WO2004114454A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2004114454A1
WO2004114454A1 PCT/JP2004/004610 JP2004004610W WO2004114454A1 WO 2004114454 A1 WO2004114454 A1 WO 2004114454A1 JP 2004004610 W JP2004004610 W JP 2004004610W WO 2004114454 A1 WO2004114454 A1 WO 2004114454A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
frequency module
waveguide
wavelength resonator
resonator
Prior art date
Application number
PCT/JP2004/004610
Other languages
English (en)
French (fr)
Inventor
Tatsuya Fukunaga
Masaaki Ikeda
Kiyoshi Hatanaka
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/560,857 priority Critical patent/US7403085B2/en
Publication of WO2004114454A1 publication Critical patent/WO2004114454A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices

Definitions

  • the present invention relates to a high-frequency module used for transmitting electromagnetic waves (high-frequency signals) such as microwaves and millimeter waves.
  • the frequency band of radio waves used for communication has expanded to a high-frequency range such as the GHz band, and communication equipment used for communication has been reduced in size.
  • high-frequency modules such as waveguides and filters, used in this type of communication equipment are also required to respond to higher frequencies and downsizing, which is disclosed in Japanese Patent Application Laid-Open No. 6-53711.
  • a filter using such a waveguide line and a waveguide line of this kind disclosed in Japanese Patent Application Laid-Open No. 11-284409 have been developed.
  • a connection structure for connecting such a high-frequency module a connection structure as disclosed in Japanese Patent Application Laid-Open No. 2000-216605 and Japanese Patent Application Laid-Open No. 2003-110307 has been developed.
  • the waveguide line disclosed in JP-A-6-53711 includes a dielectric substrate (1) having a conductor layer (2, 3) as shown in FIG. It has a plurality of conductive holes (4) arranged in two rows for connecting between the conductor layers (2, 3).
  • a region in the conductor is signaled by surrounding four sides of the dielectric material with a pair of conductor layers (2, 3) and a pseudo conductor wall formed by a plurality of conduction holes (4).
  • It consists of a pseudo-rectangular waveguide used as a transmission line.
  • the waveguide having such a configuration is also called a dielectric waveguide.
  • the filter disclosed in Japanese Patent Application Laid-Open No. 11-284409 discloses a filter similar to the waveguide line disclosed in Japanese Patent Application Publication No. 6-53711.
  • a dielectric waveguide line (25) as a quasi-rectangular waveguide composed of a body substrate (21), a pair of main conductor layers (22, 23) and a through conductor group for a side wall (24), one It consists of a plurality of through conductors (26) that electrically connect (conduct) the pair of main conductor layers (22, 23) to form an inductive window (coupling window).
  • the filter can be formed in a dielectric substrate such as a wiring board, so that the size of the filter can be easily reduced.
  • connection structure between a dielectric waveguide line (pseudo-rectangular waveguide) and a line conductor (microstrip line) disclosed in JP-A-2000-216605 is shown in FIG.
  • the end of the line conductor (20) is inserted into the open end of the dielectric waveguide line (16), and the end and one of the main conductor layers (12) are connected to the line conductor for connection. (18) and the connecting through conductor (17) are electrically connected so as to form a step.
  • This connection structure forms a so-called ridge waveguide structure in which the distance between the pair of main conductor layers (12, 13) is reduced.
  • the connection between the waveguide line disclosed in JP-A-2003-110307 (in this example, the waveguide line forms a dielectric waveguide filter) and the line conductor (microstrip line).
  • the structure is such that protrusions (17a, 17b) are provided outside the dielectric waveguide resonator (11a, lid) that constitutes the dielectric waveguide filter.
  • a conductor strip line (15a, 15b) that serves as an input / output electrode over the protrusion (17a, 17b) from the bottom of the dielectric waveguide resonator (11a, lid).
  • the conductor strip lines (15a, 15b) are connected to conductor patterns (19a, 19b) as line conductors formed on the wiring board (18).
  • each conductor pattern (19a, 19b) is connected to a dielectric waveguide resonator (11a, lid) via a conductor strip line (15a, 15b) formed to the same width. ), Respectively.
  • TEM mode input / output signals flow through the conductor patterns (19a, 19b) on the bottom surface of the dielectric waveguide resonator (11a, lid).
  • the magnetic field generated inside the dielectric waveguide resonator (11a, lid) by this input / output signal causes the fundamental resonance mode (TE mode (TE mode ()) of the dielectric waveguide resonator (11a, lid) to change.
  • TE, mode) and propagates in the TEM mode in the conductor pattern (19a, 19b) as a result of coupling with the magnetic field of
  • the electromagnetic wave is mode-converted into an electromagnetic wave propagating in T ⁇ mode (TE 1Q mode) in a dielectric waveguide resonator (11a, lid) as a dielectric waveguide line.
  • the electromagnetic wave propagating in TE mode (TE, mode) at 11a, lid) is mode-converted to the electromagnetic wave propagating in TEM mode at conductor patterns (19a, 19b).
  • TE mode TE, mode
  • TEM mode TEM mode
  • conductor patterns (19a, 19b) a dielectric waveguide line
  • most of the high-frequency modules currently proposed include a dielectric waveguide line (waveguide type waveguide).
  • TEM mode electromagnetic waves as unbalanced electromagnetic waves, but a high-frequency module that outputs balanced TEM mode high-frequency signals from a waveguide waveguide (unbalanced-to-balanced converter; a so-called balun).
  • balun balun
  • a high-frequency wave module (dielectric filter) as disclosed in Japanese Patent No. 3351351 has been proposed.
  • this dielectric filter as shown in FIG. 1 of the publication, an external terminal (8) continuous from one end of an external coupling line (25) and a resonance line are provided on the outer surface of the dielectric block (1).
  • An unbalanced-to-balanced conversion circuit is formed by forming an external terminal (6) that forms a capacitance with (5a), and one of the terminals output from the external terminal (6) by capacitive coupling is formed.
  • the phase difference between the output signal and the other output signal output by the inductive coupling from the external terminal (8) is adjusted to 180 degrees by adjusting the capacitance value and inductance value of each coupling part.
  • the unbalanced-balanced conversion circuit disclosed in Japanese Patent No. 3351351 has the following problems. That is, in this unbalanced-balanced conversion circuit, the capacitance value of the capacitive coupling and the inductance value of the inductive coupling must be adjusted to make the phase difference between the two output signals 180 degrees. Therefore, it is difficult to reduce the size of this unbalanced-balanced conversion circuit because it takes time and effort to adjust the signal, and it is necessary to provide a signal path that does not operate as a resonator in addition to the resonator. There is a problem. Disclosure of the invention
  • a high-frequency module according to the present invention includes a pair of ground electrodes disposed to face each other and a region surrounded by a conductor that conducts between the pair of ground electrodes.
  • a half-wavelength resonator formed inside the waveguide and connected to the one-wavelength resonator; and the half-wavelength resonator in one of the pair of duland electrodes.
  • an input line configured to be able to input a TEM-mode electromagnetic wave as a TE-mode electromagnetic wave to the one- and two-wavelength resonator.
  • the 12-wavelength resonator and the 1-wavelength resonator can be directly connected via a waveguide or the like.
  • the half-wavelength resonator and the one-wavelength resonator are connected to each other via a coupling window.
  • At least one or more other resonators formed between the 1Z two-wavelength resonator and the one-wavelength resonator and connected to the two resonators via a coupling window are provided. preferable.
  • another one-wavelength resonator formed inside the waveguide type waveguide and connected to the one-wavelength resonator, and the other one-wavelength resonator in one of the pair of duland electrodes.
  • a pair of input lines configured to be able to input TEM mode electromagnetic waves as TE mode electromagnetic waves to the other one-wavelength resonator.
  • the other one-wavelength resonator and the one-wavelength resonator can be connected via a waveguide or the like or directly.
  • the other one-wavelength resonator and the one-wavelength resonator are connected to each other via a coupling window. Further, the one-wavelength resonator and at least one or more other resonators formed between the one-wavelength resonator and connected to the two resonators via a coupling window are provided. preferable.
  • the input line can be constituted by any one of a strip line, a microstrip line, and a coplanar line.
  • the output line can be constituted by one.
  • FIG. 1 is a perspective view showing a configuration of a high-frequency module 1 according to the embodiment.
  • FIG. 2 is a plan view of module 1-rule 1.
  • FIG. 3 is an explanatory diagram showing a magnetic field distribution of a magnetic field H 1 in the vicinity of a connection portion of the input line 2 of the module 1 with the waveguide 3.
  • FIG. 4 is an explanatory diagram showing the magnetic field distribution of the magnetic field H 2 near the connection with the input line 2 in the waveguide 3 of the high-frequency module 1.
  • FIG. 5 is an explanatory diagram showing the magnetic field distribution (coupling state) of each of the magnetic fields H I and H 2 at the connection between the input line 2 and the waveguide 3 in the high-frequency module 1.
  • FIG. 6 is a characteristic diagram showing a relationship between a frequency and a phase difference in the high-frequency module 1.
  • FIG. 7 is an explanatory diagram showing the intensity distribution of the magnetic field H 3 in the vicinity of the connection with the output line 4 a in the waveguide 3 of the high-frequency module 1.
  • FIG. 8 is a characteristic diagram showing a relationship between a frequency and an attenuation factor in the high-frequency module 1.
  • FIG. 9 is a perspective view showing a configuration of the high-frequency module 21 according to the embodiment of the present invention.
  • FIG. 10 is a perspective view showing a configuration of an input line 32 in the high-frequency module 31 according to the embodiment of the present invention, and a connection portion between the input line 32 and the waveguide 33. .
  • FIG. 11 is an explanatory diagram showing a magnetic field distribution (coupling state) between the input line 32 and the waveguide-type waveguide 33 in the high-frequency module 31.
