WO2004113731A1 - ロータリ式密閉形圧縮機及び冷凍サイクル装置 - Google Patents

ロータリ式密閉形圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2004113731A1
WO2004113731A1 PCT/JP2004/008701 JP2004008701W WO2004113731A1 WO 2004113731 A1 WO2004113731 A1 WO 2004113731A1 JP 2004008701 W JP2004008701 W JP 2004008701W WO 2004113731 A1 WO2004113731 A1 WO 2004113731A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
accumulator
pressure
vane
chamber
Prior art date
Application number
PCT/JP2004/008701
Other languages
English (en)
French (fr)
Inventor
Shoichiro Kitaichi
Norihisa Watanabe
Takeshi Tominaga
Kazu Takashima
Isao Kawabe
Masayuki Suzuki
Original Assignee
Toshiba Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corporation filed Critical Toshiba Carrier Corporation
Priority to EP04746171A priority Critical patent/EP1655492A1/en
Publication of WO2004113731A1 publication Critical patent/WO2004113731A1/ja
Priority to US11/302,393 priority patent/US7290994B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/804Accumulators for refrigerant circuits

Definitions

  • the present invention relates to a single-port closed hermetic compressor that forms a refrigeration cycle of an air conditioner, for example, and a refrigeration cycle device that uses the rotor hermetic compressor to form a refrigeration cycle.
  • the structure of a general rotary hermetic compressor is such that a motor unit and a compression mechanism unit connected to this motor unit are housed in a closed case, and gas compressed by the compression mechanism unit is temporarily closed in the closed case. O Discharges into the case
  • an eccentric roller is accommodated in a cylinder chamber provided in the cylinder, and a vane chamber is provided in the cylinder, where the vane is slidable. Is stored.
  • the leading edge of the vane always projects toward the cylinder chamber and is eccentrically urged by a compression spring so as to elastically abut against the peripheral surface of the roller.
  • the cylinder chamber is divided into two chambers along the direction of rotation of the eccentric roller by a vane, and the suction section communicates with one chamber side and the discharge section communicates with the other chamber side.
  • a suction pipe is connected to the suction part, and the discharge part is opened in a sealed case.
  • a cylinder type rotary hermetic compressor has been standardized.o
  • a cylinder that always performs a compression action and, if necessary, switching between compression and stoppage when necessary Providing the available cylinders would be advantageous because the specifications would be expanded. You.
  • Japanese Unexamined Patent Publication No. Hei 1-2477886 (hereinafter referred to as "prior document 1”) has two cylinder chambers, and any one of them is provided as necessary.
  • a bypass passage as a pressure-introducing means is provided from the inside of a closed vessel to a suction pipe. Also, even when the cylinder is not rotating in the cylinder chamber, where no compression action is performed, one of the cylinder chambers is in contact with the roller by the action of the elastic member.
  • the compressor of the above-mentioned prior art document 1 is excellent in function, it is provided with a high-pressure introduction hole that passes through the cylinder chamber and the inside of the sealed case in order to constitute a high-pressure introduction means.
  • a two-stage throttle mechanism is provided in the refrigeration cycle, a branch is made from the middle part of the throttle mechanism, i is provided in one vane chamber, and a bypass refrigerant pipe provided with an electromagnetic on-off valve is provided in the middle part.
  • drilling to provide a means for introducing low pressure to the compressor and ⁇ A.
  • the throttle on the / V cycle must be a two-stage throttle mechanism, and a bypass refrigerant pipe is connected between the two-stage throttle mechanism and the cylinder chamber. O
  • the configuration becomes complicated, and the cost is adversely affected.
  • the present invention has been made based on the above circumstances, and the purpose is to provide a first cylinder and a second cylinder.
  • the lubrication and reliability are improved by omitting the urging structure for pressing the cylinder against the vane, and the part ⁇
  • the present invention is used in a * v refrigeration cycle device, and is connected to a motor unit and a motor unit in a closed case.
  • Contains a one-way compression mechanism and sucks the refrigerant evaporated by the m generator into the compression mechanism through an accumulator, and once compresses the compressed refrigerant gas into the sealed case.
  • the compression mechanism is provided with a cylinder chamber in which each eccentric roller is accommodated in an eccentric rotating white space. The first and second cylinders and these
  • the first and second cylinders are provided with eccentric end edges provided on the first and second cylinders.Eccentrically, they are pressed to abut against the peripheral surface of the cylinder. ⁇ The cylinder chamber is moved along the rotation direction of the cylinder. Halves and each van;
  • a vane chamber for accommodating the side surface, and a vane provided in the first cylinder is provided with a spring portion disposed in the vane chamber.
  • the vanes provided in the second cylinder are pressed by the material, and the vanes provided in the second cylinder are the case pressure guided to the vane chamber and the suction pressure guided to the cylinder chamber. Pressure in response to the differential pressure of
  • the means for guiding the suction pressure and the discharge pressure into the cylinder chamber of the ⁇ scl 2 cylinder is such that one unit is connected to the high pressure side of the refrigeration cycle and the other end is connected to the accumulator by the accumulator.
  • a second on-off valve or a check valve provided on the downstream side of the oil return hole opening in the suction pipe section in the murator.
  • the cycling device comprises a refrigeration cycle consisting of the above-mentioned single-piece hermetic compressor, a condenser expansion mechanism and a generator.
  • the pressing and urging structure of the J-side cylinder against the vane can be omitted to improve lubricity and reliability, and the number of parts and the number of components can be increased. It contributes to cost reduction by reducing labor.
  • FIG. 1 is a longitudinal sectional view of a one-piece type hermetic compressor according to a first embodiment of the present invention, and a refrigeration cycle configuration diagram ⁇ .
  • FIG. 2 is an exploded perspective view of a first cylinder and a second cylinder according to the embodiment.
  • FIG. 3 is a diagram illustrating a connection structure between a P-type U-type hermetic compressor and an accumulator according to a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a connection structure between a rotary type closed compressor and an accumulator according to a third embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a connection structure between a rotary hermetic compressor and an accumulator according to a fourth embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a connection structure between a rotary hermetic compressor and an accumulator according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a connection structure between a rotary hermetic compressor and an accumulator according to a sixth embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a connection structure between a rotary hermetic compressor and an accumulator according to a seventh embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a connection structure between a rotary hermetic compressor and an accumulator according to an eighth embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a connection structure between a rotor-type hermetic compressor and an accumulator according to a ninth embodiment of the present invention.
  • Fig. 12 illustrates a connection structure between a J-type hermetic compressor and an accumulator according to the first embodiment.
  • Fig. 12 shows a rotor-type hermetic compressor according to the eleventh embodiment of the present invention. Diagram explaining the connection structure of the accumulator
  • FIG. 1 is a cross-sectional structure of a ⁇ -type hermetic compressor R according to a first embodiment
  • FIG. 1 is a configuration diagram of a refrigeration cycle of a cycle device provided with a hermetic compressor R.
  • a compression mechanism 2 described later is provided in the lower part of the closed case 1, and a motor 3 is provided in the upper part.
  • polyester oil mineral oil, alkylbenzene, PAG, or fluorine-based oil may be used depending on the refrigerant
  • the motive unit 3 is, for example, a brushless DC synchronous motor (A
  • a C motor or a commercial motor may be used), and a cutter 5 fixed to the inner surface of the sealed case 1 and a predetermined gap are provided inside the stator 5.
  • the compression mechanism section 2 has an intermediate partition plate 7 below the rotary shaft 4.
  • the first and second cylinders 8A may be provided with a first cylinder 8A disposed vertically above and below, and a second cylinder 8A.
  • 8B is set so that the outer shape and dimensions are different from each other, and the inner diameter is the same.
  • the outer diameter of the first cylinder 8 A is slightly larger than the inner diameter of the sealed case 1, and is pressed into the inner peripheral surface of the sealed case 1, so that the outside of the sealed case 1 is Position by welding
  • the main bearing 9 is superimposed on the upper surface of the first solder 8A, and the mounting port 1 is mounted together with the valve force bar-100. It is attached and fixed to the cylinder 8 A via 0. Second cylinder
  • An auxiliary bearing 11 is superimposed on the lower surface of 8B, and is attached and fixed to the first cylinder 8A via an attachment bolt 12 together with a valve force bar 101.
  • the outer diameters of the intermediate partition plate 7 and the sub-bearing 11 are somewhat larger than the inner diameter of the second cylinder 8B, and the inner diameter of the cylinder 8B is shifted from the center of the cylinder. I have. Therefore, a part of the outer periphery of the second cylinder 8B protrudes more radially than the outer diameters of the intermediate partition plate 7 and the sub-bearing 11.
  • the rotating shaft 4 is rotatably supported at an intermediate portion and a lower end portion by the main bearing 9 and the auxiliary bearing 11.
  • the rotating shaft 4 penetrates through the inside of each of the cylinders 8A and 8B, and integrally includes two eccentric portions 4a and 4b formed with a phase difference of approximately 180 °.
  • Each eccentric part 4a, 4b has the same diameter as each other, and is assembled so as to be located at the inner diameter of each cylinder 8A, 8B.
  • Eccentric rollers 13a11b of the same diameter are fitted.
  • the first and second cylinders 8A and 8B are divided into upper and lower surfaces by an intermediate partitioning plate 7, a main bearing 9 and a sub-bearing 11, and the first cylinder chamber is formed inside. 14a and the second cylinder chamber 14b are formed. ⁇ The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are formed. Each of the 13b is accommodated eccentrically rotatable.
  • each eccentric shaft 13a and 13b depends on the cylinder chamber.
  • each of the cylinders 8A and 8B is provided with vane chambers 22a and 22b communicating with the cylinder chambers 14a and 14b.
  • the vanes 15a and 15b are accommodated in the vane chambers 22a and 22b, respectively, so that the vanes 15a and 15b can protrude and retract from the cylinder chambers 14a and 14b.
  • FIG. 2 is a perspective view showing the first cylinder 8A and the second cylinder 8B in an exploded manner.
  • the vane chambers 22a and 22b are provided with vane storage grooves 1223a and 122 in which both sides of the vanes 15a and 15b can move in a sliding white space.
  • each vane storage groove 1 2 3a, 1 2 3b and a vertical hole 1 which is integrally connected to the end of each vane storage groove 1 2 3a, 1 2 3b and accommodates the rear end of the vane 15a, 15b.
  • the first cylinder 8A is provided with a lateral hole 25 for communicating the outer peripheral surface with the vane chamber 22a, and accommodates a spring member 26.
  • the spring member 26 is interposed between the rear end surface of the vane 15 a and the inner peripheral surface of the closed case 1, and applies an elastic force (back pressure) to the vane 15 a so that the leading end edge is eccentric. This is a compression spring that comes into contact with the roller 13a.
  • Vane 1 is placed in vane chamber 2 2 b on the second cylinder 8 B side
  • the vanes 15a and 15b become the vane storing grooves 1 2 3a and It can reciprocate along 123b and the vane rear end can move back and forth from the vertical holes 124a and 124b.
  • the outer shape of the second cylinder 8B is determined. Some are exposed in enclosure 1.
  • the exposed part of the sealed case 1 is designed so as to correspond to the vane chamber 22b, and therefore the vane chamber 22b and the rear end of the vane 15b are inside the case. 0 o
  • the second cylinder 8 B and the vane chamber 22 b are structures, so there is no effect even if the internal pressure of the case is received,
  • the vane 15b is slidably housed in the vane chamber 22b, and the rear end is located in the vertical hole 124b of the vane chamber 22b. Receive directly.
  • the tip of the vane 15b is opposed to the second cylinder chamber 14b, and the tip of the vane is the pressure in the cylinder chamber 14b. Receive.
  • the vanes 15b are configured to move from the larger pressure to the smaller pressure in accordance with the magnitude of the pressure applied to the front end and the rear end.
  • the mounting ports 10 and 12 above are attached to each cylinder 8A and 8B.
  • An attachment hole or a screw hole to be screwed is provided. Only the first cylinder 8A has an arc-shaped gas passage hole 2
  • a holding mechanism 45 is provided which applies a force smaller than the pressure in a direction in which the vane 15b is separated from the eccentric roller 13b.
  • the holding mechanism 45 may use any one of a permanent magnet, an electromagnet, or an elastic body. To explain, the holding mechanism 45 has a force smaller than the differential pressure between the suction pressure applied to the second cylinder chamber 14 b and the pressure inside the closed case 1 applied to the vane chamber 22 b, and 1 5b is biased and held in the direction to pull it away from the eccentric roller 1 3b
  • the vane 15b is always magnetically attracted with a predetermined force.
  • an electromagnet may be provided in place of the permanent magnet, and magnetic attraction may be performed as needed.
  • the holding mechanism may be a tension spring, which is an elastic body. One end of the tension spring may be hooked to the rear end of the vane 15b so that the tension is always urged by a predetermined elastic force.
  • a discharge pipe 18 is connected to the upper end of the closed case 1.
  • This discharge pipe 18 is connected to an accumulator 17 via a condenser 19, an expansion mechanism 20 and an evaporator 21, and these constitute a refrigeration cycle apparatus.
  • the pipe 16a and the second suction pipe 16b are connected.
  • the first suction pipe 16a penetrates the sealed case 1 and communicates with the first cylinder chamber 14a.
  • the second suction pipe 16b penetrates the closed case 1 and communicates with the second cylinder chamber 14b.
  • branch pipe P1 one end of the branch pipe P1 is connected to a middle part of a discharge pipe 18 communicating the compressor R and the condenser 19, and the other end is connected to the second cylinder chamber 14b.
  • the second suction pipe 16 b communicating with the accumulator 17 is connected to a middle part of the second suction pipe 16 b.
  • a first on-off valve 28 is provided in the middle of the branch pipe P1. As indicated by the two-dot chain line in the figure, there is no problem even if one end of the branch pipe P1 penetrates the peripheral wall of the closed case 1 and faces the inside. In short, it suffices that one end of the branch pipe P 1 is on the high pressure side of the refrigeration cycle.
  • a second on-off valve 29 is provided upstream of the branch portion of the branch pipe P.
  • the first on-off valve 28 and the second on-off valve 29 are each an electromagnetic valve, and are controlled to open and close according to an electric signal from the control unit 40.
  • the second suction pipe 16b, the branch pipe P1, the first on-off valve 28, and the second on-off valve 29 connected to the second cylinder chamber 14b are connected to each other.
  • a pressure switching mechanism K is constituted by the pressure switching mechanism K. According to the switching operation of the pressure switching mechanism K, the suction pressure or the discharge pressure is applied to the second cylinder chamber 14b provided in the second cylinder 8B. Is to be guided.
  • the configuration of the accumulator 17 is such that the upper end of the accumulator body 17 A, which is a closed container, communicates with the evaporator 21.
  • the first suction pipe section 23 a and the second suction pipe 16 constituting the first suction pipe 16 a are inserted into the accumulator main body 17 A through the refrigerant pipe Pa that flows.
  • the second suction pipe section 23 b constituting b is housed in a parallel state.
  • Oil return holes 24a and 24b are provided at predetermined positions of the suction pipe sections 23a and 23b in the accumulator body 17A, respectively.
  • the lubricating oil mixed in the separated liquid refrigerant can be returned directly from the first and second suction pipes 16a and 16b to the cylinder chambers 14a and 14b. ing.
  • an oil return hole 24 b provided in the second suction pipe section 23 b, a second on-off valve 29 provided in the second suction pipe 16 b, and a second suction pipe 16 b The relationship between the connection position of the branch pipe P 1 connected to the pipe and the branch pipe in the second suction pipe 16 b
  • the control unit 40 is a first on-off valve constituting the pressure switching mechanism K.
  • the vane 15a is always elastically pressed and urged by the spring member 26.
