WO2006070661A1 - エステル交換反応によるエステルの製造方法 - Google Patents

エステル交換反応によるエステルの製造方法 Download PDF

Info

Publication number
WO2006070661A1
WO2006070661A1 PCT/JP2005/023470 JP2005023470W WO2006070661A1 WO 2006070661 A1 WO2006070661 A1 WO 2006070661A1 JP 2005023470 W JP2005023470 W JP 2005023470W WO 2006070661 A1 WO2006070661 A1 WO 2006070661A1
Authority
WO
WIPO (PCT)
Prior art keywords
ester
alcohol
reaction
transesterification
oil
Prior art date
Application number
PCT/JP2005/023470
Other languages
English (en)
French (fr)
Inventor
Satoshi Takasaki
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP2006550704A priority Critical patent/JPWO2006070661A1/ja
Publication of WO2006070661A1 publication Critical patent/WO2006070661A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing an ester such as a fatty acid ester by a transesterification reaction from a raw material ester of an oil or fat.
  • the transesterification reaction is used, for example, to produce a fatty acid ester from an oil or fat that is an ester of a fatty acid and glycerin.
  • a catalyst for such a transesterification reaction an alkali catalyst such as caustic soda, a zinc catalyst, and an enzyme such as lipase are used.
  • Patent Document 1 and Patent Document 2 disclose a method for producing a diesel fuel by reacting waste edible oil and methanol by transesterification in the presence of caustic soda.
  • Patent Document 3 proposes that when producing fatty acid ester such as fatty alcohol alcohol, the reaction is carried out under the condition that fat and fat and Z or alcohol are in a supercritical state without adding a catalyst. .
  • Patent Document 1 Japanese Patent Laid-Open No. 7-197047
  • Patent Document 2 Japanese Patent Laid-Open No. 9-235573
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-143586
  • a first object of the present invention is to provide a method for producing an ester, in which a transesterification reaction can be carried out with a low alcohol consumption and a high yield.
  • a second object of the present invention is to provide a method for producing an ester which can carry out a transesterification reaction with excellent thermal efficiency in a small-scale reactor.
  • the ester production method of the present invention comprises a solid catalyst containing 70 to 95% by weight of amorphous zirconium oxide and 5 to 30% by weight of titanium oxide. It is characterized in that an ester is produced by a transesterification reaction with a molar ratio of 5 to 15 molZmol. It is preferable that the raw material ester is an oil or fat, and is alcohol alcohol.
  • the reaction temperature for the transesterification reaction is preferably 200 to 300 ° C, particularly 230 to 270 ° C.
  • the method for producing an ester of the present invention can produce a desired ester with low alcohol consumption and high yield. As a result, it is possible to increase the thermal efficiency by reducing the size of the reactor.
  • FIG. 1 is a graph showing the results of transesterification in Examples 1 to 4.
  • FIG. 2 is a graph showing the results of transesterification in Examples 2 and 5-9. BEST MODE FOR CARRYING OUT THE INVENTION
  • the raw material ester used in the present invention is a saturated or unsaturated aliphatic carboxylic acid (carbon A glyceride having boronic acid having about 8 to 24 carbon atoms can be used.
  • Monoglycerides, diglycerides, and triglycerides can be used as glycerides, and specifically, triglycerides called oils and fats are preferable.
  • Such fats and oils include vegetable oils such as soybean oil, palm oil, olive oil, lacquer oil, coconut oil, sesame oil, palm oil, castor oil, beef fat, pork fat, horse fat, whale oil, sardine oil. And animal oils such as mackerel oil. Mixtures of these and used waste oil can also be used.
  • the raw material ester may contain 0.1 to 30% by weight, particularly 1 to 20% by weight of free fatty acid.
  • an alcohol having 1 to 3 carbon atoms such as methanol, ethanol and propanol can be used, and methanol is particularly preferable.
  • the catalyst used in the present invention is mainly composed of amorphous zirconium oxide and contains 70 to 95% by weight of amorphous zirconium oxide.
  • the zirconium oxide includes the case of the form of hydrated oxide.
  • the fact that the zirconium oxide is amorphous can be confirmed by the fact that a diffraction peak does not substantially appear by X-ray diffraction (XRD). Specifically, when the intensity of the diffraction peak is below the detection limit, or when the diffraction intensity due to crystalline zirconate is 100, the peak is less than 2 and the force is not detected.
  • the zirconate oxide sample can be considered to be “amorphous”.
  • the catalytic activity decreases.
  • a more preferable range of the content of the amorphous zirconium oxide in the catalyst depends on the reaction conditions (for example, reaction temperature), but is preferably 80 to 85% by weight.
  • the catalyst used in the present invention contains 5 to 30% by weight of titanium oxide (titanium oxide). Since the ester exchange reaction is usually carried out at a high temperature of 100 ° C. to 300 ° C., it is necessary to prevent the amorphous zirconium oxide having high catalytic activity from crystallizing. In the catalyst of the present invention, it is considered that titanate oxide suppresses crystal growth of zirconate oxide. For this reason, when the content of titanate is less than 5%, crystal growth of zirconate is promoted, and the catalytic activity is lowered. On the other hand, when titanic acid content exceeds 30% by weight Since many surfaces of zirconium oxide are covered with titanate, the catalytic activity is reduced.
  • titanium oxide titanium oxide
  • the crystallization temperature of zirconate oxide can be set to 450 ° C. or higher, particularly 500 ° C. or higher, and more preferably 550 ° C. or higher because of including titanium oxide.
  • the crystallization temperature can be measured as the peak temperature of an exothermic peak that appears in a state in which no change in weight occurs in a thermobalance differential thermal (TG-DTA) analysis when heated from room temperature.
  • TG-DTA thermobalance differential thermal
  • a catalyst containing 70 to 95% by weight of amorphous zirconium oxide and 5 to 30% by weight of titanium oxide used in the present invention is generally available as a composite oxide powder.
  • a composite oxide powder For example, it can be obtained from Daiichi Rare Element Chemical Co., Ltd.
  • the average particle diameter of the catalyst particles used in the present invention is preferably 2 to 200 ⁇ m, particularly preferably 4 to 60 ⁇ m, and the specific surface area is preferably 100 to 400 m 2 Zg, particularly 150 to 400 m 2 Zg.
