WO2004087625A1 - イソプレンの製造方法 - Google Patents

イソプレンの製造方法 Download PDF

Info

Publication number
WO2004087625A1
WO2004087625A1 PCT/JP2004/004038 JP2004004038W WO2004087625A1 WO 2004087625 A1 WO2004087625 A1 WO 2004087625A1 JP 2004004038 W JP2004004038 W JP 2004004038W WO 2004087625 A1 WO2004087625 A1 WO 2004087625A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction mixture
reactor
boiling
reaction
isoprene
Prior art date
Application number
PCT/JP2004/004038
Other languages
English (en)
French (fr)
Inventor
Osamu Yamada
Manabu Kusano
Nobuo Takayanagi
Hideki Arimoto
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to EP04723001.6A priority Critical patent/EP1614671B1/en
Priority to JP2005504179A priority patent/JP3917163B2/ja
Priority to CN200480008845XA priority patent/CN1768020B/zh
Priority to US10/551,596 priority patent/US7442844B2/en
Publication of WO2004087625A1 publication Critical patent/WO2004087625A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/867Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an aldehyde or a ketone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing isoprene.
  • the isoprene obtained by the production method of the present invention can be effectively used as a basic chemical raw material for various chemical products and polymer raw materials.
  • isobutylene and / or t-butanol As a method for producing isoprene, isobutylene and / or t-butanol (hereinafter, “isobutylene and / or t-butanol” can be abbreviated as “c 4 ”) in a reactor containing an acidic aqueous solution.
  • c 4 a method in which formaldehyde and water are supplied continuously or intermittently, and the reaction is carried out while distilling the produced isoprene together with water and other low-boiling components out of the reaction system.
  • reaction mixture a part of a mixture of C 4 , formaldehyde, water and an acidic aqueous solution (hereinafter, abbreviated as “reaction mixture”) is used. was removed from the reactor, after it was heated together with at least a portion of the C 4, it is (e.g. is known a manufacturing method of introducing into the reactor again, JP 5 9 1 9 0 9 3 0 No.).
  • water may be understood to be included as an aqueous solution such as an acidic aqueous solution
  • reaction mixture may contain a product and a by-product of the reaction.
  • the isoprene, water, unreacted raw materials and other low-boiling components (hereinafter, referred to as distillate) which are distilled out of the reaction system as a gas.
  • the “produced isoprene, water, unreacted raw materials and other low-boiling components” are abbreviated as “reaction distillate gas.”)
  • the heat of water is recovered by mainly condensing water in Is used as a heat source for evaporating isobutylene and a heat source for recovering unreacted isobutylene by distillation from the organic layer obtained by condensing the reaction distillate gas and phase-separating it.
  • Isoprene production method It is known (see, for example, Japanese Patent Publication No. 60-41838).
  • JP-A-59-70623, JP-A-59-19030, and JP-A-59-116326 disclose.
  • Simply practicing the production method fluctuates the concentration of high-boiling by-products in the reaction mixture, resulting in unstable acid concentrations in the reaction mixture, which may lead to equipment corrosion and isoprene formation. There is a problem that the reaction performance deteriorates.
  • the reaction distillate gas is Although the amount of heat it has can be effectively recovered and reused, it is not satisfactory as a supplement to the amount of heat required for the production of isoprene, and there is still room for improvement for industrial implementation.
  • An object of the present invention is to solve the above-mentioned problems and to provide a method for producing isoprene more efficiently than before.
  • the present invention achieves the above object by the following features.
  • Isobutylene and / or t-butanol, formaldehyde and water are continuously or intermittently fed into an acidic aqueous solution, and isoprene, water, unreacted raw materials and other low boiling points are formed from the reaction mixture.
  • a process for producing isoprene by distilling a mixture containing components out of the reaction system and reacting the mixture,
  • a reactor containing the reaction mixture is provided with an outlet for the reaction mixture, a part of the reaction mixture is withdrawn from the outlet, and at least at least high-boiling by-products are removed from the reaction mixture. After separating and removing a part, the concentration of the high boiling by-product in the reaction mixture is controlled within the above range by introducing the mixture into the reactor again.
  • An outlet for the reaction mixture is provided on the side wall of the reactor, and the height of the outlet is adjusted to the height when the volume of the liquid when the reaction mixture is filled up to the height.
  • a mixture containing the produced isoprene, water, unreacted raw materials and other low-boiling components is distilled out of the reaction system as a reaction distillate gas, and water is condensed from the reaction distillate gas.