  • the leading edge of the housing 15a slides against the peripheral wall of the eccentric roller 13a to divide the inside of the first cylinder chamber 14a into a suction chamber and a compression chamber.
  • the volume of the 14a partitioned compression chamber is reduced. That is, the gas previously introduced into the first cylinder chamber 14a is gradually compressed and
  • the discharge pressure (pressure) is not guided to the second cylinder chamber 14b. Since the second on-off valve 29 is open, the low-pressure evaporated refrigerant evaporated in the evaporator 21 and gas-liquid separated in the accumulator 17 passes through the second suction pipe 16b to the second suction valve 16b. It is led to the underwear room 14b. Accordingly, while the second cylinder chamber 14 b is in a suction pressure (low pressure) atmosphere, the vane chamber 22 b is exposed in the closed casing 1 and is under the discharge pressure (high pressure). . Beyond Ben 15b!
  • the compression operation is performed in the first cylinder chamber 14a and the second cylinder chamber 14b.
  • the counter-pressure gas discharged from the sealed case 1 through the discharge pipe 18 is supplied to the condenser
  • the eccentric port 13b is urged toward the vane 15b by the set magnetic force 5 attraction force or tensile resilience to the vane 15b. .
  • the holding mechanism 45 since the pressure difference between the front and rear ends of the vane 15b is sufficiently larger than the force exerted by the holding mechanism 45, the holding mechanism 45 during the full-capacity operation is completely closed. There is no adverse effect on the reciprocation of the shaft 15b.
  • the control unit 40 opens the first on-off valve 28 of the pressure switching mechanism K and closes the second on-off valve 29. Set switching.
  • the first cylinder chamber 14a the normal compression action is performed as described above, and the high-pressure gas discharged into the closed case 1 is filled to increase the pressure in the case.
  • a part of the high-pressure gas discharged from the discharge pipe 18 is divided into the branch pipe P, and the second cylinder is opened via the opened first on-off valve 28 and the second suction pipe 16b. Introduced directly into room 14b.
  • the vane chamber 22b While the second cylinder chamber 14b is in a discharge pressure (high pressure) atmosphere, the vane chamber 22b is still under the same conditions as the high pressure in the case. . Therefore, the vane 15b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The vane 15b does not move at a position separated from the outer peripheral surface of the roller 13b and keeps the stopped state, and the compression action in the second cylinder chamber 14b is not performed. As a result, only the compression action in the first cylinder chamber 14a is effective, and the operation is performed with the capacity reduced by half.
  • the holding mechanism 45 biases the vane 15b so that the tip of the vane 15b is held near the top dead center where the tip of the vane 15b enters from the peripheral wall during the capacity halving operation. It is held in the direction to pull it away from the eccentric roller 13b.
  • the vanes can be operated at the time of half capacity operation.
  • the compressed gas does not leak from the inside of the sealed case 1 into the second cylinder chamber 14b. No loss will occur. Therefore, operation with half the capacity is possible without lowering the compression efficiency.
  • the above-mentioned half-capacity operation is used to achieve the same operation as the normal operation. It is possible to perform low-capacity operation while maintaining high-efficiency, high-speed rotation, and improve compression efficiency. Combined with the adjustment of the number of revolutions, the minimum capacity is expanded to provide a refrigeration cycle device capable of fine-grained temperature and humidity control. With a simple structure that simply omits the spring member that biases 1 5 b Variable cost allows for cost-effectiveness, excellent manufacturability, and high efficiency
  • the required capacity is secured by two cylinder operation, and a wide range of capacity can be secured with one compressor. That is, by controlling the opening and closing of the first on-off valve 28 in accordance with the operation mode, the required capacity can be easily obtained. In particular, ensure the oil return to the compressor R during the capacity halving operation, and maintain the lubricity of the compression mechanism 2.
  • the second on-off valve 29 is provided upstream of the oil return hole 24b provided in the second suction pipe section 23b, the high-pressure refrigerant will be used when the capacity is reduced to half.
  • the oil flows back into the accumulator 17 through the oil return hole 24b, and the compression capacity in the first cylinder chamber 14a is greatly reduced.
  • lubricity will decrease during normal full capacity operation. Therefore, the settings described above are indispensable.
  • the pressure switching mechanism K may include a check valve 29 A instead of the second on-off valve 29.
  • the check valve 29A allows the coolant to flow from the accumulator 17 to the second cylinder chamber 14b, and prevents the flow in the reverse direction.
  • the low-pressure gas led to the second suction pipe 16b is introduced into the second cylinder chamber 14b via the check valve 29A.
  • the second cylinder chamber 14b becomes the suction pressure (low pressure)
  • the vane chamber 22b becomes the high pressure in the case, and a differential pressure is generated at the front and rear ends of the vane 15b.
  • the vane 15b is always connected to the second cylinder chamber 14b. Back pressure is applied to protrude, eccentric port
  • a compression action is performed.
  • the first cylinder chamber 14a also operates at full capacity since the compression action is also performed in the first cylinder chamber 14a.
  • the first on-off valve 28 When the capacity half operation is selected, the first on-off valve 28 is opened. Part of the high-pressure gas guided from the discharge pipe 18 to the branch pipe P 1 is guided to the second suction pipe 16 b via the first on-off valve 28, and then to the check valve 29 A. The flow to the accumulator 17 is blocked, and all are introduced into the second cylinder chamber 14b. Since the second cylinder chamber 14b has a high pressure, the vane chamber 22b has a high pressure, so that there is no differential pressure at the front and rear ends of the vane 15b. The position of the vane 15b does not change, so that no compression action is performed in the second cylinder chamber 14b. Eventually, only the capacity of the first cylinder chamber 14a is reduced by half.
  • the check valve 29 A (or the second on-off valve 29, the same applies hereinafter) is provided in the second suction pipe 16 b.
  • the position of 9 A is provided at a predetermined interval (at least 10 mm or more) from the welded joint E between the accumulator 11 and the second suction pipe 16 b. And one of them. That is, since the valve body of the check valve 29A is made of a thin plate, it is susceptible to heat, but if it is located at a predetermined interval, the vacuum collector
  • FIG. 3 is a diagram illustrating a connection structure between a ⁇ -tally hermetic compressor R and an accumulator 17 according to the second embodiment.
  • the above accumulator 17 is the accumulator body 17
  • the first and second suction pipes 16a and 16b are accommodated in the body from the first and second suction pipe portions 23a and 23b accommodated in A, respectively.
  • Check valve 2 9 A a provided on 6 b is the accumulator body
  • the accumulator 17 and the first and second suction pipes 23a, 23b and the check valve 29Aa are substantially integrally formed.
  • the check valve 29 Aa is separated by at least 10 mm or more in order to avoid the thermal effect from the welded joint E between the accumulator 17 and the second suction pipe 16 b. ing.
  • the lower cup A 1 that constitutes the accumulator body 17 A can be fixed to the sealed case 1 of the compressor R with the accumulator band A 2. It can save space in the horizontal direction.
  • FIG. 4 is a diagram illustrating a connection structure between a rotary hermetic compressor R and an accumulator 1'7 according to the third embodiment.
  • the inside of the accumulator body 17A is divided into two parts vertically through the upper and lower separation plates 32.
  • a communication pipe 34 is provided between the retainer 33 and the upper and lower separators 32 provided at the upper part, and the upper and lower separators are provided. 3 Secure capacity at the bottom of 2.
  • the first and second suction pipe sections 23a1 and 23b1 in the main body 17A can be made the same length as normal (conventional), and the performance is reduced due to a decrease in the supercharging effect. Can be avoided. In addition, the original gas-liquid separation performance can be obtained and high reliability is ensured.
  • FIG. 5 is a schematic plan view of a rotary hermetic compressor and an accumulator 17 according to a fourth embodiment. That is, in the configurations of FIGS. 3 and 4, the check valves 29 Aa and 29 Ab provided in the second suction pipe 16 b are provided immediately below the accumulator 17, but the present invention is not limited to this. Instead, the check valves 29 Aa and 29 Ab are connected between the closed case 1 and the accumulator 17, and the outer peripheral surface of the closed case 1 and the outer peripheral surface of the accumulator 17.
  • One of the features is that it is provided within the projection area S indicated by hatching, which is formed by the tangent line to. Therefore, the accumulator 17 and the check valves 29Aa and 29Ab may be arranged side by side, so that the installation of the check valve can prevent an increase in the horizontal space. .
  • FIG. 6 is a schematic sectional view of a part of a rotary hermetic compressor R and an accumulator 17 of a fifth embodiment.
  • the second suction pipe 16b communicating with the second cylinder chamber 14b is divided into two parts in the middle, one of the suction pipes 16b1 is fixed to the accumulator 17 and the other is divided.
  • the suction pipe 16 b 2 is fixed to the closed case 1. That is, the divided suction pipe 16 b 1 fixed to the accumulator 17 is formed of the same pipe as the second suction pipe section 23 b in the accumulator body 17 A.
  • This split suction pipe 1 6 b 1 -The lower end protruding from the main body 17 A is enlarged in diameter and is fitted over the upper end of the divided suction pipe 16 b 2 fixed to the closed case 1 by overlapping.
  • the first suction pipe 16a and one split suction pipe 1 are turned upside down in advance by turning the accumulator body 17A upside down.
  • Non-return valve 2 9 A c is not affected by the heat of welding fixation to 1
  • a check valve 29Ac is inserted from the open end of the divided suction pipe 16b1.
  • the check valve is inserted from a check valve portion Ac2 consisting of a valve body and a valve seat portion indicated by hatching, and the check valve body Ac1 is on the opening end side.
  • the check valve body A c1 is in a pipe shape, and there is no problem in welding with the divided suction pipe 16 b 1.
  • the first suction pipe 16a and the second suction pipe 16b protrude from the accumulator body 17A.
  • the ends of these suction pipes are fixed to the closed case 1 by welding.
  • the second suction pipe 16 b communicating with the accumulator 17 is divided, and the check valve main Ac 1 is inserted and arranged in the divided suction pipe 16 b 1. If you can save space At the same time, the mounting height of the accumulator 17 can be reduced, and the length of the suction pipe 16b can be reduced, so that performance can be improved.
  • the position of the check valve part A c 2 of the check valve 29 A c can secure a distance that is not easily affected by heat at the time of welding fixation, and reliability can be obtained.
  • the check valve portion A c 2 that constitutes the check valve 29 A c has a double winding structure, and thus has an effect of reducing operation noise.
  • the second suction pipe 16 b may have an oil return hole 24 b and a notch taper for check valve positioning, and is divided into a check valve main body A c 1 There may be a positioning part (projection, etc.) h for the suction pipe 16b2.
  • check valve 29A is installed directly below accumulator 17, check valve 29A will not be affected by the welded joint E between accumulator 17 and second suction pipe 16b.
  • the position of 7 is ⁇ .
  • the length of the suction pipe sections 23a and 23b in the accumulator 17 is made the same as before, in order to effectively use the capacity of the 1 6a 1 6b! If the tall length is long, the suction resistance increases and the compression performance decreases. Therefore, by employing the configuration shown in FIG. 6, the height of the accumulator 17 can be reduced to some extent, which is useful for solving the above-mentioned problems.
  • FIG. 7 is a diagram illustrating a connection structure between a ⁇ -type hermetic compressor R and an accumulator 17 according to the sixth embodiment.
  • FIG. 8 is a diagram illustrating a connection structure between a rotary hermetic compressor R and an accumulator 17 according to a seventh embodiment.
  • the second suction pipe 16b protrudes outward from the 7A circumference.
  • the second suction pipe section 2 3 b 2 above is the main body
  • An oil return hole 24b is provided at a location immediately before the 17A peripheral wall projects to the outside.
  • the height of the accumulator 17 can be reduced as before, which helps to save space. Since the position of the check valve 29Ae is sufficiently spaced from the welded joint E between the accumulator 17 and the second suction pipe 16b, high reliability can be secured.
  • FIG. 9 is a diagram illustrating a connection structure between a rotary hermetic compressor R and an accumulator 17 according to the eighth embodiment.
  • the accumulator 17 and the check valve 29Af are arranged side by side, and the second suction pipe section 2 in the accumulator main body 17A is arranged.
  • 3 b 3 is almost in the middle It is bent flat and projects outward from the peripheral wall of the accumulator body 17A to form a second suction pipe 16b.
  • the accumulator 17 has an upper and lower separation plate 32 at a substantially middle part of the accumulator body 17A in the vertical direction, and a communication pipe 34 is provided between the accumulator 17 and a retainer 33 provided on the upper side. Is done.
  • the upper end is opened at the same level as the retainer 33, and the lower end is the retainer 33 and the upper and lower separation plate 3.
  • FIG. 10 is a diagram illustrating a connection structure between a rotary hermetic compressor R and an accumulator 17 according to the ninth embodiment.
  • the second suction pipe 16 b communicating with the second cylinder chamber 14 b is integrated with the second suction pipe section 23 b 4 in the accumulator body 17 ⁇ .
  • the second suction pipe section 2 3 b 4 is bent substantially in a U-shape at the upper part and the lower part, and has a meandering shape as a whole.
  • a check valve 29 Ag is accommodated in a predetermined part of the second suction pipe part 23 b 4.
  • the oil return hole 24b is provided in the lower U-shaped bend, and the second suction pipe Needless to say, it is located on the upstream side of the branch pipe P1 connected to 16b.
  • the height of 17 can be provided for a low ilL power as in the conventional case, and space can be saved. Since the check valve 29 Ag is installed inside the accumulator main body 17 A, the operating sound of the check valve 29 Ag does not leak out of the accumulator 17 to the outside. Noise can be reduced. Since the position of the check valve 29Ag is sufficiently separated from the welded joint E between the accumulator 17 and the second suction pipe 16b, high reliability is obtained without being affected by heat.
  • FIG. 11 shows a rotary hermetic compressor according to the tenth embodiment.
  • FIG. 4 is a diagram illustrating a connection structure between R and the vacuum writer 17.
  • the second suction pipe 16 b communicating with the second cylinder chamber 14 b is integral with the second suction pipe section 23 b 5 in the vacuum writer body 17 A.
  • most of the second suction pipe section 23b5 is a check valve 29Ah, and the check valve 29Ah is the accumulator body. It is almost in the housed state at 17 A ⁇ , but there is no oil return hole here.
  • the operation noise of 9 Ah does not leak out of the accumulator 17 to the outside, so that the driving noise can be reduced.
  • FIG. 12 shows a rotary hermetic compressor according to the first embodiment.
  • FIG. 4 is a diagram for explaining a connection structure between R and an accumulator 17;
  • a first accumulator 17 OA is connected to the first suction pipe 16 a communicating with the first cylinder chamber 14 a, and a second suction pipe communicating with the second cylinder chamber 14 b is connected to the first suction pipe 16 a.
  • a second accumulator 17 OB is connected to the tube 16 b. That is, the first and second accumulators 170A and 170B having independent configurations are connected to the first and second suction pipes 16a and 16b, respectively.
  • a suction pipe portion 23 a 4 (23 b 4 is not shown) integrated with each suction pipe 16 a and 16 b is provided. In.
  • the other end of the branch pipe P 1 is connected to the refrigerant pipe Pa on the upstream side of the second accumulator 170 B.
  • a check valve 29Ai is provided upstream from the connection of the branch pipe P1 in the refrigerant pipe Pa.
  • branch pipe P 1 and the check valve 29 A i are connected to the first accumulator 17 OB and the second cylinder in the same manner as described above. Even if it is provided in the second suction pipe 16b communicating with the cylinder chamber 14b, there is no problem.
  • the pressing and urging structure of the one cylinder with respect to the vane is omitted, and It is possible to provide a rotary hermetic compressor that can reduce the number and processing labor and improve reliability, and a refrigeration cycle device equipped with this port hermetic compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