  • the central pore diameter D50 of the catalyst particles is preferably 2 to 1 OOnm, more preferably 2 to 15nm. If it is less than 2 nm, it is not preferable because diffusion of raw materials and products in the catalyst particles is hindered. On the other hand, if it exceeds lOOnm, the specific surface area decreases, which is not preferable.
  • the total pore volume of the catalyst particles is preferably 0.3 ccZg or more, and the volume of the pores having a pore diameter of 2 to 15 nm is preferably 0.1 ccZg or more.
  • the specific surface area and the central pore diameter can be measured by the BET method and the BJH method by the nitrogen adsorption / desorption method, respectively.
  • alumina having crystallinity such as ⁇ , ⁇ , etc. may be used as a binder.
  • Methanol fatty acid glycerin methyl ester R 3 represents a saturated or unsaturated hydrocarbon group (for example, an alkyl group).
  • R 1 R 2 and R 3 are mainly saturated or unsaturated hydrocarbon groups having 15 to 17 carbon atoms (for example, alkyl groups).
  • the reaction temperature is a temperature at which the raw material ester is in a liquid phase and the alcohol is in a gas phase. Specifically, the reaction temperature is 100 ° C or higher, preferably 200 to 300 ° C, particularly preferably 230 to 270 ° C.
  • the reaction pressure is preferably 0.5 to 3 MPa. In the flow reaction, the product can be sufficiently obtained at about WHSV (weight space velocity) of 0.5 to 3Z.
  • the alcohol so that the ratio of the alcohol to the raw oil and fat is 5 to 15 mol / mol, particularly 5 to 10 mol / mol. It should be noted that a high ester yield was achieved even at a low alcohol ratio of 5 to 6 molZmol and an alcohol ratio, as can be seen from the examples described later.
  • the alcohol ratio is less than 5 molZmol, the raw material conversion and the ester yield are lowered.
  • the theoretical molar ratio is 3 molZmol, and below this, the yield of ester is remarkably reduced.
  • the ester produced by this reaction is preferably obtained in a liquid phase because of its ease of separation from the catalyst.
  • a batch system, a fluid system, or the like can be used as the reaction format.
  • the catalyst of the present invention is preferably used as a fixed bed, whereby the catalyst can be separated and recovered without being included in the product.
  • ZrO Zirconium oxide
  • a composite oxide composed of (TiO 2) was used. Composition, average particle size, specific surface of this composite oxide
  • the product and median pore size are shown in Table 1. It was confirmed by X-ray diffraction that the zirconium oxide was amorphous. The presence or absence of X-ray diffraction peaks, physical electronic manufactured RAD- lC (CuK a, tube voltage 30 KV, tube current 20 mA) Scan Speed 4 ° Z component, the diffraction peak in the scan width 0. 02 ° The determination was made based on whether or not the peak exceeding the detection limit was detected. When the peak intensity of the calcined acid zirconium powder (see the comparative example described later) was 100 and only peaks with an intensity of 2 or less appeared, it was judged as “no peak”. The crystallization temperature was increased from room temperature to 1500 ° C by a thermobalance differential thermal analyzer (TG-DTA) manufactured by Mac Science (TG-DTA2000S) under an air flow at a heating rate of 20 ° CZ. Measured.
  • TG-DTA thermobalance differential thermal analyzer
  • the amount of methanol supply was changed so that the methanol Z oil ratio was 5.5 molZmol.
  • the transesterification reaction was carried out under the same conditions as in Example 1 except that. As shown in Table 1, the conversion rate of soybean oil was 95%.
  • the transesterification reaction was carried out under the same conditions as in Example 1 except that the amount of methanol supply was changed so that the methanol Z oil ratio was 9.2 molZmol. As shown in Table 1, the conversion rate of soybean oil was 96%.
  • the transesterification reaction was carried out under the same conditions as in Example 1 except that the amount of methanol supplied was changed so that the methanol Z oil ratio was 40 molZmol.
  • the results are shown in Table 1.
  • the conversion rate of soybean oil was 96%, which was the same as Example 3 (methanol Z oil ratio 9.2 molZmol) o
  • Fig. 1 shows the relationship of the conversion ratio to the methanol Z oil ratio in the transesterification reactions of Examples 1 to 4.
  • reaction temperature 250 ° C
  • reaction pressure lMPa
  • the conversion rate increases even if the methanol Z oil ratio is increased to lOmolZmol or more.
  • I know that I do n’t. That is, under this condition, a methanol Z oil ratio of about lOmolZmol is sufficient, and it is understood that the conversion ratio (reaction yield) is not improved even if methanol is added excessively.
  • the reaction temperature is 250 ° C
  • the conversion rate of soybean oil shows the maximum value (95%). From this, it can be seen that the temperature conditions in the reactions of Examples 1 to 4 were optimized. Therefore, if the reaction temperature needs to be adjusted higher or lower than 250 ° C due to plant or reactor constraints, the methanol Z oil ratio should be set below the optimal range determined from the results of Examples 1 to 4. It is desirable to maintain a given conversion rate or a given reaction rate by adding in excess. From such a practical point of view, it is considered that the methanol Z oil ratio is preferably 5 to 15 molZmol. Thus, by adjusting the methanol / oil ratio, it is possible to reduce the consumption of methanol, and to reduce the reactor scale and thermal energy accordingly.
  • a predetermined conversion rate can be achieved by adjusting the reaction temperature if importance is placed on reducing the consumption of methanol.
  • a conversion rate of 90% or more was achieved at a methanol Z oil ratio of 5.5 (5 to 6 molZmol).
  • the zirconium oxide is in the range of 80 to 85% by weight, it can be seen that the conversion rate increases.
  • the catalyst particle size is considered to be influenced by the fact that the force is smaller than in the case of Examples 1 to 9.
  • the ester can be produced with a small amount of alcohol and in a high yield. . Therefore, the present invention is suitable for producing diesel fuel using waste oil or the like, and contributes to protection of the global environment by reducing CO emissions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 エステルの製造方法は、70~95重量%の非晶質ジルコニウム酸化物と5~30重量%のチタン酸化物を含む固体触媒に、原料エステルとメタノールのようなアルコールを、前記原料エステルに対するアルコールのモル比が5~15mol/molとなるように接触させてエステル交換反応させることを含む。エステル交換反応を低アルコール消費量で且つ高い収率で実行して、ディーゼル燃料に使用可能なエステルを製造することができる。

