WO2016194271A1 - 補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法 - Google Patents

補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法 Download PDF

Info

Publication number
WO2016194271A1
WO2016194271A1 PCT/JP2016/001160 JP2016001160W WO2016194271A1 WO 2016194271 A1 WO2016194271 A1 WO 2016194271A1 JP 2016001160 W JP2016001160 W JP 2016001160W WO 2016194271 A1 WO2016194271 A1 WO 2016194271A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
battery
magnitude
terminal voltage
internal resistance
Prior art date
Application number
PCT/JP2016/001160
Other languages
English (en)
French (fr)
Inventor
琢磨 飯田
裕行 神保
毅 千葉
峻介 新田
杉江 一宏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680030062.4A priority Critical patent/CN107615563B/zh
Priority to US15/573,789 priority patent/US10377239B2/en
Priority to JP2017521661A priority patent/JPWO2016194271A1/ja
Publication of WO2016194271A1 publication Critical patent/WO2016194271A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a state determination device that determines the state of a drive battery that is a power source of a vehicle drive motor and an auxiliary battery that is provided separately, and a state determination method for an auxiliary battery.
  • Patent Document 1 discloses an apparatus for estimating the state of a battery for starting an engine using a current sensor having a small full scale.
  • the state of the battery is measured using the current value before a large inrush current flows, that is, the current value measurable by a current sensor with a small full scale. Is estimated.
  • An auxiliary battery state determination apparatus is provided separately from a driving battery that is a power source of a vehicle driving motor, and is an auxiliary battery that is an auxiliary power source whose output voltage is lower than that of the driving battery.
  • the sensor part which detects the magnitude
  • the internal resistance calculation part which calculates the internal resistance of the battery for auxiliary machines based on the magnitude
  • the internal resistance calculation unit detects a stable period in which the magnitude of the terminal voltage and the current is within a predetermined fluctuation range before the auxiliary machine is activated, and the activation of the auxiliary machine.
  • the internal resistance is calculated based on the magnitude of the terminal voltage and the magnitude of the current detected by the sensor unit within a predetermined period.
  • a method for determining a state of an auxiliary battery according to the present invention is provided separately from a driving battery that is a power source of a vehicle driving motor, and is an auxiliary battery that is an auxiliary power source whose output voltage is lower than that of the driving battery.
  • a detecting step of detecting the magnitude of the terminal voltage and the magnitude of the current flowing through the auxiliary battery.
  • an internal resistance calculating step of calculating an internal resistance of the auxiliary battery based on the magnitude of the terminal voltage and the magnitude of the current detected in the detecting step is included.
  • a stable period in which the magnitude of the terminal voltage and the current is within a predetermined fluctuation range and the activation of the auxiliary machine are detected before the auxiliary machine is activated.
  • the internal resistance is calculated based on the magnitude of the terminal voltage and the magnitude of the current detected in the detection step within a predetermined period.
  • the block diagram which shows a part of vehicle provided with the state determination apparatus which concerns on this Embodiment The graph which shows the voltage of the battery for auxiliary machines which concerns on embodiment of this invention
  • the auxiliary battery is a battery serving as a power source for an auxiliary machine that is provided separately from a driving battery for supplying large electric power to a driving motor such as a hybrid vehicle.
  • the output voltage of the auxiliary battery is lower than the output voltage of the driving battery.
  • the present invention provides an auxiliary battery state determination apparatus and an auxiliary battery state determination method capable of accurately and appropriately determining the state of an auxiliary battery in which a large inrush current does not flow.
  • the purpose is to do.
  • FIG. 1 is a block diagram illustrating a part of a vehicle including a state determination device 10 according to the present embodiment.
  • the state determination device 10 is mounted on an electric vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, or an electric vehicle.
  • an auxiliary battery that is a power source of an auxiliary machine having an output voltage lower than that of the driving battery is provided separately from the driving battery that is the power source of the driving motor of the vehicle.
  • the present invention can be applied to any vehicle provided.
  • the vehicle includes a state determination device 10, an auxiliary battery 20, an ECU (Electric Control Unit) 30, a load 31, a driving battery 41, a DC-DC converter 42, a motor peripheral auxiliary machine 43, A drive motor 44 is provided.
  • ECU Electronic Control Unit
  • the state determination device 10 is a device that determines the state of the auxiliary battery 20.
  • the state determination device 10 determines the state of the auxiliary battery 20 at a timing according to the discharge information output from the ECU 30. Details of the configuration of the state determination device 10 will be described later.
  • the auxiliary battery 20 is a battery such as a lead-acid battery that can be charged and discharged.
  • the auxiliary battery 20 supplies power to the load 31, the ECU 30, the motor peripheral auxiliary machine 43, and the state determination device 10.
  • the auxiliary battery 20 is charged by the driving battery 41 via the DC-DC converter 42.
  • the ECU30 controls the equipment mounted on the vehicle. For example, the ECU 30 transmits an operation control signal to the motor peripheral accessory 43 to control the motor peripheral accessory 43, and transmits a voltage control signal to the DC-DC converter 42 to control the DC-DC converter 42. Do.
