蓄電池の劣化判定装置。
[22] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の内部抵抗成分の測定結果に基づ 、て判定する蓄電池の劣化判 定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記基準温度における内部抵抗成分と、前記基準温度における前記蓄電池からあ らカじめ定められた放電電流を流した際の前記蓄電池の放電時降下電圧との関係 を抵抗電圧変換係数としてあらカゝじめ求め、
前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定する電池温度測定部と、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換する内部抵抗成分変換部と、
前記基準温度における内部抵抗成分の値を、前記抵抗電圧変換係数に基づいて 前記基準温度における前記蓄電池の放電時降下電圧の値に変換する放電時降下 電圧変換部と、
前記基準温度における前記蓄電池の放電時降下電圧を、あらかじめ設定した劣化 判定しきい値と比較して前記蓄電池の劣化状態を判定する劣化状態判定部と、 を備えたことを特徴とする蓄電池の劣化判定装置。
[23] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の内部抵抗成分の測定結果に基づ 、て判定する蓄電池の劣化判 定装置であって、
前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記内部抵抗成分の温度による変化を抵抗温度補正係数としてあらかじめ求め、 前記蓄電池の内部抵抗成分および前記内部抵抗成分測定時の前記蓄電池の温 度を測定する電池温度測定部と、
前記測定された内部抵抗成分の値を、前記抵抗温度補正係数に基づ!、て前記基 準温度における内部抵抗成分の値に変換する内部抵抗成分変換部と、
前記基準温度における内部抵抗成分の値を、あらかじめ設定した劣化判定しきい 値と比較して前記蓄電池の劣化状態を判定する劣化状態判定部と、
を備えたことを特徴とする蓄電池の劣化判定装置。
[24] 蓄電池が負荷に接続された構成を含むシステムにおける前記蓄電池の劣化状態 を、前記蓄電池の放電性能に基づ!、て判定する蓄電池の劣化判定装置であって、 前記蓄電池の劣化状態を判定する温度を基準温度としてあらかじめ設定し、 前記蓄電池の放電性能に相関関係を有する相関値を所望の温度で測定し、 あら力じめ求めた前記相関値の温度補正式、前記相関値の測定時の温度および 前記相関値に基づ 、て、前記相関値を前記基準温度における相関値に変換する相 関値変換部と、 相関値と前記放電性能との所定の関係式及び変換後の前記相関値に基づいて前 記蓄電池の放電性能を求める放電性能算出部と、
求めた前記基準温度における放電性能を、あらかじめ設定した劣化判定しきい値と 比較して前記蓄電池の劣化状態を判定する劣化状態判別部と、
を備えたことを特徴とする蓄電池の劣化判定装置。
[25] 2つ以上の蓄電池のうち、少なくとも 1つの蓄電池について劣化状態を判定し、前 記 1つの蓄電池が劣化の見込まれる状態又は劣化状態である場合、その状態を認 識できる表示部を備える
ことを特徴とする請求項 21—請求項 24のいずれかに記載の蓄電池の劣化判定装
[26] 少なくとも 2つの前記蓄電池の劣化状態を判定し、蓄電池が劣化の見込まれる状態 又は劣化状態である場合、充電又は交換を要する要対応蓄電池の情報と、の継続し て使用可能な継続使用蓄電池の情報とを表示する表示部と、前記蓄電池の履歴を 記録する記憶部を有し、少なくとも充電して使用する又は継続して使用可能する蓄 電池の履歴を保持、又は Z及び、継続して判定するプログラムを有する制御 ·判定部 を備えたことを特徴とする請求項 21—請求項 25のいずれかに記載の蓄電池の劣化 判定装置。
[27] 充電電流又は放電電流を二次電池の入力電流とし、前記二次電池の入力電流と 応答電圧を測定し、時間軸上で複数の電流測定値及び電圧測定値を取得し、 前記取得された複数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変 換することにより、所定周波数における前記入力電流及び前記応答電圧のそれぞれ の周波数成分を求め、
前記入力電流の周波数成分と前記応答電圧の周波数成分の比をとつて前記所定 周波数における前記二次電池の内部インピーダンスを算出することを特徴とする二 次電池の内部インピーダンス測定方法。
[28] 前記複数の電流測定値及び前記複数の電圧測定値は、それぞれ所定の時間間 隔 Δ tでサンプリングされた N個の測定値からなり、 前記所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数 成分は、離散フーリエ変換により求められることを特徴とする請求項 27に記載の二次 電池の内部インピーダンス測定方法。
[29] 前記入力電流の周波数成分 I ( ω )及び前記応答電圧の周波数成分 V ( ω )は、前 記所定周波数を Fとし、整数 n(n=0, 2〜Ν— 1)に対し前記 Ν個の電流測定値を i (n • A t)、前記 N個の電圧測定値を ν(η· A t)としたとき、
N-1
Ι(ω) = Δΐ^ i(n ' At) ' exp( jco ' n ' At)dt
N-l
ν(ω) = At〉, v(n . At) . exp( jco . n . At)dt
i =0
(た し、 CO = 2 F)
によりそれぞれ求められ、前記内部インピーダンス Z ( ω )は、
Ζ(ω) = ν(ω)
Ι(ω) により算出されることを特徴とする請求項 28に記載の二次電池の内部インピーダンス 測定方法。
[30] 前記内部インピーダンスとして、少なくとも Μ個の異なる周波数に対応する複数の 成分を算出し、前記二次電池の等価回路に含まれる Μ個の回路定数を未知数とす る連立方程式を前記内部インピーダンスの複数の成分に基づき解くことにより、前記 Μ個の回路定数を算出することを特徴とする請求項 27から 29のいずれか 1項に記 載の二次電池の内部インピーダンス測定方法。
[31] 二次電池の充電時に充電電流を供給する充電回路と、
前記二次電池の放電時に放電電流を供給する放電回路と、
前記充電電流又は前記放電電流を前記二次電池の入力電流とし、前記二次電池 の入力電流と応答電圧を測定するセンサ手段と、 前記センサ手段の測定結果に基づき時間軸上で複数の電流測定値及び電圧測 定値を取得し、当前記取得された複数の電流測定値及び複数の電圧測定値をそれ ぞれフーリエ変換することにより、所定周波数における前記入力電流及び前記応答 電圧のそれぞれの周波数成分を求め、前記入力電流の周波数成分と前記応答電圧 の周波数成分の比をとつて前記所定周波数における前記二次電池の内部インピー ダンスを算出する制御手段と、
を備えることを特徴とする二次電池の内部インピーダンス測定装置。
[32] 前記制御手段は、前記複数の電流測定値及び前記複数の電圧測定値として、そ れぞれ所定の時間間隔 A tでサンプリングされた N個の測定値を取得し、前記所定 周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を離散 フーリエ変換により求めることを特徴とする請求項 31に記載の二次電池の内部インピ 一ダンス測定装置。