Description

エステル交換反応によるエステルの製造方法
技術分野
[0001] 本発明は、油脂類の原料エステルカゝらエステル交換反応により脂肪酸エステルな どのエステルを製造する方法に関する。 背景技術
[0002] エステル交換反応は、例えば、脂肪酸とグリセリンのエステルである油脂を原料とし て、脂肪酸エステルを製造するために用いられる。このようなエステル交換反応の触 媒として、苛性ソーダなどのアルカリ触媒、亜鉛触媒、リパーゼなどの酵素などが用 いられている。特許文献 1及び特許文献 2には、廃食用油とメタノールを苛性ソーダ の存在下でエステル交換反応により反応させてディ ゼル燃料を製造する方法が開 示されている。また、特許文献 3では、油脂アルコールカゝら脂肪酸エステルを製造す る際に、触媒を添加せずに、油脂及び Zまたはアルコールが超臨界状態になる条件 で反応させることが提案されて 、る。
[0003] 特許文献 1 :特開平 7— 197047号公報
特許文献 2:特開平 9 - 235573号公報
特許文献 3 :特開 2000— 143586号公報
発明の開示
発明が解決しょうとする課題
[0004] 不均一系触媒を用いるエステル交換反応においては、アルコールを理論消費量よ り過剰に供給するのが一般的である。しかしながら、原料油脂に対するアルコールの 供給量が過剰であればあるほど、エステル交換されたエステルがアルコールに多く 溶け込むために分離効率が低下し、その結果、歩留まりが低下するという問題があつ た。さらに、アルコールの供給量が多くなると、リアクターの規模が一層大きくなるため 、原料を反応温度まで上昇させるのにより多くの熱量が必要であった。
[0005] 特許文献 1及び 2に記載のような苛性ソーダなどの均一系触媒を用いるエステル交 換反応では、アルカリ洗浄工程などの触媒分離工程が必要であるために、プロセス 全体が複雑ィ匕するという問題があった。これに加えて、アルカリ金属の製品への流出 や遊離脂肪酸の酸ィ匕等も問題であった。
[0006] 本発明の第 1の目的は、エステル交換反応を、低アルコール消費量で且つ高収率 で行うことができるエステルの製造方法を提供することにある。本発明の第 2の目的は 、エステル交換反応を優れた熱効率で且つ小規模のリアクターで行うことができるェ ステルの製造方法を提供することにある。
課題を解決するための手段
[0007] 本発明者は、上記課題を解決するために鋭意研究した結果、非晶質ジルコニウム 酸ィ匕物とチタン酸ィ匕物を所定の組成で含む固体触媒を用い且つ最適なエステル交 換反応条件を設定することにより、低アルコール消費量で且つ高い歩留まりでエステ ルを製造することに成功した。すなわち、本発明のエステルの製造方法は、 70〜95 重量%の非晶質ジルコニウム酸化物と 5〜30重量%のチタン酸化物を含む固体触 媒に、原料エステルとアルコールを、原料エステルに対するアルコールのモル比 5〜 15molZmolで接触させるエステル交換反応によりエステルを製造することを特徴と する。前記原料エステルが油脂類であり、アルコールカ^タノールであることが好まし い。また、前記エステル交換反応の反応温度は、 200〜300°C、特に 230〜270°C が好ましい。
発明の効果
[0008] 本発明のエステルの製造方法は、低アルコール消費量で且つ高い収率で所望の エステルを生成することができる。この結果、リアクターを小規模ィ匕して、熱効率を高 めることが可能となる。
図面の簡単な説明
[0009] [図 1]実施例 1〜4におけるエステル交換反応の結果を示すグラフである。
[図 2]実施例 2及び 5〜9におけるエステル交換反応の結果を示すグラフである。 発明を実施するための最良の形態
[0010] 〔原料エステル〕
本発明に用いられる原料エステルは、飽和又は不飽和の脂肪族カルボン酸 (カル ボン酸の炭素数が 8〜24程度)のグリセリドを用い得る。グリセリドとして、モノダリセリ ド、ジグリセリド、トリグリセリドを用いることができ、具体的には油脂類といわれるトリグ リセリドが好ましい。このような油脂類としては、大豆油、ヤシ油、ォリーブ油、ラッカセ ィ油、棉実油、ゴマ油、パーム油、ひまし油などの植物性油脂や、牛脂、豚脂、馬脂 、鯨油、イワシ油、サバ油などの動物性油脂が挙げられる。また、これらの混合物や、 使用済み廃油も使用できる。原料エステル中に遊離脂肪酸を 0. 1重量%〜30重量 %、特には 1重量%〜20重量%含んで 、てもよ 、。
[0011] 〔アルコール〕
