WO2004105240A9 - 同調装置及びそれを用いた電波修正時計 - Google Patents

同調装置及びそれを用いた電波修正時計

Info

Publication number
WO2004105240A9
WO2004105240A9 PCT/JP2004/007211 JP2004007211W WO2004105240A9 WO 2004105240 A9 WO2004105240 A9 WO 2004105240A9 JP 2004007211 W JP2004007211 W JP 2004007211W WO 2004105240 A9 WO2004105240 A9 WO 2004105240A9
Authority
WO
WIPO (PCT)
Prior art keywords
tuning
circuit
capacitor
tuning circuit
radio
Prior art date
Application number
PCT/JP2004/007211
Other languages
English (en)
French (fr)
Other versions
WO2004105240A1 (ja
Inventor
Takashi Ihara
Original Assignee
Citizen Watch Co Ltd
Takashi Ihara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd, Takashi Ihara filed Critical Citizen Watch Co Ltd
Priority to CN2004800053395A priority Critical patent/CN1754313B/zh
Priority to JP2005506395A priority patent/JP4611892B2/ja
Priority to EP04745352A priority patent/EP1630960A4/en
Priority to US10/549,456 priority patent/US7583942B2/en
Publication of WO2004105240A1 publication Critical patent/WO2004105240A1/ja
Publication of WO2004105240A9 publication Critical patent/WO2004105240A9/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/08Setting the time according to the time information carried or implied by the radio signal the radio signal being broadcast from a long-wave call sign, e.g. DCF77, JJY40, JJY60, MSF60 or WWVB
    • G04R20/10Tuning or receiving; Circuits therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • G04R60/06Antennas attached to or integrated in clock or watch bodies
    • G04R60/10Antennas attached to or integrated in clock or watch bodies inside cases
    • G04R60/12Antennas attached to or integrated in clock or watch bodies inside cases inside metal cases
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/10Tuning of a resonator by means of digitally controlled capacitor bank

