WO2005003694A1 - 差圧式流量計及び差圧式流量制御装置 - Google Patents

差圧式流量計及び差圧式流量制御装置 Download PDF

Info

Publication number
WO2005003694A1
WO2005003694A1 PCT/JP2004/008596 JP2004008596W WO2005003694A1 WO 2005003694 A1 WO2005003694 A1 WO 2005003694A1 JP 2004008596 W JP2004008596 W JP 2004008596W WO 2005003694 A1 WO2005003694 A1 WO 2005003694A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
fluid
orifice
detector
pressure
Prior art date
Application number
PCT/JP2004/008596
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Kazuhiko Sugiyama
Tomio Uno
Nobukazu Ikeda
Kouji Nishino
Osamu Nakamura
Ryousuke Dohi
Atsushi Matsumoto
Original Assignee
Fujikin Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33562346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005003694(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujikin Incorporated filed Critical Fujikin Incorporated
Priority to EP04746098A priority Critical patent/EP1643218A4/en
Priority to US10/563,226 priority patent/US7367241B2/en
Priority to CNB200480018993XA priority patent/CN100419385C/zh
Priority to KR1020057023572A priority patent/KR100740914B1/ko
Publication of WO2005003694A1 publication Critical patent/WO2005003694A1/ja
Priority to IL172662A priority patent/IL172662A0/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Definitions