  • the ECU 30 transmits discharge information indicating that the auxiliary battery 20 is discharged to the state determination device 10. Further, the ECU 30 receives information on the state determination result of the auxiliary battery 20 from the state determination device 10 and performs control according to the determination result.
  • the load 31 is various electric devices mounted on a vehicle such as an air conditioner, interior lighting, a meter panel, and a lighting device.
  • the driving battery 41 supplies a large amount of electric power used for traveling of the vehicle to the driving motor 44 via the motor peripheral accessory 43.
  • the driving battery 41 is, for example, a lithium ion battery.
  • the DC-DC converter 42 lowers the voltage of the driving battery 41 and outputs the electric power of the driving battery 41 to the power supply line L10. As a result, the DC-DC converter 42 supplies power to the load 31 and charges the auxiliary battery 20.
  • the DC-DC converter 42 is controlled by the ECU 30.
  • the motor peripheral auxiliary machine 43 is an auxiliary machine necessary for driving the driving motor 44.
  • the motor peripheral accessory 43 includes a relay switch that opens and closes the contact of the power line of the drive battery 41 and the contact of the power line such as an inverter circuit in the drive motor 44.
  • the motor peripheral auxiliary machine 43 is driven by the electric power of the auxiliary battery 20 based on the operation control signal output from the ECU 30.
  • the drive motor 44 is a drive motor that drives the vehicle.
  • the drive motor 44 is driven by power supplied from the drive battery 41.
  • the state determination device 10 includes a timing determination unit 11, a sensor unit 12, an internal resistance calculation unit 13, and a storage unit 14.
  • each functional block of the state determination device 10 may be configured as a one-chip semiconductor integrated circuit, except for the elements of the sensor unit 12 (such as current detection resistors). Further, the state determination device 10 may be configured by a plurality of semiconductor integrated circuits except for the elements of the sensor unit 12.
  • a part of the state determination device 10 or the whole except the elements of the sensor unit 12 may be configured by one semiconductor integrated circuit together with the ECU 30 or another ECU mounted on the vehicle. Further, the plurality of functional blocks of the state determination device 10 may be integrated into one functional block.
  • the timing determination unit 11 determines the timing for determining the state of the auxiliary battery 20 based on the discharge information transmitted by the ECU 30.
  • the timing determination unit 11 transmits a signal to the internal resistance calculation unit 13 at the above timing to notify the internal resistance calculation unit 13 that it is a timing for determining the state of the auxiliary battery 20.
  • the sensor unit 12 detects the charge / discharge current and the terminal voltage of the auxiliary battery 20.
  • the charging / discharging current and the terminal voltage value detected by the sensor unit 12 are stored in the storage unit 14.
  • the internal resistance calculation unit 13 reads the values of the discharge current and the terminal voltage stored in the storage unit 14 from the storage unit 14 based on the timing notified from the timing determination unit 11. Then, the internal resistance calculation unit 13 performs a state determination process for calculating the internal resistance of the auxiliary battery 20 using the value read from the storage unit 14. Details of these state determination processes will be described later.
  • the internal resistance calculation unit 13 notifies the ECU 30 of the calculation result of the internal resistance as a state determination result.
  • the internal resistance calculation unit 13 may output the state determination result to another control unit.
  • a display unit (not shown) of the state determination device 10 may display the result or give a warning based on the state determination result.
  • the storage unit 14 stores the charge / discharge current of the auxiliary battery 20 detected by the sensor unit 12 and the value of the terminal voltage.
  • the motor peripheral auxiliary machine 43 is driven by the electric power of the auxiliary battery 20.
  • power can be supplied from the drive battery 41 to the drive motor 44.
  • the driving motor 44 is driven by the electric power of the driving battery 41
  • the auxiliary battery 20 is charged from the driving battery 41 via the DC-DC converter 42.
  • the ECU30 transmits the discharge information which shows that the battery 20 for auxiliary machines discharges to the timing judgment part 11 of the state determination apparatus 10.
  • the timing determination unit 11 determines the timing for detecting the discharge current and the terminal voltage in the auxiliary battery 20 based on the discharge information received from the ECU 30, and notifies the internal resistance calculation unit 13 of the timing.
  • FIG. 2 is a diagram illustrating some examples of voltage changes of the auxiliary battery 20
  • FIG. 3 is a diagram illustrating a calculation result of the internal resistance of the auxiliary battery 20
  • FIG. 5 is a diagram showing variation in calculation results of internal resistance of auxiliary battery 20. A method for calculating the internal resistance will be described in detail later.
  • the horizontal axis of FIG. 4 is the elapsed time after the activation detection of the motor peripheral accessory 43. Whether or not the motor peripheral accessory 43 is activated is determined by various methods.
  • whether or not the motor peripheral accessory 43 has been activated depends on whether or not the internal resistance of the auxiliary battery 20 has a minimum value, whether or not the voltage of the auxiliary battery 20 has reached a minimum value, It is determined by detecting whether the terminal voltage of the battery for battery 20 has decreased by a predetermined value or whether the discharge current of the auxiliary battery 20 has reached a predetermined value.
  • the internal resistance shows a minimum value at the time of 5 ms.
  • the activation detection time is 5 ms.
  • the terminal voltage of the auxiliary battery 20 shows different time transitions for each measurement, but the value of the internal resistance varies less from 5 ms to 15 ms as shown in FIG. This is apparent from the fact that the variation in internal resistance is smaller than a practical value of 0.25 m ⁇ in FIG. 4 between 0 ms and 10 ms.