  • the reactor is equipped with a stirring device that is configured so that the stirring blades rotate horizontally in the reaction mixture, and isoprene and / or t-butanol are piped to just below the stirring blades in the reactor.
  • the concentration of the high-boiling by-product in the reaction mixture is controlled within the above range by supplying the mixture to the stirring blade from the inlet provided by extending the passage.
  • (1) to (5) 3. The method for producing isoprene according to 1.).
  • the reactor is provided with a stirring device that is configured so that the stirring blades rotate horizontally in the reaction mixture, and a part of the reaction mixture is withdrawn from the reactor, and this is removed with isobutylene and / or t-butyl acetate.
  • the mixture is introduced again into the reactor, and the heated reaction mixture is supplied to the stirring blade from an inlet provided in the reactor.
  • FIG. 1 is a schematic diagram of manufacturing equipment for explaining the manufacturing method of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration of equipment constructed to carry out the manufacturing method according to the present invention in the embodiment of the present invention.
  • the connection inside the heat exchanger is schematically shown by solid lines and broken lines in order to clarify the input / output relationship of piping. However, these do not indicate the internal piping shape.
  • FIGS. 1 and 2 The meanings of the reference numerals in FIGS. 1 and 2 are shown below.
  • A Reaction mixture
  • Pl to P10 Pipeline
  • 1 Reactor
  • 2, 3, 5, 6, 7, 11, 12 Heat exchanger
  • 4 High-boiling by-product separation tank
  • 8, 9, 13 Distillation reservoir
  • 10, 14 Distillation tower.
  • the method for producing isoprene of the present invention is schematically illustrated by the schematic diagram of the production facility shown in FIG.
  • a method is used in which a mixture containing isoprene, water, unreacted raw materials, and other low-boiling components is reacted while distilling it out of the reaction system as a reaction distillate gas through a distillation line P2.
  • the basic technology of this production method is the same as the conventionally known production technology of isoprene, and is described in JP-A-59-70623 and JP-A-59-190309. Reference may be made to Japanese Unexamined Patent Application Publication No. Sho 60-41838 and Japanese Unexamined Patent Application Publication No. 59-116 1636.
  • the concentration of the high-boiling by-product (not shown) generated and accumulated in the reaction mixture A is 0.5.
  • the isoprene is produced while controlling the amount to be within the range of 40% by mass.
  • Japanese Patent Application Laid-Open No. 59-70623 discloses removal of high-boiling by-products that accumulate during the reaction, and also describes the operation thereof. There is no description of the effect of the concentration on the reaction performance.
  • the present invention it has been found that a new action and effect can be obtained by allowing a certain amount of the high-boiling by-product to be present in the reaction mixture, and the concentration is adjusted to 0.5 to 40% by mass. It is characterized in that the operation of removing high-boiling by-products is controlled within the range.
  • the high-boiling by-products whose concentration is controlled are usually widely dispersed in the liquid in the reactor, but may be unevenly distributed in the upper or lower part of the reaction mixture depending on the stirring efficiency.
  • impurities such as high-boiling organic compounds such as products and by-product multimers in the isoprene production method of the present invention, reaction raw materials, and inorganic substances derived from the reaction apparatus are used. And the like.
  • the high-boiling by-product By controlling the concentration of the high-boiling by-product in the reaction mixture within the range of 0.5 to 40% by mass, the high-boiling by-product preferably acts as a heat transfer medium.
  • the heating efficiency of the reaction mixture using a heat exchanger or the like can be maintained at a preferable value, and troubles such as clogging of the pipeline by high-boiling by-products do not occur. This Thus, isoprene can be produced more efficiently than in the past.
  • the concentration of the high-boiling by-product in the reaction mixture is more preferably in the range of 1 to 30% by mass, and the heat exchange property and the suppression of trapping such as clogging of the pipe are highly enhanced. From the viewpoint of compatibility, it is particularly preferable that the content be in the range of 2 to 20% by mass.
  • the concentration of the high-boiling by-product in the reaction mixture is less than 0.5% by mass, the heating efficiency of the reaction mixture decreases, and in the following order, the temperature of the reaction mixture in the reactor decreases, and As a result, the amount of aqueous formaldehyde supplied to the reactor was reduced to maintain the level of the reaction mixture in the reactor at a constant level, and as a result, the amount of isoprene per unit time was reduced. Production volume decreases.
  • the amount of heat required for the production of isoprene is considered. The problem is that the use efficiency of the heat exchanger is reduced, high-boiling by-products accumulate in the pipeline, and the pipeline becomes clogged, and the temperature near the heat exchanger surface becomes too high, making it more susceptible to acid corrosion. is there.