  • the present invention relates to an improvement of a differential pressure type flow meter and a differential pressure type flow rate control device (hereinafter, referred to as a differential pressure type flow meter, etc.) used in a semiconductor manufacturing facility, a chemical plant, a food manufacturing plant, and the like. It can be used in a so-called in-line state, and can measure or control the flow rate of a fluid in a critical state or a non-critical state with high accuracy even in a small flow rate area under vacuum in real time.
  • the present invention relates to an inexpensive and simple structure differential pressure type flow meter.
  • thermal mass flow meters and the like have low responsiveness, low measurement accuracy in a low flow rate range, many troubles during operation, restrictions on the type of controlled gas, and pressure. There are many difficulties, such as being susceptible to fluctuations.
  • build-up type flow meters have difficulty in real-time flow measurement or flow control, cannot be used in-line, have restrictions on the pressure of the controlled gas, and have separate lines for measurement. There are problems such as necessity.
  • a differential pressure type flow meter using an orifice and a pressure gauge is hardly restricted by the type of gas to be controlled and can be used in an in-line state. It has an excellent effect that it can be performed.
  • the fluid passing through the orifice is subjected to critical conditions, that is, the orifice upstream pressure P and the orifice so that the fluid flow velocity is in the sonic range.
  • the flow measurement value Q or the flow control value Q contains a large error.
  • is the absolute temperature of the fluid when passing through the orifice
  • s is the cross-sectional area of the orifice hole
  • c is the proportional coefficient
  • n Cp / Cv, where Cp is the specific heat at constant pressure and Cv is the specific heat at constant volume.
  • the force S which is a value established in the region of 30 sccm, and the flow rate range is 10 lOOsccm or 100 lOOOOscc m
  • the values of m and n deviate from these values.
  • FIG. 14 is a configuration diagram of an improved pressure type flow control device using the above experimental flow type Qc ′, which was previously published by the present inventors as Japanese Patent Application No. 2001-399433. is there. Incidentally, it is easy to understand that the device in FIG. 14 is a differential pressure type flow meter if the force control valve 21, the valve drive unit 22, and the flow rate comparison unit 23e, which are configured as a flow rate control device, are omitted. .
  • reference numeral 20 denotes an orifice
  • 21 denotes a control valve
  • 22 denotes a valve drive unit
  • 23 denotes a control circuit
  • 23a denotes a pressure ratio calculation unit
  • 23b denotes a pressure ratio calculation unit
  • 23c denotes a flow rate calculation unit
  • 23d is the flow rate calculation section
  • 23e is the flow rate comparison section
  • P is the orifice upstream fluid pressure detector
  • P is the orifice
  • T is a fluid temperature detector
  • Qs is a flow rate set value signal
  • G is a flow rate difference signal
  • Qc ' is a calculated flow rate value.
  • the pressure ratio P / P is determined from the detected upstream pressure P and downstream pressure P.
  • the flow comparison unit 23a calculates a flow difference Q between the set flow Qs and the calculated flow Qc, operates the valve driving unit 22 so that the flow difference Q becomes zero, and controls opening and closing of the control valve 21.
  • the flow comparing unit 23e, the control valve 21, and the valve driving unit 22 are unnecessary as described above.
  • Patent Document 1 Japanese Patent Publication No. 59-19365
  • Patent Document 2 Japanese Patent Publication No. 59-19366
  • Patent Document 3 JP-A-10-55218
  • the improved pressure type flow meter shown in FIG. 14 has a relatively high flow rate up to a small flow rate range of about 10% of the maximum flow rate as shown by curve A in FIG. It can perform accurate flow rate measurement or flow rate control and has excellent practical utility.
  • the flow rate area is a small flow rate area of about 10% or less of the maximum flow rate, there is a problem that practically practical flow rate measurement and flow rate control accuracy cannot be obtained.
  • the pressure P downstream of the orifice is about 200 Torr.
  • the present invention has been made to solve the above-described problems in the improved pressure-type flow meter and the like developed by the inventors of the present invention, and the present invention has been made to solve the problem from the maximum flow rate (100%) to the maximum flow rate.
  • Highly accurate flow rate measurement and blade flow rate control can be performed over a wide flow rate range of about 1%. Even when the pressure P downstream of the orifice is vacuum and fluctuates,
  • the invention according to claim 1 provides an orifice, a detector for the pressure P on the upstream side of the orifice, and an orifice.
  • the calculation according to (number) is a basic configuration of the present invention.
  • the invention of claim 2 provides an orifice, a detector of the fluid pressure P upstream of the orifice, and an orifice.
  • a correction data storage circuit that stores the relationship between the fluctuations in (2) and the flow rate error Error of the fluid flow rate Q, and a flow rate correction calculation circuit that corrects the calculated fluid flow rate Q using correction data from the correction data storage circuit. Calculated according to the fluctuation of the orifice downstream pressure P
  • the basic configuration of the present invention is that the fluid flow rate Q is corrected and the corrected flow rate value Q 'is output.
  • the invention of claim 3 is the invention according to claim 2, wherein the control operation circuit calculates the ratio of the fluid pressure P on the upstream side of the orifice to the fluid pressure P on the downstream side of the orifice;
  • a second flow rate calculation circuit that calculates with a constant
  • the fluid flow rate Q calculated by the second fluid calculation circuit and the flow rate value Q ′ corrected by the flow rate correction calculation circuit when the fluid is under non-critical conditions are output.
  • the invention of claim 4 combines a differential pressure type flow meter that measures a flow rate range of 100% to 10% of the maximum flow rate with a differential pressure flow meter that measures a flow rate range of 10% to 1% of the maximum flow rate,
  • the basic configuration of the invention is to perform high-precision flow measurement over a wide flow rate range by switching and supplying a fluid to be measured to each of the differential pressure flow meters by a switching valve according to each of the flow rate ranges. It is assumed that.
  • each of the differential pressure type flow meters includes an orifice, a detector of a fluid pressure P upstream of the orifice, and a fluid pressure P downstream of the orifice.
  • each of the differential pressure type flowmeters comprises an orifice, a detector of the fluid pressure P upstream of the orifice, and a detector of the fluid pressure P downstream of the orifice.
  • a correction data storage circuit that stores the relationship with the difference Error, and a flow rate correction calculation circuit that corrects the calculated fluid flow rate Q with the correction data from the correction data storage circuit are provided. Correct the calculated fluid flow Q according to the
  • the invention of claim 7 is characterized in that the fluid inlet a, the fluid outlet b, the mounting hole 17a of the first switching valve 10, the mounting hole 17b of the second switching valve 11, and the mounting hole of the fluid pressure detector 2 on the upstream side of the orifice.
  • 18a and mounting hole for fluid pressure sensor 3 downstream of orifice 3 18b and fluid temperature sensor 4 upstream of orifice 4 Mounting holes for the fluid pressure detector 2 on the bottom surface of the mounting hole 17a of the first switching valve 10 and the fluid inlet a formed in the valve body 12 and the upstream side of the orifice.
  • the fluid passages 16a, 16b, 16e that pass directly through 18a and the bottom surface of the mounting hole 17b of the second switching valve 11 1 and the bottom surface of the mounting hole 17a of the first switching valve 11 and the bottom surface of the mounting hole 17b of the second switching valve 11 are connected.
  • Device 3 a fluid temperature detector 4 upstream of the orifice, and the fluid passage 16e and fluid
  • the first switching valve 10 is closed and the second switching valve 11 is opened in a large flow rate range of the flow rate to be measured, and the second switching valve 11 is opened in a small flow rate range where the first switching valve 10 is opened. It is the basic configuration of the present invention that the measurement is performed with each closed.
  • the invention of claim 8 is the invention according to claim 7, wherein the flow rate range of 100 to 10% of the maximum flow rate is measured by closing the first switching valve 10 and opening the second switching valve 11.
  • the flow rate range from 10% to 1% of the maximum flow rate is measured by opening the first switching valve 10 and closing the second switching valve 11.
  • the invention of claim 9 is the invention according to claim 4 or claim 7, wherein one of the first switching valve 10 and the second switching valve 11 is a normally closed type valve and the other is a normally open valve.
  • the control fluid is supplied from one control solenoid valve Mv to the drive cylinders 10a and 11a of the two switching valves 10 and 11.
  • the invention according to claim 10 is the invention according to claim 7 or claim 8, wherein the pressure detector 2 upstream of the orifice, the pressure detector 3 downstream of the orifice, and the temperature detector 4 upstream of the orifice. And , Are shared by both differential pressure flow meters.
  • the invention of claim 11 provides a control valve section provided with a valve drive section, an orifice provided downstream of the control valve section, a detector of pressure P upstream of the orifice, and a flow valve downstream of the orifice.
  • a detector for the body pressure p a detector for the fluid temperature ⁇ upstream of the orifice, and
  • control operation circuit having a flow comparison circuit for calculating the difference between the calculated flow rate Q and the set flow rate Qs.
  • the invention of claim 12 provides a control valve section provided with a valve drive section, an orifice provided downstream of the control valve section, a detector of fluid pressure ⁇ upstream of the orifice, and a downstream side of the orifice.
  • the fluid flow rate Q is calculated using the detected pressures ⁇ and ⁇ from the
  • the flow rate calculation circuit to calculate, and the fluctuation of the orifice downstream pressure
  • a correction data storage circuit that stores the relationship between the fluid flow rate Q and the flow rate error Error, and a flow rate correction calculation circuit that corrects the calculated fluid flow rate Q using correction data from the correction data storage circuit are provided. Compensate the fluid flow rate Q calculated according to the fluctuation of P.
  • the invention of claim 13 is the invention according to claim 12, wherein the control arithmetic circuit calculates a ratio of the fluid pressure P on the upstream side of the orifice to the fluid pressure P on the downstream side of the orifice.
  • the flow rate value Q ′ corrected from the flow rate correction operation circuit is input to the flow rate comparison circuit.
  • the structure itself of the differential pressure type flow meter and the like is greatly simplified, and the flow rate is calculated using a novel experimental flow rate calculation formula capable of obtaining a calculation flow value that matches the measured value with extremely high accuracy. Because it is configured to perform calculations, it can be manufactured at low cost, and can be used in an in-line form without any restrictions on the mounting posture, and the control flow rate is hardly affected by fluctuations in pressure. Without this, highly accurate flow measurement or flow control can be performed in real time.
  • control arithmetic circuit is provided with a circuit for storing correction data for pressure fluctuation and a circuit for correcting the calculated flow rate thereby, so that the pressure fluctuation is generated on the secondary side of the orifice. Even if it occurs, its effect can be easily corrected, and even if the pressure P on the secondary side of the orifice is close to a vacuum (low pressure of 50 Torr or less), it is hardly affected by pressure fluctuation. Highly accurate flow rate measurement or flow rate control can be performed.
  • the differential pressure type flow meter for small flow rate and the differential pressure type flow meter for large flow rate are organically and integrally assembled.
  • the rated flow 100./o
  • 1 of the rated flow 1 of the rated flow.
  • High accuracy flow rate measurement with error Errar (% SP) of 1 (% SP) or less can be performed continuously over a wide flow rate range of small flow rate ( 0 %) (1%).
  • the switching operation between the differential pressure type flow meter for small flow rate and the differential pressure type flow meter for large flow rate can be automatically performed by one system control signal Sc. Therefore, the control system can be further simplified.
  • the present invention is an inexpensive differential pressure flow meter with a simple structure, etc.
  • the flow rate of all kinds of gases can be increased over a wide range even under gas use conditions of 100 Torr or less. It has an excellent practical effect of being able to measure or control the flow rate with high accuracy over a range.
  • FIG. 1 is a basic configuration diagram of a differential pressure type flow meter according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing error characteristics of the differential pressure type flow meter of FIG. 1.
  • FIG. 9 is a diagram showing a relationship between “flow rate, secondary pressure and error” in the case.
  • FIG. 4 shows a measurement circuit used to obtain the data of FIG.
  • FIG. 5 is a basic configuration diagram of a differential pressure type flow meter according to a second embodiment of the present invention.
  • FIG. 6 is a basic configuration diagram of a differential pressure type flow meter according to a third embodiment of the present invention.
  • FIG. 7 is a system diagram showing an overall configuration of a differential pressure type flow meter according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic sectional view of a main part of a differential pressure type flow meter according to a fourth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a switching operation system of a differential pressure type flow meter according to the present invention using a normally open type and a normally closed type switching valve.
  • FIG. 10 is a basic configuration diagram of a first embodiment of a differential pressure type flow control device according to the present invention.
  • FIG. 11 is a basic configuration diagram of a second embodiment of the differential pressure type flow control device according to the present invention.
  • FIG. 12 is a basic configuration diagram of a third embodiment of the differential pressure type flow control device according to the present invention.
  • FIG. 13 is a basic configuration diagram of a fourth embodiment of a differential pressure type flow control device according to the present invention.
