WO2005000782A1 - エステル交換反応によるエステルの製造方法 - Google Patents

エステル交換反応によるエステルの製造方法 Download PDF

Info

Publication number
WO2005000782A1
WO2005000782A1 PCT/JP2004/009250 JP2004009250W WO2005000782A1 WO 2005000782 A1 WO2005000782 A1 WO 2005000782A1 JP 2004009250 W JP2004009250 W JP 2004009250W WO 2005000782 A1 WO2005000782 A1 WO 2005000782A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
weight
group
catalyst
ester
Prior art date
Application number
PCT/JP2004/009250
Other languages
English (en)
French (fr)
Inventor
Satoshi Furuta
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP2005511099A priority Critical patent/JP4251575B2/ja
Priority to EP04746719A priority patent/EP1640356A4/en
Priority to US10/558,935 priority patent/US7696376B2/en
Publication of WO2005000782A1 publication Critical patent/WO2005000782A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g

Definitions

  • the present invention relates to a method for producing an ester such as a fatty acid ester from a starting ester such as triglyceride, diglyceride, or monodaliceride by a transesterification reaction.
  • the transesterification reaction is used, for example, to produce a fatty acid ester from a fat or oil which is an ester of a fatty acid and glycerin.
  • an alkali catalyst such as caustic soda, a zinc catalyst, a lipase and the like are used. It has also been proposed to carry out the reaction in a supercritical state without adding a catalyst (JP-A-9-1235573, JP-A-7- 197047, JP-A-2000-143586). Disclosure of the invention
  • An object of the present invention is to provide a method for producing an ester by a transesterification reaction, which allows the transesterification reaction to proceed in a short reaction time under a pressure of about normal pressure.
  • the inventor of the present invention the raw material ester and alcohol, (A) amorphous zirconium oxide, (B) an oxide of a group III element, an oxide of a group V element, and / or zirconium, It has been found that contact with a catalyst containing an oxide of a group IV element other than hafnium promotes the ester exchange reaction.
  • the raw material ester in the liquid phase and the alcohol in the gas phase are brought into contact with the solid acid catalyst containing the above components (A) and (B).
  • the raw material ester is oils and fats, and the alcohol is methanol. Alternatively, it is preferably ethanol.
  • the content of the amorphous zirconium oxide as the component (A) is preferably from 10 to 99% by weight, particularly preferably from 40 to 99% by weight, based on the weight of the catalyst.
  • the Group IV element oxide other than the component (B) zirconium and hafnium oxides such as titanium, silicon, germanium, and tin are preferable.
  • the component (B) is composed of an oxide of a group III element and a group V element, the total content of the acid oxides of the group III element and the group V element is calculated based on the weight of the zirconium element in terms of element.
  • the content of the amorphous zirconium oxide as the component (A) is preferably from 10 to 99% by weight based on the weight of the catalyst. It is preferable that the crystallization temperature of the amorphous zirconium oxide is 450 ° C. or higher.
  • the oxide of the Group III element in the catalyst is an oxide of aluminum, and its content is 40 to 1% by weight in terms of the element based on the weight of the zirconium element, or the oxidation of the Group V element in the catalyst. It is preferable that the substance is phosphor oxide, and the content of the phosphor oxide is 8 to 0.8% by weight in terms of element, based on the weight of zirconium element.
  • the raw material ester used in the present invention may be one having an ester compound as a main component, and may be a polyhydric ester.
  • a glyceride of a saturated or unsaturated aliphatic carboxylic acid (hydrocarbon having about 8 to 24 carbon atoms) is preferably used.
  • oils and fats are preferably used. Examples of such fats and oils include vegetable oils such as soybean oil, coconut oil, olive oil, laccase oil, cottonseed oil, sesame oil, palm oil, castor oil, beef fat, lard, horse fat, whale oil, and sardine oil. And animal fats and oils such as mackerel oil.
  • the raw material ester may contain 0% to 30% by weight, particularly 1% to 20% by weight of a free fatty acid.
  • an alcohol having 1 to 3 carbon atoms is preferably used, but a polyhydric alcohol may be used.
  • the catalyst used in the present invention contains an amorphous zirconium oxide as a main component, and the content of the zirconium oxide is as follows: (B) the oxide of a group III element and the oxidation of a group Z or V element; In the case of a catalyst containing a product, the content is 10 to 99% by weight, preferably 40 to 99% by weight, and more preferably 80 to 98% by weight. In the case of a catalyst containing an oxide of a Group IV element other than zirconium and hafnium as one of the components (B), the content of zirconium oxide is 10 to 95% by weight, particularly 40 to 95% by weight. 80% by weight is more preferred.
  • the zirconium oxide includes a form of a hydrated oxide.
  • amorphous means that there is substantially no diffraction peak by X-ray diffraction (XRD). Specifically, if the intensity of the diffraction peak is below the detection limit or if the diffraction intensity of the crystalline zirconium oxide is 100, only 2 or less peaks are detected.
  • the catalyst used in the present invention is a catalyst capable of containing an oxide of a Group IV element other than zirconium and hafnium as the component (B).
  • examples of such an acid include titanium oxide and silicon oxide.
  • the content in the catalyst is 5 to 90% by weight. /.
  • the content is particularly preferably 10 to 60% by weight, and in the case of silicon oxide, the content is 1 to 20% by weight, and particularly preferably 2 to 10% by weight. It is preferable that the total content of the elements of Groups I to II and VI to VII as a catalyst component is 1% by weight or less, particularly 0.2% by weight or less, and is substantially not contained.
  • a Group VIII element may be added in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the catalyst.
  • boron, aluminum oxide, yttrium oxide, lanthanoid element oxide Or the like may be used as a binder.
  • an oxide of an III element or a group V element is also effective, and these are contained in an amount of 0.5% by weight or more based on the weight of the zirconium element.
  • Group III element oxides include anoremium, gallium, indium, and tallium. Oxides such as palladium and yttrium can be used.
  • the content of the oxide of the group III element is preferably 1 Z3 or less of the zirconium element in terms of element weight ratio. . / 0 , preferably 30 to 1% by weight, more preferably 25 to 1% by weight.
  • the contained oxide of the group III element is exposed together with the zirconium oxide on the catalyst surface, and is contained in the catalyst in such a form that crystal growth of the zirconium oxide is suppressed by the group III element oxide.
  • the crystallization temperature of zirconium oxide be 450 ° C. or higher, as described later.
  • III group element When the amount of the oxide is too small, the crystal growth of zirconium oxide is promoted. When the amount is too large, the surface of the zirconium oxide is largely covered with the group III element, so that the catalyst activity is considered to decrease. It is considered that oxides of group IV elements other than zirconium and hafnium also act on zirconium oxide in the same manner as described for group III element oxides.