  • FIG. 12 is a schematic diagram showing a configuration of the high-frequency module 41 according to the embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a configuration of a high-frequency module 1A according to the embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a configuration of a high-frequency module 41A according to the embodiment of the present invention.
  • the high-frequency module 1 is coupled to the input line 2 and the input line 2 that propagate the TEM mode electromagnetic wave, and the TE mode (specifically, the lowest TE,. And a pair of output lines 4a and 4b coupled to the waveguide 3 to propagate TEM mode electromagnetic waves.
  • the waveguide type waveguide 3 is composed of a pair of duland electrodes 6 and 7 disposed opposite to each other with the dielectric substrate 5 interposed therebetween, and a pair of duland electrodes 6 penetrating through the dielectric substrate 5.
  • the waveguide type waveguide 3 can propagate an electromagnetic wave without leakage in a region surrounded by the pair of ground electrodes 6 and 7 and the through hole 8, for example, in the S direction in the drawing.
  • the waveguide type waveguide 3 may be formed of a dielectric waveguide whose inside is filled with a dielectric as in the present embodiment, and although not shown, the inside is hollow. It can also be composed of a cavity waveguide. In FIG. 1, the uppermost layer is illustrated with hatching with its thickness omitted.
  • 9 ⁇ ⁇ are arranged in a row.
  • the through-hole 9 has the same structure as the through-hole 8 described above.
  • coupling windows 12 and 12 are formed in the gaps between the through holes 9 and 9 and the through holes 8 and 8 and the waveguide type waveguide 3 is formed.
  • a half-wavelength resonator 10 is formed on the input side, and a one-wavelength resonator 11 is formed on the output side.
  • the half-wavelength resonator 10 is connected to the half-wavelength resonance area A of the 1Z two-wavelength resonance areas A and B in the one-wavelength resonator 11 and the magnetic field via the coupling window 12.
  • the high-frequency module 1 is configured to function as a filter (specifically, a bandpass filter).
  • the waveguide type waveguide 3 is configured by arranging a 1-wavelength resonator 10 and a 1-wavelength resonator 11 such that the overall planar shape is L-shaped.
  • the 1/2 wavelength resonator 10, the 12 wavelength resonance area A in the 1 wavelength resonator 11, and the 1/2 wavelength resonance area B in the 1 wavelength resonator 11 are arranged on a straight line.
  • the overall shape in plan view may be an I-shape.
  • a plurality of 1Z2 wavelength resonators 10 may be formed in multiple stages inside the waveguide 3.
  • the input line 2 is disposed on the surface of the dielectric substrate 5 on which the ground electrode 6 is formed so as to face the ground electrode 7 with the dielectric substrate 5 interposed therebetween.
  • the input line 2 has one end directly connected to a portion of the ground electrode 6 corresponding to the half-wavelength resonator 10 (in other words, a portion constituting the half-wavelength resonator 10).
  • the input line 2 is magnetically coupled with the waveguide 3 on the E-plane (plane parallel to the electric field) of the waveguide 3.
  • the E plane of the waveguide 3 is shown in FIG. It becomes a plane parallel to the XY plane.
  • the magnetic field HI in the input line 2 near the connection portion is annularly distributed around the input line 2 as shown in FIG. 3 because the propagation mode of the electromagnetic wave is the TEM mode.
  • the magnetic field H 2 in the waveguide 3 is distributed in one direction in its cross section as shown in FIG. 4 because of the TE mode (TE 1Q mode). Therefore, as shown in FIG. 5, the direction of the magnetic field H1 in the input line 2 and the direction of the magnetic field H2 in the waveguide 3 in the E plane of the waveguide 3 at the connection part.
  • the input line 2 and the waveguide 3 become magnetic fields.
  • the TEM mode electromagnetic wave transmitted from the input line 2 is input into the waveguide 3 as a TE mode electromagnetic wave.
  • the pair of output lines 4a and 4b are placed on the surface of the dielectric substrate 5 where the ground electrode 6 is formed so as to face the ground electrode 7 with the dielectric substrate 5 interposed therebetween.
  • a microstrip line is configured in the same manner as the input line 2.
  • One end of each of the output lines 4 a and 4 b is directly connected to a portion corresponding to each of the 12-wavelength resonance regions A and B of the one-wavelength resonator 11 in the duland electrode 6 and is electrically connected to the portion. .
  • each output line 4 a, 4 b It is connected to the center of each of the corresponding 12-wavelength resonance regions A and B (the position separated by LZ2 from the end of each of the 1-2-wavelength resonance regions A and B). For this reason, each of the output lines 4a and 4b has the same direction as the input line 2 and the direction of the magnetic field H3 in the 1Z2 wavelength resonance region A of the one-wavelength resonator 11 and the magnetic field H5 in the output line 4a.
  • the TEM mode electromagnetic wave input to the input line 2 is input to the 1-to-2 wavelength resonator 10 as the TE mode electromagnetic wave, and further passes through the 1Z2 wavelength resonator 10 to the 1-wavelength resonator. Propagated to 11.
  • an H plane a plane parallel to the magnetic field, that is, a plane parallel to the XZ plane
  • the directions of the magnetic fields H3 and H4 generated in the case are always opposite to each other in the frequency band (the signal pass band of the high-frequency module 1) in which the one-wavelength resonator 11 acts as a resonator for electromagnetic waves.
  • this high-frequency module 1 has a wider frequency band (about 24.5 GHz to about 24.5 GHz) including the signal passband (about 25 GHz to about 25.4 GHz), as shown in FIG.
  • the phase difference between the electromagnetic waves output from the output lines 4a and 4b is almost constant between 180 and 190 degrees. Therefore, from the pair of output lines 4a and 4b, the TEM mode electromagnetic wave converted into the balanced type is output. That is, the high-frequency module 1 also functions as an unbalanced-balanced converter.
  • the intensity distribution of the magnetic field H 3 in the E plane to which the output line 4 a is connected in the half-wavelength resonance area A is, as shown in FIG. (In the X or Z direction), it is strongest at the center and weakens toward the end (in the figure, the strength of the magnetic field H3 is indicated by the length of the arrow). Also, the thickness direction of the 1/2 wavelength resonance region A
  • the intensity distribution of the magnetic field H 3 in the E plane is almost uniform as shown in the figure.
  • Position (a part that is approximately symmetrical with respect to the connection plane connecting the two half-wavelength resonance regions A and B: in this example, approximately the center in the X direction). For this reason, the intensity distributions of the magnetic fields H3 and H4 in each E plane to which the output lines 4a and 4b are connected are approximately the same.
  • the magnetic fields H5, H6 of the output lines 4a, 4b which are magnetically coupled to the magnetic fields H3, H4, respectively, are also within the signal passband in which the one-wavelength resonator 11 acts as a resonator for electromagnetic waves.
  • the intensity is always almost the same.
  • the TEM mode electromagnetic waves output from the output lines 4a and 4b via the one-wavelength resonator 11 have approximately the same intensity. Therefore, from the pair of output lines 4a and 4b, a balanced TEM mode electromagnetic wave having the same magnitude (with the same magnetic field strength) is output. According to the simulation results, in this high-frequency module 1, as shown in FIG.
  • each of the electromagnetic waves output from the pair of output lines 4a and 4b has a signal intensity (attenuation) passing through the signal. They are almost the same in the band.
  • the magnitude balance of the balanced TEM mode electromagnetic waves output from the pair of output lines 4 a and 4 b is determined by changing the connection position of each output line 4 a and 413 to each of the 12-wavelength resonance areas A and B. Can be adjusted.
  • the high-frequency module 1 is surrounded by the pair of ground electrodes 6 and 7 and the plurality of through-holes 8 that conduct between the pair of ground electrodes 6 and 7.
  • a one-wavelength resonator 11 is formed on the output side in a waveguide 3 having a region and a TE mode electromagnetic wave capable of propagating in this region, and a pair of ground electrodes 6 and 7 are formed.
  • the half-wavelength resonator 10 connected to the one-wavelength resonator 11 via the coupling windows 12 and 12 is formed inside the waveguide 3.
  • the electromagnetic waves of the TEM mode input from the input line 2 can be converted to the balanced TEM mode. It can be converted into an electromagnetic wave and output from the pair of output lines 4a and 4b. Therefore, the high-frequency module 1 can function as a so-called balun.
  • the present invention is not limited to the above embodiment.
  • the input line 2 and the pair of output lines 4a and 4b are formed by microstrip lines.
  • the input line 22 and the pair of output lines 24a and 24b can be formed by coplanar lines.
  • the basic configuration of the high-frequency module 21 is almost the same as that of the high-frequency module 1, and the input line 22 and a pair of Only the output lines 24a and 24b are different.
  • the same components as those of the high-frequency module 1 are denoted by the same reference numerals, and the uppermost layer is shown with hatching with its thickness omitted.
  • the input line 22 is formed on the surface of the dielectric substrate 5 on which the ground electrode 6 is formed, facing the ground electrode 7 with the dielectric substrate 5 interposed therebetween and surrounded by the ground electrode 6.
  • the input line 22 has one end directly connected to a portion of the ground electrode 6 corresponding to the half-wavelength resonator 10, and Conduct.
  • a duland electrode 6 surrounding the input line 22 extends through the dielectric substrate 5 and is parallel to the input line 22, and a plurality of through holes 2 arranged in a row on both sides of the input line 22. 9 (same structure as through holes 8 and 9) conducts to the opposing portion of ground electrode 7.
  • the input line 22 functions as a coplanar line.
  • the pair of output lines 24a and 24b are formed similarly to the input line 22 and function as coplanar lines.
  • the input line 2 and the pair of output lines 4 a and 4 b, and the input line 22 and the pair of output lines 24 a and 24 b are connected to the ground line on the dielectric substrate 5.