  • FIG. 14 is a configuration diagram of an improved pressure type flow control device disclosed earlier.
  • FIG. 15 is a diagram showing flow characteristics of the improved pressure type flow controller disclosed earlier. Explanation of symbols
  • Q is the experimental flow formula
  • Q ' is the corrected flow
  • Qs is the set flow
  • SF is the standard flow controller (pressure flow controller)
  • A is the differential pressure flow meter
  • V-V is the secondary control valve
  • VP vacuum
  • a is a gas inlet
  • b is a gas outlet
  • 1 is an orifice
  • 1 ' is a small flow orifice
  • 2 is an absolute pressure detector upstream of the orifice
  • 3 is a downstream orifice Absolute pressure type pressure detector
  • 4 is a gas absolute temperature detector upstream of the orifice
  • 5 is a control operation circuit
  • 5a is a flow rate operation circuit
  • 5b is a correction data storage circuit
  • 5c is a flow rate correction operation circuit
  • 5d is a pressure ratio.
  • Arithmetic circuit 5e is a critical condition judgment circuit, 5f is a second flow arithmetic circuit that calculates the flow rate under critical conditions, 5g is a comparison circuit between the set flow rate and the calculated flow rate, 5 'is the first control arithmetic circuit, and 5 "is the first control arithmetic circuit.
  • 6 is a flow rate output terminal
  • 7 is a power supply input terminal
  • 8 is a gas supply device
  • 9 is a gas use device (one chamber)
  • 10 is a first switching valve
  • 11 is a second Switching valve
  • 12 is body
  • 12a is gas inlet member
  • 12b is Gas outlet member
  • 12c is the first body member
  • 12d is the second body member
  • 13a 'and 13b are seals
  • 14a' and 14b are mounting bolts of the pressure detector
  • 15a 'and 15b are diaphragm valve mechanisms
  • 16a and 16f are passages.
  • 17a is the mounting hole for the first switching valve
  • 17b is the mounting hole for the second switching valve
  • 18a is the mounting hole for the pressure sensor upstream of the orifice
  • 18b is the mounting hole for the pressure sensor downstream of the orifice
  • 21 is the control valve
  • 22 is a valve drive unit
  • Mv is a control solenoid valve
  • Sc is a control signal.
  • FIG. 1 shows a basic configuration of a first embodiment of a differential pressure type flow meter according to the present invention.
  • the differential pressure type flow meter has an orifice 1, an absolute pressure type pressure sensor upstream of the orifice 2, and a downstream side of the orifice. It consists of an absolute pressure detector 3, a gas absolute temperature detector upstream of the orifice 4, a control operation circuit 5, an output terminal 6, an input terminal 7, and the like.
  • Reference numeral 8 denotes a gas supply device
  • reference numeral 9 denotes a gas use device (one chamber).
  • Equation (2) “ ⁇ ” is the gas density, “ ⁇ ” is the specific heat ratio of the gas, and “ ⁇ ” is the pressure upstream of the orifice.
  • is the downstream pressure of the orifice
  • is the gas temperature
  • R is the gas constant
  • S is the orifice cross-sectional area
  • Q is a volume flow rate (SCCM) converted to a standard state
  • C is a coefficient including the cross-sectional area S of the orifice 1
  • is an absolute pressure on the upstream side of the orifice.
  • Pa the absolute pressure (Pa) downstream of the orifice
  • T is the absolute temperature (K) of the gas upstream of the orifice.
  • FIG. 2 is an actual measurement showing the relationship between the set flow rate (%), the pressure P, P (Torr), and the error Error (% SP) of the differential pressure type flow meter (100% set value 2000sccm) in FIG. Yes, gas pressure P, P is 50
  • the flow rate error Error becomes 11 (% SP) or more, which causes a problem in practical use of the flow rate measurement value.
  • Fig. 3 shows the orifice secondary pressure P (Torr) and the set flow rate (orifice) of the differential pressure type flow meter according to the present invention.
  • 9a is a diagram showing the relationship between the error (% SP) and the secondary side piping conditions, 9a is for the case where the set flow rate (%) is 100sccm, 9b is for 200sccm, 9c is for 400sccm, 9d Is for 6 OOsccm, 9g is for 1200sccm, is for 1800sccm, and 9k is for 2000sccm (100%).
  • the maximum flow rate (100%) of the differential pressure type flowmeter used was 2000 sccm.
  • a square mark indicates a valve with the outlet side of the differential pressure type flow meter as a pipe line (4.35 mm ⁇ 100 mm) as shown in FIG.
  • the error Error (% SP) when not installed the diamond mark indicates the error Error (% SP) when a control valve with a Cv value of 0.3 is installed at the outlet side of the differential pressure flow meter
  • Triangles indicate errors (% SP) when a control valve with a Cv value of 0.2 is installed
  • circles indicate errors (% SP) when a control valve with a Cv value of 0.1 is installed. is there.
  • the flow rate calculation can be performed with higher accuracy.
  • FIG. 4 shows a measurement circuit for obtaining the error correction coefficient of FIG. 3, which uses a pressure type flow controller as the standard flow controller SF and changes the secondary-side piping conditions.
  • the control valve V is mounted freely on the standard flow controller SF and the
  • the secondary-side pipe resistance is measured when the control valve V is not provided (the differential pressure type flow meter A is directly
  • the adjustment was made in four cases, when 2 was 0.3, when the Cv value was 0.2, and when the Cv value was 0.1.
  • the supply pressure P to the pressure type flow controller is about 300 kPaG
  • Fils secondary side Ri was continuously evacuated by the vacuum exhaust pump Vp (3001 / min, the maximum pressure reached 1. 2 ⁇ 10- 2 Torr).
  • the measured value of the differential pressure type flow meter A is about 100 sccm and the error E is zero.
  • the secondary pressure P at that time was about 18 Torr.
  • the reading of the differential pressure type flow meter A is 1920 sccm (error E is 14% SP), and the secondary pressure P at that time is about 29 Torr.
  • the differential pressure type flow meter force used at 2000 sccm (100%) is 2000 sccm as the measured value and the pressure P force downstream of the orifice at that time is 3 ⁇ 40 Torr, the measured value (2000 sccm) Contains + 2% error Error (% SP), so make the + 2% correction and correct the 2000sccm measurement to 1960sccm.
  • FIG. 5 shows a basic configuration of the present invention employing the above-mentioned correction means.
  • the control data processing circuit 5 of the differential pressure type flow meter of FIG. 1 showing the first embodiment stores a correction data storage circuit 5b.
  • a flow rate correction arithmetic circuit 5c that is, the flow rate value Q calculated by the flow rate calculation circuit 5a using the flow rate empirical equation Q is referred to the orifice downstream pressure P, and the error in the pressure P from the correction data storage circuit 5b.
  • FIG. 6 shows a third embodiment of the present invention.
  • the control ratio calculation circuit 5 of FIG. 5 includes a pressure ratio calculation circuit 5d, a critical condition determination circuit 5e, and a critical condition determination circuit 5e.
  • a flow calculation circuit 5f below has been added.
  • the corrected flow value Q ' is output from terminal 6.
  • the error Error of the flow rate measurement value is reduced.
  • the flow rate can be kept within the range that can be practically used (for example, 1 (% SP) or less) when the flow rate range is 100 to 10 (%). Also, it is difficult to keep the error Error below 1 (% SP).
  • two sets of differential pressure flow meters according to the first to third embodiments having different flow ranges are combined, and the two sets of differential pressure flow meters described above are combined.
  • a high-precision flow measurement with an error of 1 (% SP) or less can be always performed over a wide flow rate range of 100 (%) 1 (%) as a whole.
  • FIG. 7 shows an overall configuration diagram of a differential pressure type flow meter according to the fourth embodiment.
  • 10 is a first switching valve (NC type)
  • 11 is a second switching valve (NC type).
  • NC type a is gas inlet side
  • b is gas 1 'is a first orifice (for small flow rate)
  • 1 " is a second orifice (large flow rate side)
  • 5' is a first control arithmetic circuit
  • 5" is a second control arithmetic circuit.
  • the differential pressure type flow meter for example, a flow rate range of 10-100sccm
  • Each differential pressure type flow control device eg, 100 lOOsccm flow range
  • the flow rate range is 1000sccm (100%)-10sccm (l%) by both differential pressure flow control devices.
  • the flow rate can be measured over a wide range with high accuracy with an error Error of 1 (% SP) or less.
  • FIG. 8 is a schematic cross-sectional view of a main part of a differential pressure type flow meter according to a fourth embodiment of the present invention.
  • 12 is a body
  • 13a and 13b are seals
  • 14a is a mounting bolt for an orifice upstream absolute pressure sensor 2
  • 14b is an orifice downstream absolute pressure sensor.
  • the mounting bolt 3 and 15a and 15b are diaphragm valve mechanisms and 10a and 1 la driving cylinders.
  • the body 12 is formed by assembling a gas inlet member 12a, a gas outlet member 12b, a first body member 12c, and a second body member 12d in an airtight manner, and is made of stainless steel. .
  • mounting holes 17a and 17b for the first switching valve 10 and the second switching valve 11 are provided on the upper surface side of the block-shaped first body member 12c and the second body member 12d, and further, on the lower surface side.
  • the orifice upstream pressure sensor 2 and the orifice downstream pressure sensor 3 are provided with mounting holes 18a and 18b, respectively.
  • a mounting hole for the gas temperature detector 4 on the upstream side of the orifice is formed in the first body member 12c.
  • the body members 12 c, 12 d, etc. have a fluid inlet a, a bottom surface of a mounting hole 17 a of the first switching valve 10, a bottom surface of a mounting hole 18 a of the orifice upstream pressure detector 2, and a second switching valve 11.
  • Fluid passages 16a, 16b, 16e communicating with the bottom surface of the mounting hole 17b, a fluid passage 16f communicating between the bottom surfaces of the mounting hole 17a and the mounting hole 17b, and the bottom surface of the mounting hole 17b and the bottom surface of the mounting hole 18b.
  • Fluid passage 16d communicating the bottom of the mounting hole 18b with the fluid outlet b. And power Each is drilled.
  • an orifice 1 ′ for a small flow rate is provided in the fluid passage 16
  • an orifice 1 ′′ for a large flow rate is provided in the fluid passage 16 a (or 16 b).
  • orifices 1 'and 1 are arranged on the joint surface between the two body members 12c and 12d.
  • valve seats communicating with the fluid passages 16e and 16b formed on the bottom surfaces of the mounting holes 17a and 17b are opened and closed by valve mechanisms 15a and 15b of the first switching valve 10 and the second switching valve 11, respectively.
  • valve mechanisms 15a and 15b of the first switching valve 10 and the second switching valve 11 respectively.
  • the valve seat By opening and closing the valve seat, the passage between the passage 16e and the passage 16f and the passage 16c and the passage 16b are opened and closed.
  • the passage 16c always connects between the mounting holes 17b and 18b.
  • the first switching valve 10 is closed, the second switching valve 11 is opened, and the gas flowing from the gas inlet a is discharged.
  • the gas is discharged from the gas outlet b through the passage 16a, the orifice 1 ", the passage 16b, the passage 16c, and the passage 16d.
  • the flow rate is calculated by the second control arithmetic circuit 5" (not shown), and the calculated flow is output to a required portion.
  • the first switching valve 10 When the measured flow rate region is reduced to 10% or less of the rated flow rate, the first switching valve 10 is opened and the second switching valve 11 is closed. Accordingly, the gas flows out from the gas outlet b through the passage 16a, the passage 16e, the small flow orifice 1 ', the passage 16f, the passage 16c, and the passage 16d. In the meantime, the flow rate calculation is performed by the first control calculation circuit 5 'and output to the required part is the same as the case of the measurement in the large flow rate region.
  • the first switching valve 10 and the second switching valve 11 are normally closed valves, respectively, and the switching valves 10 and 11 are driven.
  • the working fluid is supplied to the cylinders 10a and 11a via independent control solenoid valves
  • one of the first switching valve 10 and the second switching valve 11 is a normally closed valve and the other is a normally closed valve.
  • the control fluid may be supplied from the L control solenoid valves to the two switching valves 10 , 1: L.
  • FIG. 10 shows a first embodiment of a differential pressure type flow control device according to the present invention.
  • the differential pressure type flow meter shown in FIG. 1 is provided with a control vanoleb 21 and a valve drive unit 22.
  • the control operation circuit 5 is provided with a flow rate comparison circuit 5g, which calculates the flow rate difference Q between the externally input set flow rate Qs and the calculation flow rate Q calculated by the flow rate calculation circuit 5a, and calculates the flow rate difference Q
  • the control signal is input to the valve drive unit 22.
  • the control valve 21 is operated in a direction in which the flow rate difference Q becomes zero, and the gas flow rate Q flowing through the orifice 1 is controlled to the set flow rate Qs.
  • FIG. 11 shows a second embodiment of the differential pressure type flow controller.
  • the control valve 21 and the valve driving section 22 are provided in the differential pressure type flow meter shown in FIG.
  • a flow comparison circuit 5g is provided.
  • the flow rate difference Q is calculated using the corrected flow rate Q ′ obtained by correcting the calculated flow rate Q by the correction calculation circuit 5c, and the flow rate difference Q becomes zero.
  • the control valve 21 is controlled to open and close in the direction.
  • FIG. 12 shows a third embodiment of the differential pressure type flow control device.
  • the control valve 21 and the valve driving section 22 are provided in the differential pressure type flow meter shown in FIG. Except for the correction data storage circuit 5b and the correction operation circuit 5c, a flow comparison circuit 5g is provided instead.
  • the calculated flow rate Q from the second flow rate calculation circuit 5f is used, and when the gas flow is under the non-critical condition, the calculation flow from the flow rate calculation circuit 5a is used.
  • the flow rate difference Q is calculated using the flow rate Q, and the control valve 21 is controlled to open and close in a direction to make the flow rate difference Q zero.
  • FIG. 13 shows a fourth embodiment of the differential pressure type flow controller.
  • the control valve 21 and the valve drive unit 22 are provided in the differential pressure type flow meter shown in FIG.
  • the flow rate comparison circuit 5g is provided.
  • the present invention is mainly used in semiconductor manufacturing equipment, chemical plants, food manufacturing plants, and the like, but is widely used in the field of handling fluids such as gases and liquids.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