  • oxides of group V elements oxides such as phosphorus, arsenic, antimony, and bismuth can be used.
  • the content of the zirconium element is preferably 1 Z5 or less as the element weight ratio. In the case of a phosphoric acid, the content is 8 to 0.8% by weight, particularly 6 to 1% by weight, based on the weight of the zirconia element. It is preferred that the content be contained by weight.
  • the oxide of the group V element contained is a phosphoric acid which covers the catalyst surface with a monomolecular layer.
  • the catalyst may contain a combination of a Group II element oxide, a Group IV element oxide and a Group V element oxide.
  • the crystal growth of zirconium oxide was suppressed, and the crystallization temperature of zirconium oxide was 450 ° C or higher, particularly 500 ° C or higher, and more preferably 550 ° C. It is preferable that it is above. Usually, it is 900 ° C or less.
  • the crystallization temperature can be measured as the peak temperature of an exothermic peak generated from a room temperature with no weight change in a thermobalance-differential thermal analysis (TG-DTA) analysis.
  • TG-DTA thermobalance-differential thermal analysis
  • the content of the components other than the components (A) and (B) and the elements other than the Group VIII element as the catalyst component may be substantially 1% by weight or less, particularly 0.2% by weight or less. preferable. If necessary, add a Group VIII element to 0.1 part by weight of the catalyst. 1 to 5 parts by weight may be added.
  • the average particle size of the catalyst used in the present invention is preferably 2 to 200 / zm, particularly 4 to 40 ⁇ m, and the specific surface area is preferably 100 to 40 Om 2 Zg, particularly preferably 150 to 400 m 2 / g.
  • the central pore diameter D50 is preferably 2 to 10 nm, particularly preferably 2 to 8 nm.
  • the specific surface area and the central pore diameter can be measured by a nitrogen adsorption / desorption method.
  • alumina having crystallinity such as ⁇ may be used as a binder.
  • the component (II) and the composite oxide powder containing the component (II) serving as the catalyst used in the present invention are generally available, and can be purchased, for example, from Daiichi Rare Element Chemical Co., Ltd.
  • a composite oxide powder that serves as a catalyst for the transesterification reaction a composite oxide powder containing a titanium oxide and an oxide of a Group IV element other than titanium, such as silicon and tin, can also be used.
  • the reaction temperature is a temperature at which the raw material ester is in a liquid state and the alcohol is in a gaseous state. Specifically, the reaction temperature is preferably 1 ° C. or more, particularly preferably 150 to 350 ° C.
  • the reaction pressure is not particularly limited. The reaction proceeds sufficiently even at an atmospheric pressure of about 0.05 to 0.2 MPa, but the reaction pressure is preferably 0.1 to 4 MPa, particularly preferably 0.1 to 3 MPa. The reaction may be performed in a so-called supercritical state.
  • the reaction time is not limited, the product is sufficiently obtained at about 0.1 to 1 hour in a batch type reaction and about 0.5 to 5 / hour in a flow type reaction at a WHSV (weight hourly space velocity) of about 0.5 to 5 / hour.
  • the ester produced by this reaction is preferably obtained in a liquid phase because of easy separation from the catalyst.
  • the reaction type can be a batch type, a flow type, or the like.
  • the catalyst of the present invention is preferably used as a fixed bed, and is separated and recovered without being included in the product.
  • Table 1 summarizes the properties of the composite oxide manufactured by Daiichi Kagaku Kagaku Co., Ltd. used as a catalyst. Confuse.
  • a zirconium oxide powder (a reagent manufactured by MEL, UK) calcined at 400 ° C. for 2 hours in the air (Z-1) was used.
  • the presence or absence of an X-ray diffraction peak was determined by the RAD-1C (CuK, tube voltage 30 kV, tube current 20 mA) manufactured by Rigaku Denki, with a diffraction peak at a scan speed of 4 ° min. The determination was based on whether a peak exceeding the detection limit was detected. If there was no peak exceeding the detection limit, or if the peak intensity of the calcined zirconium oxide powder (Z-1) was 100 and there were only 2 or less peaks, no peak was determined.
  • Table 1 shows the experimental results of the transesterification reaction. The conversion was high when the composite oxides of Experimental Examples 1 to 6 were used as catalysts, and in particular, Examples using the composite oxides containing amorphous zircoyuic acid as catalysts are shown in Experimental Examples 2 to 6. In the case of 6, it can be seen that the transfer ratio is even higher.
  • Table 2 summarizes the properties of the composite oxides manufactured by Daiichi Kagaku Kagaku Co., Ltd. used as catalysts.
  • a zirconium oxide powder (a reagent manufactured by MEL, UK) fired at 400 ° C. for 2 hours in the air (Z-1) was used.
  • the presence or absence of the X-ray diffraction peak was determined at a scan speed of 4 ° and a scan width of 0.02 ° at RAD-1C (CuKa, tube voltage 30 kV, tube current 20 mA) manufactured by Rigaku Denki. The determination was based on whether or not a peak whose diffraction peak exceeded the detection limit was detected.
  • thermogravimetry-differential thermal analysis for measuring the crystallization temperature was performed by Mac Science (TG-DTA2 000 S) at a heating rate of 20 min. (TG-DTA 20000S), and the temperature was raised from room temperature to 1500 ° C. at a temperature rising rate of 20 ° C./min under air flow.
  • Table 3 summarizes the properties of the composite oxide manufactured by Daiichi Kagaku Kagaku Co., Ltd. used as the catalyst. Further, for comparison, zirconium powder (reagent manufactured by MEL, UK) which had been calcined at 400 ° C. for 2 hours in air was used (Z-1). The presence or absence of the X-ray diffraction peak was determined by RAD-1C (CuKa, tube voltage 30 kV, tube current 20 mA) at a scan speed of 4 ° and a scan width of 0.02 ° at which diffraction peak exceeded the detection limit.
  • RAD-1C CuKa, tube voltage 30 kV, tube current 20 mA
  • thermobalance-differential thermal analysis for measuring the crystallization temperature was performed by Mac Science (TG-DTA2000S) under a flow of air at a heating rate of 20 ° CZ for a temperature of 1500 The temperature was raised to ° C.
  • reaction pressure under atmospheric pressure, 1.0 MPa, 2. OMPa, or 3. OM Pa
  • reaction temperature 200 ° C to 250 ° C
  • soybean oil raw material flow rate 3.0 g / H
  • methanol raw material flow rate 4.4 g / h
  • WH SV 1.85 / h.
  • Table 3 shows the experimental results of the transesterification reaction.
  • Experimental examples 11 to 23 which show examples using a composite oxide catalyst containing amorphous zirconium oxide, show a high conversion rate.
  • Experimental Examples 18 to 23 Experimental Examples 18 and 22 have slightly lower conversion because titanium oxide is slightly less or more than the other experimental examples.
  • the transesterification reaction can proceed in a short time under a pressure of about normal pressure, and the product and the catalyst can be easily separated. Therefore, the desired ester can be efficiently produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