  • the above description has been made with reference to an example of a configuration in which the electrodes are arranged on the surface on which the poles 6 are formed and are directly connected to the ground electrode 6.
  • an input line and a pair of output lines can be formed by the conductor layer at the intermediate portion to form a high-frequency module.
  • the configuration of the connection between the input line of the high-frequency module 31 and the waveguide of the waveguide type shown in FIG. 10 will be described with reference to FIG. In FIG. In FIG.
  • connection portion in order to facilitate understanding of the configuration of the connection portion, a part of a through hole 8 located on the near side of a through hole 38 described later is omitted, and the one-wavelength resonator 1 is omitted. Illustration of one and a pair of output lines is omitted. In the same figure, the thickness of the conductor layer D as the intermediate layer is omitted and hatched.
  • two dielectric substrates 5 are laminated via a conductor layer D, and a daland electrode 6 is provided on the surface of one dielectric substrate 5 (the upper surface of the upper dielectric substrate 5 in the figure).
  • another ground electrode 7 is formed on the surface of the other dielectric substrate 5 (the lower surface of the lower dielectric substrate 5 in the figure).
  • the ground electrodes 6 and 7 are electrically connected to each other by a plurality of through holes 8 penetrating the two dielectric substrates 5 and the conductor layer D.
  • the conductor layer D surrounded by the plurality of through holes 8 is removed as shown in FIG.
  • the waveguide electrodes 33 are formed by the ground electrodes 6 and 7 and the through holes 8.
  • the input line 32 is formed of a strip line using the conductor layer D, and one end of the input line 32 is grounded via another through hole 38 as shown in FIGS. 10 and 11. Only the electrode 7 is conductive.
  • the input line 32 is connected to the ground electrodes 6 and 7 in the same manner as the through hole 8 and is connected to both sides of the input line 32. It is sandwiched by a plurality of through holes 39 arranged in a row. With this configuration, the input line 32 functions as a coplanar line.
  • the magnetic field HI of the input line 32 for transmitting the TEM mode electromagnetic wave is annularly distributed around the input line 32.
  • one end of the input line 32 has a through hole 3 that is electrically connected to the ground electrode 7.
  • the input line 32 and the waveguide 33 are magnetically coupled to change from the TEM mode to the TE mode. Is converted to Although not shown, the pair of output lines is also connected to the input line 3.
  • the one-wavelength resonator is provided on the output side of the waveguides 3 and 33.
  • TEM mode electromagnetic waves input from one input line 2 can be converted to balanced TEM mode electromagnetic waves.
  • the high-frequency modules 1, 21 and 31 that convert and output from the pair of output lines 4a and 4b (or 24a and 24b) have been described.
  • As in the high-frequency module 41 schematically shown in FIG. By forming the one-wavelength resonators 42 and 43 on both the input side and the output side of the waveguide 44, a balanced input-balanced output type high-frequency module (for example, a filter) can be formed.
  • one input line 44a is provided in the one-two-wavelength resonance region E of the one-wavelength resonator 42 provided on the input side, and the other input line 44b is provided in the half-wavelength resonance region F. Is arranged.
  • One output line 45a is provided in the 12-wavelength resonance region G, and the other output line 45b is provided in the 1 / 2-wavelength resonance region H.
  • a coupling window 46 ′ a for coupling the two regions E and G is provided between the half-wavelength resonance region E of the one-wavelength resonator 42 and the half-wavelength resonance region G of the one-wavelength resonator 43.
  • a coupling window for coupling the two regions F and H is provided between the 1Z2 wavelength resonance region F of the one-wavelength resonator 42 and the 1-two-wavelength resonance region H of the one-wavelength resonator 43.
  • one electromagnetic wave (magnetic field H41) which is input to one input line 44a of the one-wavelength resonator 42 and forms a balanced TEM mode electromagnetic wave is applied to the 1Z2 wavelength of the one-wavelength resonator 42.
  • the resonance region E magnetic field H43 in this region
  • the coupling window 46a and the 1Z2 wavelength resonance region G magnetic field H45 in this region
  • the other electromagnetic wave (magnetic field H42), which is input to the input line 44b of the one-wavelength resonator 42 and forms the TEM mode electromagnetic wave, is the half-wavelength resonance area F of the one-wavelength resonator 42 (the The magnetic field H44) is output as a TEM mode electromagnetic wave (magnetic field H48) to the output line 45b via the coupling window 46b and the 1Z2 wavelength resonance area H of the 1-wavelength resonator 43 (magnetic field H46 in this area).
  • this high-frequency module 41 functions as a balanced input-balanced output side filter.
  • a 12-wavelength resonator 10 is formed on the input side of the waveguide 3, and a 1-wavelength resonator 11 is formed on the output side.
  • a high-frequency module 1A is formed between a half-wavelength resonator 10 and a one-wavelength resonator 11, and is connected to both resonators 10 and 11 through coupling windows 12, 12.
  • At least one or more resonators (one as an example in the figure) that are connected to each other (in the figure, as an example, a half-wave resonator whose basic operation is the same as the half-wave resonator 10) (OA)).
  • another resonator (a single-wavelength resonator or a single-wavelength resonator) is placed between the 12-wavelength resonator 10 and the 1-wavelength resonator 11. It can be arranged and arranged via a coupling window.
  • the high-frequency module can function as filters having various frequency characteristics.
  • one-wavelength resonators 42 and 43 are formed on the input side and the output side of the waveguide waveguide 44, respectively, and both are formed through coupling windows 46a and 46b.
  • the wavelength resonators 42 and 43 are directly coupled
  • the present invention is not limited to this.
  • the one-wavelength resonators 42 and 43 only need to be provided at least on the input side and the output side of the waveguide waveguide 44, and as shown in FIG.
  • resonator 42 (the other one-wavelength resonator) and one-wavelength resonator 43 and both At least one or more resonators (one as an example in the figure) connected to the vibrators 42 and 43 via coupling windows 46a and 46b (in the figure, as an example, It has a 1Z2 wavelength resonator 42A) whose basic operation is the same as that of the 1Z2 wavelength resonator 10. Even with this configuration, the high-frequency module can function as a filter with various frequency characteristics.
  • the input line 2 (or 22) and the pair of output lines 4a and 4b (or 24a and 24b) are both placed on the dielectric substrate 5.
  • the input line 2 (or 22) and the pair of output lines 4a, 4b (or 24a, 24b) are not necessarily formed on the dielectric substrate 5 It is not necessary to form the input line 2 (or 22) on the ground electrode 6 side of the dielectric substrate 5 and a pair of output lines 4a, 4b (not shown).
  • a configuration in which 24 a and 24 b) are formed on the ground electrode 7 side may be adopted, or a configuration opposite thereto may be adopted.
  • the input line and the output line are unified with one type of the strip line, the microstrip line, and the coplanar line. It is only necessary that the output line and the output line are unified, and the input line and the output line can be composed of different types of lines.
  • the input line may be formed by a microstrip line and the pair of output lines may be formed by a coplanar line.
  • the high-frequency module includes a pair of ground electrodes disposed to face each other and a region surrounded by a conductor that conducts between the pair of ground electrodes.
  • a waveguide type waveguide in which a TE-mode electromagnetic wave is configured to be able to propagate and a one-wavelength resonator is formed in the region, and one-wavelength resonator in one of a pair of ground electrodes By providing a pair of output lines respectively connected to the portions corresponding to the two-wavelength resonance region, the phase difference of each electromagnetic wave output from each output line within the signal pass band can be adjusted to approximately 1 without any adjustment. It can be 80 degrees.
  • this high-frequency module it is not necessary to adjust the capacitance value of the capacitive coupling and the inductance value of the inductive coupling while having a simple configuration as compared with the conventional high-frequency module.
  • the adjustment work can be eliminated, and signals that are not operated as a resonator besides the resonator Since it is not necessary to provide a path, the size can be sufficiently reduced.
  • by forming a pair of output lines so that TEM mode electromagnetic waves can be propagated balanced TEM mode electromagnetic waves can be output from the pair of output lines without adjustment.
  • the two-wavelength resonator formed inside the waveguide waveguide and connected to the one-wavelength resonator, and one of the pair of ground electrodes
  • the input line is connected to the part corresponding to the half-wavelength resonator and is configured to be able to input the TEM mode electromagnetic wave to the half-wavelength resonator as the TE mode electromagnetic wave.
  • the input TEM mode electromagnetic waves can be converted into balanced TEM mode electromagnetic waves and output from a pair of output lines. That is, the high-frequency module can function as a so-called balun.
  • the half-wavelength resonator and the one-wavelength resonator can be connected to each other via the coupling window.
  • At least one or more other resonators are connected between the half-wavelength resonator and the one-wavelength resonator via the coupling window to both resonators.
  • a high-frequency module that can function as a filter having various frequency characteristics can be provided.
  • another one-wavelength resonator formed inside the waveguide waveguide and connected to the one-wavelength resonator is provided in one of the pair of ground electrodes.
  • the provision of the input line enables the input balanced TEM mode electromagnetic wave to be output as a balanced TEM mode electromagnetic wave.
  • the other one-wavelength resonator and the one-wavelength resonator can be connected to each other via the coupling window.
  • the high-frequency module of the present invention at least one or more other resonators connected between the other one-wavelength resonator and the one-wavelength resonator via the coupling window are provided.
  • a high-frequency module that can function as a filter having various frequency characteristics can be provided.