[33] 請求項 32に記載の二次電池の内部インピーダンス測定装置によって算出された 内部インピーダンスに基づき前記二次電池の劣化状態を判定することを特徴とする 二次電池劣化判定装置。
[34] 請求項 32に記載の二次電池の内部インピーダンス測定装置を備えた電源システ ム。
[35] 負荷に電力を供給する二次電池が充電分極と放電分極のいずれを受けた状態に あるかを判定し、
前記充電分極を受けて ヽると判定された場合、一定周期の放電電流パルスを前記 二次電池に印加する一方、前記放電分極を受けていると判定された場合、一定周期 の充電電流パルスを前記二次電池に印加し、
前記充電電流パルス又は前記放電電流パルスの印加開始タイミング力 所定の周 期数が経過したタイミング以降の前記二次電池の入力電流と応答電圧を測定し、 前記測定された入力電圧と応答電圧を用いて前記二次電池の内部インピーダンス を算出する、
ことを特徴とする二次電池の内部インピーダンス測定方法。
[36] 前記充電電流パルス又は前記放電電流パルスは、所定の周期と所定の電流振幅 を有する矩形波であることを特徴とする請求項 35に記載の二次電池の内部インピー ダンス測定方法。
[37] 前記内部インピーダンスの算出に用いる前記入力電流と前記応答電圧は、前記充 電電流パルス又は前記放電電流パルスの印加開始タイミングから、 10— 50周期の 範囲に設定された所定周期数の経過後に測定開始することを特徴とする請求項 35 又は 36に記載の二次電池の内部インピーダンス測定方法。
[38] 負荷に電力を供給する二次電池が充電分極と放電分極のいずれを受けた状態に あるかを判定し、
前記充電分極を受けて ヽると判定された場合、一定周期の放電電流パルスを前記 二次電池に印加する一方、前記放電分極を受けていると判定された場合、一定周期 の充電電流パルスを前記二次電池に印加し、
前記充電電流パルス又は前記放電電流パルスの印加開始後の所定時間内に前 記二次電池の入力電流と応答電圧をそれぞれ測定し、
前記測定された入力電圧と前記応答電圧を用いて時間軸上で複数の前記二次電 池の内部インピーダンスを算出し、
前記複数の内部インピーダンスを用いて逐次計算を行って前記内部インピーダン スの時間特性を近似する 2次以上の指数減衰関数の係数を決定し、
少なくとも前記決定した係数に基づき前記内部インピーダンスの収束値を求める、 ことを特徴とする二次電池の内部インピーダンス測定方法。
[39] 前記指数減衰関数として時間 Tに対し、
F(T) = Al exp( A3 · T) + Α2 exp( A4 · T) + A5 により表される関数 F (T)を用い、 5個の係数 A1— A5を決定することを特徴とする 請求項 38に記載の二次電池の内部インピーダンス測定方法。
[40] 前記充電電流パルス又は前記放電電流パルスは、所定の周期と所定の電流振幅 を有する矩形波であることを特徴とする請求項 38又は 39に記載の二次電池の内部 インピーダンス測定方法。
[41] 前記逐次計算に用いる複数の内部インピーダンスは、前記充電電流パルス又は前 記放電電流パルスの印加開始後から、 5— 50周期の範囲に設定された所定周期数 までの時間内に測定された前記入力電流と前記応答電圧を用いて算出されることを 特徴とする請求項 40に記載の二次電池の内部インピーダンス測定方法。
[42] 負荷に電力を供給する二次電池の入力電流と応答電圧を測定するセンサ手段と、 一定周期の充電電流パルス又は放電電流パルスを前記二次電池に印加可能な充 放電回路と、
前記二次電池が充電分極と放電分極の 、ずれを受けて 、る状態にあるかを判定し 、前記充電分極を受けて 、ると判定された場合は前記放電電流パルスを前記二次 電池に印加する一方、前記放電分極を受けていると判定された場合は前記充電電 流パルスを前記二次電池に印加するように前記充放電回路を制御し、前記充電電 流パルス又は前記放電電流パルスの印加開始タイミング力 所定の周期数が経過し たタイミング以降の前記センサ手段の測定結果を取得し、取得された前記入力電圧 と前記応答電圧を用いて前記二次電池の内部インピーダンスを算出する制御手段と を備えることを特徴とする二次電池の内部インピーダンス測定装置。
[43] 負荷に電力を供給する二次電池の入力電流と応答電圧を測定するセンサ手段と、 一定周期の充電電流パルス又は放電電流パルスを前記二次電池に印加可能な充 放電回路と、
前記二次電池が充電分極と放電分極の 、ずれを受けて 、る状態にあるかを判定し 、前記充電分極を受けて 、ると判定された場合は前記放電電流パルスを前記二次 電池に印加する一方、前記放電分極を受けていると判定された場合は前記充電電 流パルスを前記二次電池に印加するように前記充放電回路を制御し、前記充電電 流パルス又は前記放電電流パルスの印加後の所定時間内の前記センサ手段の測 定結果を取得し、取得された前記入力電圧と前記応答電圧を用いて時間軸上で複 数の前記二次電池の内部インピーダンスを算出し、前記複数の内部インピーダンス を用いて逐次計算を行って前記内部インピーダンスの時間特性を近似する 2次以上 の指数減衰関数の係数を決定し、少なくとも前記決定した係数に基づき前記内部ィ ンピーダンスの収束値を求める制御手段と、
を備えることを特徴とする二次電池の内部インピーダンス測定装置。
[44] 請求項 42又は 43に記載の二次電池の内部インピーダンス測定装置を備えた電源 システム。
[45] 負荷に電力を供給する二次電池の内部インピーダンスに基づいて前記二次電池 の劣化状態を判定する二次電池劣化判定方法であって、
前記二次電池に所定の電流を印加した状態で電流及び電圧を測定し、測定結果 に基づいて前記内部インピーダンスを求め、
前記二次電池の温度を測定し、前記求めた内部インピーダンスと前記測定した温 度とに基づき、前記内部インピーダンスの温度特性を近似する少なくとも 3次以上の 多項式項を含む関数の各項の係数を決定し、
前記決定した係数に基づき、前記 3次以上の多項式項を含む関数の所定の基準 温度における推測値である基準内部インピーダンスを算出し、
前記算出した基準内部インピーダンスに基づき前記二次電池の劣化状態を判定 する、ことを特徴とする二次電池劣化判定方法。
[46] 前記 3次以上の多項式項の各項の係数は共通の基準係数に関連付けて設定され 、前記求めた内部インピーダンスと前記測定した温度とに基づき前記基準係数を算 出し、算出した基準係数に基づき前記各項の係数を決定することを特徴とする請求 項 45に記載の二次電池劣化判定方法。
[47] 前記 3次以上の多項式項を含む関数は、温度を Tp、前記内部インピーダンスを Ζ、 前記基準係数を Cとしたとき、
Z = C + fl(C)-Tp + f2iC)-Tp 2+… ·+ fn(C Tp"
(ただし、 η: 3以上の整数、;^ー^:所定の関数)
により表されることを特徴とする請求項 46に記載の二次電池劣化判定方法。
[48] 前記 3次以上の多項式に含まれる各項の関数 fl (C) -fn (C)は、前記基準係数 C の 1次式で表されることを特徴とする請求項 47に記載の二次電池劣化判定方法。