 エステル交換反応を、短い反応時間で、かつ、常圧程度の圧力下で反応を進行させることができるエステル交換反応によるエステルの製造方法を提供する。原料エステルとアルコールを、(A)非晶質ジルコニウム酸化物と、(B)III族元素の酸化物、V族元素の酸化物、および/またはジルコニウム、ハフニウム以外のIV族元素の酸化物を含む触媒に接触させることによりエステル交換反応が進むことを見出した。この場合に、液相状態の原料エステルと気相状態のアルコールを前記の(A)、(B)成分を含む固体酸触媒に接触させること、原料エステルが油脂類であり、アルコールがメタノールまたはエタノールであることが好ましい。ジルコニウム、ハフニウム以外のIV族元素の酸化物としては、チタン、珪素、ゲルマニウム、スズなどの酸化物が好ましい。

Description

明細書 エステル交換反応によるエステルの製造方法 技術分野
本発明は、 トリグリセリ ド、 ジグリセリ ド、 モノダリセリ ドなどの原料エステ ルから、 エステル交換反応により脂肪酸エステルなどのエステルを製造する方法 に関する。 背景技術
エステル交換反応は、 例えば、 脂肪酸とグリセリンのエステルである油脂を原 料として、 脂肪酸エステルを製造するために用いられる。 触媒としては、 苛性ソ ーダなどのアルカリ触媒、 亜鉛触媒、 リパーゼなどが用いられる。 また、 触媒を 添加せずに超臨界状態で反応行わせることも提案されている (特開平 9一 235 573号公報、 特開平 7— 197047号公報、 特開 2000— 143586号 公報)。 発明の開示
苛性ソーダなどのアルカリ触媒を用いた場合には、 反応時間が長く、 また、 反 応後に触媒の分離工程が必要となる。 また、 原料が遊離脂肪酸を大量に含む場合 には、 それを除去するための前処理が必要である。 あるいは、 鹼化反応が起こる ためエステル交換反応が進まないなどの課題があった。 亜鉛触媒を用いた場合や 超臨界状態の反応では、 一般に、 5 MP a〜8MP aのような高圧下で反応を行 う必要があった。
本発明は、 エステル交換反応を、 短い反応時間で、 かつ、 常圧程度の圧力下で 反応を進行させることができるエステル交換反応によるエステルの製造方法を提 供することを目的とする。
本発明者は、原料エステルとアルコールを、 (A)非晶質ジルコ-ゥム酸化物と、 (B) I I I族元素の酸化物、 V族元素の酸化物、および/またはジルコニウム、 ハフニウム以外の I V族元素の酸化物を含む触媒に接触させることによりエステ ノレ交換反応が促進されることを見出した。 この場合に、 液相状態の原料エステル と気相状態のアルコールを、 上記の (A)、 (B ) 成分を含む固体酸触媒に接触さ せること、 原料エステルが油脂類であり、 アルコールがメタノールまたはェタノ ールであることが好ましい。 (A) 成分の非晶質ジルコニウム酸化物の含有量は、 触媒重量に対し 1 0〜 9 9重量%、 特には 4 0〜 9 9重量%であることが好まし い。 ( B ) 成分のジルコニウム、 ハフニウム以外の I V族元素酸化物としては、 チ タン、 珪素、 ゲルマ-ゥム、 スズなどの酸化物が好ましい。 また、 (B ) 成分が I I I族元素と V族元素の酸化物で構成される場合は、 I I I族元素と V族元素の 酸ィヒ物の合計の含有量が元素換算でジルコニウム元素重量に対し 0 . 5重量%以 上であり、 (A)成分の非晶質ジルコニウム酸化物の含有量が触媒重量に対し 1 0 〜9 9重量%であることが好ましい。 非晶質ジルコェゥム酸ィ匕物の結晶化温度は 4 5 0 °C以上であることが好ましい。
触媒中の I I I族元素の酸化物がアルミニウムの酸化物であり、その含有量力 ジルコニウム元素重量に対して、元素換算で 4 0〜 1重量%であること、または、 触媒中の V族元素の酸化物がりん酸化物であり、 りん酸化物の含有量が、 ジルコ ニゥム元素重量に対して、 元素換算で 8〜0 . 8重量%であることが好ましい。 発明を実施するための最良の形態
〔原料エステル〕
本発明に用いられる原料エステルは、 エステル化合物を主成分とするものであ ればよく、多価エステルでもよい。特には飽和又は不飽和の脂肪族カルボン酸(力 ルボン酸の炭素数が 8〜 2 4程度) のグリセリ ドが好ましく用いられる。 具体的 には油脂類といわれるトリグリセリ ドが好ましく用いられる。 このような油脂類 としては、 大豆油、 ヤシ油、 ォリーブ油、 ラッカセィ油、 棉実油、 ゴマ油、 パー ム油、 ひまし油などの植物性油脂や、 牛脂、 豚脂、 馬脂、 鯨油、 イワシ油、 サバ 油などの動物性油脂があげられる。 原料エステル中に遊離脂肪酸を 0重量%〜 3 0重量%、 特には 1重量%〜2 0重量%含んでいてもよい。
〔アルコール〕 本発明に用いられるアルコールとしては、 炭素数が 1から 3のアルコール、 特 には、 メタノール、 エタノールが好ましく用いられるが、 多価アルコールでもよ い。
〔触媒〕
本発明で用いる触媒は、 非晶質のジルコニウム酸ィ匕物を主成分とし、 ジルコェ ゥム酸化物の含有量は、 (B )成分として I I I族元素の酸化物および Zまたは V 族元素の酸化物を含む触媒の場合には 1 0〜 9 9重量%、 好ましくは 4 0〜 9 9 重量%、 さらには 8 0〜9 8重量%がより好ましい。 また、 (B )成分の 1種とし てジルコニウム、 ハフニウム以外の I V族元素の酸化物を含む触媒の場合には、 ジルコニウム酸化物の含有量は 1 0〜 9 5重量%、 特には 4 0〜8 0重量%がよ り好ましい。ここで、ジルコニウム酸化物とは、水和酸化物の形態の場合も含む。 非晶質であるとは、 X線回折 (X R D) により、 回折ピークが実質的にないこと である。 具体的には、 回折ピークの強度が検出限界以下であるか、 または、 結晶 性ジルコェゥム酸化物による回折強度を 1 0 0とした場合に、 2以下のピークし か検出されないことである。