本発明に用いられるアルコールとしては、例えば、メタノール、エタノール、プロパノ —ルのような炭素数が 1から 3のアルコールを用いることができ、特には、メタノールが 好ましい。
[0012] 〔触媒〕
本発明に用いられる触媒は、非晶質のジルコニウム酸化物を主成分とし、非晶質の ジルコニウム酸化物を 70〜95重量%含有する。ここで、ジルコニウム酸化物は、水 和酸ィ匕物の形態の場合も含む。また、ジルコニウム酸ィ匕物が非晶質であることは、 X 線回折 (XRD)により回折ピークが実質的に現れないことで確認することができる。具 体的には、回折ピークの強度が検出限界以下であるか、あるいは、結晶性ジルコユウ ム酸ィ匕物による回折強度を 100とした場合に、強度 2以下のピークし力検出されない ときにそのジルコニウム酸ィ匕物試料が「非晶質」であるとみなすことができる。ジルコ二 ゥム酸ィ匕物の含有量が 70重量%未満または 95重量%を超える場合は触媒活性が 低下する。なお、触媒中の非晶質のジルコニウム酸ィ匕物の含有量の一層好ましい範 囲は、反応条件 (例えば、反応温度)にも依存するが、 80〜85重量%が望ましい。
[0013] 本発明で用いる触媒は、チタン酸化物(酸化チタン)を 5〜30重量%含む。エステ ル交換反応は、通常、 100°C〜300°Cの高温下で行われるため、触媒活性の高い 非晶質ジルコニウム酸ィ匕物が結晶化しないようにする必要がある。本発明の触媒で はチタン酸ィ匕物がジルコニウム酸ィ匕物の結晶成長を抑制して 、ると考えられる。この ため、チタン酸ィ匕物の含有量が 5%未満であるとジルコニウム酸ィ匕物の結晶成長が 促進し、触媒活性は低下することになる。一方、チタン酸ィ匕物が 30重量%を超えると ジルコニウム酸ィ匕物の多くの表面がチタン酸ィ匕物で覆われてしまうため触媒活性は 低下する。ここで、ジルコニウム酸ィ匕物の結晶化温度は、チタン酸化物を含むこと〖こ より、 450°C以上、特には 500°C以上、さらには 550°C以上にすることができる。結晶 化温度は、熱天秤 示差熱 (TG— DTA)分析において、室温から加熱し、重量変 化が生じない状態で現れる発熱ピークのピーク温度として測定することができる。
[0014] 本発明で用いる、非晶質のジルコニウム酸ィ匕物を 70〜95重量%、チタン酸化物を 5〜30重量%含む触媒は、複合酸ィ匕物粉体として一般に入手可能であり、例えば、 第一稀元素化株式会社から入手することができる。
[0015] 本発明で用いる触媒粒子の平均粒径は 2〜200 μ m、特には 4〜60 μ mが好まし ぐ比表面積は 100〜400m2Zg、特には 150〜400m2Zgが好ましい。また、触媒 粒子の中央細孔直径 D50は 2〜 1 OOnmが好ましく、より好ましくは 2〜 15nmである 。 2nm未満の場合は、触媒粒子内での原料及び生成物の拡散が阻害されるため好 ましくない。また、 lOOnmを超える場合には、比表面積が低下してしまうため好ましく ない。また、触媒粒子の全細孔容積が 0.3ccZg以上、細孔径が 2〜15nmの細孔 の容積が 0. lccZg以上であることが好ましい。なお、比表面積及び中央細孔直径 は、それぞれ窒素吸脱着法による BET法及び BJH法により測定できる。また、触媒を 成形する際にはバインダーとして γ、 η等の結晶性を有するアルミナ等を使用しても 良い。
[0016] 〔エステル交換反応〕
本発明の製造方法に用いられるトリグリセリドのエステル交換反応の一例を以下に 示す。
[化 1]
OCOR1 R 1 COOC Η C Η?— ΟΗ
CH —OCOR2 + 3 C H3OH R2COOCH3 + CH —OH
Z r 02- T i 02
C H2— OCO R3 R3COOC H3 C Hz— OH
触媒
メタノ一ル 脂肪酸 グリセリン メチルエステル 式中、
Figure imgf000006_0001