第1のシリンダ室(14a)のベーンはばね部材(26)によって押圧付勢され、第2のシリンダ室(14b)のベーンはベーン室に導かれるケース内圧力と、シリンダ室(14a,14b)に導かれる吸込み圧もしくは吐出圧との差圧に応じて押圧付勢され、吸込み圧もしくは吐出圧を導く圧力切換え機構(K)は、一端が冷凍サイクルの高圧側他端が吸込み管に接続され中途部に第1の開閉弁(28)を有する分岐管(P1)と、吸込み管(16b)に分岐管接続部(D)よりも上流側でアキュームレータ内の油戻し孔(24b)よりも下流側に設けられる第2の開閉弁(29)もしくは逆止弁(29A)を具備する。

Description

明 細 書
ロータ リ 式密閉形圧縮機及び冷凍サイ ク ル装置
技術分野
本発明は、 例えば空気調和機の冷凍サイ クルを構成する 口 一タ リ 式密閉形圧縮機と 、 このロータ 式密閉形圧縮機を用 いて冷凍サイ クルを構成する冷凍サイ クル装置に関する。 背景技術
一般的な ロータ リ.式密閉形圧縮機の構成は、 密閉ケース内 に電動機部及びこの電動機部と連結される圧縮機構部を収容 してお り 、 圧縮機構部で圧縮したガスを一旦密閉ケース内に 吐出する 、 ケース内高圧形となっている o
上記圧縮機構部は、 シ リ ンダに設けられる シ リ ンダ室に偏 心ローラが収容され、 シ リ ンダにはベ一ン室が設けられてい て、 こ こにべ一ンが摺動自在に収納される。 ベ一ンの先端縁 は、 常にシ リ ンダ室側へ突出 して偏心 □一ラの周面に弾性的 に当接する よ う 圧縮ばねによって押圧付勢される。 シ リ ンダ 室はべ一ンによ って偏心ローラの回転方向に沿い二室に区分 され、 一室側に吸込み部が連通され、 他室側に吐出部が連通 される。 吸込み部には吸込み管が接続され、 吐出部は密閉ケ ース内に開口 される。
と こ ろで、 近年、 上記シ リ ンダを上下に 2 セ ッ 卜備えた、
2 シ リ ンダタ イ プのロータ リ 式密閉形圧縮機が標準化されつ ンめ o このよ う な圧縮機において、 常時圧縮作用をなすシ リ ンダと 、 必要に応 じて圧縮一停止の切換えを可能と したシ リ ンダを備える こ とができれば、 仕様が拡大されて有利と な る。
例えば、 特開平 1 一 2 4 7 7 8 6号公報 (以下、 「先行文 献 1 」 と称する 0 ) には 、 シ リ ンダ室を 2室備ん 、 必要に応 じていずれか一方のシ リ ンダ室のベ ―ンを Pーラから強制的 に離間保持する と と もに 、 そのシ リ ンダ室を高圧化 して圧縮 作用を中断させる高圧導入手段を備えたこ と を特徴とする技 術が開示されている o
また、 特許第 2 8 0 3 4 5 6号公報 (以下 、 「先行文献 2」 と称する。 ) には、 密閉容器内から吸込み管へ 、 问圧導 入手段と してのバィパス通路を設けている o そ して 、 方の シ リ ンダ室では圧縮作用をなさない休筒 転時も、 一ンが ローラに弾性部材の作用で接触 してお り 、 常時、 圧縮室はベ
—ンによつて仕切 bれている o
上述した先行文献 1 の圧縮機は機能的には優れているが、 高圧導入手段を構成するために 、 方のシ •J ンダ室と密閉ケ ース内と を 通する高圧導入孔を設け、 冷凍サイ クルに二段 絞 り機構を設け、 この絞 り 機構の中間部から分岐 して一方側 のべ一ン室に i is し、 中途部に電磁開閉弁を備えたバイパス 冷媒管を設けてなる o
すなわち 、 圧縮機に対 して问圧導入手段をなすための孔明 け加工 と と もに \A.
が必要である 、 /V ネサイ クル上の絞 リ 置を 二段絞リ機構と しなければな らず、 さ らにこの二段絞り機構 と シ リ ンダ室との間にバィパス冷媒管を接続するなど、 構成 が複雑化 してコス 卜に悪影響がめ o
また 、 先行文献 2 の技術では 、 密閉容 に吐出側と吸込み 側をバイパスするバィパス管の接続工程が必要と なってコ ス 卜に悪影響があ リ 、 かつ、 休筒運転時においても常時べ一ン が □ —ラに弾性的に接触 している こ と によ リ 、 多少の圧縮仕 事の存在や、 摺動 Pスによ り効率が低下 して しま つ 。
本発明は上記事情にも とづきなされたちのであ り 、 その 的とする と こ ろは 、 第 1 のシ リ ンダと第 2 のシ リ ンダを備元 る こ と を前提と して 、 一方のシ リ ンダのベ一ンに対する押圧 付勢構造を省略化 して潤滑性及び信頼性の向上が得られ 、 部 α
数及び加工手間の軽減を図ってコス トの低減に寄与する □ 一タ リ 式密閉形圧縮機及び、 このロータ リ 式密閉形圧縮機を 備えた冷凍サイ ク ル装置を提供 しよ う とする ものである 発明の開示
上記百的を満足するため本発明は 、 *v凍サイ クル装置に用 いられ 、 密閉ケース内に電動機部及び (—の 動機部と連結さ
れる □一タ リ 式の圧縮機構部を収容 し m発器で蒸発した冷 媒をァキュ一ム レ一タ を介 して圧縮機構部に吸込み、 こ こで 圧縮 した冷媒ガスを一旦密閉ケース内に吐出 してケース内高 圧とする Ρ一タ リ 式密閉形圧縮機において 、 上記圧縮機構部 は 、 それぞれ偏心 Ρ ―ラが偏心回転白在に収容されるシ リ ン ダ室を備えた第 1 のシ リ ンダ及び第 2 のン リ ンダと、 これら
第 1 のン ンダと第 2 のシ リ ンダに設けられその先端縁が偏 心 □一ラの周面に当接するよ う押圧付 され偏心 □―ラの回 転方向に沿つてシ ンダ室を二分する 一ン及びそれぞれの ベ一ンの ;1匕
冃面側 部を収容するべ一ン室と を具備 し、 第 1 の ン ンダに設けられるべーンはべ一ン室に配備されるばね部 材によ つて押圧付執され、 2 のシ リ ンダに設けられるベー ンはべ一ン室に導かれるケ一ス内圧力 と シ リ ンダ室に導かれ る吸込み圧も し < は吐出圧との差圧に応 じて押圧付勢され、
± scl 2 のシ リ ンダのシ リ ンダ室に吸込み圧ち し < は吐出圧 を導く 手段は、 一 U而が冷凍サィ クルの高圧側に接続され他端 がアキュ一ム レ一タ から第 2のシ リ ンダ室に連 する吸込み 管に接続され中途部に第 1 の開閉弁を有する分岐管と、 吸込 み管における分岐管との接続部よ リ も上流側であ リ 、 かつ、 アキュ ―ム レータ 内の吸込み管部に開口する油戻 し孔よ り も 下流側に設けられる第 2の開閉弁も し く は逆止弁と を具備す 上記目的を満足するため、 本発明の冷凍サィ クル装置は、 上述の口一タ リ 式密閉形圧縮機と、 凝縮器 膨張機構及ひ 発器で冷凍サイ クルを構成する。
上述の課題を解決する手段を採用する こ と によ し J ―方の シ リ ンダのベーンに対する押圧付勢構造を省略化 して潤滑性 及び信頼性の向上が得られ、 部品数及び加ェ手間の軽減を図 つてコス 卜の低減に寄与する。
図面の簡単な説明
図 1 は 、 本発明の第 1 の実施の形態に係る □一タ リ 式密閉 形圧縮機の縦断面図と、 冷凍サイ クル構成図 ο
図 2 は 、 同実施の形態に係る第 1 のシ リ ンダと第 2 のシ リ ンダを分解 した斜視図。
図 3 は 、 本発明の第 2 の実施の形態に係る P一タ U 式密閉 形圧縮機とァキューム レータ の接続構造を説明する図 o 図 4 は、 本発明の 3 の実施の形態に係る ロータ リ 式 閉 形圧縮機とァキュ一ム レ一タ の接続構造を説明する図 0
図 5 は、 本発明の第 4の実施の形態に係る ロータ リ 式密閉 形圧縮機とァキュ一ムレ一タ の接続構造を説明する図 0
図 6 は、 本発明の第 5 の実施の形態に係る ロータ リ 式密閉 形圧縮機とァキュ一ム レ一タ の接続構造を説明する図 o
図 7 は、 本発明の第 6 の実施の形態に係る ロータ リ 式密閉 形圧縮機とァキュ一ム レ一タ の接続構造を説明する図 0
図 8 は、 本発明の第 7 の実施の形態に係る ロータ リ 式密閉 形圧縮機とァキュ一ム レ一タ の接続構造を説明する図 o
図 9 は、 本発明の第 8 の実施の形態に係る ロータ リ 式密閉 形圧縮機とァキュ一ム レ一タ の接続構造を説明する図 o
図 1 0 は、 本発明の第 9 の実施の形態に係る ロータ 式密 閉形圧縮機と ァキュ一ム レ一タ の接続構造を説明する図 o 図 1 1 は、 本発明の第 1 0の実施の形態に係る ロータ •J 式 密閉形圧縮機と ァキュ ム レ一タ の接続構造を説明する図 o 図 1 2 は、 本発明の第 1 1 の実施の形態に係る ロータ 式 密閉形圧縮機とァキュ ―厶 レ一タ の接続構造を説明する図 o
発明を実施するための取良の形態
以下 、 本発明の実施の形態を図面にも とづいて説明する o 図 1 は、 第 1 の実施の形態の □ータ リ 式密閉形圧縮機 Rの 断面構造及び 、 この □一タ リ 式密閉形圧縮機 Rを備えた サイ クル装置の冷凍サィクル構成図である。
は じめに 口一タ U 式密閉形圧縮機 Rから説明する と 、 1 は 密閉ケースであつて、 この 閉ケ―ス 1 内の下部には後述す る圧縮機構部 2 が設けられ、 上部には電動機部 3 が設けられ
-S) o し れら 動機部 3 と圧縮機構部 2 と は回転車由 4 を介 して 迪結される 密閉ケ一ス 1 の底部には潤滑油の溜 部 Oが形 成されていて 、 潤滑油と してポリ ォ一ルェステル油 (冷媒に よっては鉱油 、 ァルキルベンゼン 、 P A G 、 フ ッ素系油でも よい) が用いられる
上 動機部 3 は 、 例えばブラ シ レス D C同期モ一タ ( A
Cモータ も し く は商用モータ でも よ い ) が用しゝられていて、 密閉ケース 1 の内面に固定されるス丁一タ 5 と 、 このステー タ 5 の内側に所定の間隙を存 して配置され 、 かつ 、 上記回転 軸 4が介揷される □一タ 6 とから構成される o <—の電動機部
3 は、 運転周波数を可変するィ ンバ一タ 3 0 に接続される と と もに、 ィ ンバータ 3 0 を介 して 、 このィ ンバータ 3 0 を制 御する制御部 4 0 に電気的に接続される o
上記圧縮機構部 2 は 、 回転軸 4の下部に 、 中間仕切 リ 板 7
を介 して上下に配設される第 1 のン ンダ 8 A と 、 第 2 のシ リ ンダ 8 Β を備えている しれら第 1 、 第 ; 2 のシ リ ンダ 8 A
8 Bは、 互いに外形形状寸法が相違 し、 かつ、 内径寸法が同 一となるよ う設定されてい Ό
第 1 のン リ ンダ 8 Aの外径寸法は密閉ケース 1 の内径寸法 よ り も僅かに大に形成され 、 密閉ケース 1 内周面に圧入され た う えに 、 密閉ケ ―ス 1 外部からの溶接加ェによ つて位置決
め固定され o 第 1 のン ンダ 8 Aの上面部には主軸受 9 が 重ね合わされ、 バルブ力バ ― 1 0 0 と と もに取付けポル ト 1 0 を介してシリ ンダ 8 Aに取付固定される。 第 2のシリ ンダ
8 Bの下面部には副軸受 1 1 が重ね合わされ、 バルブ力バ一 1 0 1 と と もに取付けボル ト 1 2 を介して第 1 のシリ ンダ 8 Aに取付固定される。
上記中間仕切板 7及び副軸受け 1 1 の外径寸法は第 2のシ リ ンダ 8 Bの内径寸法よ り もある程度大であり 、 しかも この シリ ンダ 8 Bの内径位置がシリ ンダ中心からずれている。 そ のため 、 第 2のシリ ンダ 8 Bの外周一部は中間仕切板 7 及び 副軸受け 1 1 の外径よ り も径方向に突出 している。
一方 、 上記回転軸 4は、 中途部と下端部が上記主軸受 9 と 上記副軸受 1 1 に回転自在に枢支される。 さ らに回転軸 4 は 各シリ ンダ 8 A , 8 B内部を貫通すると と もに、 略 1 8 0 ° の位相差をも て形成される 2 つの偏心部 4 a , 4 b を一体 に備えている o 各偏心部 4 a , 4 b は互いに同一直径をな し 各シリ ンダ 8 A , 8 B内径部に位置するよ う組み立てられる 各偏心部 4 a , 4 bの周面には、 互いに同一直径をなす偏心 ローラ 1 3 a 1 1 3 bが嵌合される。