Abstract

調整が不要で平衡型の電磁波を出力でき、しかも小型化の容易な高周波モジュールを提供する。互いに対向して配設された一対のグランド電極(6),(7)および一対のグランド電極(6),(7)間を導通させるスルーホール(8)で囲まれた領域を有してその領域内をTEモードの電磁波が伝搬可能に構成されると共にその領域内に1波長共振器(11)が形成された導波管型導波路(3)と、グランド電極(6)における1波長共振器(11)の各1/2波長共振領域(A),(B)に対応する部位にそれぞれ接続されている一対の出力線路(4a),(4b)とを備えている。

Description

明細書 高周波モジュール 技術分野
本発明は、 マイクロ波やミリ波などの電磁波 (高周波信号) の伝搬に用いられる高周 波モジュールに関するものである。 背景技術
移動体通信技術等の進歩により、 通信に利用される電波の周波数帯域が GH z帯のよ うな高周波域に拡がり、 通信に利用される通信機器の小形化も進んでいる。 このため、 この種の通信機器において使用される導波管やフィルタ等の高周波モジュールに対して も、 さらなる高周波化および小形化への対応が求められており、 特開平 6— 53711 号公報に開示されているような導波管線路や、 特開平 11— 284409号公報に開示 されているようなこの種の導波管線路を利用したフィルタが開発されている。 また、 こ の種の高周波モジュールを接続する接続構造としては、 特開 2000— 216605号 公報ゃ特開 2003 - 110307号公報に開示されているような接続構造が開発され ている。
この場合、 特開平 6— 53711号公報に開示されている導波管線路は、 同公報中の 第 1図に示すように、 導体層 (2, 3) を有する誘電体基板 (1) と、 各導体層 (2, 3) 間を接続する 2列に配設された複数の導通穴 (4) とを備えて構成されている。 こ の導波管線路は、 一対の導体層 (2, 3) と複数の導通穴 (4) による疑似的な導体壁 とで誘電体材料の四方を囲むことによつて導体内の領域を信号伝送用の線路とした疑似 矩形導波管路で構成されている。 この場合、 このような構成の導波管線路は、 誘電体導 波管線路とも呼ばれている。
また、 特開平 11—284409号公報に開示されているフィルタは、 同公報中の第 1図に示すように、 特開平 6— 53711号公報に開示された導波管線路と同様にして、 誘電体基板 (21) 、 一対の主導体層 (22, 23) および側壁用貫通導体群 (24) によって構成された疑似矩形導波管路としての誘電体導波管線路 (25) の内部に、 一 対の主導体層 (22, 23) 間を電気的に接続 (導通) して誘導性窓 (結合窓) を形成 する複数の貫通導体 (26) を配設して構成されている。 このフィルタによれば、 配線 基板等の誘電体基板内に作り込むことができるため、 フィルタを容易に小形化すること が可能となっている。
また、 特開 2000— 216605号公報に開示されている誘電体導波管線路 (疑似 矩形導波管路) と線路導体 (マイクロストリップ線路) との接続構造は、 同公報中の第 1図示すように、 誘電体導波管線路 (16) の開口端に、 線路導体 (20) の端部を揷 入すると共に、 その端部と一方の主導体層 (12) とを、 接続用線路導体 (18) と接 続用貫通導体 (17) とにより階段状を成すように電気的に接続する。 また、 この接続 構造は、 一対の主導体層 (12, 13) 間の間隔を狭くしたいわゆるリッジ導波管構造 を構成する。 このため、 線路導体 (20) から誘電体導波管線路 (16) への高周波信 号 (電磁波) の伝搬に際しては、 線路導体 (20) において TEMモードで伝搬する電 磁波を誘電体導波管線路 (16) において TEモード (TE,。モード) で伝搬する電磁 波にモード変換する。
一方、 特開 2003— 110307号公報に開示されている導波管線路 (この例では 導波管線路は誘電体導波管フィルタを構成している) と線路導体 (マイクロストリップ 線路) との接続構造は、 同公報中の第 1図に示すように'、 誘電体導波管フィルタを構成 する誘電体導波管共振器 (11 a, l i d) の外側に、 突出部 (17 a, 17b) を形 成すると共に、 誘電体導波管共振器 (11 a, l i d) の底面から突出部 (17 a, 1 7 b) に跨って入出力電極となる導体ストリップ線路 (15 a, 15 b) を形成し、 こ の導体ストリップ線路 (15 a, 15 b) を配線基板 (18) 上に形成された線路導体 としての導体パターン (19 a, 19 b) に接続する。 この接続構造では、 各導体パタ ーン (19 a, 19 b) は、 同じ幅に形成された導体ストリップ線路 (15 a, 15 b) を介して誘電体導波管共振器 (11 a, l i d) の底面でそれぞれ終端される。 こ れにより、 誘電体導波管共振器 (11 a, l i d) の底面に各導体パターン (19 a, 19b) を介して TEMモードの入出力信号が流れる。 したがって、 この入出力信号に よって誘電体導波管共振器 (11 a, l i d) の内部に引き起こされた磁界が誘電体導 波管共振器 (11 a, l i d) の基本共振モード (TEモード (TE,。モード) ) の磁 界と結合する結果、 導体パターン (19 a, 19 b) において TEMモードで伝搬する 電磁波を誘電体導波管線路としての誘電体導波管共振器 (11 a, l i d) において T Εモード (TE1Qモード) で伝搬する電磁波にモード変換し、 また誘電体導波管共振器 (11 a, l i d) において TEモード (TE,。モード) で伝搬する電磁波を導体パ夕 ーン (19 a, 19 b) において T EMモードで伝搬する電磁波にモード変換する。 ところで、 例えば特開 2000— 216605号公報ゃ特開 2003— 110307 号公報に開示されているように、 現在提案されている高周波モジュールの多くは、 誘電 体導波管線路 (導波管型導波路) から TEMモードの電磁波を不平衡型の電磁波として 出力するものであるが、 導波管型導波路から平衡型の TEMモード高周波信号を出力す る高周波モジュール (不平衡一平衡変換器。 いわゆるバラン) の実現に対する要求もあ る。 このため、 この要求に対して、 例えば、 特許第 3351351号公報に開示されて いるような高周波波モジュール (誘電体フィルタ) が提案されている。 この誘電体フィ ル夕では、 同公報中の第 1図に示すように、 誘電体ブロック (1) の外面に、 外部結合 線路 (25) の一方端から連続する外部端子 (8) 、 共振線路 (5 a) との間で静電容 量を形成する外部端子 (6) を形成することによって不平衡—平衡変換回路を構成して、 外部端子 (6) から容量性結合によって出力される一方の出力信号と、 外部端子 (8) から誘導性結合によって出力される他方の出力信号との間の位相差を、 各結合部分の容 量値やインダクタンス値を調整することによって 180度にしている。
ところが、 この特許 3351351号公報に開示されている不平衡—平衡変換回路に は、 以下の問題点がある。 すなわち、 この不平衡ー平衡変換回路では、 2つの出力信号 間の位相差を 180度にするためには、 容量性結合の容量値と誘導性結合のインダクタ ンス値とを調整しなければならない。 したがって、 この不平衡ー平衡変換回路には、 調 整作業に手間がかかると共に、 共振器のほかに、 共振器として動作させない信号経路を 設ける必要があるために小形化するのが困難であるという問題点が存在する。 発明の開示
本発明は、 かかる問題点を解決すべくなされたものであり、 調整が不要で平衡型の電 磁波を出力でき、 しかも小形化の容易な高周波モジュールを提供することを主目的とす る。 上記目的を達成すべく本発明に係る高周波モジュールは、 互いに対向して配設された 一対のグランド電極および当該一対のグランド電極間を導通させる導通体で囲まれた領 域を有して当該領域内を T Eモードの電磁波が伝搬可能に構成されると共に当該領域内 に 1波長共振器が形成された導波管型導波路と、 前記一対のグランド電極の内の一方に おける前記 1波長共振器の各 1 / 2波長共振領域に対応する部位にそれぞれ接続されて いる一対の出力線路とを備えている。
この場合、 T E Mモードの電磁波が伝搬可能に前記一対の出力線路を構成するのが好 ましい。
また、 前記導波管型導波路の内部に形成されると共に前記 1波長共振器に連結された 1 / 2波長共振器と、 前記一対のダランド電極の内の一方における前記 1 / 2波長共振 器に対応する部位に接続されて T E Mモードの電磁波を T Eモードの電磁波として当該 1ノ 2波長共振器に入力可能に構成された入力線路とを備えているのが好ましい。 ここ で、 1 2波長共振器と 1波長共振器とは、 導波路などを介して、 または直接に連結す ることができる。
この場合、 結合窓を介して前記 1 / 2波長共振器および前記 1波長共振器を互いに連 結するのが好ましい。
また、 前記 1 Z 2波長共振器および前記 1波長共振器の間に形成されると共に当該両 共振器に結合窓を介して連結される少なくとも 1つ以上の他の共振器を備えているのが 好ましい。
また、 前記導波管型導波路の内部に形成されると共に前記 1波長共振器に連結された 他の 1波長共振器と、 前記一対のダランド電極の内の一方における前記他の 1波長共振 器の各 1 / 2波長共振領域に対応する部位にそれぞれ接続されて T E Mモードの電磁波 を T Eモードの電磁波として当該他の 1波長共振器に入力可能に構成された一対の入力 線路とを備えているのが好ましい。 ここで、 他の 1波長共振器と 1波長共振器とは、 導 波路などを介して、 または直接に連結することができる。