 差圧式流量計の構造を簡素化して製造コストの引下げを図ると共に、100%~1%の広い流量範囲に亘って誤差Eが(1%SP)以下の高精度な流量計測をリアルタイムに且つインライン状態で行えるようにする。  そのため、オリフィスと、オリフィス上流側の圧力P1の検出器と、オリフィス下流側の流体圧力P2の検出器と、オリフィス上流側の流体温度Tの検出器と、前記各検出器からの検出圧力P1、P2及び検出温度Tを用いてオリフィスを流通する流体流量Qを演算する制御演算回路とからなる差圧式流量計に於いて、前記流体流量QをQ=C1・P1/√T・((P2/P1)m−(P2/P1)n)1/2(但しC1は比例定数、m及びnは定数)により演算する。

Description

明 細 書
差圧式流量計及び差圧式流量制御装置
技術分野
[0001] 本発明は、半導体製造設備や化学プラント、食品製造プラント等で使用される差圧 式流量計及び差圧式流量制御装置 (以下、差圧式流量計等と呼ぶ)の改良に関す るものであり、所謂インライン状態で使用することができ、しかも臨界状態や非臨界状 態にある流体の流量を、真空下の小流量域であっても高精度でリアルタイムに計測 又は制御することが出来るようにした、安価で且つ構造の簡単な差圧式流量計等に 関するものである。
背景技術
[0002] 従前から、半導体製造設備や化学プラントでは、プロセスガスや原料ガス等の流量 測定又は流量制御にマスフロー型流量計 (熱式質量流量計)等ゃビルドアップ式流 量計等、差圧式流量計等が多く使用されて来た。
[0003] しかし、熱式質量流量計等には応答性が低いこと、低流量域での測定精度が低い こと、作動時のトラブルが多いこと、被制御ガスの種類に制約があること及び圧力変 動の影響を受け易いこと等の多くの難点がある。
同様に、ビルドアップ式流量計等には、リアルタイムの流量測定又は流量制御が困 難なこと、インライン状態で使用できないこと、被制御ガスの圧力に制約があること及 び測定用に別ラインを必要とすること等の問題がある。
[0004] これに対して、オリフィスと圧力計を用いる差圧式流量計等は、被制御ガスの種類 による制約が殆どないうえ、インライン状態で使用することができ、しかもリアルタイム の流量計測又は流量制御が行えると云う優れた効用を有するものである。
[0005] ところが、この種の差圧式流量計等は、何れも流体が非圧縮性であることを前提と するベルヌーィの定理から導出した流量演算式を基礎として用い、これに各種の補 正をカ卩えることにより流体流量を演算するものであるため、流体の圧力変化が大きい 場合 (即ち、流体が非圧縮性であると云う近似が崩れた場合)には、流量の測定精度 や制御精度の大幅な低下が避けられず、結果として高精度な流量計測又は流量制 御が出来ないと云う難点がある。
[0006] また、上記差圧式流量計等の難点を解決するものとして、オリフィスを通過する流体 を臨界条件、即ち流体流速が音速領域になるようにオリフィス上流側圧力 Pとオリフ
1 イス下流側圧力 Pを強制的に設定し、この臨界条件下で流体の流量 Qを Q=KPな
2 1 る理論式で演算するようにした圧力式流量計等が開発され、公開されている(特開平 10— 55218号等)。
[0007] しかし、当該圧力流量計等でも、流体が小流量域 (即ち、オリフィス上流側圧力 Pと
1 下流側圧力 Pとが接近した状態)になると非臨界条件が出現することになり、結果と
2
して流量測定値 Q又は流量制御値 Qに大きな誤差が含まれることになる。
[0008] 即ち、従前の差圧式流量計(又は圧力式流量計)等では、ベルヌーィの定理から流 体が非圧縮性であると仮定して導出した流量演算式を用い、流体が音速に達する前 の非臨界条件下 (非音速領域)では、下流側流量 Qを Qc = SC (P (P -P ) ) 1/2/T
2 1 2
1/2により求め、また音速に達した後の臨界条件下 (音速領域)では、 Qc = SCP /T
1
1/2により演算するようにしている。尚、 τはオリフィス通過時の流体の絶対温度、 sはォ リフィス孔断面積、 cは比例係数である。
[0009] また、流体速度が音速に達する臨界条件は、圧力比 P /Pの臨界値 rで与えられ
2 1 c
、この臨界値 rは、ガスの比熱比 nを用いて、 P /P =r = (2/ (n+ 1) ) ηΛη— "により c 2 1 c
求められている。
更に、比熱比 nは n=Cp/Cvで与えられ、 Cpは定圧比熱、 Cvは定積比熱である。 2原子分子ガスでは、 n= 7/5 = l . 4であり、 r =0. 53となる。また、非直線型 3原 c
子分子ガスでは、 η=8/6 = 1 · 33であり、 r =0. 54となる。
c
[0010] ところで、先に本願発明者等は、上記従前の差圧式流量計 (又は圧力式流量計) の問題点を改良するため、非臨界条件下で使用する流体を非圧縮性として導出した 従前の理論流量式 Qによる演算流量値と実際の流量測定値とを対比し、従前の理論 流量式 Qc = SCZT1/2 (P (P -P ) ) 1/2から複数のパラメータを有する実験流量式 QC
2 1 2
' = SC/T1/2- P m (P -Ρ
2 1 2 Γ=ΚΡ m (P -Ρ ) ηを導出し、この実験流量式 Qc'による演
2 1 2
算流量値が実測値と合致するように前記パラメータ m、 nを決定することにより、圧縮 性流体によりうまく適合できるようにした実験流量式 Qc'を提案し、特願 2001— 3994 33号としてこれを公開してレ、る。
尚、上記実験流量式 Qc'に於いては、比例定数 Kは SC/T1/2で与えられ、ガス流 の物質条件と絶対温度 Tから計算される。また、 Pはオリフィス上流側圧力、 Pはオリ
1 2 フィス下流側圧力を表し、単位は kPaA (キロパスカル絶対圧)である。更に、計測流 量範囲が 10 30sccm (標準状態における ccZmin単位の流量)の領域に於いて は、前記ノ ラメータ m、 n力 ¾n = 0. 47152、 n = 0. 59492のィ直になることを見出して いる。
[0011] 前記二つのパラメータ m、 nの値は、計測すべき流量範囲、ガス種に依存するもの であり、前記した m = 0. 47152及び n = 0. 59492の値 fま、流量力 10 30sccmの 領域において成立する値である力 S、流量範囲が 10 lOOsccmや 100— lOOOscc mになると、 mと nの値はこれらの値力 ずれてくる。
[0012] 図 14は、上記実験流量式 Qc'を用いた改良型圧力式流量制御装置の構成図であ り、本願発明者等が特願 2001-399433号として先に公開しているものである。尚、 当該図 14の装置は流量制御装置として構成されている力 コントロール弁 21やバル ブ駆動部 22、流量比較部 23eを省略すれば、差圧式流量計となることは容易に理解 できることである。
[0013] 図 14に於いて、 20はオリフィス、 21はコントローノレ弁、 22はバルブ駆動部、 23は 制御回路、 23aは圧力比演算部、 23bは圧力比演算部、 23cは流量演算部、 23dは 流量演算部、 23eは流量比較部、 Pはオリフィス上流側流体圧力検出器、 Pはオリフ
1 2 イス下流側流体圧力検出器、 Tは流体温度検出器、 Qsは流量設定値信号、ト Qは流 量差信号、 Qc'は流量演算値である。
[0014] 当該装置では、先ず検出した上流側圧力 Pと下流側圧力 Pから圧力比 P /Pを
1 2 2 1 算出し (23a)、流体が臨界条件にあるか非臨界条件にあるかを常時判断し (23b)、 臨界条件では流量式 Qc = KPを用い(23c)、また、非臨界条件では実験流量式 Qc
1
' = ΚΡ m (p -p ) nを用いて流量演算が行われる。
2 1 2
尚、前述したように、臨界値 rcは(2/ (n+ l) ) ) n/(n— "により与えられ (但し、 nはガス の比熱比である)、 2原子分子ガスでは rc = 0. 53、非直線型 3原子分子ガスでは r = 0. 54であり、 r =約 0. 5と表記される。 また、流量比較部 23aでは、設定流量 Qsと演算流量 Qcとの流量差ト Qが計算され 、流量差ト Qがゼロになるようにバルブ駆動部 22を動作させ、コントロールバルブ 21 を開閉制御するようにしている力 流量計として使用する場合には、前述の通り流量 比較部 23eやコントロールバルブ 21、バルブ駆動部 22は不要である。
[0015] 図 15の曲線 Aは、前記図 14の改良した圧力式流量計等による流量測定又は流量 制御特性を、また、曲線 Bは、従前臨界条件下で Qc = KPを用いる圧力式流量計等
1
による流量測定又は流量制御特性を、夫々示すものである。図 15からも明らかなよう に、図 14の改良した圧力式流量計等では、臨界条件下では臨界条件の流量式 Qc =KPを用い、また非臨界条件下では非臨界条件の実験流量式 Qc' =KP m (P -P
1 2 1 2
) nを用いるから、設定流量に比例した正確な流量 Qが算出でき、流量 Qの設定%に 対する直線性が、図 15の曲線 Aに示すように保持されていることになり、流量が少な い領域に於いても、比較的高精度な流量測定や流量制御を行うことが出来る。
[0016] 特許文献 1 :特公昭 59 - 19365号公報
特許文献 2:特公昭 59 - 19366号公報
特許文献 3:特開平 10 - 55218号公報
発明の開示
発明が解決しょうとする課題
[0017] 前記図 14に示した改良型圧力式流量計等は、図 15の曲線 Aに示されているようい に最大流量の約 10%位の小流量域までであれば、比較的高精度な流量測定又は 流量制御を行うことが出来、優れた実用的効用を奏するものである。
しかし、流量領域が最大流量の約 10%以下の小流量域になると、現実には実用的 な流量測定や流量制御精度が得られないと云う問題がある。
[0018] また、当該改良型圧力式流量計等では、オリフィス下流側の圧力 Pが約 200Torr
2
以下の真空になると、基準設定流量に対する測定誤差 Error (%3?又は° ^3)が比 較的大きくなり、実用上様々な問題が生じると云う難点がある。
[0019] 本発明は、先に本願発明者等が開発をした改良型圧力式流量計等に於ける上述 の如き問題を解決せんとするものであり、最大流量(100%)から最大流量の約 1% 程度の広い流量範囲に亘つて高精度な流量測定又刃流量制御が出来ると共に、ォ リフィス下流側の圧力 Pが真空であって且つこれが変動するような場合に於いても、
2
予め実測により求めた誤差データを記憶装置に記憶しておき、この補正データを参 照して流量演算値を補正することにより、高精度な流量測定又は流量制御を行うこと ができ、しかも構造が簡単で安価に製造できるようにした差圧式流量計等を提供する ものである。
課題を解決するための手段
[0020] 請求項 1の発明は、オリフィスと、オリフィス上流側の圧力 Pの検出器と、オリフィス
1
下流側の流体圧力 pの検出器と、オリフィス上流側の流体温度 τの検出器と、前記
2
各検出器からの検出圧力 P、 P及び検出温度 Tを用いてオリフィスを流通する流体
1 2
流量 Qを演算する制御演算回路とから成る差圧式流量計に於いて、前記流体流量 Qを Q = C ·Ρ /^Τ· ( (Ρ /P ) m- (P /Ρ ) η) 1/2 (但し Cは比例定数、 m及び nは定
1 1 2 1 2 1 1
数)により演算することを発明の基本構成とするものである。
[0021] 請求項 2の発明は、オリフィスと、オリフィス上流側の流体圧力 Pの検出器と、オリフ
1
イス下流側の流体圧力 pの検出器と、オリフィス上流側の流体温度 τの検出器と、前
2
記各検出器からの検出圧力 P、 P及び検出温度 Tを用いて流体流量 Qを演算する
1 2
制御演算回路とから成る差圧式流量計に於いて、前記制御演算回路に、流体流量 Qを Q = C ·Ρ / Τ· ( (P /P ) m- (P /Ρ ) η) 1/2 (但し Cは比例定数、 m及び nは定
1 1 2 1 2 1 1
数)により演算する流量演算回路と、予め実測により求めたオリフィス下流側圧力 P
2 の変動と前記流体流量 Qの流量誤差 Errorとの関係を記憶した補正データ記憶回路 と、前記演算した流体流量 Qを補正データ記憶回路からの補正用データにより補正 する流量補正演算回路とを設け、オリフィス下流側圧力 Pの変動に応じて演算した
2
流体流量 Qを補正し、補正後の流量値 Q'を出力する構成としたことを発明の基本構 成とするものである。
[0022] 請求項 3の発明は、請求項 2の発明に於いて、制御演算回路にオリフィス上流側の 流体圧力 Pとオリフィス下流側の流体圧力 Pの比を演算する圧力比演算回路と、前
1 2
記演算した圧力比と流体の臨界圧力比とを対比して流体の状態を判別する臨界条 件判定回路と、流体が臨界条件下にあるときには流体流量 Qを Q =KP (但し Kは比
1 例定数)により演算する第 2流量演算回路とを設け、流体が臨界条件下にあるときは 前記第 2流体演算回路により演算した流体流量 Qを、また流体が非臨界条件下にあ るときには流量補正演算回路から補正した流量値 Q'を、夫々出力する構成としたも のである。
[0023] 請求項 4の発明は、最大流量の 100 10%までの流量域を測定する差圧式流量 計と最大流量の 10% 1%までの流量域を測定する差圧流量計とを組み合せ、測 定すべき流体を前記各流量域に応じて切換弁により前記各差圧流量計へ切換え供 給することにより、広流量域によって亘つて高精度な流量測定を行うことを発明の基 本構成とするものである。
[0024] 請求項 5の発明は、請求項 4の発明に於いて、各差圧式流量計を、オリフィスと、ォ リフィス上流側の流体圧力 Pの検出器と、オリフィス下流側の流体圧力 Pの検出器と
1 2
、オリフィス上流側の流体温度 Tの検出器と、前記各検出器からの検出圧力 P、 P及
1 2 び検出温度 Tを用いて流体流量 Qを演算する制御演算回路とから成る差圧式流量 計とし、且つ前記流体流量 Qを Q = C ·Ρ /^Τ· ( (Ρ /P ) m- (P /Ρ ) η) 1/2 (但し C
1 1 2 1 2 1 1 は比例定数、 m及び nは定数)により演算するようにしたものである。
[0025] 請求項 6の発明は、請求項 4の発明に於いて、各差圧式流量計を、オリフィスと、ォ リフィス上流側の流体圧力 Pの検出器と、オリフィス下流側の流体圧力 Pの検出器と
1 2
、オリフィス上流側の流体温度 Tの検出器と、前記各検出器からの検出圧力 P、 P及
1 2 び検出温度 Tを用いて流体流量 Qを演算する制御演算回路とから成る差圧式流量 計であって、且つ前記制御演算回路に、流体流量 Qを Q = C ·Ρ /^Τ· ( (Ρ /Ρ )
1 1 2 1 m— (Ρ /P )n) 1/2 ( LCは比例定数、 m及び nは定数)により演算する流量演算回路
2 1 1
と、予め実測により求めたオリフィス下流側圧力 Pの変動と前記流体流量 Qの流量誤
2
差 Errorとの関係を記憶した補正データ記憶回路と、前記演算した流体流量 Qを補 正データ記憶回路からの補正用データにより補正する流量補正演算回路とを設け、 オリフィス下流側圧力 Pの変動に応じて演算した流体流量 Qを補正し、補正後の流