上記 1 のシリ ンダ 8 A と第 2のシリ ンダ 8 Bは、 中間仕 切 リ板 7 と主軸受 9及び副軸受 1 1 で上下面が区画され、 内 部に第 1 のシ 'J ンダ室 1 4 a と第 2のシリ ンダ室 1 4 bが形 成される ο 各ンリ ンダ室 1 4 a , 1 4 b は互いに同一直径及 び高さ寸法に形成され、 上記偏心ローラ 1 3 a , 1 3 bがそ れぞれ偏心回転自在に収容される。
各偏心 P一ラ 1 3 a , 1 3 bの高さ寸法は、 各シリ ンダ室
1 4 a 1 4 b の高さ寸法と同一に形成される。 したがって 偏心ローラ 1 3 a , 1 3 b は互いに 1 8 0 ° の位相差がある が、 シ リ ンダ室 1 4 a , 1 4 b で偏心回転する こ と によ り 、 同一の排除容積に設定される。 各シ リ ンダ 8 A, 8 Bには、 シ リ ンダ室 1 4 a , 1 4 b と連通するべーン室 2 2 a , 2 2 b が設け られている。 各べーン室 2 2 a , 2 2 b には 、 ベー ン 1 5 a , 1 5 b がシ リ ンダ室 1 4 a , 1 4 b に対 して突没 自在に収容される
図 2 は、 第 1 のシ リ ンダ 8 A と第 2 のシ リ ンダ 8 B を分解 して示す斜視図で αό 。
上記べーン室 2 2 a , 2 2 b は、 ベーン 1 5 a , 1 5 b の 両側面が摺動白在に移動できるベ一ン収納溝 1 2 3 a , 1 2
3 b と 、 各べ一ン収納溝 1 2 3 a , 1 2 3 b端部に一体に連 設されべーン 1 5 a , 1 5 b の後端部が収容される縦孔部 1
2 4 a , 1 2 4 b とからなる。
上記第 1 のシ U ンダ 8 Aには 、 外周面とベーン室 2 2 a と を連通する横孔 2 5 が設けられ 、 ばね部材 2 6 が収容される。 ばね部材 2 6 は 、 ベーン 1 5 a の背面側端面と密閉ケース 1 内周面と の間に介在され、 ベーン 1 5 a に弾性力 (背圧) を 付与 して、 この先端縁を偏心口ーラ 1 3 a に接触させる圧縮 ばねである。
上記第 2 のシ U ンダ 8 B側のベーン室 2 2 b にはべーン 1
5 b 以外に何らの部材も収容されていないが、 後述する よ う にべーン室 2 2 b の設定環境と 、 後述する圧力切換え機構
(手段) Kの作用に応 じて、 ベーン 1 5 b の先端縁を上記偏 心ローラ 1 3 b に接触させるよ う になつている。 各べーン 1 5 a , 1 5 b の先端縁は平面視で半円状に形成されてお り 、 平面視で円形状の偏心ローラ 1 3 a , 1 3 b 周壁に偏心ロー ラ 1 3 a の回転角度にかかわらず線接触できる。
偏心ローラ 1 3 a , 1 3 b がシ リ ンダ室 1 4 a , 1 4 b の 内周壁に沿って偏心回転したと き、 ベーン 1 5 a , 1 5 b は ベーン収納溝 1 2 3 a , 1 2 3 b に沿って往復運動 し、 かつ、 ベーン後端部が縦孔部 1 2 4 a , 1 2 4 b から進退自在と な る作用ができる。 上述 したよ う に、 上記第 2 のシ リ ンダ 8 B の外形寸法形状と 、 中間仕切板 7 及び副軸受け 1 1 の外径寸 法との関係から、 第 2 のシ リ ンダ 8 Bの外形一部は密閉ケー ス 1 内に露出する。
この密閉ケース 1 への露出部分が上記べーン室 2 2 b に相 当するよ ラ に設計されてお り 、 したがってベーン室 2 2 b 及 びべーン 1 5 b 後端部はケース内圧力を直接的に受ける こ と にな 0 o 特に 、 第 2のシ リ ンダ 8 B及びべーン室 2 2 b は構 造物であるからケース内圧力 を受けても何らの影響もないが、 ベーン 1 5 b はべーン室 2 2 b に摺動自在に収容され、 かつ、 後端部がベ一ン室 2 2 b の縦孔部 1 2 4 b に位置するので、 ケース内圧力を直接的に受ける。
そ して さ らに、 上記べーン 1 5 b の先端部が第 2 のシ リ ン ダ室 1 4 b に対向 してお り 、 ベーン先端部はシ リ ンダ室 1 4 b 内の圧力を受ける。 結局、 上記べーン 1 5 b は先端部と後 端部が受ける互いの圧力の大小に応 じて、 圧力の大きい方か ら圧力の小さ い方向へ移動するよ う構成されている。
各シ リ ンダ 8 A, 8 Bには上記取付けポル ト 1 0 , 1 2 が 揷通する し < は螺揷される取付け用孔も し く はねじ孔が設 けられ、 第 1 のシリ ンダ 8 Aのみ円弧状のガス通し用孔部 2
7 が設けられている。 特に、 上記第 2のシリ ンダ 8 B側のベ ーン室 2 2 b に 、 シ リ ンダ室 1 4 b に導かれる吸込み圧力 と ベーン室 2 2 b に導かれる密閉ケース 1 内圧力との差圧よ り も小さい力で 、 ベ一ン 1 5 b を偏心ローラ 1 3 bから引き離 す方向に付力する保持機構 4 5が設けられる。
上記保持機構 4 5 は、 永久磁石、 電磁石も し く は弾性体の いずれかを用いれぱよい。 なお説明すると、 保持機構 4 5 は 第 2のシ ンダ室 1 4 b にかかる吸込み圧力とベーン室 2 2 b にかかる密閉ケース 1 内圧力との差圧よ り も小さい力で、 上記べ一ン 1 5 b を偏心ローラ 1 3 bから引き離す方向に付 勢保持する
保持機構 4 5 と して永久磁石を備えるこ とによ り 、 常に所 定の力でベ一ン 1 5 b を磁気吸引する。 あるいは、 永久磁石 に代って電磁石を備え、 必要に応じて磁気吸引するよ う に し てもよい めるいは、 保持機構は弾性体である引張リ ばねと する。 この引張リ ばねの一端部をべーン 1 5 bの背面端部に 掛止して 、 常に所定の弾性力で引張り付勢するよ う に しても よい。
再び図 1 に示すよ うに、 上記密閉ケース 1 の上端部には、 吐出管 1 8 が接続される。 この吐出管 1 8 は、 凝縮器 1 9 と 膨張機構 2 0及び蒸発器 2 1 を介してアキュームレータ 1 7 に接続され 、 れらで冷凍サイクル装置が構成される。 アキ ユームレ一タ 1 7底部には、 圧縮機 Rに対する第 1 の吸込み 管 1 6 a 及び、 第 2の吸込み管 1 6 bが接続される。 第 1 の 吸込み管 1 6 a は密閉ケース 1 を貫通し、 第 1 のシリ ンダ室 1 4 a 内に連通する。 第 2 の吸込み管 1 6 b は密閉ケース 1 を貫通し、 第 2のシ リ ンダ室 1 4 b 内に連通する。
また、 分岐管 P 1 と して、 この一端が圧縮機 R と凝縮器 1 9 と を連通する吐出管 1 8の中途部に接続され、 他端が上記 第 2のシリ ンダ室 1 4 b とアキュームレータ 1 7 を連通する 第 2の吸込み管 1 6 bの中途部に接続される。 この分岐管 P 1 の中途部には、 第 1 の開閉弁 2 8が設けられる。 なお、 図 に二点鎖線で示すよ うに、 分岐管 P 1 の一端部を上記密閉ケ ース 1 の周壁を貫通して内部に臨ませた状態に しても支障が ない。 要は、 分岐管 P 1 の一端が冷凍サイクルの高圧側にあ ればよい。
上記第 2の吸込み管 1 6 b で、 分岐管 Pの分岐部よ り も上 流側には第 2の開閉弁 2 9が設けられる。 上記第 1 の開閉弁 2 8 と第 2の開閉弁 2 9 は、 それぞれ電磁弁であって、 上記 制御部 4 0からの電気信号に応じて開閉制御されるよう にな つている。 このよ う に して、 第 2のシリ ンダ室 1 4 b に接続 される第 2の吸込み管 1 6 b、 分岐管 P 1 、 第 1 の開閉弁 2 8及び第 2の開閉弁 2 9 とで圧力切換え機構 Kが構成され、 この圧力切換え機構 Kの切換え作動に応じて、 第 2のシリ ン ダ 8 Bに備えられる第 2のシリ ンダ室 1 4 b に吸込み圧も し く は吐出圧が導かれるよ う になつている。
なお、 上記アキュームレータ 1 7 の構成は、 密閉容器から なるアキュームレータ本体 1 7 Aの上端に蒸発器 2 1 に連通 する冷媒管 P a が揷通され、 かつ、 アキュームレータ本体 1 7 A内に、 上記第 1 の吸込み管 1 6 a を構成する第 1 の吸込 み管部 2 3 a と第 2の吸込み管 1 6 b を構成する第 2の吸込 み管部 2 3 bが並列状態に収容される。
アキューム レータ本体 1 7 A内における各吸込み管部 2 3 a , 2 3 b の所定部位には、 それぞれ油戻し孔 2 4 a , 2 4 bが設けられていて、 アキュームレータ本体 1 7 A内で気液 分離された液冷媒中に混合する潤滑油を、 直接第 1 、 第 2 の 吸込み管 1 6 a , 1 6 bから各シリ ンダ室 1 4 a , 1 4 b に 戻し案内できるよ う になっている。
特に 、 第 2の吸込み管部 2 3 b に設けられる油戻し孔 2 4 b と、 第 2の吸込み管 1 6 b に設けられる第 2の開閉弁 2 9 及び、 第 2の吸込み管 1 6 b に接続される分岐管 P 1 の接続 位置との相互関係は、 第 2の吸込み管 1 6 b における分岐管
P 1 の接続部 Dよ り も上流側で、 かつ、 アキュ ―ム レ一タ 1
7 内の第 2の吸込み管部 2 3 b に開口する油戻し孔 2 4 b よ リ も下流側に第 2 の開閉弁 2 9が設けられるこ と (こな ^。
つぎに、 上述のロータ リ式密閉形圧縮機 Rを備えた冷凍サ ィクル装置の作用について説明する。
( 1 ) 通常運転 (全能力運転) を選択した場ム口
制御部 4 0は、 圧力切換え機構 Kを構成する第 1 の開閉弁
2 8 を閉成し、 第 2 の開閉弁 2 9 を開放するよ ラ制御する。 そ して 、 制御部 4 0はイ ンバータ 3 0 を介して 動機部 3 に 埋転 1吕号を送る。 回転軸 4が回転駆動され、 偏心ローラ 1 3 a , 1 3 b は各シリ ンダ室 1 4 a , 1 4 b 内で偏心回転を行 ラ。 1 のシ ンダ 8 Aにおいては、 ベーン 1 5 a がばね部 材 2 6 によ て常に弾性的に押圧付勢されると ころから、 ベ
―ン 1 5 a の先 it而縁が偏心ローラ 1 3 a周壁に摺接して第 1 のシ U ンダ室 1 4 a 内を吸込み室と圧縮室に二分する ο
偏心 □ ―ラ 1 3 a のシ リ ンダ室 1 4 a 内周面転接位置とベ
―ン収納溝 2 3 a が —致し、 ベーン 1 5 a が最も後退した状 態で このン U ンダ室 1 4 a の空間容量が最大となる 。 冷媒 ガスはァキュ一厶レータ 1 7から第 1 の吸込管 1 6 a を介し て上部ン ンダ室 1 4 a に吸込まれ充満する 。 偏心口一ラ 1
3 a の偏心回転にと もなつて、 偏心ローラの第 1 のシリ ンダ 室 1 4 a 内周面に対する転接位置が移動 し、 このシリ ンダ室
1 4 a の区画された圧縮室の容積が減少する 。 すなわち、 先 に第 1 のシ ンダ室 1 4 a に導かれたガスが徐々に圧縮され ス
0
回転軸 4が 続して回転され、 第 1 のシリ ンダ室 1 4 a の 圧縮室の容里がさ らに減少してガスが圧縮され、 所定圧まで 上昇したと ころで !¾]示しない吐出弁が開放する o Btガスは バルブ力バ一 1 0 0 を介して密閉ケース 1 内に吐出され充満 する o そ して 密閉ケース上部の吐出管 1 8 から吐出 Iされる。
一方 圧力切換え機構 Kを構成する第 1 の開閉弁 2 8が閉 成されているので、 第 2のシリ ンダ室 1 4 b に吐出圧 问 圧) が導かれる こ とはない。 第 2の開閉弁 2 9 は開放されて いるので 上記蒸発器 2 1 で蒸発しアキユ ームレータ 1 7 で 気液分離された低圧の蒸発冷媒が第 2の吸込み管 1 6 b を介 して第 2のン ンダ室 1 4 b に導かれる。 したがつて、 第 2のシリ ンダ室 1 4 b は吸込み圧 (低圧) 雰囲 となる一方で 、 ベーン室 2 2 bが密閉ケ ス 1 内に露 出 して吐出圧 (高圧 ) 下にある。 上記ベ ン 1 5 b において は、 その先!1而部が低圧条件とな り 、 か o 、 後 部が高圧条件 とな て 、 前後端部で差圧が存在する o この差圧の影響で、 ベ ン 1 5 bの先端部が偏心ローラ 1 3 b に摺接するよ う に 押圧付 される。 すなわち、 第 1 のシリ ンダ室 1 4 a側のベ ン 1 5 a がばね部材 2 6 によ り押圧付勢され圧縮作用が行