  • the timing determination unit 11 receives discharge information from the ECU 30, the timing determination unit 11 detects the activation of the motor peripheral auxiliary device 43, and the internal resistance calculation unit 13 uses the timing determination unit 11 to detect the motor peripheral auxiliary device 43.
  • the internal resistance of the auxiliary battery 20 is calculated using the discharge current and the terminal voltage within a predetermined period after the start detection is performed. As shown in FIG. 4, the predetermined period is preferably 10 ms or less.
  • the predetermined period can be set as appropriate, for example, by performing an experiment or the like.
  • the terminal voltage of the auxiliary battery 20 decreases due to the activation of the motor peripheral auxiliary machine 43. It is preferable that the terminal voltage is set so as to include a time point at which the terminal voltage shows a minimum value later.
  • the terminal voltage of the auxiliary battery 20 decreases after the motor peripheral auxiliary machine 43 is started, and then the terminal voltage shows a minimum value.
  • the terminal voltage may be set so as to include the minimum value.
  • the timing determination unit 11 determines whether or not discharge information has been received from the ECU 30 (step S1).
  • timing judgment part 11 repeats the process of step S1, when the discharge information is not received from ECU30 (step S1: NO).
  • step S1 when the timing determination unit 11 receives discharge information from the ECU 30 (step S1: YES), the timing determination unit 11 transmits a signal to the internal resistance calculation unit 13 to discharge the auxiliary battery 20 discharge current I0 and the terminal voltage V0. Is notified to the internal resistance calculator 13 (step S2).
  • the discharge current I0 and the terminal voltage V0 are stable before the motor peripheral accessory 43 is started and during which the magnitude of the discharge current and the magnitude of the terminal voltage are within a predetermined fluctuation range.
  • Current value and voltage value. This stable period may be determined in advance based on an experimental result or the like, or may be determined based on a detection result of the sensor unit 12.
  • the internal resistance calculation unit 13 acquires the discharge current I0 of the auxiliary battery 20 and the detected value of the terminal voltage V0 from the sensor unit 12 and stores them in the storage unit 14 (step S3).
  • the timing determination unit 11 determines whether or not the motor peripheral accessory 43 has been activated (step S4). When it is determined that the motor peripheral accessory 43 is not activated (step S4: NO), the timing determination unit 11 repeats the process of step S4.
  • step S4 determines that the motor peripheral auxiliary machine 43 has started (step S4: YES)
  • the timing determination unit 11 transmits a signal to the internal resistance calculation unit 13, and the discharge current I1 of the auxiliary battery 20 and Then, the internal resistance calculation unit 13 is notified that it is time to detect the terminal voltage V1 (step S5).
  • the discharge current I1 and the terminal voltage V1 are a current value and a voltage value measured within a predetermined period after the activation of the motor peripheral accessory 43 is detected by the timing determination unit 11.
  • the predetermined period is 10 ms.
  • the internal resistance calculation unit 13 acquires the values of the discharge current I1 and the terminal voltage V1 of the auxiliary battery 20 measured by the sensor unit 12 within the predetermined period from the sensor unit 12, and the storage unit 14 (Step S6).
  • the internal resistance calculation unit 13 calculates the values of the discharge current I0 and the terminal voltage V0 stored in the storage unit 14 in step S3 and the discharge current I1 and the terminal voltage V1 stored in the storage unit 14 in step S6.
  • the internal resistance is calculated by a method such as a two-point method using the value (step S7).
  • the internal resistance calculation unit 13 calculates the internal resistance Ri of the auxiliary battery 20 according to the following equation (1).
  • the sensor unit 12 of the state determination device 10 is provided separately from the drive battery 41 that is the power source of the vehicle drive motor 44, and the output voltage is lower than that of the drive battery 41.
  • the magnitude of the terminal voltage of the auxiliary battery 20 that is the power source of the auxiliary machine (for example, the motor peripheral auxiliary machine 43) and the magnitude of the current flowing through the auxiliary battery 20 are detected.
  • the internal resistance calculation unit 13 detects a stable period in which the magnitude of the terminal voltage and the current is within a predetermined fluctuation range before the auxiliary machine is activated, and the activation of the auxiliary machine.
  • the internal resistance of the auxiliary battery 20 is calculated based on the magnitude of the terminal voltage and the magnitude of the current detected by the sensor unit 12 within a predetermined period. Thereby, the dispersion
  • the predetermined period is set to a period including a point in time when the terminal voltage shows a minimum value after the terminal voltage is reduced by the activation of the auxiliary machine.
  • the predetermined period is set to a period including a point in time when the terminal voltage has shown a minimum value in the past after the terminal voltage has decreased due to the activation of the auxiliary machine. This makes it possible to easily and appropriately set a period during which the variation in internal resistance is small.
  • the predetermined period is a period of 10 milliseconds or less. In this case as well, the period in which the variation in internal resistance is reduced can be set easily and appropriately.
  • the present invention is suitably used for a device that is provided separately from a driving battery that is a power source for a vehicle driving motor and that determines the state of an auxiliary battery that is an auxiliary power source whose output voltage is lower than the driving battery. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