本発明で用いる触媒は、 (B )成分としてジルコニウム、ハフニウム以外の I V 族元素の酸化物を含むことができる力 このような酸ィヒ物としては、酸化チタン、 酸ィ匕珪素などを用いることができる。 酸化チタンの場合、 触媒中での含有量は 5 〜9 0重量。/。、 特には 1 0〜6 0重量%が好ましく、 また、 酸化珪素の場合の含 有量は 1〜 2 0重量%、 特には、 2〜 1 0重量%が好ましい。 触媒成分として I 〜I I族、 V I〜V I I族の元素の含有量は合計で 1重量%以下、 特には 0 . 2 重量%以下と実質的に含まれていないことが好ましい。 また、 必要に応じて V I I I族元素を触媒 1 0 0重量部に対して 0 . 1〜 5重量部添加してもよく、 この 他にホウ素、 アルミニウム酸化物、 イットリウム酸化物、 ランタノイド系列元素 酸化物などをバインダーとして使用しても構わない。
また、 本発明で用いる触媒の (B ) 成分としては、 I I I元素または V族元素 の酸化物も有効であり、 これらをジルコニウム元素重量に対し、 元素換算で 0 . 5重量%以上含む。
I I I族元素の酸化物としては、 ァノレミニゥム、 ガリウム、 インジウム、 タリ ゥム、 イットリウムなどの酸化物を用いることができる。 I I I族元素の酸化物 の含有量は、 元素重量比として、 ジルコニウム元素の 1 Z 3以下が好ましく、 ァ ルミニゥム酸化物の場合には、 ジルコニウム元素重量に対して、 元素換算で 4 0 〜 1重量。 /0、 望まじくは 3 0〜 1重量%、 より望ましくは 2 5〜1重量%含むこ とが好ましい。
含有されている I I I族元素の酸化物は、 触媒表面上に酸化ジルコニウムと共 に露出しており、 I I I族元素酸化物によって酸化ジルコニウムの結晶成長が抑 制される形態で触媒に含有されることが好ましい。 これにより後述のように酸化 ジルコニウムの結晶化温度は 4 5 0 °C以上となることが好ましい。 I I I族元素 酸化物が少なすぎると酸化ジルコニウムの結晶成長が促進され、 多すぎると I I I族元素によつて酸化ジルコェゥムの多くの表面が覆われてしまうため、 触媒活 性は低下すると考えられる。 ジルコニウム、 ハフニウム以外の I V族元素の酸化 物も酸化ジルコェゥムに対して I I I族元素酸化物について述べたと同様に作用 すると考えられる。
V族元素の酸化物としては、 りん、 砒素、 アンチモン、 ビスマスなどの酸化物 を用いることができる。 含有量は、 元素重量比として、 ジルコニウム元素の 1 Z 5以下が好ましく、 りん酸化物の場合にはジ コェゥム元素重量に対して、 元素 換算で 8〜0 . 8重量%、 特には 6〜1重量%含むことが好ましい。
含有されている V族元素の酸化物は、 りん酸化物が触媒表面を単分子層で覆う ことが好ましい。 触媒は I I I族元素酸化物、 I V族元素酸化物および V族元素 酸ィ匕物を組合わせて含有していてもよい。 いずれの場合に於いても、 酸化ジルコ ユウムの結晶成長が抑制されており、 酸化ジルコェゥムの結晶化温度が 4 5 0 °C 以上、 特には 5 0 0 °C以上、 さらには 5 5 0 °C以上であることが好ましい。 通常 は 9 0 0 °C以下である。 結晶化温度は、 熱天秤一示差熱 (T G - D T A) 分析に 於いて、 室温から加熱し、 重量変化は生じないまま生じる発熱ピークのピーク温 度として測定することができる。
触媒成分として前記した (A)、 (B ) 成分および V I I I族元素以外の元素の 含有量は合計で 1重量%以下、 特には 0 . 2重量%以下と実質的に含まれていな いことが好ましい。必要に応じて V I I I族元素を触媒 1 0 0重量部に対して 0 . 1〜 5重量部添加してもよい。
本発明で用いる触媒の平均粒径は 2〜 200 /zm、 特には 4〜 40 μ mが好ま しく、 比表面積は 100〜40 Om2Zg、 特には 1 50〜400m2/gが好ま しく、また、中央細孔直径 D 50は 2〜10 nm、特には 2〜8 nmが好ましい。 なお、 比表面積、 中央細孔直径は、 窒素吸脱着法により測定できる。
また、 触媒を成形する際にはバインダーとして γ、 等の結晶性を有するアルミ ナ等を使用しても良い。
本発明で用いる触媒となる (Α) 成分および (Β) 成分を含む複合酸化物粉体 は、 一般に入手可能であり、 例えば、 第一稀元素化学株式会社から購入すること ができる。 なお、 エステル交換反応用触媒となる複合酸化物粉体として、 チタン 酸化物とシリコン、 スズなどのチタン以外の I V族元素酸化物を含む複合酸化物 粉体を用いることもできる。
〔エステル交換反応〕
反応温度は、 原料エステルが液相状態にあり、 アルコールが気相状態となる温 度であり、 具体的には、 1◦ 0°C以上、 特には 150〜350°Cが好ましい。 反 応圧力は特に限定されない。 0. 05~0. 2MP a程度の大気圧においても十 分に反応は進行するが、 反応圧力としては、 0. l〜4MP a、 特には 0. 1〜 3MP aが好ましい。 いわゆる超臨界状態で反応させてもよい。 反応時間も限定 されるものではないが、 バッチ式反応において 0. 1〜1時間程度、 流通式反応 においては、 WHSV (重量空間速度) 0. 5〜5 /時程度で生成物を十分に得 ることができる。 本反応により製造されたエステルは、 触媒との分離の容易さか ら、 液相で得られることが好ましい。 反応形式は、 バッチ式、 流動式などを用い ることができる。 本 明の触媒は、 固定床として用いることが好ましく、 生成物 には含まれることなく、 分離回収される。 実施例
以下、 実施例により本発明をさらに詳細に説明する。
実施例 1