Definitions

  • the present invention relates to a small and high-performance tuning device for receiving radio waves and the like, and to an improvement in a receiving system of a radio-controlled timepiece using the same.
  • an electronic tuning circuit used for an electronic tuner of a receiver or a transmission circuit of a transmitter generally uses a variable capacitance diode, and controls an applied voltage to the variable capacitance diode to obtain an equivalent electrostatic capacitance.
  • the tuning frequency is varied by changing the capacitance.
  • This method has the advantages that the variable capacitance diode is small and inexpensive, and that the tuning frequency can be easily varied by controlling the applied voltage, so that a tuner and a transmission circuit can be realized in a small size and at low cost.
  • the variable capacitance diode uses the depletion layer of the PN junction of the semiconductor and has a leakage current, the Q value of the tuning circuit cannot be increased. Also, since the Q value changes with the change in capacitance, it is difficult to realize a stable tuning circuit.
  • the variable capacitance range of the variable capacitance diode is limited, it is difficult to vary the tuning frequency over a wide range.
  • variable capacitance diodes that can take the binary state of the maximum capacitance value and the minimum capacitance value are formed on the semiconductor substrate, and each of the variable capacitance diodes is also placed on the semiconductor substrate.
  • a proposal for turning on and off a bias voltage by a switching element formed in the above-described manner and varying the equivalent capacitance is disclosed in, for example, the claims of Japanese Patent Application Laid-Open No. 57-97877 or the third specification of the same. This is shown in the figures and the like.
  • variable capacitance diodes formed on the semiconductor substrate use the depletion layer of the PN junction as described above, there is a leakage current, and the Q of the tuning circuit cannot be increased beyond a certain level. It is difficult to realize a stable tuning circuit.
  • a negative power supply is required to generate this bias voltage, which is a major factor such as an increase in the number of components of the tuning circuit and an increase in cost.
  • a plurality of PN junctions are formed on one semiconductor substrate to realize a variable capacitance diode.However, in order to prevent the electric influence between adjacent variable capacitance diodes and suppress the change in Q, It is necessary to form an insulating region between the variable capacitance diodes and to electrically separate them, which increases the number of semiconductor substrate manufacturing processes, which causes a reduction in yield and an increase in cost.
  • an object of the present invention is to solve the above-mentioned problems, and to achieve a radio wave which is excellent in stability, has a wide tuning frequency variable range, and can be miniaturized by combining a semiconductor switch and a capacitor having extremely low leakage current.
  • An object of the present invention is to provide a tuning device suitable for a receiving circuit of a corrected clock and a radio-controlled clock using the same.
  • the present invention employs the following basic technical configuration to achieve the above object.
  • the tuning circuit of the present invention is basically connected in series with a semiconductor substrate having a plurality of semiconductor switches and switch control means for controlling opening and closing of the semiconductor switches, and the plurality of semiconductor switches, respectively.
  • the tuning frequency of the tuning circuit is varied, and more specifically, a plurality of semiconductor switches and a plurality of semiconductor switches respectively connected in series with the plurality of semiconductor switches.
  • the switch control means is connected to the plurality of first capacitors in response to a receiving station selection instruction signal of a standard radio wave including time information, the coils being connected in parallel with each other.
  • the total capacitance of the plurality of first capacitors is varied, and the tuning frequency of the tuning circuit formed by the plurality of first capacitors and the coil is changed.
  • the second capacitor is provided on or outside the semiconductor substrate separately from the first capacitor group. It is also preferable that a second capacitor having a fixed capacitance or a variable capacitance connected to the coil unit be provided in parallel with the one capacitor.
  • the second capacitor be configured to be controlled differently from the control that is received by the first capacitor.
  • the control of the second capacitor can be appropriately performed.
  • at least the control of the second capacitor can be performed.
  • a plurality of capacitors can be arbitrarily switched by opening and closing a semiconductor switch, so that the variable capacitance range of the condenser can be widened. As a result, a wide tuning frequency range of the tuning circuit can be secured. You can do it.
  • the plurality of capacitors are formed on the semiconductor substrate.
  • the number of components of the capacitor can be reduced, the size of the tuning circuit can be reduced, and the manufacturing process can be simplified.
  • the plurality of capacitors formed on the semiconductor substrate are capacitors formed of a film using an appropriate dielectric including an oxide film, a nitride film, and the like on the semiconductor substrate.
  • the leakage current of the capacitor can be made extremely small, and a tuning device with excellent stability can be realized.
  • At least one of the semiconductor switches is disposed outside the semiconductor substrate. It is characterized in that it is connected to a capacitor.
  • the semiconductor device is characterized in that the ON resistance of the semiconductor switch is smaller than the impedance of the capacitor connected in series to the semiconductor switch.
  • the optimum ON resistance of the semiconductor switch can be selected according to the capacitance of the connected capacitor, so that the size of the semiconductor substrate can be reduced and a highly sensitive tuning device can be realized. You can do it.
  • the semiconductor switch is characterized in that the OFF resistance of the semiconductor switch is larger than the impedance of the capacitor connected in series to the semiconductor switch.
  • the resistance value of the resistor section used in the amplifier circuit section connected to the tuning circuit is set to be larger than the impedance of the tuning capacitor provided in the tuning circuit. It is also preferable that the gain of the antenna can be further improved.
  • a total value of the capacitance of the plurality of capacitors is not more than 960 pF.
  • the size of the semiconductor substrate having a plurality of built-in capacitors can be reduced to about 2 mm ⁇ 1.6 mm, and the mounting efficiency can be improved.
  • the inductance of the coil is 0.44 mH or more.
  • the tuning circuit of the present invention when used as tuning means of a radio-controlled timepiece, if the total capacitance of the plurality of capacitors is 9600 pF or less, the highest frequency of the standard radio wave (77..5 KHz) can be tuned. Further, the invention is characterized in that the inductance of the coil is 400 OmH or less. Accordingly, when the tuning circuit of the present invention is used as tuning means of a radio-controlled timepiece, if the parasitic capacitance of the semiconductor substrate to the mounting of the semiconductor substrate is about 4 pF, the lowest frequency of the standard radio wave ( 40 KHz) can be tuned.
  • the radio-controlled timepiece includes: the tuning circuit; control means for controlling the tuning circuit; inputting a standard radio wave received by the tuning circuit to correct time; and displaying time information from the control means. And display means for performing the operation.
  • the variable range of the tuning frequency is wide, and it is possible to receive the standard radio wave with high sensitivity and stability.
  • the present invention is characterized in that a metal outer cover made of a metal material is provided, and the tuning circuit, the control unit, and the display unit are covered with the metal outer cover so as to be mechanically protected.
  • the inductance of the coil of the tuning circuit covered with the metal sheath is 2 OmH or more.
  • the reception sensitivity of the tuning circuit can be maintained at a certain level or more, and a highly sensitive radio-controlled timepiece can be realized even with external metal components.
  • a plurality of standard radio waves are received by controlling opening and closing of the plurality of semiconductor switches of the tuning circuit and changing the tuning frequency.
  • a tuning storage means for storing tuning control information for varying the tuning frequency of the tuning circuit.
  • the information of the standard radio wave to be received can be stored in the tuning storage means, so that a plurality of standard radio waves can be arbitrarily selected and received.
  • the tuning storage means is provided inside the tuning circuit.
  • the information of the standard radio wave to be received can be stored in a part of the tuning circuit.
  • the manufacturing process and the adjusting process of the tuning circuit can be simplified.
  • the tuning storage means is a pattern cut means, a fuse ROM, or a nonvolatile memory.
  • FIG. 1 is a circuit diagram of a tuning circuit according to a first embodiment of the present invention.
  • FIG. 2 shows an equivalent circuit and an experimental circuit of the tuning circuit according to the first embodiment of the present invention
  • FIG. 2 (a) is an equivalent circuit of the tuning circuit when N—Tr is in an ON state.
  • (b) is the equivalent circuit of the tuning circuit when N-Tr is OFF.
  • Fig. 2 (C) is the experimental circuit of the tuning circuit to verify the effect of the ON resistance and OFF resistance of N-Tr. It is.
  • FIG. 3 is an impedance ratio-antenna gain characteristic diagram of the tuning circuit according to the first embodiment of the present invention.
  • Fig. 4 is a partially enlarged view of the impedance ratio-antenna gain characteristic of Fig. 3, and Fig. 4 (a) shows the ratio of antenna gain characteristic 20 using a 1800pF capacitor 10a of 0.01 or less.
  • Fig. 4 (b) is a partially enlarged view of the antenna gain characteristic 20 using the 1800 pF capacitor 10a and having a ratio of 250 or higher.
  • FIG. 5 is a circuit diagram of a tuning circuit according to the second embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing the relationship between a radio-controlled timepiece incorporating the tuning circuit of the present invention and a transmitting station for transmitting a standard radio wave.
  • FIG. 7 is a circuit block diagram of a radio-controlled timepiece according to a third embodiment of the present invention.
  • FIG. 8 is a schematic circuit diagram showing the relationship between the tuning circuit of the present invention and the receiving IC.
  • FIG. 8A is a schematic circuit diagram of the tuning circuit of the present invention and the amplifying circuit of the receiving IC. ) Is the figure
  • FIG. 8 (a) is an equivalent circuit
  • FIG. 8 (C) is another schematic circuit diagram of the tuning circuit of the present invention and an amplification circuit of the reception IC.
  • FIG. 9 is a circuit block diagram of a radio-controlled timepiece according to a fourth embodiment of the present invention.
  • FIG. 10 is a principle diagram showing an antenna tuning adjustment method of the radio-controlled timepiece according to the present invention.
  • FIG. 10 (a) is a principle diagram showing a contact type antenna tuning adjustment method.
  • (b) is a principle diagram showing a non-contact antenna tuning adjustment method.
  • FIG. 11 is an antenna output characteristic diagram obtained by the antenna tuning adjustment method of the radio-controlled timepiece of the present invention.
  • FIG. 12 is a diagram showing a configuration of a specific example of a tuning circuit in a conventional radio-controlled timepiece.
  • FIG. 13 is a circuit diagram of a tuning circuit according to another embodiment of the present invention.
  • FIG. 14 is a circuit diagram of a tuning circuit according to still another embodiment of the present invention.
  • FIG. 15 and FIG. 16 show the impedance ratio of the tuning circuit according to another embodiment of the present invention.
  • FIGS. 17 to 20 are diagrams illustrating an example of a method of measuring the Q value.
  • FIGS. 21 and 22 are diagrams illustrating an example of use of the radio-controlled timepiece according to the present invention.
  • FIG. 23 is a circuit diagram showing an example of a circuit in which a tuning circuit and an amplifier circuit according to the present invention are connected.
  • FIG. 24 is a graph showing the relationship between the ratio between the amplifier circuit resistance and the capacitor impedance and the antenna gain attenuation rate in the tuning circuit using the circuit of FIG.
  • FIG. 1 is a block diagram showing a configuration example of a tuning device 1 according to a first embodiment of the present invention, in which a plurality of semiconductor switches 5 are arranged in series with the plurality of semiconductor switches 5, respectively.
  • a plurality of first capacitors 4 connected to the semiconductor substrate 200 including switch control means 6 for controlling the opening and closing of the semiconductor switch 5; and a plurality of first capacitors 4 connected in parallel to the plurality of first capacitors 4.
  • a coil 201 constituting an antenna unit 2 connected to the antenna.
  • the switch control means 6 responds to a reception station selection instruction signal of a standard radio wave including time information, and the switch control means 6 operates the plurality of first capacitors.
  • the total capacitance of the plurality of first capacitors 4 is varied by individually opening and closing the individual semiconductor switches 5 connected to the plurality of first capacitors 4 and the corresponding coils 20. 1 to And it is configured so as to modify the tuning frequency of the tuning circuit 1 comprising I, for example, suitable for use in the receiving portion of the radio-controlled timepiece, the tuning circuit 1 is shown.
  • the configuration of the tuning circuit 1 according to the first embodiment of the present invention will be described in more detail.
  • reference numeral 2 denotes a receiving antenna having a coil 201 for receiving a radio wave, which is formed by winding a wire around a substantially rod-shaped high magnetic permeability material, and an antenna signal P 6 induced by the received radio wave. Output P7.
  • Reference numeral 3 denotes a tuning IC including a semiconductor substrate 200 made of one chip.
  • Reference numerals 4a to 4f denote a plurality of first capacitors formed on a part of the tuning IC 3, and a film made of a dielectric including an oxide film made of SiO 2 or a nitride film made of Si, N 4 or the like. It is formed using the body.
  • One terminals of the first capacitors 4 a to 4 f are commonly connected and connected to the antenna signal P 6 of the receiving antenna 2.
  • N-Tr N-channel MOS transistors
  • the drain terminals D of N_T r 5 a to 5 f are connected in series to the other terminals of the first capacitors 4 a to 4 f, and the source terminals S of N—T r 5 a to 5 f are connected in common.
  • GND which is an electrical ground.
  • GND which is an electrical ground may be connected to the antenna terminal P6.
  • Reference numeral 6 denotes a counter circuit as a switch control means, which has a terminal CL and an enable terminal EN as input terminals, operates as a binary counter for counting pulses from the terminal CL, and serves as an output terminal. It has count terminals Q0 to Q5.
  • P0 to P5 are count signals output from the count terminals Q0 to Q5 of the counter circuit 6, and are connected to the gate terminals G of N-Tr5a to 5f, respectively.
  • P8 is a clock signal connected to the clock terminal CL of the counter circuit 6
  • P9 is an enable signal connected to the enable terminal EN of the counter circuit 6.
  • P10 is a tuning signal as an output of the tuning circuit 1, and is connected to one terminal of the first capacitors 4a to 4f and the antenna signal P6 inside the tuning IC3. When the antenna signal P6 is connected to GND, the tuning signal P10 is connected to the antenna signal P7.
  • the operation of the tuning circuit 1 according to the first embodiment of the present invention will be described.
  • the enable signal P9 is at logic "0”
  • the counter circuit 6 keeps the reset state, and the count signals P0 to P5 output from the count terminals Q0 to Q5. Holds logical "0".
  • the potential of the gate terminal G of N—T r 5 a to 5 f becomes zero Therefore, all of the N-Tr 5 a to 5 f are turned off, the first capacitors 4 a to 4 f are disconnected from the receiving antenna 2, and no tuning circuit is formed.
  • the capacitance of the first capacitor 4a is 12.5 pF
  • the capacitance of the first capacitor 4b is 25 pF
  • the capacitance of the first capacitor 4c is 500 pF
  • the capacitance of the first capacitor 4 d is 100 pF
  • the capacitance of the first capacitor 4 e is 200 pF
  • the capacitance of the first capacitor 4 f is Suppose that it was formed at a part of tuning IC 3 as 400 pF.
  • a capacitance of minimum 0 pF to a maximum of 78.5 pF with a resolution of 12.5 pF is set in parallel with the receiving antenna 2.
  • This receiving antenna 2 is connected to the receiving antenna 2 via N—Tr 5 a to 5 f.
  • the tuning frequency (that is, resonance frequency) F of the tuning circuit formed by the first capacitors 4 a to 4 f is represented by L, where the inductance of the receiving antenna 2 is L, and the total static capacitance due to the connected capacitors 4 a to 4 f If the capacitance is C,
  • Equation 1 when the total capacitance of the capacitors 4a to 4f is changed, the tuning frequency F also changes.
  • the impedance of the tuning circuit formed by the receiving antenna 2 and the capacitors 4a to 4f becomes the maximum, so that when a received radio wave equal to the tuning frequency F arrives at the receiving antenna 2, the antenna signal A received radio wave equal to the tuning frequency F is selectively induced between P6 and P7 and output as a tuning signal P10.
  • the tuning circuit 1 of the present invention connects the first capacitors 4a to 4f to the receiving antenna 2 according to the number of pulses of the clock signal P8, the tuning frequency F can be arbitrarily varied. .
  • the number of the first capacitors 4 a to 4 f is six, and N—T r 5 a to 5 f that opens and closes the first capacitors 4 a to 4 f are also provided.
  • the number is six, but is not limited to this number. If a wider range of tuning frequencies is required, the number of the first capacitor and N-Tr can be increased, and a wider range is possible. If the tuning frequency is not required, the number of the first capacitor and N—Tr may be reduced. Also, the capacitance of each of the first capacitors 4a to 4f can be arbitrarily determined according to the required performance.
  • the tuning circuit 1 is constructed by appropriately combining a plurality of capacitors having the same capacitance or a plurality of capacitors having mutually different capacitances. Since it is easy to appropriately change the capacitance, the frequency of the radio wave that can be received can be freely set by arbitrarily changing the tuning frequency of the tuning circuit 1.
  • the control means By operating and driving 6, a tuning frequency that matches the frequency of the receivable standard radio wave can be set in the tuning circuit, and a desired standard radio wave can be easily received.
  • a plurality of tuning frequencies can be set in the tuning circuit 1 by a selected combination thereof, so that a plurality of standard capacitors are used. It can respond to the reception of radio waves.
  • an appropriate external operating means 202 is provided, and this is made to function as a receiving station selecting means.
  • the enable signal P 9 and the cut-off signal P 8 for controlling the drive of the control means 6 from the means 202 are automatically or manually input as the receiving station selection instruction signal, and While performing the selection of the combination of the first capacitors 4 in response to the signal, the total capacitance at which the resonance output of the output P 10 of the tuning circuit 1 is maximized is determined and set to that state or set in advance.
  • a plurality of reception frequencies and the condition for selecting the combination of the first capacitor 4 are stored in an appropriate storage means, and if the frequency of the standard radio wave in the country or region to be received is known in advance, the corresponding From the external operation means 202, By inputting the code number for selecting the wave number to the control means 6, the control means 6 reads out the combination condition of the first capacitor 4 corresponding to the predetermined frequency stored in the storage means. However, the combination selecting operation of the first capacitor 4 may be executed.
  • the conventional tuning system in the case of a radio clock capable of receiving electric pumps of 40 KHz, 60 KHZ in Japan, and 77.5 KHz in Germany, the conventional tuning system
  • the stem is connected as shown in the conventional example, C1, C4, and C7 are connected in advance, and C2, C3, C4, and C8 are rearranged to match each resonance frequency.
  • an antenna with an L value L1 of 2 mH tune with a commercially available capacitor with an accuracy of about ⁇ 5%, and set the Q value of the antenna to 100.
  • the largest capacitor capacitance C2 is 390pF, but depending on the accuracy of the capacitor, it does not fall within the previous frequency adjustment range. .
  • the largest capacitor capacitance C3 is 33 pF.
  • the resonance frequency is measured to confirm the resonance frequency.
  • the largest capacitor capacitance C5 is 220pF, but depending on the accuracy of the capacitor, it does not fall within the previous frequency adjustment range, so find the resonance frequency again, make corrections based on this result, and perform adjustment .
  • the resonance frequency is measured to confirm the resonance frequency.
  • the largest capacitor capacity C6 is 33 pF.
  • the largest capacitor capacity C8 is 680 pF.
  • the resonance frequency is measured to confirm the resonance frequency.
  • the total capacitance of the tuning circuit can be easily changed only by appropriately controlling the switch.
  • the resistance value of the semiconductor switch 5 and the first capacitor have It is known that by properly maintaining the relationship with the impedance dance, it is possible to improve the reception performance, so that the radio wave reception circuit having the tuning circuit is placed inside a watch with a metal exterior. It has been found that high-level reception performance can be demonstrated even if the device is incorporated.
  • the ON resistance of each of the semiconductor switches 5 is smaller than the impedance of each of the capacitors 4 connected in series to each of the semiconductor switches 5. It is desirable to set the OFF resistance of each of the semiconductor switches 5 to be larger than the impedance of each of the capacitors 4 connected in series to each of the semiconductor switches 5. Turned out to be desirable.
  • Fig. 2 shows an equivalent circuit and an experimental circuit of the tuning circuit 1 that constitutes the tuning device shown in Fig. 1.
  • Fig. 2 (a) shows that the N-Tr 5a to 5f of the tuning device 1 are ON.
  • Fig. 2 (b) shows an equivalent circuit when the N-Tr 5a to 5f of the tuning device 1 are in the OFF state.
  • reference numeral 4 denotes a capacitor representing the first capacitors 4a to 4f described above
  • reference numeral 5 denotes N--Tr representing N--Tr 5a to 5f.
  • the equivalent circuit at this time is as shown by arrow A.
  • 5on is the ON resistance of N-Tr5
  • 5s is the switch showing the ON operation of N-Tr5
  • the capacitor 4 is a capacitor representing the first capacitors 4a to 4f
  • N—Tr5 is a capacitor representing N—Tr5a to 5f.
  • N—Tr Since the gate terminal G of the N-Tr 5 has the same potential as the source terminal S, the N-Tr 5 is turned off.
  • the equivalent circuit at this time is as shown by arrow B.
  • 5 off represents the OFF resistance of N—Tr5
  • 5 s is a switch showing the OFF operation of N—Tr5
  • 4 is a capacitor connected in series with N-tr5. That is, since N-Tr5 is a semiconductor switch, its resistance value is not infinite even in the OFF state, and there is a certain amount of OFF resistance 5off.
  • the semiconductor switch N-Tr5 has an ON resistance of 5 on and an OFF resistance of 5 off, but the effect of the ON resistance of 5 on and the OFF resistance of 5 off on the tuning circuit 1 should be ignored. Can not do.
  • the chip size of the built-in tuning IC 3 also increases, which causes problems in cost increase and miniaturization as a tuning device.
  • the transistor size of N—Tr5 is increased, the stray capacitance and the parasitic capacitance are increased, and there is a problem that the variable range of the tuning frequency is reduced. Also 0 ?? resistance 5.
  • NT r ON resistance and OFF resistance should be selected to minimize the adverse effect on the tuning circuit, to increase the chip size of the tuning IC 3, and to be able to drive at low voltage. Is required.
  • the present applicant has conducted an experiment for examining the influence of the ON resistance and the OFF resistance of N—Tr as the semiconductor switch 5 from the above viewpoints and verifying the optimum value, and will be described below.
  • Figure 2 (C) shows an experimental circuit for verifying the optimal values of the ON resistance and OFF resistance of N_Tr.
  • This is a tuning circuit according to the configuration of the receiving antenna 2 and the plurality of capacitors 4 a to 4 f and N—Tr 5 a to 5 f of the tuning circuit 1 shown in FIG.
  • FIG. 2 (C) 2 is a receiving antenna equivalent to FIG. 10a to 10d are chip type or discrete type capacitors with low leakage current, are arranged with different capacitances, one terminal is connected in common and connected to one terminal of the receiving antenna 2 Is done.
  • l id is a switch corresponding to N—T r 5 a to 5 f in Fig. 1, and a type with extremely low ON resistance is selected.
  • Reference numeral 12 denotes a variable resistor corresponding to the ON resistance or the OFF resistance of N—Tr 5 a to 5 f in FIG. 1 and can change the resistance value in a wide range.
  • the variable resistor 12 can be placed arbitrarily between the capacitors 10a to 10d and the switches 1la to lId, but in Fig. 2 (C), the capacitor 10a and the switch 11a It is located between.
  • the capacitance of capacitor 10a is 1800 pF
  • the capacitance of capacitor 10b is 1000 pF
  • the capacitance of capacitor 10C is 560 pF
  • the capacitance of capacitor 10d is 100 pF Was set as
  • 13 is an exciting coil, which is arranged near the receiving antenna 2 and generates an AC magnetic field 14 corresponding to a received radio wave.
  • An AC signal source 15 supplies an AC signal of about 4 OKHz to generate an AC magnetic field 14 in the exciting coil 13.
  • Reference numeral 16 denotes a high input impedance AC voltmeter connected to both terminals of the receiving antenna 2, which measures an AC signal induced in the receiving antenna 2.
  • FIG. 2 (C) First, the resistance of the variable resistor 12 is made sufficiently small, and all the switches 11a to l1d are closed. Next, an AC signal is supplied to the exciting coil 13 by the AC signal source 15 to generate an AC magnetic field 14. As a result, an AC signal is induced in the receiving antenna 2 by the AC magnetic field 14, and the AC voltmeter 16 can measure the induced AC signal.
  • the frequency with the largest measured value of the AC voltmeter 16 is the tuning frequency based on the total capacitance of the receiving antenna 2 and the capacitors 10a to 10d. Then, record the value of AC voltmeter 16 at this tuning frequency.
  • the frequency of the AC signal source 15 is finely adjusted in the same manner as described above, and the value at which the measured value of the AC voltmeter 16 becomes the largest is stored.
  • the work of recording the value of the AC voltmeter 16 while sequentially increasing the resistance value of the variable resistor 12 is repeated, and the difference between the resistance value of the variable resistor 12 and the impedance of the capacitor 10a for the AC signal is repeated. Measure until the ratio becomes 1, and further increase the resistance value of the variable resistor 12 until the ratio becomes 10 times, 100 times, and 100 times, and read the measured value of the AC voltmeter 16 Record.
  • FIG. 3 is a graph summarizing the above measurement results and is an impedance ratio-antenna gain characteristic diagram.
  • the X-axis is the ratio between the resistance value of the variable resistor 12 and the impedance to the frequency of the capacitors 10a to 10d
  • the Y-axis is the antenna gain, which is the AC voltmeter 16
  • the output voltage of the AC signal source 15 is expressed as a reference 0 dB.
  • reference numeral 20 denotes an antenna gain characteristic when a variable resistor 12 is connected in series to a capacitor 180a of 180 pF.
  • the antenna gain is about 30 dB, which is relatively high. It shows the gain.
  • the antenna gain sharply decreases.
  • the antenna gain decreases most, and reaches --60 dB. Has reached.
  • reference numeral 21 denotes an antenna gain characteristic when a variable resistor 12 is connected in series to a capacitor 10b of lOOOpF. At this time, the variable resistor 12 connected to the capacitor 10a is removed, and the capacitor 10a is directly connected to the switch 11a.
  • the area where the resistance-to-capacitor impedance ratio is 1 or less indicates the area of the ON resistance of the semiconductor switch 5, and conversely, the area where the resistance Z The region where the impedance ratio is 1 or more indicates the region of the OFF resistance of the semiconductor switch 5.
  • the antenna gain characteristic 21 is the antenna gain characteristic when the variable resistor 12 is connected in series to the 560 pF capacitor 10 C, and the antenna gain characteristic 23 is the 100 pF capacitor. This is an antenna gain characteristic when a variable resistor 12 is connected in series to 1 Od.
  • a to l 0 d operate as an LC parallel resonance circuit, and the loss is small, so the antenna gain is large (for example, in the area where the ratio is 0.011 or less).
  • the variable resistor 12 acts as a loss in the LC parallel resonance circuit, so that the Q of the resonance circuit decreases, and as a result, the antenna gain decreases.
  • variable resistor 12 When the impedance ratio between the variable resistor 12 and the capacitor 10a is near 1, the variable resistor 12 has the largest effect on the capacitor .10a, so the loss of the LC parallel resonance circuit is also the largest. This results in the lowest antenna gain. However, when the impedance ratio of the variable resistor 12 and the capacitor 10a exceeds 1, the variable resistor 12 prevents the capacitor 10a from functioning as a capacitor, and the variable resistor 12 becomes a capacitor 10a.
  • the capacitor 10a is equivalent to being disconnected from the LC parallel resonance circuit, and C of the LC parallel resonance circuit becomes C 10 b ⁇ l 0 d 3 Only the total capacitance. As a result, the resonance frequency slightly shifts, but the loss due to the variable resistor 12 decreases and the antenna gain increases again.
  • the antenna gain of the tuning device be as high as possible, and that the tuning circuit has low loss and high Q value.
  • the values of the ON resistance 5 on and the OFF resistance 5 off of N-Tr5 are both determined so that the ratio to the impedance of the capacitor does not become close to 1. It must be. That is, it is preferable that the value of the ON resistance 5 on of N_Tr 5 as a semiconductor switch is smaller than the impedance of the capacitor 4 connected in series with N—Tr 5 (that is, the ratio is 1 or less). Similarly, it is preferable that the value of the OFF resistor 5 off of N—Tr 5 is larger than the impedance of the capacitor 4 connected in series to N—Tr 5 (ie, a ratio of 1 or more).
  • Fig. 4 is a partially enlarged view of the impedance ratio-antenna gain characteristic in Fig. 3.
  • Fig. 4 (a) shows the resistance Z capacitor impedance ratio of the antenna gain characteristic 20 using a 1800pF capacitor 10a.
  • Fig. 4 (b) is a partial enlarged view of the antenna with gain of 20 using the 1800pF capacitor 10a and the capacitor-impedance ratio of 250 or higher.
  • Fig. 15 is a partial enlarged view of the antenna gain characteristic 20 using a 1800pF capacitor 10a under the resistor-to-capacitor impedance ratio of 0.03 to 1
  • Fig. 16 shows the same 1800pF capacitor 10a.
  • FIG. 3 is a partially enlarged view of a resistance no-condensed impedance ratio 1 to 31 of an antenna gain characteristic 20 using a.
  • the antenna gain at the first place of the resistor / capacitor impedance ratio is 60 dB, and this ratio 1 is the same value as the variable resistor 12 and the capacitor impedance (ie, the least ideal ON resistance). Therefore, the antenna gain 60 dB is set as the worst antenna gain, and the resistance / capacitor impedance ratio at 58 dB, which is 2 dB amplified from the worst antenna gain, is about 0.6 (T1 point) from Fig. 15.
  • the impedance ratio between the resistor 5on and the capacitor 4 is preferably 0.6 or less.
  • the resistance / capacitor impedance ratio at 1 dB at 4 dB amplified from 1 dB is about 0.43 (point of T2). 4 (a) to 0.43 or less is more preferable.
  • the worst-case antenna gain – 10 dB amplified from –60 dB – resistance / capacitor impedance at –50 dB This is about 0.19 (point of T3), so the impedance ratio between the ON resistance 5on and the capacitor 4 is shown in Fig. 4 (a). More preferably, it is 0.19 or less.
  • the resistance / capacitor impedance ratio is about 0.03 (point of T4), so the impedance ratio between the ON resistance 5on and the capacitor 4 is shown in Fig. 4 (a). To 0.03 or less.
  • the antenna gain at the 0.001 resistor Z capacitor impedance ratio is 19.5 dB, and this ratio of 0.001 is equivalent to a variable resistance of 12 forces; It is close (ie, ideal ⁇ N resistance). Therefore, the antenna gain—29.5 dB is determined as the ideal antenna gain (arrow C), and the antenna gain is attenuated by 3 dB from the ideal antenna gain—32.5 dB. From FIG. 4 (a), the impedance is about 0.0084 (point of N3), so the impedance ratio between the ON resistance 5 on and the capacitor 4 is preferably 0.0084 or less.
  • the ideal antenna gain _ attenuated by 2 dB from 29.5 dB — 31.5 dB the resistance Z capacitor impedance ratio is about 0.0057 (point of N2), so ON As shown in FIG. 4A, the impedance ratio between the resistor 5 on and the capacitor 4 is more preferably not more than 0.0057. In addition, the ideal antenna gain was attenuated by 1 dB from 29.5 dB. The resistance Z at 30.5 dB
  • the antenna gain at the top of the resistor / capacitor impedance ratio is 60 dB, and this ratio 1 is a value where the variable resistor 12 and the capacitor impedance are equal (that is, the least ideal ON resistance). . Therefore, the antenna gain — 60 dB is defined as the worst antenna gain, and the resistance / capacitor impedance ratio at 58 dB obtained by amplifying 2 dB from the worst antenna gain is 2.8 (Fig. 16) (T5 point).
  • the impedance ratio between the ON resistance 5on and the capacitor impedance 4 is preferably 2.8 or more.
  • the worst antenna gain from 60 dB to 4 dB amplified from 1 dB to 56 dB is the resistance ⁇ ⁇ ⁇ ⁇ ⁇ capacitor impedance ratio, which is 3.9th (point of T6), so the ON resistance 5 on and the impedance ratio of capacitor 4 4 (a) is more preferably 3.9 or more.
  • the resistance / capacitor impedance ratio at 10 dB amplified from 1 dB to 50 dB is the ninth (point of T7), so the impedance ratio between the ON resistance 5 on and the capacitor 4 is shown in Fig. 4 ( It is more preferable that the number is from a) to 9 or more.
  • the resistance / capacitor impedance ratio is 31st (point of T8). From (a), it is more preferably 31 or more.
  • —26.2 dB is defined as an ideal antenna gain (arrow D), and the resistance / capacitor impedance ratio at 29.2 dB, which is attenuated by 3 dB from the ideal antenna gain, is shown in Fig. 4. Since it is about 300 (point of F3) from (b), the impedance ratio of the OFF resistor 5 off and the capacitor 4 is preferably 300 or more.
  • the ideal antenna gain was attenuated by 2 dB from 26.2 dB—the resistance-capacitor impedance ratio at 28.2 dB is about 450 (point of F2) from Fig. 4 (b). More preferably, the impedance ratio between the F resistor 5 off and the capacitor 4 is 450 or more.
  • the impedance ratio of the resistor / capacitor at 17.2 dB attenuated by 1 dB from the ideal antenna gain of 16.2 dB is 900th (point F1) from Fig. 4 (b). Therefore, the impedance ratio between the OFF resistance 5 off and the capacitor 4 is more preferably 900 or more.
  • the tuning circuit 1 As described above, from the experimental results of ON resistance and OFF resistance of N-Tr as a semiconductor switch shown in Fig. 2 (C), setting each ON resistance and OFF resistance to preferable values
  • the sensitivity and selectivity of the tuning circuit 1 according to the first embodiment of the present invention shown in FIG. 1 can be improved.
  • an N-channel MS transistor is used as the semiconductor switch 5.
  • the present invention is not limited to this type of transistor, and a P-channel MOS transistor may be used.
  • the transmission gate may be a combination of a pair of N-channel and P-channel MOS transistors, or may be a bipolar transistor.
  • the transistor size of N—Tr 5 a to 5 f in FIG. 1 can be minimized by selecting the ON resistance based on the above criteria.
  • the capacitance of the capacitor 4a is 12.5.pF, but this impedance is about 300 ⁇ when the frequency is 40 KHz.
  • the ON resistance of 2.5 ⁇ in N-Tr 5 a to 5 f transistors can be realized by a sufficiently small transistor size.
  • the capacitor 4 f having the largest capacitance is 400 pF, but its impedance is about 10 ⁇ when calculated in the same way.
  • the resistance-capacitor impedance ratio is 0.0084, its ON resistance is 84 ⁇ . This The ON resistance of 84 ⁇ can be realized sufficiently if a certain size is secured in the ⁇ -Tr 5 a to 5 f transistor.
  • the transistor size of the N-Tr as the semiconductor switch 5 can be selected to a minimum according to the capacitance of the capacitor 4 connected in series, so that the chip size of the tuning IC 3 is made as small as possible. It can be designed to be small, and can achieve cost reduction and downsizing of the tuning device.
  • the transistor size of N-T1 can be reduced, the parasitic capacitance and stray capacitance caused by N-Tr can be reduced to a minimum, and the capacitance can be varied from a very small to a large capacitance.
  • a tuning device having a tuning circuit can be realized.
  • the OFF resistance of 90 ⁇ is a value that can be sufficiently realized even with a low-voltage power supply.
  • the capacitors 4 a to 4 f built in the tuning IC 3 are capacitors using an oxide film made of SiO 2 or the like as a dielectric, as compared with a capacitor using a depletion layer, As a result, the leakage current is extremely low, making it an excellent capacitor with very low loss. As a result, the Q of the tuning circuit formed by the receiving antenna 2 can be increased, and a tuning device having high selectivity to received radio waves and excellent stability can be realized.
  • the chip size of the tuning IC 3 is extremely large considering the mounting efficiency. It is not possible to reduce the size, and the size of the chip size leads to an immediate cost increase. From these facts, it is preferable that the chip size of the tuning IC 3 is substantially equal to that of the chip part of the size of 210, that is, the size is 2 mm ⁇ 1.6 mm or less.
  • the capacitor is formed using an oxide film as a dielectric, and when the thickness of the oxide film is about 12 OA, the maximum total capacitance that can be formed within the chip size is 960. It is about 0 pF. Therefore, the total capacitance of the tuning IC 3 is preferably 9600 pF or less.
  • the capacitor according to the present invention is not limited to an oxide film, but may be a nitride film or another film made of a dielectric material.
  • the tuning IC 3 since the tuning IC 3 includes control means such as mounting pads, semiconductor switches, and counter circuits, if these occupied areas are subtracted, the area that can be used as a capacitor is about 1.6 mm X 1.2 mm. If the total capacitance is calculated from this area, it will be about 5760 pF. Therefore, it is preferable that the total capacitance of the tuning IC 3 is equal to or less than 5760 pF. In addition, the chip size of the tuned IC 3 needs to be further reduced in consideration of the spread of the potting resin for mounting and the thickness of the molding material. When calculated, it is about 960 pF. Therefore, the total capacitance of the tuning IC 3 is more preferably not more than 96 OpF.
  • the tuning circuit 1 When the tuning circuit 1 according to the first embodiment of the present invention is used as a tuning device of a radio-controlled timepiece, the transmitting station that outputs the highest transmission frequency among the standard radio waves received by the radio-controlled timepiece is based on Germany. It is a DCF 77 station, and its transmission frequency is 77.5 KHz. Further, as described above, it is preferable that the total capacitance of the tuning IC 3 be about 9600 pF at the maximum in consideration of the chip size and the like. When the inductance of the receiving antenna 2 is calculated from these two conditions, it is about 0.44 mH.
  • the inductance of the receiving antenna 2 is 0.44 mH or more. Further, as described above, the total capacitance of the tuning IC 3 is about 5760 pF in consideration of the area occupied by the mounting pads and control means. From this condition, if the inductance of the receiving antenna 2 is calculated, , About 0.73 mH. Therefore, the inductance of the receiving antenna 2 is preferably 0.73 mH or more. Further, as described above, the total capacitance of the tuning IC 3 is about 960 pF in consideration of the size of the spread of the potting resin for mounting the tuning IC 3 and the like. The calculated inductance is about 4.4mH. Therefore, the inductance of the receiving antenna 2 is more preferably 4.4 mH or more.
  • a transmitting station that outputs the lowest transmission frequency among standard radio waves received by the radio-controlled timepiece is a Japanese station. It is the Fukushima station and its transmission frequency is 40 KHz. Also, when all the capacitors built into the tuning IC 3 are disconnected from the receiving antenna 2, the total value of the parasitic capacitance and the stray capacitance inside the tuning IC 3 is extremely small, and is assumed to be about 4 pF. When the inductance of the receiving antenna 2 is calculated from these two conditions, it is about 4000 mH. Therefore, the inductance of the receiving antenna 2 is preferably 4000 mH or less.
  • the total capacitance when all the capacitors built in the tuning IC 3 are disconnected from the receiving antenna 2 is about 14 pF.
  • the inductance of the receiving antenna 2 is calculated from this condition, it is about 1 10 OiriH. Therefore, it is more preferable that the inductance of the receiving antenna 2 is equal to or less than l l O OmH.
  • the combination of a semiconductor switch and a capacitor with extremely low leakage current on one semiconductor substrate provides a high Q value, excellent stability, and a variable tuning frequency range.
  • a tuning device with a wide range can be realized.
  • the ON resistance and OFF resistance of the semiconductor switch are selected to be favorable values according to the impedance of the capacitor connected to the semiconductor switch, the loss of the tuning circuit can be further reduced to realize a highly sensitive tuning device. Can be made.
  • the transistor size can be kept to a minimum, so that the mounting area of the tuning IC as a semiconductor substrate can be reduced and the cost can be reduced. Minimize stray capacitance and parasitic capacitance of tuning IC As a result, it is possible to provide an excellent tuning device that can change the capacitance of the tuning circuit from a small capacity to a large capacity.
  • the plurality of capacitors of the tuning circuit are formed in the semiconductor substrate, external components can be significantly reduced, and the tuning device can be downsized and the manufacturing process can be simplified.
  • switching of a plurality of capacitors forming a tuning circuit can be realized by a MOS transistor or the like as a semiconductor switch, a power supply for the switching may be a single power supply common to other circuits, and other negative power supplies may be used. Since no power supply is required, the power supply circuit can be simplified, and it is highly effective in reducing power consumption, miniaturization, and cost reduction.
  • FIGS. That is, transmission of a network analyzer (4195 A) manufactured by Hured Packard (HP), a high-frequency probe (850 24 A) manufactured by Hured Packard (HP), and National (Matsushita Electric).
  • the antenna (test loop 75Q, VQ-085F) is connected as shown in Fig. 17 to form an antenna evaluation circuit, and the vicinity of the transmitting antenna (test loop 75Q, VQ-085F)
  • the high-frequency probe (85024A) that connects the antenna to be measured and the sample support section are placed in the sample support section.
  • the transmission antenna (test loop 75 Q, VQ- 08 5 F) Transmits a predetermined radio wave, detects the output of the antenna under test with the high-frequency probe (85024A), and evaluates the predetermined antenna with the network analyzer (4195A). It was The
  • the distance between the antenna structure under test 2 and the transmitting antenna was 11 cm away from the lower end of the transmitting loop antenna as shown in Fig. 18.
  • the measurement was performed with the receiving antenna for evaluation installed at the position where the antenna was measured, and at the same time, as shown in FIG.
  • test loop 75Q, VQ-085F the frequency of the radio wave transmitted from the transmitting antenna (test loop 75Q, VQ-085F) is determined by measuring the resonance antenna for 4 OKHz as shown in FIG. Description will be made with reference to 0.
  • the frequency is swept in the range of 20 to 60 kHz with a constant output from the network analyzer (4195 A) to the transmitting antenna (test loop 75Q, VQ-085F). Then, the output of the antenna under test 2 is monitored via the high frequency probe (8504A) to obtain the output result as shown in FIG.
  • the gain of the antenna is represented by the ratio of the amplitude of the input voltage to the transmitting antenna to the amplitude of the output voltage of the antenna under test.
  • the frequency with the highest antenna output is the resonance frequency (f 0).
  • the value of the above ratio at the time when the antenna output was the highest was defined as the antenna gain.
  • the level indicated by A is about 3 dB (1 2) lower than the highest point of the antenna output, and the frequencies giving the output levels are f 1 and f 2.
  • the value is calculated as follows.
  • ⁇ 3 values resonance frequency f 0 ⁇ (f 2-f 1)
  • f 1 and f 2 were obtained from the above measurement results, and the Q value was calculated from the equation of the resonance frequency f 0 ⁇ (f 2 ⁇ f 1).
  • FIG. 5 is a circuit diagram of a tuning apparatus according to a second embodiment of the present invention.
  • a plurality of semiconductor switches 5 and a plurality of first switches respectively connected in series with the plurality of semiconductor switches 5 are shown.
  • the capacitor 4 and the switch control means 6 for controlling the opening and closing of the individual semiconductor switches 5 in order to set the total capacitance of the plurality of first capacitors 4 to a predetermined value are one semiconductor substrate 20. 0, and each of the plurality of first capacitors 4 is connected to a coil unit 200 constituting an antenna unit 2 provided outside the semiconductor substrate 200 connected in parallel.
  • the tuning circuit 1 used for the receiving section of the configured radio-controlled timepiece is shown. That is, the tuning circuit 1 as the second specific example of the present invention is different from the tuning circuit 1 as the first concrete example described above, further, on the semiconductor substrate 200 or outside the semiconductor substrate 200. At least one second capacitor 7 having a fixed capacity or a variable capacity connected to the coil unit 201 in parallel with the first capacitor group 4 is provided.
  • the second capacitor 7 is controlled differently from the control received by the first capacitor 4.