状態判定装置のセンサ部が、車両の駆動用モータの電源である駆動用バッテリと別に設けられ、駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリの端子電圧の大きさ、及び、補機用バッテリに流れる電流の大きさを検出する。そして、内部抵抗算出部が、補機が起動される前で、かつ、端子電圧の大きさ、及び、電流の大きさが所定の変動範囲に収まる安定期間と、補機の起動が検知されてから所定の期間内においてセンサ部が検出した端子電圧の大きさ、及び、電流の大きさに基づいて補機用バッテリの内部抵抗を算出する。

Description

補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法
 本発明は、車両の駆動用モータの電源である駆動用バッテリと別途設けられる補機用バッテリの状態を判定する状態判定装置、及び、補機用バッテリの状態判定方法に関する。
 近年、アイドリングストップ機能を有する車両が増加してきている。このような車両に搭載されるバッテリには、大きな負荷がかかることになるため、バッテリの状態を監視することが重要になっている。
 例えば、特許文献1には、フルスケールが小さい電流センサを用いてエンジン始動用のバッテリの状態を推定する装置が開示されている。この装置では、スタータスイッチがオン状態となったと判断された場合に、大きな突入電流が流れる前の電流の値、すなわち、フルスケールが小さい電流センサで測定可能な電流の値を用いてバッテリの状態が推定される。
特開2011-257214号公報
 本発明に係る補機用バッテリの状態判定装置は、車両の駆動用モータの電源である駆動用バッテリと別に設けられ、駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリの端子電圧の大きさ、及び、補機用バッテリに流れる電流の大きさを検出するセンサ部を備える。そして、センサ部が検出した端子電圧の大きさ、及び、電流の大きさに基づいて、補機用バッテリの内部抵抗を算出する内部抵抗算出部と、を備える。そして、内部抵抗算出部は、補機が起動される前で、かつ、端子電圧の大きさ、及び、電流の大きさが所定の変動範囲に収まる安定期間と、補機の起動が検知されてから所定の期間内においてセンサ部が検出した端子電圧の大きさ、及び、電流の大きさに基づいて内部抵抗を算出する。
 本発明に係る補機用バッテリの状態判定方法は、車両の駆動用モータの電源である駆動用バッテリと別に設けられ、駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリの端子電圧の大きさ、及び、補機用バッテリに流れる電流の大きさを検出する検出ステップを含む。さらに、検出ステップにおいて検出された端子電圧の大きさ、及び、電流の大きさに基づいて、補機用バッテリの内部抵抗を算出する内部抵抗算出ステップと、を含む。そして、内部抵抗算出ステップでは、補機が起動される前で、かつ、端子電圧の大きさ、及び、電流の大きさが所定の変動範囲に収まる安定期間と、補機の起動が検知されてから所定の期間内において検出ステップにおいて検出された端子電圧の大きさ、及び、電流の大きさに基づいて内部抵抗を算出する。
 本発明によれば、大きな突入電流が流れない補機用バッテリの状態を精度よく、かつ、適切に判定することができる。
本実施の形態に係る状態判定装置を備える車両の一部を示すブロック図 本発明の実施の形態に係る補機用バッテリの電圧を示すグラフ 本発明の実施の形態に係る補機用バッテリの内部抵抗を示すグラフ 本発明の実施の形態に係る補機用バッテリの内部抵抗のバラツキを示すグラフ 本発明の実施の形態に係る補機用バッテリの状態判定処理を示すフロー図
 本発明の実施の形態の説明に先立ち、従来の装置における問題点を簡単に説明する。
 特許文献1に記載の従来技術では、大きな突入電流が流れない補機用バッテリの電池状態を判定することが難しいという課題がある。補機用バッテリとは、ハイブリッド自動車などの駆動用モータに大きな電力を供給するための駆動用バッテリと別に設けられた補機の電源となるバッテリである。この補機用バッテリの出力電圧は、駆動用バッテリの出力電圧よりも低くなっている。
 本発明は、大きな突入電流が流れない補機用バッテリの状態を精度よく、かつ、適切に判定することができる補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法を提供することを目的とする。
 以下に、図面を適宜参照して、本発明の実施の形態につき詳細に説明する。
 <状態判定装置を備える車両の構成>
 本実施の形態に係る状態判定装置10を備える車両の構成につき、図1を参照しながら詳細に説明する。図1は、本実施の形態に係る状態判定装置10を備える車両の一部を示すブロック図である。
 本実施の形態では、状態判定装置10が、ハイブリッド自動車やプラグインハイブリッド自動車、電気自動車などの電動車両に搭載された場合について説明する。ただし、本発明はこれに限定されるものではなく、車両の駆動用モータの電源である駆動用バッテリとは別に、駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリが設けられた車両であれば、本発明を適用することができる。
 図1に示すように、この車両は、状態判定装置10、補機用バッテリ20、ECU(Electric Control Unit)30、負荷31、駆動用バッテリ41、DC-DCコンバータ42、モータ周辺補機43、及び、駆動用モータ44を有している。
 状態判定装置10は、補機用バッテリ20の状態を判定する装置である。この状態判定装置10は、ECU30から出力される放電情報に応じたタイミングで、補機用バッテリ20の状態を判定する。なお、状態判定装置10の構成の詳細については後述する。
 補機用バッテリ20は、充放電が可能な鉛蓄電池などのバッテリである。補機用バッテリ20は、負荷31、ECU30、モータ周辺補機43、及び、状態判定装置10に電力を供給する。補機用バッテリ20は、DC-DCコンバータ42を介して駆動用バッテリ41により充電される。
 ECU30は、車両に搭載された機器の制御を行う。例えば、ECU30は、モータ周辺補機43に作動制御信号を送信してモータ周辺補機43を制御し、また、DC-DCコンバータ42に電圧制御信号を送信してDC-DCコンバータ42の制御を行う。