触媒として用いた第一稀元素化学株式会社製の複合酸化物の性状を表 1にまと める。 また、 比較のために、 酸化ジルコニウム粉末 (英国 ME L社製試薬) を 4 00°Cで 2時間空気中で焼成したもの (Z— 1) を用いた。 なお、 X線回折ピー クの有無は、 理学電子製 RAD— 1 C (CuKひ、 管電圧 30 k V、 管電流 20 mA) でスキャン速度 4° 分、 スキャン幅 0. 02° で回折ピークが検出限界 を超えるピークが検出されたかの有無で決定した。 検出限界を超えるピークがな い場合、 または、 焼成した酸化ジルコェゥム粉末 (Z— 1) のピーク強度を 10 0として、 2以下のピークしかない場合は、 ピークはないとした。
これらの酸化物を触媒とし触媒 4 gを、 上下方向長さ 50 cm、 内径 l cmの 固定床流通式反応器中に充填し、 原料エステルとして大豆油 (関東化学製) とァ ルコールとしてメタノールを上端から導入し、 下端出口での大豆油の転化率をガ スクロマトグラフィーにより、実験開始後 4時間また 20時間の時点で測定した。 反応条件は、大気圧下、反応温度: 200°C、大豆油の原料流量: 3. 0 g/時、 メタノールの原料流量: 4. 4 g /時、 WH S V: 1. 85 Z時とした。
エステル交換反応の実験結果を表 1に示す。 実験例 1〜 6の複合酸化物を触媒 として用いた場合に転化率が高く、 特に、 非晶質ジルコユウム酸ィヒ物を含む複合 酸化物を触媒として用いた実施例を示す、 実験例 2~ 6の場合にさらに高い転ィ匕 率であることがわかる。
Figure imgf000008_0001
実施例 2
触媒として用いた第一稀元素化学株式会社製の複合酸化物の性状を表 2にまと める。 また、 比較のために、 酸化ジルコニウム粉末 (英国 ME L社製試薬) を 4 0 0°Cで 2時間空気中で焼成したもの (Z— 1) を用いた。 なお、 X線回折ピー クの有無は、 理学電子製 RAD— 1 C (C uKa、 管電圧 3 0 k V、 管電流 20 mA) でスキャン速度 4° ノ分、 スキャン幅 0. 0 2° で回折ピークが検出限界 を超えるピークが検出されたかの有無で決定した。 検出限界を超えるピークがな い場合、 または、 焼成した酸化ジルコニウム粉末 (Z— 1) のピーク強度を 1 0 0として、 2以下のピークしかない場合は、 ピークはないとした。 また、 結晶化 温度の測定のための熱天枰一示差熱分析 (TG-DTA) は、 マックサイエンス 製 (TG— DTA2 000 S) で、 空気流通下、 昇温速度 20で 分、 室温から 製 (TG— DTA 20 00 S) で、 空気流通下、 昇温速度 2 0 °C/分、 室温から 1 5 0 0°Cまで昇温した。
これらの酸化物を触媒とし触媒 4 gを、 上下方向長さ 5 0 c m、 内径 1 cmの 固定床流通式反応器中に充填し、 原料エステルとして大豆油 (関東化学製) とァ ルコールとしてメタノールを上端から導入し、 下端出口での大豆油の転化率をガ スクロマトグラフィーにより、 実験開始後 20時間の時点で測定した。 反応条件 は、 大気圧下、 反応温度: 2 00°Cまたは 2 5 0°C、 大豆油の原料流量: 3. 0 g Z時、 メタノールの原料流量: 4. 4 g Z時、 WH S V: 1. 8 5 Z時とした。 エステル交換反応の実験結果を表 2に示す。 非晶質ジルコニウム酸化物を含む 複合酸化物触媒を用いた実施例を示す、 実験例 8〜1 0の場合に高い転化率であ ることがわ力る。 表 2
Figure imgf000009_0001
実施例 3
触媒として用いた第一稀元素化学株式会社製の複合酸化物の性状を表 3にまと める。 また、 比較のために、 酸ィ匕ジルコニウム粉末 (英国 ME L社製試薬) を 4 00°Cで 2時間空気中で焼成したもの (Z— 1) を用いた。 なお、 X線回折ピー クの有無は、 理学電子製 RAD— 1 C (C uKa, 管電圧 3 0 k V、 管電流 20 mA) でスキャン速度 4° ノ分、 スキャン幅 0. 02° で回折ピークが検出限界 を超えるピークが検出されたかの有無で決定した。 検出限界を超えるピークがな い場合、 または、 焼成した酸化ジルコニウム粉末 (Z— 1) のピーク強度を 10 0として、 2以下のピークしかない場合は、 ピークはないとした。 また、 結晶化 温度の測定のための熱天秤一示差熱分析 (TG-DTA) は、 マックサイエンス 製 (TG— DTA2000 S) で、 空気流通下、 昇温速度 20°CZ分、 室温から 1 500°Cまで昇温した。
これらの酸化物を触媒とし触媒 4 gを、 上下方向長さ 50 cm、 内径 1 cmの 固定床流通式反応器中に充填し、 原料エステルとして大豆油 (関東化学製) とァ ルコールとしてメタノールを上端から導入し、 下端出口での大豆油の転化率をガ スクロマトグラフィーにより、 実験開始後 20〜 48時間の時点で測定した。 反 応条件は、 反応圧力:大気圧下、 1. 0MP a、 2. OMP a、 または 3. OM P a、 反応温度: 200°C~ 250°C、 大豆油の原料流量: 3. 0 g/時、 メタ ノールの原料流量: 4. 4 g /時、 WH S V: 1. 85 /時とした。
エステル交換反応の実験結果を表 3に示す。 非晶質ジルコニウム酸化物を含む 複合酸化物触媒を用いた実施例を示す、 実験例 1 1〜23の場合に高い転化率で あることがわかる。 実験例 18〜 23のうち、 実験例 18、 22は酸化チタンが 他の実験例に比べてやや少ないか、 または多いことにより、 転化率がやや低い。
Figure imgf000011_0001
産業上の利用可能性
本発明によれば、 常圧程度の圧力下で、 短時間にエステル交換反応を進行する ことができ、 かつ、 生成物と触媒の分離も容易である。 したがって、 目的とする エステルを効率よく生産することが可能となる。