2
量値 Q'を出力する構成としたものである。
[0026] 請求項 7の発明は、流体入口 aと流体出口 bと第 1切換弁 10の取付孔 17aと第 2切 換弁 11の取付孔 17bとオリフィス上流側の流体圧力検出器 2の取付孔 18aとオリフィ ス下流側の流体圧力検出器 3の取付孔 18bとオリフィス上流側の流体温度検出器 4 の取付孔を夫々設けたバルブボディ 12と、前記バルブボディ 12の内部に穿設した 流体入口 aと第 1切換弁 10の取付孔 17aの底面とオリフィス上流側の流体圧力検出 器 2の取付孔 18aと第 2切換弁 1 1の取付孔 17bの底面とを直通する流体通路 16a、 16b、 16eと、第 1切換弁取付孔 17aの底面と第 2切換弁 11の取付孔 17bの底面とを 連通する流体通路 16fと、第 2切換弁 11の取付孔 17bの底面とオリフィス下流側の流 体圧力検出器 3の取付孔 18bの底面とを連通する流体通路 16cと、オリフィス下流側 の流体圧力検出器 3の取付孔 18bの底面と流体出口 bとを連通する流体通路 16dと 、前記各取付孔 18a、 18bへ固着したオリフィス上流側の流体圧力検出器 2及びオリ フィス下流側の流体圧力検出器 3と、オリフィス上流側の流体温度検出器 4と、前記 流体通路 16eと流体通路 16f間を開閉する第 1切換弁 10と、前記流体通路 16bと流 体通路 16c間を開閉する第 2切換弁 11と、前記流体通路 16fの途中に介設した小流 量用のオリフィス 1 'と、前記流体通路 16a又は流体通路 16bに介設した大流量用の オリフィス 1 "と、前記両圧力検出器 2, 3の検出圧力 P · Ρ及び温度検出器 4の検出
1 2
温度 Τにより小流量用オリフィス 1 '及び大流量用オリフィス 1 "を流通する流体流量 Q を Q = C · Ρ /^Τ· ( (Ρ /Ρ Γ- (Ρ /Ρ ) η) 1/2により演算する制御演算回路とから
1 1 2 1 2 1
構成され、測定すべき流量の大流量域を前記第 1切換弁 10を閉に第 2切換弁 11を 開にして、また小流量域を前記第 1切換弁 10を開に第 2切換弁 11を閉にして夫々測 定することを発明の基本構成とするものである。
[0027] 請求項 8の発明は、請求項 7の発明に於いて、最大流量の 100— 10%までの流量 域を、第 1切換弁 10を閉に第 2切換弁 11を開にして測定し、また最大流量の 10%— 1 %までの流量域を第 1切換弁 10を開に及び第 2切換弁 11を閉にして測定するよう にしたものである。
[0028] 請求項 9の発明は、請求項 4又は請求項 7の発明に於いて、第 1切換弁 10と第 2切 換弁 11の何れか一方をノーマルクローズ型の弁に、他方をノーマルオープン型の弁 にすると共に、両切換弁 10、 11の駆動用シリンダ 10a、 11aへ 1台の制御用電磁弁 Mvから作動用流体を供給する構成としたものである。
[0029] 請求項 10の発明は、請求項 7又は請求項 8の発明に於いて、オリフィス上流側の圧 力検出器 2とオリフィス下流側の圧力検出器 3とオリフィス上流側の温度検出器 4とを 、両差圧流量計で共用するようにしたものである。
[0030] 請求項 11の発明は、バルブ駆動部を備えたコントロールバルブ部と、その下流側 に設けたオリフィスと、オリフィス上流側の圧力 Pの検出器と、オリフィス下流側の流
1
体圧力 pの検出器と、オリフィス上流側の流体温度 τの検出器と、前記各検出器から
2
の検出圧力 P、 P及び検出温度 Tを用いてオリフィスを流通する流体流量 Qを演算
1 2
すると共に、演算流量 Qと設定流量 Qsとの差を演算する流量比較回路を備えた制御 演算回路とからなる差圧式流量制御装置に於いて、前記流体流量 Qを Q = C · Ρ /
1 1 Τ· ( (P /P ) m-(P /Ρ ) η) 1/2 (但し Cは比例定数、 m及び nは定数)により演算す
2 1 2 1 1
ることを特 ί敷とするものである。
[0031] 請求項 12の発明は、バルブ駆動部を備えたコントロールバルブ部と、その下流側 に設けたオリフィスと、オリフィス上流側の流体圧力 Ρの検出器と、オリフィス下流側
1
の流体圧力 ρの検出器と、オリフィス上流側の流体温度 τの検出器と、前記各検出
2
器からの検出圧力 Ρ、 Ρ及び検出温度 Τを用いて流体流量 Qを演算すると共に、演
1 2
算流量 Qと設定流量 Qsとの差を演算する流量比較回路を備えた制御演算回路とか ら成る差圧式流量制御装置に於いて、前記制御演算回路に、流体流量 Qを Q = C ·
1
P /^Τ· ( (Ρ /Ρ Γ_ (Ρ /Ρ Γ) 1/2(但し Cは比例定数、 m及び ηは定数)により演
1 2 1 2 1 1
算する流量演算回路と、予め実測により求めたオリフィス下流側圧力 Ρの変動と前記
2
流体流量 Qの流量誤差 Errorとの関係を記憶した補正データ記憶回路と、前記演算 した流体流量 Qを補正データ記憶回路からの補正用データにより補正する流量補正 演算回路とを設け、オリフィス下流側圧力 Pの変動に応じて演算した流体流量 Qを補
2
正し、補正後の流量値 Q'を前記流量比較回路へ入力して流量差ト S = Q '- Qsを演 算する構成としたことを特徴とするものである。
[0032] 請求項 13の発明は、請求項 12の発明に於いて、制御演算回路にオリフィス上流 側の流体圧力 Pとオリフィス下流側の流体圧力 Pの比を演算する圧力比演算回路と
1 2
、前記演算した圧力比と流体の臨界圧力比とを対比して流体の状態を判別する臨界 条件判定回路と、流体が臨界条件下にあるときには流体流量 Qを Q =KP (但し Kは
1 比例定数)により演算する第 2流量演算回路とを設け、流体が臨界条件下にあるとき は前記第 2流体演算回路により演算した流体流量 Qを、また流体が非臨界条件下に あるときには流量補正演算回路から補正した流量値 Q'を、夫々前記流量比較回路 へ入力する構成としたものである。
発明の効果
[0033] 本発明では、差圧式流量計等の構造そのものを大幅に簡素化すると共に、実測値に 極めて高精度で合致する演算流量値を得ることが出来る新規な実験流量演算式を 用いて流量演算を行う構成としているため、安価に製造でき、し力、もインラインの形態 で且つ取り付け姿勢に制約を受けることもなく使用でき、そのうえ圧力の変動に対し ても制御流量が殆ど影響されることなしに、高精度な流量計測又は流量制御をリアル タイムで行うことが出来る。
[0034] また、本発明に於いては、制御演算回路に圧力変動に対する補正データの記憶回 路と、これによる演算流量の補正回路を設けるようにしているため、オリフィス 2次側に 圧力変動が生じてもその影響を簡単に補正することが出来、オリフィス 2次側の圧力 Pが真空(50Torr以下の低圧)に近い状態の条件下に於いても、圧力変動に殆ど 影響を受けることなしに高精度な流量計測又は流量制御が行える。
[0035] 更に、本発明に於いては、小流量用の差圧式流量計と大流量用の差圧式流量計 とを有機的に一体的に組み付けするようにしているため、両差圧流量計を切換作動 させることにより、定格流量(100。/o)から定格流量の 1。/0位の小流量(1%)の広い流 量範囲に亘つて、誤差 Errar (%SP)が 1 (%SP)以下の高精度な流量計測を連続的 に行うことができる。
[0036] 加えて、本発明に於いては、小流量用の差圧式流量計と大流量用の差圧式流量 計の切換作動を一系統の制御用信号 Scでもって自動的に行なうことができ、制御系 統の一層の簡素化が可能となる。
[0037] 本発明は上述の通り、簡単な構造の安価な差圧式流量計等であるにも拘わらず、 あらゆる種類のガスの流量を、 lOOTorr以下のガス使用条件下であっても広範囲の 流量域に亘つて高精度で計測又は流量制御することができると云う優れた実用的効 用を有するものである。
図面の簡単な説明
[0038] [図 1]本発明の第 1実施形態に係る差圧式流量計の基本構成図である。 [図 2]図 1の差圧式流量計の誤差特性を示す線図である。
[図 3]オリフィス下流側圧力 Pが真空の場合に於いて、 2次側管路抵抗を変化させた
2
場合の「流量と 2次側圧力と誤差」との関係を示す線図である。
[図 4]図 3のデータを得るために利用した測定回路を示すものである。
[図 5]本発明の第 2実施形態に係る差圧式流量計の基本構成図である。
[図 6]本発明の第 3実施形態に係る差圧式流量計の基本構成図である。
[図 7]本発明の第 4実施形態に係る差圧式流量計全体構成を示す系統図である。
[図 8]本発明の第 4実施形態に係る差圧式流量計の主要部の断面概要図である。
[図 9]ノーマルオープン型とノーマルクローズ型の切換弁を用いた本発明に係る差圧 式流量計の切換操作系統の説明図である。
[図 10]本発明に係る差圧式流量制御装置の第 1実施形態の基本構成図である。
[図 11]本発明に係る差圧式流量制御装置の第 2実施形態の基本構成図である。
[図 12]本発明に係る差圧式流量制御装置の第 3実施形態の基本構成図である。
[図 13]本発明に係る差圧式流量制御装置の第 4実施形態の基本構成図である。
[図 14]先に公開をした改良型圧力式流量制御装置の構成図である。
[図 15]先に公開をした改良型圧力式流量制御装置の流量特性を示す線図である。 符号の説明
Qは実験流量演算式、 Q'は補正済流量、 Qsは設定流量、 SFは標準流量制御器( 圧力式流量制御装置)、 Aは差圧式流量計、 V一 V は 2次側制御弁、 VPは真空
21 23
排気ポンプ、 aはガス入口、 bはガス出口、 1はオリフィス、 1'は小流量用オリフィス、 1 "は大流量用オリフィス、 2はオリフィス上流側の絶対圧式圧力検出器、 3はオリフィス 下流側の絶対圧式圧力検出器、 4はオリフィス上流側のガス絶対温度検出器、 5は 制御演算回路、 5aは流量演算回路、 5bは補正データ記憶回路、 5cは流量補正演 算回路、 5dは圧力比演算回路、 5eは臨界条件判定回路、 5fは臨界条件下の流量 を演算する第 2流量演算回路、 5gは設定流量と演算流量の比較回路、 5'は第 1制御 演算回路、 5"は第 2制御演算回路、 6は流量出力端子、 7は電源入力端子、 8はガ ス供給装置、 9はガス使用装置 (チャンバ一)、 10は第 1切換弁、 10a駆動用シリンダ 、 11は第 2切換弁、 11a駆動用シリンダ、 12はボディ、 12aはガス入口部材、 12bは ガス出口部材、 12cは第 1ボディ部材、 12dは第 2ボディ部材、 13a' 13bはシール、 1 4a' 14bは圧力検出器の取付ボルト、 15a' 15bはダイヤフラム弁機構、 16a— 16fは 通路、 17aは第 1切換弁の取付孔、 17bは第 2切換弁の取付孔、 18aはオリフィス上 流側圧力検出器の取付孔、 18bはオリフィス下流側圧力検出器の取付孔、 21はコン トロールバルブ、 22はバルブ駆動部、 Mvは制御用電磁弁、 Scは制御用信号。 発明を実施するための最良の形態
[0040] 以下、図面に基づいて本発明の実施形態を説明する。
図 1は、本発明に係る差圧式流量計の第 1実施形態の基本構成を示すものであり、 当該差圧式流量計はオリフィス 1、オリフィス上流側の絶対圧式圧力検出器 2,オリフ イス下流側の絶対圧式圧力検出器 3、オリフィス上流側のガスの絶対温度検出器 4、 制御演算回路 5、出力端子 6,入力端子 7、等から構成されている。尚、 8はガス供給 装置、 9はガス使用装置(チャンバ一)である。
[0041] 本発明の差圧式流量計に於いては、差圧条件下 (即ち、非臨界条件下)でオリフィ ス 1を通過するガスの流量 Q力 前記制御演算回路 5に於いて、下記の(1)式の実験 流量式を用いて演算され、その演算値は出力端子 6より外部へ出力される。 Q = C ·
1
P Ζ ΓΤ· ( (P /P ) m- (p /P ) n) 1/2 · · (1)
1 2 1 2 1
尚、上記の実験流量式 Qは、従前の連続方程式を基礎とする下記流量演算式(2) をベースにして本願発明者によって新規に提案されたものである。
[0042] [数 1]
κ + 1 1
S · Ρ 1 2 g Ρ 2
Q c =
δ R T κ - Ρ Ρ
[0043] 尚、(2)式に於いて、艟はガス密度、黨はガスの比熱比、 Ρはオリフィス上流側圧力
1
、 Ρはオリフィス下流側圧力、 Τはガス温度、 Rはガス定数、 Sはオリフィス断面積であ
2
り、当該(2)式は公知のものである。
[0044] 本発明に係る前記(1)式に於いて、 Qは標準状態に換算した体積流量(SCCM)、 C はオリフィス 1の断面積 Sを含んだ係数、 Ρはオリフィス上流側の絶対圧力(Pa)、 Ρ はオリフィス下流の絶対圧力(Pa)、 Tはオリフィス上流側のガスの絶対温度(K)であ る。
また、 m及び nは、(2)式より Nガスの黨 = 1. 40を演算して定められた定数であり、
2
オリフィス径 φが 2. Omm φ、最大流量が 2000sccmの流量計に於いては、前記(1 )式の C = 2680、 m= l . 4286、 n= l . 7143となる。
1
[0045] 尚、当該常数 C、 m及び nが測定可能なガス種に応じて変化することは勿論である
1
力 Nガスに於いては、 m= l . 4286及び n= l . 7143となることが判っている。
2
[0046] 図 2は、図 1の差圧式流量計(100%設定値 2000sccm)の設定流量値(%)と圧力 P、 P (Torr)と誤差 Error (%SP)の関係を示す実測値であり、ガス圧力 P、 Pが 50
1 2 1 2
Torr以下の真空であっても、設定流量が 10 ( Q/。)(最大流量の 10% = 200sccm)位 までであれば、流量誤差 Errorは設定流量値 (%)に対して極く小さな値(1 %SP以 下)となる。
しかし、設定流量値が 10 (%)以下になると、流量誤差 Errorは一 1 (%SP)以上とな り、流量測定値の実用上に問題が生じることになる。
[0047] 図 3は、本発明に係る差圧式流量計のオリフィス 2次側圧力 P (Torr)と設定流量(
2
%)と誤差 Error (%SP)と 2次側配管条件の関係を示す線図であり、 9aは設定流量 (%)が lOOsccmの場合を、 9bは 200sccmの場合、 9cは 400sccmの場合、 9dは 6 OOsccmの場合、 9gは 1200sccmの場合、 は 1800sccmの場合、 9kは 2000scc m (100%)の場合を夫々示すものである。尚、使用した差圧式流量計の最大流量(1 00%)は 2000sccmである。
[0048] また、各設定流量値(%)の中で、四角印は図 3の中に示すように差圧式流量計の 出口側が配管路(4. 35mm φ · 100mm)のままでバルブ等が介設されていない場 合の誤差 Error (%SP)を、菱形印は差圧式流量計の出口側に Cv値が 0. 3の制御 弁を介設したときの誤差 Error (%SP)を、三角印は Cv値が 0. 2の制御弁を介設し たときの及び丸印は Cv値が 0. 1の制御弁を介設したときの誤差 Error (%SP)を夫 々示すものである。