われるのと全く 同様の圧縮作用が第 2のン ンダ室 1 4 b で も行われる o
結局 、 □―タ リ式密閉形圧縮機 Rにおいては 、 第 1 のシリ ンダ室 1 4 a と、 第 2のシリ ンダ室 1 4 b との 方で圧縮作 用がなされる 、 全能力運転が行われるこ とになる o 密閉ケー ス 1 から吐出管 1 8 を介して吐出される向圧ガスは 、 凝縮器
1 9 に導かれて凝縮液化し、 膨張機 2 0で断熱膨張し、 蒸 発器 2 1 で熱交換空 から蒸発潜熱を奪って冷房作用をなす。 そ して 蒸発したあとの冷媒はアキュームレータ 1 7 に導か れて気液分離され、 再び第 1 、 第 2の吸込み管 1 6 a 1 6 bから圧縮機 Rの圧縮機構部 2 に吸込まれて上述の経路を循 環する 0
なお、 上記保持機構 4 5 を備える ことによ り 、 設定された 磁 5 吸引力あるいは引張リ弾性力でベーン 1 5 b に対して偏 心口 ラ 1 3 bカヽら引さ離す方向に付勢する。 しかしながら、 上記ベーン 1 5 bの前後端部の差圧が保持機構 4 5 による力 よ り も十分に大きいので 、 全能力運転時に保持機構 4 5がべ ーン 1 5 b の往復動に対 して悪影響を与える こ とがない。 ( 2 ) 特別運転 (能力半減運転) を選択 した場合 :
特別運転 (圧縮能力を半減する運転) を選択する と、 制御 部 4 0 は圧力切換え機構 Kの第 1 の開閉弁 2 8 を開放し、 第 2 の開閉弁 2 9 を閉成するよ う に切換え設定する。 第 1 のシ リ ンダ室 1 4 a においては上述 したよ う に通常の圧縮作用が なされ、 密閉ケース 1 内に吐出 された高圧ガスが充満してケ —ス内高圧となる。 吐出管 1 8 から吐出される高圧ガスの一 部が分岐管 P に分流され、 開放された第 1 の開閉弁 2 8 及び 第 2 の吸込み管 1 6 b を介 して第 2 のシ リ ンダ室 1 4 b 内に 直接、 導入される。
上記第 2 のシ リ ンダ室 1 4 b が吐出圧 (高圧) 雰囲気にあ る一方で、 ベ一ン室 2 2 b はケース内高圧と 同一の状況下に ある こ と には変 り がない。 そのため、 ベーン 1 5 b は前後端 部と も高圧の影響を受けていて、 前後端部において差圧が存 在 しない。 ベーン 1 5 b はローラ 1 3 b外周面から離間 した 位置で移動する こ と な く 停止状態を保持 し、 第 2のシリ ンダ 室 1 4 b での圧縮作用は行われない。 結局、 第 1 のシ リ ンダ 室 1 4 a での圧縮作用のみが有効であ り 、 能力を半減した運 転がなされる こ と になる。
能力半減運転時に保持機構 4 5 はべーン 1 5 b の先端部が シ リ ンダ室 1 4 b 周壁から没入する上死点付近位置に保持す るよ う付勢 し、 ベーン 1 5 b は偏心ローラ 1 3 b から引 き離 す方向に保持される。
この能力半減運転時においても、 第 2 のシ リ ンダ室 1 4 b で偏心ローラ 1 3 b が偏心回転する こ と には変 リ がな く カ ラ 埋転が行われる。 偏心ローラ 1 3 b の周 がべーン 1 5 b 先 端部と対向するべーン 1 5 b の上死点位 に至っても、 ベー ン 1 5 b は保持機構 4 5 に保持されているので、 この先端部 は偏心ローラ 1 3 b と接触しない
例えば、 上記保持機構 4 5 を備えておらず、 ベーン 1 5 b を全 く の自 由状態とする と、 能力半減運転時においてべーン
1 5 b 先端部が偏心ローラ 1 3 b に接触を繰り返 してべ一ン 室 2 2 b で踊る。 したがって、 保持機構 4 5 を備えていない と、 ベ一ン 1 5 b の偏心ローラ 1 3 b 接触による異常音の発 生や 、 ベーン 1 5 b の破損に至る虞れがあるが、 保持機構 4
5 を備えた こ とで上述の不具合を除去でさる
また、 第 2 のシ リ ンダ室 1 4 b の内部は高圧となっている ので 、 密閉ケース 1 内から第 2 のン リ ンダ室 1 4 b 内への圧 縮ガスの漏れは発生せず、 それによる損失も発生 しない。 し たがつて、 圧縮効率の低下な しに能力を半分に した運転が可 能と る。
例えば、 圧縮機構部 2 の排除容積を半減させた能力になる よ ラ に回転数を調整する場合と比較 して 、 上述の能力半減運 転を採用する こ と によ り通常の運転と 同 ―の効率の高い高回 転を保持 した状態で低能力運転を行ラ こ とができて圧縮効率 の向上を得られる。 そ して、 回転数の調效と組合わせる こ と によ リ 、 最小能力を拡大 してきめの細かい温度 · 湿度制御が 可能な冷凍サイ ク ル装置を提供でさる 圧縮機 R内ではべ一 ン 1 5 b を付勢するばね部材を省略するだけの単純な構造で 容量可変が可能とな リ コス ト的に有利であ り 、 製造性に優 れ、 かつ、 高効率が得られる
取大能力の必要時には 2 シ リ ンダ運転によ り 所定能力を確 保 し 1 台の圧縮機で幅広い能力を確保できる。 すなわち、 第 1 の開閉弁 2 8 を運転モ ドに応 じて開閉制御する こ と に よ り 、 容易に必要な能力を ί られる。 特に、 能力半減運転の 際の圧縮機 Rへの油戻 を確保 して圧縮機構部 2 の潤滑性を 保持する。
例えば、 第 2 の開閉弁 2 9 を第 2 の吸込み管部 2 3 b に設 けられる油戻 し孔 2 4 b よ り も上流側に設ける と、 能力半減 埋転の際に高圧冷媒が上記油戻 し孔 2 4 b を介 してアキ ム レータ 1 7 内に逆流 し、 第 1 のシ リ ンダ室 1 4 a における 圧縮能力が大幅に低下 して しま う 。 また、 上記油戻 し孔 2 4 b がないと通常の全能力運転の際に潤滑性が低下する。 その ため、 上述のごと き設定が必要不可欠となる。
なお、 上記圧力切換え機構 Kは、 上記第 2 の開閉弁 2 9 に 代つて逆止弁 2 9 A を備えても よ い。 この逆止弁 2 9 Aは、 ァキ ム レータ 1 7 から第 2 のシ リ ンダ室 1 4 b側への冷 媒の流通を許容 し、 逆方向の流れを阻止する。
全能力運転を選択する と 、 第 1 の開閉弁 2 8 が閉成され第
2 の吸込み管 1 6 b に導かれる低圧ガスが逆止弁 2 9 A を介 して第 2 のシ リ ンダ室 1 4 b に導入される。 第 2 のシ リ ンダ 室 1 4 b が吸込み圧 (低圧) とな り 、 ベーン室 2 2 b がケー ス内高圧と なって、 ベーン 1 5 b の前後端部において差圧が 生 じる。 上記べーン 1 5 b は常に第 2 のシ リ ンダ室 1 4 b に 突出するよ う背圧を掛けられ、 偏心口
圧縮作用が行われる。 当然、 第 1 のシ リ ンダ室 1 4 a でも圧 縮作用が行われているので、 全能力運転をなす。
能力半減運転を選択すると、 第 1 の開閉弁 2 8が開放され る。 吐出管 1 8から分岐管 P 1 に導かれる高圧ガスの一部が 第 1 の開閉弁 2 8 を介して第 2の吸込み管 1 6 b に導かれる そ して、 逆止弁 2 9 Aでアキュームレータ 1 7への流れを阻 止され、 全て第 2のシリ ンダ室 1 4 b に導入される 。 第 2の シリ ンダ室 1 4 bが高圧となる一方で、 ベーン室 2 2 bが高 圧であるので、 ベーン 1 5 bの前後端部において差圧が存在 しない。 ベ一ン 1 5 bの位置が変らず、 したがつて第 2のシ リ ンダ室 1 4 b では圧縮作用が行われない。 結局 、 第 1 のシ リ ンダ室 1 4 a のみの能力半減運転をなす。
上記逆止弁 2 9 A (も し く は、 第 2の開閉弁 2 9 。 以下 同) を第 2の吸込み管 1 6 b に備 7L ナこ 場 は 、 この逆止弁 2
9 Aの位置をアキユ ー厶レ一タ 1 1 と第 2の吸込み管 1 6 b との溶接固着部 Eから所定間隔 (少な く と も 1 0 m m以上) を存して設ける こ とを特徴の一 と している 。 すなわち 、 上 記逆止弁 2 9 Aの弁体は薄板からなつているので熱影響を受 け易いが 、 所定間隔を存した位置にあればァキュームレ一タ
1 7 と第 2の吸込み管 1 6 b とを溶接固着する際の熱影響を 可能な限リ 受けずにすむ
図 3 は 、 第 2の実施の形態の □ ―タ リ式密閉形圧縮機 Rと アキユ ームレータ 1 7 の接続構造を説明する図 ある。
上記ァキユ ームレータ 1 7 は 、 ァキュ ―厶レータ本体 1 7 A内に収容される第 1 、 第 2 の吸込み管部 2 3 a , 2 3 b か らー体に第 1 、 第 2 の吸込み管 1 6 a , 1 6 b がアキユ ーム レータ本体 1 7 Aの直下部へ延設される 第 2 の吸込み管 1
6 b に設けられる逆止弁 2 9 A a は、 ァキュ一ム レータ 本体
1 7 Aの直下部に位置する。
すなわち、 図 1 での効果と と もに、 アキュ一ム レータ 1 7 と第 1 、 第 2 の吸込み管 2 3 a , 2 3 b 及び逆止弁 2 9 A a が略一体構造化されるので、 アキユ ーム レ一タ 1 7 の高容量 と高信頼性が確保できる。 上記逆止弁 2 9 A a は、 アキユ ー ムレータ 1 7 と第 2 の吸込み管 1 6 b との溶接固着部 Eから の熱影響を避けるために、 少な く と も 1 0 m m以上は離間 し ている。
また、 アキューム レータ 1 7 の取付け位置が上るが、 アキ ユーム レータ 本体 1 7 A を構成する下カ ッ プ A 1 をアキユー ムバン ド A 2 で圧縮機 Rの密閉ケース 1 に取付け固定する こ とができ、 横方向の省スペース化を図れる。
図 4 は、 第 3 の実施の形態のロ ータ リ 式密閉形圧縮機 R と アキューム レータ 1 ' 7 の接続構造を説明する図である。
アキューム レータ本体 1 7 Aの直下部に逆止弁 2 9 A b を 取付ける こ と を前提と して、 アキューム レータ本体 1 7 A内 部を上下分離板 3 2 を介 して上下に 2分割 し、 この上下分離 板 3 2 の上部にて容量を確保する と と も に、 上部に設けられ る リ テーナ 3 3 と上下分離板 3 2 との間に連通管 3 4 を備え て、 上下分離板 3 2 の下部においても容量を確保する。
すなわち、 図 3 での構成による効果と と もに、 アキユ ーム レータ本体 1 7 A内の第 1 、 第 2の吸込み管部 2 3 a 1 , 2 3 b 1 の長さを通常 (従来) と同 じ長さにできて、 過給効果 の低下による性能低下が避けられる。 さ らに、 本来の気液分 離性能を得られて高信頼性を確保する。
図 5 は、 第 4の実施の形態のロータ リ式密閉形圧縮機 と アキュームレータ 1 7 の概略の平面図である。 すなわち、 図 3及び図 4の構成では、 第 2の吸込み管 1 6 b に設けられる 逆止弁 2 9 A a , 2 9 A b をアキュームレータ 1 7 の直下部 に備えたが、 これに限定されるものではな く 、 上記逆止弁 2 9 A a , 2 9 A b を上記密閉ケース 1 とアキュームレータ 1 7 との間で、 かつ、 密閉ケース 1 の外周面とアキユ ームレー タ 1 7 の外周面との接線で形成される、 ハッチングで示す投 影面積 S内に設けたこ と を特徴の一つと している。 したがつ て、 アキュームレータ 1 7 と逆止弁 2 9 A a , 2 9 A b とが 互いに並べて配置されるこ と もあ り 、 逆止弁の設置による水 平方向のスペースの増大防止を図れる。
図 6 は、 第 5の実施の形態のロータ リ式密閉形圧縮機 Rの 一部とアキュームレータ 1 7 の概略の断面図である。