 また、ECU30は、補機用バッテリ20が放電することを示す放電情報を状態判定装置10に送信する。さらに、ECU30は、状態判定装置10から補機用バッテリ20の状態判定結果の情報を受けて、判定結果に応じた制御を行う。
 負荷31は、エアコンや車内照明、メータパネル、灯火器などの車両に搭載される様々な電気機器である。
 駆動用バッテリ41は、車両の走行に使用する大きな電力を、モータ周辺補機43を介して駆動用モータ44に供給する。駆動用バッテリ41は、例えば、リチウムイオン電池である。
 DC-DCコンバータ42は、駆動用バッテリ41の電圧を下げて、駆動用バッテリ41の電力を電源ラインL10に出力する。これにより、DC-DCコンバータ42は、負荷31への電力供給、並びに、補機用バッテリ20の充電を行う。DC-DCコンバータ42は、ECU30により制御される。
 モータ周辺補機43は、駆動用モータ44を駆動するために必要な補機である。モータ周辺補機43は、駆動用バッテリ41の電力線の接点と、駆動用モータ44におけるインバータ回路などの電力線の接点とを開閉するリレースイッチなどを含む。モータ周辺補機43は、ECU30により出力される作動制御信号に基づき、補機用バッテリ20の電力により駆動される。
 駆動用モータ44は、車両を駆動する駆動用モータである。駆動用モータ44は、駆動用バッテリ41から電力の供給を受けて駆動する。
 <状態判定装置の構成>
 次に、状態判定装置10の構成につき、図1を参照しながら詳細に説明する。
 状態判定装置10は、タイミング判断部11、センサ部12、内部抵抗算出部13、記憶部14を有する。
 ここで、状態判定装置10の各機能ブロックは、センサ部12の素子(電流検出用抵抗など)を除いて、ワンチップの半導体集積回路として構成されてもよい。また、状態判定装置10は、センサ部12の素子を除いて、複数の半導体集積回路により構成されてもよい。
 さらに、状態判定装置10の一部、または、センサ部12の素子を除いた全部は、ECU30、あるいは、車両に搭載される他のECUと一緒に1つの半導体集積回路により構成されてもよい。また、状態判定装置10の複数の機能ブロックは、1つの機能ブロックに統合されてもよい。
 タイミング判断部11は、ECU30により送信された放電情報に基づいて、補機用バッテリ20の状態を判定するタイミングを判断する。タイミング判断部11は、上記タイミングで内部抵抗算出部13に信号を送信し、補機用バッテリ20の状態を判定するタイミングであることを内部抵抗算出部13に通知する。
 センサ部12は、補機用バッテリ20の充放電電流と端子電圧とを検出する。センサ部12により検出された充放電電流、及び、端子電圧の値は、記憶部14に記憶される。
 内部抵抗算出部13は、タイミング判断部11から通知されたタイミングに基づいて、記憶部14に格納されている放電電流、及び、端子電圧の値を記憶部14から読み出す。そして、内部抵抗算出部13は、記憶部14から読み出した値を用いて補機用バッテリ20の内部抵抗を算出する状態判定処理を行う。なお、これらの状態判定処理の詳細は後述する。
 また、内部抵抗算出部13は、内部抵抗の算出結果を状態判定結果としてECU30に通知する。なお、内部抵抗算出部13は、状態判定結果を、他の制御部に出力してもよい。あるいは、状態判定装置10の図示しない表示部が、状態判定結果に基づき、結果の表示をしたり、警告などを行ったりしてもよい。
 記憶部14は、センサ部12で検出した補機用バッテリ20の充放電電流、及び、端子電圧の値を記憶する。
 <状態判定装置を備える車両の動作>
 次に、本発明の実施の形態に係る状態判定装置10を備える車両の動作につき、詳細に説明する。
 この車両では、始動する際、補機用バッテリ20の電力によりモータ周辺補機43が駆動される。これにより駆動用バッテリ41から駆動用モータ44に電力が供給可能となる。そして、駆動用バッテリ41の電力により駆動用モータ44が駆動した後、駆動用バッテリ41からDC-DCコンバータ42を介して補機用バッテリ20に充電が行われる。
 このように、駆動用モータ44により車両を始動する際に、補機用バッテリ20の放電制御から充電制御への切り替わりが生じる。
 ECU30は、補機用バッテリ20が放電することを示す放電情報を状態判定装置10のタイミング判断部11に送信する。具体的には、ECU30は、モータ周辺補機43を作動させる作動制御信号をモータ周辺補機43に送信する際に、この放電情報をタイミング判断部11に送信する。
 タイミング判断部11は、ECU30から受信した放電情報に基づいて、補機用バッテリ20における放電電流と端子電圧とを検出するタイミングを判断し、そのタイミングを内部抵抗算出部13に通知する。
 <補機用バッテリにおける放電電流と端子電圧との検出タイミング>
 本実施の形態に係る補機用バッテリ20における放電電流と端子電圧との検出タイミングにつき、図2から図4を参照しながら詳細に説明する。ここで、図2は、補機用バッテリ20の電圧変化のいくつかの例を示す図であり、図3は、補機用バッテリ20の内部抵抗の算出結果を示す図であり、図4は、補機用バッテリ20の内部抵抗の算出結果のばらつきを示す図である。内部抵抗の算出方法については後に詳しく説明する。
 ここで、図4の横軸はモータ周辺補機43の起動検知後の経過時間である。モータ周辺補機43が起動したか否かは、さまざまな方法により判定される。
 例えば、モータ周辺補機43が起動したか否かは、補機用バッテリ20の内部抵抗が極小値を示したか否か、補機用バッテリ20の電圧が極小値となったか否か、補機用バッテリ20の端子電圧が所定の値だけ低下したか否か、または、補機用バッテリ20の放電電流が所定の値に達したか否かを検出することにより判定される。
 図3の例において、補機用バッテリ20の内部抵抗が極小値を示したか否かによりモータ周辺補機43の起動検知を行う場合、5msの時点で内部抵抗が極小値を示しているため、起動検知の時点は5msとなる。
 補機用バッテリ20の端子電圧は、図2に示すように、測定毎に異なる時間推移を示すが、内部抵抗の値は、図3に示すように、5msから15msにかけてばらつきが少なくなる。このことは、図4において0msから10msの間において、内部抵抗のばらつきが、0.25mΩという実用上問題にならない値よりも小さくなることから明らかである。