[49] 前記基準温度に対応してあらかじめ判定しきい値が設定され、前記算出した基準 内部インピーダンスと前記判定しきい値との大小関係に応じて前記二次電池の劣化 状態を判定す
ることを特徴とする請求項 45から 48のいずれ力 1項に記載の二次電池劣化判定方 法。
[50] 可変した周波数にて連続して放電させ、可変した周波数ごとの放電電流を流し、前 記可変した周波数ごとの放電電流の放電電流波形をフーリエ変換して、前記周波数 ごとの放電電流波形のフーリエ変換値を求め、
放電中の電池電圧の電圧応答波形をフーリエ変換して前記可変した周波数ごとの 電圧応答波形のフーリエ変換値を求め、
前記電圧応答波形のフーリエ変換値を前記放電電流波形のフーリエ変換値で除し て可変した周波数ごとの内部インピーダンスを求め、周波数ごとに算出した内部イン ピーダンス値を it較し、
その増加あるいは減少割合が一定値以下であれば、ノイズ無しと判断し、予め定め た基本周波数を用い、その増加あるいは減少割合が一定値以上であれば、ノイズ有 と判断することを特徴とする二次電池の内部インピーダンス測定方法。
[51] 前記放電電流波形の周期が異なる少なくとも 3回の放電を 1セットとして繰り返し実 施し、少なくとも 3つの周期でのインピーダンスを計算し、 3つのインピーダンスに基づ いて所望のインピーダンスを求めることを特徴とする請求項 50に記載の二次電池の 内部インピーダンス測定方法。
[52] 負荷に電力を供給する二次電池の内部インピーダンスに基づいて前記二次電池 の劣化状態を判定する二次電池劣化判定装置であって、
前記二次電池に電流パルスを印加可能な回路と、
前記二次電池の電流と電圧を測定するセンサ手段と、
前記二次電池の温度を測定する温度センサと、
前記回路から電流パルスを印加した状態における前記センサ手段の測定結果に 基づ 、て前記内部インピーダンスを求め、前記温度センサの測定温度と前記求めた 内部インピーダンスとに基づき、前記内部インピーダンスの温度特性を近似する少な くとも 3次以上の多項式項を含む関数の各項の係数を決定し、前記決定した係数に 基づき、前記 3次以上の多項式項を含む関数の所定の基準温度における推測値で ある基準内部インピーダンスを算出し、前記算出した基準内部インピーダンスに基づ き前記二次電池の劣化状態を判定する制御手段と、
を備えることを特徴とする二次電池劣化判定装置。
[53] 前記 3次以上の多項式項の各項の係数についての設定情報をあら力じめ記憶する 不揮発性記憶手段を備え、
前記制御手段は、前記不揮発性記憶手段から読み出した設定情報を用いて前記 各項の係数を決定することを特徴とする請求項 52に記載の二次電池劣化判定装置
[54] 前記不揮発性記憶手段には、前記 3次以上の多項式の各項の係数についての複 数の組合せに対応する複数の設定情報が記憶され、前記制御手段は前記複数の設 定情報を選択的に読み出し可能であることを特徴とする請求項 53に記載の二次電 池劣化判定装置。
[55] 前記不揮発性記憶手段には、前記基準温度に対応してあらかじめ設定される判定 しきい値が記憶され、
前記制御手段は、前記算出した基準内部インピーダンスと前記不揮発性記憶手段 から読み出した判定しきい値との大小関係に応じて前記二次電池の劣化状態を判 定することを特徴とする請求項 53又は 54に記載の二次電池劣化判定装置。
[56] 前記不揮発性記憶手段には、複数の前記判定しきい値が記憶され、前記制御手 段は前記複数の判定しきい値を選択的に読み出し可能であることを特徴とする請求 項 55に記載の
二次電池劣化判定装置。
[57] 可変した周波数にて連続して放電させ、可変した周波数ごとの放電電流を流し、前 記可変した周波数ごとの放電電流の放電電流波形をフーリエ変換して、前記周波数 ごとの放電電流波形のフーリエ変換値を求め、
放電中の電池電圧の電圧応答波形をフーリエ変換して前記可変した周波数ごとの 電圧応答波形のフーリエ変換値を求め、
前記電圧応答波形のフーリエ変換値を前記放電電流波形のフーリエ変換値で除し て可変した周波数ごとの内部インピーダンスを求め、周波数ごとに算出した内部イン ピーダンス値を it較し、
その増加あるいは減少割合が一定値以下であれば、ノイズ無しと判断し、予め定め た基本周波数を用い、その増加あるいは減少割合が一定値以上であれば、ノイズと 判断する判断部を備えることを特徴とする二次電池劣化判定装置。
[58] 請求項 52、 53、 54または 56に記載の二次電池劣化判定装置を備えた電源システ ム。
PCT/JP2004/009105 2003-06-27 2004-06-28 蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム WO2005015252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04746574A EP1650575A4 (en) 2003-06-27 2004-06-28 METHOD FOR ASSESSING THE WEAKENANCE OF AN ACCUMULATOR, METHOD FOR MEASURING THE INTERNAL IMPEDANCE OF A SECONDARY CELL, DEVICE FOR MEASURING THE INTERNAL IMPEDANCE OF A SECONDARY CELL, DEVICE FOR ASSESSING THE DEGRADATION OF A SECONDARY CELL AND CURRENT SOURCE SYSTEM
US11/317,286 US7362074B2 (en) 2003-06-27 2005-12-27 Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system
US11/770,359 US7616003B2 (en) 2003-06-27 2007-06-28 Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003183971 2003-06-27
JP2003-183971 2003-06-27
JP2003-299339 2003-08-22
JP2003299339 2003-08-22
JP2003326505A JP4015092B2 (ja) 2003-09-18 2003-09-18 二次電池劣化状態判定方法、二次電池劣化状態判定装置及び電源システム
JP2003-326505 2003-09-18
JP2004032553A JP4360621B2 (ja) 2004-02-09 2004-02-09 二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム
JP2004-032553 2004-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/317,286 Continuation US7362074B2 (en) 2003-06-27 2005-12-27 Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system