上記第 2のシリ ンダ室 1 4 b に連通する第 2の吸込み管 1 6 b は中途部において 2分割され、 一方の分割吸込み管 1 6 b 1 が上記アキュームレータ 1 7 に固着され、 他方の分割吸 込み管 1 6 b 2が上記密閉ケース 1 に固着される。 すなわち、 アキューム レータ 1 7 に固着される分割吸込み管 1 6 b 1 は アキュームレータ本体 1 7 A内の第 2の吸込み管部 2 3 b と 同一管からなる。 この分割吸込み管 1 6 b 1 のアキユ ーム レ —タ本体 1 7 Aから突出する下端部は拡径加工されていて、 密閉ケース 1 に固着される分割吸込み管 1 6 b 2の上端部に ォ一バ ―ラ ップして嵌め込まれる
作業順序と して予め、 アキユ ームレ一タ本体 1 7 Aを上下 逆に して 、 第 1 の吸込み管 1 6 a と 、 一方の分割吸込み管 1
6 b 1 (第 2の吸込み管部 2 3 b と fhj '管) を溶接固着する。 このとき 、 逆止弁 2 9 A c はセッ 卜されていないので、 E部 位においてアキュームレータ本体 1 7 と分割吸込み管 1 6 b
1 との溶接固着の熱影響を逆止弁 2 9 A cが受ける こ とはな い
ついで 、 分割吸込み管 1 6 b 1 の開口端から逆止弁 2 9 A c を揷入する。 このとき、 ハッチングで示す弁体と弁座部と からなる逆止弁部 A c 2から挿入し、 逆止弁本体 A c 1 が開 口端側になる。 ついで、 分割吸込み管 1 6 b 1 の開 □端に他 方の分割吸込み管 1 6 b 2 を揷入し、 これら相互を一体に溶 接固着 ( G部位 ) する。 上記逆止弁本体 A c 1 はパィ プ状を な していて、 分割吸込み管 1 6 b 1 と溶接するのに何らの不 具合もない。
この状態で、 アキュームレータ本体 1 7 Aから第 1 の吸込 み管 1 6 a と、 第 2の吸込み管 1 6 b (実際には、 分割吸込 み管 1 6 b 2 ) が突出 してお り 、 これら吸込み管の端部を密 閉ケース 1 に溶接固着する こ とになる。
すなわち、 ァキュームレータ 1 7 に連通する第 2の吸込み 管 1 6 b を分割し、 分割吸込み管 1 6 b 1 内に逆止弁本 A c 1 を挿入して配置するこ とによ り 、 省スペース化を図れる と と もに、 アキュームレータ 1 7 の取付け高さを低く でき、 吸 込み管 1 6 bの長さを短縮できて性能向上を得られる。 逆止 弁 2 9 A c の逆止弁部 A c 2の位置は溶接固着時の熱影響を 受けるこ との少ない距離を確保できて、 信頼性を得られる。 逆止弁 2 9 A c を構成する逆止弁部 A c 2は 2重巻き構造と なるため動作音の低減効果を奏する。 第 2の吸込み管 1 6 b と して、 油戻し孔 2 4 b と、 逆止弁位置決め用のノ ッチゃテ 一パー部を備えてもよ く 、 逆止弁本体 A c 1 に分割吸込み管 1 6 b 2の位置決め部 (突起など) h があってもよい。
また、 逆止弁 2 9 Aをアキュームレータ 1 7 の直下部に設 ける と、 逆止弁 2 9 Aはアキュームレータ 1 7 と第 2の吸込 み管 1 6 b との溶接固着部 Eか 熱影響を避けるため所定間 隔だけ離間させなければならないので、 アキュ一ムレータ 1
7 の位置が向 < なる。 一方、 Ύキユ ーム レータ 1 7 の容積を 有効に利用するためには、 アキュ一ムレータ 1 7 内における 吸込み管部 2 3 a , 2 3 bの長さ を従来と同一にすると、 吸 込み管 1 6 a 1 6 bの ! タル長が長く な リ 、 吸込み抵抗 が増大して圧縮性能が低下 して しまう。 そこで 、 図 6の構成 を採用するこ とによ り、 アキュ一ム レ一タ 1 7 の高さをある 程度低く でさ 、 上述の不具合解消に役立つ。
図 7 は 、 6の実施の形態の □ータ リ式密閉形圧縮機 R と アキユ ームレ一タ 1 7 の接続構造を説明する図 ^ の ο
上記第 2のンリ ンダ室 1 4 b に連通する第 2の吸込み管 1
6 b をァキュ一ムレータ 1 7 の側部に立ち上げ 、 この立上 り 部に逆止弁 2 9 A d を備えてなる 。 したがって 、 アキユ ーム レータ 1 7 と逆止弁 2 9 A d と は並べて配置される こ と にな リ 、 ァキユ ーム レータ 1 7 の高さ を従来と 同様、 低 く でき省 スぺース化に役立つ。 逆止弁 2 9 A d の位置がァキユ ーム レ ータ 1 7 と第 2 の吸込み管 1 6 b との溶接固着部 Eから充分 な距離をも って離間するので、 熱影響を受けずにすみ高信頼 性を確保できる。
図 8 は 、 第 7 の実施の形態の ロータ リ 式密閉形圧縮機 R と アキュ一ム レ一タ 1 7 の接続構造を説明する図である o
弟 6 の実施の形態と同様、 アキューム レータ 1 7 と逆止弁
2 9 A e とが並べられた状態と なっている。 ただ し 、 こ こで はアキュ一ム レータ本体 1 7 A内の第 2 の吸込み管部 2 3 b
2 が略中間部で水平に折曲 されて、 アキユ ーム レ一タ本体 1
7 A周 から外部に突出 し第 2 の吸込み管 1 6 b と なってい る。 上記第 2 の吸込み管部 2 3 b 2 がアキユ ーム レ一夕 本体
1 7 A周壁から外部に突出する直前の部位に油戻 し孔 2 4 b が設けられている。
ァキュ一ム レータ 1 7 の高さ を従来と 同様、 低 < でき省ス ペース化に役立つ。 逆止弁 2 9 A e の位置がアキュ一ム レー タ 1 7 と第 2 の吸込み管 1 6 b との溶接固着部 Eから充分な 間隔を存するので、 高信頼性を確保できる。
図 9 は、 第 8 の実施の形態の ロータ リ 式密閉形圧縮機 R と アキューム レータ 1 7 の接続構造を説明する図である。
第 7 の実施の形態と 同様、 アキューム レータ 1 7 と逆止弁 2 9 A f とが並べられた状態と なっていて、 アキユ ーム レー タ本体 1 7 A内の第 2 の吸込み管部 2 3 b 3 が略中間部で水 平に折曲されて、 アキュームレータ本体 1 7 A周壁から外部 に突出 し第 2の吸込み管 1 6 b となっている。 上記アキユ ー ムレータ 1 7 は、 アキュームレータ本体 1 7 Aの上下略中間 部に上下分離板 3 2が設けられていて、 上部側に設けられる リ テーナ 3 3 との間に連通管 3 4が介設される。
第 2の吸込み管部 2 3 b 3 と して、 上端部はリ テーナ 3 3 と同位 に開口され、 下端部がリ テーナ 3 3 と上下分離板 3
2 との間で折曲されて逆止弁本体 2 3 b 3周壁から外部へ突 出する o この折曲部分に油戻し孔 2 4 bが設けられ、 第 1 の 吸込み管部 2 3 a 1 の上端開口は上下分離板 3 2の下部側に 位置している o
こ こでち同様に、 ァキューム レータ 1 7 の高さを低く でき、 省スぺ一ス化に役立つ 。 逆止弁 2 9 A f はアキュームレータ
1 7 と弟 2の吸込み管 1 6 b との溶接固着部 Eから充分な距 離を存した位置に設けられるの ■ 執影響を受けずに高信頼 性を確保できる 0
図 1 0は 、 第 9 の実施の形態のロータ リ式密閉形圧縮機 R とアキュ一ムレ一タ 1 7 の接続構造を説明する図である。
第 2のンリ ンダ室 1 4 b に連通する第 2の吸込み管 1 6 b は、 ァキュ一ムレータ本体 1 7 Α内の第 2の吸込み管部 2 3 b 4 と一体化されている こ とは変わりがないが、 第 2 の吸込 み管部 2 3 b 4は上部と下部とで略 U字状に曲成され、 全体 的に蛇行状となっている。 そ して、 第 2の吸込み管部 2 3 b 4 の所定部位に逆止弁 2 9 A gが収容される。 油戻し孔 2 4 b は下部の U字状曲成部に設けられていて、 第 2の吸込み管 1 6 b に接続する分岐管 P 1 上流側に位置 する こ とは言う までもない。
このよ う な構成であれば、 1 7 の高さ を 従来と 同様、 低い ilL威に備える こ とができ省スペース化を得 られる 。 逆止弁 2 9 A g をアキユーム レータ 本体 1 7 A内部 に設置する と こ ろから 、 逆止弁 2 9 A g の作動音がアキユー ム レータ 1 7 から外部に漏れ出る こ とがな く 、 騒音の低減を 図れる 。 逆止弁 2 9 A g の位置が、 アキューム レータ 1 7 と 第 2 の吸込み管 1 6 b との溶接固着部 Eから充分に離間する ので、 熱影響を受けずに高信頼性を得る。
図 1 1 は、 第 1 0 の実施の形態のロータ リ 式密閉形圧縮機
R と ァキューム レ一タ 1 7 の接続構造を説明する図である。 第 2 のシ リ ンダ室 1 4 b に連通する第 2 の吸込み管 1 6 b は、 ァキューム レ一タ本体 1 7 A内の第 2 の吸込み管部 2 3 b 5 と一体にな ている こ と は変 リ がないが、 上記第 2 の吸 込み管部 2 3 b 5 のほとんど大部分は逆止弁 2 9 A h と なつ ていて 、 逆止弁 2 9 A h はアキュ一ム レータ本体 1 7 A に略 収容状態にある ο ただ し、 こ こでは油戻 し孔を設けていない。
したがって、 ァキュ一ム レータ 1 7 の高さ を低い位置に備 える こ とができ 、ス 一ス化を得られる。 逆止弁 2 9 A h を アキュ一ム レータ 1 1 内部に設置する と こ ろから、 逆止弁 2
9 A h の作動音がァキユーム レータ 1 7 から外部に漏れ出る こ とがな く 、 運転騒曰 の低減を図れる。
図 1 2 は、 第 1 1 の実施の形態の ロータ リ 式密閉形圧縮機
R とアキユーム レ一タ 1 7 の接続構造を説明する図である。 上記第 1 のシリ ンダ室 1 4 a に連通する第 1 の吸込み管 1 6 a には第 1 のアキュームレータ 1 7 O Aが接続され、 第 2 のシリ ンダ室 1 4 b に連通する第 2の吸込み管 1 6 b には第 2のアキュームレータ 1 7 O Bが接続される。 すなわち、 第 1 、 第 2の吸込み管 1 6 a , 1 6 b にそれぞれ独立 した構成 の第 1 、 第 2のアキュームレータ 1 7 0 A, 1 7 0 Bが接続 されることになる。 各アキュームレータ 1 7 O A , 1 7 O B 内において、 各吸込み管 1 6 a , 1 6 b と一体の吸込み管部 2 3 a 4 ( 2 3 b 4は図示せず) を備えている こ とは勿論で め 。
特に、 第 2のアキュームレータ 1 7 0 Bの上流側である冷 媒管 P a に、 一端が冷凍サイクルの高圧側に接続される分岐 管 P 1 の他端が接続される。 そ して、 上記冷媒管 P a におけ る分岐管 P 1 の接続部から上流側に逆止弁 2 9 A i が設けら れる。
このよ うな構成であれば、 分岐管 P 1 と第 2のアキユ ーム レータ 1 7 Bを介して第 2のシリ ンダ室 1 4 b に吸込み圧も し く は吐出圧を導く こ とができる と と もに、 逆止弁 2 9 A i の位置を冷媒管 P a と第 2のアキュームレータ 1 7 O B との 溶接固着部 Eから充分に離間でき、 製造信頼性を確保できる。 そ して、 逆止弁 2 9 A i を取付ける前に、 少な く と も一方の 圧縮機能を有するか否かの出荷検査が可能とな り 、 高信頼性 を得る。
また、 上記分岐管 P 1 と逆止弁 2 9 A i を、 先に説明 した ものと同様、 第 1 のアキュームレータ 1 7 O B と第 2のシリ ンダ室 1 4 b と を連通する第 2 の吸込み管 1 6 b に設ける よ う に しても何らの支障がない。
なお 、 上述 した全てのロータ リ 式密閉形圧縮機 R とァキュ 一ム レ一夕 1 7 は、 図 1 に示す冷凍サイ クルに用いる こ との 他、 いわゆる ヒー トポンプ式冷凍サイ クルにも用いる こ とが でき、 冷房運転時及び暖房運転時の能力拡大と问効率化を得 られる o
産業上の利用可能性
本発明によれば、 第 1 のシ リ ンダと第 2 のシ U ンダを備え る こ と を前提と して 、 一方のシ リ ンダのべーンに対する押圧 付勢構造を省略化 し 、 部品数と加工手間の軽減を図 リ 、 信頼 性の向上を図れる ロ一タ リ 式密閉形圧縮機と 、 この口一タ 式密閉形圧縮機を備えた冷凍サィ クル装置を提供できる ο