R3は、飽和または不飽和の炭化水素基 (例えば、アルキル基)を示 し、原料エステルが大豆油の場合は、 R1 R2、 R3は主に炭素原子が 15〜17個の飽 和または不飽和の炭化水素基 (例えば、アルキル基)である。反応温度は、原料エス テルが液相状態にあり、アルコールが気相状態となる温度であり、具体的には、 100 °C以上、好ましくは 200〜300°Cであり、特に好ましくは 230〜270°Cである。反応圧 力は、 0. 5〜3MPaが好ましい。流通式反応においては、 WHSV (重量空間速度) 0 . 5〜3Z時程度で生成物を十分に得ることができる。さらに、原料油脂に対するアル コールの比率を 5〜15mol/mol、特には、 5〜10mol/molとなるようにアルコール を導入することが好ましい。なお、後述する実施例力も分るように、 5〜6molZmolの 低 、アルコール比率でも高エステル収率を達成して 、ることは注目すべきである。こ こで、アルコール比率が 5molZmol未満であると原料転化率及びエステル収率が 低下する。特に上記化学式に示したトリグリセリドのエステル交換反応では理論モル 比が 3molZmolであるので、それ以下ではエステル収率は著しく低下する。また、 1 5molZmolを超えると余剰のアルコールがエステルに溶け込むために分離効率が 低下し、リアクター規模が大きくなるために必要な熱量が増大する。また、後述する実 施例から、エステル収率は、原料エステルに対するアルコールの使用量が 15molZ mol程度で上限となることが分って 、る。
[0017] 本反応により製造されたエステルは、触媒との分離の容易さから、液相で得られるこ とが好ましい。反応形式は、バッチ式、流動式などを用いることができる。本発明の触 媒は、固定床として用いることが好ましぐこれにより触媒は生成物には含まれること なく分離回収することができる。
[0018] 実施例
以下、本発明のエステルの製造方法を実施例により詳細に説明する。
[0019] 実施例 1
触媒として、第一稀元素化学株式会社製の酸ィ匕ジルコニウム (ZrO )一酸化チタン
2
(TiO )からなる複合酸ィ匕物を用いた。この複合酸化物の組成、平均粒径、比表面
2
積及び中央細孔径を表 1に示す。酸ィ匕ジルコニウムが非晶質であることは X線回折 により確認した。 X線回折ピークの有無は、理学電子製 RAD— lC (CuK a、管電圧 30KV、管電流 20mA)でスキャン速度 4° Z分、スキャン幅 0. 02° で回折ピークが 検出下限を超えるピークが検出された力どうかで決定した。焼成した酸ィ匕ジルコユウ ム粉末 (後述の比較例参照)のピーク強度を 100として、強度 2以下のピークしか現 れない場合は、「ピークなし」と判断した。また、結晶化温度は、マックサイエンス製 (T G— DTA2000S)の熱天秤 示差熱分析器 (TG— DTA)により、空気流通下、昇 温速度 20°CZ分、室温から 1500°Cまで昇温して測定した。
[0020] [表 1]
Figure imgf000008_0001
[0021] 上記触媒 4gを、上下方向の長さ 50cm、内径 lcmの固定床流通式反応器中に充 填した。この反応器に、原料エステルとして大豆油(関東ィ匕学製)と、アルコールとし てメタノールを、それぞれ、 3. OgZ時及び 0. 35gZ時の原料供給量で、上端から導 入した。このときの WHSVは 0. 75/時であり、メタノール/油比は 3. 2molZmolで あった。反応温度は 250°Cであり、反応圧力は 1. OMPaであった。
[0022] 反応器下端(出口)から取り出された反応液中の大豆油を液体クロマトグラフィーに より反応時間(実験開始後) 24時間の時点で測定した。ここでは、反応液中の大豆油 の含有量の変化をエステル交換反応による大豆油の転化率とみなして!/、る。エステ ル交換反応の実験結果を表 1に示す。表 1に示したように、転ィ匕率は 92%であった。
[0023] 実施例 2
メタノール Z油比が 5. 5molZmolとなるように、メタノールの供給量を変更した以 外は、実施例 1と同様の条件でエステル交換反応を実施した。大豆油の転化率は表 1に示すように 95%であった。
[0024] 実施例 3
メタノール Z油比が 9. 2molZmolとなるように、メタノールの供給量を変更した以 外は、実施例 1と同様の条件でエステル交換反応を実施した。大豆油の転化率は表 1に示すように 96%であった。
[0025] 実施例 4
メタノール Z油比が 40molZmolとなるように、メタノールの供給量を変更した以外 は、実施例 1と同様の条件でエステル交換反応を実施した。結果を表 1に示す。大豆 油の転ィ匕率は 96%であり、実施例 3 (メタノール Z油比が 9. 2molZmol)と同様であ つた o