 このようなことから、タイミング判断部11は、ECU30から放電情報を受信した場合、モータ周辺補機43の起動検知を行い、内部抵抗算出部13は、タイミング判断部11でモータ周辺補機43の起動検知が行われてから所定の期間内の放電電流、及び、端子電圧を利用して、補機用バッテリ20の内部抵抗を算出する。図4に示されるように、上記所定の期間は、10ms以下であることが好ましい。
 これにより、内部抵抗のばらつきが小さくなり、大きな突入電流が流れない補機用バッテリ20の状態を精度よく、かつ、適切に判定することができる。
 なお、上記所定の期間は、例えば、実験等を行うことにより適宜設定することができるが、図2に示すように、モータ周辺補機43の起動により補機用バッテリ20の端子電圧が低下した後に、その端子電圧が極小値を示す時点を含むように設定することが好ましい。
 また、センサ部12が過去に補機用バッテリ20の端子電圧を測定した結果、モータ周辺補機43の起動により補機用バッテリ20の端子電圧が低下した後、その端子電圧が極小値を示すことが検知された場合に、その端子電圧が極小値を示した時点を含むように設定してもよい。
 <補機用バッテリの状態判定処理>
 次に、本実施の形態に係る補機用バッテリ20の状態判定処理につき、図5を参照しながら詳細に説明する。
 まず、タイミング判断部11は、ECU30から放電情報を受信したか否かを判定する(ステップS1)。
 そして、タイミング判断部11は、ECU30から放電情報を受信していない場合(ステップS1:NO)、ステップS1の処理を繰り返す。
 一方、タイミング判断部11は、ECU30から放電情報を受信した場合(ステップS1:YES)、内部抵抗算出部13に信号を送信して、補機用バッテリ20の放電電流I0、及び、端子電圧V0を検出するタイミングであることを内部抵抗算出部13に通知する(ステップS2)。
 ここで、放電電流I0、及び、端子電圧V0は、モータ周辺補機43が起動される前で、かつ、放電電流の大きさ、及び、端子電圧の大きさが所定の変動範囲に収まる安定期間における電流値、及び、電圧値である。この安定期間は、実験結果等に基づいて予め定められていてもよいし、センサ部12の検出結果に基づいて判定されてもよい。
 その後、内部抵抗算出部13は、補機用バッテリ20の放電電流I0、及び、端子電圧V0の検出値をセンサ部12から取得し、記憶部14に記憶する(ステップS3)。
 次に、タイミング判断部11は、モータ周辺補機43が起動したか否かを判定する(ステップS4)。タイミング判断部11は、モータ周辺補機43が起動していないと判定した場合(ステップS4:NO)、ステップS4の処理を繰り返す。
 一方、タイミング判断部11は、モータ周辺補機43が起動したと判定した場合(ステップS4:YES)、内部抵抗算出部13に信号を送信して、補機用バッテリ20の放電電流I1、及び、端子電圧V1を検出するタイミングであることを内部抵抗算出部13に通知する(ステップS5)。
 ここで、放電電流I1、及び、端子電圧V1は、モータ周辺補機43の起動がタイミング判断部11により検知された後、所定の期間内において測定される電流値、および、電圧値である。例えば、図2~図4の例では、上記所定の期間は10msである。
 その後、内部抵抗算出部13は、上記所定の期間内においてセンサ部12により測定された補機用バッテリ20の放電電流I1、及び、端子電圧V1の値をセンサ部12から取得し、記憶部14に記憶する(ステップS6)。
 そして、内部抵抗算出部13は、ステップS3で記憶部14に記憶した放電電流I0、及び、端子電圧V0の値と、ステップS6で記憶部14に記憶した放電電流I1、及び、端子電圧V1の値とを用いて、2点法などの方法により内部抵抗を算出する(ステップS7)。
 2点法を用いる場合、内部抵抗算出部13は、次式(1)により補機用バッテリ20の内部抵抗Riを算出する。
 Ri=(V0-V1)/(I0-I1)     ・・・(1)
 そして、内部抵抗算出部13は、算出した内部抵抗Riの情報を状態判定結果としてECU30に出力する(ステップS8)。
 以上のように、本実施の形態では、状態判定装置10のセンサ部12が、車両の駆動用モータ44の電源である駆動用バッテリ41と別に設けられ、駆動用バッテリ41よりも出力電圧が低い補機(例えば、モータ周辺補機43)の電源である補機用バッテリ20の端子電圧の大きさ、及び、補機用バッテリ20に流れる電流の大きさを検出する。そして、内部抵抗算出部13が、補機が起動される前で、かつ、端子電圧の大きさ、及び、電流の大きさが所定の変動範囲に収まる安定期間と、補機の起動が検知されてから所定の期間内においてセンサ部12が検出した端子電圧の大きさ、及び、電流の大きさに基づいて補機用バッテリ20の内部抵抗を算出することとした。これにより、内部抵抗のばらつきが小さくなり、大きな突入電流が流れない補機用バッテリ20の状態を精度よく、かつ、適切に判定することができる。
 また、本実施の形態では、上記所定の期間が、補機の起動により端子電圧が低下した後に端子電圧が極小値を示す時点を含む期間に設定されることとした。これにより、内部抵抗のばらつきが小さくなる期間を適切に設定することができる。
 また、本実施の形態では、上記所定の期間が、補機の起動により端子電圧が低下した後に端子電圧が極小値を過去に示した時点を含む期間に設定されることとした。これにより、内部抵抗のばらつきが小さくなる期間を容易、かつ、適切に設定することができる。
 また、本実施の形態によれば、上記所定の期間が、10ミリ秒以下の期間であることとした。この場合も同様に、内部抵抗のばらつきが小さくなる期間を容易、かつ、適切に設定することができる。
 本発明は、車両の駆動用モータの電源である駆動用バッテリと別に設けられ、駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリの状態判定を行う装置に好適に利用できる。
 10 状態判定装置
 11 タイミング判断部
 12 センサ部
 13 内部抵抗算出部
 14 記憶部
 20 補機用バッテリ
 30 ECU
 31 負荷
 41 駆動用バッテリ
 42 DC-DCコンバータ
 43 モータ周辺補機
 44 駆動用モータ