[0049] 即ち、図 3からも明らかなように、使用圧力条件が真空(50TCOT以下)になると、 2次 側(オリフィス下流側)の配管条件によって、圧力 Pと流量 Qの関係が大きく変動する ことになり、結果として誤差 Error (%SP)が変化する。
[0050] そのため、差圧式流量計の調整時に、予め 2次側管路抵抗 (コンダクタンス)を変化 させた場合の流量誤差 Error (%SP)を測定しておき(図 3の場合は 4条件 · 11点)、 この誤差 Errorを打消すための補正係数を予め求めておく。そして、当該補正係数 によって流量演算回路 5に於いて実験流量式(1)により演算した流量値 Qを修正す ることにより、真空の条件下に於いて差圧式流量計の 2次側圧力 Pが変化した場合
2
においても、より高精度な流量演算を行うことが可能となる。
[0051] 図 4は、図 3の誤差補正係数を得るための測定回路を示すものであり、標準流量制 御器 SFとして圧力式流量制御装置を使用すると共に、 2次側配管条件を変えるため に制御弁 Vを取付自在に設け、当該標準流量制御器 SFによって lOOsccm— 200
2
Osccmの流量域の間を 200sccmの間隔をもって、供給ガス流量(Nを調整(計 11
2
点)し、その都度差圧式流量計 Aの P、 P、 Q及びその時のオリフィス下流側の圧力
1 2
Pを測定した。
2
[0052] 尚、 2次側管路抵抗は、制御弁 Vが無い場合 (差圧式流量計 Aを直接に真空ボン
2
プへ内径 4· 35mm φの管路(長さ約 100mm)で接続したとき)、制御弁 Vを Cv値
2 が 0· 3のものとしたとき、 Cv値を 0. 2のものとしたとき、 Cv値を 0. 1のものとしたときの 4種のケースにより調整した。
[0053] また、測定流量は、前述の通り lOOsccm— 2000sccmの間で合計 11点を設定し た。
更に誤差 Error (%SP)は(SFの流量値一 Aの流量値) / SFの流量値 ' 100%によ り算出した。
[0054] 尚、圧力式流量制御装置への供給圧力 Pは約 300kPaG、差圧式流量計 Aのオリ
1
フィス 2次側は真空排気ポンプ Vp (3001/min、最高到達圧力 1. 2 · 10— 2Torr)によ り連続的に真空引きした。
[0055] 例えば、先ず、 2次側配管路から制御弁 Vを取り外して内径 φ =4. 35mm-L= l
2
00mmの直線状のステンレス鋼管のみで 2次側管路を形成し、圧力式流量制御装置 SFにより供給流量を lOOOsccmとしたとき、差圧式流量計 Aの測定値は約 lOOOscc mで誤差 Eは零となり、その時の 2次側圧力 Pは約 18Torrであった。同様に SFから の供給流量を 2000sccmとすると、差圧式流量計 Aの読みは 1920sccm (誤差 Eは 一 4%SP)となり、その時の 2次側圧力 Pは約 29Torrとなった。
[0056] 同様にして 2次側管路の条件を変えると、 SFからの供給流量が 2000sccm (100 %)の条件下でも Cv = 0. 3の時には誤差 E=_1 %SP及び P = 34. 5Torrとなり、 C v= 0. 2の日寺には誤差 E=_0. 05%SP及び P =40. 5Torrとなる。また Cv= 0. 1 の時には誤差 E= + 2。/。SP及び P = 59. 5Torrとなった。
[0057] 上記図 3の結果を整理することにより、各設定流量値(%3 )に対して、下表のよう なオリフィス下流側圧力 Pの変動と発生誤差 Error (%SP)との関連を示すテーブル を得ることが出来る。
[0058] [表 1]
Figure imgf000016_0001
[0059] 即ち、約 lOOTorr以下の真空状態下で使用する差圧式流量計に於いて、オリフィ ス 2次側圧力 Pが何らかの事情で変動した際には、上記表 1の補正データを用いて、 差圧式流量計の現実の測定値を修正する。
[0060] 例えば、 2000sccm (100%)で使用中の差圧式流量計力 測定値として 2000scc mを表示しており且つその時のオリフィス下流側の圧力 P力 ¾0Torrであれば、測定 値(2000sccm)には + 2%の誤差 Error (%SP)を含んでいることになるので、 + 2 %分の修正を施して 2000sccmの測定値を 1960sccmに補正する。
[0061] 図 5は、上記補正手段を採用した本発明の基本構成を示すものであり、第 1実施形 態を示す図 1の差圧式流量計の制御演算回路 5に補正データの記憶回路 5bと流量 値の補正演算回路 5cとを設けたものである。 [0062] 即ち、前記流量演算回路 5aで流量実験式 Qを用いて演算した流量値 Qに、その時 のオリフィス下流側圧力 Pを参照して補正データ記憶回路 5bから圧力 Pに於ける誤
2 2 差 Error (%SP)を引出し、当該誤差 Error (%SP)分を前記流量演算値 Qから除く 補正をし、補正演算回路 5cで補正後の直値に近い流量値 Q'を出力端子 6より外部 へ出力する。
[0063] 図 6は本発明の第 3実施形態を示すものであり、図 5の差圧式流量計に於いて、臨 界条件下にあるときは Q = KPの流量式でもって流量の演算を行い、また非臨界条
1
件下にあるときには、図 5の制御演算回路 5でもって流量演算を行うようにしたもので ある。
[0064] 即ち、図 6に示すように、第 3実施形態の差圧式流量計に於いては、図 5の制御演 算回路 5に、圧力比演算回路 5dと臨界条件判定回路 5eと臨界条件下の流量演算回 路 5fとが追加されており、先ず、オリフィス上流側圧力 Pと下流側圧力 Pの比(繃)を
1 2 求め、圧力比繃と臨界圧力比繃 cの大小を比較し、臨界条件下にあるときには Q=K Pにより流量演算を行って演算値を出力する。
1
[0065] また、非臨界条件下にあるときには、流量式 Q = C · Ρ /^Τ· ( (Ρ /Ρ
1 1 2 1 Γ一 (Ρ /
2
Ρ ) π) 1/2により流量を演算し、流量補正演算回路 5cで演算値 Qを補正したあと、出力
1
端子 6より補正後の流量値 Q'を出力するものである。
[0066] 一方、前記第 1乃至第 3実施形態に於いては、実験流量演算式 Qを用いたり、或い は流量演算値 Qの補正 Q'を行っても、流量測定値の誤差 Errorを実用に耐え得る範 囲内(例えば 1 (%SP)以下)に抑えることが出来るのは、流量範囲が 100— 10 (%) までであり、流量が 10 (%)以下になると、補正を施しても誤差 Errorを 1 (%SP)以下 に保持することが困難である。
[0067] そこで、本願発明の第 4実施形態に於いては、流量範囲の異なる 2組の前記第 1乃 至第 3実施形態に係る差圧式流量計を組み合せ、上記 2組の差圧式流量計を切換 作動させることにより、全体として流量が 100 (%) 1 (%)の広い流量範囲に亘つて 、常に誤差 Errorを 1 (%SP)以下の高精度な流量測定を行える構成としている。
[0068] 図 7は、第 4実施形態に係る差圧式流量計の全体構成図を示すものであり、図 7に 於いて 10は第 1切換弁(NC型)、 11は第 2切換弁(NC型)、 aはガス入口側、 bはガ ス出口側、 1 'は第 1オリフィス(小流量用)、 1 "は第 2オリフィス(大流量側)、 5'は第 1 制御演算回路、 5"は第 2制御演算回路である。
[0069] 即ち、第 1オリフィス 1 '、第 1制御演算回路 5'等によって小流量側の差圧式流量計( 例えば 10— lOOsccmの流量範囲) ヽまた第 2オリフィス 1 "及び第 2制御演算回路 5"等によって大流量側の差圧式流量制御装置(例えば 100 lOOOsccmの流量範 囲)が夫々構成されており、両差圧式流量制御装置によって流量範囲 1000sccm (l 00%)— 10sccm (l %)の広範囲に亘つて誤差 Errorが 1 (%SP)以下の高精度でも つて流量計測が行える構成となっている。
[0070] 図 8は、本発明の第 4実施形態に係る差圧式流量計の主要部の断面概要図であり 、両差圧式流量計を形成する第 1及び第 2制御演算回路 5'、 5"等は省略されている 図 8に於いて、 12はボディ、 13a、 13bはシール、 14aはオリフィス上流側絶対式圧 力検出器 2の取付用ボルト、 14bはオリフィス下流側絶対式圧力検出器 3の取付用ボ ルト、 15a、 15bはダイヤフラム弁機構、 10a、 1 la駆動用シリンダである。
[0071] ボディ 12はガス入口部材 12a、ガス出口部材 12b、第 1ボディ部材 12c及び第 2ボ ディ部材 12dを気密状に組付けすることにより形成されており、ステンレス鋼により製 作されている。
[0072] また、ブロック状の第 1ボディ部材 12c及び第 2ボディ部材 12dの上面側には、第 1 切換弁 10及び第 2切換弁 11の取付孔 17a、 17bが、更に、その下面側にはオリフィ ス上流側圧力検出器 2及びオリフィス下流側圧力検出器 3の取付孔 18a、 18bが夫 々穿設されている。
尚、図 8には、図示されていないが、第 1ボディ部材 12cにはオリフィス上流側のガ ス温度検出器 4の取付孔が形成されてレ、る。
[0073] また、各ボディ部材 12c、 12d等には、流体入口 aと第 1切換弁 10の取付孔 17aの 底面とオリフィス上流側圧力検出器 2の取付孔 18aの底面と第 2切換弁 11の取付孔 17bの底面とを夫々連通する流体通路 16a、 16b、 16eと、取付孔 17aと取付孔 17b の各底面間を連通する流体通路 16fと、取付孔 17bの底面と取付孔 18bの底面とを 連通する流体通路 16cと取付孔 18bの底面と流体出口 bとを連通する流体通路 16d と力 夫々穿設されている。
[0074] 更に、流体通路 16には小流量用のオリフィス 1'が、また流体通路 16a (又は 16b) には、大流量用のオリフィス 1"が夫々介設されており、図 8の実施形態では両ボディ 部材 12c、 12dの接合面に各オリフィス 1'、 1"が配置されている。
[0075] 前記各取付孔 17a、 17bの底面に形成された流体通路 16e、 16bに連通する弁座 は、第 1切換弁 10及び第 2切換弁 11の弁機構 15a、 15bにより開閉され、各弁座が 開閉されることにより、通路 16eと通路 16fとの間及び通路 16cと通路 16bとの間が開 閉される。
尚、通路 16cは両取付孔 17b、 18b間を常時連通するようになっている。
[0076] 図 7及び図 8を参照して、先ず測定流量が大流量域の場合には、第 1切換弁 10を 閉、第 2切換弁 11を開にし、ガス入口 aから流入したガスを通路 16a、オリフィス 1"、 通路 16b、通路 16c、通路 16dを通してガス出口 bより流出させる。そして、第 2制御 演算回路 5" (図示省略)により流量演算を行い、必要箇所へ出力する。
[0077] また、測定流量域が減少して定格流量の 10%以下になれば、第 1切換弁 10を開 にすると共に第 2切換弁 11を閉にする。これにより、ガスの流れは通路 16a、通路 16 e、小流量用オリフィス 1'、通路 16f、通路 16c、通路 16dを通してガス出口 bより流出 する。その間に第 1制御演算回路 5'により流量演算が行われ、必要箇所へ出力され ることは大流量域の計測の場合と同じである。
[0078] 尚、ボディ 12の材質、ガス通路内面の処理加工、ダイヤフラム弁機構 15a、 15b、 圧力検出 2、 3及び温度検出器等は公知であるため、ここではその説明を省略する。
[0079] また、前記図 7及び図 8の第 4実施形態に於いては、第 1切換弁 10及び第 2切換弁 11を夫々ノーマルクローズ型の弁とし、各切換弁 10、 11の駆動用シリンダ 10a、 11a へ夫々独立した制御用電磁弁を介して作動用流体を供給する構成としているが、第 1切換弁 10と第 2切換弁 11の一方をノーマルクローズ型の弁に、他方をノーマルォ ープン型の弁として、;L台の制御用電磁弁から作動用流体を両切換弁 101 :Lへ供 給するようにしてもよい。
[0080] 即ち、両切換弁 10、 11のー方を^^〇型に、他方を NC型とした場合には、図 9の制 御系統図に示すように、 1台の制御用電磁弁 Mvでもって両切換弁 10、 11の切換操 作を行うことができ、制御用信号 Scも 1系統にすることができる。
[0081] 図 10は本発明に係る差圧式流量制御装置の第 1実施形態を示すものであり、前記 図 1に示した差圧式流量計にコントロールバノレブ 21及びバルブ駆動部 22を設けると 共に、制御演算回路 5に流量比較回路 5gを設け、ここで外部から入力した設定流量 Qsと流量演算回路 5aで演算した演算流量 Qとの流量差ト Qを演算して、当該流量差 ト Qをバルブ駆動部 22へその制御信号として入力する。これにより、コントロールバル ブ 21は前記流量差ト Qが零になる方向に作動され、オリフィス 1を流通するガス流量 Qが設定流量 Qsに制御されることになる。
[0082] 図 11は差圧式流量制御装置の第 2実施形態を示すものであり、前記図 5に示した 差圧式流量計にコントロールバルブ 21及びバルブ駆動部 22を設けると共に、制御 演算回路 5に流量比較回路 5gを設けたものである。
[0083] 尚、流量比較回路 5gでは、補正演算回路 5cで演算流量 Qに誤差補正をした補正 後の流量 Q'を用いて流量差ト Qが演算され、当該流量差ト Qが零となる方向にコント ロールバルブ 21が開閉制御される。
[0084] 図 12は差圧式流量制御装置の第 3実施形態を示すものであり、前記図 6に示した 差圧式流量計にコントロールバルブ 21及びバルブ駆動部 22を設けると共に、制御 演算回路 5から補正データ記憶回路 5b及び補正演算回路 5cを除き、これに代えて 流量比較回路 5gを設ける構成としたものである。
[0085] 即ち、ガス流が臨界条件下にある時には、第 2流量演算回路 5fからの演算流量 Q を用いて、また、ガス流が非臨界条件下にある時には、流量演算回路 5aからの演算 流量 Qを用いて、夫々流量差ト Qが演算され、当該流量差ト Qを零にする方向にコン トロールバルブ 21が開閉制御される。
[0086] 図 13は差圧式流量制御装置の第 4実施形態を示すものであり、前記図 6に示した 差圧式流量計にコントロールバルブ 21及びバルブ駆動部 22を設けると共に、制御 演算回路 5に流量比較回路 5gを設ける構成としたものである。
[0087] 即ち、ガス流が臨界条件下にある時には、第 2流量演算回路 5fからの演算流量 Q を用いて、また、ガス流が非臨界条件下にある時には、流量演算回路 5aからの演算 流量 Qに補正をカ卩えた補正演算回路 5cからの流量 Q'を用いて、夫々流量差ト Qが 演算され、当該流量差ト Qを零にする方向にコントロールバルブ 21の開閉制御が行 なわれる。
産業上の利用可能性
本発明は、主として半導体製造装置や化学プラント、食品製造プラント等で使用さ れるものであるが、ガスや液体等の流体を取り扱う分野に於いて、広く利用に供され るものである。