Publications (1)

Publication Number Publication Date
WO2005015252A1 true WO2005015252A1 (ja) 2005-02-17

Family

ID=34139742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009105 WO2005015252A1 (ja) 2003-06-27 2004-06-28 蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム

Country Status (3)

Country Link
US (2) US7362074B2 (ja)
EP (4) EP2626716B1 (ja)
WO (1) WO2005015252A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129039B (zh) * 2005-09-16 2013-01-16 古河电气工业株式会社 二次电池劣化判定方法、二次电池劣化判定装置、及电源系统
CN101221144B (zh) * 2006-12-22 2013-06-05 梅特勒-托利多公开股份有限公司 监视电化学半电池的方法
JP2015224876A (ja) * 2014-05-26 2015-12-14 株式会社デンソー 電池内部状態推定装置
CN105259510A (zh) * 2015-10-20 2016-01-20 盐城工学院 锂离子电池温熵系数的测定方法
TWI695564B (zh) * 2019-09-03 2020-06-01 飛宏科技股份有限公司 電池充電器之常溫降流及高溫脈衝充電方法
CN112055913A (zh) * 2018-05-31 2020-12-08 本田技研工业株式会社 充电控制装置、输送设备以及程序
CN112098870A (zh) * 2020-09-15 2020-12-18 国网辽宁省电力有限公司阜新供电公司 一种并联型电源设备蓄电池内阻在线测试方法