この場合、 結合窓を介して前記他の 1波長共振器および前記 1波長共振器を互いに連 結するのが好ましい。 また、 前記他の 1波長共振器および前記 1波長共振器の間に形成されると共に当該両 共振器に結合窓を介して連結される少なくとも 1つ以上の他の共振器を備えているのが 好ましい。
また、 ストリップ線路、 マイクロストリツプ線路およびコプレーナ線路のいずれか 1 つで前記入力線路を構成することができる。
さらに、 ストリップ線路、 マイクロストリツプ線路およびコプレーナ線路のいずれか
1つで前記出力線路を構成することができる。 図面の簡単な説明
第 1図は、 施の形態に係る高周波モジュール 1の構成を示す斜視図である。
第 2図は、 モジュール 1—ル 1の平面図である。
第 3図は、 モジュール 1の入力線路 2における導波管型導波路 3との接続部近傍で の磁界 H 1の磁界分布を示す説明図である。
第 4図は、 高周波モジュール 1の導波管型導波路 3における入力線路 2との接続部近 傍での磁界 H 2の磁界分布を示す説明図である。
第 5図は、 高周波モジュール 1における入力線路 2と導波管型導波路 3との接続部で の各磁界 H I, H 2の磁界分布 (結合状態) を示す説明図である。
第 6図は、 高周波モジュール 1における周波数と位相差との関係を示す特性図である。 第 7図は、 高周波モジュール 1の導波管型導波路 3における出力線路 4 aとの接続部 近傍での磁界 H 3の強度分布を示す説明図である。
第 8図は、 高周波モジュール 1における周波数と減衰率との関係を示す特性図である。 第 9図は、 本発明の実施の形態に係る高周波モジュール 2 1の構成を示す斜視図であ る。
第 1 0図は、 本発明の実施の形態に係る高周波モジュール 3 1における入力線路 3 2、 および入力線路 3 2と導波管型導波路 3 3との接続部の構成を示す斜視図である。
第 1 1図は、 高周波モジュール 3 1における入力線路 3 2と導波管型導波路 3 3との 磁界分布 (結合状態) を示す説明図である。
第 1 2図は、 本発明の実施の形態に係る高周波モジュール 4 1の構成を示す模式図で ある。 第 1 3図は、 本発明の実施の形態に係る高周波モジュール 1 Aの構成を示す模式図で ある。
第 1 4図は、 本発明の実施の形態に係る高周波モジュール 4 1 Aの構成を示す模式図 である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明に係る高周波モジュールの好適な実施の形態につ いて説明する。
最初に、 本発明に係る高周波モジュールの構成について、 図面を参照して説明する。 高周波モジュール 1は、 第 1図に示すように、 T E Mモードの電磁波を伝搬する入力 線路 2、 入力線路 2と結合して T Eモード (具体的には、 最低次の T E ,。モード) の電 磁波を伝搬する導波管型導波路 3、 および導波管型導波路 3と結合して T E Mモードの 電磁波を伝搬する一対の出力線路 4 a , 4 bを備えている。 この場合、 導波管型導波路 3は、 誘電体基板 5を挟んで互いに対向して配設された一対のダランド電極 6, 7と、 誘電体基板 5を貫通することによって一対のダランド電極 6, 7間を導通させて本発明 における導通体として機能する複数のスルーホール 8 , 8 , 8 · ·とを備えて誘電体導 波管 (誘電体導波管路) を構成している。 各スルーホール 8は、 その内面がメタライズ されると共に、 導波管型導波路 3内を伝搬する電磁波の漏出を回避すべく、 所定幅 (例 えば管内信号波長の 1 / 4の幅) 以下の間隔で設置されている。 この構成により、 導波 管型導波路 3は、 一対のグランド電極 6 , 7とスルーホール 8とによって囲まれた領域 内を、 例えば図中の S方向に電磁波を漏れなく伝搬させることができる。 なお、 導波管 型導波路 3は、 本実施の形態のように、 その内部が誘電体で満たされた誘電体導波管で 構成することもできるし、 図示はしないが、 内部を空洞にしたキヤビティ導波管で構成 することもできる。 また、 第 1図において、 最上層については、 その厚みを省略してハ ツチングを施して図示する。
また、 第 1図に示すように、 導波管型導波路 3の内部には、 誘電体基板 5を貫通する ことによって一対のグランド電極 6 , 7間を導通させる他の複数のスルーホール 9, 9 · ·が一列に配設されている。 この場合、 スルーホール 9は、 前述したスルーホール 8と同一の構造で構成されている。 このため、 第 1図, 第 2図に示すように、 導波管型 導波路 3内には、 各スルーホール 9 , 9 · ·と各スルーホール 8, 8 · ·との隙間に結 合窓 1 2 , 1 2が形成されると共に、 導波管型導波路 3の入力側に 1 / 2波長共振器 1 0が形成され、 かつ出力側に 1波長共振器 1 1が形成されている。 また、 1 / 2波長共 振器 1 0は、 1波長共振器 1 1における各 1 Z 2波長共振領域 A, Bのうちの 1 / 2波 長共振領域 Aと結合窓 1 2を介して磁界結合している。 したがって、 高周波モジュール 1は、 フィルタ (具体的にはバンドパスフィルタ) として機能するように構成されてい る。 なお、 一例として、 導波管型導波路 3は、 全体の平面視形状が L字状となるように 1ノ 2波長共振器 1 0と 1波長共振器 1 1とを配置して構成されているが、 1 / 2波長 共振器 1 0、 1波長共振器 1 1内の 1 2波長共振領域 A、 および 1波長共振器 1 1内 の 1 / 2波長共振領域 Bを一直線上に配置して全体の平面視形状が I字状となるように 構成してもよい。 さらに、 導波管型導波路 3の内部に、 複数の 1 Z 2波長共振器 1 0を 多段で形成してもよい。
入力線路 2は、 第 1図に示すように、 誘電体基板 5におけるグランド電極 6の形成面 上に、 誘電体基板 5を挟んでグランド電極 7と対向するように配設されて、 マイクロス トリップ線路を構成する。 また、 入力線路 2は、 その一端側がグランド電極 6における 1 / 2波長共振器 1 0に対応する部位 (言い換えれば、 1 / 2波長共振器 1 0を構成す る部位) に直接的に接続されてその部位と導通する。 この構成により、 入力線路 2は、 導波管型導波路 3の E面 (電界に平行な面) において導波管型導波路 3と磁界結合する。 この場合、 導波管型導波路 3の伝搬モードが T Eモードであり、 電磁波が S方向 (Z方 向でもある) に伝搬するため、 導波管型導波路 3の E面は第 1図中の XY平面に平行な 面となる。
第 3図〜第 5図は、 入力線路 2と導波管型導波路 3との接続部およびその近傍におけ る X Y断面内での磁界分布をそれぞれ示している。 この場合、 接続部近傍の入力線路 2 における磁界 H Iは、 電磁波の伝搬モードが T E Mモードのため、 第 3図に示すように、 入力線路 2の周囲において環状に分布する。 一方、 導波管型導波路 3における磁界 H 2 は、 T Eモード (T E 1Qモード) のため、 第 4図に示すように、 その断面内において一 方向の向きに分布する。 したがって、 第 5図に示すように、 接続部における導波管型導 波路 3の E面内において、 入力線路 2における磁界 H 1の方向と導波管型導波路 3にお ける磁界 H 2の方向とがー致することにより、 入力線路 2と導波管型導波路 3とが磁界 結合して TEMモードから TEモードへの変換が行われる。 つまり、 入力線路 2から伝 搬した TEMモードの電磁波は、 TEモードの電磁波として導波管型導波路 3内に入力 される。
一対の出力線路 4 a, 4 bは、 第 1図に示すように、 誘電体基板 5を挟んでグランド 電極 7と対向するようにして誘電体基板 5におけるグランド電極 6の形成面上にそれぞ れ配設されて、 入力線路 2と同様にしてマイクロストリップ線路を構成する。 また、 各 出力線路 4 a , 4 bは、 一端側がダランド電極 6における 1波長共振器 11の各 1 2 波長共振領域 A, Bに対応する部位にそれぞれ直接的に接続されてその部位と導通する。 具体的には、 第 2図に示すように、 1波長共振器 11の各 1/2波長共振領域 A, Bの 長さをそれぞれ Lとしたときに、 各出力線路 4 a, 4 bは、 対応する 1 2波長共振領 域 A, Bの各中央部 (各 1ノ2波長共振領域 A, Bの端部から LZ 2だけ離間した位 置) にそれぞれ接続されている。 このため、 各出力線路 4 a, 4 bは、 入力線路 2と同 様にして、 1波長共振器 1 1の 1Z2波長共振領域 Aにおける磁界 H 3の方向と出力線 路 4 aにおける磁界 H 5の方向とがー致し、 かつ 1波長共振器 11の 1/2波長共振領 域 Bにおける磁界 H 4の方向と出力線路 4 bにおける磁界 H 6の方向とがー致すること により、 導波管型導波路 3の E面 (第 1図中の XY平面に平行な面) において導波管型 導波路 3と磁界結合する。 したがって、 一対の出力線路 4 a, 4 bと導波管型導波路 3 との接続部において、 入力線路 2のときとは逆にして、 TEモードから TEMモードへ の変換が行われる。
次いで、 高周波モジュール 1の動作について説明する。