Claims

5冃 求 の 範 囲
1 . 冷凍サィクル装置に用いられ、 密閉ケース内に 、 ¾動機 部及びこの電動機部と連結される 口一タ リ式の圧縮機構部を 収容し、 発器で蒸発した冷媒をァキユームレータ を介して 上記圧縮機構部に吸込み、 こ こで圧縮した冷媒ガスを一旦密 閉ケース内に吐出 してケース内高圧とするロータ リ式密閉形 圧縮機において、
上記圧縮機構部は、 それぞれ偏心 □一ラが偏心回転自在に 収容されるシリ ンダ室を備えた第 1 のシリ ンダ及び第 2のシ リ ンダと 、 これら第 1 のシリ ンダと第 2のシリ ンダに設けら れ、 その先端縁が上記偏心ローラの周面に当接するよラ押圧 付勢され 、 偏心口一ラの回転方向に沿つてシリ ンダ室を二分 するベーン及びそれぞれの上記べ一ンの背面側端部を収容す るべーン室と を具備し、
上記第 1 のシリ ンダに設けられる ーンは、 上記ベ―ン室 に配備されるばね部材によつて押圧付勢され、
上目己 2のシリ ンダに設けられるベ —ンは、 上記ベ一ン室 に導かれるケ一ス内圧力と 、 上記シ ンダ室に導かれる吸込 み圧も し < は吐出圧との差圧に応 じて押圧付勢され 、
上 id 2のシリ ンダのシリ ンダ室に吸込み圧も し く は吐出 圧を導く 手段は、
一端力 m 、A凍サィクルの高圧側に接続され、 他端が上記アキ ユームレ一タから上記第 2のシリ ンダのシリ ンダ室に連通す る吸込み管に接続され、 中途部に第 1 の開閉弁を有する分岐 管と、 上記吸込み管における、 上記分岐管との接続部よ り も上流 側であ り 、 かつ、 上記アキューム レータ 内の吸込み管部に開 口する油戻 し孔よ り も下流側に設けられる第 2 の開閉弁も し < は逆止弁と
を具備する こ と を特徴とする ロータ リ 式密閉形圧縮機。
2 . 上記第 2 のシ リ ンダのシ リ ンダ室に吸込み圧も し く は吐 出圧を導 < 手段を構成する上記第 2 の開閉弁も し く は逆止弁 は、 上記ァキュ一ム レ一タ に対する上記吸込み管との接合部 位力、ら所定間 l¾を存 して設けられる こ と を特徴とする請求項
1 記載の □一タ リ 式密閉形圧縮機。
3 . 上記第 2 のシ リ ンダのシ リ ンダ室に吸込み圧も し く は吐 出圧を導 < 手段を構成する上記第 2 の開閉弁も し く は逆止弁 は、 上記密閉ケ ―スとァキューム レータ との間で、 かつ、 密 閉ケ一スの外周面とァキユーム レータ の外周面との接線で形 成される投影面積内に設けられる こ と を特徴とする請求項 1 記載の P一タ U 式密閉形圧縮機。
4 . 上記弟 2 のシ リ ンダのシ リ ンダ室に連通する吸込み管は 中途部において 2分割され、 一方の分割吸込み管が上記アキ ユーム レータ に固着され、 他方の分割吸込み管が上記密閉ケ ースに固着され 、 これら分割吸込み管相互の連結部内に上記 第 2 の開閉弁も し < は逆止弁が揷着される こ と を特徴とする 請求項 1 記載の □一タ リ 式密閉形圧縮機。
5 . 上記アキュ一厶レータ と、 上記第 2 の開閉弁も し く は逆 止弁は 、 互いに並ベて配置される こ と を特徴とする請求項 1 記載の P一タ リ 式密閉形圧縮機。
6 . 冷凍サィ クル装置に用しゝられ、 密閉ケース内に、 動機 部及びこの電動機部と連結される Pータ リ 式の圧縮機構部を 収容し、 蒸発器で蒸発 した冷媒をァキューム レータ を介 して 上記圧縮機構部に吸込み、 こ こで圧縮 した冷媒ガスを一旦密 閉ケース内に吐出 してケース内高圧とする ロータ リ 式密閉形 圧縮機において、
上記圧縮機構部は 、 それぞれ偏心ローラが偏心回転白在に 収容されるシ リ ンダ室を備えた第 1 のシ リ ンダ及び第 2 のシ
ンダと 、 これら第 1 のン リ ンダと第 2 のシ リ ンダに設けら れ 、 その先端縁が上 心ローラの周面に当接するよ ラ押圧 付勢され、 偏心口一ラの回転方向に沿つてシ リ ンダ室を二分 するべーン及びそれぞれの上記べ一ンの背面側端部を収容す るベーン室と を具備 し、
上記第 1 のシ リ ンダに設けられるベ一ンは、 上記べ一ン室 に配備されるばね部材によ つて押圧付勢され、
上記第 2 のシ リ ンダに設けられるベーンは、 上記べ一ン室 に導かれるケ ―ス内圧力 と 、 上記ン リ ンダ室に導かれる吸込 み圧も し く は吐出圧との差圧に応 じて押圧付勢され、
上記第 2 のシ リ ンダのン リ ンダ室に吸込み圧も し く は吐出 圧を導く 手段は、
― m力 冷凍サイ クルの问圧側に接続され、 他端が上記アキ ュ一ム レーダから上 5己 2 のシ リ ンダのシ リ ンダ室に連通す る吸込み管に接続され、 中途部に第 1 の開閉弁を有する分岐 管と、
上記吸込み管における上記分岐管の接続部の上流側で 、 か つ、 上記ァキュ一ム レータ 内の吸込み管部に設けられる第 2 の開閉弁ち し < は逆止弁と
を具備する こ と を特徴とする ロータ リ 式密閉形圧縮機 ο
7 . 冷凍サィ クル装置に用いられ、 密閉ケース内に 、 動機 部及びこの電動機部と連結される ロータ リ 式の圧縮機構部を 収容 し、 蒸発器で蒸発 した冷媒をアキユーム レータ を介 して 上記圧縮機構部に吸込み 、 こ こで圧縮 した冷媒ガスを一旦密 閉ケース内に吐出 してケ一ス内高圧とする 口一タ リ 式密閉形 圧縮機において 、
上記圧縮機構部は、 それぞれ偏心口一ラが偏心回転自在に 収容される と と もに、 第 1 のアキユーム レータ 及び第 2 のァ キューム レ一タ と吸込み管を介 して連通する シ リ ンダ室を備 えた第 1 のシ リ ンダ及び 2 のシ リ ンダと 、 これら第 1 のシ リ ンダと第 2 のシ リ ンダに設けられ、 その先端縁が上記偏心 ローラの周面に当接するよ う押圧付勢され、 偏心口一ラの回 転方向に沿つてシ リ ンダ室を二分するベーン及びそれぞれの 上記べ一ンの背面側端部を収容するべーン室と を具備し 、 上 gd 1 のシ リ ンダに設けられるベーンは、 上記ベ一ン室 に配備されるばね部材によ つて押圧付勢され、
上記第 2 のシ リ ンダに設けられるベーンは、 上記ベ一ン室 に導かれるケース内圧力 と 、 上記シ リ ンダ室に導かれる吸込 み圧も し < は吐出圧との差圧に応 じて押圧付勢され 、
± sd ¾ 2 のシ リ ンダのシ リ ンダ室に吸込み圧も し く は吐出 圧を導く 手段は 、
一 i而力《冷凍サィ ク ルの 圧側に接続され、 他端が上記第 2 のアキューム レータ の上流側も し く は下流側の冷媒管に接続 され、 中途部に第 1 の開閉弁を有する分岐管と 、
上記第 2 のアキューム レータ の上流側も し く は下流側にお ける冷媒管で、 上記分岐管の接続部よ り も上流部に設けられ る開閉弁も し く は逆止弁と
を具備する こ と を特徴とする ロータ リ 式密閉形圧縮機。
8 . 上記請求項 1 ない し請求項 7 のいずれかに記載のロータ リ 式密閉形圧縮機と、 凝縮器、 膨張機構及び蒸発器で冷凍サ イ クルを構成する こ と を特徴とする冷凍サイクル装置。
PCT/JP2004/008701 2003-06-20 2004-06-15 ロータリ式密閉形圧縮機及び冷凍サイクル装置 WO2004113731A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04746171A EP1655492A1 (en) 2003-06-20 2004-06-15 Rotary-type enclosed compressor and refrigeration cycle apparatus
US11/302,393 US7290994B2 (en) 2003-06-20 2005-12-14 Rotary hermetic compressor and refrigeration cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003177155A JP4447859B2 (ja) 2003-06-20 2003-06-20 ロータリ式密閉形圧縮機および冷凍サイクル装置
JP2003-177155 2003-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/302,393 Continuation US7290994B2 (en) 2003-06-20 2005-12-14 Rotary hermetic compressor and refrigeration cycle system