  • the capacitance of the second capacitor 7 is different from the capacitance of each of the first capacitors 4.
  • the capacitance of the second capacitor is set to be considerably larger than the capacitance of the first capacitor.
  • At least one of the second capacitors 7 in the second specific example of the present invention has an appropriate switch means 5f, and the switch means 5f is controlled by the control means 5f. It is configured to be controlled by means 6.
  • the switch means 5f may be a semiconductor switch 5 provided on the semiconductor substrate 200, as in the first specific example, or the semiconductor substrate 5 It may be formed at a position distant from 200.
  • switch means 5f may be configured to be controlled by a control means different from the control means 6.
  • first capacitor 4 and the second capacitor 7 are configured to be driven by different control systems.
  • the configuration of the tuning circuit 1 in the second specific example of the present invention will be described in detail, but the same elements as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted. .
  • reference numeral 1 denotes a tuning circuit according to the second embodiment of the present invention.
  • Reference numeral 7 denotes a second capacitor disposed outside the tuning IC 3.
  • One terminal of the second capacitor 7 is connected to a tuning signal P10 output from the tuning IC 3, and the other terminal is N—Tr 5 f drain as a semiconductor switch inside IC 3 Connected to terminal D.
  • the second capacitor 7 is preferably a chip type ceramic capacitor, but the second capacitor 7 has a variable capacitance even if the capacitance is fixed. May be used. Needless to say, the second capacitor 7 may be formed on the semiconductor substrate 200.
  • the capacitance of the first capacitors 4 a to 4 e built in the tuning IC 3 is 12.5 pF for the capacitor 4 a, 25 pF for the capacitor 4 b, and 5 for the capacitor 4 c. 0 pF, capacitor 4 d is 100 pF, and capacitor 4 e is 200 pF.
  • the capacitance of the second capacitor 7 disposed outside the tuning IC 3 is set to 40 OpF.
  • the resolution and the maximum value of the capacitance that can be varied by N—Tr 5 a to 5 f are equal to those of the first embodiment described above, so that the performance as the tuning device does not change. Since the total capacitance of the first capacitor formed inside 3 is 3877.5 pF, which is halved, the chip size of the tuned IC 3 can be significantly reduced, and the mounting efficiency and cost can be improved. Down can be realized.
  • the number of the second capacitors disposed outside the tuning IC 3 is set to one.
  • the present invention is not limited to this. There may be.
  • all the first capacitors 4a to 4e formed inside the tuning IC 3 may be deleted, and all the capacitors may be arranged outside the tuning IC 3. As a result, the number of components of the tuning circuit 1 increases, but the chip size of the tuning IC 3 can be minimized, so that the cost of the tuning IC 3 can be greatly reduced.
  • FIG. 13 a more detailed example of the tuning circuit 1 in the second embodiment of the present invention will be described with reference to FIGS. 13 and 14.
  • FIG. 13 a more detailed example of the tuning circuit 1 in the second embodiment of the present invention will be described with reference to FIGS. 13 and 14.
  • the resonance frequency only needs to be obtained about three times, and only three capacitors and soldering are required to be connected at a time, so the adjustment and mounting process is shortened.
  • another second capacitor C 10 is provided between the antenna unit 2 and the wave tuning circuit 1 at a position away from the semiconductor substrate 200. It is of course also possible to adjust the frequency with this tuning system by adding to the frequency of one or more stations.
  • the second capacitors C8, C9, and C10 may be formed on the semiconductor substrate 200, or may be formed outside the semiconductor substrate 200. May be.
  • the tuning circuit 1 since the tuning circuit 1 according to the present invention has excellent antenna characteristics as described above, the tuning circuit 1 includes the metal part including the antenna part 2 made of a metal material. It can be used in the department.
  • FIG. 6 is an explanatory diagram showing a relationship between a radio-controlled timepiece 40 as a third embodiment of the present invention incorporating a tuning device including a tuning circuit 1 and a transmitting station 45 for transmitting a standard radio wave.
  • reference numeral 40 denotes an analog display type radio-controlled timepiece.
  • Reference numeral 41 denotes a metal exterior made of a metal material, and reference numeral 42 denotes a display unit as a display means. It is composed of Reference numeral 2 denotes an ultra-small receiving antenna, which is preferably disposed in the 12 o'clock direction inside the metal sheath 4 1.
  • 43 is a crown that corrects the time and date. 4 4 is a band to be worn on the arm of the user (not shown).
  • 45 is a transmitting station for transmitting the standard radio wave.
  • 46 is a transmitting antenna that emits standard radio waves
  • 47 is an atomic clock that measures the standard time with high precision.
  • Reference numeral 48 denotes a standard radio wave that carries the standard time as time information transmitted from the transmitting antenna 46.
  • the standard radio wave 48 usually consists of long waves of a number + KHz, and can be received within a radius of about 100 km. Note that the transmission frequency and time information format of the standard radio wave 48 are set individually by the transmitting station in each country or region.
  • the receiving antenna 2 is arranged at 12 o'clock inside the metal sheath 41, as described above. Point the 12 o'clock direction of the radio-controlled clock 40 to the direction where the transmitting station 45 is located, and operate the reception start button (not shown).
  • the radio-controlled timepiece 40 receives the standard radio wave 48, it decodes it using the decoding algorithm corresponding to the time information format of the standard radio wave 48, and outputs time information such as seconds, minutes, hours, and date, and leap year and Data on the presence or absence of daylight saving time is acquired, the acquired time information is measured, and the time information and date are displayed on the display unit 42. It is preferable that the reception of the standard radio wave 48 be performed periodically at a time when the reception environment is good with little noise such as late at night.
  • reference numeral 1 denotes a tuning circuit according to the first embodiment of the present invention.
  • 50 is a control unit as control means for controlling the radio-controlled timepiece 40.
  • Reference numeral 51 denotes a receiving IC included in the control unit 50, which includes an amplifier circuit (not shown), a filter circuit (not shown), a decoding circuit (not shown), and the like.
  • Reference numeral 52 denotes a microcomputer (hereinafter abbreviated as “microcomputer”) included in the control unit 50, which controls the entire radio-controlled clock 40.
  • Reference numeral 53 is a storage circuit as tuning storage means included in the control unit 50, and stores tuning control information.
  • Reference numeral 54 denotes a reference signal source included in the control unit 50.
  • the reference signal source includes a crystal oscillator (not shown) and outputs a reference signal of a radio-controlled timepiece.
  • Reference numeral 42 denotes a display unit as a display means of the above-described analog display system, which includes a drive motor, a wheel train, and the like (not shown).
  • a power supply unit 55 supplies necessary power to the tuning device 1, the display unit 42, the control unit 50, and the like.
  • the reception IC 51 of the control unit 50 receives the tuning signal P 10 output from the tuning IC 3 of the tuning circuit 1 and outputs a demodulated signal PI 1 converted into a digital signal.
  • the storage circuit 53 outputs tuning data P12 as tuning control information, and the reference signal source 54 outputs a reference signal P13 of 32,768 Hz.
  • the microcomputer 52 of the control unit 50 inputs the demodulated signal P11, the tuning data P12, and the reference signal P13, and receives the clock signal P8, the enable signal P9, and the time as time information.
  • the data P14 is output.
  • the display section 42 inputs the time data P14 as time information from the microcomputer 52 and displays the time.
  • the microcomputer 52 executes an initialization process to initialize each circuit block.
  • the time information inside the microcomputer 52 is initialized to AM 00: 00: 00, and the time data P 14 is output based on the initialized time information.
  • the second hand 4 2a, minute hand 4 2b, and hour hand 4 2C of the display unit 42 input the time data P 14 and move to the reference position AM 00: 00: 00.
  • the date display section 42d also moves to the reference position.
  • the reference signal source 54 starts outputting the reference signal P13.
  • the microcomputer 52 receives the reference signal P 13, internally divides the frequency, and generates time information based on the reference signal P 13. Timing is started, and time data P 14 is output based on the time information and transmitted to the display unit 42.
  • the display section 42 inputs the time data P14 and sequentially displays the hour, minute, second, and date. Also, the microcomputer 52 shifts to the time correction mode by an external operation or a timer at fixed time intervals, and starts the receiving operation to receive the standard radio wave.
  • the microcomputer 52 When the radio-controlled clock 40 enters the time correction mode, the microcomputer 52 outputs the enable signal P9 to the tuning IC 3 of the tuning circuit 1 and the reception IC 51 of the control unit 50.
  • the tuning IC 3 is released from the reset state by the enable signal P9, and enters a standby state for receiving the input of the clock signal P8.
  • the receiving IC 51 supplies power to the amplifier circuit (not shown), the filter circuit (not shown), and the decoder circuit (not shown) by the enable signal P9, and becomes a standby.
  • the microcomputer 52 accesses the storage circuit 53 to obtain tuning data P12 as tuning control information, and adjusts the tuning frequency of the tuning circuit 1 based on the tuning data P12. Outputs clock signal P8.
  • the tuning IC 3 of the tuning circuit 1 inputs the clock signal P8, and as described above, switches the capacitors 4a to 4f built in the tuning IC 3 according to the number of pulses of the clock signal P8. Switching and changing the tuning frequency with the receiving antenna 2 to select and receive the target standard radio wave.
  • the tuning IC 3 outputs the tuning signal P 10 and inputs it to the receiving IC 51.
  • the reception IC 51 receives and amplifies the tuning signal P 10, removes noise components and the like by a filter circuit, converts the signal into a digital signal by a decoding circuit, and outputs a demodulated signal P 11.
  • the microcomputer 52 that has received the demodulated signal PI 1 decodes the demodulated signal PL 1 using the internally stored decoding algorithm, obtains standard time information such as hour, minute, second, date, etc. The time information stored inside is corrected, and the main time and standard time are stored.
  • the display unit 42 inputs the time data P 14 corrected at the standard time, and corrects the displayed time.
  • the storage circuit 53 is a flash memory or other non-volatile memory that can be rewritten and is easy to use. However, a low-cost fuse ROM or a conductive pattern on a printed circuit board (not shown) on which the microcomputer 52 or the like is mounted is used. It may be a pattern printing means for processing a pattern.
  • the microcomputer 52 of the control unit 50 controls the tuning circuit 1 based on the tuning control information of the storage circuit 53, adjusts the tuning circuit of the tuning circuit 1, and sets the tuning frequency to Since it can be adjusted to the transmission frequency of the target standard radio wave with high accuracy, it is possible to receive the standard radio wave with high sensitivity and stability, and to provide a highly reliable radio-controlled timepiece.
  • the radio-controlled timepiece 40 of the present invention is covered with the metal sheath 41 as described above with reference to FIG. 6, and the tuning circuit 1, the display unit 42, the control unit 50, and the like are mechanically protected.
  • a plastic material that easily transmits radio waves as the exterior material, because the antenna gain can be increased and standard radio waves can be easily received.
  • plastic materials have low hardness, so that the exterior is easily damaged, and there is also a problem in waterproofness, and further, it is difficult to give a high-grade feeling.
  • the metal sheath has a major problem that antenna gain is reduced because radio waves are difficult to pass through.
  • the metal sheath 41 As a means of solving the decrease in antenna gain caused by using the metal sheath 41, it is effective to increase the number of turns of the conductor of the receiving antenna 2.
  • the reason for this is based on the principle of electromagnetic induction, and it is known that the electromotive force induced in the coil increases in proportion to the number of turns of the coil.
  • the use of the metal sheath significantly attenuates the magnetic field due to the standard radio wave to the receiving antenna 2 disposed inside the sheath, but by increasing the number of turns of the conductor of the receiving antenna 2, Since the electromotive force induced in the receiving antenna 2 can be increased, the attenuation of the magnetic field can be compensated and the decrease of the antenna gain can be prevented.
  • the applicant examined how much the number of turns of the conductor of the receiving antenna 2 should be increased under various conditions.
  • a capacitor that forms a tuning circuit in combination with the receiving antenna 2 for example, as shown in FIG. 1
  • the total capacitance of the capacitors 4a to 4f) and the minimum resolution of the capacitance need to be considerably reduced.
  • the tuning circuit 1 when the inductance of the receiving antenna 2 is 2 O m H and the tuning frequency of the tuning circuit is 77.5 KHz, which is the highest transmission frequency of the standard radio, the capacitor 4 a
  • the total capacitance of ⁇ 4 f is around 200 pF, and the minimum resolution needs to be around 1 pF.
  • the tuning device of the present invention reduces the stray capacitance and the parasitic capacitance inside the tuning IC 3 as described above. Since it can be reduced to the minimum, it is possible to form a sufficiently tuned circuit even if the inductance of the receiving antenna 2 is 2 OmH or more.
  • the radio-controlled timepiece according to the third embodiment of the present invention uses the metal exterior 41 that is resistant to damage to the exterior, has excellent waterproof properties, and can have a high-class appearance. Therefore, the effect is great in improving the quality of the radio-controlled watch 40 as a product.
  • the radio-controlled timepiece 40 of the present invention controls the tuning circuit 1 to vary the tuning frequency, and realizes optimal tuning frequency adjustment for the target standard radio wave.
  • the present invention can be applied as a standard radio wave selecting means for arbitrarily selecting a plurality of standard radio waves having different transmission frequencies.
  • the frequency of the tuning IC 3 can be received according to the transmission frequency of the intended standard radio wave. This makes it possible to easily realize a multi-channel compatible radio-controlled timepiece that arbitrarily selects and receives a plurality of standard radio waves.
  • FIG. 21 is a circuit block diagram of a radio-controlled timepiece that executes an example of a method of correcting the time information of the radio-controlled timepiece according to the present invention.
  • reference numeral 1 denotes a tuning circuit 1 as a receiving means including a receiving antenna 2 and a tuning IC circuit 3, which tunes to a receiving antenna 2 for receiving a standard radio wave and the receiving antenna 2.
  • a tuning IC circuit 3 comprising a capacitor for selectively receiving the standard radio wave, and the receiving IC 51 included in the control unit 50 includes an appropriate amplifying circuit, a filter circuit, and
  • It is composed of a detection circuit and the like.
  • the receiving circuit 51 receives the weak standard radio wave received by the receiving antenna 2 and the tuning IC 3, performs amplification and detection, and outputs a digitized demodulated signal P 11.
  • 52a is a decoder circuit as a decoding means, which receives the demodulated signal P11 and inputs the time and information format of the demodulated signal P11 by the decoding algorithm stored in the internal storage means 53. And outputs standard time data P52 as time information such as seconds, minutes, hours, and days, and a reception information signal P53 as reception information having a reception success / failure flag and a reception processing period flag.
  • the decoder circuit 52a digitally processes noise components and the like mixed into the demodulated signal P11, quantifies the reception level of the received standard radio wave, and outputs a reception level signal P54 as reception level information.
  • I do. 5 2b is an arithmetic circuit as arithmetic means, which receives the received information signal P 53 and the received level signal P 54 and encodes the transmitting station of the received standard radio wave, and codes the success or failure of the reception. , And performs arithmetic processing such as timing of reception processing time and encoding of reception level information, and outputs the result as reception information data P55.
  • Reference numeral 53 denotes a memory circuit as storage means, which stores the reception status of each transmitting station which has received and received the reception information data P55 as coded reception history information.
  • reception order determination circuit is a reception order determination circuit as reception order determination means, and a memory circuit 5 3 c
  • the reception history information stored in the receiving station is input via the reception information data P55, the reception order of the transmitting station to receive is determined, and the reception order data P56 is output.
  • Reference numeral 52d denotes a control circuit as control means, which inputs standard time data P52 and outputs time setting data P57.
  • control circuit 52d receives the reception information data P55 and the reception order data P56, and outputs a selection signal P58 for selecting a priority transmission station. Further, the control circuit 52d receives the reception information signal P53 and determines the success or failure of the reception operation based on the reception success / failure flag. Also, the control circuit 52d receives the information '' P55 and the reception order data P56, which are to be received from the transmitting station received last time or from the reception order determined by the reception order determination means. A transmitting station indicating signal P59 indicating the transmitting station of priority or the transmitting station currently receiving is output.
  • the tuning IC 3 of the tuning circuit 1, the receiving IC circuit 51, and the decoder circuit 52a receive the selection signal P58 from the control circuit 52d.
  • the tuning IC 3 switches the internal capacitor (not shown) by the selection signal P58, and changes the tuning frequency with the receiving antenna 2 to select the standard radio wave to be received.
  • the receiving IC circuit 51 switches circuit constants of an internal filter circuit (not shown), a detection circuit (not shown), and the like according to the selection signal P 58, and is selectively provided by the receiving antenna 2 and the tuning IC 3. Amplifies and detects weak received standard radio waves.
  • the decoder circuit 52a switches the above-described internal decoding algorithm in accordance with the selection signal P58, and decodes the time information format of the received standard radio wave.
  • Reference numeral 54 denotes a reference signal source having a crystal oscillator (not shown) therein, and outputs a reference signal “P13.”
  • Reference numeral 52 denotes a timekeeping circuit as timekeeping means. Input and set the accurate time information obtained from the standard time signal, and measure the time with the reference signal P 13, and output the time display signal P 61.
  • the display unit 42 includes a second hand, a minute hand, an hour hand, a date display unit, and the like as described above.
  • the display unit 42 has a mechanical transmission mechanism such as a motor and a train wheel (not shown). Is displayed. Further, the display section 42 receives the transmission station display signal P59 as necessary, and receives the signal based on the transmission station received last time or the reception order determined by the reception order determination circuit 52c. Priority transmitting station or currently receiving One of the transmitting stations is indicated by the second hand, minute hand, etc.
  • the transmitting station may be digitally displayed using a small liquid crystal panel or the like instead of the second hand and the minute hand.
  • Reference numeral 5 denotes a power supply, which comprises a primary battery or a secondary battery, and supplies power to each circuit block via a power supply line (not shown).
  • the decoder circuit 52a, the arithmetic circuit 52b, the reception order determination circuit 52c, the control circuit 52d, and the timekeeping circuit 52e which are greatly enclosed by a broken line, are a single chip microcontroller.
  • the present invention is not limited to the configuration of the embodiment shown in FIG. 21 since it can be configured by a computer and each function can be realized by firmware.
  • the memory circuit 53 is shown as being formed inside the control section 50, it may be formed outside the control section 50.
  • the reception level signal P54 representing the reception level information of the standard radio wave is generated by digital processing by the decoder circuit 21.
  • the present invention is not limited to this method. It may be generated by analog processing based on the electric field strength or the like of the received standard radio wave.
  • the control circuit 52d executes an initialization process to initialize each circuit block.
  • the timer circuit 52 e is initialized to AM 00: 00: 00, and the second hand, minute hand, and hour hand of the display section 42 are set to the reference position AM 0 by the time display signal P 61. Move to 0: 0 00: 0 00.
  • the date display also moves to the reference position.
  • the timing circuit 52e starts timing with the reference signal P13 from the reference signal source 54, and the display 42 starts the hand movement with the time display signal P61 from the timing circuit 52e. I do.
  • control circuit 52 d sequentially outputs the selection signal P 58
  • tuning circuit 1 receives the selection signal P 58 and switches the tuning frequency to be received
  • the decoder circuit 52 a also outputs the selection signal P 58.
  • the tuning circuit 1 finds a receivable standard wave as a result of searching for a standard wave, it outputs a demodulated signal PI1, and the decoder circuit 52a follows the selected decoding algorithm.
  • This demodulated signal PI1 is decoded, and if all of the demodulated signal P11 is successfully decoded, standard time data P52, a reception information signal P53, and a reception level signal P54 are output.
  • the demodulated signal P 11 obtained by demodulating the standard radio wave includes all time information in the period 1 of one minute, the time required for decoding the time information is one minute.
  • the decoding algorithm of the decoder circuit 52a desirably completes reception when decoding of the demodulated signal P11 is performed twice consecutively in order to improve decoding accuracy.
  • the required reception processing time is a minimum of 2 minutes.
  • the decoder circuit 52a may not be able to complete decoding due to the mixing of noise components in the standard radio wave or a decrease in electric field strength, etc., which may result in a decoding error. In this case, decoding may be performed every minute. The operation is repeated many times to complete reception.
  • the decoding algorithm of the decoder circuit 52a sets a limit on the reception processing time required for completion of reception, and if the decoding operation is repeated many times and the reception processing time exceeds the limit, the reception is regarded as unsuccessful and the standard The radio wave receiving operation ends.
  • the length of the reception processing time for decoding the demodulated signal P11 can be an important factor for grasping the presence / absence of a noise component of the received standard radio wave and the fluctuation of the electric field strength.
  • time setting data P57 consisting of, minute data, hour data, day data and the like.
  • the timekeeping circuit 52e inputs the time setting data P57 and sets it as time information, and continues timekeeping based on the time information.
  • the arithmetic circuit 52b receives the reception information signal P53 and the reception level signal P54 from the decoder circuit 52a, calculates the above-described reception processing time and the like, and converts the reception information data P55. Then, the memory circuit 53 inputs the reception information data P55 and stores it as reception history information of the transmitting station that has received and received.
  • FIG. 22 shows an example of the reception history information of the transmitting station that has been stored in the memory circuit 53 by the reception information data P55. That is, the reception history information of the N received transmission stations can be stored in the memory circuit 53, and the reception history information required for decoding the received transmission station name and the demodulated signal P11 as shown in the figure. It consists of the reception processing time and the reception level of the standard radio wave. Also, the reception information of the transmitting station received first is stored in address 1, but if the reception information of the transmitting station received next is stored, the reception information of the previously received transmitting station is stored. The added address is incremented by one and the address is shifted to address 2, and the reception information of the newly received transmitting station is always stored in address 1. If the number of received transmitting stations exceeds N, the (N + 1) th received information may be deleted, and N is an arbitrary value according to the storage capacity of the memory circuit 22. You can choose.
  • the number of transmitting stations that performed reception in Fig. 22 is 12 as an example, and the transmitting stations are JJY Fukushima station (Japan), JJY Kyushu station (Japan), DCF77 (Germany), WWV B (United States).
  • the reception information of the oldest receiving transmitting station is stored in the address 12, and the receiving information of the newest receiving transmitting station is stored in the address 1 as described above.
  • Address 4 shows an example of unsuccessful reception.
  • the column of the transmitting station that received address 4 stores the reception error code, and the reception processing time and reception level may be blank.
  • the reception history information stored in the memory circuit 53 is actually coded data.
  • the resistance value of the resistor used in the amplification circuit connected to the receiving circuit and the impedance of the tuning capacitor provided in the tuning device are used.
  • the relationship was also found to be an important factor, as was the relationship between the ON resistance or OFF resistance of the semiconductor switch and the impedance of the tuning capacitor described above. It is desirable that the resistance value of the resistor used in the amplifier circuit is set to be larger than the impedance of the tuning capacitor provided in the tuning device. That is, in this specific example, the resistance value of the resistor used in the amplifier connected to the receiving circuit is the impedance of the capacitor connected in series with the resistor used in the amplifier. It is set to be larger than desired.
  • the resistance value of the resistor used in the amplifier circuit is set to be at least 10 times the impedance of the tuning capacitor provided in the tuning device.
  • the following describes the tuning circuit 1 of the present invention and the inside of the receiving IC 51 of the radio-controlled clock 40.
  • FIG. 8 (a) is a schematic circuit diagram of the tuning circuit 1 and the amplifier circuit 80 of the receiving IC 51
  • FIG. 8 (b) is an equivalent circuit thereof
  • FIG. 8 (C) is the tuning circuit 1 and the receiving IC 5
  • FIG. 9 is a schematic circuit diagram of one other amplifier circuit 90.
  • reference numeral 70 denotes a tuning circuit schematically showing a part of the tuning circuit 1 of the present invention
  • reference numeral 71 denotes a receiving antenna
  • reference numeral 72 denotes a capacitor connected to the receiving antenna 71.
  • Reference numeral 73 denotes a resistor representing the ON resistance or the OFF resistance of the semiconductor switch that opens and closes the capacitor 72.
  • 80 is a first-stage amplifier circuit inside the receiving IC 51 of the radio-controlled timepiece of the present invention
  • 81 is a P-channel MOS transistor (hereinafter abbreviated as P-Tr)
  • 82 is N-T r
  • the P—Tr 81 and ⁇ —Tr 82 form an amplifier circuit having a C-MOS structure.
  • Reference numeral 83 denotes a bias resistor that receives a constant voltage source 84 and supplies a bias voltage to the gate terminal G of P—Tr 81.
  • Reference numeral 85 denotes a gate terminal G and a drain terminal D of N—Tr 82. Is a feedback resistance.
  • 86 and 87 are coupling capacitors for inputting the tuning signal P10 from the tuning circuit 70.
  • FIG. 8 (a) when a standard radio wave (not shown) arrives at the receiving antenna 71, the standard radio wave is selected by the resonance phenomenon between the receiving antenna 71 and the capacitor 72, and an electromotive force is generated.
  • the tuning signal P 10 is output.
  • the amplifier circuit 80 receives the tuning signal P10 and supplies it to the gate terminals G of P-Tr81 and NTr82 via the coupling capacitors 86 and 87 to amplify and output. Outputs signal P15.
  • FIG. 8 (a) when a standard radio wave (not shown) arrives at the receiving antenna 71, the standard radio wave is selected by the resonance phenomenon between the receiving antenna 71 and the capacitor 72, and an electromotive force is generated.
  • the tuning signal P 10 is output.
  • the amplifier circuit 80 receives the tuning signal P10 and supplies it to the gate terminals G of P-Tr81 and NTr82 via the coupling capacitors 86 and 87 to amplify and output.
  • Outputs signal P15 Here, an equivalent circuit
  • 80a is an equivalent circuit of the amplifier circuit 80, and the equivalent circuit 80a has a coupling capacitor 86 and a bias resistor 83 connected in series.
  • This is a circuit in which two series circuits in which feedback resistors 85 are connected in series are connected in parallel.
  • the equivalent circuit 80a is connected to the tuning circuit 70 by the tuning signal P10, depending on the circuit constant of the equivalent circuit 80a, the capacitor 72 of the tuning circuit 70 and the cup link capacitors 86, 87 Are connected in parallel.As a result, the tuning frequency of the tuning circuit 70 shifts, and the standard There is a problem that the wave frequency cannot be received correctly.
  • the bias resistance 83 and the feedback resistor 85 should be higher than the impedance of the coupling capacitors 86 and 87.
  • the impedance ratio between the bias resistor 83 and the feedback resistor 85 and the coupling capacitors 86 and 87 be as large as possible.
  • the amplifier circuit 80 is composed of P-Tr81 and N-Tr82, which are MOS type transistors, the input impedance is high and suitable as an amplifier circuit.
  • the input impedance of the amplifier circuit 80 is determined by the bias resistor 83 and the feedback resistor 85. Therefore, when using a metal exterior for the radio-controlled timepiece, it is preferable to increase the resistance values of the bias resistor 83 and the feedback resistor 85 as much as possible.
  • FIG. 8 (C) 90 is the receiving IC 51 of the radio-controlled timepiece of the present invention. It is the first stage amplifier circuit inside, 9 1 is a ⁇ , 9 2 is 1 ⁇ ⁇ 1: 9, and 9 3 is a P-Tr 9 1 and N-Tr 9 2 It is a feedback resistor that connects the gate terminal G and the drain terminal D.
  • the tuning circuit 70 is the same as that shown in FIG.
  • the amplifying circuit 90 does not have the coupling capacitors 86 and 87 which were in the amplifying circuit 80, and directly tunes the tuning signal P10 to the P-Tr91 and N_Tr92. Input to terminal G for amplification.
  • the input impedance of the amplifier circuit 90 depends on the feedback resistor 93.Equivalently, the feedback resistor 93 is connected in parallel to the tuning circuit 70. Become. Therefore, when the resistance value of the feedback resistor 93 is small, the loss of the tuning circuit 70 is increased, so that Q is reduced. As a result, the antenna gain is reduced and the selectivity is also reduced. For this reason, it is preferable that the feedback resistor 93 is about 10 times or more larger than the impedance of the capacitor 72 of the tuning circuit 70. As described above, the antenna gain and Q of the tuning device can be improved by considering the circuit configuration and circuit constants of the receiving IC connected to the tuning circuit 70, and a higher performance tuning device can be realized.
  • a radio-controlled timepiece using the same can be provided.
  • the present inventors have conducted an additional experiment on the relationship between the resistance value (feedback resistance and the like) used in the above-described amplifier circuit and the impedance of the tuning capacitor used in the antenna, and will be described below.
  • the experimental circuit used in this experiment was a circuit as shown in Fig. 23.
  • the antenna had an L value of 102mH
  • the tuning capacitor was 66pF
  • the amplification circuit resistance was 200K ⁇ when the resonance frequency was set to 61KHz.
  • the graph in Fig. 24 shows the attenuation ratio from the gain and the impedance ratio with the capacitor when there is no amplifier circuit resistance (when OPEN) when the resistance is varied to 33 M ⁇ .
  • the resistance / capacitor impedance ratio is 8.36 or less, the steepest slope occurs. Further, it is preferable that the resistance / capacitor impedance ratio, which has a more gentle slope, is 25.34 (about 25) or more. t Corrected paper cs3 ⁇ 49i) More preferably, it is desirable that the resistance / capacitor impedance ratio having a gentler slope is 172 (about 170) or more.
  • the tuning device is an embodiment in which the tuning circuit 1 according to the first embodiment of the present invention is incorporated in a radio-controlled timepiece 40, but is not limited thereto.
  • the tuning device 30 according to the second embodiment of the present invention may be incorporated to configure a radio wave correction clock.
  • the display unit 3 employs the analog display system.
  • the present invention is not limited to this, and the display unit 3 may employ a digital display system using digital display such as an LCD.
  • a radio-controlled timepiece with a combined display of analog and digital may be used.
  • reference numeral 100 denotes a tuning device having a built-in storage circuit 53 for storing tuning control information.
  • the microcomputer 52 outputs the address signal P 16 to the storage circuit 53 built in the tuning circuit 100.
  • the storage circuit 53 receives the address signal P16, reads out the tuning control information stored therein based on the address signal P16, and outputs the tuning data P12.
  • the tuning IC 1001 of the tuning circuit 100 has a conversion circuit (not shown) therein, and the conversion circuit inputs the tuning data P12 and outputs a clock signal for outputting a pulse according to the data.
  • the tuning frequency is adjusted by switching multiple capacitors built into the tuning IC 101, and the standard wave is received.
  • the other operations as the radio-controlled timepiece are the same as in the third embodiment, and will not be described.
  • the storage circuit 53 is arranged outside the tuning IC 101, but is not limited to this.
  • the storage circuit 53 is built in the tuning IC 101, and the tuning IC 10 1 may be constituted by one chip.
  • the storage circuit 53 is a flash memory or other non-volatile memory that can be rewritten and is easy to use, but a low-cost fuse ROM or a printed circuit board (not shown) on which the tuning IC 101 is mounted. It may be a pattern cutting means for processing the above conductive pattern.
  • the fourth embodiment of the present invention like the third embodiment, not only realizes adjustment of the tuning frequency optimally for the standard radio wave, but also selects a plurality of standard radio waves having different transmission frequencies. Can be applied as standard radio wave selection means It is.
  • the radio-controlled clock is controlled.
  • the functions of the control unit 50 and the tuning circuit 100 that receives the standard radio wave can be clearly separated, and the adjustment process of the tuning circuit can be simplified and the cost can be reduced. That is, the inductance of the receiving antenna 2 has individual differences due to manufacturing variations, and a plurality of capacitors incorporated in the tuning IC 101 also have individual differences due to manufacturing variations in IC.
  • the tuning circuit 100 if the tuning circuit 100 has a built-in memory circuit 53 for storing different tuning control information for each tuning circuit 100, the tuning circuit 100
  • the adjustment process of 0 can be simplified, the number of adjustment steps can be shortened, and furthermore, the tuning circuit 100 and the control unit 50 can be managed individually, so that the process management becomes easy.
  • the tuning device of the present invention is not limited to a radio-controlled timepiece, but can be widely applied to various electronic devices that transmit and receive radio waves.
  • a tuning device of the present invention and a method of adjusting the antenna tuning of a radio-controlled timepiece using the same will be described.
  • the capacitors are temporarily mounted on the tuning circuit, the tuning frequency is measured, and if the tuning frequency is shifted, mounting is performed.
  • a time-consuming and labor-intensive adjustment method was adopted, in which the removed capacitor was removed, and a capacitor with a different capacitance was re-mounted and the tuning frequency was measured.
  • the tuning device of the present invention and the radio-controlled timepiece using the same can adjust the antenna tuning in a short time and automatically.
  • the radio-controlled timepiece according to the present invention has a test mode in which the tuning frequency can be changed by external operation means provided outside the radio-controlled timepiece. .
  • FIG. 10 is a principle diagram showing an antenna tuning adjustment method of the radio-controlled timepiece
  • FIG. 10 (a) is a principle diagram showing a contact type antenna tuning adjustment method
  • FIG. 10 (b) is a principle diagram showing a non-contact type antenna tuning adjustment method.
  • reference numeral 40a denotes a radio-controlled timepiece similar to the third and fourth embodiments of the present invention, which has the tuning circuit 1 and the control unit 50 as described above. 1 has a receiving antenna 2 and a tuning IC 3.
  • the radio-controlled timepiece 40a includes an interface circuit (hereinafter abbreviated as IZF circuit) 110 as a means for transmitting control information from the outside.
  • An automatic adjustment device 111 automatically adjusts the antenna tuning of the radio-controlled timepiece 40a.
  • Reference numeral 1 12 denotes an excitation air-core coil, which is driven by AC signals P 20 a and P 20 b output from the automatic adjustment device 111 and outputs an AC magnetic field 113.
  • P21 is a control signal output from the automatic adjustment device 111, and is input to the control unit 50 via the IZF circuit 110.
  • the excitation air core coil 112 is arranged close to the receiving antenna 2 of the radio-controlled timepiece 40a.
  • the automatic adjusting device 1 1 1 1 outputs AC signals P 20 a and P 20 b to drive the excitation air core coil 1 12.
  • the AC signals P 20a and P 20b of 60 KHz are output.
  • the automatic adjustment device 111 outputs the control signal P 21 to operate the control unit 50 via the IZF circuit 110, and the control unit 50 sends a clock to the tuning IC 3 according to the control signal P 21.
  • Outputs signal P 8 sequentially.
  • the tuning IC 3 receives the clock signal P8, sequentially switches the built-in capacitors according to the number of pulses of the clock signal P8, and varies the tuning frequency.
  • receiving antenna 2 receives AC magnetic field 113 from exciting air core coil 112, induces electromotive force by electromagnetic induction, and outputs antenna signals P6 and P7.
  • the tuning IC 3 receives the antenna signals P6 and P7 and outputs a tuning signal P10.
  • the frequency of the AC signals P20a and P20b matches the tuning frequency of the receiving antenna 2 and the capacitor built in the tuning IC 3
  • the signal level of the tuning signal P 10 increases and reaches a peak.
  • the automatic adjustment device 111 receives the tuning signal P10, amplifies the signal internally, measures the amplified tuning signal P10 using an AC voltmeter, and stores it internally as the antenna output of the receiving antenna 2.
  • FIG. 11 is an antenna output characteristic diagram obtained by measuring and plotting the antenna output that changes according to the number of pulses of the clock signal P8 by the automatic adjustment device 111.
  • the antenna output that is, the signal level of the tuning signal P10
  • the antenna output increases.
  • the antenna output reaches its maximum when the number is around 28, and thereafter, the antenna output decreases again as the number of pulses increases. That is, from the antenna output characteristics in FIG.
  • the tuning frequency near the pulse number of 28 coincides with and tunes to the frequencies of the AC signals P 20 a and P 20 b.
  • the number of pulses at which the antenna output has peaked is stored as tuning control information in the control unit 50 or a storage circuit incorporated in the tuning circuit 1, and the tuning circuit 1 transmits the number of pulses to the standard radio wave.
  • set the frequency of the alternating signals P20a and P20b to the same frequency as each of the standard radio waves, perform the same measurement, and determine the peak point of the antenna output. If the corresponding pulse numbers are stored, multiple standard radio waves can be arbitrarily received.
  • the peak point of the antenna output may be gentle and it may be difficult to find the peak point.
  • the rising slope (K1) and the falling slope (K2) of the antenna output are calculated by the microcomputer in the automatic adjustment device 111, and the two slopes are calculated.
  • the peak point may be predicted and tuned by a computer program, such as using the intersection of K1 and K2 as the peak point of the antenna output.
  • the tuning of the antenna of the radio-controlled timepiece can be adjusted by the excitation air core coil 1 and the automatic adjustment device 1 1 1. And the number of adjustment steps can be reduced.
  • FIG. 10 (b) The principle of the contact-type antenna tuning adjustment method shown in Fig. 10 (a) The same elements as those in the drawings are denoted by the same reference numerals, and redundant description will be omitted.
  • reference numeral 115 denotes an air core coil for detection, which is arranged close to the receiving antenna 2.
  • P22a and P22b are detection signals induced in the detection air core coil 115, and are input to the automatic adjustment device 111.
  • Reference numeral 116 denotes a wireless iZF circuit incorporated in the radio-controlled timepiece 40a, which receives the wireless control signal P23 output from the automatic adjustment device 111 via infrared or minute power radio. The control information is transmitted to the control unit 50.
  • the external operation means used when executing the test mode in the present invention include a non-contact type operation method, and further, the non-contact type operation method uses wireless or infrared rays. Is also a preferred specific example.
  • a non-contact antenna tuning adjustment method will be described with reference to FIG. 10 (b).
  • the automatic tuning device 1 1 1 1 outputs the AC signals P 2 0 a and P 2 0 b to change the excitation air core coil 1 1 2.
  • the receiving antenna 2 receives an AC magnetic field 113 from the exciting air core coil 112, induces electromotive force by electromagnetic induction, and outputs antenna signals P6 and P7.
  • An AC magnetic field 1 17 is generated from the receiving antenna 2 by the antenna signals P 6 and P 7 induced in 2.
  • the detection air core coil 115 adjacent to the receiving antenna 2 receives the AC magnetic field 117 to induce electromotive force by electromagnetic induction, and outputs detection signals P22a and P22b.
  • the automatic adjustment device 111 receives the detection signals P22a and P22b and amplifies them internally, and converts the amplified detection signals P22a and P22b into an AC voltmeter. And store it as the antenna output of the receiving antenna 2.
  • the switching control of the capacitor incorporated in the tuning IC 3 is sequentially performed by the wireless control signal P 23 output from the automatic adjusting device 111.
  • the dynamic adjustment device 111 can obtain the same data as the antenna output characteristics shown in FIG. 11 and can determine the peak point of the antenna output. That is, according to this non-contact antenna tuning adjustment method, the antenna output can be detected by the detection air core coil 115, and the switching control of the capacitor for changing the tuning frequency of the tuning circuit is performed as follows. Since the control is performed by the wireless control signal P23, the antenna is completely non-contact with the radio-controlled clock 40a. The key can be adjusted.
  • the antenna tuning can be adjusted without contact after the radio-controlled timepiece is installed on the exterior.
  • the tuned frequency of a radio-controlled timepiece tends to shift due to a difference in stray capacitance before and after it is incorporated into the exterior. This is because the number deviation can be canceled, and more accurate antenna tuning can be realized.
  • the ability to make adjustments in a non-contact manner can further simplify the adjustment process at the time of manufacturing the radio-controlled timepiece, and can further reduce the number of adjustment steps.
  • the antenna tuning can be readjusted without opening the exterior. There is a great effect on tenancy.
  • each tuning circuit 1 shown in each of the above specific examples is controlled, and the tuning circuit 1 is received.
  • a radio-controlled timepiece comprising: a control means 6 having a receiving circuit unit for inputting a standard radio wave to correct time and a display means 42 for displaying time information from the control means 6.
  • the radio-controlled timepiece includes a metal sheath made of a metal material, and the tuning circuit 1, the control means 6, and the display means 42
  • the radio-controlled timepiece is characterized in that the inductance of the coil of the tuning circuit covered by the metal outer casing is 2 OmH or more. Also, by controlling the opening and closing of the plurality of semiconductor switches of the tuning circuit and varying the tuning frequency, it is possible to selectively receive any of a plurality of standard radio waves. It is a radio-controlled timepiece.
  • the radio-controlled timepiece has tuning control information storage means for storing tuning control information for varying the tuning frequency of the tuning circuit.
  • the tuning control information storage means is preferably provided inside the tuning circuit. Further, it is a specific example that the tuning control information storage means is preferably constituted by one selected from a pattern cut means, a fuse ROM, or a nonvolatile memory.
  • the tuning frequency can be arbitrarily changed, and the tuning frequency can be varied in a wide and stable range. It is possible to provide a small, high-performance tuning circuit with excellent performance and a radio-controlled timepiece using it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)