この高周波モジュール 1では、 入力線路 2に入力された TEMモードの電磁波は、 T Eモードの電磁波として 1ノ2波長共振器 10に入力され、 さらに 1Z2波長共振器 1 0を経由して 1波長共振器 11に伝搬される。 この場合、 第 2図に模式的に示すように、 1波長共振器 11の各 1 2波長共振領域 A, B内における H面 (磁界と平行な面、 す なわち XZ平面に平行な面) 内で生じる磁界 H3, H4の向きは、 1波長共振器 11が 電磁波に対して共振器として作用する周波数帯域 (高周波モジュール 1の信号通過帯 域) 内では常に互いに逆向きとなる。 したがって、 1波長共振器 11の各 1/2波長共 振領域 A, Bにそれぞれ接続された各出力線路 4 a, 4 bにおける各磁界 H 5, H6も、 この信号通過帯域内において常に互いに逆向きとなる。 この結果、 1波長共振器 11か ら各出力線路 4 a, 4 bに出力される TEMモードの各電磁波の位相は、 この信号通過 帯域内において、 互いにほぼ 180度ずれた状態となる。 シミュレーション結果によれ ば、 この高周波モジュール 1では、 第 6図に示すように、 信号通過帯域 (約 25GHz 〜約 25. 4 GHzの帯域) を含んでさらに広い周波数帯域 (約 24. 5 GHz〜約 2 6. 5 GHzの帯域) において、 各出力線路 4 a, 4 bから出力される各電磁波の位相 差が 180度〜 190度の間でほぼ一定となる。 したがって、 一対の出力線路 4 a, 4 bからは、 平衡型に変換された TEMモードの電磁波が出力される。 つまり、 高周波モ ジュール 1は、 不平衡ー平衡変換器としても機能する。
一方、 1/2波長共振領域 Aにおける出力線路 4 aが接続された E面内での磁界 H 3 の強度分布は、 第 7図に示すように、 1/2波長共振領域 Aの長さ方向 (Xまたは Z方 向) に関しては、 中央部で最も強く、 端部に向かうに従って弱くなる (同図中では、 磁 界 H 3の強度を矢印の長さで表している) 。 また、 1/2波長共振領域 Aの厚み方向
(Y方向) に関しては、 E面内の磁界 H 3の強度分布は、 同図に示すようにほぼ均一で ある。 この点に関しては、 1 2波長共振領域 Bにおいても同様であり、 しかも、 各出 力線路 4 a, 4bは同一の 1波長共振器 11内における各 1/2波長共振領域 A, Bの おおよそ同じ位置 (両 1/2波長共振領域 A, Bを連結する連結面を中心として互いに おおよそ対称となる部位: この例では X方向におけるほぼ中央部) に接続されている。 このため、 出力線路 4 a, 4 bが接続された各 E面内の磁界 H 3, H4の強度分布はお およそ同一となる。 したがって、 各磁界 H3, H 4とそれぞれ磁界結合する各出力線路 4 a, 4 bの各磁界 H 5, H6も、 1波長共振器 11が電磁波に対して共振器として作 用する信号通過帯域内において常にほぼ同じ強度となる。 この結果、 1波長共振器 11 を経由して各出力線路 4 a, 4 bから出力される TEMモードの各電磁波は、 その強度 がおおよそ一致する。 したがって、 一対の出力線路 4 a, 4bからは、 マグニチュード バランスの取れた (磁界強度の同じ) 平衡型の TEMモードの電磁波が出力される。 シ ミュレ一シヨン結果によれば、 この高周波モジュール 1では、 第 8図に示すように、一 対の出力線路 4 a, 4 bから出力される各電磁波は、 その強度 (減衰量) が信号通過帯 域内においてほぼ一致している。 なお、 一対の出力線路 4 a, 4 bから出力される平衡 型の TEMモードの電磁波のマグニチュードバランスは、 各出力線路 4 a, 413の各1 2波長共振領域 A, Bへの接続位置を変更することによって調整することができる。 このように、 この高周波モジュール 1によれば、 互いに対向して配設された一対のグ ランド電極 6 , 7と一対のグランド電極 6 , 7間を導通させる複数のスルーホール 8と で囲まれた領域を有してこの領域内を T Eモードの電磁波が伝搬可能に構成された導波 管型導波路 3内の出力側に 1波長共振器 1 1を形成すると共に、 一対のグランド電極 6 , 7の内の一方のダランド電極 6における 1波長共振器 1 1の各 1 Z 2波長共振領域 A, Bに対応する部位に出力線路 4 a , 4 bをそれぞれ接続したことにより、 信号通過帯域 内において、 各出力線路 4 a , 4 bから出力される各電磁波の位相差を無調整でほぼ 1 8 0度にすることができる。 したがって、 この高周波モジュール 1によれば、 簡易な構 成でありながら、 導波管型導波路 3を伝搬する T Eモードの電磁波を無調整で平衡型の T E Mモードの電磁波に変換して出力することができる。
また、 この高周波モジュール 1によれば、 結合窓 1 2 , 1 2を介して 1波長共振器 1 1に連結された 1 / 2波長共振器 1 0を導波管型導波路 3の内部に形成すると共に一方 のグランド電極 6における 1 / 2波長共振器 1 0に対応する部位に入力線路 2を接続し たことにより、 入力線路 2から入力した T E Mモ一ドの電磁波を平衡型の T E Mモード の電磁波に変換して一対の出力線路 4 a , 4 bから出力することができる。 したがって、 高周波モジュール 1をいわゆるバランとして機能させることができる。
なお、 本発明は、 上記した実施の形態に限定されない。 例えば、 本発明の実施の形態 では、 入力線路 2および一対の出力線路 4 a, 4 bをマイクロストリップ線路で形成し た例を挙げて説明したが、 第 9図に示す高周波モジュール 2 1のように、 入力線路 2 2 および一対の出力線路 2 4 a , 2 4 bをコプレーナ線路で形成することもできる。 この 高周波モジュール 2 1の基本構成は、 同図に示すように、 高周波モジュール 1とほぼ同 一であり、 入力線路 2および出力線路 4 a , 4 bに代えて採用した入力線路 2 2および 一対の出力線路 2 4 a , 2 4 bのみが相違する。 なお、 同図では、 高周波モジュール 1 と同じ構成については同じ符号を付し、 最上層については、 その厚みを省略してハッチ ングを施して図示する。
この場合、 入力線路 2 2は、 誘電体基板 5におけるグランド電極 6の形成面上におい て、 誘電体基板 5を挟んでグランド電極 7と対向し、 かつグランド電極 6によって取り 囲まれるようにして形成されている。 また、 入力線路 2 2は、 その一端側が、 グランド 電極 6における 1 / 2波長共振器 1 0に対応する部位に直接的に接続されてその部位と 導通する。 また、 入力線路 2 2を取り囲むダランド電極 6は、 誘電体基板 5を貫通する と共に入力線路 2 2と平行で、 かつ入力線路 2 2の両側にそれぞれ 1列ずっ配設された 複数のスルーホール 2 9 (スルーホール 8 , 9と同一構造) によってグランド電極 7に おける対向部位に導通している。 この構成により、 入力線路 2 2は、 コプレーナ線路と して機能する。 また、 一対の出力線路 2 4 a , 2 4 bも、 それぞれ入力線路 2 2と同様 に形成されて、 コプレーナ線路として機能する。
また、 上記した実施の形態では、 入力線路 2および一対の出力線路 4 a , 4 bや、 入 力線路 2 2および一対の出力線路 2 4 a, 2 4 bを、 誘電体基板 5におけるグランド電 極 6の形成面上に配設してグランド電極 6と直接的に接続する構成を例に挙げて説明し たが、 上下面にグランド電極 6, 7を有し、 かつその中間部位に他の導体層を備えた誘 電体基板を使用することにより、 この中間部位の導体層で入力線路および一対の出力線 路を形成して高周波モジュールを構成することもできる。 具体的に、 第 1 0図を参照し つつ、 同図に示す高周波モジュール 3 1の入力線路と導波管型導波路との接続部の構成 について説明する。 なお、 第 1 0図では、 接続部の構成の理解を容易にするため、 後述 するスルーホ一ル 3 8の手前側に位置するスルーホール 8における一部の図示を省略し、 1波長共振器 1 1および一対の出力線路の図示を省略する。 また、 同図では、 中間層と しての導体層 Dの厚みを省略してハッチングを施して図示する。
この高周波モジュール 3 1では、 導体層 Dを介して 2枚の誘電体基板 5が積層され、 一方の誘電体基板 5における表面 (同図の上側の誘電体基板 5の上面) にダランド電極 6が形成されると共に、 他方の誘電体基板 5における表面 (同図の下側の誘電体基板 5 の下面) に他のグランド電極 7が形成されている。 また、 グランド電極 6, 7は、 2枚 の誘電体基板 5および導体層 Dを貫通する複数のスルーホール 8によって互いに導通さ せられている。 また、 複数のスルーホール 8で囲まれた導体層 Dは、 同図に示すように 除去されている。 これにより、 グランド電極 6, 7およびスルーホール 8によって導波 管型導波路 3 3が構成される。 また、 入力線路 3 2は、 導体層 Dを利用してストリップ 線路で形成されて、 第 1 0図, 第 1 1図に示すように、 その一端側が他のスル一ホール 3 8を介してグランド電極 7にのみ導通している。 また、 入力線路 3 2は、 スルーホー ル 8と同様してグランド電極 6 , 7を導通させると共に入力線路 3 2の両側にそれぞれ 1列ずっ配設された複数のスルーホール 39によって挟まれている。 この構成により、 入力線路 32は、 コプレーナ線路として機能する。
この高周波モジュール 31では、 第 1 1図に示すように、 TEMモードの電磁波を伝 搬する入力線路 32の磁界 HIが、 入力線路 32の周囲において環状に分布している。 この場合、 入力線路 32の一端側にはグランド電極 7との間で導通するスルーホール 3
8が存在しているため、 スルーホール 38の存在しない領域 (同図中の上側の領域) が 結合窓 12として機能する。 したがって、 導波管型導波路 33の E面において入力線路