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8762109B2 (en) 2010-05-03 2014-06-24 Battelle Energy Alliance, Llc Crosstalk compensation in analysis of energy storage devices
US8150643B1 (en) 2004-12-21 2012-04-03 Battelle Energy Alliance, Llc Method of detecting system function by measuring frequency response
US8352204B2 (en) * 2004-12-21 2013-01-08 Battelle Energy Alliance, Llc Method of detecting system function by measuring frequency response
US9851414B2 (en) 2004-12-21 2017-12-26 Battelle Energy Alliance, Llc Energy storage cell impedance measuring apparatus, methods and related systems
JP2006288150A (ja) * 2005-04-04 2006-10-19 Hitachi Koki Co Ltd リチウム電池用充電装置
JP5170851B2 (ja) * 2005-07-15 2013-03-27 古河電気工業株式会社 蓄電池充電状態検知方法および蓄電池充電状態検知装置
US7675293B2 (en) * 2006-05-04 2010-03-09 Battelle Energy Alliance, Llc Method and apparatus for in-situ characterization of energy storage and energy conversion devices
DE102006035095B4 (de) * 2006-07-28 2019-03-21 Continental Automotive Gmbh Verfahren und System zum Bestimmen des Ersatzwiderstandes eines Energiespeichers
US7593823B2 (en) * 2006-11-21 2009-09-22 The Furukawa Electric Co., Ltd Method and device for determining state of battery, and battery power supply system therewith
JP5179047B2 (ja) * 2006-11-27 2013-04-10 パナソニック株式会社 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
US7899631B2 (en) * 2007-03-29 2011-03-01 The Furukawa Electric Co., Ltd. Method and device for estimating battery residual capacity, and battery power supply system
US10379168B2 (en) 2007-07-05 2019-08-13 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
JP4365429B2 (ja) * 2007-07-24 2009-11-18 トヨタ自動車株式会社 充電情報を表示するナビゲーション装置およびその装置を備えた車両
JP2009031220A (ja) * 2007-07-30 2009-02-12 Mitsumi Electric Co Ltd 電池状態検知方法及び電池状態検知装置
ES2332298B1 (es) * 2008-06-10 2011-06-14 Metro De Madrid, S.A. Metodo para el diagnostico de baterias en entornos dinamicos.
JP2010019758A (ja) * 2008-07-11 2010-01-28 Mitsumi Electric Co Ltd 電池状態検知装置
KR101180830B1 (ko) * 2008-10-13 2012-09-07 주식회사 엘지화학 셀 모듈 어셈블리의 절연성 검사 장치와 방법 및 이를 위한 프로브
JP5453769B2 (ja) * 2008-11-06 2014-03-26 トヨタ自動車株式会社 車両用電池診断システムおよび車両用電池診断方法
US10132870B2 (en) * 2009-04-24 2018-11-20 Dell Products L.P. Dynamic discharging to detect derated battery cells
WO2010144834A2 (en) * 2009-06-11 2010-12-16 Montana Tech Of The University Of Montana Method of estimating pulse response using an impedance spectrum
WO2011009227A1 (en) * 2009-07-23 2011-01-27 Texas Instruments Incorporated Systems and methods for determining battery state of charge
US8467984B2 (en) * 2009-09-30 2013-06-18 Battelle Energy Alliance, Llc Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells
US8415926B2 (en) * 2009-10-19 2013-04-09 Apple Inc. In-situ battery health detector and end-of-life indicator
CN102753379B (zh) * 2010-02-09 2015-12-09 丰田自动车株式会社 电动车辆的电源系统及其控制方法
EP2555372B1 (en) 2010-03-31 2020-05-27 Panasonic Intellectual Property Management Co., Ltd. Power source device for vehicle
US8346495B2 (en) 2010-04-22 2013-01-01 Battelle Energy Alliance, Llc Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices
US20110267067A1 (en) * 2010-04-29 2011-11-03 Bertness Kevin I Electronic battery tester
US8836284B2 (en) * 2010-05-17 2014-09-16 Toyota Jidosha Kabushiki Kaisha Device and method for calculating value of rechargeable battery
US11791647B2 (en) 2010-05-21 2023-10-17 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US10389156B2 (en) 2010-05-21 2019-08-20 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US9142994B2 (en) 2012-09-25 2015-09-22 Qnovo, Inc. Method and circuitry to adaptively charge a battery/cell
US12081057B2 (en) 2010-05-21 2024-09-03 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8791669B2 (en) 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
CN102906961B (zh) 2010-05-21 2016-01-13 奇诺沃公司 自适应地给电池/电池单元充电的方法和电路系统
US11397215B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using battery physical phenomena
US11397216B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using a battery model
US8970178B2 (en) 2010-06-24 2015-03-03 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US10067198B2 (en) 2010-05-21 2018-09-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using the state of health thereof
US8521497B2 (en) 2010-06-03 2013-08-27 Battelle Energy Alliance, Llc Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices
US8933666B2 (en) * 2010-07-12 2015-01-13 The Johns Hopkins University Device and method for continuously equalizing the charge state of lithium ion battery cells
JP5174104B2 (ja) * 2010-09-01 2013-04-03 三洋電機株式会社 二次電池の充電方法及びパック電池
WO2012046285A1 (ja) 2010-10-04 2012-04-12 古河電気工業株式会社 バッテリの状態推定方法及び電源システム
EP2629109B1 (en) * 2010-10-14 2022-06-29 Toyota Jidosha Kabushiki Kaisha Electrical storage device
FR2968769B1 (fr) * 2010-12-10 2012-12-14 Peugeot Citroen Automobiles Sa Procede de determination de l'etat de sante d'une batterie pour l'alimentation d'un vehicule electrique
JP5307113B2 (ja) 2010-12-20 2013-10-02 古河電気工業株式会社 満充電検知装置および満充電検知方法
WO2012091076A1 (ja) * 2010-12-28 2012-07-05 三洋電機株式会社 電池の劣化度の検出方法
KR101212200B1 (ko) 2011-02-09 2012-12-13 삼성에스디아이 주식회사 배터리 관리 시스템, 배터리 분극 전압 제거 방법 및 배터리 충전 상태 추정 방법
US10012701B2 (en) * 2011-03-15 2018-07-03 Vestas Wind Systems A/S Accurate estimation of the capacity and state of charge of an energy storage system used in wind farms
US9625532B2 (en) 2011-10-10 2017-04-18 Battelle Energy Alliance, Llc Method, system, and computer-readable medium for determining performance characteristics of an object undergoing one or more arbitrary aging conditions