Abstract

同調ICに内蔵される半導体スイッチのON抵抗とOFF抵抗の最適化により、高感度で安定性に優れ、同調周波数の可変範囲が広い、小型で高性能な電波修正時計の受信回路に適した同調装置を提供するものであって、複数の半導体スイッチとしてのNチャンネルMOSトランジスタ(以降N-Trと略記)5a~5fと該N-Trの開閉を制御するカウンタ回路6を備える同調IC3と、前記複数のN-Trと各々直列に接続される複数のコンデンサ4a~4fと、該複数のコンデンサに接続される受信アンテナ2とを有し、前記複数のコンデンサは前記複数のN-Trの開閉によって合計静電容量が可変され、該複数のコンデンサと前記受信アンテナとによる同調回路の同調周波数が可変されるように構成した。

Description

明 細 書
同調装置及びそれを用いた電波修正時計
技術分野
本発明は、 電波等を受信する小型で高性能な同調装置と、 それを用いた電波修 正時計の受信方式の改良に関するものである。
背景技術
従来、 受信機の電子チューナや送信機の発信回路等に用いられる電子式同調回 路は、 一般的に可変容量ダイオードを用い、 該可変容量ダイオードへの印加電圧 を制御して等価的な静電容量を変化させ、 同調周波数を可変している。 この方式 は、 可変容量ダイオードが小型で安価であると共に、 印加電圧の制御で同調周波 数を容易に可変出来るので、 チューナや送信回路を小型で安価に実現できる利点 がある。 しかし、 可変容量ダイオードは半導体の P N接合の空乏層を利用してい るためにリーク電流が存在するので、同調回路の Q値を高くすることが出来なレ、。 また、 静電容量の変化に伴って Q値も変化するので、 安定した同調回路の実現 が難しい。 更には、 可変容量ダイオードの容量可変範囲も限られているので、 同 調周波数を広範囲に可変することは困難である。
これらの問題を解決するために、 容量最大値と容量最小値の 2値状態を取り得 る可変容量ダイォードを複数個半導体基板上に形成し、 各可変容量ダイォ一ドに 対して、 同じく半導体基板上に形成するスィツチング素子によってバイアス電圧 を O Nノ O F Fし、 等価的静電容量を可変させる提案が例えば特開昭 5 7 - 9 9 7 8 7号公報の特許請求の範囲或いは同明細書の第 3図等に示されている。
この提案によれば、 スィツチング素子によって複数の可変容量ダイォードを切 り替えて用いるので、 可変容量範囲を大きく取ることが可能であり、 同調周波数 を広範囲に可変することが出来る。 また、 静電容量の変化に伴う Qの変化も少な いので、 ある程度安定した同調回路を実現することが出来る。
しかしながら、 半導体基板上に形成される複数の可変容量ダイオードは、 前述 した如く P N接合の空乏層を利用しているのでリーク電流が存在し、 同調回路の Qを一定以上高くすることが出来ず、 安定した同調回路を実現することが困難で ある。 また、 可変容量ダイオードの容量を最小とするためには、 ある程度高いバ ィァス電圧を印加する必要があるが、 このバイアス電圧の生成にはマイナス電源 が必要であり、 このため、 同調回路の部品点数増加、 コストアップ等の大きな要 因となる。 また、 一つの半導体基板上に複数の P N接合を形成して可変容量ダイ ォードを実現させるが、 隣接する可変容量ダイォード間の電気的な影響を防止し て Qの変化を抑えるために、 個々の可変容量ダイォ一ド間に絶縁領域を形成して 電気的に分離する必要があり、 半導体基板製造工程が増えて、 歩留まりの低下や コストアップの要因となる。
従って、 本発明の目的は、 上記課題を解決して、 半導体スィッチとリーク電流 の極めて少ないコンデンサとの組み合わせにより、 安定性に優れ、 同調周波数の 可変範囲が広く、 且つ、 小型化が可能な電波修正時計の受信回路に適した同調装 置と、 それを用いた電波修正時計を提供することである。
発明の開示
本発明は上記した目的を達成する為、 以下に示す様な基本的な技術構成を採用 する。
即ち、 本発明の同調回路は、 基本的には、 複数の半導体スィッチと該半導体ス ィツチの開閉を制御するスィツチ制御手段を備える半導体基板と、 前記複数の半 導体スィツチと各々直列に接続される複数のコンデンサと、 該複数のコンデンサ に接続されるコイルとを有し、 前記複数のコンデンサは前記複数の半導体スィッ チの開閉によって合計静電容量が可変され、 該複数のコンデンサと前記コイルと によって成る同調回路の同調周波数が可変されるように構成したことを特徴とす るものであり、 より詳細には、 複数の半導体スィッチと、 当該複数の半導体スィ ツチと各々直列に接続される複数の第 1のコンデンサと、 当該半導体スィツチの 開閉を制御するスィツチ制御手段と備える半導体基板と、 該複数の第 1のコンデ ンサのそれぞれに並列的に接続されるコイルとから構成されており、 時刻情報を 含む標準電波の受信局選択指示信号に応答して当該スィツチ制御手段が当該複数 の第 1のコンデンサに接続されている個々の半導体スィツチを個別に開閉制御す る事によって当該複数の第 1のコンデンサによる合計静電容量が可変され、 該複 数の第 1のコンデンサと前記コイルとによって成る同調回路の同調周波数を変更 する様に構成されていることを特徴とする同調回路である。 更に、 本発明に於いては、 同調範囲を拡大したり、 或いは、 同調操作を効率化 する為に、 当該半導体基板上若しくは当該半導体基板外に、 当該第 1のコンデン サ群とは別に当該第 1のコンデンサと並列に当該コイル部と接続ざれている固定 容量を有するか或いは可変容量を有する第 2のコンデンサが設けられている事も 好ましい。
かかる構成を採用する場合に於いては、 当該第 2のコンデンサは、 当該第 1の コンデンサが受ける制御とは異なる制御を受ける様に構成されている事が望まし レ、。
更に、 本発明に於いては、 当該第 2のコンデンサを使用する場合に有っては、 当該第 2のコンデンサの制御は、 適宜に実行する事が可能であるが、 例えば、 そ の少なく とも一つは、 当該半導体基板上に設けられた半導体スィッチを介して当 該スイツチ制御手段により制御される様に構成されているもので有っても良い。 本発明の同調回路により、 複数のコンデンサを半導体スィツチの開閉によって 任意に切り替えることが出来るので、 コンデンザの可変容量範囲を広くすること が出来、 この結果、 同調回路の同調周波数の可変範囲を広く確保することが出来 る。
従って、 時刻情報を含んだ標準電波を発信している受信局が複数存在する場合 に、 それぞれの受信局が発信している標準電波の特定の周波数を容易に選択して 同調させる事が可能である。
また、 前記複数のコンデンサは、 前記半導体基板上に形成されることを特徴と する。
これにより、 コンデンサの部品点数を削減でき、 同調回路の小型化や製造工程 の簡素化を実現できる。
また、 前記半導体基板上に形成される複数のコンデンサは、 前記半導体基板上 に於いて酸化膜や窒化膜等を含む適宜の誘電体を用いた膜体で形成されたコンデ ンサであることを特徴とする。
これにより、 コンデンサのリーク電流を極めて小さく出来るので、 安定性に優 れた同調装置を実現できる。
また、 前記半導体スィッチの少なくとも一つは、 前記半導体基板の外部に配置 されたコンデンサに接続されることを特徴とする。
これにより、 半導体基板上に形成することが困難な大容量のコンデンサを付加 することが出来るので、 同調周波数の可変範囲を更に拡大でき、 また、 接続する コイルの選択範囲も広げることが可能となる。
また、 前記半導体スィッチの O N抵抗は、 該半導体スィッチに直列に接続され る前記コンデンサのインピーダンスより小さいことを特徴とする。
これにより、 接続されるコンデンサの静電容量に対応して、 最適な半導体スィ ツチの O N抵抗を選択することが出来るので、 半導体基板の小型化が可能である と共に、 高感度の同調装置を実現することが出来る。
また、 前記半導体スィッチの O F F抵抗は、 該半導体スィッチに直列に接続さ れる前記コンデンサのインピーダンスより大きいことを特徴とする。
これにより、 接続されるコンデンサの静電容量に対応して、 最適な半導体スィ ツチの O F F抵抗を選択することが出来るので、 高感度の同調回路を実現するこ とが出来る。
また、 本発明に於いては、 当該同調回路に接続される増幅回路部に使用される 抵抗部の抵抗値を当該同調回路に設けられている同調コンデンサによるインピー ダンスよりも大きくなるように設定することも好ましく、 これによつてよりアン テナの利得をより向上させることが出来る。
また、 前記複数のコンデンサの静電容量の合計値が 9 6 0 0 p F以下であるこ とを特徴とする。
これにより、 複数のコンデンサを内蔵する半導体基板のサイズを 2 m m X 1 . 6 mm程度にすることが可能となり、 実装効率を高めることが出来る。
また、 前記コイルのインダクタンスが 0 . 4 4 m H以上であることを特徴とす る。
これにより、 本発明の同調回路を電波修正時計の同調手段として用いた場合、 前記複数のコンデンサの静電容量の合計値が 9 6 0 0 p F以下であるとすると、 標準電波の最も高い周波数 (7 7 .. 5 K H z ) を同調させることが出来る。 また、 前記コイルのインダクタンスが 4 0 0 O m H以下であることを特徴とす る。 これにより、 本発明の同調回路を電波修正時計の同調手段として用いた場合、 前記半導体基板ゃ該半導体基板の実装上の寄生容量が 4 p F程度であるとすると、 標準電波の最も低い周波数 (4 0 K H z ) を同調させることが出来る。
本発明の電波修正時計は、 前記同調回路と、 該同調回路を制御し、 該同調回路 によって受信した標準電波を入力して時刻修正を行う制御手段と、 該制御手段か らの時刻情報を表示する表示手段とを有することを特徴とする。
本発明の電波修正時計により、 同調周波数の可変範囲が広く、 且つ、 高感度で 安定した標準電波の受信が可能となる。
また更に、 金属材料によって成る金属外装を有し、 該金属外装によって前記同 調回路と前記制御手段と前記表示手段を覆い、 機械的に保護するように構成した ことを特徵とする。
これにより、 傷が付きにくく防水性に優れ、 髙級感のある金属外装を用いた電 波修正時計を実現させることが出来る。
また、 前記金属外装に覆われる前記同調回路の前記コイルのィンダクタンスは 2 O mH以上であることを特徴とする。
これにより、 同調回路の受信感度を一定以上に保つことが可能となり、 金属外 装であっても高感度の電波修正時計を実現させることが出来る。
また、 前記同調回路の前記複数の半導体スィッチの開閉を制御し、 前記同調周 波数を可変することにより、 複数の標準電波を受信するように構成したことを特 徴とする。
これにより、 周波数の異なる複数の標準電波の受信が可能となり、 各国各地域 に対応した電波修正時計を実現させることが出来る。
また、 前記同調回路の前記同調周波数を可変するための同調制御情報を記憶す る同調記憶手段を有することを特徴とする。
これにより、 同調記憶手段に受信する標準電波の情報を記憶出来るので、 複数 の標準電波を任意に選択し受信することが出来る。
また、 前記同調記憶手段は、 前記同調回路の内部に備えられていることを特徴 とする。
これにより、 同調回路の內部に受信する標準電波の情報を記憶出来るので、 同 調回路の製造工程や調整工程を簡略化することが出来る。
また、 前記同調記憶手段は、 パターンカッ ト手段、 又はヒューズ ROM、 又は 不揮発性メモリであることを特徴とする。
これにより、 電波修正時計の仕様に応じて最適な同調記憶手段を選択でき、 コ ス トダウンや製造工程の簡略化を実現できる。
図面の簡単な説明
図 1は、 本発明の第 1の実施形態である同調回路の回路図である。
図 2は、本発明の第 1の実施形態である同調回路の等価回路と実験回路を示し、 図 2 (a) は N— T rが ON状態での同調回路の等価回路であり、 図 2 (b) は N— T rが O F F状態での同調回路の等価回路であり、 図 2 (C) は N— T rの ON抵抗と OF F抵抗の影響を検証するための同調回路の実験回路である。
図 3は、 本発明の第 1の実施形態である同調回路のインピーダンス比一アンテ ナ利得特性図である。
図 4は、 図 3のインピーダンス比一アンテナ利得特性の部分拡大図であり、 図 4 (a) は 1 800 p Fのコンデンサ 1 0 aを用いたアンテナ利得特性 20の比 率 0. 0 1以下の部分拡大図であり、 図 4 (b) は同じく 1 800 p Fのコンデ ンサ 1 0 aを用いたアンテナ利得特性 20の比率 2 50位以上の部分拡大図であ る。
図 5は、 本発明の第 2の実施形態である同調回路の回路図である。
図 6は、 本発明の同調回路を組み込んだ電波修正時計と標準電波を送信する送 信局との関係を示した説明図である。
図 7は、本発明の第 3の実施形態である電波修正時計の回路ブロック図である。 図 8は、本発明の同調回路と受信 I Cの関係を示す概略回路図であり、図 8 (a) は本発明の同調回路と受信 I Cの増幅回路の概略回路図であり、 図 8 (b) は図
8 (a) の等価回路であり、 図 8 (C) は本発明の同調回路と受信 I Cの増幅回 路の他の概略回路図である。
図 9は、本発明の第 4の実施形態である電波修正時計の回路プロック図である。 図 1 0は、本発明の電波修正時計のアンテナ同調調整方法を示す原理図であり、 図 1 0 (a) は、 接触方式のアンテナ同調調整方法を示す原理図であり、 図 1 0 ( b ) は、 非接触方式のアンテナ同調調整方法を示す原理図である。
図 1 1は、 本発明の電波修正時計のアンテナ同調調整方法によって得たアンテ ナ出力特性図である。
図 1 2は、 従来の電波修正時計に於ける同調回路の一具体例の構成を示す図で ある。
図 1 3は、 本発明の他の具体例に於ける同調回路の回路図である。
図 1 4は、 本発明の更に他の具体例に於ける同調回路の回路図である。
図 1 5、 図 1 6は、 本発明の他の具体例に於ける同調回路のインピーダンス比
—アンテナ利得特性図の部分拡大図である。
図 1 7から図 2 0は、 Q値の測定方法の一例を説明する図である。
図 2 1、図 2 2は、本発明に於ける電波修正時計の使用例を説明する図である。 図 2 3は、 本発明に於ける同調回路と増幅回路を接続させた回路の一例を示す 回路図である。
図 2 4は、 図 2 3の回路を用いた同調回路に於ける増幅回路抵抗とコンデンサ インピーダンスとの比とアンテナ利得減衰率との関係を示すグラフである。
発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。 図 1は本発明に係 るの第 1の実施形態である同調装置 1の構成例を示すプロックダイアグラムであ つて、 図中、 複数の半導体スィッチ 5と、 当該複数の半導体スィッチ 5と各々直 列に接続される複数の第 1のコンデンサ 4と、 当該半導体スィツチ 5の開閉を制 御するスィツチ制御手段 6と備える半導体基板 2 0 0と、 該複数の第 1のコンデ ンサ 4のそれぞれに並列的に接続されるアンテナ部 2を構成するコイル 2 0 1 と から構成されており、 時刻情報を含む標準電波の受信局選択指示信号に応答して 当該スィツチ制御手段 6が当該複数の第 1のコンデンサ 4に接続されている個々 の半導体スィツチ 5を個別に開閉制御する事によって当該複数の第 1のコンデン サ 4による合計静電容量が可変され、 該複数の第 1のコンデンサ 4と当該コイル 2 0 1とによって成る同調回路 1の同調周波数を変更する様に構成されている、 例えば、 電波修正時計の受信部の使用に適した、 同調回路 1が示されている。 本発明に於ける第 1の実施態様である同調回路 1の構成を更に詳細に説明する ならば、 図 1に於いて、 2は電波を受信するコイル 201を有する受信アンテナ であり、 略棒状の高透磁率材料に導線を巻いて形成され、 受信した電波によって 誘起されるアンテナ信号 P 6、 P 7を出力する。 3はワンチップによって成る半 導体基板 200を含む同調 I Cである。 4 a〜4 f は同調 I C 3の內部に形成さ れる複数の第 1のコンデンサであり、 S i O 2等によって成る酸化膜或いは S i , N4等の窒化膜を含む誘電体からなる膜体を用いて形成される。 当該第 1のコン デンサ 4 a〜4 f の一方の端子は共通に接続されて受信アンテナ 2のアンテナ信 号 P 6に接続される。
一方、 5 a〜5 f は半導体スィツチ 5としての Nチャンネル MOS トランジス タ (以下 N— T rと略記) である。 N_T r 5 a〜 5 f のドレイン端子 Dは当該 第 1のコンデンサ 4 a〜4 f の他方の端子に直列に接続され、 N— T r 5 a〜5 f のソース端子 Sは共通に接続されて受信アンテナ 2のアンテナ信号 P 7に接続 され、 更に電気的接地である GNDに接続される。 尚、 電気的接地である GND はアンテナ端子 P 6に接続されても良い。 6はスィツチ制御手段としてのカウン タ回路であり、 ク口ック端子 C Lとィネーブル端子 ENを入力端子として備え、 ク口ック端子 CLからのパルスをカウントするバイナリカウンタとして動作し、 出力端子としてカウント端子 Q 0〜Q 5を備えている。
更に、 P 0〜P 5はカウンタ回路 6のカウント端子 Q 0〜Q 5より出力される カウント信号であり、N— T r 5 a〜5 f のゲ一ト端子 Gにそれぞれ接続される。 叉、 P 8はカウンタ回路 6のク口ック端子 C Lに接続されるクロック信号であ り、 P 9はカウンタ回路 6のイネ一ブル端子 ENに接続されるィネーブル信号で ある。 一方、 P 10は同調回路 1の出力としての同調信号であり、 同調 I C 3の 内部で第 1のコンデンサ 4 a〜4 f の一方の端子とアンテナ信号 P 6に接続され る。 尚、 アンテナ信号 P 6が GNDに接続される場合は、 同調信号 P 1 0はアン テナ信号 P 7に接続される。
次に本発明の第 1の実施形態である同調回路 1の動作を説明する。 図 1に於い て、 イネ一ブル信号 P 9が論理 "0" の期間は、 カウンタ回路 6はリセッ ト状態 を保ち、 カウント端子 Q 0〜Q 5より出力されるカウント信号 P 0〜P 5は論理 "0" を保持する。 この結果、 N— T r 5 a〜5 f のゲート端子 Gの電位は零ボ ルトを保持するので、 N— T r 5 a〜5 f は全て O F F状態となり、 複数の当該 第 1のコンデンサ 4 a〜4 f は受信アンテナ 2に対して切断され、 同調回路は形 成されない。
次にイネ一ブル信号 P 9が論理 " 1 " になると、 カウンタ回路 6はリセッ トが 解除され、 クロック信号 P 8のパルスをカウントするスタンバイ状態となる。 こ こで、 ク口ック信号 P 8によって 1個のパルスがク口ック端子 C Lに入力される と、 カウンタ回路 6はカウント動作を実行し、 カウン卜端子 Q 0の出力である力 ゥント信号 P 0は論理 " 1 " となる。 同様に、 クロック信号 P 8によって 2個の パルスがクロック端子 C Lに入力されると、 カウント回路 6はカウント動作を実 行し、 カウント端子 Q 1の出力であるカウント信号 P 1が論理 " 1 " となる。 同様に、 ク口ック信号 P 8によって 6 3個のパルスがクロック端子 C Lに入力 されたとすると、 カウンタ回路 6は最大カウント数になり、 全てのカウント信号 ? 0〜? 5が論理 " 1 " となる。 ここで、 カウント信号 P 0〜P 5は前述した如 くに N— T r 5 a〜5 f のゲート端子 Gに接続されているので、 論理 " 1 " とな つたカウント信号 P 0〜P 5に接続されている N— T r 5 a〜5 f は O Nとなる。 そして、 O Nとなった N— T r 5 a〜5 f にそれぞれ直列に接続されている当該 第 1のコンデンサ 4 a〜4 f は受信アンテナ 2に接続され、 受信アンテナ 2と該 受信アンテナ 2に接続された当該第 1のコンデンサ 4 a〜4 f によって並列共振 回路が形成され、 該並列共振回路が同調装置 1の同調回路として機能する。
ここで一例として、 第 1のコンデンサ 4 aの静電容量は 1 2 . 5 p F、 第 1の コンデンサ 4 bの静電容量は 2 5 p F、 第 1のコンデンサ 4 cの静電容量は 5 0 p F、 第 1のコンデンサ 4 dの静電容量は 1 0 0 p F、 第 1のコンデンサ 4 eの 静電容量は 2 0 0 p F、 第 1のコンデンサ 4 f の静電容量は 4 0 0 p Fとして同 調 I C 3の內部に形成したとする。 この結果、 クロック信号 P 8のパルス数に応 じて、 1 2 . 5 p Fの分解能で最小 0 p Fから最大 7 8 7 . 5 p Fの静電容量が 受信アンテナ 2に対して並列に接続され同調回路が形成される。 但し、 実際には 同調 I C 3の内部や実装に伴う配線等によって寄生容量や浮遊容量が存在するの で、 上記の静電容量に数 p F〜十数 p Fの静電容量が付加される。
この受信アンテナ 2と該受信アンテナ 2に N— T r 5 a〜5 f を介して接続さ れる第 1のコンデンサ 4 a〜4 f によって形成される同調回路の同調周波数 (す なわち共振周波数) Fは、 受信アンテナ 2のインダクタンスを Lとし、 接続され たコンデンサ 4 a〜4 f による合計静電容量を Cとすれば、
F = 1 / 2 TC T" L C (式 1 )
となる。
よって、 式 1により、 コンデンサ 4 a〜4 f の合計静電容量が可変されると同 調周波数 Fも可変することが理解できる。 ここで、 同調周波数 Fに於いて、 受信 アンテナ 2とコンデンサ 4 a〜4 f による同調回路のインピーダンスは最大とな るので、 同調周波数 Fに等しい受信電波が受信アンテナ 2に到来すると、 アンテ ナ信号 P 6、 P 7間に同調周波数 Fに等しい受信電波が選択的に誘起されて同調 信号 P 1 0として出力される。
すなわち、 本発明の同調回路 1は、 クロック信号 P 8のパルス数に応じて当該 第 1のコンデンサ 4 a ~ 4 f を受信アンテナ 2に接続するので、 同調周波数 Fを 任意に可変することが出来る。
この結果、 受信アンテナ 2に到来する様々な周波数の電波の中から同調周波数 Fによって選択される特定の電波を受信することが出来る。 尚、 この実施形態に 於いては複数の第 1のコンデンサ 4 a〜4 f は 6個であり、 当該第 1のコンデン サ 4 a〜4 f を開閉する N— T r 5 a〜5 f も 6個であるが、 この数に限定され るものではなく、 更に広い範囲の同調周波数が必要であれば当該第 1のコンデン サと N— T rの数を増やして良く、 また、 それほど広い範囲の同調周波数が必要 でなければ、 当該第 1のコンデンサと N— T rの数を減らしても良い。 また、 当 該第 1のコンデンサ 4 a〜4 f のそれぞれの静電容量も、 要求性能に応じて任意 に決めることが出来る。
即ち、 本発明に於ける当該同調回路 1は、 同一の容量を持った複数個のコンデ ンサ或いは相互に異なる容量を持った複数個のコンデンサを適宜組み合わせるこ とによって当該同調回路 1に於ける合計静電容量を適宜変化させる事が容易に出 来るので、 当該同調回路 1の同調周波数を任意に可変する事によって、 受信出来 る電波の周波数を自由に設定する事が出来る。
その結果、 ユーザーが任意の国、 或いは任意の地方に移動した場合に、 移動先 の国又は地方に於いて受信される時刻情報を含んだ標準電波を受信して、 電波修 正時計の時刻情報を修正する場合には、 適宜の選択指示信号に応答して、 当該制 御手段 6を操作駆動させる事によって、 当該受信可能な標準電波の周波数に合致 する同調周波数を当該同調回路内に設定する事が可能となり、 容易に所望の標準 電波を受信する事が出来る。
叉、 本発明に於いては、 複数個の第 1のコンデンサが使用されているので、 そ の選択組合せによって、 複数種の同調周波数を当該同調回路 1内に設定出来るの で、 複数種の標準電波の受信に対応する事が出来る。
具体的には、例えば、所定の受信局からの標準電波の周波数が不明の場合には、 適宜の外部操作手段 2 0 2を設けて、 これを受信局選択手段として機能させ、 当 該外部操作手段 2 0 2から当該制御手段 6を駆動制御するイネ一ブル信号 P 9と ク口ック信号 P 8とを受信局選択指示信号として自動的に或いはマニュアル操作 によって入力し、 当該ク口ック信号に応答して当該第 1のコンデンサ 4の組合せ 選択を実行しながら、 当該同調回路 1の出力 P 1 0の共振出力が最大となる合計 静電容量求めて、 その状態に設定するか、 予め複数の受信周波数と当該第 1のコ ンデンサ 4の組合せ選択条件とを適宜の記憶手段に記憶させておき、 受信する国 或いは地方での標準電波の周波数が予め判明している場合には、 当該外部操作手 段 2 0 2から、 所定の周波数数を選択するコード番号を当該制御手段 6に入力す ることによって当該制御手段 6は、 当該記憶手段に記憶されている所定の周波数 に対応する当該第 1のコンデンサ 4の組合せ条件を読み出して、 当該第 1のコン デンサ 4の組合せ選択操作を実行する様にすれば良い。
此処で、 本発明に於ける標準電波の受信に際しての同調方法と従来に於ける同 様の同調方法の相違について、 簡単に説明する。
即ち、 従来の同調方法では、 図 1 2に示す様に、 日本の 4 0 K H z、 6 0 K H Z、 ドイツの 7 7 . 5 K H zの電汲を受信できる電波時計の場合、 従来の同調シ ステムは従来例に示すような接続を行い C l、 C 4、 C 7は予め接続し、 C 2, C 3, C 4, C 8を組み替えて各々の共振周波数に合わせこんでいく。
例えば、 アンテナの L値 L 1が 2 m Hのアンテナを使用し、 ± 5 %程度の精度 を持つ市販のコンデンサで同調を行い、 アンテナの Q値が 100とし、 最も高い利
5ΠΕされた用紙 0^ΙΙ9ϋ 得から 3dB程度減衰した範囲で同調を行った場合、 CIは 1800 p F、C4は 1200 p F、 C7は 3900p Fとなり、 77. 5 K H zの周波数調整範囲は ± 387. 5 H z、 60 KH zの周波数調整範囲は ± 300 H z、 40 KH zの周波数調整範 囲は士 200 H zとなる。
77.5KH zの同調を行う場合、 SW1.2は OFFし、 C1が接続された状態での 共振周波数を求め、 補正を行う。
この場合、 最も大きいコンデンサ容量 C2は 390p Fとなるが、 コンデンサの 精度によっては先の周波数調整範囲に入らないため、 もう一度の共振周波数を求 め、 この結果を持って補正を行い、 調整を行う。
この時の最も大きいコンデンサ容量 C 3は 33p Fとなる。
また、 この後は共振周波数の確認のために共振周波数の測定を行う。
次に 60KH zの同調を行う場合、 SW1は ONし、 SW2は OFFし、 C1,C2, C 3, C 4が接続された状態での共振周波数を求め、 補正を行う。
この場合、 最も大きいコンデンサ容量 C5は 220p Fとなるが、 コンデンサの 精度によっては先の周波数調整範囲に入らないため、 もう一度の共振周波数を求 め、 この結果を持って補正を行い、 調整を行う。
また、 この後は共振周波数の確認のため共振周波数の測定を行う。
この時の最も大きいコンデンサ容量 C6は 33p Fとなる。
次の 40KH zの同調を行う場合、 SW1は ONし、 SW2は OFFし、 Cl、 C2, C3,C4,C5,C6が接続された状態での共振周波数を求め、 この結果を持って補正 を行う。
この場合、 最も大きいコンデンサ容量 C8は 680 p Fとなる。
また、 この後は共振周波数の確認のために共振周波数の測定を行う。
以上のように 3局の同調を行うために 8個もの同調コンデンサが必要となり、 共振周波数を最高 8回程度求める必要があり、 共振周波数を求めるたびにコンデ ンサも半田付けしなくてはならなかった。
これに対し、 本発明に於いては、 上記した様に、 予め一つの I C回路に例えば
8個のコンデンサと半導体スィツチ 5とを図 1に示す様に作り込んでおけば、 当 該同調回路の全静電容量は、 スィツチを適宜に制御するのみで容易に可変でき、
酊 IEされた用紙 (規則 91) 個々の接続にはんだ処理をする必要もなく、 製造工程も簡易化され小型化できる という利点が得られる。
次に、 本発明等は、 上記した本発明に於ける当該同調回路 1に於いて、 受信性 能を更に向上させる構成について検討した結果、 当該半導体スィツチ 5の抵抗値 と第 1のコンデンサが持つィンピ一ダンスとの関係を適正に保つ事によって、 受 信性能を改善させる事が可能であることを知徳し、 それによつて、 当該同調回路 を有する電波受信回路を金属外装を有する時計の内部に組み込んでも高レベルの 受信性能を発揮させる事が出来ることが判明したものである。
即ち、 本発明に於ける当該同調回路 1に於いて、 当該それぞれの半導体スイツ チ 5の ON抵抗は、 当該各半導体スィツチに 5直列に接続される当該それぞれの コンデンサ 4が持つインピーダンスより小さくなる様に設定する事が望ましく、 叉、 当該それぞれの半導体スィッチ 5の OF F抵抗が、 当該各半導体スィッチ 5 に直列に接続される当該それぞれのコンデンサ 4が持つィンピーダンスより大き くなる様に設定する事が望ましいことが判明した。
以下に、 図 2〜図 4を参照しながら図 1で示した半導体スィツチ 5としての N — T r 5 a〜5 f の ON抵抗と O F F抵抗が同調回路 1にどのように影響し、 ま た、 該 N— T r 5 a〜5 f の O N抵抗と O F F抵抗の好ましい値がどの程度が好 ましいか等について検証する。