32における磁界 HIの方向と導波管型導波路 33における磁界 H 2の方向とがー致す ることにより、 入力線路 32と導波管型導波路 33とが磁界結合して TEMモードから TEモードへの変換が行われる。 また、 図示はしないが、 一対の出力線路も入力線路 3
2と同様に構成されて、 導波管型導波路 33内に形成された 1波長共振器 (図示せず) の TEモードの電磁波を平衡型の TEMモードの電磁波に変換して出力する。
また、 上記した各実施の形態では、 導波管型導波路 3, 33の出力側に 1波長共振器
11を形成すると共に、 入力側に 1/2波長共振器 10を形成することにより、 1個の 入力線路 2 (または 22, 32) から入力した TEMモードの電磁波を平衡型の TEM モードの電磁波に変換して一対の出力線路 4 a, 4 b (または 24a, 24 b) から出 力する高周波モジュール 1, 21, 31について説明したが、 第 12図に模式的に示す 高周波モジュール 41のように、 導波管型導波路 44の入力側および出力側の両方に 1 波長共振器 42, 43を形成することにより、 平衡入力—平衡出力型の高周波モジユー ル (例えばフィルタ) を構成することもできる。 この場合、 入力側に配設した 1波長共 振器 42の 1ノ2波長共振領域 Eに一方の入力線路 44 aを配設する共に 1/2波長共 振領域 Fに他方の入力線路 44 bを配設する。 また、 出力側に配設した 1波長共振器 4
3の 1 2波長共振領域 Gに一方の出力線路 45 aを配設すると共に 1/2波長共振領 域 Hに他方の出力線路 45 bを配設する。 また、 1波長共振器 42の 1 / 2波長共振領 域 Eと 1波長共振器 43の 1 2波長共振領域 Gとの間に、 両領域 E, Gを結合させる ための結合窓 46' aを配設し、 1波長共振器 42の 1Z2波長共振領域 Fと 1波長共振 器 43の 1ノ2波長共振領域 Hとの間には、 両領域 F, Hを結合させるための結合窓 4
6 bを配設する。 この高周波モジュール 41では、 1波長共振器 42の一方の入力線路 44 aに入力さ れて平衡型の TEMモードの電磁波を形成する一方の電磁波 (磁界 H41) は、 1波長 共振器 42の 1Z2波長共振領域 E (この領域内の磁界 H43) 、 結合窓 46 aおよび 1波長共振器 43の 1Z2波長共振領域 G (この領域内の磁界 H45) を介して出力線 路 45 aに TEMモードの電磁波 (磁界 H47) として出力される。 一方、 1波長共振 器 42の入力線路 44 bに入力されて TEMモードの電磁波を形成する他方の電磁波 (磁界 H42) は、 1波長共振器 42の 1/2波長共振領域 F (この領域内の磁界 H 4 4) 、 結合窓 46 bおよび 1波長共振器 43の 1Z2波長共振領域 H (この領域内の磁 界 H46) を介して出力線路 45 bに TEMモードの電磁波 (磁界 H48) として出力 される。 したがって、 この高周波モジュール 41は、 平衡入力一平衡出力側のフィルタ として機能する。
また、 高周波モジュール 1では、 導波管型導波路 3の入力側に 1 2波長共振器 10 を形成すると共に出力側に 1波長共振器 11を形成し、 かつ結合窓 12, 12を介して 1 / 2波長共振器 10および 1波長共振器 11を連結する例について説明したが、 本発 明はこれに限定されない。 例えば、 第 13図に示すように、 高周波モジュール 1 Aは、 1/2波長共振器10および 1波長共振器 11の間に形成されると共に両共振器 10, 11に結合窓 12, 12を介して連結される少なくとも 1つ以上 (同図では、 一例とし て 1つ) の他の共振器 (同図では、 一例として、 1/2波長共振器 10と基本動作が同 一の 1/2波長共振器 1 OA) を備えて構成されている。 また、 上記した他の高周波モ ジュール 21においても、 同様にして、 1 2波長共振器10および 1波長共振器 11 の間に、 他の共振器 (1波長共振器や 1 2波長共振器) を結合窓を介して配設して構 成することができる。 これらの構成を採用することにより、 高周波モジュールを様々な 周波数特性のフィルタとして機能させることができる。
また、 高周波モジュール 41では、 導波管型導波路 44の入力側と出力側とに、 1波 長共振器 42, 43を 1個ずつ形成して結合窓 46 a, 46 bを介して両 1波長共振器 42, 43を直接結合させる例について説明したが、 本発明は、 これに限定されない。 例えば、 1波長共振器 42, 43は少なくとも導波管型導波路 44の入力側と出力側と に配設されていればよく、 第 14図に示すように、 高周波モジュール 41 Aは、 1波長 共振器 42 (他の 1波長共振器) および 1波長共振器 43の間に形成されると共に両共 振器 4 2, 4 3に結合窓 4 6 a, 4 6 bを介して連結される少なくとも 1つ以上 (同図 では、 一例として 1つ) の他の共振器 (同図では、 一例として、 1 Z 2波長共振器 1 0 と基本動作が同一の 1 Z2波長共振器 4 2 A) を備えて構成されている。 この構成を採 用しても、 高周波モジュールを様々な周波数特性のフィル夕として機能させることがで さる。
また、 上記した高周波モジュール 1 (または 2 1 ) では、 入力線路 2 (または 2 2 ) および一対の出力線路 4 a , 4 b (または 2 4 a , 2 4 b ) が共に誘電体基板 5におけ るグランド電極 6の形成面上に形成されているが、 入力線路 2 (または 2 2 ) および一 対の出力線路 4 a, 4 b (または 2 4 a, 2 4 b ) は必ずしも誘電体基板 5における同 一面上に形成する必要はなく、 図示はしないが、 例えば、 入力線路 2 (または 2 2 ) を 誘電体基板 5におけるグランド電極 6側に形成すると共に一対の出力線路 4 a , 4 b (または 2 4 a , 2 4 b ) をグランド電極 7側に形成する構成を採用することもできる し、 またその逆の構成を採用することもできる。 さらに、 上記した各実施の形態では、 入力線路および出力線路を、 ストリツプ線路、 マイクロストリツプ線路およびコプレー ナ線路の内の 1種類の線路で統一して構成した例について説明したが、 入力線路および 出力線路が個々に統一されていればよく、 入力線路および出力線路を互いに異なる種類 の線路で構成することもできる。 例えば、 入力線路をマイクロストリツプ線路で構成す ると共に一対の出力線路をコプレーナ線路で構成することもできる。
以上のように、 本発明に係る高周波モジュールによれば、 互いに対向して配設された 一対のグランド電極および一対のグランド電極間を導通させる導通体で囲まれた領域を 有してその領域内を T Eモードの電磁波が伝搬可能に構成されると共にその領域内に 1 波長共振器が形成された導波管型導波路と、 一対のグランド電極の内の一方における 1 波長共振器の各 1 / 2波長共振領域に対応する部位にそれぞれ接続されている一対の出 力線路とを備えたことにより、 信号通過帯域内において、 各出力線路から出力される各 電磁波の位相差を無調整でほぼ 1 8 0度にすることができる。 この結果、 この高周波モ ジュールによれば、 従来の高周波モジュールと比較して、 簡易な構成でありながら、 容 量性結合の容量値と誘導性結合のィンダクタンス値とを調整する必要がないため、 調整 作業を不要にすることができると共に、 共振器の他に、 共振器として動作させない信号 経路を設ける必要がなくなるために十分に小形化することができる。 また、 T E Mモー ドの電磁波が伝搬可能に一対の出力線路を構成することにより、 調整が不要で平衡型の T E Mモードの電磁波を一対の出力線路から出力させることができる。
また、 本発明に係る高周波モジュールによれば、 導波管型導波路の内部に形成される と共に 1波長共振器に連結された 1 2波長共振器と、 一対のグランド電極の内の一方 における 1 / 2波長共振器に対応する部位に接続されて T E Mモードの電磁波を T Eモ 一ドの電磁波として 1 / 2波長共振器に入力可能に構成された入力線路とを備えたこと により、 入力線路から入力した T E Mモードの電磁波を平衡型の T E Mモ一ドの電磁波 に変換して一対の出力線路から出力させることができる。 つまり、 高周波モジュールを いわゆるバランとして機能させることができる。 この場合、 結合窓を介して 1 / 2波長 共振器および 1波長共振器を互いに連結することができる。
また、 本発明に係る高周波モジュールによれば、 1 / 2波長共振器および 1波長共振 器の間に両共振器に結合窓を介して連結される少なくとも 1つ以上の他の共振器を備え たことにより、 様々な周波数特性のフィルタとして機能させ得る高周波モジュールを提 供することができる。
また、 本発明に係る高周波モジュールによれば、 導波管型導波路の内部に形成される と共に 1波長共振器に連結された他の 1波長共振器と、 一対のグランド電極の内の一方 における他の 1波長共振器の各 1 Z 2波長共振領域に対応する部位にそれぞれ接続され て T EMモードの電磁波を T Eモードの電磁波として他の 1波長共振器に入力可能に構 成された一対の入力線路とを備えたことにより、 入力した平衡型の T E Mモードの電磁 波を平衡型の T E Mモードの電磁波として出力させることができる。 この場合、 結合窓 を介して他の 1波長共振器および 1波長共振器を互いに連結することができる。
また、 本発明に係る高周波モジュールによれば、 他の 1波長共振器および 1波長共振 器の間に両共振器に結合窓を介して連結される少なくとも 1つ以上の他の共振器を備え たことにより、 様々な周波数特性のフィル夕として機能させ得る高周波モジュールを提 供することができる。