Claims

請求の範囲
[1] オリフィスと、オリフィス上流側の圧力 Pの検出器と、オリフィス下流側の流体圧力 P
1 2 の検出器と、オリフィス上流側の流体温度 Tの検出器と、前記各検出器からの検出圧 力 P、 P及び検出温度 Tを用いてオリフィスを流通する流体流量 Qを演算する制御
1 2
演算回路とからなる差圧式流量計に於いて、前記流体流量 Qを Q = C · Ρ
1 1 Ζ Τ · ( (
Ρ /Ρ ) m- (P /Ρ ) 1/2 (但し〇は比例定数、 m及び ηは定数)により演算することを
2 1 2 1 1
特徴とする差圧式流量計。
[2] オリフィスと、オリフィス上流側の流体圧力 Ρの検出器と、オリフィス下流側の流体圧
1
力 Ρの検出器と、オリフィス上流側の流体温度 Τの検出器と、前記各検出器からの検
2
出圧力 Ρ、 Ρ及び検出温度 Τを用いて流体流量 Qを演算する制御演算回路とから成
1 2
る差圧式流量計に於いて、前記制御演算回路に、流体流量 Qを Q = C · Ρ / T - (
1 1
(P /P ) m- (P /P ) 1/2 (但し〇は比例定数、 m及び nは定数)により演算する流量
2 1 2 1 1
演算回路と、予め実測により求めたオリフィス下流側圧力 Pの変動と前記流体流量 Q
2
の流量誤差 Errorとの関係を記憶した補正データ記憶回路と、前記演算した流体流 量 Qを補正データ記憶回路からの補正用データにより補正する流量補正演算回路と を設け、オリフィス下流側圧力 Pの変動に応じて演算した流体流量 Qを補正し、補正
2
後の流量値 Q'を出力する構成としたことを特徴とする差圧式流量計。
[3] 制御演算回路にオリフィス上流側の流体圧力 Pとオリフィス下流側の流体圧力 Pの
1 2 比を演算する圧力比演算回路と、前記演算した圧力比と流体の臨界圧力比とを対比 して流体の状態を判別する臨界条件判定回路と、流体が臨界条件下にあるときには 流体流量 Qを Q =KP (但し Kは比例定数)により演算する第 2流量演算回路とを設
1
け、流体が臨界条件下にあるときは前記第 2流体演算回路により演算した流体流量 Qを、また流体が非臨界条件下にあるときには流量補正演算回路から補正した流量 値 Q'を、夫々出力する構成とした請求項 2に記載の差圧式流量計。
[4] 最大流量の 100— 10%までの流量域を測定する差圧式流量計と最大流量の 10 %— 1 %までの流量域を測定する差圧流量計とを組み合せ、測定すべき流体を前記 各流量域に応じて切換弁により前記各差圧流量計へ切換え供給することにより、広 流量域によって亘つて高精度な流量測定を行うことを特徴とする差圧式流量計。
[5] 各差圧式流量計を、オリフィスと、オリフィス上流側の流体圧力 Pの検出器と、オリフ
1
イス下流側の流体圧力 pの検出器と、オリフィス上流側の流体温度 τの検出器と、前
2
記各検出器からの検出圧力 P、 P及び検出温度 Tを用いて流体流量 Qを演算する
1 2
制御演算回路とから成る差圧式流量計とし、且つ前記流体流量 Qを Q = C · Ρ
1 1 /
Τ· ( (Ρ /P ) m-(P /Ρ ) η) 1/2 (但し Cは比例定数、 m及び nは定数)により演算するよ
2 1 2 1 1
うにした請求項 4に記載の差圧式流量計。
[6] 各差圧式流量計を、オリフィスと、オリフィス上流側の流体圧力 Pの検出器と、オリフ
1
イス下流側の流体圧力 Pの検出器と、オリフィス上流側の流体温度 Tの検出器と、前
2
記各検出器からの検出圧力 P、 P及び検出温度 Tを用いて流体流量 Qを演算する
1 2
制御演算回路とから成る差圧式流量計であって、且つ前記制御演算回路に、流体 流量 Qを Q = C ·Ρ / Τ· ( (Ρ /Ρ ) m- (P /Ρ ) η) 1/2 (但し Cは比例定数、 m及び η
1 1 2 1 2 1 1
は定数)により演算する流量演算回路と、予め実測により求めたオリフィス下流側圧 力 Ρの変動と前記流体流量 Qの流量誤差 Errorとの関係を記憶した補正データ記憶
2
回路と、前記演算した流体流量 Qを補正データ記憶回路からの補正用データにより 補正する流量補正演算回路とを設け、オリフィス下流側圧力 Pの変動に応じて演算
2
した流体流量 Qを補正し、補正後の流量値 Q'を出力する構成のものとした請求項 4 に記載の差圧式流量計。
[7] 流体入口 aと流体出口 bと第 1切換弁 10の取付孔 17aと第 2切換弁 11の取付孔 17 bとオリフィス上流側の流体圧力検出器 2の取付孔 18aとオリフィス下流側の流体圧 力検出器 3の取付孔 18bとオリフィス上流側の流体温度検出器 4の取付孔を夫々設 けたバルブボディ 12と、前記バルブボディ 12の内部に穿設した流体入口 aと第 1切 換弁 10の取付孔 17aの底面とオリフィス上流側の流体圧力検出器 2の取付孔 18aと 第 2切換弁 11の取付孔 17bの底面とを直通する流体通路 16a、 16b、 16eと、第 1切 換弁取付孔 17aの底面と第 2切換弁 11の取付孔 17bの底面とを連通する流体通路 16fと、第 2切換弁 11の取付孔 17bの底面とオリフィス下流側の流体圧力検出器 3の 取付孔 18bの底面とを連通する流体通路 16cと、オリフィス下流側の流体圧力検出 器 3の取付孔 18bの底面と流体出口 bとを連通する流体通路 16dと、前記各取付孔 1 8a、 18bへ固着したオリフィス上流側の流体圧力検出器 2及びオリフィス下流側の流 体圧力検出器 3と、オリフィス上流側の流体温度検出器 4と、前記流体通路 16eと流 体通路 16f間を開閉する第 1切換弁 10と、前記流体通路 16bと流体通路 16c間を開 閉する第 2切換弁 11と、前記流体通路 16fの途中に介設した小流量用のオリフィス 1 'と、前記流体通路 16a又は流体通路 16bに介設した大流量用のオリフィス 1 "と、前 記両圧力検出器 2, 3の検出圧力 P · Ρ及び温度検出器 4の検出温度 Tにより小流量
1 2
用オリフィス 1'及び大流量用オリフィス 1"を流通する流体流量 Qを Q = C · Ρ
1 1 /IT-
( (Ρ /Ρ ) m- (P /Ρ により演算する制御演算回路とから構成され、測定すべき
2 1 2 1
流量の大流量域を前記第 1切換弁 10を閉に第 2切換弁 11を開にして、また小流量 域を前記第 1切換弁 10を開に第 2切換弁 11を閉にして夫々測定することを特徴とす る差圧式流量計。
[8] 第 1切換弁 10と第 2切換弁 11の何れか一方をノーマルクローズ型の弁に、他方を ノーマルオープン型の弁にすると共に、両切換弁 10、 11の駆動用シリンダ 10a、 11a へ 1台の制御用電磁弁 Mvから作動用流体を供給する構成とした請求項 4又は請求 項 7に記載の差圧式流量計。
[9] 最大流量の 100— 10%までの流量域を、第 1切換弁 10を閉に第 2切換弁 11を開 にして測定し、また最大流量の 10%— 1%までの流量域を第 1切換弁 10を開に及び 第 2切換弁 11を閉にして測定するようにした請求項 7に記載の差圧式流量計。
[10] オリフィス上流側の圧力検出器 2とオリフィス下流側の圧力検出器 3とオリフィス上流 側の温度検出器 4とを、両差圧流量計で共用するようにした請求項 7又は請求項 8に 記載の差圧式流量計。
[11] バルブ駆動部を備えたコントロールバルブ部と、その下流側に設けたオリフィスと、 オリフィス上流側の圧力 Ρの検出器と、オリフィス下流側の流体圧力 Ρの検出器と、
1 2
オリフィス上流側の流体温度 Τの検出器と、前記各検出器からの検出圧力 Ρ、 Ρ及
1 2 び検出温度 Τを用いてオリフィスを流通する流体流量 Qを演算すると共に、演算流量 Qと設定流量 Qsとの差を演算する流量比較回路を備えた制御演算回路とからなる差 圧式流量制御装置に於いて、前記流体流量 Qを Q = C · Ρ / ΓΤ· ( (Ρ /P ) M- (P
1 1 2 1 2
/Ρ ) ") 1/2 (但し〇は比例定数、 m及び ηは定数)により演算することを特徴とする差圧
1 1
式流量制御装置。 [12] バルブ駆動部を備えたコントロールバルブ部と、その下流側に設けたオリフィスと、 オリフィス上流側の流体圧力 Pの検出器と、オリフィス下流側の流体圧力 Pの検出器
1 2 と、オリフィス上流側の流体温度 Tの検出器と、前記各検出器からの検出圧力 P、 P
1 2 及び検出温度 Tを用いて流体流量 Qを演算すると共に、演算流量 Qと設定流量 Qsと の差を演算する流量比較回路を備えた制御演算回路とから成る差圧式流量制御装 置に於いて、前記制御演算回路に、流体流量 Qを Q = C ·Ρ / Τ· ( (Ρ /Ρ ) m- (
1 1 2 1
Ρ /Ρ ) 1/2 (伹し〇は比例定数、 m及び ηは定数)により演算する流量演算回路と、
2 1 1
予め実測により求めたオリフィス下流側圧力 Ρの変動と前記流体流量 Qの流量誤差
2
Errorとの関係を記憶した補正データ記憶回路と、前記演算した流体流量 Qを補正 データ記憶回路からの補正用データにより補正する流量補正演算回路とを設け、ォ リフィス下流側圧力 Pの変動に応じて演算した流体流量 Qを補正し、補正後の流量
2
値 Q'を前記流量比較回路へ入力して流量差ト S = Q '— Qsを演算する構成としたこと を特徴とする差圧式流量制御装置。
[13] 制御演算回路にオリフィス上流側の流体圧力 Pとオリフィス下流側の流体圧力 Pの
1 2 比を演算する圧力比演算回路と、前記演算した圧力比と流体の臨界圧力比とを対比 して流体の状態を判別する臨界条件判定回路と、流体が臨界条件下にあるときには 流体流量 Qを Q=KP (但し Kは比例定数)により演算する第 2流量演算回路とを設
1
け、流体が臨界条件下にあるときは前記第 2流体演算回路により演算した流体流量 Qを、また流体が非臨界条件下にあるときには流量補正演算回路力 補正した流量 値 Q'を、夫々前記流量比較回路へ入力する構成とした請求項 2に記載の差圧式流 量計。
PCT/JP2004/008596 2003-07-03 2004-06-18 差圧式流量計及び差圧式流量制御装置 WO2005003694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04746098A EP1643218A4 (en) 2003-07-03 2004-06-18 DIFFERENTIAL PRESSURE FLOWMETER AND DIFFERENTIAL PRESSURE FLOW RATE CONTROLLER
US10/563,226 US7367241B2 (en) 2003-07-03 2004-06-18 Differential pressure type flowmeter and differential pressure type flow controller
CNB200480018993XA CN100419385C (zh) 2003-07-03 2004-06-18 差压式流量计及差压式流量控制装置
KR1020057023572A KR100740914B1 (ko) 2003-07-03 2004-06-18 차압식 유량계 및 차압식 유량 제어 장치
IL172662A IL172662A0 (en) 2003-07-03 2005-12-18 Differential pressure type flowmeter and differential pressure type flowmeter controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003190988A JP4204400B2 (ja) 2003-07-03 2003-07-03 差圧式流量計及び差圧式流量制御装置
JP2003-190988 2003-07-03