Claims (5)

  1.  車両の駆動用モータの電源である駆動用バッテリと別に設けられ、該駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリの端子電圧の大きさ、及び、該補機用バッテリに流れる電流の大きさを検出するセンサ部と、
     前記センサ部が検出した端子電圧の大きさ、及び、前記電流の大きさに基づいて、前記補機用バッテリの内部抵抗を算出する内部抵抗算出部と、
     を備え、
     前記内部抵抗算出部は、前記補機が起動される前で、かつ、前記端子電圧の大きさ、及び、前記電流の大きさが所定の変動範囲に収まる安定期間と、前記補機の起動が検知されてから所定の期間内において前記センサ部が検出した前記端子電圧の大きさ、及び、前記電流の大きさに基づいて前記内部抵抗を算出する補機用バッテリの状態判定装置。
  2.  前記所定の期間は、前記補機の起動により前記端子電圧が低下した後に該端子電圧が極小値を示す時点を含む期間に設定される請求項1に記載の補機用バッテリの状態判定装置。
  3.  前記所定の期間は、前記補機の起動により前記端子電圧が低下した後に該端子電圧が極小値を過去に示した時点を含む期間に設定される請求項1に記載の補機用バッテリの状態判定装置。
  4.  前記所定の期間は、10ミリ秒以下である請求項1に記載の補機用バッテリの状態判定装置。
  5.  車両の駆動用モータの電源である駆動用バッテリと別に設けられ、該駆動用バッテリよりも出力電圧が低い補機の電源である補機用バッテリの端子電圧の大きさ、及び、該補機用バッテリに流れる電流の大きさを検出する検出ステップと、
     前記検出ステップにおいて検出された端子電圧の大きさ、及び、前記電流の大きさに基づいて、前記補機用バッテリの内部抵抗を算出する内部抵抗算出ステップと、
     を含み、
     前記内部抵抗算出ステップでは、前記補機の起動の起動される前で、かつ、前記端子電圧の大きさ、及び、前記電流の大きさが所定の変動範囲に収まる安定期間と、前記補機の起動が検知されてから所定の期間内において前記検出ステップにおいて検出された前記端子電圧の大きさ、及び、前記電流の大きさに基づいて前記内部抵抗を算出する補機用バッテリの状態判定方法。
PCT/JP2016/001160 2015-06-05 2016-03-03 補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法 WO2016194271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680030062.4A CN107615563B (zh) 2015-06-05 2016-03-03 辅机用电池的状态判定装置和辅机用电池的状态判定方法
US15/573,789 US10377239B2 (en) 2015-06-05 2016-03-03 Auxiliary battery status determination device and auxiliary battery status determination method
JP2017521661A JPWO2016194271A1 (ja) 2015-06-05 2016-03-03 補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015114644 2015-06-05
JP2015-114644 2015-06-05

Publications (1)

Publication Number Publication Date
WO2016194271A1 true WO2016194271A1 (ja) 2016-12-08

Family

ID=57440353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001160 WO2016194271A1 (ja) 2015-06-05 2016-03-03 補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法

Country Status (4)