図 2は、 図 1で示した同調装置を構成する同調回路 1の等価回路と実験回路を 示しており、 図 2 (a) は、 同調装置 1の N— T r 5 a〜 5 f が ON状態の時の 等価回路を示し、 図 2 (b) は、 同調装置 1の N— T r 5 a〜5 f が OF F状態 の時の等価回路を示している。
図 2 (a) に於いて、 4は上記した第 1のコンデンサ 4 a〜4 f を代表するコ ンデンサであり、 5は N— T r 5 a〜5 f を代表する N— T rである。 該 N— T r 5のゲート端子 Gに電圧 V gが印加されると、 N_T r 5は ONする。 このと きの等価回路は矢印 Aで示すようになる。 ここで、 図 2 (a) の等価回路に於い て、 5 o nは N— T r 5の ON抵抗を表しており、 5 sは N— T r 5の O N動作 を示すスィツチであり、 4は N— T r 5に直列に接続されているコンデンサある。 すなわち、 N— T r 5は半導体スィッチであるので、 ON状態であったとして も一定量の ON抵抗 5 o nが存在する。
次に、 図 2 (b) に於いて、 コンデンサ 4は当該第 1のコンデンサ 4 a〜4 f を代表するコンデンサであり、 N— T r 5は N— T r 5 a〜5 f を代表する N— T rである。 該 N— T r 5のゲ一ト端子 Gはソース端子 Sと同電位であるので、 N— T r 5は OFFする。 このときの等価回路は矢印 Bで示すようになる。 ここ で、 図 2 (b) の等価回路に於いて、 5 o f f は N— T r 5の OF F抵抗を表し ており、 5 sは N—T r 5の OF F動作を示すスィッチであり、 4は N— t r 5 に直列に接続されるコンデンサである。 すなわち、 N— T r 5は半導体スィッチ であるので、 OF F状態であったとしてもその抵抗値は無限大でなく、 一定量の O F F抵抗 5 o f f が存在する。
このように、 半導体スィツチである N— T r 5は ON抵抗 5 o nと OFF抵抗 5 o f f を持っているが、 この ON抵抗 5 o nと OF F抵抗 5 o f f の同調回路 1に対する影響は無視することが出来ない。 ここで、 ON抵抗 5 o nは、 N— T r 5のトランジスタサイズを出来る限り大きくすれば、 ほぼ零に近い ON抵抗を 得ることは可能であるが、 トランジスタサイズを大きくすると N— T r 5を内蔵 する同調 I C 3のチップサイズも大きくなり、 コストアップや同調装置としての 小型化に問題が生じる。 また、 N— T r 5のトランジスタサイズを大きくすると、 浮遊容量や寄生容量が増大し同調周波数の可変範囲を狭めるという問題も生じる。 また、 0??抵抗5。 £ £は、 N— T r 5が ONするために必要なしきい値電 圧を高くすれば、 相当大きな OFF抵抗を得ることは可能であるが、 同調回路 1 を電波修正時計等の電池駆動の機器に組み込むには低電圧駆動が不可欠であり得 策ではない。 また、 しきい値電圧を高くすると ON抵抗が増える結果となり、 相 反する問題も生じる。 このようなことから、 同調回路への悪影響を最小限に抑え、 且つ、 同調 I C 3のチップサイズを増やすことなく、 また、 低電圧駆動も可能な N-T rの ON抵抗と OF F抵抗の好ましい選択が必要となる。
本出願人は、 以上のような観点から半導体スィツチ 5としての N— T rの ON 抵抗と OFF抵抗の影響を調べ最適値を検証する実験を実施したので、 以下説明 する。
図 2 (C) は、 N_T rの ON抵抗と OF F抵抗の最適値を検証する実験回路 であり、 図 1で示した同調回路 1の受信アンテナ 2と複数のコンデンサ 4 a〜4 f 及び N— T r 5 a〜5 f の構成に準じた同調回路である。
図 2 (C) に於いて、 2は図 1と同等の受信アンテナである。 10 a〜10 d はリーク電流の少ないチップタイプ、 またはディスクリートタイプのコンデンサ であり、 それぞれ静電容量を異ならせて配置され、 一方の端子は共通に接続され て受信アンテナ 2の一方の端子に接続される。
—方、 1 1 a〜: l i dは、 図 1の N— T r 5 a〜5 f に相当するスィツチであ り、 ON抵抗が非常に小さいタイプを選択している。 1 2は図 lのN— T r 5 a 〜5 f の ON抵抗又は OFF抵抗に相当する可変抵抗であり、 広い範囲で抵抗値 を可変することが出来る。
可変抵抗 1 2はコンデンサ 10 a〜10 dとスィッチ 1 l a〜l I dの間に任 意に配置することが出来るが、 図 2 (C) に於いてはコンデンサ 10 aとスイツ チ 1 1 aの間に配置されている。 尚、 コンデンサ 10 aの静電容量は 1 800 p F、 コンデンサ 10 bの静電容量は 1000 p F、 コンデンサ 10 Cの静電容量 は 560 p F、 コンデンサ 10 dの静電容量は 100 p Fとして設定した。
更に、 13は励磁用コイルであり、 受信アンテナ 2の近傍に配置して受信電波 に相当する交流磁界 14を発生する。 15は交流信号源であり励磁用コイル 1 3 に交流磁界 14を発生させるために 4 OKH z前後の交流信号を供給する。 受信 アンテナ 2は、 コンデンサ 10 a〜 10 dの合計静電容量に対して、 同調周波数 が約 40 KH zになるようにィンダクタンスを調整したものを使用する。 1 6は 受信アンテナ 2の両端子に接続される高入力インピーダンスの交流電圧計であり、 受信アンテナ 2に誘起される交流信号を測定する。
次に実験方法を説明する。 図 2 (C) に於いて、 まず、 可変抵抗 1 2の抵抗値 を十分に小さく し、 スィッチ 1 1 a〜l 1 dはすべて閉じる。 次に、 交流信号源 1 5によって励磁用コイル 1 3に交流信号を供給し交流磁界 14を発生させる。 これにより、 受信アンテナ 2には交流磁界 14によって交流信号が誘起され、 交流電圧計 1 6は誘起された交流信号を測定することが出来る。 ここで、 交流信 号源 15の周波数を変化させて最も交流電圧計 16の測定値が大きい周波数が受 信アンテナ 2とコンデンサ 10 a〜 10 dの合計静電容量による同調周波数であ り、 この同調周波数に於ける交流電圧計 1 6の値を記録する。
次に、 可変抵抗 1 2の抵抗値を少し大きくてから、 前述と同様に交流信号源 1 5の周波数を微調して交流電圧計 1 6の測定値が最も大きくなる値を記憶する。 以下同様に、 可変抵抗 1 2の抵抗値を順次大きく しながら交流電圧計 1 6の値 を記録する作業を繰り返し、 可変抵抗 1 2の抵抗値とコンデンサ 1 0 aの交流信 号に対するインピーダンスとの比が 1となるまで測定し、 更にその比が 1 0倍、 1 0 0倍、 1 0 0 0倍となるまで可変抵抗 1 2の抵抗値を増加させて交流電圧計 1 6の測定値を記録する。
図 3は上記の測定結果をグラフにまとめたものであり、 インピーダンス比一ァ ンテナ利得特性図である。 図 3に於いて、 X軸は可変抵抗 1 2の抵抗値とコンデ ンサ 1 0 a〜 l 0 dの周波数に対するインピーダンスとの比率であり、 Y軸はァ ンテナ利得であって交流電圧計 1 6の読みをデシベル表示したものであり、 交流 信号源 1 5の出力電圧を基準の 0 d Bとして表している。
図 3に於いて、 2 0は 1 8 0 0 p Fのコンデンサ 1 0 aに可変抵抗 1 2を直列 に接続したときのアンテナ利得特性である。 ここで、 抵抗 コンデンサインピー ダンス比が非常に小さい 0 . 0 0 1付近 (すなわち可変抵抗 1 2の抵抗値が非常 に小さい領域) では、 アンテナ利得は— 3 0 d B位であり、 比較的高い利得を示 している。 しカゝし、 図示する如く、 抵抗 コンデンサインピーダンス比を大きく していくとアンテナ利得は急激に低下し、 抵抗 Zコンデンサインピーダンス比が 1の領域では最もアンテナ利得が低下して— 6 0 d Bに達している。
更に、 抵抗 Zコンデンサインピーダンス比が 1を越えて増加するとアンテナ利 得は再び上昇に転じ、抵抗 コンデンサインピーダンス比が 1 0 0以上の領域(す なわち可変抵抗 1 2の抵抗値が非常に大きい領域) では、 アンテナ利得は再び— 3 0 d B位まで上昇している。 同様に 2 1は l O O O p Fのコンデンサ 1 0 bに 可変抵抗 1 2を直列に接続したときのアンテナ利得特性である。 尚、 このとき、 コンデンサ 1 0 aに接続されていた可変抵抗 1 2は取り外され、 コンデンサ 1 0 aはスィツチ 1 1 aに直接接続される。
つまり、図 3に於いて、抵抗ノコンデンサインピーダンス比が 1以下の領域は、 当該半導体スィッチ 5の O N抵抗の領域を示しており、 反対に、 抵抗 Zコンデン サインピーダンス比が 1以上の領域は、 当該半導体スィツチ 5の O F F抵抗の領 域を示している。
ここで、 アンテナ利得特性 2 1を見ると、. 抵抗 Zコンデンサインピーダンス比 が 1の領域での減衰量は一 5 4 d B位であり、 前述のアンテナ利得特性 2 0と比 較すると減衰量は多少軽減されてはいるが、 コンデンサの静電容量が変わっても アンテナ利得特性の傾向に大きな差は無いことが分かる。 同様に、 アンテナ利得 特性 2 2は 5 6 0 p Fのコンデンサ 1 0 Cに可変抵抗 1 2を直列に接続したとき のアンテナ利得特性であり、 アンテナ利得特性 2 3は 1 0 0 p Fのコンデンサ 1 O dに可変抵抗 1 2を直列に接続したときのアンテナ利得特性である。 これらの アンテナ特性に於いても減衰量は異なるが、 抵抗/コンデンサインピーダンス比 が 1の領域でアンテナ利得は最も低下しており、 アンテナ利得特性の傾向は一致 している。
次に、 可変抵抗 1 2とコンデンサインピーダンスとの比率が 1の近傍で、 アン テナ利得がなぜ最も低下するのかを説明する。
図 2 ( C ) に於いて、 可変抵抗 1 2がコンデンサ 1 0 aのインピーダンスと比 較して無視できるほど小さい領域では、可変抵抗 1 2の影響はほとんどないので、 受信アンテナ 2とコンデンサ 1 0 a〜l 0 dは L C並列共振回路として動作し、 損失が少ないのでアンテナ利得は大きい (例えば比率 0 . 0 1以下の領域)。 しか し、 可変抵抗 1 2の抵抗値が大きくなると、 可変抵抗 1 2は L C並列共振回路の 中で損失として働くので共振回路の Qが小さくなり、 この結果、 アンテナ利得は 低下する。
そして、可変抵抗 1 2とコンデンサ 1 0 aのインピーダンス比が 1の近傍では、 可変抵抗 1 2はコンデンサ .1 0 aに対して最も大きく影響するので、 L C並列共 振回路の損失も最も大きくなり、 この結果、 アンテナ利得は最も低下する。 しか し、 可変抵抗 1 2とコンデンサ 1 0 aのインピーダンスの比が 1を越えると、 可 変抵抗 1 2によってコンデンサ 1 0 aはコンデンサとしての働きを妨げられ、 可 変抵抗 1 2がコンデンサ 1 0 aのインピーダンスよりも十分に大きくなると (例 えば比率 1 0 0以上の領域)、コンデンサ 1 0 aは L C並列共振回路から切断され たことに等しくなり、 L C並列共振回路の Cは、 コンデンサ 1 0 b〜l 0 dの 3 個の合計静電容量だけとなる。 この結果、共振周波数は多少ずれることになるが、 可変抵抗 1 2による損失は減少しアンテナ利得は再び高くなる。
次に、 図 3の実験結果を基に、 図 2 (a)、 (b) で示す N— T r 5の ON抵抗 5 o nと OF F抵抗 5 o f f の好ましい抵抗値を検証する。
ここで、 電波を受信する同調装置の電気的特性で重要な要素は、 高感度と高選 択度であると言って良い。 この観点からすると、 同調装置のアンテナ利得は出来 る限り高いことが好ましく、 また、 同調回路は損失が少なく Q値が高いことが好 ましい。
よって、 図 3のアンテナ利得特性から分かるように、 N— T r 5の ON抵抗 5 o nと OF F抵抗 5 o f f の値は共に、 コンデンサのィンピーダンスとの比率が 1の近傍にならないように決定されなければならない。 すなわち、 半導体スイツ チとしての N_T r 5の ON抵抗 5 o nの値は、 N— T r 5に直列に接続される コンデンサ 4のインピーダンスより小さいことが好ましい(すなわち比率 1以下)。 また同様に、 N— T r 5の OF F抵抗 5 o f f の値は、 N— T r 5に直列に接続 されたコンデンサ 4のインピーダンスより大きいことが好ましい (すなわち比率 1以上)。
次に、 N— T r 5の ON抵抗 5 o nと OF F抵抗 5 o f f の更に好ましい値を 詳細に検証する。 図 4は、 図 3のインピーダンス比—アンテナ利得特性の部分拡 大図であり、 図 4 (a) は 1 800 p Fのコンデンサ 1 0 aを用いたアンテナ利 得特性 20の抵抗 Zコンデンサインピーダンス比 0. 0 1以下の部分拡大図であ り、 図 4 (b) は同じく 1 800 p Fのコンデンサ 1 0 aを用いたアンテナ利得 特性 20の抵抗 コンデンサインピーダンス比 250位以上の部分拡大図である。 図 1 5は、 1800pFのコンデンサ 1 0 aを用いたアンテナ利得特性 20の抵抗 ノコンデンサインピーダンス比 0. 03〜1下の部分拡大図であり、 図 1 6は、 同 じく 1800pFのコンデンサ 1 0 aを用いたアンテナ利得特性 20の抵抗ノコンデ ンサインピ一ダンス比 1〜 3 1の部分拡大図である。
図 1 5において抵抗/コンデンサインピーダンズ比 1位でのアンテナ利得は 6 0 dBであり、 この比率 1は可変抵抗 1 2とコンデンサインピーダンズが等しい 値 (すなわちもっとも理想的でない ON抵抗) である。 よって、 アンテナ利得一 60 d Bを最悪なアンテナ利得として定め、 該最悪なアンテナ利得から 2 d B増幅 した一 58 d Bにおける抵抗/コンデンサインピーダンス比は図 1 5から 0.6位 (T 1のポイント) であるので、 ON抵抗 5onとコンデンサ 4のインピーダンス比は 0.6以下であることが好ましい。
また、 最悪なアンテナ利得一 60 dBから、 4 dB増幅した一 56 dBにおけ る抵抗/コンデンサインピーダンス比は、 0.43位 (T2のポイント) であるので、 ON抵抗 5onとコンデンサ 4のインピーダンス比は図 4 (a) から 0.43以下であ ることが更に好ましい。
また、 最悪なアンテナ利得— 60dBから、 10dB増幅した— 50dBにおける抵抗 /コンデンサインピーダンス此は、 0.19位 (T3のポイント) であるので、 ON抵 抗 5onとコンデンサ 4のインピーダンス比は図 4 (a) から 0. 19以下であるこ とが更に好ましい。
また、 最悪なアンテナ利得— 60dBから、 20dB増幅した— 40dBにおける抵抗 /コンデンサインピーダンス比は、 0.03位 (T4のポイント) であるので、 ON抵 抗 5onとコンデンサ 4のインピーダンス比は図 4 (a) から 0. 03以下であるこ とが更に好ましい。
図 4 (a) に於いて、 抵抗 Zコンデンサインピーダンス比 0. 001位でのァ ンテナ利得は一 29. 5 d Bであり、 この比率 0. 001は、 可変抵抗 1 2力;ほ ぼ零に近い値 (すなわち理想的な〇N抵抗) である。 よって、 アンテナ利得— 2 9. 5 d Bを理想的なアンテナ利得 (矢印 C) として定め、 該理想的なアンテナ 利得から 3 d B減衰した— 32. 5 d Bにおける抵抗ノコンデンサインピーダン ス比は図 4 (a) から 0. 0084位 (N 3のポイント) であるので、 ON抵抗 5 o nとコンデンサ 4のィンピーダンス比は 0. 0084以下であることが好ま しい。
また、 理想的なアンテナ利得 _ 29. 5 d Bから、 2 d B減衰した— 3 1. 5 d Bにおける抵抗 Zコンデンサインピーダンス比は、 0. 0057位 (N2のポ イント) であるので、 ON抵抗 5 o nとコンデンサ 4のインピーダンス比は図 4 (a) から 0. 0057以下であることが更に好ましい。 また、 理想的なアンテ ナ利得— 29. 5 d Bから、 1 d Bだけ減衰した— 30. 5 d Bにおける抵抗 Z
ΪΓ正された用紙 C¾¾I9 コンデンサインピーダンス比は、 0. 003位 (N 1のポイント) であるので、 ON抵抗 5 o nとコンデンサ 4のインピーダンス比は図 4 (a) から 0. 003 以下であることが更に好ましい。
次に図 1 6において抵抗/コンデンサインピーダンス比 1位でのアンテナ利得 は 60 d Bであり、 この比率 1は可変抵抗 12とコンデンサインピーダンスが等し い値 (すなわちもっとも理想的でない ON抵抗) である。 よって、 アンテナ利得 — 60dBを最悪アンテナ利得として定め、該最悪なアンテナ利得から 2dB増幅し た一 58dBにおける抵抗/コンデンサインピーダンス比は, 図 1 6力、ら 2.8位(T5 のポイント) であるので、 ON抵抗 5onとコンデンサインピーダンス 4のインピ —ダンス比は 2. 8以上であることが好ましい。
また、 最悪なアンテナ利得一 60 dBから、 4 dB増幅した一 56 dBにおける 抵抗 ' コンデンサインピーダンス比は、 3. 9位 (T6のポイント) であるので、 ON抵抗 5 onとコンデンサ 4のィンピーダンス比は図 4 (a)から 3. 9以上である ことが更に好ましい。
また、 最悪なアンテナ利得一 60dBから、 10dB増幅した一 50 dBにおける 抵抗/コンデンサインピーダンス比は、 9位 (T7のポイント) であるので、 ON抵 抗 5 onとコンデンサ 4のインピーダンス比は図 4 (a)から 9以上であることが更 に好ましい。
また、 最悪なアンテナ利得一 60 dBから、 20 dB増幅した一 40dBにおけ る抵抗/コンデンサインピーダンス比は、 31位 (T8のポイント) であるので、 ON 抵抗 5onとコンデンサ 4のインピーダンス比は図 4 (a)から 31以上であることが 更に好ましい。
次に図 4 (b) に於いて、 アンテナ利得一 26. 2 d Bは、 グラフの領域から は外れているが、 可変抵抗 1 2の値がほぼ無限大に近い (すなわち理想的な OF F抵抗) ときのアンテナ利得である。 よって、 — 26. 2 d Bを理想的なアンテ ナ利得 (矢印 D) として定め、 該理想的なアンテナ利得から 3 d B減衰した一 2 9. 2 d Bにおける抵抗/コンデンサインピーダンス比は図 4 (b ) から 300 位で (F 3のポイント) あるので、 O F F抵抗 5 o f f とコンデンサ 4のィンピ 一ダンス比は 300以上であることが好ましい。
訂正された用紙 また、 理想的なアンテナ利得 _ 26. 2 dBから、 2 d B減衰した— 28. 2 d Bにおける抵抗 コンデンサインピーダンス比は図 4 (b) から 450位 (F 2のポイント) であるので、 OF F抵抗 5 o f f とコンデンサ 4のインピーダン ス比は 450以上であることが更に好ましい。 また、 理想的なアンテナ利得一 2 6. 2 dBから、 1 d Bだけ減衰した一 27. 2 d Bにおける抵抗/コンデンサ インピーダンス比は図 4 (b) から 900位 (F 1のポイント) であるので、 O FF抵抗 5 o f f とコンデンサ 4のインピーダンス比は 900以上であることが 更に好ましい。
以上のように、 図 2 (C) で示した半導体スィッチとしての N— T rの ON抵 抗と OF F抵抗の実験結果から、 それぞれの ON抵抗と OF F抵抗を好ましい値 に設定することにより、 図 1で示す本発明の第 1の実施形態である同調回路 1の 感度や選択度を向上させることが出来る。 尚、本発明の第 1の実施形態に於いて、 半導体スィツチ 5として Nチャンネル M〇 S トランジスタを用いたが、 このタイ プのトランジスタに限定されるものではなく、 Pチャンネル MOS トランジスタ でも良い。 また、 Nチャンネルと Pチャンネルの一対の MOS トランジスタを組 み合わせたトランスミッションゲ一卜でも良く、 更にはバイポーラ トランジスタ であっても良い。
また、 図 1に於ける N— T r 5 a〜5 f は、 その O N抵抗を上記の基準で選択 することにより、 トランジスタサイズを最小限に小さくすることが出来る。 例え ば、 図 1に於いて、 コンデンサ 4 aの静電容量は 1 2. 5.p Fとしたが、 このィ ンピーダンスは周波数を 40 KH zとすると約 300 ΚΩである。 ここで、 前述 の実験結果から抵抗/コンデンサインピーダンス比の好ましい値 (例えばアンテ ナ利得 3 d B減衰での値) 〖ま 0. 0084以下であるので、 その ON抵抗は 30 0 Κ Ω X 0. 0084 = 2. 5 ΚΩとなる。 N— T r 5 a〜 5 f のトランジスタ に於いて ON抵抗 2. 5ΚΩは、 十分に小さなトランジスタサイズによって実現 できる。
また、 最も大きな静電容量を持つコンデンサ 4 f は 400 p Fとしたが、 この インピーダンスは同様に計算すると約 10ΚΩであり、 同様に抵抗 コンデンサ インピーダンス比を 0. 0084とすると、 その ON抵抗は 84 Ωである。 この ON抵抗 84 Ωは、 Ν— T r 5 a〜5 f のトランジスタに於いて一定のサイズを 確保すれば、 十分に実現できる大きさである。
すなわち、 本発明により直列に接続されるコンデンサ 4の静電容量に応じて、 半導体スィツチ 5としての N— T rのトランジスタサイズを最小限に選定出来る ので、 同調 I C 3のチップサイズを可能な限り小さく設計することが出来、 コス トダウンや同調装置の小型化を実現できる。 また、 N— T 1:のトランジスタサイ ズを小さくできるために、 N— T rによって生じる寄生容量や浮遊容量を最小限 に減らすことが可能となり、 微少容量から大容量までを可変出来る、 優れた同調 回路を有する同調装置を実現できる。
次に、 図 1に於ける N— T r 5 a〜5 f の OF F抵抗についても同様な効果を 述べることが出来る。 例えば、 前述の 1 2. 5 p Fのコンデンサ 4 aに対する N — T r 5 aの OF F抵抗の好ましい値 (例えばアンテナ利得 3 d B減衰での値) は、 抵抗/コンデンサインピ一ダンス比が 300以上であるので、 300ΚΩΧ 300 = 90ΜΩとなる。 ここで、 ON抵抗 2. 5 Κ Ωの MO S トランジスタに 於いて、 OF F抵抗 90ΜΩは低電圧電源でも十分に実現できる値である。
また、 400 p Fのコンデンサ 4 f に対する N— T r 5 f の OF F抵抗の好ま しい値も同様に計算すると、 10 ΚΩ X 300 = 3ΜΩとなる。 この OFF抵抗 3ΜΩは ON抵抗 84 Ωの MOS トランジスタに於いて、 低電圧電源でも十分に 実現できる値である。 このように、 直列に接続されるコンデンサに対応して最適 な ON抵抗、 OF F抵抗を選択することにより、 低電圧駆動であっても優れた性 能を有する同調装置を実現することが出来る。
また、 同調 I C 3に内蔵される複数のコンデンサ 4 a〜4 f は、前述した如く、 S i O 2等によって成る酸化膜を誘電体としたコンデンサであるので、 空乏層を 利用したコンデンサと比較してリーク電流が極めて低いので、 損失の非常に少な い優れたコンデンサである。 この結果、 受信アンテナ 2とによって成る同調回路 の Qを高くすることが出来、 受信電波に対する選択度が高く安定性に優れた同調 装置を実現することが出来る。
次に、 同調 I C 3の内部に形成される複数のコンデンサの総静電容量の上限値 について説明する。 同調 I C 3のチップサイズは実装効率を考慮すると極端に大 きくすることは出来ず、 また、 チップサイズの大きさは即コストアップにも繋が るので、 出来るだけ小さい方が好ましい。 これらのことから同調 I C 3のチップ サイズは、 2 0 1 6サイズのチップ部品と同等程度、 すなわちその大きさは 2 m m X 1 . 6 mm以下が好ましい。 ここで、 前述した如く、 コンデンサは酸化膜を 誘電体として形成され、 この酸化膜の厚さを 1 2 O A程度とすると、 そのチップ サイズ内で形成され得る最大の総静電容量は 9 6 0 0 p F程度となる。 よって、 同調 I C 3の総静電容量は、 9 6 0 0 p F以下であることが好ましレ、。
尚、 本発明に於ける当該コンデンサは、 酸化膜に限定されるものではなく、 窒 化膜その他誘電体材料で構成される膜で構成されるものであっても良い。
また更に、 同調 I C 3は実装用のパッドや半導体スィッチ、 カウンタ回路等の 制御手段を含むので、 これらの占有面積を差し引く とコンデンサとして使用でき る面積は 1 . 6 mm X l . 2 m m程度であり、 この面積から総静電容量を算出す ると 5 7 6 0 p F程度となる。 よって、 同調 I C 3の総静電容量は、 5 7 6 0 p F以下であることが好ましい。 また更に、 同調 I C 3は実装のためのポッティン グ樹脂の広がりの大きさや、 モールド材の厚み等を考慮すると、 チップサイズは 更に小さくする必要があり、 この条件から内蔵するコンデンサの総静電容量を算 出すると 9 6 0 p F程度となる。 よって、 同調 I C 3の総静電容量は、 9 6 O p F以下であることが更に好ましい。
次に、 受信アンテナ 2のインダクタンスの下限値について説明する。 本発明の 第 1の実施形態である同調回路 1を電波修正時計の同調装置として用いた場合、 電波修正時計が受信する標準電波の中で最も高い送信周波数を出力している送信 局はドイツの D C F 7 7局であり、 その送信周波数は 7 7 . 5 K H zである。 また、 前述した如く、 同調 I C 3の総静電容量はチップサイズ等から考慮して 最大で 9 6 0 0 p F程度であることが好ましい。 これらの二つの条件から受信ァ ンテナ 2のインダクタンスを算出すると、 0 . 4 4 m H程度となる。 よって、 受 信アンテナ 2のインダクタンスは、 0 . 4 4 m H以上であることが好ましい。 また更に前述した如く、 同調 I C 3の総静電容量は、 実装用パッドや制御手段 の占有面積を考慮すると 5 7 6 0 p F程度であり、 この条件から受信アンテナの 2のインダクタンスを算出すると、 0 . 7 3 m H程度となる。 よって、 受信アンテナ 2のインダクタンスは、 0. 73 mH以上であることが 好ましい。 また更に前述した如く、 同調 I C 3の総静電容量は、 同調 I C 3の実 装のためのポッティング樹脂の広がりの大きさ等を考慮すると 960 p F程度と なり、 この条件から受信アンテナ 2のインダクタンスを算出すると、 4. 4mH 程度となる。 よって、 受信アンテナ 2のインダクタンスは、 4. 4mH以上であ ることが更に好ましい。
次に、 受信アンテナ 2のィンダクタンスの上限値について説明する。
本発明の第 1の実施形態である同調装置 1を電波修正時計の同調装置として用 いた場合、 電波修正時計が受信する標準電波の中で最も低い送信周波数を出力し ている送信局は日本の福島局であり、その送信周波数は 40 KH zである。 また、 同調 I C 3に内蔵されるコンデンサを全て受信アンテナ 2から切断したときの、 同調 I C 3内部での寄生容量や浮遊容量の合計値は非常に小さく 4 p F位と想定 される。これらの二つの条件から受信アンテナ 2のィンダクタンスを算出すると、 4000mH程度となる。 よって、 受信アンテナ 2のインダクタンスは、 400 0 mH以下であることが好ましい。
また更に、 受信アンテナ 2の寄生容量も加味すると、 同調 I C 3に内蔵される コンデンサを全て受信アンテナ 2から切断したときの総静電容量は、 14 p F程 度である。 この条件から受信アンテナ 2のインダクタンスを算出すると、 1 10 OiriH程度となる。 よって、 受信アンテナ 2のインダクタンスは、 l l O OmH 以下であることが更に好ましい。
以上のように、 本発明の第 1の実施形態によれば、 一つの半導体基板に半導体 スィツチとリーク電流の極めて少ないコンデンサとを組み合わせにより、 Q値が 高く安定性に優れ、 同調周波数の可変範囲が広い同調装置を実現することが出来 る。 また、 半導体スィッチの ON抵抗と OF F抵抗を、 該半導体スィッチに接続 されるコンデンサのインピーダンスに応じて好ましい値に選択するならば、 同調 回路の損失を更に減少させて高感度な同調装置を実現させることが出来る。また、 半導体スィツチの ON抵抗と OF F抵抗の選択により、 トランジスタサイズを最 小限に抑え留ことが出来るので、半導体基板としての同調 I Cの実装面積の削減、 コストダウンが可能であり、 更に、 同調 I Cの浮遊容量や寄生容量を最小限に減 らすことが出来るので、 同調回路の静電容量を微少容量から大容量まで可変出来 る優れた同調装置を提供することが出来る。
また、 同調回路の複数のコンデンサは、 半導体基板内に形成されるので、 外付 け部品を大幅に削減でき、 同調装置としての小型化や製造工程の簡略化が可能で ある。 また、 同調回路を形成する複数のコンデンサの切り替えは、 半導体スイツ チとしての MOS トランジスタ等によって実現できるので、 その切り替えのため の電源は、 他の回路と共通な単一電源で良く、 他のマイナス電源等を必要としな いため電源回路を簡略化でき、 低消費電力化、 小型化、 コス トダウン等に効果が 大きい。