DE102012210262A1 (de) * 2011-11-18 2013-05-23 Robert Bosch Gmbh Batterie mit einer Batteriezelle mit externem und integriertem Temperatursensor und Verfahren zum Betrieb der Batterie
US9201119B2 (en) 2011-12-19 2015-12-01 Qualcomm Incorporated Battery fuel gauge
EP2822138B1 (en) * 2012-02-27 2018-11-07 Kyocera Corporation Control device, control system, and storage cell control method
JP5677362B2 (ja) 2012-04-27 2015-02-25 本田技研工業株式会社 電源劣化判定装置
US8994340B2 (en) * 2012-05-15 2015-03-31 GM Global Technology Operations LLC Cell temperature and degradation measurement in lithium ion battery systems using cell voltage and pack current measurement and the relation of cell impedance to temperature based on signal given by the power inverter
US9018913B2 (en) 2012-05-18 2015-04-28 Caterpillar Inc. System for determining battery impedance
WO2014018048A1 (en) * 2012-07-27 2014-01-30 International Engine Intellectual Property Company, Llc Battery management system
JP6040684B2 (ja) * 2012-09-28 2016-12-07 富士通株式会社 二次電池の状態評価装置、二次電池の状態評価方法、及び、二次電池の状態評価プログラム
US9063018B1 (en) 2012-10-22 2015-06-23 Qnovo Inc. Method and circuitry to determine temperature and/or state of health of a battery/cell
DE102012111591A1 (de) * 2012-11-29 2014-06-05 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen der Funktionsfähigkeit eines Akkumulators
CN105026944B (zh) * 2013-03-07 2019-08-27 古河电气工业株式会社 二次电池状态检测装置及二次电池状态检测方法
US9461492B1 (en) 2013-04-19 2016-10-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter
WO2014179801A1 (en) * 2013-05-03 2014-11-06 Avocent Huntsville Corp. System and method for ups battery monitoring and data analysis
RU2548618C2 (ru) * 2013-05-07 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Сетевой блок контроля качества электроснабжения
US10574079B1 (en) 2014-06-20 2020-02-25 Qnovo Inc. Wireless charging techniques and circuitry for a battery
KR102318789B1 (ko) * 2014-09-02 2021-10-28 삼성전자 주식회사 배터리 충전 관리 방법 및 이를 구현하는 전자 장치
CN105467324B (zh) * 2014-09-30 2020-03-03 株式会社杰士汤浅国际 电池劣化判定装置、电池劣化判定方法以及电池组
JP6350875B2 (ja) * 2015-05-29 2018-07-04 トヨタ自動車株式会社 リチウムイオン二次電池の劣化度算出方法、制御方法および制御装置
WO2016194271A1 (ja) * 2015-06-05 2016-12-08 パナソニックIpマネジメント株式会社 補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法
KR20170060499A (ko) * 2015-11-24 2017-06-01 현대자동차주식회사 배터리의 출력을 제어하는 방법
US10176100B1 (en) * 2015-12-21 2019-01-08 Cadence Design Systems, Inc. Cache coherency process
US10794962B2 (en) 2016-02-19 2020-10-06 Toyota Motor Europe Systems and methods for battery micro-short estimation
US20190041468A1 (en) * 2016-02-19 2019-02-07 Toyota Motor Europe Systems and methods for battery micro-short estimation
JP6679342B2 (ja) * 2016-02-24 2020-04-15 Ntn株式会社 二次電池の劣化判定装置
US10345384B2 (en) 2016-03-03 2019-07-09 Battelle Energy Alliance, Llc Device, system, and method for measuring internal impedance of a test battery using frequency response
JP2017175705A (ja) 2016-03-22 2017-09-28 Ntn株式会社 二次電池の劣化抑制装置および個別劣化抑制装置
US10656233B2 (en) 2016-04-25 2020-05-19 Dynexus Technology, Inc. Method of calibrating impedance measurements of a battery
JP6755126B2 (ja) 2016-06-02 2020-09-16 Ntn株式会社 二次電池の劣化判定装置
JP6885688B2 (ja) 2016-08-01 2021-06-16 トヨタ自動車株式会社 ニッケル水素電池の再生方法
JP6976080B2 (ja) * 2017-05-22 2021-12-01 三菱パワー株式会社 状態分析装置、状態分析方法、およびプログラム
JP6881154B2 (ja) * 2017-08-23 2021-06-02 トヨタ自動車株式会社 二次電池の劣化状態推定方法および二次電池システム
KR102182691B1 (ko) 2017-10-20 2020-11-24 주식회사 엘지화학 배터리 저항 추정 장치 및 방법
KR102194844B1 (ko) 2017-11-02 2020-12-23 주식회사 엘지화학 배터리 등가 회로 모델의 파라미터 추정 방법, 장치 및 기록매체
KR102542958B1 (ko) * 2017-12-12 2023-06-14 현대자동차주식회사 차량 배터리 열화판단 제어방법 및 시스템
US10948547B2 (en) 2018-11-23 2021-03-16 Lg Chem, Ltd. Battery monitoring system
DE102018220251A1 (de) * 2018-11-26 2020-05-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abschätzung des Gesundheitszustands eines Wechselakkus
KR102442474B1 (ko) 2018-11-30 2022-09-14 주식회사 엘지에너지솔루션 배터리셀 저항 측정 장치 및 방법
US11999261B2 (en) * 2019-01-24 2024-06-04 Siemens Aktiengesellschaft Method and system for monitoring a battery state utilizing a battery twin
US11054481B2 (en) 2019-03-19 2021-07-06 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions
JP2020180861A (ja) * 2019-04-25 2020-11-05 トヨタ自動車株式会社 電池抵抗測定装置
US11296366B2 (en) * 2019-05-02 2022-04-05 Lg Energy Solution, Ltd. Apparatus, method and battery pack for detecting fault of electrical conductor
WO2020223651A1 (en) 2019-05-02 2020-11-05 Dynexus Technology, Inc. Multispectral impedance determination under dynamic load conditions
WO2020223630A1 (en) 2019-05-02 2020-11-05 Dynexus Technology, Inc. Enhanced chirp excitation signal for broadband impedance measurement
EP3973304A4 (en) 2019-05-20 2023-06-14 Waikatolink Limited METHOD AND APPARATUS FOR EVALUATING BATTERY PERFORMANCE
US11159039B2 (en) * 2019-06-29 2021-10-26 Intel Corporation Apparatus and method for battery charging with lithium plating detection and battery degradation detection and separation
US11498442B2 (en) * 2019-09-17 2022-11-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Systems and methods for noise cancellation in protective earth resistance check of vehicle onboard battery charger
JP6842213B1 (ja) * 2019-12-27 2021-03-17 東洋システム株式会社 模擬電池構築方法および模擬電池構築装置
FR3106213B1 (fr) * 2020-01-09 2023-03-24 Psa Automobiles Sa Diagnostic d’état d’une batterie de servitude d’un véhicule par impulsions de courant
US11422102B2 (en) 2020-01-10 2022-08-23 Dynexus Technology, Inc. Multispectral impedance measurements across strings of interconnected cells