Claims

請求の範囲
1 . 原料エステルとアルコールを、 (A) 非晶質ジルコニウム酸ィヒ物と、 (B )
I I I族元素の酸化物、 V族元素の酸化物、 および/またはジルコェゥム、 ハフ ニゥム以外の I V族元素の酸化物を含む触媒に接触させることによるエステル交 換反応によるエステルの製造方法。
2 . 液相状態の原料エステルと気相状態のアルコールを、 前記 (A)、 (B ) 成 分を含む固体酸触媒に接触させる請求項 1記載のエステルの製造方法。
3 . 原料エステルが油脂類であり、 アルコールがメタノールまたはエタノール である請求項 1記載のエステルの製造方法。
4 . 触媒中の非晶質ジルコニウム酸化物の含有量が 4 0〜9 0重量%であり、
I V族元素の酸化物の含有量が 6 0〜1 0重量%の酸ィ匕チタンである請求項 1記 載のエステルの製造方法。
5 . 触媒中の非晶質ジルコニウム酸化物の含有量が 9 0〜 9 8重量。/。であり、 I V族元素の酸化物の含有量が 1 0〜 2重量%の酸化珪素である請求項 1記載の エステルの製造方法。
6 . I I I族元素と V族元素の酸化物の合計の含有量が元素換算でジルコユウ ム元素重量に対し 0 . 5重量%以上であり、 非晶質ジルコニウム酸化物の含有量 が触媒重量に対し 1 0〜 9 9重量%である請求項 1記載のエステルの製造方法。
7. 非晶質ジルコ-ゥム酸化物の結晶化温度が 4 5 0 °C以上である請求項 1記 載のエステルの製造方法。
8 . 触媒中の I I I族元素の酸化物がアルミニウム酸化物であり、 アルミェゥ ム酸化物の含有量がジルコニウム元素重量に対して、 元素換算で 4 0〜1重量% である請求項 1記載のエステルの製造方法。
9 . 触媒中の V族元素の酸化物がりん酸化物であり、 りん酸化物の含有量が、 ジルコニウム元素重量に対して、 元素換算で 8〜0 . 8重量%である請求項 1記 載のエステルの製造方法。
PCT/JP2004/009250 2003-06-30 2004-06-23 エステル交換反応によるエステルの製造方法 WO2005000782A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511099A JP4251575B2 (ja) 2003-06-30 2004-06-23 エステル交換反応によるエステルの製造方法
EP04746719A EP1640356A4 (en) 2003-06-30 2004-06-23 METHOD FOR THE PRODUCTION OF ESTERS BY TREATMENT
US10/558,935 US7696376B2 (en) 2003-06-30 2004-06-23 Method for manufacture of esters by transesterification

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-186045 2003-06-30
JP2003186045 2003-06-30
JP2003390092 2003-11-20
JP2003-390092 2003-11-20

Publications (1)

Publication Number Publication Date
WO2005000782A1 true WO2005000782A1 (ja) 2005-01-06

Family

ID=33554478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009250 WO2005000782A1 (ja) 2003-06-30 2004-06-23 エステル交換反応によるエステルの製造方法

Country Status (4)