此処で、 本発明に於いてアンテナ特性を評価する際に使用される当該アンテナ の利得と Q値の測定方法の一具体例を図 1 7乃至図 20を参照しながら説明する。 即ち、 ヒュ一レッ ドパッカ一ド社 (HP) 製のネッ トワークアナライザー (4 1 95 A) と同ヒユーレッドパッカード社 (HP) 製の高周波プローブ (850 24 A) 及びナショナル (松下電器) の送信アンテナ (テス トループ 75 Q, VQ- 08 5 F) とを、 図 1 7に示す様に接続してアンテナ評価回路を構成し、 当該送信アンテナ (テス トループ 75 Q, VQ— 08 5 F) の近傍に被測定ァ ンテナを接続する当該高周波プローブ (85024A) とサンプル支持部を配置 し、 当該サンプル支持部に所定の被測定アンテナをセッ トした後、 当該送信アン テナ (テス トループ 75 Q, VQ- 08 5 F) より所定の電波を発信し、 当該 被測定アンテナの出力を当該高周波プローブ (8 5024A) で検出して当該ネ ッ トワークアナライザー (4 1 95A) で所定のアンテナ評価をする様に構成し たものである。
上記の評価装置においては、 当該被測定アンテナ構造体 2と当該送信アンテナ (テス トループ 75 Q, VQ- 085 F) との距離を図 1 8に示す様に送信ル ープアンテナの下端から 1 1 Cm離れた位置に評価用の受信アンテナを設置して 測定すると同時に、 図 1 9に示す様に、 当該被測定アンテナ構造体 2と金属外装 3とを接触させて測定した。
尚、 本具体例で使用した当該金属外装として使用される金属材料としては、 S US, T i , T i合金、 B S等の 5mm厚の板材を用いた。 更に、 上記具体例に於いて、 当該送信アンテナ (テス トループ 7 5 Q , V Q - 0 8 5 F ) から発信される電波の周波数は、 4 O K H z用の共振アンテナを測 定する方法を図 2 0参照しながら説明する。
即ち、 当該ネッ トワークアナライザー(4 1 9 5 A) から当該送信アンテナ(テ ス トループ 7 5 Q , V Q - 0 8 5 F ) に一定の出力で周波数を 2 0〜 6 0 K H zの範囲でスイープさせ、 被測定アンテナ 2の出力を高周波プローブ (8 5 0 2 4 A) を介してモニターし図 2 0に示す様な出力結果を得る。
ここで、 アンテナの利得は、 送信アンテナへの入力電圧振幅と被測定アンテナ の出力電圧振幅の比で表し、 図 2 0中、 最もアンテナ出力の高い周波数が共振周 波数 ( f 0 ) となり、 当該アンテナ出力が最も高い時点での上記比の値をアンテ ナ利得とした。
又、 図 2 0中、 Aで示されるレベルは、 当該最もアンテナ出力の高い点から約 3 d B ( 1 2 ) 低いレベルで、 その出力レベルを与える周波数を f 1、 f 2 とすると、 Q値は、 以下の様に計算されるものである。
<3値=共振周波数 f 0 ÷ ( f 2 - f 1 )
従って、 上記の測定結果より f 1 , f 2を求め共振周波数 f 0 ÷ ( f 2— f 1 ) の式より Q値を算出した。
次に、 図 5に基づいて本発明の第 2の実施形態である同調回路 1の構成を説明 する。 図 5は本発明の第 2の実施形態である同調装置の回路図であり、 図中、 複 数の半導体スィツチ 5と、 当該複数の半導体スィツチ 5と各々直列に接続される 複数の第 1のコンデンサ 4と当該複数の第 1のコンデンサ 4群による合計静電容 量を所定の値に設定するために当該個々の半導体スィツチ 5の開閉を制御するス ィツチ制御手段 6とが一つの半導体基板 2 0 0上に形成されており、 かつ当該複 数の第 1のコンデンサ 4のそれぞれが、 並列に接続されている当該半導体基板 2 0 0外に設けられているアンテナ部 2を構成するコイル部 2 0 1と、 更に当該半 導体基板 2 0 0上若しくは当該半導体基板 2 0 0外に設けられており、 当該第 1 のコンデンサ 4群と並列に当該コイル部 2 0 1に接続されている固定容量或いは 可変容量を有する第 2のコンデンサ 7とで構成されている電波修正時計の受信部 に使用される同調回路 1が示されている。 即ち、 本発明に於ける第 2の具体例としての同調回路 1は、 上記した第 1の具 体例である同調回路 1に、 更に当該半導体基板 2 0 0上若しくは当該半導体基板 2 0 0外に、 当該第 1のコンデンサ群 4と並列に当該コイル部 2 0 1と接続され ている固定容量或いは可変容量を有する少なく とも一つの第 2のコンデンサ 7が 設けられているものである。
更に、 本発明に於ける当該第 2の具体例に於ける当該同調回路 1に於いては、 当該第 2のコンデンサ 7は、 当該第 1のコンデンサ 4が受ける制御とは異なる制 御を受ける様に構成されている事が好ましく、 叉、 当該第 2.のコンデンサ 7の容 量は、 当該第 1のコンデンサ 4のそれぞれが持つ容量とは異なるものである事が 望ましい。
特には、 当該第 2のコンデンサの静電容量は、 当該第 1のコンデンサの静電容 量よりもかなり大きく設定されている事が望ましい。
叉、 本発明に於ける当該第 2の具体例に於ける当該第 2のコンデンサ 7の少な く とも一つは、 適宜のスィツチ手段 5 f を有しており、 当該スィツチ手段 5 f を 当該制御手段 6により制御されるように構成されているものである。
本具体例に於いては、 当該スィッチ手段 5 f は、 第 1の具体例と同様に当該半 導体基板 2 0 0上に設けられた半導体スィツチ 5で有っても良く、 或いは当該半 導体基板 2 0 0から離れた位置に形成されたもので有ってもよい。
更に、 当該スィツチ手段 5 f は, 当該制御手段 6とは異なる制御手段により制 御されるように構成されているもので有っても良い。
叉、 当該第 1のコンデンサ 4と当該第 2のコンデンサ 7とは、 互いに異なる制 御システムで駆動される様に構成されていることが望ましい。
以下に、 本発明に於ける当該第 2の具体例に於ける同調回路 1の構成を詳細に 説明するが、 第 1の実施形態と同一要素には同一番号を付し重複する説明は省略 する。
即ち、 図 5に於いて、 1は本発明の第 2の実施形態である同調回路である。 7 は同調 I C 3の外部に配置される第 2のコンデンサであり、 該第 2のコンデンサ 7の一方の端子は同調 I C 3から出力される同調信号 P 1 0に接続され、 他方の 端子は同調 I C 3の内部にある半導体スィツチとしての N— T r 5 f のドレイン 端子 Dに接続される。 尚、 当該第 2のコンデンサ 7は、 チップタイプのセラミツ クコンデンサが好ましいが、 当該第 2のコンデンサ 7としては、 静電容量が固定 化されているものであっても、 静電容量は可変式のコンデンサで有っても良い。 叉、 かかる第 2のコンデンサ 7は、 当該半導体基板 2 0 0上に形成されたもの であっても良いことは言うまでもない。
ここで、 同調 I C 3に内蔵される第 1のコンデンサ 4 a〜4 eの静電容量を、 コンデンサ 4 aは 1 2 . 5 p F、 コンデンサ 4 bは 2 5 p F、 コンデンサ 4 cは 5 0 p F、 コンデンサ 4 dは 1 0 0 p F、 コンデンサ 4 eは 2 0 0 p Fとする。 そして、 同調 I C 3の外部に配置される第 2のコンデンサ 7の静電容量を 4 0 O p Fとする。 この場合、 N— T r 5 a〜5 f によって可変される静電容量の分 解能及び最大値は、 前述した第 1の実施形態と等しいので同調装置としての性能 は変わらないが、 同調 I C 3の内部に形成される第 1のコンデンサの総静電容量 は 3 8 7 . 5 p Fとなって半減するので、 同調 I C 3のチップサイズを大幅に縮 小出来、 実装効率の向上ゃコストダウンを実現することが出来る。
また、 同調 I C 3に内蔵される第 1のコンデンサの数も静電容量の合計値も減 らさずに、 外部に配置される第 2のコンデンサ 7を追加する形で接続すれば、 合 計の静電容量を倍増させることが出来るので、 同調周波数の可変範囲を更に広げ ることが可能となる。 また、 本発明の第 2に具体例に於いては、 同調 I C 3の外 部に配置される第 2のコンデンサの数量を 1個としたが、 これに限定されず、 2 個以上の複数であっても良い。 更には、 同調 I C 3の内部に形成される第 1のコ ンデンサ 4 a〜4 eを全て削除し、 全てのコンデンサを同調 I C 3の外部に配置 しても良い。 これによつて、 同調回路 1の部品点数は増えるが、 同調 I C 3のチ ップサイズは最小限に出来るので、 同調 I C 3の大幅なコス トダウンが可能とな る。
此処で、 本発明に於ける当該第 2の具体例に於ける同調回路 1のより詳細な具 体例を図 1 3及び図 1 4を参照して説明する。
即ち、 上記した図 1 2で示された従来の同調回路からなる本同調システムでは 対応しきれない容量のアンテナを本同調システムの用いる場合、 図 1 3に示す具 体例のように市販品のコンデンサ C 7, C 8, C 9を当該半導体基板 2 0 0から離れ た状態で接続し、 同調を行うように構成されているものであって、 接続する市販 品のコンデンサの容量は C 7= 1800 p F、 C8=1500p F,C9= 4290 p F (3900 p F+390p F) を予め接続しておく。
当該同調システム内の容量は Cl = 20p F、 C2 = 40p F、 C3 = 80p F、 C4 = 160p F、 C5 = 320p F、 C6 = 640p Fとする。
かかる設定に於いて、 時刻情報を含む標準電波の周波数が 77.5KH zである当 該標準電波を受信する為に同調を行う場合、 SW7,8は OFFし、 C1が接続され た状態で 77.5KHZの信号を送り、 アンテナの出力が最も高いスィツチの組み合 わせが、 同調設定値となる。
叉、 60KH zの同調を行う場合、 SW7を ON、 SW8は OFFし、 C1,C2が接 続された状態で 60KHZの信号を送り、アンテナの出力が最も高いスィツチの組 み合わせが、 同調設定値となる。
更に、 40KH zの同調を行う場合、 SW7,SW8,を ONし、 C1,C2,C3が接続さ れた状態で 40KH zの信号を送り、アンテナの出力が最も高いスィツチの組み合 わせが、 同調設定値となる。
以上のように本同調システムで 3局の同調を行うと共振周波数は 3回程度求め るだけで済み、 コンデンサも半田付けも一度に 3つ接続するだけでよいので調整、 実装工程が短くなる。
また、 上記の内容は 3局受信のことを説明しているが、 これが 3局以上更に 2 局、 1局でも同じことである。
また、 図 14に示すような更に別の具体例に於いては、 当該アンテナ部 2と波 の同調回路 1との間で当該半導体基板 200から離れた位置に別の第 2のコンデ ンサ C 10を追加して本同調システムで周波数調整を行い、 1局又は 2局以上の 受信周波数に合わせることも当然可能である。
この場合、 上記した様に、 第 2のコンデンサ C 8、 C 9、 C 10は、 当該半導 体基板 200上に形成されてもよく、 或いは当該半導体基板 200外に形成され ているものであっても良い。
本発明に於ける当該同調回路 1は、 上記した様に、 アンテナ特性が優れている ので、 当該アンテナ部 2も含めて、 金属材料によって構成された金属外装部の内 部で使用される事が可能である。
次に、 本発明の同調装置を組み込んだ本発明の電波修正時計 4 0について説明 する。
図 6は同調回路 1を含む同調装置を組み込んだ本発明の第 3の実施形態として の電波修正時計 4 0と、 標準電波を送信する送信局 4 5との関係を示した説明図 である。 図 6に於いて、 4 0はアナログ表示方式の電波修正時計である。 4 1は 金属材料によって成る金属外装であり、 4 2は表示手段としての表示部であり、 秒針 4 2 a、 分針 4 2 b、 時針 4 2 C、 及び日付を表示する日付表示部 4 2 dに よって構成される。 2は超小型の受信アンテナであり、 好ましくは金属外装 4 1 の内部の 1 2時方向に配置される。 4 3は時刻や日付を修正するリューズである。 4 4は使用者 (図示せず) の腕に装着するためのバンドである。
4 5は標準電波を送信する送信局である。 4 6は標準電波を放射する送信アン テナであり、 4 7は標準時を高精度で計時する原子時計である。 4 8は送信アン テナ 4 6から送信される時刻情報としての標準時を搬送する標準電波である。 標 準電波 4 8は通常数 + K H zの長波によってなり、 半径 1 0 0 0 K m程度の範囲 で受信することが出来る。 尚、 標準電波 4 8の送信周波数や時刻情報フォーマツ トは、 各国又は各地域の送信局でそれぞれ個別に設定されている。
ここで、 電波修正時計 4 0で標準電波 4 8を受信するには、 前述した如く、 受 信アンテナ 2が金属外装 4 1の内部の 1 2時方向に配置されているので、 好まし くは電波修正時計 4 0の 1 2時方向を送信局 4 5がある方向に向け、 受信開始ボ タン (図示せず) を操作する。 電波修正時計 4 0は標準電波 4 8を受信すると、 標準電波 4 8の時刻情報フォーマツ トに対応する解読アルゴリズムを用いて解読 し、 秒分時や日付等の時刻情報と必要に応じて閏年やサマータイムの有無データ 等を取得し、 取得した時刻情報を計時して表示部 4 2によつて時刻情報や日付を 表示する。 尚、 標準電波 4 8の受信は深夜などのノイズが少なく受信環境の良い 時刻に定期的に実行させることが好ましい。
次に図 7に基づいて本発明の第 3の実施形態である電波修正時計 4 0の回路ブ ロック構成を説明する。 図 7に於いて、 1は本発明の第 1の実施形態である同調 回路である。 5 0は電波修正時計 4 0を制御する制御手段としての制御部である。 5 1は制御部 5 0に含まれる受信 I Cであり、増幅回路 (図示せず)、 フィルタ回 路 (図示せず)、 デコード回路 (図示せず) 等を内蔵している。 5 2は制御部 5 0 に含まれるマイクロコンピュータ (以下マイコンと略記) であり、 電波修正時計 4 0全体を制御する。
5 3は制御部 5 0に含まれる同調記憶手段としての記憶回路であり同調制御情 報を記憶する。 5 4は制御部 5 0に含まれる基準信号源であり水晶発振器 (図示 せず) を内蔵して電波修正時計の基準信号を出力する。 4 2は前述のアナログ表 示方式の表示手段としての表示部であり、 図示しないが駆動モータや輪列等を内 蔵する。 5 5は電源部であり、 同調装置 1、 表示部 4 2、 制御部 5 0等に必要な 電源を供給する。
次に、 各ブロックの接続関係を説明する。 同調回路 1の内部は既に第 1の実施 形態として説明しているので省略する。 制御部 5 0の受信 I C 5 1は、 同調回路 1の同調 I C 3からの出力である同調信号 P 1 0を入力し、 デジタル信号に変換 された復調信号 P I 1を出力する。 記憶回路 5 3は同調制御情報としての同調デ ータ P 1 2を出力し、 基準信号源 5 4は 3 2 , 7 6 8 H zの基準信号 P 1 3を出 力する。 制御部 5 0のマイコン 5 2は、 復調信号 P 1 1、 同調データ P 1 2、 基 準信号 P 1 3を入力して、 クロック信号 P 8、 ィネーブル信号 P 9、 時刻情報と しての時刻データ P 1 4を出力する。 表示部 4 2はマイコン 5 2からの時刻情報 としての時刻データ P 1 4を入力して時刻表示を行う。
次に、 図 7に基づいて、 電波修正時計 4 0の動作を説明する。 図 7に於いて、 電源部 5 5が電源ライン (図示せず) を介して各回路ブロックに電力を供給する と、 マイコン 5 2は初期化処理を実行して各回路ブロックを初期化する。 この結 果、 マイコン 5 2の内部の時刻情報は初期化されて AM 0 0 : 0 0 : 0 0となり、 この初期化された時刻情報に基づいて時刻データ P 1 4を出力する。 表示部 4 2 の秒針 4 2 a、 分針 4 2 b、 時針 4 2 Cは、 時刻データ P 1 4を入力して基準位 置である AM 0 0 : 0 0 : 0 0に移動する。 また、 日付表示部 4 2 dも基準位置 に移動する。
次に、 基準信号源 5 4は基準信号 P 1 3の出力を開始する。 マイコン 5 2は基 準信号 P 1 3を入力して内部で分周し、 該基準信号 P 1 3に基づいて時刻情報の 計時を開始し、 該時刻情報に基づいて時刻データ P 1 4を出力して表示部 4 2に 伝達する。 表示部 4 2は時刻データ P 1 4を入力して時、 分、 秒、 及び日付等の 表示を順次行う。 また、 マイコン 5 2は、 外部からの操作や一定時間毎のタイマ 一等によって時刻修正モードに移行し、 標準電波を受信するために受信動作を開 始する。
以降、 時刻修正モードの動作を説明する。 電波修正時計 4 0が時刻修正モード になるとマイコン 5 2は、 ィネーブル信号 P 9を同調回路 1の同調 I C 3と制御 部 5 0の受信 I C 5 1に対して出力する。 同調 I C 3はィネーブル信号 P 9によ つてリセット状態が解除され、 クロック信号 P 8の入力を受け付けるスタンバイ 状態となる。受信 I C 5 1はィネーブル信号 P 9によって増幅回路(図示せず)、 フィルタ回路 (図示せず)、 デコーダ回路 (図示せず) に電源を供給しスタンバイ となる。 次に、 マイコン 5 2は記憶回路 5 3にアクセスして同調制御情報として の同調データ P 1 2を取得し、 該同調データ P 1 2に基づいて同調回路 1の同調 周波数を調整するために、 クロック信号 P 8を出力する。
次に、 同調回路 1の同調 I C 3は、 クロック信号 P 8を入力して、 前述した如 く、 クロック信号 P 8のパルス数に応じて同調 I C 3に内蔵されるコンデンサ 4 a〜4 f を切り替え、 受信アンテナ 2とによる同調周波数を可変して目的の標準 電波を選択し受信する。 次に、 目的の標準電波が受信されると同調 I C 3は同調 信号 P 1 0を出力し、 受信 I C 5 1に入力する。 受信 I C 5 1は同調信号 P 1 0 を入力して増幅し、 フィルタ回路によってノイズ成分等を除去し、 更にデコード 回路によってデジタル信号に変換し、 復調信号 P 1 1を出力する。
次に、 復調信号 P I 1を入力したマイコン 5 2は、 内部に記憶している解読ァ ルゴリズムを用いて復調信号 P L 1を解読し、 時分秒日付等の標準時情報を得て マイコン 5 2の内部に記憶している時刻情報を修正し、主しレ、標準時を記憶する。 次に表示部 4 2は標準時に修正された時刻データ P 1 4を入力し、 表示時刻を正 しく修正する。 尚、 記憶回路 5 3は、 フラッシュメモリ等による不揮発性メモリ が書き換えも可能で使い易いが、 コス トの安いヒューズ R O M、 又は、 マイコン 5 2等を実装するプリント基板 (図示せず) の導電パターンを加工するパターン 力ッ ト手段であっても良い。 以上のように、 制御部 5 0のマイコン 5 2は、 記憶回路 5 3の同調制御情報に基 づいて同調回路 1を制御し、 該同調回路 1の同調回路を調整してその同調周波数 を、 目的とする標準電波の送信周波数に高精度に合わせ込むことが出来るので、 高感度で安定性の高い標準電波の受信を実現出来、 信頼性の高い電波修正時計を 提供することが出来る。
次に、 電波修正時計 4 0を金属外装 4 1に組み込んだ場合の同調回路 1の構成に ついて説明する。 本発明の電波修正時計 4 0は、 図 6で前述した如く金属外装 4 1に覆われ、 同調回路 1、 表示部 4 2、 制御部 5 0等は機械的に保護されている。 ここで、 外装の材質としては電波を通しやすいプラスチック材料を用いた方が、 アンテナ利得を高くでき標準電波を受信し易い。 しかし、 プラスチック材料は硬 度が低いために外装に傷が付き易く、 また、 防水性にも問題があり、 更には、 高 級感を持たせることが難しいという欠点もある。 これらの欠点を解消するために 金属外装を使用することが好ましいが、 金属外装は電波を通しにくいためにアン テナ利得が低下するという大きな問題がある。
この金属外装 4 1を用いることによって生じるアンテナ利得の低下を解決する 手段として、 受信アンテナ 2の導線の巻き数を増やすことが効果的である。 この 理由は電磁誘導の原理に基づくものであり、 コイルに誘起される起電力はコイル の巻き数に比例して増加することが知られている。 すなわち、 金属外装を使用す ることによって、 外装内部に配置されている受信アンテナ 2への標準電波による 磁界はかなり減衰してしまうが、 受信ァンテナ 2の導線の卷き数を増やすことに よって、 受信アンテナ 2に誘起される起電力を増やすことが出来るので、 磁界の 減衰を補いアンテナ利得の低下を防ぐことが出来る。
ここで、 本出願人は金属外装 4 1によるアンテナ利得の低下を防ぐために、 受 信アンテナ 2の導線の卷き数をどの程度増やせば良いかを様々な条件の基に検証 したところ、 受信アンテナ 2のインダクタンスが 2 O m H以上であれば、 アンテ ナ利得の低下を捕うことが出来るというデータを得た。 このため、 電波修正時計 に金属外装を用いる場合の受信アンテナ 2のインダクタンスは、 2 O m H以上で あることが好ましい。 し力、し、受信アンテナ 2のインダクタンスを増加させると、 該受信アンテナ 2と対になって同調回路を形成するコンデンサ (例えば、 図 1の コンデンサ 4 a〜4 f ) の合計静電容量とその静電容量の最小分解能をかなり小 さくする必要が生じる。
例えば、 同調回路 1に於いて、 受信アンテナ 2のインダクタンスを 2 O m Hと し、 同調回路の同調周波数を標準電波で最も高い送信周波数である 7 7 . 5 K H zとしたとき、 コンデンサ 4 a〜4 f の合計静電容量は 2 0 0 p F前後となり、 また、 最小分解能は 1 p F位が必要となる。 このように微少な静電容量を切り替 えるには、 浮遊容量や寄生容量を出来る限り無くす必要があるが、 本発明の同調 装置は前述した如く、 同調 I C 3の内部の浮遊容量や寄生容量を最小限に減らす ことが出来るので、 受信アンテナ 2のインダクタンスが 2 O m H、 またはそれ以 上であっても、 十分に対応できる同調回路を形成することが可能である。
以上のように、 本発明の第 3の実施形態の電波修正時計は、 外装に傷が付きに くく、 防水性にも優れ、 且つ、 高級感を持たせることの出来る金属外装 4 1を用 いることが出来るので、 電波修正時計 4 0の製品としての品質を高める上でその 効果は大きい。 尚、 本発明の電波修正時計 4 0は、 同調回路 1を制御して同調周 波数を可変し、 目的の標準電波に対して最適な同調周波数の調整を実現させてい るが、 この調整手段だけでなく、 送信周波数の異なる複数の標準電波を任意に選 択する標準電波選択手段として応用することも可能である。
具体的には、 日本国内に於いて標準電波を送信する送信局は二つあり、 一^ 3は 福島局であって送信周波数は 4 0 K H zであり、 他の一つは九州の佐賀局であつ て送信周波数は 6 0 K H zである。 よって、 電波修正時計を日本国内で使用する 場合、 上記二つの送信局からの標準電波を任意に受信できることが望ましい。 こ の送信周波数の異なる複数の標準電波を受信する手段として、 マイコン 5 2から のク口ック信号 P 8のパルス数を可家し、 同調 I C 3に内蔵される N— T r 5 a 〜5 f を開閉してコンデンサ 4 a〜4 f を切り替え、同調 I C 3の同調周波数を、 目的とする標準電波の送信周波数に合わせて受信することが出来る。これにより、 複数の標準電波を任意に選択して受信するマルチチャンネル対応の電波修正時計 を容易に実現することが可能である。
次に、 本発明にかかる電波修正時計を異なる国或いは地域に移動させて、 当該 国或いは地域に於いて、 複数の相互に異なる時刻情報を含んだ標準電波の中から 任意に適切な標準電波を発信する受信局を選択して当該国或いは地域に於ける正 確な時刻情報に当該電波修正時計の時刻情報を修正する方法の一例を説明する。 図 2 1は、 本発明に於ける当該電波修正時計の時刻情報を修正する方法の一例 を実行する電波修正時計の回路プロック図である。
図 2 1に於いて、 図 7に示す本発明に係る電波修正時計の具体例での構成と同 —の部分については同一の符号を付し、 詳細な説明は省略する。
即ち、 図 2 1に於いて、 1は受信アンテナ 2と同調 I C回路 3とを含む受信手 段としての同調回路 1であり、 標準電波を受信する受信アンテナ 2と、 該受信ァ ンテナ 2と同調して標準電波を選択的に受信するためのコンデンサによって成る 同調 I C回路 3とで構成されており、 一方、 制御部 5 0に含まれる受信 I C 5 1 は、 適宜の増幅回路、 フィルタ回路、 及び
検波回路等によって構成される。
受信回路 5 1は、 受信アンテナ 2と同調 I C 3によって受信された微弱な標準 電波を入力して増幅及び検波を行い、 デジタル化された復調信号 P 1 1を出力す る。
一方、 5 2 aはデコード手段としてのデコーダ回路であり、 復調信号 P 1 1を 入力して内部の記憶手段 5 3に記億している解読アルゴリズムによって復調信号 P 1 1の時刻, 情報フォーマッ トを解読し、 秒、 分、 時、 日等の時刻情報として の標準時データ P 5 2と、 受信成功不成功フラグや受信処理期間フラグを有する 受信情報としての受信情報信号 P 5 3を出力する。
また該デコーダ回路 5 2 aは、 復調信号 P 1 1に混入するノイズ成分等をデジ タル処理し、 受信した標準電波の受信レベルを数値化して受信レベル情報として の受信レベル信号 P 5 4を出力する。 5 2 bは演算手段としての演算回路であり、 受信情報信号 P 5 3と受信レベル信号 P 5 4を入力し、 受信した標準電波の送信 局のコード化、 受信成功不成功のコ一ド化、 受信処理時間の計時、 及び受信レべ ル情報のコード化等の演算処理を行い、 受信情報データ P 5 5として出力する。
5 3は記憶手段としてのメモリ回路であり、 前記受信情報データ P 5 5を入力 して受信した各送信局の受信状況をコード化ャた受信履歴情報として記憶する。
5 2 cは受信順位決定手段としての受信順位決定回路であり、 メモリ回路 5 3 に記憶された受信履歴情報を受信情報データ P 5 5を介して入力し、 受信する送 信局の受信順位を決定して受信順位データ P 5 6を出力する。 5 2 dは制御手段 としての制御回路であり、 標準時データ P 5 2を入力して時刻設定データ P 5 7 を出力する。
また、 制御回路 5 2 d は受信情報データ P 5 5と受信順位データ P 5 6を入力 し、 優先する送信局を選択する選択信号 P 5 8を出力する。 また、 制御回路 5 2 d は受信情報信号 P 5 3を入力し、 受信成功不成功フラグによって受信動作の成 功不成功を判定する。 また、 制御回路 5 2 dは受信」 情報データ P 5 5、 受信順 位データ P 5 6によって、 前回受信された送信局、 あるいは、 受信順位決定手段 が決定した受信順位に基づいてこれから受信される優先の送信局、 あるいは、 現 在受信中の送信局を表す送信局表示信号 P 5 9を出力する。
同調回路 1の同調 I C 3と受信 I C回路 5 1及びデコーダ回路 5 2 aは制御回 路 5 2 dからの選択信号 P 5 8を入力する。 同調 I C 3は選択信号 P 5 8によつ て内部のコンデンサ (図示せず) を切り替え、 受信アンテナ 2との同調周波数を 変化させて受信する標準電波を選択する。 また、 受信 I C回路 5 1は選択信号 P 5 8によって内部のフィルタ回路 (図示せず)、 検波回路 (図示せず) 等の回路定 数を切り替え、 受信アンテナ 2と同調 I C 3によって選択的に受信される微弱な 標準電波を増幅検波する.
また、 デコーダ回路 5 2 aは選択信号 P 5 8によって前述した内部の解読アル ゴリズムを切り替え、 受信する標準電波の時刻情報フォーマットを解読する。 5 4は内部に水晶発振器 (図示せず) を備える基準信号源であり、 基準信号 「P 1 3を出力する。 5 2 e は計時手段としての計時回路であり、 時刻設定データ P 5 7を入力して標準電波より得た正確な時刻情報を設定し、 且つ、 基準信号 P 1 3 によって時刻を計時し、 時刻表示信号 P 6 1を出力する。
表示部 4 2は前述した如く秒針、 分針、時針、 日付表示部等によって構成され、 図示しないがモータと輪列等の機械伝達機構を有し、 時刻表示信号 P 6 1を入力 して時刻情報を表示する。 また、 表示部 4 2は必要に応じて送信局表示信号 P 5 9を入力し、 前回受信された送信局、 あるいは受信順位決定回路 5 2 cが決定し た受信順位に基づいてこれから受信される優先の送信局、 あるいは、 現在受信中 の送信局の何れかを秒針、 分針等で表示する。 尚、 送信局の表示には、 秒針や分 針の代わりに小型の液晶パネル等を用いてデジタル的に表示しても良い。
5 5は電源であり一次電池又は二次電池等によって成り、 図示しないが電源ラ インを介して各回路ブロックに電源を供給する。 尚、 破線で大きく囲んだデコー ダ回路 5 2 a、 演算回路 5 2 b、 受信順位決定回路 5 2 c、 制御回路 5 2 d、 計時 回路 5 2 e を制御部 5 0としてワンチップで成るマイクロコンピュータによって 構成し、 各機能をファームウェアによって実現させることも可能であるので、 本 発明は図 2 1で示した実施形態の構成に限定されるものではない。