  • the method for controlling the concentration of the high-boiling by-product in the reaction mixture to be within the above range is not particularly limited.
  • a part of the reaction mixture is taken out (hereinafter, the taken out reaction mixture is taken out).
  • the taken out reaction mixture is taken out).
  • a removal reaction mixture Is sometimes referred to as a “removal reaction mixture”
  • a kind of feedback control is a simple control method of returning the mixed solution (hereinafter, sometimes referred to as “reaction mixture after removal”) to the reactor again.
  • reaction mixture after removal is a simple control method of returning the mixed solution (hereinafter, sometimes referred to as “reaction mixture after removal”) to the reactor again.
  • the reaction mixture is withdrawn from the pipes P 3 and / or P 4, the high-boiling by-product is separated and removed in the high-boiling by-product separation tank 4, and the removed reaction mixture is removed.
  • the method for separating and removing high-boiling by-products from the reaction mixture in the high-boiling by-product separation tank 4 is not particularly limited.For example, an extraction method using an organic solvent is preferably used. it can.
  • the frequency of withdrawing a part of the reaction mixture in the reactor may be continuous or intermittent.
  • the amount of withdrawal may be determined in consideration of the amount of by-products accumulated in the reactor, etc. .
  • the concentration of high-boiling by-products in the reaction mixture is determined while continuously withdrawing the reaction mixture at 2 L / hour. Is controlled so as to fall within the range of 0.5 to 40% by mass.
  • the method for measuring the concentration of high-boiling by-products in the reaction mixture is not particularly limited.For example, if a part of the reaction mixture is extracted and cooled, the high-boiling by-products are solidified. And measuring the mass to calculate the concentration of the high-boiling by-product in the reaction mixture.
  • the concentration of the formaldehyde aqueous solution should be as high as possible from the viewpoint of reducing the amount of heat given to the accompanying water supplied to the reactor as an aqueous solution, that is, the amount of heat required for the production of isoprene. It is good.
  • the concentration of the aqueous formaldehyde solution is preferably in the range of 20 to 70% by mass, and more preferably in the range of 25 to 60% by mass.
  • the concentration of the aqueous formaldehyde solution is too high, there is a problem that paraformaldehyde is easily precipitated.
  • C 4 used in the present invention is 3-methylbutane-1,1,3-diol, 3-methyl-2-buten-1-ol, 3-methyl-1-buten-1-ol, 3-methyl-1-butene-1-ol
  • 3-ol methyl isopropyl ketone, 2-methylbutanol, methyl-t-butylformal, 4,4-dimethyl-1,3-dioxane, 4-methyl-5,6-dihydro_2H-pyran, etc. You may go out. It may also contain isobutylene and methyl-t-butyl ether which decomposes into t-butyl under the reaction conditions.
  • the acidic aqueous solution used in the present invention is an aqueous solution of an acidic substance such as an inorganic acid, an organic acid, and salts thereof.
  • an acidic substance such as an inorganic acid, an organic acid, and salts thereof.
  • the acidic substance those having low volatility or non-volatility under the reaction conditions are preferable, for example, inorganic acids (phosphoric acid, sulfuric acid, boric acid, etc.), heteropolyacids (caitungstic acid, phosphotungstic acid, etc.), Organic acids (such as P-toluenesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid, and oxalic acid), and acid salts (such as sodium hydrogen sulfate).
  • inorganic acids phosphoric acid, sulfuric acid, boric acid, etc.
  • heteropolyacids caitungstic acid, phosphotungstic acid, etc.
  • Organic acids such as P-toluenes
  • P H of acidic aqueous solution the kind of the acidic substance, the reaction temperature, the feed rate of C 4, but may differ due to the feed rate of Horumua aldehyde, usually, p HO. 5 to 2.
  • the production method of the present invention it is possible to carry out the reaction while simultaneously supplying a low-boiling compound or an inert gas which is inert under the reaction conditions to the reactor, if necessary, in addition to the reaction mixture. is there.
  • a low-boiling compound or an inert gas which is inert under the reaction conditions to the reactor, if necessary, in addition to the reaction mixture.
  • hydrocarbons are preferable, and particularly those having 1 to 10 carbon atoms, for example, n-propane, n-butane, n-hexane, cyclohexane and the like can be mentioned.
  • the inert gas nitrogen and the like are preferable.