Country Link
US (1) US7696376B2 (ja)
EP (1) EP1640356A4 (ja)
JP (1) JP4251575B2 (ja)
WO (1) WO2005000782A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070661A1 (ja) * 2004-12-28 2006-07-06 Japan Energy Corporation エステル交換反応によるエステルの製造方法
JP2006225578A (ja) * 2005-02-21 2006-08-31 Nippon Shokubai Co Ltd グリセリン及び/又は脂肪酸アルキルエステルの製造方法
JP2007169443A (ja) * 2005-12-21 2007-07-05 Nippon Shokubai Co Ltd 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JP2007190450A (ja) * 2006-01-17 2007-08-02 Japan Energy Corp エステル交換反応によるエステルの製造方法
JP2009512689A (ja) * 2005-10-21 2009-03-26 キャタリティック・ディスティレイション・テクノロジーズ 有機カーボネートの製造方法
WO2009060746A1 (ja) 2007-11-05 2009-05-14 Tokyo Institute Of Technology 固体酸触媒による脂肪酸モノエステル化物の製造方法
US7897798B2 (en) 2006-08-04 2011-03-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US8017796B2 (en) 2007-02-13 2011-09-13 Mcneff Research Consultants, Inc. Systems for selective removal of contaminants from a composition and methods of regenerating the same
US8361174B2 (en) 2008-10-07 2013-01-29 Sartec Corporation Catalysts, systems, and methods for producing fuels and fuel additives from polyols
US8445709B2 (en) 2006-08-04 2013-05-21 Mcneff Research Consultants, Inc. Systems and methods for refining alkyl ester compositions
US8466305B2 (en) 2007-09-28 2013-06-18 Mcneff Research Consultants, Inc. Methods and compositions for refining lipid feed stocks
US8585976B2 (en) 2007-02-13 2013-11-19 Mcneff Research Consultants, Inc. Devices for selective removal of contaminants from a composition
US9102877B2 (en) 2008-11-12 2015-08-11 Sartec Corporation Systems and methods for producing fuels from biomass
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855517B1 (fr) * 2003-05-26 2007-04-20 Inst Francais Du Petrole Procede de transesterification d'huiles vegetales ou animales au moyen de catalyseurs heterogenes a base de titane et d'aluminium
AU2006214917A1 (en) * 2005-02-21 2006-08-24 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl esters and/or glycerin
WO2009067779A1 (en) * 2007-11-30 2009-06-04 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Vapour phase esterification of free fatty acids
US20090247785A1 (en) * 2008-03-31 2009-10-01 The University Of Connecticut Methods and systems for pretreatment of an oil stream
US8889932B2 (en) * 2008-11-26 2014-11-18 Elevance Renewable Sciences, Inc. Methods of producing jet fuel from natural oil feedstocks through oxygen-cleaved reactions
ES2687776T3 (es) * 2008-11-26 2018-10-29 Elevance Renewable Sciences, Inc. Métodos para producir combustible de avión a partir de materias primas de aceite natural a través de reacciones de metátesis
US9169447B2 (en) 2009-10-12 2015-10-27 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9175231B2 (en) 2009-10-12 2015-11-03 Elevance Renewable Sciences, Inc. Methods of refining natural oils and methods of producing fuel compositions
US9382502B2 (en) 2009-10-12 2016-07-05 Elevance Renewable Sciences, Inc. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks
US9365487B2 (en) 2009-10-12 2016-06-14 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9222056B2 (en) 2009-10-12 2015-12-29 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US8735640B2 (en) 2009-10-12 2014-05-27 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel and specialty chemicals from natural oil feedstocks
WO2011046872A2 (en) 2009-10-12 2011-04-21 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel from natural oil feedstocks
US9000246B2 (en) 2009-10-12 2015-04-07 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
EP2498905A1 (en) 2009-11-09 2012-09-19 Wayne State University Metaloxide-zr02 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio -diesel
FR2952636B1 (fr) * 2009-11-13 2012-03-23 Inst Francais Du Petrole Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseur heterogene a base de zeolithe modifiee
GB201119871D0 (en) 2011-11-17 2011-12-28 Davy Process Techn Ltd Process
US9133416B2 (en) 2011-12-22 2015-09-15 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9139493B2 (en) 2011-12-22 2015-09-22 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9169174B2 (en) 2011-12-22 2015-10-27 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9388098B2 (en) 2012-10-09 2016-07-12 Elevance Renewable Sciences, Inc. Methods of making high-weight esters, acids, and derivatives thereof
GB201218078D0 (en) 2012-10-09 2012-11-21 Davy Process Techn Ltd Process
US9328054B1 (en) 2013-09-27 2016-05-03 Travis Danner Method of alcoholisis of fatty acids and fatty acid gyicerides
WO2019082601A1 (ja) 2017-10-24 2019-05-02 信越化学工業株式会社 ラジカル重合性オルガノポリシロキサンの製造方法、放射線硬化性オルガノポリシロキサン組成物、及び剥離シート