また、 メモリ回路 5 3は制御部 5 0の内部に形成した例を示して有るが、 制御 部 5 0の外部に構成したもので有っても良い。 また、 標準電波の受信レベル情報 を表す受信レベル信号 P 5 4は、デコーダ回路 2 1コによりデジタル処理で生成し たが、 この方法に限定されるものではなく、 例えば、 受信 I C回路 5 1によって 受信した標準電波の電界強度等に基づいてアナログ処理で生成しても良い。 次に図 2 1に基づいて、 本発明の実施形態である電波修正時計 1の基本動作を 説明する。
電源 5 5が電源ライン (図示せず) を介して各回路ブロックに電力を供給する と、 制御回路 5 2 dは初期化処理を実行して各回路プロックを初期化する。 口この結果、 計時回路 5 2 eは初期化されて AM 0 0 : 0 0 : 0 0となり、 表示 部 4 2の秒針、 分針、 時針は、 時刻表示信号 P 6 1によって基準位置である AM 0 0 : 0 0 : 0 0に移動する。 また、 日付表示部も基準位置に移動する。 次に計時回路 5 2 e は基準信号源 5 4からの基準信号 P 1 3によって計時を開 始し、 表示部 4 2は計時回路 5 2 eからの時刻表示信号 P 6 1によって運針を開 始する。 次に制御回路 5 2 d は選択信号 P 5 8を順次出力し、 同調回路 1は選 択信号 P 5 8を入力して受信する同調周波数を切り替え、 デコーダ回路 5 2 a も 選択信号 P 5 8を入力して解読アルゴリズムを切り替え、 受信可能な送信局の標 準電波を検索する。 尚、 初期化直後の標準電波の受信切り替えは、 使用者によつ て手動での切り替えでも良い。
次に標準電波の探索の結果、 同調回路 1は受信可能な標準電波を見つけると復 調信号 P I 1を出力し、 デコーダ回路 5 2 a は選択された解読アルゴリズムに従 つてこの復調信号 P I 1を解読し、 復調信号 P 1 1の全ての解読に成功すると標 準時データ P 5 2と受信情報信号 P 5 3と受信レベル信号 P 5 4を出力する。 ここで標準電波を復調した復調信号 P 1 1は 1分間の期間內に全ての時刻情報を 含んでいるので、 時刻情報の解読時間は 1分間が必要である。
また、 デコーダ回路 5 2 a の解読アルゴリズムは、 解読精度を高めるために復 調信号 P 1 1を 2回連続して解読に成功した場合を受信完了とすることが望まし いので、 受信完了に要する受信処理時間は最小で 2分間必要となる。 また、 デコ —ダ回路 5 2 aは、標準電波へのノイズ成分の混入や電界強度の低下等によって、 解読が完了出来ずに解読エラ一となる場合があり、 この場合は 1分間毎の解読動 作を何度も繰り返して受信完了を試みる。
このため、 デコーダ回路 5 2 a の解読アルゴリズムは、 受信完了に要する受信 処理時間に制限を設け、 解読動作が何度も繰り返されて受信処理時間が制限を越 えた場合は受信不成功としてその標準電波の受信動作を終了させる。 この結果、 復調信号 P 1 1を解読するための受信処理時間の長さは、 受信する標準電波のノ ィズ成分の有無や電界強度変動等を把握することが出来る重要な要素となり得る。 次に受信が完了してデコーダ回路 5 2 a から標準時データ P 5 2が出力される と、 制御回路 5 2 d は標準時データ P 5 2を入力して必要とする時刻情報を取得 し、 秒データ、 分データ、 時データ、 日データ等によって成る時刻設定データ P 5 7を出力する。 計時回路 5 2 e は時刻設定データ P 5 7を入力して時刻情報と して設定し、 この時刻情報を基準として計時を継続する。 演算回路 5 2 b はデコ ーダ回路 5 2 a からの受信情報信号 P 5 3と受信レベル信号 P 5 4を入力し、 前 述した受信処理時間等を算出して受信情報データ P 5 5を出力し、 メモリ回路 5 3は受信情報データ P 5 5を入力して受信した送信局の受信履歴情報として記憶 する。
ここで図 2 2は、 受信情報データ P 5 5によってメモリ回路 5 3に記憶される 受信した送信局の受信履歴情報の一例を示している。 すなわち、 メモリ回路 5 3 には N個の受信した送信局の受信履歴情報を記憶することが出来、 その受信履歴 情報は図示する如く受信した送信局名、 復調信号 P 1 1の解読に要した受信処理 時間、 標準電波の受信レベル等によって成る。 また、 最初に受信した送信局の受信情報はア ドレス 1に記憶されるが、 次に受 信した送信局の受信情報が記憶される場合は、 前回受信した送信局の受信情報が 記憶されているァドレスは一つ加算されてァドレス 2に移り、 新しく受信した送 信局の受信情報が常にア ドレス 1に記憶される。 尚、 受信した送信局の局数が N 個をオーバーした場合は、 N + 1個目の受信情報は削除されて良く、 また、 Nは メモリ回路 2 2の記憶容量に応じて任意な値を選んで良い。
尚、 図 2 2に於いて受信を実施した送信局数は一例として延べ 1 2個であり、 その送信局は J J Y福島局 (日本)、 J J Y九州局 (日本)、 D C F 7 7 (ドイツ)、 WWV B (アメリカ合衆国) の 4力所である。 また、 最も古い受信した送信局の 受信情報はア ドレス 1 2に記憶されており、 最も新しい受信した送信局の受信情 報は前述した如くア ドレス 1に記憶されている。 尚、 ア ドレス 4は受信が不成功 に終わった場合の一例を示し、 ァドレス 4の受信した送信局の欄には受信エラ一 コードが記憶され、 受信処理時間と受信レベルは空欄として良い. 尚、 メモリ回 路 5 3に記憶される受信履歴情報は、 実際にはコード化されたデータである。 本発明に於ける当該同調回路 1に於いては、 当該受信回路に接続されている増 幅回路に使用される抵抗部の抵抗値と当該同調装置に設けられている同調コンデ ンサによるインピーダンスとの関係も上記した半導体スィツチの O N抵抗或いは O F F抵抗と同調コンデンサによるインピーダンスとの関係と同じ様に重要な要 因である事が判明したものであり、 具体的には、 当該受信回路に接続されている 増幅回路に使用される抵抗部の抵抗値が当該同調装置に設けられている同調コン デンサによるインピーダンスよりも大きくなるように設定される事が望ましい。 即ち、 本具体例に於いては、 当該受信回路に接続されている増幅回路に使用さ れる抵抗部の抵抗値が、 当該増幅回路に使用される抵抗部と直列に接続している コンデンサによるインピーダンスよりも大きくなるように設定されている.事が望 ましい。
より具体的には、 当該増幅回路に使用される抵抗部の抵抗値が当該同調装置に 設けられている同調コンデンサによるインピーダンスに対して少なくとも 1 0倍 のインピーダンスに設定されている事が好ましい。
以下に、 本発明に於ける同調回路 1と電波修正時計 4 0の受信 I C 5 1の内部 にある増幅回路 80の関係について、 図 8に基づいて説明する。
図 8 (a) は同調回路 1と受信 I C 5 1の増幅回路 80の概略回路図であり、 図 8 (b) はその等価回路であり、 図 8 (C) は同調回路 1と受信 I C 5 1の他 の増幅回路 90の概略回路図である。
図 8 (a) に於いて、 70は本発明の同調回路 1の一部回路の概略を示す同調 回路であり、 7 1は受信アンテナであり、 72は受信アンテナ 7 1に接続される コンデンサであり、 73はコンデンサ 72を開閉する半導体スィツチの ON抵抗 又は O F F抵抗を表す抵抗である。
80は本発明の電波修正時計の受信 I C 5 1の内部にある初段の増幅回路であ り、 8 1は Pチャンネル MOS トランジスタ (以降 P— T rと略記) であり、 8 2は N— T rであり、 該 P— T r 8 1と Ν— T r 8 2によって、 C— MOS構造 の増幅回路を形成している。 83は定電圧源 84を受けて P— T r 8 1のゲ一ト 端子 Gにバイアス電圧を供給するバイアス抵抗であり、 8 5は N— T r 82のゲ 一ト端子 Gと ドレイン端子 Dを結ぶフィードバック抵抗である。 86と 8 7は同 調回路 70からの同調信号 P 10を入力するカツプリングコンデンサである。 次に、 図 8 (a) に基づいて同調回路 70と初段の増幅回路 80の動作概略を 説明する。 図 8 (a) に於いて、 標準電波 (図示せず) が受信アンテナ 7 1に到 来すると、 受信アンテナ 7 1とコンデンサ 72との共振現象により標準電波が選 択されて起電力が発生し、 同調信号 P 1 0が出力される。 増幅回路 80は同調信 号 P 1 0を入力し、 カップリングコンデンサ 8 6、 8 7を介して P— T r 8 1と N-T r 8 2のゲ一ト端子 Gに供給され、 増幅して出力信号 P 1 5を出力する。 ここで、増幅回路 80の入力側から見た等価回路を図 8 (b)に示す。図 8 (b) に於いて、 80 aは増幅回路 80の等価回路であり、 該等価回路 80 aはカップ リングコンデンサ 8 6とバイアス抵抗 83が直列接続し、 また、 カップリングコ ンデンサ 8 7とフィードバック抵抗 8 5が直列接続した二つの直列回路が並列に 接続された回路である。 これにより、 等価回路 80 aは同調信号 P 1 0によって 同調回路 70と接続されているので、 等価回路 80 aの回路定数によっては、 同 調回路 70のコンデンサ 7 2と、 カップリンクコンデンサ 86、 87が並列接続 されることになり、 この結果、 同調回路 70の同調周波数にずれが生じ、 標準電 波の周波数を正しく受信できない問題が発生する。
この問題を解決するために、 本発明の第 1の実施形態で前述した如く、 半導体 スィツチの O F F抵抗と該半導体スィツチに直列に接続されるコンデンサのイン ピーダンスとの比率を考慮する考え方を適応すると良い。 すなわち、 同調回路 7 0に対してカップリングコンデンサ 8 6、 8 7の影響を無くすために、 カツプリ ンクコンデンサ 8 6、 8 7のインピーダンスよりバイアス抵抗 8 3とフィードバ ック抵抗 8 5を高い抵抗値に設定すれば、 力ップリングコンデンサ 8 6、 8 7は、 同調回路 7 0に対して切断されたことに等価となり、 この結果、 同調回路 7 0に 対して影響を無くすことが出来る。
特に、 前述した如く、 電波修正時計の外装を金属外装とする場合は、 受信アン テナ 7 1のインダクタンスを大きくする必要があるので、 同調回路 7 0のコンデ ンサ 7 2は静電容量が小さくなるために浮遊容量や寄生容量の影響を受け易い。 このため、 金属外装を用いた電波修正時計では、 バイアス抵抗 8 3とフィードバ ック抵抗 8 5と、 カップリングコンデンサ 8 6、 8 7とのインピーダンスの比率 は出来るだけ大きくすることが好ましい。
また、 電波修正時計に金属外装を用いる場合は、 前述した如くに、 受信アンテ ナ 7 1の導線の卷き数を増やす必要があるので、 インダクタンスが増加するだけ でなく、受信アンテナ 7 1の直流抵抗分も 1 8 Ω程度乃至 3 8 Ω程度まで増加し、 更には、 コンデンサ 7 2の容量も小さいために、 同調回路 7 0の出力インピーダ ンスはかなり上昇する。 よって、 効率よく同調信号 P 1 0を増幅するには、 増幅 回路 8 0の入力インピーダンスを高くすることが必要である。
ここで、 増幅回路 8 0は MO S型トランジスタである P— T r 8 1 と N— T r 8 2によって構成されているので、 入力インピーダンスは高く増幅回路としては 適しているが、 実際には増幅回路 8 0の入力インピーダンスはバイアス抵抗 8 3 とフィードバック抵抗 8 5が決定する。 このため、 電波修正時計に金属外装を用 いる場合は、 バイアス抵抗 8 3とフィードバック抵抗 8 5の抵抗値を出来るだけ 大きくすることが好ましい。
次に、 図 8 ( C ) に基づいて、 受信 I C 5 1に内蔵する増幅回路の別の実施形 態を示す。 図 8 ( C ) に於いて、 9 0は本発明の電波修正時計の受信 I C 5 1の 内部にある初段の増幅回路であり、 9 1は —丁 でぁり、 9 2は1^—丁 1:でぁ り、 9 3は、 P— T r 9 1 と N— T r 9 2のゲート端子 Gと ドレイン端子 Dを接 続するフィードバック抵抗である。 同調回路 7 0は図 8 ( a ) と同様であるので 説明は省略する。 ここで増幅回路 9 0は、 増幅回路 8 0にあったカップリングコ ンデンサ 8 6、 8 7が無く、 同調信号 P 1 0を直接 P— T r 9 1と N _ T r 9 2 のゲ一ト端子 Gに入力し増幅している。
図 8 ( C ) に於いて、 増幅回路 9 0の入力インピーダンスは、 フィードバック 抵抗 9 3に依存し、 等価的には同調回路 7 0に対して、 フィードバック抵抗 9 3 が並列に接続されることになる。 よって、 フィードバック抵抗 9 3の抵抗値が小 さいと、 同調回路 7 0の損失を増やすことになつて Qが低下し、 アンテナ利得を 下げると共に選択度も低下して好ましくない。 このため、 フィードバック抵抗 9 3は、 同調回路 7 0のコンデンサ 7 2のインピーダンスに対して、 約 1 0倍以上 大きいことが好ましい。 以上のように、 同調回路 7 0に接続される受信 I Cの回 路構成と回路定数を考慮することにより、 同調装置のアンテナ利得や Qを改善す ることが出来、より高性能な同調装置とそれを用いた電波修正時計を提供できる。 本発明者等は、 上記した増幅回路に用いる抵抗値 (フィードバック抵抗など) とアンテナに用いている同調コンデンサのインピーダンスとの関係について追加 の実験を行ったので以下にその説明を行う。
今回の実験に使用した実験回路は図 2 3に示すような回路であり、 アンテナは L値が 102mH、 同調コンデンサは 66pFとし、 共振周波数を 61KHzになるよう にした時に増幅回路抵抗を 200K Ω〜 33M Ωまで可変した時に増幅回路抵抗がな い場合 (OPEN時) の利得からの減衰率とコンデンサとのインピーダンス比を図 2 4のグラフに示している。
図 2 4から判る様に、抵抗/コンデンサインピーダンス比が小さくなるほどアン テナの減衰率は激しい。
特に抵抗/コンデンサインピーダンス比が 8.36以下では最も傾斜が激しいため、 抵抗ノコンデンサインピーダンス比が 8.36 (約 10) 以上であることが望ましレ、。 叉、 好ましくは更に傾斜が緩やかな抵抗/コンデンサインピーダンス比が 25.34 (約 25) 以上であることが好ましい。 t正された用紙 cs¾9i) 更に好ましくは更に傾斜が緩やかな抵抗/コンデンサインピーダンス比が 172 (約 170) 以上であることが望ましい。
また、 本発明の第 3の実施形態に於いて、 同調装置は本発明の第 1の実施形態 である同調回路 1を電波修正時計 4 0に組み込んで実施形態としたが、 これに限 定されず、 本発明の第 2の実施形態である同調装置 3 0を組み込んで電波修正時 計を構成しても良い。 また、 第 3の実施形態に於いて、 表示部 3はアナログ表示 方式を採用したが、 これに限定されず、 表示部 3に L C D等によって成るデジタ ル表示を用いたデジタル表示方式であっても良く、 更には、 アナログとデジタル の複合表示方式の電波修正時計であっても良い。
次に、 図 9に基づいて本発明の第 4の実施形態である電波修正時計の回路ブ口 ック構成と動作を説明する。 尚、 本発明の第 3の実施形態と同一要素には同一番 号を付し重複する説明は省略する。 図 9に於いて、 1 0 0は同調制御情報を記憶 する記憶回路 5 3を内蔵する同調装置である。 マイコン 5 2は同調回路 1 0 0に 内蔵される記憶回路 5 3に、 アドレス信号 P 1 6を出力する。 記憶回路 5 3はァ ドレス信号 P 1 6を入力し、 該ァドレス信号 P 1 6に基づいて内部に記憶してい る同調制御情報を読み出し、 同調データ P 1 2を出力する。
同調回路 1 0 0の同調 I C 1 0 1は内部に変換回路 (図示せず) を有し、 該変 換回路は同調データ P 1 2を入力してデータに応じてパルスを出力するクロック 信号を発生し、 同調 I C 1 0 1に内蔵される複数のコンデンサを切り替えて同調 周波数を調整し、 標準電波を受信する。 その他の電波修正時計としての動作は第 3の実施形態と同様であるので省略する。 尚、 図 9に於いて、 記憶回路 5 3は同 調 I C 1 0 1の外部に配置したが、 これに限定されず、 記憶回路 5 3を同調 I C 1 0 1に内蔵し、 同調 I C 1 0 1をワンチップによって構成しても良い。
また、 記憶回路 5 3は、 フラッシュメモリ等による不揮発性メモリが書き換え も可能で使い易いが、 コス トの安いヒューズ R OM、 又は、 同調 I C 1 0 1を実 装するプリント基板 (図示せず) の導電パターンを加工するパターンカッ ト手段 であっても良い。 また、 本発明の第 4の実施形態は、 第 3の実施形態と同様に、 標準電波に対して最適な同調周波数の調整を実現させるだけでなく、 送信周波数 の異なる複数の標準電波を選択する標準電波選択手段として応用することも可能 である。
以上のように、 本発明の第 4の実施形態によれば、 同調制御情報を記憶してい る記億回路 5 3を同調回路 1 ◦ 0に内蔵させているので、 電波修正時計を制御す る制御部 5 0と標準電波を受信する同調回路 1 0 0の機能を明確に分離でき、 同 調回路の調整工程の簡略化やコストダウンの実現が可能となる。 すなわち、 受信 アンテナ 2のインダクタンスは製造ばらつきによって個体差があり、 また、 同調 I C 1 0 1に内蔵する複数のコンデンサも、 I Cの製造ばらつきによって個体差 を有する。
このため、 同一の標準電波を受信する同調装置であっても、 最適な同調を得る には、個々の同調装置毎にコンデンサを切り替えるための同調制御情報が異なる。 よって、 同調回路 1 0 0の製造工程に於いて、 同調回路 1 0 0毎に異なる同調制 御情報を記憶する記憶回路 5 3を同調回路 1 0 0に内蔵していれば、 同調回路 1 0 0の調整工程が簡略化でき、 調整工数も短縮し、 更には同調回路 1 0 0と制御 部 5 0を個別に管理できるので工程管理も容易となる。 尚、本発明の同調装置は、 電波修正時計に限定されるものではなく、 電波を送受信する各種の電子機器に幅 広く応用することが可能である。
次に、 本発明の同調装置とそれを用いた電波修正時計のアンテナ同調調整方法 について説明する。 従来、 電波修正時計のアンテナ同調の調整は、 同調用のコン デンサを何種類も用意し、 コンデンサを同調回路に仮実装した後、 同調周波数を 測定し、 同調周波数がずれていた場合は、 実装したコンデンサを取り除いて別の 容量が異なるコンデンサを再実装して同調周波数を測定するという、 時間と労力 のかかる調整方法を採用していた。 しかし、 本発明の同調装置とそれを用いた電 波修正時計では、 アンテナ同調の調整を短時間で且つ、 自動的に実施することが 出来るので、 以下説明する
即ち、 本発明に於ける当該電波修正時計は、 当該電波修正時計外に設けた外部 操作手段により同調周波数を変更する事が出来るテス トモ一ドを有している事を 特徴とするものである。
図 1 0は、 電波修正時計のアンテナ同調調整方法を示す原理図であり、 図 1 0 ( a ) は、 接触方式のアンテナ同調調整方法を示す原理図であり、 図 1 0 ( b ) は、 非接触方式のアンテナ同調調整方法を示す原理図である。 図 10 (a) に於 いて、 40 aは本発明の第 3、 第 4の実施形態と同様な電波修正時計であり、 前 述した如く、 同調回路 1、 制御部 50を有し、 同調回路 1は受信アンテナ 2、 同 調 I C 3を有している。
また、 電波修正時計 40 aは、 外部からの制御情報伝達手段としてインターフ エース回路 (以降 I ZF回路と略記) 1 10を備えている。 1 1 1は電波修正時 計 40 aのアンテナ同調を自動的に調整する自動調整装置であり、図示しないが、 内部に交流信号源、 交流電圧計、 マイコン等による制御部を有している。 1 1 2 は励磁用空芯コイルであり、 自動調整装置 1 1 1から出力される交流信号 P 20 a、 P 20 bによって駆動され、 交流磁界 1 1 3を出力する。 P 21は自動調整 装置 1 1 1から出力される制御信号であり、 I ZF回路 1 10を介して制御部 5 0に入力される。
次に、 図 10 (a) に基づいてアンテナ同調の調整方法について説明する。 電 波修正時計 40 aのアンテナ同調を調整するために、 まず、 励磁用空芯コイル 1 1 2を電波修正時計 40 aの受信アンテナ 2に近接して配置する。 自動調整装置 1 1 1は、 交流信号 P 20 a、 P 20 bを出力して励磁用空芯コイル 1 1 2を駆 動する。 ここで例えば、 電波修正時計 40 aを 40 KH zの標準電波に同調させ たい場合は、 40 KH zの交流信号 P 20 a、 P 2 O bを出力し、 また、 60K H zの標準電波に同調させたい場合は、 60 KH zの交流信号 P 20 a、 P 20 bを出力する。
次に自動調整装置 1 1 1は、 制御信号 P 2 1を出力して IZF回路 1 10を介 して制御部 50を動作させ、 制御部 50は制御信号 P 21に応じて同調 I C 3へ クロック信号 P 8を順次出力する。 同調 I C 3はクロック信号 P 8を入力し、 該 ク口ック信号 P 8のパルス数に応じて内蔵するコンデンサを順次切り替え、 同調 周波数を可変する。 ここで、 受信アンテナ 2は、 励磁用空芯コイル 1 1 2からの 交流磁界 1 13を受けて電磁誘導によって起電力を誘起し、 アンテナ信号 P 6、 P 7を出力する。 同調 I C 3は、 アンテナ信号 P 6、 P 7を入力して同調信号 P 10を出力する。 このとき、 交流信号 P 20 a、 P 20 bの周波数と受信アンテ ナ 2と同調 I C 3に内蔵されるコンデンサとによる同調周波数が一致したときに、 同調信号 P 1 0の信号レベルは増加しピークとなる。
自動調整装置 1 1 1は、 同調信号 P 1 0を入力して内部で増幅し、 該増幅され た同調信号 P 1 0を交流電圧計によって測定し、 受信アンテナ 2のアンテナ出力 として内部に記憶する。 図 1 1は、 自動調整装置 1 1 1がクロック信号 P 8のパ ルス数に応じて変化するアンテナ出力を測定しプロッ 卜したアンテナ出力特性図 である。 図 1 1に於いて、 クロック信号 P 8のパルス数が少ない領域ではアンテ ナ出力 (すなわち同調信号 P 1 0の信号レベル) は小さいが、 パルス数の増加に 伴ってアンテナ出力は増加し、 パルス数が 2 8個付近でアンテナ出力は最大とな り、 それ以降は、 パルス数の増加に伴って再びアンテナ出力は減少している。 すなわち、 図 1 1のアンテナ出力特性から、 パルス数 2 8個付近での同調周波 数が、 交流信号 P 2 0 a、 P 2 0 bの周波数に対して一致し同調していることが 解る。 これにより、 アンテナ出力がピークとなったパルス数を、 制御部 5 0、 ま たは、 同調回路 1に内蔵される記憶回路に同調制御情報として記憶させれぼ、 同 調回路 1は標準電波に対して高精度に同調され、 感度が高くノイズにも強い電波 修正時計を実現することが出来る。 また、 複数の標準電波を受信する場合は、 交 流信号 P 2 0 a、 P 2 0 bの周波数をそれぞれの標準電波に等しい周波数に設定 し、 同様な測定を行い、 アンテナ出力のピーク点に対応するパルス数を記憶すれ ば、 複数の標準電波を任意に受信することが出来る。
また、 図 1 1に於いて、 同調回路の Qが低い場合には、 アンテナ出力のピーク 点がなだらかでピーク点を見つけることが難しい場合がある。 このような場合に は図 1 1に示すように、 アンテナ出力の上昇の傾き (K 1 ) と下降の傾き (K 2 ) を自動調整装置 1 1 1内のマイコンで算出し、 二つの傾きの K 1と K 2の交点を アンテナ出力のピーク点とするなど、 コンピュータ ·プログラムによってピーク 点を予測し同調させても良い。 以上のように、 電波修正時計のアンテナ同調の調 整を励磁用空芯コイル 1 1 2と自動調整装置 1 1 1によって実現することが出来 るので、 電波修正時計の製造時の調整工程を簡略化出来ると共に、 調整工数も短 縮することが出来る。
次に、 図 1 0 ( b ) に基づいて、 非接触方式のアンテナ同調調整の構成と方法 を説明する。 尚、 図 1 0 ( a ) で示した接触方式のアンテナ同調調整方法の原理 図と同一要素には同一番号を付し重複する説明は省略する。 図 1 0 ( b ) に於い て、 1 1 5は検出用空芯コイルであり、 受信アンテナ 2に近接して配置される。 P 2 2 a、 P 2 2 bは検出用空芯コイル 1 1 5に誘起される検出信号であり、 自 動調整装置 1 1 1に入力される。 1 1 6は電波修正時計 4 0 aに内蔵されるワイ ャレス i Z F回路であり、 自動調整装置 1 1 1から出力される赤外線又は微小電 力の無線等によるワイヤレス制御信号 P 2 3を受信し、 その制御情報を制御部 5 0に伝達する。
即ち、 上記本発明におけるテストモー ドの実行に際して使用される当該外部操 作手段は、 非接触型操作方式を含んでいる事も望ましく、 更には当該非接触型操 作方式は、 無線又は赤外線を利用するものである事も好ましい具体例である。 次に、 図 1 0 ( b ) に基づいて非接触方式のアンテナ同調の調整方法について 説明する。 電波修正時計 4 0 aのアンテナ同調を調整するために、 まず、 自動調 整装置 1 1 1は、 交流信号 P 2 0 a、 P 2 0 bを出力して励磁用空芯コイル 1 1 2を駆動する。 ここで、 受信アンテナ 2は、 励磁用空芯コイル 1 1 2からの交流 磁界 1 1 3を受けて電磁誘導によって起電力を誘起し、 アンテナ信号 P 6、 P 7 を出力するが、 この受信アンテナ 2に誘起されたアンテナ信号 P 6、 P 7によつ て、 受信アンテナ 2から交流磁界 1 1 7が発生する。 受信アンテナ 2に近接する 検出用空芯コイル 1 1 5は、 この交流磁界 1 1 7を受けて電磁誘導によって起電 力を誘起し、 検出信号 P 2 2 a、 P 2 2 bを出力する。
次に、 自動調整装置 1 1 1は、 検出信号 P 2 2 a、 P 2 2 bを入力して内部で 増幅し、該増幅された検出信号 P 2 2 a、 P 2 2 bを交流電圧計によって測定し、 受信アンテナ 2のアンテナ出力として記憶する。 尚、 同調 I C 3に内蔵されるコ ンデンサの切り替え制御は、 自動調整装置 1 1 1より出力されるワイヤレス制御 信号 P 2 3によって順次行われる。 この結果、 き動調整装置 1 1 1は図 1 1で示 すアンテナ出力特性と同様なデータを得ることが出来、 アンテナ出力のピーク点 を求めることが出来る。 すなわち、 この非接触方式のアンテナ同調調整方法によ れば、 アンテナ出力は検出用空芯コイル 1 1 5で検出でき、 また、 同調回路の同 調周波数を可変するためのコンデンサの切り替え制御は、 ワイヤレス制御信号 P 2 3によって行うので、 電波修正時計 4 0 aに対して完全に非接触でアンテナ同 調の調整を行うことが出来る。
このことは、 電波修正時計を外装に組み込んだ後で、 非接触によってアンテナ 同調を調整できるので、 好都合である。 すなわち、 電波修正時計は、 外装に組み 込む前と組み込んだ後では、 浮遊容量等の差により同調周波数がずれる傾向にあ るが、 外装に組み込んだ後にアンテナ同調調整が出来れば、 外装による同調周波 数のずれをキャンセル出来、より高精度なアンテナ同調を実現出来るからである。 また、 非接触で調整が出来ることは電波修正時計の製造時の調整工程を更に簡略 化出来、 また、 調整工数も更に削減できる。 また、 製造時の調整工程だけでなく、 電波修正時計を使用中に何らかの原因でアンテナ同調に狂いが生じた場合など、 外装を開けることなくアンテナ同調の再調整が出来るので、 電波修正時計のメン テナンスにも大きな効果がある。
本発明に於ける更に他の具体例としては、 上記した説明から明らかな様に、 上 記各具体例で示された各同調回路 1当該同調回路 1を制御し、 当該同調回路 1に よって受信した標準電波を入力して時刻修正を行う受信回路部を有する制御手段 6と、 当該制御手段 6からの時刻情報を表示する表示手段 4 2とを有することを 特徴とする電波修正時計である。
更に、 本発明に於ける当該電波修正時計の別の具体例としては、 金属材料によ つて成る金属外装を有し、 当該金属外装によって当該同調回路 1と当該制御手段 6と当該表示手段 4 2を覆い、 これらを機械的に保護するように構成したことを 特徴とする電波修正時計である。
更に、 本発明に於ける当該電波修正時計の更に別の具体例としては、 当該金属 外装に覆われる当該同調回路の当該コイルのィンダクタンスは 2 O mH以上であ ることを特徴とするものであり、 叉、 当該同調回路の当該複数の半導体スィッチ の開閉を制御し、 前記同調周波数を可変することにより、 複数の標準電波のいず れかを選択的に受信出来るように構成したことを特徴とする電波修正時計である。 一方、 本発明に於ける当該電波修正時計の更に他の具体例としては、 当該同調 回路の当該同調周波数を可変するための同調制御情報を記憶する同調制御情報記 憶手段を有するものであっても良く、 更には、 当該同調制御情報記憶手段は、 当 該同調回路の内部に備えられているものである事も好ましい。 叉、 当該同調制御情報記憶手段は、 パターンカッ ト手段、 ヒューズ R OM、 又 は不揮発性メモリから選択された一つで構成されていることを望ましい具体例で ある。
以上の説明によって明らかなように本発明によれば、 複数のコンデンサを半導 体スィツチの開閉によって切り替えられるので、 同調周波数を任意に可変するこ とが出来、 同調周波数の可変範囲が広く、 安定性に優れ、 小型で高性能な同調回 路と、 それを用いた電波修正時計を提供することが出来る。