CN111257774B (zh) * 2020-01-21 2022-10-21 福建时代星云科技有限公司 一种电动汽车直流阻抗检测方法及系统
US11519969B2 (en) 2020-01-29 2022-12-06 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification
JP7342759B2 (ja) 2020-03-25 2023-09-12 トヨタ自動車株式会社 バッテリ診断装置、方法、プログラムおよび車両
US12062937B2 (en) * 2020-09-15 2024-08-13 Panasonic Intellectual Property Management Co., Ltd. Method of controlling secondary battery and battery system
CN112230153B (zh) * 2020-10-13 2021-07-20 东华大学 测量电池阻抗值的方法和装置
KR20220062223A (ko) * 2020-11-06 2022-05-16 현대자동차주식회사 차량 배터리 관리 시스템 및 방법
CN112748348B (zh) * 2020-12-04 2023-03-10 欣旺达电动汽车电池有限公司 电池低温性能分布水平检测方法、系统及存储介质
CN112816889B (zh) * 2020-12-30 2023-02-03 捷威动力工业江苏有限公司 一种锂离子电池dcr测试结果的修正方法
JP7262501B2 (ja) 2021-03-18 2023-04-21 プライムプラネットエナジー&ソリューションズ株式会社 電池の状態算出装置および状態算出方法
WO2023283341A2 (en) * 2021-07-08 2023-01-12 The Regents Of The University Of Michigan Early-life diagnostics for fast battery formation protocols and their impacts to long-term aging
CN113504477B (zh) * 2021-08-03 2022-10-14 湖北亿纬动力有限公司 一种电芯测试方法、装置及系统
CN114325436B (zh) * 2021-12-24 2023-10-10 华鼎国联四川动力电池有限公司 一种dcir测试值的校准方法
KR102637311B1 (ko) * 2022-01-06 2024-02-16 주식회사 엘지에너지솔루션 열화 배터리 셀 검출 장치 및 방법
CN115528324B (zh) * 2022-10-27 2023-04-21 北京洲海能环科技有限公司 一种蓄电池组在线修复纹波抑制方法和装置
FR3145617A1 (fr) 2023-02-08 2024-08-09 Psa Automobiles Sa Contrôle de tests d’une batterie de servitude d’un véhicule
CN115993552B (zh) * 2023-03-23 2023-07-18 杭州科工电子科技有限公司 电池内阻估算方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304876A (ja) * 1989-05-18 1990-12-18 Yuasa Battery Co Ltd 鉛蓄電池の寿命判定方法
JPH07294611A (ja) * 1994-04-27 1995-11-10 Nippon Soken Inc バッテリ状態検出方法
JPH08136629A (ja) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc 蓄電池寿命診断装置
JPH08254573A (ja) * 1995-03-15 1996-10-01 Omron Corp バッテリー計測装置
JPH1056744A (ja) * 1996-08-08 1998-02-24 Shin Kobe Electric Mach Co Ltd 密閉型鉛蓄電池を備えた電源装置
JPH1138107A (ja) * 1997-07-19 1999-02-12 Toyota Central Res & Dev Lab Inc 二次電池の残存容量推定方法
JP2001231179A (ja) * 2000-02-15 2001-08-24 Hitachi Maxell Ltd 電池容量検出方法および装置並びに電池パック
JP2003004827A (ja) * 2001-06-26 2003-01-08 Yuasa Corp 蓄電池の劣化状態検出装置
JP2003022844A (ja) * 2001-07-05 2003-01-24 Japan Storage Battery Co Ltd 組電池の容量推定方法および劣化診断装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3031931C2 (de) * 1980-06-28 1984-09-20 Lucas Industries Ltd., Birmingham, West Midlands Verfahren zum Überwachen der Antriebsbatterie eines Elektrofahrzeuges
JPS61170678A (ja) * 1985-01-25 1986-08-01 Nissan Motor Co Ltd バツテリ状態検知装置
US5680050A (en) * 1994-03-07 1997-10-21 Nippondenso Co., Ltd. Battery condition detection method
JP3285720B2 (ja) * 1994-11-08 2002-05-27 松下電器産業株式会社 組電池の劣化検出方法及び劣化検出装置
JP3540437B2 (ja) * 1995-06-05 2004-07-07 本田技研工業株式会社 電池状態判別装置
JP3232958B2 (ja) 1995-06-09 2001-11-26 エフ・ディ−・ケイ株式会社 過放電防止装置
US5633801A (en) * 1995-10-11 1997-05-27 Fluke Corporation Pulse-based impedance measurement instrument
JP3367320B2 (ja) 1996-02-26 2003-01-14 新神戸電機株式会社 密閉型鉛蓄電池の劣化判定方法及び装置
WO1997032384A1 (en) * 1996-02-27 1997-09-04 Advanced Charger Technology, Inc. Method and apparatus for charging a battery
JPH1132442A (ja) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd 蓄電池残容量推定方法及び蓄電池残容量推定システム
US5936383A (en) * 1998-04-02 1999-08-10 Lucent Technologies, Inc. Self-correcting and adjustable method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
KR100264515B1 (ko) * 1998-06-16 2000-09-01 박찬구 임피던스 스펙트럼 분석에 의한 전지 용량 측정방법 및 측정장치
US6232750B1 (en) * 1999-06-08 2001-05-15 Enrey Corporation Battery charger with enhanced charging and charge measurement processes
JP4009416B2 (ja) * 1999-10-25 2007-11-14 松下電器産業株式会社 組電池制御装置
JP4523099B2 (ja) 1999-12-27 2010-08-11 富士通フロンテック株式会社 電池電圧検出回路及び電池電圧検出方法
JP2001190597A (ja) 2000-01-06 2001-07-17 Uni Charm Corp 水解性の吸収性物品
JP3868692B2 (ja) * 2000-02-21 2007-01-17 矢崎総業株式会社 バッテリーの劣化度判定装置及びバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP4573428B2 (ja) * 2000-12-06 2010-11-04 株式会社日本自動車部品総合研究所 電子デバイスのモデル化方法
JP2002189066A (ja) 2000-12-22 2002-07-05 Hitachi Ltd 二次電池残量推定法
JP2004301779A (ja) * 2003-03-31 2004-10-28 Yazaki Corp バッテリ状態監視装置及びその方法
US7688033B2 (en) * 2004-09-29 2010-03-30 Panasonic Ev Energy Co., Ltd. Method for detecting state of secondary battery and device for detecting state of secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304876A (ja) * 1989-05-18 1990-12-18 Yuasa Battery Co Ltd 鉛蓄電池の寿命判定方法
JPH07294611A (ja) * 1994-04-27 1995-11-10 Nippon Soken Inc バッテリ状態検出方法
JPH08136629A (ja) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc 蓄電池寿命診断装置
JPH08254573A (ja) * 1995-03-15 1996-10-01 Omron Corp バッテリー計測装置
JPH1056744A (ja) * 1996-08-08 1998-02-24 Shin Kobe Electric Mach Co Ltd 密閉型鉛蓄電池を備えた電源装置
JPH1138107A (ja) * 1997-07-19 1999-02-12 Toyota Central Res & Dev Lab Inc 二次電池の残存容量推定方法
JP2001231179A (ja) * 2000-02-15 2001-08-24 Hitachi Maxell Ltd 電池容量検出方法および装置並びに電池パック
JP2003004827A (ja) * 2001-06-26 2003-01-08 Yuasa Corp 蓄電池の劣化状態検出装置
JP2003022844A (ja) * 2001-07-05 2003-01-24 Japan Storage Battery Co Ltd 組電池の容量推定方法および劣化診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1650575A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129039B (zh) * 2005-09-16 2013-01-16 古河电气工业株式会社 二次电池劣化判定方法、二次电池劣化判定装置、及电源系统
CN101221144B (zh) * 2006-12-22 2013-06-05 梅特勒-托利多公开股份有限公司 监视电化学半电池的方法
JP2015224876A (ja) * 2014-05-26 2015-12-14 株式会社デンソー 電池内部状態推定装置
CN105259510A (zh) * 2015-10-20 2016-01-20 盐城工学院 锂离子电池温熵系数的测定方法
CN112055913A (zh) * 2018-05-31 2020-12-08 本田技研工业株式会社 充电控制装置、输送设备以及程序
TWI695564B (zh) * 2019-09-03 2020-06-01 飛宏科技股份有限公司 電池充電器之常溫降流及高溫脈衝充電方法
CN112098870A (zh) * 2020-09-15 2020-12-18 国网辽宁省电力有限公司阜新供电公司 一种并联型电源设备蓄电池内阻在线测试方法