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313188A (ja) * 1993-04-28 1994-11-08 Kao Corp 脂肪酸エステルの製造方法
JPH07173103A (ja) * 1993-05-04 1995-07-11 Engelhard De Meern Bv エステル化方法
JPH07197047A (ja) 1993-12-30 1995-08-01 Someya Shoten:Kk ディーゼル燃料およびその製造方法
JPH09235573A (ja) 1996-02-28 1997-09-09 Someya Shoten:Kk 廃食用油を原資源として精製するディーゼル燃料、グリセリン、重油バーナー用燃料およびディーゼル燃料、グリセリン、重油バーナー用燃料の精製方法。
JP2000143586A (ja) 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd 脂肪酸エステルの製造方法および脂肪酸エステルを含む燃料
US6090959A (en) 1998-05-25 2000-07-18 Lonford Development Limited Method of producing fatty acid lower alkylester from fat and oil
JP2001017862A (ja) * 1999-07-09 2001-01-23 Kao Corp エステル交換触媒の製法
JP2001253714A (ja) * 2000-03-13 2001-09-18 Daiichi Kigensokagaku Kogyo Co Ltd 高比表面積酸化ジルコニウム質材料及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255441B1 (en) * 1998-04-17 2001-07-03 E. I. Du Pont De Nemours And Company Titanium-containing catalyst composition and processes therefor and therewith
US6887283B1 (en) * 1998-07-24 2005-05-03 Bechtel Bwxt Idaho, Llc Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium
US6166170A (en) * 1999-12-02 2000-12-26 E. I. Du Pont De Nemours And Company Esterification catalysts and processes therefor and therewith
EP1505048A1 (fr) 2003-05-26 2005-02-09 Institut Francais Du Petrole Procédé de transestérification d'huiles végétales ou animales au moyen de catalyseurs hétérogènes à base de titane, de zirconium ou d'antimoine et d'aluminium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313188A (ja) * 1993-04-28 1994-11-08 Kao Corp 脂肪酸エステルの製造方法
JPH07173103A (ja) * 1993-05-04 1995-07-11 Engelhard De Meern Bv エステル化方法
JPH07197047A (ja) 1993-12-30 1995-08-01 Someya Shoten:Kk ディーゼル燃料およびその製造方法
JPH09235573A (ja) 1996-02-28 1997-09-09 Someya Shoten:Kk 廃食用油を原資源として精製するディーゼル燃料、グリセリン、重油バーナー用燃料およびディーゼル燃料、グリセリン、重油バーナー用燃料の精製方法。
US6090959A (en) 1998-05-25 2000-07-18 Lonford Development Limited Method of producing fatty acid lower alkylester from fat and oil
JP2000143586A (ja) 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd 脂肪酸エステルの製造方法および脂肪酸エステルを含む燃料
JP2001017862A (ja) * 1999-07-09 2001-01-23 Kao Corp エステル交換触媒の製法
JP2001253714A (ja) * 2000-03-13 2001-09-18 Daiichi Kigensokagaku Kogyo Co Ltd 高比表面積酸化ジルコニウム質材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1640356A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070661A1 (ja) * 2004-12-28 2006-07-06 Japan Energy Corporation エステル交換反応によるエステルの製造方法
JP2006225578A (ja) * 2005-02-21 2006-08-31 Nippon Shokubai Co Ltd グリセリン及び/又は脂肪酸アルキルエステルの製造方法
JP2009512689A (ja) * 2005-10-21 2009-03-26 キャタリティック・ディスティレイション・テクノロジーズ 有機カーボネートの製造方法
JP2007169443A (ja) * 2005-12-21 2007-07-05 Nippon Shokubai Co Ltd 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JP2007190450A (ja) * 2006-01-17 2007-08-02 Japan Energy Corp エステル交換反応によるエステルの製造方法
US8686171B2 (en) 2006-08-04 2014-04-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US7897798B2 (en) 2006-08-04 2011-03-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US8445709B2 (en) 2006-08-04 2013-05-21 Mcneff Research Consultants, Inc. Systems and methods for refining alkyl ester compositions
US8017796B2 (en) 2007-02-13 2011-09-13 Mcneff Research Consultants, Inc. Systems for selective removal of contaminants from a composition and methods of regenerating the same
US8585976B2 (en) 2007-02-13 2013-11-19 Mcneff Research Consultants, Inc. Devices for selective removal of contaminants from a composition
US8466305B2 (en) 2007-09-28 2013-06-18 Mcneff Research Consultants, Inc. Methods and compositions for refining lipid feed stocks
WO2009060746A1 (ja) 2007-11-05 2009-05-14 Tokyo Institute Of Technology 固体酸触媒による脂肪酸モノエステル化物の製造方法
US8361174B2 (en) 2008-10-07 2013-01-29 Sartec Corporation Catalysts, systems, and methods for producing fuels and fuel additives from polyols
US9102877B2 (en) 2008-11-12 2015-08-11 Sartec Corporation Systems and methods for producing fuels from biomass
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Also Published As

Publication number Publication date
US7696376B2 (en) 2010-04-13
JPWO2005000782A1 (ja) 2006-07-27
JP4251575B2 (ja) 2009-04-08
EP1640356A1 (en) 2006-03-29
EP1640356A4 (en) 2006-11-22
US20070027338A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2005000782A1 (ja) エステル交換反応によるエステルの製造方法
WO2006070661A1 (ja) エステル交換反応によるエステルの製造方法
JP2007153943A (ja) エステル交換反応によるエステルの製造方法
JP5154015B2 (ja) 脂肪酸アルキルエステル及びグリセリンの製造法
AU2004269265B2 (en) Method of production of fatty acid alkyl esters and/or glycerine and fatty acid alkyl ester-containing composition
JP2007190450A (ja) エステル交換反応によるエステルの製造方法
JP4995249B2 (ja) エステル交換プロセスのための改良された触媒
JP2007177131A (ja) 脂肪酸アルキルエステルの製造方法
JP5576271B2 (ja) 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JP3941876B2 (ja) 脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JP2007512383A (ja) ヘキサンジオール−1,6の製造方法
JP5948420B2 (ja) バイオディーゼルの製造方法
WO2010016285A1 (ja) 脂肪酸エステルとグリセリンの製造方法および脂肪酸エステルを含むバイオディーゼル並びに使用する固体触媒
JP2005126346A (ja) 油脂類からの脂肪酸低級アルキルエステルの製造方法
WO2009084417A1 (ja) アクリル酸の製造方法
US20110237828A1 (en) Acrolein production method and acrylic acid production method
JP2002294277A (ja) 低級アルキルエステルの製造方法
JP2007254305A (ja) 脂肪酸アルキルエステル及び/又はグリセロールの製造方法
JP4963011B2 (ja) 脂肪酸低級アルキルエステルの製造方法
JP5334462B2 (ja) 脂肪酸エステルの製造法
JP2008156576A (ja) 高純度脂肪酸アルキルエステルの製造方法
JP2008266418A (ja) 脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JP5313482B2 (ja) 脂肪酸アルキルエステルおよび/またはグリセリンの製造方法
JP2006225578A (ja) グリセリン及び/又は脂肪酸アルキルエステルの製造方法
JP2006225352A (ja) 脂肪酸アルキルエステル及び/若しくはグリセリンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511099

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004746719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007027338

Country of ref document: US

Ref document number: 10558935

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004746719

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10558935

Country of ref document: US