[0026] 図 1に、実施例 1〜4のエステル交換反応におけるメタノール Z油比に対する転ィ匕 率の関係を示す。図 1のグラフからすれば、実施例 1〜4の反応条件 (反応温度 = 25 0°C、反応圧力 = lMPa)では、メタノール Z油比を lOmolZmol以上に増加しても 転ィ匕率は上昇しないことが分る。すなわち、この条件では、メタノール Z油比は lOmo lZmol程度で十分であり、それ以上にメタノールを過剰に加えても転ィヒ率 (反応収率 )は向上しないことが分る。
[0027] 実施例 5〜9
反応温度を 250oC力ら 180oC、 210°C, 230°C, 270。C及び 300。Cにそれぞれ変 更した以外は、実施例 2と同様の条件 (メタノール Z油比が 5. 5molZmol)でエステ ル交換反応を実施した。結果を表 2に示す。なお、基準となる実施例 2の結果も表 2 に併せて示した。また、反応温度に対する転化率の関係を図 2のグラフに示す。図 2 のグラフより、反応温度としては 210°C〜300°Cが好ましぐ一層好ましくは 230°C〜 270°Cであることが分る。
[0028] [表 2] 実施例 5 6 7 2 8 9 組成 (重量%)
Zr02 81 .8 81.8 81 .8 81 .8 81.8 81.8
Ti02 18.2 18.2 18.2 18.2 18.2 18.2 平均粒径 ( ju m) 50.4 50.4 50.4 50.4 50.4 50.4 比表面積 (mVg) 238 238 238 238 238 238 中央細孔径 (nm) 7.5 7.5 7.5 7.5 7.5 7.5
X線回折ピーク
Zr02 なし なし なし なし なし なし
Ti02 なし なし なし なし なし なし 結晶化温度 672 672 672 672 672 672 反応温度 (°C) 180 210 230 250 270 300 反応圧力 (MPa) 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 メタノ一ル /油比 (mol/mol) 5.5 5.5 5.5 5.5 5.5 5,5 転化率 (%) 64 82 93 95 93 87
[0029] 特に、反応温度が 250°Cであるときには、大豆油の転化率は最大値(95%)を示し ている。このことから、実施例 1〜4の反応における温度条件は、最適化されていたこ と力 S分る。よって、プラントやリアクターの制約により、反応温度を 250°Cより高くまた は低く調整する必要がある場合には、メタノール Z油比を実施例 1〜4の結果から求 められた最適範囲よりも過剰に加えることによって、所定の転化率または所定の反応 速度を維持することが望ましい。このような実用上の観点力 すれば、メタノール Z油 比は 5〜15molZmolが望ましいと考えられる。このように、メタノール/油比を調整 することによってメタノールの消費量を低減し、これに伴 、リアクターの規模や熱エネ ルギーを縮小することが可能となる。メタノールの消費量の低減を重視するのであれ ば、反応温度を調整することで所定の転化率を達成できることが上記結果より分る。 特に、メタノール Z油比が 5. 5 (5〜6molZmol)で 90%以上の転化率を達成してい ることは注目すべきである。
[0030] 実施例 10〜 12 (参考実施例)及び比較例
触媒における酸ィ匕ジルコニウム z酸ィ匕チタンの組成及び触媒粒径などの特性並び に反応温度及び圧力を表 3に示すように変化させた以外は、実施例 1と同様の条件 でエステル交換反応を実施した。なお、比較のために、酸化ジルコニウム粉末 (英国 MEL社製試薬)を 400°Cで 2時間空気中で焼成したものを用い、実施例 10と同様の 条件でエステル反応を行った。結果を表 3に示す。表 3から分るように、実施例 10〜1 2では、いずれも、比較例よりも高い大豆油転ィ匕率を示した力 実施例 1〜9よりも転 化率は低下している。これは反応温度が 200°Cであり、反応圧力が大気圧であった ことによると考えられる。一方、酸化ジルコニウムが 80〜85重量%の範囲であれば、 転ィ匕率が高くなることも分る。また、触媒粒径が実施例 1〜9の場合に比べて力なり小 さ 、ことも影響して 、ると考えられる。
[0031] [表 3]
Figure imgf000011_0001
産業上の利用可能性
[0032] 本発明のジルコニウム酸ィ匕物 チタン酸化物系触媒を用 、たエステル交換反応に よるエステルの製造方法によると、少な 、アルコール量で且つ高 、収率でエステルを 製造することができる。それゆえ、本発明は、廃油などを用いたディーゼル燃料の製 造に好適であり、 COの排出量削減による地球環境の保護に貢献する。