Claims

請求の範囲
1 . 複数の半導体スィッチと、 当該複数の半導体スィッチと各々直列に接続され る複数の第 1のコンデンサと、 当該半導体スィツチの開閉を制御するスィツチ制 御手段と備える半導体基板と、 該複数の第 1のコンデンサのそれぞれに並列的に 接続されるコイルとから構成されており、 時刻情報を含む標準電波の受信局選択 指示信号に応答して当該スィツチ制御手段が当該複数の第 1のコンデンサに接続 されている個々の半導体スィツチを個別に開閉制御する事によって当該複数の第
1のコンデンサによる合計静電容量が可変され、 該複数の第 1のコンデンサと前 記コイルとによって成る同調回路の同調周波数を変更する様に構成されているこ とを特徴とする同調回路。
2 . 更に当該半導体基板上若しくは当該半導体基板外に、 当該第 1のコンデンサ 群と並列に当該コイル部と接続されている固定容量或いは可変容量を有する第 2 のコンデンサが設けられている事を特徴とする請求の範囲第 i項に記載の同調回 路。
3 . 当該第 2のコンデンサは、 当該第 1のコンデンサが受ける制御とは異なる制 御を受ける様に構成されている事を特徴とする請求の範囲第 2項に記載の同調回 路。
4 . 当該第 2のコンデンサの少なくとも一つは、 当該半導体基板上に設けられた 半導体スィツチを介して当該スィツチ制御手段により制御される様に構成されて いる事を特徴とする請求の範囲第 2項又は第 3項に記載の同調回路。
5 . 当該同調回路は、 アンテナ部も含めて、 金属材料によって構成された金属外 装部の内部で使用されるものである事を特徴とする請求の範囲第 1項乃至第 4項 の何れかに記載の同調回路。
6 . 当該それぞれの半導体スィッチの O N抵抗は、 当該各半導体スィッチに直列 に接続される当該それぞれの第 1のコンデンサが持つインピーダンスより小さい ことを特徴とする請求の範囲第 1項乃至第 5項の何れかに記載の同調回路。
7 . 当該それぞれの半導体スィッチの O F F抵抗は、 当該各半導体スィッチに直 列に接続される当該それぞれの第 1のコンデンサが持つインピーダンスより大き いことを特徴とする請求の範囲第 1項乃至第 5項の何れかに記載の同調回路。
8 . 当該受信回路に接続されている増幅回路に使用される抵抗部の抵抗値が当該 同調回路に設けられている同調コンデンサによるィンピーダンスよりも大きくな るように設定されている事を特徴とする請求の範囲第 1項乃至第 7項の何れかに 記載の同調回路。
9 . 当該受信回路に接続されている増幅回路に使用される抵抗部の抵抗値が、 当 該增幅回路に使用される抵抗部と直列に接続しているコンデンサによるインピー ダンスよりも大きくなるように設定されている事を特徴とする請求の範囲第 1項 乃至第 7項の何れかに記載の同調回路。
1 0 . 当該複数の第 1のコンデンサが持つ個々の静電容量の合計値が 9 6 0 0 p F以下であることを特徴とする請求の範囲第 1項乃至第 9項の何れかに記載の同 調回路。
1 1 . 当該コイル部のインダクタンスが 0 . 4 4 m H以上であることを特徴とす る請求の範囲第 1項乃至第 1 0項の何れかに記載の同調回路。
1 2 . 当該コイル部のインダクタンスが 4 0 0 O m H以下であることを特徴とす る請求の範囲第 1項乃至第 1 0項の何れかに記載の同調回路。
1 3 . 当該同調回路に於ける同調受信周波数は、 当該第 1のコンデンサ群により 設定される第 1の静電容量と当該第 2のコンデンサの持つ第 2の静電容量とで決 定される様に構成されている事を特徴とする請求の範囲第 1項 1乃至第 1 2項の 何れかに記載の同調回路。
1 4 . 当該第 2のコンデンサの静電容量は、 当該第 1のコンデンサの静電容量よ り大きい事を特徴とする請求の範囲第 1乃至第 1 3項の何れかに記載の同調回路。
1 5 . 請求の範囲第 1項乃至第 1 4項の何れかに記載の同調回路と、 当該同調回 路を制御し、 当該同調回路によって受信した標準電波を入力して時刻修正を行う 受信回路部を有する制御手段と、 当該制御手段からの時刻情報を表示する表示手 段とを有することを特徴とする電波修正時計。
1 6 . 更に、 金属材料によって成る金属外装を有し、 当該金属外装によって当該 同調回路と当該制御手段と当該表示手段を覆い、 機械的に保護するように構成し たことを特徴とする請求の範囲第 1 5項記載の電波修正時計。
1 7 . 当該金属外装に覆われる当該同調回路の当該コイルのインダクタンスは 2 0 m H以上であることを特徴とする請求の範囲第 1 4項記載の電波修正時計。
1 8 . 当該同調回路の当該複数の半導体スィッチの開閉を制御し、 前記同調周波 数を可変することにより、 複数の標準電波のいずれかを選択的に受信出来るよう に構成したことを特徴とする請求の範囲第 1 5項乃至第 1 7項の何れかに記載の 電波修正時計。
1 9 . 当該同調回路の当該同調周波数を可変するための同調制御情報を記憶する 同調制御情報記憶手段を有することを特徴とする請求の範囲第 1 5項乃至第 1 8 項の何れかに記載の電波修正時計。
2 0 . 当該同調制御情報記憶手段は、 当該同調回路の内部に備えられていること を特徴とする請求の範囲第 1 9項記載の電波修正時計。
2 1 . 当該同調制御情報記憶手段は、 パターンカット手段、 ヒューズ R O M、 又 は不揮発性メモリから選択された一つで構成されていることを特徴とする請求の 範囲第 1 9項又は第 2 0項記載の電波修正時計。
2 2 . 当該電波修正時計は、 当該電波修正時計外に設けた外部操作手段により同 調周波数を変更する事が出来るテストモ一ドを有している事を特徴とする請求の 範囲第 1 5項乃至第 2 1項の何れかに記載の電波修正時計。
2 3 . 当該外部操作手段は、 非接触型操作方式を含んでいる事を特徴とする請求 の範囲第 2 2項に記載の電波修正時計。
2 4 . 当該非接触型操作方式は、 無線又は赤外線を利用するものである事を特徴 とする請求の範囲第 2 3項に記載の電波修正時計。
PCT/JP2004/007211 2003-05-20 2004-05-20 同調装置及びそれを用いた電波修正時計 WO2004105240A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2004800053395A CN1754313B (zh) 2003-05-20 2004-05-20 调谐设备及使用其的无线电控制时计
JP2005506395A JP4611892B2 (ja) 2003-05-20 2004-05-20 電波修正腕時計、調整装置及び電波修正腕時計の調整システム
EP04745352A EP1630960A4 (en) 2003-05-20 2004-05-20 TUNING DEVICE AND TIME COUNTER CORRECTED BY RADIO WAVES
US10/549,456 US7583942B2 (en) 2003-05-20 2004-05-20 Tuning device and radio-wave corrected timepiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-141573 2003-05-20
JP2003141573 2003-05-20

Publications (2)

Publication Number Publication Date
WO2004105240A1 WO2004105240A1 (ja) 2004-12-02
WO2004105240A9 true WO2004105240A9 (ja) 2005-07-07

Family

ID=33475029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007211 WO2004105240A1 (ja) 2003-05-20 2004-05-20 同調装置及びそれを用いた電波修正時計

Country Status (5)

Country Link
US (1) US7583942B2 (ja)
EP (1) EP1630960A4 (ja)
JP (1) JP4611892B2 (ja)
CN (1) CN1754313B (ja)
WO (1) WO2004105240A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018881B4 (de) * 2004-04-15 2006-03-02 Junghans Uhren Gmbh Funkgesteuerte Armbanduhr mit Mitteln zum Dekodieren von Signalen von Zeitzeichensendern aus mehreren Zeitzonen
JP2006177927A (ja) * 2004-11-25 2006-07-06 Seiko Instruments Inc 電波修正時計
EP1852756B1 (en) * 2005-02-24 2010-09-01 Seiko Epson Corporation Clock signal outputting device and its control method
CN100412895C (zh) * 2005-07-07 2008-08-20 上海坤锐电子科技有限公司 一种基于电容储能的自适应射频能量提取电路
JP2007081593A (ja) * 2005-09-13 2007-03-29 Neuro Solution Corp 発振器、pll回路および受信機、送信機
JP4670573B2 (ja) * 2005-10-06 2011-04-13 日立電線株式会社 アンテナモジュール、無線装置および携帯無線端末
JP2007325083A (ja) * 2006-06-02 2007-12-13 Neuro Solution Corp アンテナ入力同調回路
DE602006002743D1 (de) * 2006-07-06 2008-10-23 Dibcom Integrierte Abstimmschaltung mit Antennenkontrolleinheit
JP4882561B2 (ja) * 2006-07-12 2012-02-22 セイコーエプソン株式会社 受信回路および電波修正時計
US11817637B2 (en) 2006-11-18 2023-11-14 Rfmicron, Inc. Radio frequency identification (RFID) moisture tag(s) and sensors with extended sensing via capillaries
US10715209B2 (en) 2006-11-18 2020-07-14 RF Micron, Inc. Computing device for processing environmental sensed conditions
US10149177B2 (en) 2006-11-18 2018-12-04 Rfmicron, Inc. Wireless sensor including an RF signal circuit
JP4310661B2 (ja) * 2007-02-05 2009-08-12 ソニー株式会社 同調回路用icおよびこれを使った受信回路
JP4931629B2 (ja) * 2007-02-13 2012-05-16 セイコーインスツル株式会社 電波時計
JP5029201B2 (ja) * 2007-08-08 2012-09-19 セイコーエプソン株式会社 受信装置、電波時計および受信方法
WO2009115996A1 (en) * 2008-03-21 2009-09-24 Nxp B.V. Apparatus comprising a broadcast receiver circuit and an antenna and a tuning circuit
JP5168164B2 (ja) * 2008-05-02 2013-03-21 セイコーエプソン株式会社 電波修正時計およびその制御方法
JP4715926B2 (ja) * 2009-01-14 2011-07-06 カシオ計算機株式会社 電波受信装置
US8130053B2 (en) * 2009-04-02 2012-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Tank tuning for band pass filter used in radio communications
JP4816764B2 (ja) * 2009-05-28 2011-11-16 カシオ計算機株式会社 電波受信装置
JP4816765B2 (ja) * 2009-06-03 2011-11-16 カシオ計算機株式会社 電波受信装置
JP4816766B2 (ja) * 2009-06-03 2011-11-16 カシオ計算機株式会社 電波受信装置
JP2011066733A (ja) * 2009-09-18 2011-03-31 Mitsumi Electric Co Ltd スーパーヘテロダイン方式の受信装置及び受信方法、並びに受信装置用半導体集積回路
EP2299337B1 (fr) * 2009-09-22 2013-02-27 The Swatch Group Research and Development Ltd. Récepteur de signaux radiosynchrones pour le réglage d'une base de temps, et procédé de mise en action du récepteur
US20110164471A1 (en) * 2010-01-05 2011-07-07 Access Business Group International Llc Integrated wireless power system
US8428533B2 (en) * 2010-06-08 2013-04-23 Qualcomm, Incorporated Techniques for optimizing gain or noise figure of an RF receiver
US9041617B2 (en) 2011-12-20 2015-05-26 Apple Inc. Methods and apparatus for controlling tunable antenna systems
US8886145B2 (en) * 2012-03-26 2014-11-11 Sony Corporation Antenna adjustment circuit, antenna adjustment method, and communication unit
US8824982B2 (en) 2012-06-27 2014-09-02 Intel Corporation Time-variant antenna enabled by switched capacitor array on silicon
CA2820441C (en) * 2013-06-05 2017-01-03 Research In Motion Rf, Inc. Method and apparatus for reducing charge and discharge time of capacitive elements
US20140375514A1 (en) * 2013-06-19 2014-12-25 Infineon Technologies Ag Antenna Tuning Circuit, Method for Tuning an Antenna, Antenna Arrangement and Method for Operating the Same
JP6075297B2 (ja) * 2014-01-14 2017-02-08 カシオ計算機株式会社 電波時計
CN104333397A (zh) * 2014-10-30 2015-02-04 成都新光微波工程有限责任公司 一种无线电收发系统
CN106773625B (zh) * 2016-12-29 2023-04-07 歌尔股份有限公司 一种智能手表及其天线信号处理电路和方法
US10186769B1 (en) 2017-07-20 2019-01-22 Apple Inc. Electronic device with shared control and power lines for antenna tuning circuits
CN111800162B (zh) * 2019-04-04 2022-03-22 亚德诺半导体国际无限责任公司 具有可控谐振频率的射频开关

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047112A (en) * 1968-08-30 1977-09-06 Matsushita Electric Industrial Co., Ltd. Channel selector employing variable capacitance elements for tuning
JPS5951141B2 (ja) * 1977-03-10 1984-12-12 三洋電機株式会社 選局装置
JPS5950950B2 (ja) * 1979-04-13 1984-12-11 セイコーインスツルメンツ株式会社 ラジオ付電子時計
US5331608A (en) 1992-03-31 1994-07-19 Citizen Watch Co., Ltd. Electronic watch with an antenna for a receiving device
JPH0645958A (ja) * 1992-04-03 1994-02-18 Nec Corp 無線受信機
US5428829A (en) * 1992-09-28 1995-06-27 Delco Electronics Corporation Method and apparatus for tuning and aligning an FM receiver
US5455807A (en) * 1993-08-18 1995-10-03 Seiko Corp. Time maintenance and display in a time keeping system including a time zone boundary
DE4332798A1 (de) 1993-09-27 1995-03-30 Telefunken Microelectron Schaltungsanordnung für einen abstimmbaren Schwingkreis
JPH0974319A (ja) * 1995-03-31 1997-03-18 Ikeda Takeshi 受信機
US5729236A (en) * 1995-04-28 1998-03-17 Texas Instruments Incorporated Identification system reader with multiplexed antennas
US5721783A (en) * 1995-06-07 1998-02-24 Anderson; James C. Hearing aid with wireless remote processor
US5812066A (en) * 1995-08-16 1998-09-22 Terk Technologies Corporation Antenna tuning control circuit
SE510569C2 (sv) * 1996-05-31 1999-06-07 Allgon Ab Repeterare med variabel bandbredd
US6081700A (en) * 1996-12-17 2000-06-27 Motorola, Inc. Radio having a self-tuning antenna and method thereof
DE29714185U1 (de) * 1997-08-08 1998-12-03 Gebrüder Junghans GmbH, 78713 Schramberg Funkarmbanduhr
US6181218B1 (en) * 1998-05-19 2001-01-30 Conexant Systems, Inc. High-linearity, low-spread variable capacitance array
US6121806A (en) * 1998-10-06 2000-09-19 Mitsubishi Denki Kabushiki Kaisha Circuit for adjusting a voltage level in a semiconductor device
JP2000193768A (ja) * 1998-12-25 2000-07-14 Tic Citizen:Kk 電波修正時計
WO2001076067A1 (en) * 2000-03-31 2001-10-11 Koninklijke Philips Electronics N.V. Narrow band am front end
JP2002201963A (ja) * 2000-12-28 2002-07-19 Mitsubishi Heavy Ind Ltd ガスタービン吸気部用のフィルタ及びガスタービン
US6549096B2 (en) * 2001-03-19 2003-04-15 International Business Machines Corporation Switched inductor/varactor tuning circuit having a variable integrated inductor
JP2002311167A (ja) * 2001-04-12 2002-10-23 Rhythm Watch Co Ltd 電波修正時計
US7126880B2 (en) * 2001-06-29 2006-10-24 Trigger Co. Ltd. Radio wristwatch
JP3572034B2 (ja) * 2001-07-03 2004-09-29 シチズン時計株式会社 電波受信機能付電子時計
JP3779899B2 (ja) * 2001-08-31 2006-05-31 リズム時計工業株式会社 自動修正時計
US7408845B2 (en) * 2001-09-10 2008-08-05 Citizen Holdings Co., Ltd. Radio corrected clock
US6907234B2 (en) * 2001-10-26 2005-06-14 Microsoft Corporation System and method for automatically tuning an antenna
GB0126219D0 (en) 2001-11-01 2002-01-02 Koninkl Philips Electronics Nv Tunable filter
JP3979107B2 (ja) * 2002-02-07 2007-09-19 カシオ計算機株式会社 同調回路および受信器
US6889036B2 (en) * 2002-03-07 2005-05-03 Freescale Semiconductor, Inc. Integrated frequency selectable resonant coupling network and method thereof
JP2004274609A (ja) * 2003-03-11 2004-09-30 Sanyo Electric Co Ltd アンテナ装置、電波時計、電波時計収容体、信号受信装置および受信装置収容体
JP2004282425A (ja) * 2003-03-17 2004-10-07 Casio Comput Co Ltd 電波受信装置、電波時計及び同調容量設定方法
JP2006177928A (ja) * 2004-11-25 2006-07-06 Seiko Instruments Inc 電波修正時計

Also Published As

Publication number Publication date
JP4611892B2 (ja) 2011-01-12
EP1630960A1 (en) 2006-03-01
US20060176777A1 (en) 2006-08-10
CN1754313B (zh) 2010-06-09
US7583942B2 (en) 2009-09-01
WO2004105240A1 (ja) 2004-12-02
CN1754313A (zh) 2006-03-29
EP1630960A4 (en) 2006-07-26
JPWO2004105240A1 (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2004105240A9 (ja) 同調装置及びそれを用いた電波修正時計
US7777680B2 (en) Electronic apparatus and timepiece
US20040137865A1 (en) Method and integrated circuit for tuning an LC resonator and electrical apparatus comprising an LC resonator
JP2004282425A (ja) 電波受信装置、電波時計及び同調容量設定方法
US6047163A (en) Miniature radio apparatus having loop antenna including human body
US7515887B2 (en) Radio-controlled timepiece
US20050122952A1 (en) Radio-controlled clock and method for automatically receiving and evaluating any one of plural available time signals
JP2006246419A (ja) 電波同調受信回路、電波同調受信装置および電波同調受信方法
JP2005130055A (ja) アンテナユニット及びそれを用いた電波修正時計
JP4785259B2 (ja) 時刻情報受信装置および電波修正時計
JP3889176B2 (ja) 無線制御時計
JP4377150B2 (ja) 電波修正時計及びその制御方法
US20190302703A1 (en) Timepiece with Enhanced Antenna Arrangement
JP4193783B2 (ja) アンテナ装置
JP4586695B2 (ja) 時刻修正装置
JP2005241403A5 (ja)
JP2003234642A (ja) 同調回路および受信器
US20090003140A1 (en) Method for wireless programming of a time signal receiver, wirelessly programmable time signal receiver, and programming device for wireless programming of a time signal receiver
JP4707999B2 (ja) アンテナ用インダクタンス素子
JP4305205B2 (ja) アンテナ装置
JP4570938B2 (ja) 電波時計
JP4635803B2 (ja) アンテナ装置
JP2003167080A (ja) 電波時計
JP4359554B2 (ja) 受信装置
JPS5853232A (ja) 腕時計形ラジオ受信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005506395

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGES 11, 12, 19, 20 AND 42, DESCRIPTION, REPLACED BY NEW PAGES 11, 12, 19, 20 AND 42; AFTER RECTIFICATION OF OBVIOUS ERRORS AUTHORIZED BY THE INTERNATIONAL SEARCH AUTHORITY

WWE Wipo information: entry into national phase

Ref document number: 2004745352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048053395

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006176777

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10549456

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004745352

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10549456

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004745352

Country of ref document: EP