Publications (1)

Publication Number Publication Date
WO2004113731A1 true WO2004113731A1 (ja) 2004-12-29

Family

ID=33534924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008701 WO2004113731A1 (ja) 2003-06-20 2004-06-15 ロータリ式密閉形圧縮機及び冷凍サイクル装置

Country Status (5)

Country Link
US (1) US7290994B2 (ja)
EP (1) EP1655492A1 (ja)
JP (1) JP4447859B2 (ja)
CN (1) CN100451340C (ja)
WO (1) WO2004113731A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073048A1 (ja) * 2005-01-04 2006-07-13 Toshiba Carrier Corporation 冷凍サイクル装置及びロータリ式密閉型圧縮機
WO2006090979A1 (en) * 2005-02-23 2006-08-31 Lg Electronics Inc. Capacity varying type rotary compressor
WO2008062789A1 (fr) * 2006-11-22 2008-05-29 Toshiba Carrier Corporation Compresseur rotatif et dispositif de cycle de réfrigération
CN101052808B (zh) * 2005-02-23 2011-05-04 Lg电子株式会社 容量变化型旋转式压缩机

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200530509A (en) * 2004-03-15 2005-09-16 Sanyo Electric Co Multicylinder rotary compressor and compressing system and refrigerating unit with the same
TWI363137B (en) * 2004-07-08 2012-05-01 Sanyo Electric Co Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same
KR100565338B1 (ko) * 2004-08-12 2006-03-30 엘지전자 주식회사 용량가변형 복식 로터리 압축기 및 그 운전 방법 및 이를 구비한 에어콘 및 그 운전 방법
TW200619505A (en) * 2004-12-13 2006-06-16 Sanyo Electric Co Multicylindrical rotary compressor, compression system, and freezing device using the compression system
WO2006090977A1 (en) 2005-02-23 2006-08-31 Lg Electronics Inc. Capacity varying type rotary compressor and refrigeration system having the same
JP2006300048A (ja) 2005-03-24 2006-11-02 Matsushita Electric Ind Co Ltd 密閉型圧縮機
CN100404867C (zh) * 2005-03-24 2008-07-23 松下电器产业株式会社 转子式密闭压缩机
JP2006291799A (ja) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd 密閉型ロータリ圧縮機
KR100726454B1 (ko) * 2006-08-30 2007-06-11 삼성전자주식회사 로터리 압축기
DE102006058839A1 (de) * 2006-12-13 2008-06-19 Pfeiffer Vacuum Gmbh Schmiermittelgedichtete Drehschiebervakuumpumpe
JP4251239B2 (ja) * 2007-07-25 2009-04-08 ダイキン工業株式会社 密閉式圧縮機
KR101268612B1 (ko) * 2008-11-17 2013-05-29 엘지전자 주식회사 주파수 가변 압축기 및 그 제어 방법
US9267504B2 (en) 2010-08-30 2016-02-23 Hicor Technologies, Inc. Compressor with liquid injection cooling
CA2809945C (en) 2010-08-30 2018-10-16 Oscomp Systems Inc. Compressor with liquid injection cooling
JP5807175B2 (ja) * 2011-03-10 2015-11-10 パナソニックIpマネジメント株式会社 ロータリ圧縮機
KR101870179B1 (ko) * 2012-01-04 2018-06-22 엘지전자 주식회사 두 개의 편심부를 갖는 로터리 압축기
CN103321907B (zh) * 2012-03-22 2016-07-06 广东美芝制冷设备有限公司 旋转式压缩机
CN103557159B (zh) * 2013-10-11 2016-04-20 广东美芝制冷设备有限公司 旋转式压缩机
CN104729130B (zh) * 2013-12-24 2017-05-10 珠海格力电器股份有限公司 空调系统及空调系统的控制方法
CN105444474B (zh) * 2014-07-30 2018-02-09 珠海格力节能环保制冷技术研究中心有限公司 制冷循环装置
WO2017031669A1 (zh) * 2015-08-24 2017-03-02 广东美芝制冷设备有限公司 旋转式压缩机和具有其的冷冻循环装置
CN105422450A (zh) * 2015-12-07 2016-03-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机及减小压缩机泄漏和磨损的控制方法
CN108087272B (zh) * 2017-11-30 2019-12-27 珠海格力电器股份有限公司 压缩机及具有其的空调器
JP7225987B2 (ja) * 2019-03-20 2023-02-21 株式会社富士通ゼネラル ロータリ圧縮機
JP7225988B2 (ja) * 2019-03-20 2023-02-21 株式会社富士通ゼネラル ロータリ圧縮機
US11009240B2 (en) * 2019-04-01 2021-05-18 Shenzhen Keku Technology Co., Ltd. Air conditioner
KR102238551B1 (ko) * 2019-06-25 2021-04-08 엘지전자 주식회사 압축기
CN110776967B (zh) * 2019-11-13 2021-03-02 新奥(舟山)液化天然气有限公司 一种液态天然气分离回收装置
KR102460005B1 (ko) * 2021-02-23 2022-10-26 경일대학교산학협력단 냉방기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063093U (ja) * 1983-10-06 1985-05-02 三洋電機株式会社 多気筒回転圧縮機の容量制御装置
JPH01247786A (ja) * 1988-03-29 1989-10-03 Toshiba Corp 2シリンダ型ロータリ式圧縮機
JPH0420751A (ja) * 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
JPH04241791A (ja) * 1991-01-10 1992-08-28 Toshiba Corp 多気筒型回転圧縮機
JP2803456B2 (ja) * 1991-10-23 1998-09-24 三菱電機株式会社 多気筒回転式圧縮機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612085A (en) * 1979-07-12 1981-02-05 Sanyo Electric Co Ltd Capacity controller for multicylinder rotary compressor
JPS6063093A (ja) 1983-09-19 1985-04-11 株式会社東芝 洗濯機
KR900003716B1 (ko) * 1986-09-30 1990-05-30 미츠비시 덴키 가부시키가이샤 다기통 회전식 압축기
JPH01193089A (ja) * 1988-01-29 1989-08-03 Toshiba Corp ロータリコンプレッサー
JP2768004B2 (ja) * 1990-11-21 1998-06-25 松下電器産業株式会社 ロータリ式多段気体圧縮機
US5733112A (en) * 1993-12-08 1998-03-31 Samsung Electronics Co., Ltd. Rotary compressor having a roller mounted eccentrically in a cylindrical chamber of a rotatable cylinder
JP3370046B2 (ja) * 2000-03-30 2003-01-27 三洋電機株式会社 多段圧縮機
JP4343627B2 (ja) 2003-03-18 2009-10-14 東芝キヤリア株式会社 ロータリ式密閉形圧縮機および冷凍サイクル装置
KR20040100078A (ko) * 2003-05-21 2004-12-02 삼성전자주식회사 능력가변 회전압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063093U (ja) * 1983-10-06 1985-05-02 三洋電機株式会社 多気筒回転圧縮機の容量制御装置
JPH01247786A (ja) * 1988-03-29 1989-10-03 Toshiba Corp 2シリンダ型ロータリ式圧縮機
JPH0420751A (ja) * 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
JPH04241791A (ja) * 1991-01-10 1992-08-28 Toshiba Corp 多気筒型回転圧縮機
JP2803456B2 (ja) * 1991-10-23 1998-09-24 三菱電機株式会社 多気筒回転式圧縮機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073048A1 (ja) * 2005-01-04 2006-07-13 Toshiba Carrier Corporation 冷凍サイクル装置及びロータリ式密閉型圧縮機
JPWO2006073048A1 (ja) * 2005-01-04 2008-06-12 東芝キヤリア株式会社 冷凍サイクル装置及びロータリ式密閉型圧縮機
JP4700624B2 (ja) * 2005-01-04 2011-06-15 東芝キヤリア株式会社 冷凍サイクル装置及びロータリ式密閉型圧縮機
WO2006090979A1 (en) * 2005-02-23 2006-08-31 Lg Electronics Inc. Capacity varying type rotary compressor
CN101052808B (zh) * 2005-02-23 2011-05-04 Lg电子株式会社 容量变化型旋转式压缩机
WO2008062789A1 (fr) * 2006-11-22 2008-05-29 Toshiba Carrier Corporation Compresseur rotatif et dispositif de cycle de réfrigération
JPWO2008062789A1 (ja) * 2006-11-22 2010-03-04 東芝キヤリア株式会社 ロータリコンプレッサ、及び冷凍サイクル装置

Also Published As

Publication number Publication date
US20060093494A1 (en) 2006-05-04
EP1655492A1 (en) 2006-05-10
JP4447859B2 (ja) 2010-04-07
CN1816697A (zh) 2006-08-09
US7290994B2 (en) 2007-11-06
JP2005009455A (ja) 2005-01-13
CN100451340C (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
WO2004113731A1 (ja) ロータリ式密閉形圧縮機及び冷凍サイクル装置
EP1617082B1 (en) Multicylinder rotary compressor and compressing system and refrigerating unit provided with same
JP4700624B2 (ja) 冷凍サイクル装置及びロータリ式密閉型圧縮機
JP2004301114A (ja) ロータリ式密閉形圧縮機および冷凍サイクル装置
WO2005061901A1 (ja) 冷凍サイクル装置
JP2010163927A (ja) 多気筒回転式圧縮機および冷凍サイクル装置
JP4594301B2 (ja) 密閉型回転式圧縮機
JP2006207559A (ja) 冷凍サイクル装置およびロータリ式圧縮機
JP2007146747A (ja) 冷凍サイクル装置
KR100620044B1 (ko) 로터리 압축기의 용량 가변 장치
JP2007146663A (ja) 密閉型圧縮機および冷凍サイクル装置
CN109154296B (zh) 封闭式旋转压缩机以及冷冻空调装置
JP2003254276A (ja) ロータリコンプレッサ
KR101328229B1 (ko) 로터리식 압축기
JP3291472B2 (ja) 回転式圧縮機
JP2017172346A (ja) スクロール圧縮機、及び、空気調和機
JP2009074445A (ja) 2気筒回転式圧縮機および冷凍サイクル装置
EP2322804B1 (en) Multiple-stage compressor
JP4523902B2 (ja) 2シリンダ形ロータリ圧縮機および冷凍サイクル装置
JP2007154680A (ja) 冷凍サイクル装置
JP4024056B2 (ja) ロータリコンプレッサ
JP5588903B2 (ja) 多気筒回転圧縮機と冷凍サイクル装置
US8651841B2 (en) Rotary compressor with improved connection
KR100677527B1 (ko) 로터리 압축기
JP2005344683A (ja) 密閉型圧縮機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004746171

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11302393

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5882/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004818640X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 11302393

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004746171

Country of ref document: EP