Claims

請求の範囲
[1] 70〜95重量%の非晶質ジルコニウム酸化物と 5〜30重量%のチタン酸化物を含む 固体触媒に、原料エステルとアルコールを、原料エステルに対するアルコールのモ ル比 5〜15molZmolで接触させてエステル交換反応によりエステルを製造すること を特徴とするエステルの製造方法。
[2] 前記原料エステルが油脂類であり、アルコール力 Sメタノールであることを特徴とする請 求項 1に記載の製造方法。
[3] 前記エステル交換反応の反応温度力 200〜300°Cであることを特徴とする請求項 1に記載の製造方法。
[4] 前記エステル交換反応の反応温度力 230〜270°Cであることを特徴とする請求項 1に記載の製造方法。
[5] 前記固体触媒中に、非晶質ジルコニウム酸ィ匕物が 80〜85重量%含まれる請求項 1 に記載の製造方法。
[6] 前記原料エステルに対するアルコールのモル比が 5〜 1 OmolZmolである請求項 1 に記載の製造方法。
[7] 前記原料エステルに対するアルコールのモル比が 5〜6molZmolである請求項 1に 記載の製造方法。
PCT/JP2005/023470 2004-12-28 2005-12-21 エステル交換反応によるエステルの製造方法 WO2006070661A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550704A JPWO2006070661A1 (ja) 2004-12-28 2005-12-21 エステル交換反応によるエステルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004380062 2004-12-28
JP2004-380062 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070661A1 true WO2006070661A1 (ja) 2006-07-06

Family

ID=36614780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023470 WO2006070661A1 (ja) 2004-12-28 2005-12-21 エステル交換反応によるエステルの製造方法

Country Status (2)