Claims

請求の範囲
1 . 互いに対向して配設された一対のグランド電極および当該一対のグランド電極間を 導通させる導通体で囲まれた領域を有して当該領域内を T Eモードの電磁波が伝搬可能 に構成されると共に当該領域内に 1波長共振器が形成された導波管型導波路と、 前記一対のグランド電極の内の一方における前記 1波長共振器の各 1 / 2波長共振領 域に対応する部位にそれぞれ接続されている一対の出力線路とを備えている高周波モジ ユール。
2 . 前記一対の出力線路は、 T E Mモードの電磁波が伝搬可能に構成されている請求の 範囲第 1項記載の高周波モジュール。
3 . 前記導波管型導波路の内部に形成されると共に前記 1波長共振器に連結された 1 / 2波長共振器と、
前記一対のグランド電極の内の一方における前記 1ノ 2波長共振器に対応する部位に 接続されて T E Mモードの電磁波を T Eモードの電磁波として当該 1 Z 2波長共振器に 入力可能に構成された入力線路とを備えている請求の範囲第 1項記載の高周波モジユー ル。
4. 前記 1 Z 2波長共振器および前記 1波長共振器は、 結合窓を介して互いに連結され ている請求の範囲第 3項記載の高周波モジュール。
5 . 前記 1 2波長共振器および前記 1波長共振器の間に形成されると共に当該両共振 器に結合窓を介して連結される少なくとも 1つ以上の他の共振器を備えている請求の範 囲第 3項記載の高周波モジュール。
6 . 前記導波管型導波路の内部に形成されると共に前記 1波長共振器に連結された他の 1波長共振器と、
前記一対のグランド電極の内の一方における前記他の 1波長共振器の各 1 2波長共 振領域に対応する部位にそれぞれ接続されて T E Mモードの電磁波を T Eモードの電磁 波として当該他の 1波長共振器に入力可能に構成された一対の入力線路とを備えている 請求の範囲第 1項記載の高周波モジュール。
7 . 前記他の 1波長共振器および前記 1波長共振器は、 結合窓を介して互いに連結され ている請求の範囲第 6項記載の高周波モジュール。
8 . 前記他の 1波長共振器および前記 1波長共振器の間に形成されると共に当該両共振 器に結合窓を介して連結される少なくとも 1つ以上の他の共振器を備えている請求の範 囲第 6項記載の高周波モジュール。
9 . 前記入力線路は、 ストリップ線路、 マイクロストリップ線路およびコプレーナ線路 のいずれか 1つである請求の範囲第 3項記載の高周波モジュール。
1 0 . 前記出力線路は、 ストリツプ線路、 マイクロストリツプ線路およびコプレーナ線 路のいずれか 1つである請求の範囲第 1項記載の高周波モジュール。
PCT/JP2004/004610 2003-06-24 2004-03-31 高周波モジュール WO2004114454A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/560,857 US7403085B2 (en) 2003-06-24 2004-03-31 RF module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-179368 2003-06-24
JP2003179368A JP3845394B2 (ja) 2003-06-24 2003-06-24 高周波モジュール

Publications (1)

Publication Number Publication Date
WO2004114454A1 true WO2004114454A1 (ja) 2004-12-29

Family

ID=33535063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004610 WO2004114454A1 (ja) 2003-06-24 2004-03-31 高周波モジュール

Country Status (3)

Country Link
US (1) US7403085B2 (ja)
JP (1) JP3845394B2 (ja)
WO (1) WO2004114454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463525A (zh) * 2020-04-20 2020-07-28 南京邮电大学 基于共面波导的小型化的三阶sd-hmsiw带通滤波器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279306A (ja) * 2005-03-28 2006-10-12 Tdk Corp 導波管ユニット
US8089006B2 (en) * 2006-06-12 2012-01-03 International Business Machines Corporation High performance resonant element
JP5404373B2 (ja) * 2009-12-22 2014-01-29 京セラ株式会社 導波管型高周波線路
JP5404375B2 (ja) * 2009-12-24 2014-01-29 京セラ株式会社 平衡−不平衡変換器
JP5801362B2 (ja) * 2013-09-13 2015-10-28 東光株式会社 誘電体導波管入出力構造、および、それを用いた誘電体導波管デュプレクサ
CN106487353B (zh) * 2015-08-28 2021-09-28 香港城市大学深圳研究院 将单端信号转换为差分信号的装置、方法以及系统
EP3147994B1 (en) 2015-09-24 2019-04-03 Gapwaves AB Waveguides and transmission lines in gaps between parallel conducting surfaces
US9843301B1 (en) * 2016-07-14 2017-12-12 Northrop Grumman Systems Corporation Silicon transformer balun

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287502A (ja) * 1991-03-18 1992-10-13 Fujitsu Ltd 誘電体フィルタ
JP2001274605A (ja) * 2000-01-20 2001-10-05 Murata Mfg Co Ltd アンテナ装置および通信機
JP2002026611A (ja) * 2000-07-07 2002-01-25 Nec Corp フィルタ
JP2002135003A (ja) * 2000-10-27 2002-05-10 Toko Inc 導波管型誘電体フィルタ
JP2002246808A (ja) * 2001-02-22 2002-08-30 Ube Ind Ltd 誘電体フィルタ
JP2003110307A (ja) * 2001-07-17 2003-04-11 Toko Inc 誘電体導波管フィルタとその実装構造

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105645B2 (ja) * 1989-08-19 1995-11-13 富士通株式会社 誘電体フィルタ
JPH0653711A (ja) 1992-07-28 1994-02-25 Fukushima Nippon Denki Kk 導波管線路
JP2909363B2 (ja) * 1993-09-28 1999-06-23 日立金属株式会社 静磁波マイクロ波装置
JP3366552B2 (ja) * 1997-04-22 2003-01-14 京セラ株式会社 誘電体導波管線路およびそれを具備する多層配線基板
JPH11284409A (ja) 1998-03-27 1999-10-15 Kyocera Corp 導波管型帯域通過フィルタ
JP3351351B2 (ja) 1998-09-08 2002-11-25 株式会社村田製作所 誘電体フィルタ、複合誘電体フィルタ、アンテナ共用器および通信装置
JP3517143B2 (ja) 1999-01-21 2004-04-05 京セラ株式会社 誘電体導波管線路と高周波用線路導体との接続構造
JP3804407B2 (ja) * 2000-07-07 2006-08-02 日本電気株式会社 フィルタ
JP3733913B2 (ja) * 2002-02-04 2006-01-11 日本電気株式会社 フィルタ
JP2004153367A (ja) * 2002-10-29 2004-05-27 Tdk Corp 高周波モジュール、ならびにモード変換構造および方法
JP3891918B2 (ja) * 2002-10-29 2007-03-14 Tdk株式会社 高周波モジュール
JP4015938B2 (ja) * 2002-12-16 2007-11-28 Tdk株式会社 共振器
JP3839410B2 (ja) * 2003-02-12 2006-11-01 Tdk株式会社 フィルタおよび共振器の配置方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287502A (ja) * 1991-03-18 1992-10-13 Fujitsu Ltd 誘電体フィルタ
JP2001274605A (ja) * 2000-01-20 2001-10-05 Murata Mfg Co Ltd アンテナ装置および通信機
JP2002026611A (ja) * 2000-07-07 2002-01-25 Nec Corp フィルタ
JP2002135003A (ja) * 2000-10-27 2002-05-10 Toko Inc 導波管型誘電体フィルタ
JP2002246808A (ja) * 2001-02-22 2002-08-30 Ube Ind Ltd 誘電体フィルタ
JP2003110307A (ja) * 2001-07-17 2003-04-11 Toko Inc 誘電体導波管フィルタとその実装構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463525A (zh) * 2020-04-20 2020-07-28 南京邮电大学 基于共面波导的小型化的三阶sd-hmsiw带通滤波器

Also Published As

Publication number Publication date
US7403085B2 (en) 2008-07-22
US20060284704A1 (en) 2006-12-21
JP2005020152A (ja) 2005-01-20
JP3845394B2 (ja) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3891918B2 (ja) 高周波モジュール
US7199680B2 (en) RF module using mode converting structure having short-circuiting waveguides and connecting windows
KR100421621B1 (ko) 고주파전송선로,유전체공진기,필터,듀플렉서및통신기
US7973615B2 (en) RF module
JP2001196817A (ja) 誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信装置
TW201140937A (en) Microwave transition device between a microstrip line and a rectangular waveguide
JPH11284409A (ja) 導波管型帯域通過フィルタ
JPH08139504A (ja) 導波管・平面線路変換器
JP3632597B2 (ja) フィルタ、デュプレクサおよび通信装置
JP3672241B2 (ja) 導波管/マイクロストリップ線路変換器およびこれを用いた高周波パッケージ
US20050200424A1 (en) Microstripline waveguide converter
WO2004114454A1 (ja) 高周波モジュール
KR100276012B1 (ko) 유전체필터와 송수신듀플렉서 및 통신기기
US6249195B1 (en) Dielectric filter, dielectric duplexer, and transceiver having circular and polygonal electrode openings
WO2004021505A1 (ja) 線路変換器、高周波モジュールおよび通信装置
JP2003174305A (ja) 伝送線路および送受信装置
US10651524B2 (en) Planar orthomode transducer
JP2002111312A (ja) 導波管フィルタ
CN114335953B (zh) 一种过渡结构及其应用、双模谐振波导激励方法
JPH11355010A (ja) 導波管型帯域通過フィルタ
WO2004102725A2 (ja) Nrdガイド変換器、および誘電体と導体との結合構造
JP2000357902A (ja) 平面フィルタおよびそれを用いたデュプレクサおよびそれらを用いた高周波モジュールおよびそれを用いた通信装置
WO2005078854A1 (ja) 高周波モジュール
JP2003163502A (ja) 伝送線路および送受信装置
JP2002232210A (ja) 誘電体導波管型分波器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006284704

Country of ref document: US

Ref document number: 10560857

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10560857

Country of ref document: US