Also Published As

Publication number Publication date
EP2626716A3 (en) 2013-11-27
EP2613165B1 (en) 2014-09-24
EP2626716A2 (en) 2013-08-14
EP2626716B1 (en) 2015-09-16
EP1650575A1 (en) 2006-04-26
EP2472277A3 (en) 2012-10-17
US20070252601A1 (en) 2007-11-01
EP2613165A1 (en) 2013-07-10
US7362074B2 (en) 2008-04-22
US20060186890A1 (en) 2006-08-24
EP2472277A2 (en) 2012-07-04
EP1650575A4 (en) 2010-12-08
US7616003B2 (en) 2009-11-10

Similar Documents

Publication Publication Date Title
WO2005015252A1 (ja) 蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム
JP5323761B2 (ja) 蓄電池の劣化判定方法および劣化判定装置
US12087920B2 (en) Battery charger with battery state detection
KR101846690B1 (ko) Wls 기반 soh 추정 시스템 및 방법
CN110914696B (zh) 用于在电池的操作期间估计电池开路池格电压、充电状态以及健康状态的方法和系统
US7928735B2 (en) Battery performance monitor
US7714736B2 (en) Adaptive filter algorithm for estimating battery state-of-age
US9239363B2 (en) Battery diagnosis device and method
US9157966B2 (en) Method and apparatus for online determination of battery state of charge and state of health
KR102337489B1 (ko) 전기차량의 배터리 soh 추정 시스템
EP1555537A1 (en) Battery remaining capacity measuring apparatus
KR20150048439A (ko) 배터리관리시스템 및 그 운용방법
JP2006242880A (ja) 電源装置用状態検知装置,電源装置及び電源装置に用いられる初期特性抽出装置
EP3455641A1 (en) Battery state detection system and method
EP3505946B1 (en) Battery state estimation device and battery state estimation method
JP2005100969A (ja) 二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置及び電源システム
JP4646194B2 (ja) 蓄電池の劣化判定方法および劣化判定装置
US20130275065A1 (en) Method for predicting the power an electrochemical energy store can output to an electrical load

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048138529

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11317286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004746574

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004746574

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11317286

Country of ref document: US