Country Link
JP (1) JPWO2006070661A1 (ja)
WO (1) WO2006070661A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153943A (ja) * 2005-12-01 2007-06-21 Japan Energy Corp エステル交換反応によるエステルの製造方法
US7897798B2 (en) 2006-08-04 2011-03-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US7943791B2 (en) 2007-09-28 2011-05-17 Mcneff Research Consultants, Inc. Methods and compositions for refining lipid feed stocks
US8017796B2 (en) 2007-02-13 2011-09-13 Mcneff Research Consultants, Inc. Systems for selective removal of contaminants from a composition and methods of regenerating the same
US8361174B2 (en) 2008-10-07 2013-01-29 Sartec Corporation Catalysts, systems, and methods for producing fuels and fuel additives from polyols
US8445709B2 (en) 2006-08-04 2013-05-21 Mcneff Research Consultants, Inc. Systems and methods for refining alkyl ester compositions
WO2013072664A1 (en) 2011-11-17 2013-05-23 Davy Process Technology Limited Process for producing fatty alcohols from fatty acids
US8585976B2 (en) 2007-02-13 2013-11-19 Mcneff Research Consultants, Inc. Devices for selective removal of contaminants from a composition
US9102877B2 (en) 2008-11-12 2015-08-11 Sartec Corporation Systems and methods for producing fuels from biomass
US9212114B2 (en) 2012-10-09 2015-12-15 Johnson Matthey Davy Technologies Limited Process for the production of a fatty alcohol from a fatty acid
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173103A (ja) * 1993-05-04 1995-07-11 Engelhard De Meern Bv エステル化方法
JPH11269258A (ja) * 1998-03-23 1999-10-05 Mitsubishi Chemical Corp ポリエステルの製造方法
JP2001017862A (ja) * 1999-07-09 2001-01-23 Kao Corp エステル交換触媒の製法
WO2005000782A1 (ja) * 2003-06-30 2005-01-06 Japan Energy Corporation エステル交換反応によるエステルの製造方法
JP2005177722A (ja) * 2003-12-24 2005-07-07 Kao Corp 脂肪酸エステルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173103A (ja) * 1993-05-04 1995-07-11 Engelhard De Meern Bv エステル化方法
JPH11269258A (ja) * 1998-03-23 1999-10-05 Mitsubishi Chemical Corp ポリエステルの製造方法
JP2001017862A (ja) * 1999-07-09 2001-01-23 Kao Corp エステル交換触媒の製法
WO2005000782A1 (ja) * 2003-06-30 2005-01-06 Japan Energy Corporation エステル交換反応によるエステルの製造方法
JP2005177722A (ja) * 2003-12-24 2005-07-07 Kao Corp 脂肪酸エステルの製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153943A (ja) * 2005-12-01 2007-06-21 Japan Energy Corp エステル交換反応によるエステルの製造方法
US8445709B2 (en) 2006-08-04 2013-05-21 Mcneff Research Consultants, Inc. Systems and methods for refining alkyl ester compositions
US7897798B2 (en) 2006-08-04 2011-03-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US8686171B2 (en) 2006-08-04 2014-04-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US8017796B2 (en) 2007-02-13 2011-09-13 Mcneff Research Consultants, Inc. Systems for selective removal of contaminants from a composition and methods of regenerating the same
US8585976B2 (en) 2007-02-13 2013-11-19 Mcneff Research Consultants, Inc. Devices for selective removal of contaminants from a composition
US8466305B2 (en) 2007-09-28 2013-06-18 Mcneff Research Consultants, Inc. Methods and compositions for refining lipid feed stocks
US7943791B2 (en) 2007-09-28 2011-05-17 Mcneff Research Consultants, Inc. Methods and compositions for refining lipid feed stocks
US8361174B2 (en) 2008-10-07 2013-01-29 Sartec Corporation Catalysts, systems, and methods for producing fuels and fuel additives from polyols
US9102877B2 (en) 2008-11-12 2015-08-11 Sartec Corporation Systems and methods for producing fuels from biomass
WO2013072664A1 (en) 2011-11-17 2013-05-23 Davy Process Technology Limited Process for producing fatty alcohols from fatty acids
US9212114B2 (en) 2012-10-09 2015-12-15 Johnson Matthey Davy Technologies Limited Process for the production of a fatty alcohol from a fatty acid
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Also Published As

Publication number Publication date
JPWO2006070661A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006070661A1 (ja) エステル交換反応によるエステルの製造方法
JP4251575B2 (ja) エステル交換反応によるエステルの製造方法
JP4976016B2 (ja) エステル交換反応によるエステルの製造方法
AU2004269265B2 (en) Method of production of fatty acid alkyl esters and/or glycerine and fatty acid alkyl ester-containing composition
JP2007153943A (ja) エステル交換反応によるエステルの製造方法
US20090069586A1 (en) Method for producing fatty acid alkyl esters and/or glycerin
JP5576271B2 (ja) 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
US20100139152A1 (en) Heterogeneous catalysts for mono-alkyl ester production, method of making, and method of using same
JP3941876B2 (ja) 脂肪酸アルキルエステル及び/又はグリセリンの製造方法
WO2012177348A1 (en) Catalytic purification of fatty acid alkyl esters used in fuels
WO2010016285A1 (ja) 脂肪酸エステルとグリセリンの製造方法および脂肪酸エステルを含むバイオディーゼル並びに使用する固体触媒
JP2007254305A (ja) 脂肪酸アルキルエステル及び/又はグリセロールの製造方法
EP2186790A1 (en) Acrolein production method and acrylic acid production method
US8853436B2 (en) Heterogeneous catalysts for transesterification of triglycerides and preparation methods of same
EP3204158A1 (en) Heterogeneous catalyst for transesterification and method of preparing same
JP2008156576A (ja) 高純度脂肪酸アルキルエステルの製造方法
JP2006225578A (ja) グリセリン及び/又は脂肪酸アルキルエステルの製造方法
JP2006225352A (ja) 脂肪酸アルキルエステル及び/若しくはグリセリンの製造方法
JP2006225353A (ja) グリセリン及び/若しくは脂肪酸アルキルエステルの製造方法
JP2007169443A (ja) 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JP2008266418A (ja) 脂肪酸アルキルエステル及び/又はグリセリンの製造方法
JPWO2008133189A1 (ja) 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
US10072231B2 (en) Process for the conversion of free fatty acids to glycerol esters and production of novel catalyst systems
JP2008094657A (ja) イルメナイト成型体、その製造方法及びバイオディーゼル燃料製造用触媒
JP2013072071A (ja) 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550704

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820183

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5820183

Country of ref document: EP