Publications (1)

Publication Number Publication Date
WO2005003694A1 true WO2005003694A1 (ja) 2005-01-13

Family

ID=33562346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008596 WO2005003694A1 (ja) 2003-07-03 2004-06-18 差圧式流量計及び差圧式流量制御装置

Country Status (8)

Country Link
US (1) US7367241B2 (ja)
EP (1) EP1643218A4 (ja)
JP (1) JP4204400B2 (ja)
KR (1) KR100740914B1 (ja)
CN (1) CN100419385C (ja)
IL (1) IL172662A0 (ja)
TW (1) TWI245113B (ja)
WO (1) WO2005003694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220047806A (ko) 2019-12-27 2022-04-19 가부시키가이샤 후지킨 유량 제어 장치 및 유량 제어 방법

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856905B2 (ja) * 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
US9921089B2 (en) 2005-06-27 2018-03-20 Fujikin Incorporated Flow rate range variable type flow rate control apparatus
US9383758B2 (en) 2005-06-27 2016-07-05 Fujikin Incorporated Flow rate range variable type flow rate control apparatus
JP5269285B2 (ja) * 2005-07-11 2013-08-21 東京エレクトロン株式会社 流量測定器
KR101268524B1 (ko) * 2006-07-10 2013-05-28 삼성전자주식회사 유량제어장치
CN101187660B (zh) * 2006-07-18 2012-01-11 中国石油天然气集团公司 双槽式孔板型混输计量装置
GB2447908B (en) * 2007-03-27 2009-06-03 Schlumberger Holdings System and method for spot check analysis or spot sampling of a multiphase mixture flowing in a pipeline
JP4585035B2 (ja) * 2007-12-27 2010-11-24 株式会社堀場エステック 流量比率制御装置
JP5220642B2 (ja) * 2009-02-05 2013-06-26 サーパス工業株式会社 差圧式流量計および流量コントローラ
WO2011067877A1 (ja) * 2009-12-01 2011-06-09 株式会社フジキン 圧力式流量制御装置
JP5669402B2 (ja) * 2010-01-08 2015-02-12 三菱重工業株式会社 ヒートポンプ及びヒートポンプの熱媒流量演算方法
JP5933936B2 (ja) * 2011-06-17 2016-06-15 株式会社堀場エステック 流量測定システム、流量制御システム、及び、流量測定装置
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9690301B2 (en) * 2012-09-10 2017-06-27 Reno Technologies, Inc. Pressure based mass flow controller
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
JP5814109B2 (ja) * 2011-12-27 2015-11-17 株式会社コスモ計器 流量計測方法及びそれを使った流量計測装置
JP5286430B2 (ja) * 2012-03-13 2013-09-11 株式会社フジキン 圧力制御式流量基準器を構成する基準圧力式流量制御器用の耐食性圧力式流量制御器。
JP5665794B2 (ja) * 2012-04-27 2015-02-04 株式会社フジキン 半導体製造装置のガス分流供給装置
US9910448B2 (en) * 2013-03-14 2018-03-06 Christopher Max Horwitz Pressure-based gas flow controller with dynamic self-calibration
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US9433743B2 (en) 2013-06-28 2016-09-06 Carefusion 303, Inc. Ventilator exhalation flow valve
US9795757B2 (en) 2013-06-28 2017-10-24 Vyaire Medical Capital Llc Fluid inlet adapter
US9746359B2 (en) 2013-06-28 2017-08-29 Vyaire Medical Capital Llc Flow sensor
US9707369B2 (en) 2013-06-28 2017-07-18 Vyaire Medical Capital Llc Modular flow cassette
US9541098B2 (en) 2013-06-28 2017-01-10 Vyaire Medical Capital Llc Low-noise blower
US9962514B2 (en) 2013-06-28 2018-05-08 Vyaire Medical Capital Llc Ventilator flow valve
CN103674147A (zh) * 2013-12-20 2014-03-26 中国计量学院 双流量计原油含水量的在线测量装置及测量方法
JP6304623B2 (ja) * 2014-02-12 2018-04-04 パナソニックIpマネジメント株式会社 湯水混合装置
WO2015151647A1 (ja) * 2014-03-31 2015-10-08 日立金属株式会社 質量流量の測定方法、当該方法を使用する熱式質量流量計、及び当該熱式質量流量計を使用する熱式質量流量制御装置
DE102014015555B3 (de) * 2014-10-22 2015-11-19 Bundesrepublik Deutschland, vertr. durch das Bundesministerium für Wirtschaft und Energie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zum Detektieren der Kritikalität eines Wirkdruckbauelements und Vorrichtung zur Verkörperung eines Durchflusses
FI20146037A (fi) * 2014-11-26 2016-05-27 Si Tecno Oy Menetelmä rakennuksen eri tilojen paine-eromittausta varten
CN104482970A (zh) * 2014-12-19 2015-04-01 重庆拓展自动化仪表有限公司 差压式流量计因大气压力变化导致的计量误差的补偿方法
EP3320408A1 (en) * 2015-07-10 2018-05-16 Pivotal Systems Corporation Method and apparatus for gas flow control
US10884436B2 (en) * 2015-10-28 2021-01-05 Fujikin Incorporated Flow rate signal correction method and flow rate control device employing same
WO2017110066A1 (ja) * 2015-12-25 2017-06-29 株式会社フジキン 流量制御装置および流量制御装置を用いる異常検知方法
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US20180046206A1 (en) * 2016-08-13 2018-02-15 Applied Materials, Inc. Method and apparatus for controlling gas flow to a process chamber
JP6600854B2 (ja) * 2016-08-24 2019-11-06 株式会社フジキン 圧力式流量制御装置、その流量算出方法および流量制御方法
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
JP6913498B2 (ja) * 2017-04-18 2021-08-04 東京エレクトロン株式会社 流量制御器の出力流量を求める方法及び被処理体を処理する方法
US10576318B1 (en) 2017-07-28 2020-03-03 Victaulic Company Differential flow detector for firefighting systems
JP7164938B2 (ja) * 2017-07-31 2022-11-02 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
CN111033104B (zh) * 2017-09-30 2021-12-03 株式会社富士金 阀以及流体供给管线
DE102017218109A1 (de) * 2017-10-11 2019-04-11 Robert Bosch Gmbh Verfahren zur Ermittlung eines Luftmassenstroms einer Verbrennungskraftmaschine
CN109991043B (zh) * 2017-12-31 2022-07-05 中国人民解放军63653部队 基于高温管式气氛炉的差压式取气测量系统
RU2682540C9 (ru) * 2018-08-22 2019-07-08 Александр Александрович Калашников Способ настройки измерительного канала расхода среды с сужающим устройством
CN113632038A (zh) * 2019-04-25 2021-11-09 株式会社富士金 流量控制装置
KR102375360B1 (ko) * 2019-11-28 2022-03-17 주식회사 엔박 안전한 구조의 온도센서를 구비한 차압식 유량계
WO2022186971A1 (en) 2021-03-03 2022-09-09 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly
CN113074898A (zh) * 2021-04-06 2021-07-06 中国空气动力研究与发展中心超高速空气动力研究所 用于激波管的预混供气装置及其预混供气方法
CN117148877B (zh) * 2023-11-01 2024-01-02 苏芯物联技术(南京)有限公司 一种高精度管道流量测量控制装置及设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388757A (en) * 1977-01-14 1978-08-04 Hitachi Ltd Flowrate measuring system
JPS5952450B2 (ja) * 1979-04-05 1984-12-19 株式会社日立製作所 流量制御装置
JPS61202120A (ja) * 1985-03-06 1986-09-06 Hitachi Ltd 流量計測装置
JPH06201417A (ja) * 1992-12-28 1994-07-19 Gijutsu Kaihatsu Sogo Kenkyusho:Kk 定流量発生装置
JP2001201414A (ja) * 2000-01-20 2001-07-27 Smc Corp 複合センサ及び複合センサを備えたフローコントローラ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549622A (en) * 1947-01-24 1951-04-17 Fairchild Camera Instr Co Pneumatic temperature-responsive apparatus
US3701280A (en) * 1970-03-18 1972-10-31 Daniel Ind Inc Method and apparatus for determining the supercompressibility factor of natural gas
JPS5919365B2 (ja) 1978-03-27 1984-05-04 富士金属工作株式会社 流量制御装置
JPS5919366B2 (ja) 1978-03-27 1984-05-04 富士金属工作株式会社 流量制御装置
US4542993A (en) * 1983-09-09 1985-09-24 Texaco Inc. Method of measuring quality of steam in a flow fine
US4576036A (en) * 1984-05-03 1986-03-18 Texaco Inc. Method and apparatus for determining quality and mass flow rate of flowing steam
US4622148A (en) * 1985-06-25 1986-11-11 Willinger Bros., Inc. Aquarium filter system
JP3182807B2 (ja) * 1991-09-20 2001-07-03 株式会社日立製作所 多機能流体計測伝送装置及びそれを用いた流体量計測制御システム
US5365795A (en) * 1993-05-20 1994-11-22 Brower Jr William B Improved method for determining flow rates in venturis, orifices and flow nozzles involving total pressure and static pressure measurements
US5868159A (en) * 1996-07-12 1999-02-09 Mks Instruments, Inc. Pressure-based mass flow controller
JP3580645B2 (ja) 1996-08-12 2004-10-27 忠弘 大見 圧力式流量制御装置
KR100299437B1 (ko) * 1996-08-13 2002-02-19 이구택 차압식유량검출장치및방법
US6510746B1 (en) * 1999-07-12 2003-01-28 Ford Global Technologies, Inc. Gas flow measurement
US6595048B1 (en) * 2000-08-04 2003-07-22 Chart Inc. Accurate cryogenic liquid dispenser
JP4102564B2 (ja) 2001-12-28 2008-06-18 忠弘 大見 改良型圧力式流量制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388757A (en) * 1977-01-14 1978-08-04 Hitachi Ltd Flowrate measuring system
JPS5952450B2 (ja) * 1979-04-05 1984-12-19 株式会社日立製作所 流量制御装置
JPS61202120A (ja) * 1985-03-06 1986-09-06 Hitachi Ltd 流量計測装置
JPH06201417A (ja) * 1992-12-28 1994-07-19 Gijutsu Kaihatsu Sogo Kenkyusho:Kk 定流量発生装置
JP2001201414A (ja) * 2000-01-20 2001-07-27 Smc Corp 複合センサ及び複合センサを備えたフローコントローラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1643218A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220047806A (ko) 2019-12-27 2022-04-19 가부시키가이샤 후지킨 유량 제어 장치 및 유량 제어 방법
TWI765472B (zh) * 2019-12-27 2022-05-21 日商富士金股份有限公司 流量控制裝置以及流量控制方法

Also Published As

Publication number Publication date
IL172662A0 (en) 2006-04-10
US7367241B2 (en) 2008-05-06
TWI245113B (en) 2005-12-11
CN1816733A (zh) 2006-08-09
KR20060022682A (ko) 2006-03-10
JP4204400B2 (ja) 2009-01-07
US20060236781A1 (en) 2006-10-26
EP1643218A1 (en) 2006-04-05
JP2005024421A (ja) 2005-01-27
CN100419385C (zh) 2008-09-17
EP1643218A4 (en) 2007-05-09
TW200506326A (en) 2005-02-16
KR100740914B1 (ko) 2007-07-20

Similar Documents

Publication Publication Date Title
WO2005003694A1 (ja) 差圧式流量計及び差圧式流量制御装置
JP4977669B2 (ja) 差圧式流量計
KR101930304B1 (ko) 유량계
JP4594728B2 (ja) より高い正確度の圧力に基づく流れコントローラ
US11526181B2 (en) Mass flow controller with absolute and differential pressure transducer
TW468101B (en) Wide range gas flow system with real time flow measurement and correction
TW455751B (en) Fluid-switchable flow rate controller
JP2004517396A (ja) 圧力型マスフローコントローラシステム
JP2000507357A (ja) 改良に係る圧力型質量流量制御装置
US20240160230A1 (en) Flow rate control device
JP4753251B2 (ja) ガス流量計、及びガス流量制御装置
JP3893115B2 (ja) マスフローコントローラ
US11940307B2 (en) Methods and apparatus for pressure based mass flow ratio control
JP2021140319A (ja) 流量制御装置、流量制御方法、流体制御装置および半導体製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480018993.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057023572

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 172662

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2004746098

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057023572

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004746098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006236781

Country of ref document: US

Ref document number: 10563226

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10563226

Country of ref document: US