Country Link
US (1) US10377239B2 (ja)
JP (1) JPWO2016194271A1 (ja)
CN (1) CN107615563B (ja)
WO (1) WO2016194271A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133514A (zh) * 2018-02-09 2019-08-16 丰田自动车株式会社 蓄电设备的检查装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630507B (zh) * 2018-09-17 2023-07-18 宁德时代新能源科技股份有限公司 掉电检测电路的控制方法、控制器及介质
FR3093187B1 (fr) * 2019-02-21 2021-02-19 Psa Automobiles Sa Procédé de diagnostic d’une batterie d’un véhicule automobile
WO2021024859A1 (ja) * 2019-08-06 2021-02-11 株式会社 Integral Geometry Science 蓄電池検査装置及び蓄電池検査方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893517A (ja) * 1994-09-28 1996-04-09 Toyota Motor Corp ハイブリッド型電気自動車のエンジン制御方法
JP2007216707A (ja) * 2006-02-14 2007-08-30 Fujitsu Ten Ltd バッテリ劣化判定装置、およびバッテリ劣化判定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598873B2 (ja) * 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
EP2472277A3 (en) * 2003-06-27 2012-10-17 The Furukawa Electric Co., Ltd. Method and device for measuring secondary cell internal impedance and judging deterioration
JP4615439B2 (ja) * 2005-12-28 2011-01-19 株式会社Nttファシリティーズ 二次電池管理装置、二次電池管理方法及びプログラム
JP5644190B2 (ja) 2010-06-08 2014-12-24 新神戸電機株式会社 電池状態推定装置および電池情報報知装置
JP5777303B2 (ja) * 2010-08-05 2015-09-09 三菱重工業株式会社 電池劣化検知装置および電池劣化検知方法ならびにそのプログラム
EP2899795B1 (en) * 2013-03-04 2018-01-03 LG Chem, Ltd. Apparatus and method for estimating output of secondary battery including blended anode material
JP5741635B2 (ja) * 2013-06-17 2015-07-01 三菱自動車工業株式会社 補機バッテリ用電力供給装置
CN103487760B (zh) * 2013-09-27 2015-12-23 湖南南车时代电动汽车股份有限公司 一种电池健康度的判定方法
US9997933B2 (en) * 2014-09-03 2018-06-12 Mophie, Inc. Systems and methods for battery charging and management
JP6706762B2 (ja) * 2015-02-13 2020-06-10 パナソニックIpマネジメント株式会社 二次電池の充電状態推定装置および充電状態推定方法
JP6670999B2 (ja) * 2015-03-27 2020-03-25 パナソニックIpマネジメント株式会社 二次電池の状態推定装置および状態推定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893517A (ja) * 1994-09-28 1996-04-09 Toyota Motor Corp ハイブリッド型電気自動車のエンジン制御方法
JP2007216707A (ja) * 2006-02-14 2007-08-30 Fujitsu Ten Ltd バッテリ劣化判定装置、およびバッテリ劣化判定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133514A (zh) * 2018-02-09 2019-08-16 丰田自动车株式会社 蓄电设备的检查装置

Also Published As

Publication number Publication date
US10377239B2 (en) 2019-08-13
CN107615563A (zh) 2018-01-19
US20180147942A1 (en) 2018-05-31
JPWO2016194271A1 (ja) 2018-03-29
CN107615563B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN106208168B (zh) 估计电动车辆电池健康状态的系统
JP2010041794A (ja) 車両駆動装置
JP6603888B2 (ja) バッテリ種別判定装置およびバッテリ種別判定方法
JP5644190B2 (ja) 電池状態推定装置および電池情報報知装置
WO2016194271A1 (ja) 補機用バッテリの状態判定装置、及び、補機用バッテリの状態判定方法
JP2008089417A (ja) 電池状態検知システムおよびこれを備えた自動車
WO2016157731A1 (ja) 二次電池の状態推定装置および状態推定方法
JP2007245818A (ja) バッテリ状態管理システム
JP2008056050A (ja) 電池状態判定方法、電池状態判定装置及びコンピュータプログラム
JP5058959B2 (ja) 二次電池の劣化状態診断装置
JP5938633B2 (ja) 電池の充電可否判断装置
JP2007333474A (ja) 開放電圧検出装置および開放電圧検出方法
JP2005292035A (ja) 電池状態検知方法
JP2010247555A (ja) 車両制御装置および車両制御方法
JP2021027667A (ja) 車両用電力供給装置及び車両用電力供給方法
JP2009055709A (ja) バッテリの充電状態監視装置及びエンジン制御装置
JP2006180665A (ja) ハイブリッド車両の充電装置
KR20180064107A (ko) 배터리 충전량을 이용한 차량용 배터리 상태 판정 방법
JP2006137316A (ja) 車両電源管理装置
JP2012141258A (ja) 鉛蓄電池状態検出装置および鉛蓄電池状態検出方法
JP5203496B2 (ja) バッテリ状態検知方法、バッテリ状態検知装置及びバッテリ電源システム
JP4572518B2 (ja) 電池状態検知方法
JP2010045869A (ja) 電力供給装置
JP2016162729A (ja) バッテリ種別判定装置およびバッテリ種別判定方法
JP2008080963A (ja) バッテリ劣化判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521661

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802719

Country of ref document: EP

Kind code of ref document: A1