  • the molar ratio of the reactor is supplied c 4 and formaldehyde (hereinafter referred to as "c 4 Horumua aldehyde") is preferably at least 3, and more favorable preferable 5 or more.
  • c 4 Horumua aldehyde formaldehyde
  • the C 4 / formaldehyde content is preferably 20 or less, more preferably 12 or less. Incidentally, if c 4 7 formaldehyde is less than 3, isoprene yield tends to decrease.
  • the unreacted c 4 distilled out of the reaction system has a composition close to the equilibrium composition of isobutylene and t-butanol under the reaction conditions. That is, even if only one of isobutylene and t-butanol is supplied as a starting material to the reactor in the production method of the present invention, unreacted raw materials are separated from the viewpoint of reducing the unit consumption of the raw materials. If separated, collected and reused, a mixture of isobutylene and toluene will be used as a raw material.
  • C 4 , formaldehyde and water are supplied continuously or intermittently to an acidic aqueous solution, and from this reaction mixture, the produced isoprene, water, unreacted raw materials and other low-boiling components are removed.
  • the reaction is carried out while distilling the mixture containing it out of the reaction system as a reaction distillate gas.
  • the pressure in the reactor depends on the reaction temperature. It is preferably in the range of 1.1 to 2.5 times the vapor pressure of the acidic aqueous solution, and more preferably in the range of 1.1 to 2 times.
  • the vapor pressure of the acidic aqueous solution at the reaction temperature (hereinafter, abbreviated as Pw) is a physical constant uniquely determined by the type and concentration of the acidic substance contained in the reaction mixture. If the pressure in the reactor exceeds 2.5 times Pw, the yield of isoprene tends to decrease significantly. On the other hand, when the pressure in the reactor is less than 1.1 times Pw, the yield of isoprene does not decrease remarkably, but the conversion of formaldehyde decreases and isoprene in the reaction distillate gas. As the ratio of water to water increases, the amount of heat consumed in the reaction, that is, the amount of heat required to produce isoprene, increases, which is economically disadvantageous.
  • the suitable reaction temperature in the present invention is determined in consideration of the acid concentration in the reaction mixture, and is usually preferably in the range of 150 to 220 ° C.
  • the reaction temperature is lower than 150 ° C.
  • the yield of isoprene tends to decrease even if the concentration of the acidic aqueous solution is increased to maintain the reaction rate at a constant level.
  • the reaction temperature exceeded 220 ° C
  • the selectivity of isoprene does not decrease remarkably, the reaction conditions under which the conversion of formaldehyde under the condition giving the optimum selectivity decreases and the conversion of formaldehyde increases conversely are selected. It is not beneficial because the sequential reaction from isoprene proceeds to increase by-products, and as a result, the selectivity of isoprene decreases.
  • the preferred supply rate of the formaldehyde source (aqueous formaldehyde solution) to the reactor is determined in consideration of the concentration of the acid in the reaction mixture, the reaction temperature and the reaction pressure.
  • To increase the supply rate of the formaldehyde source It is necessary to increase the concentration of the acid in the mixture or increase the reaction temperature, in which case the corrosion of the reactor occurs.
  • the supply rate of the formaldehyde source is usually preferably in the range of 0.2 to 3 mol hours in terms of formaldehyde per 1 kg of the reaction mixture, and more preferably in the range of 0.5 to 2 mol / hour. More preferred.
  • the amount of water supplied to the reactor is usually adjusted so that the amount of the reaction mixture in the reactor is kept constant. That is, the amount is determined by the amount of water distilled from the reactor and the amount of water increased or decreased by the reaction.
  • the ratio of the number of moles of water distilled from the reactor to the number of moles of the raw material and product distilled out is determined by the pressure in the reactor.
  • the number of moles of starting material and product distilled since approximately equal to the number of moles of C 4 supplied, also the ratio of C 4 supplied with water being distilled may be defined by the pressure in the reactor. Therefore, the amount of water to be supplied, the pressure in the reactor may be determined in consideration of the increase and decrease of water by supply amount and reactivity of c 4.
  • high-boiling by-products are generated and accumulated in the reaction mixture as the reaction is performed for a long time. Since the high-boiling by-products are separated and dispersed in the reaction mixture, a part of the reaction mixture in the reactor is continuously or intermittently withdrawn, and a high-boiling by-product separation tank (for example, , Decanter, extraction tower, etc.) Remove at least some of the by-products and control their concentration.
  • a high-boiling by-product separation tank for example, Decanter, extraction tower, etc.
  • this high-boiling by-product has a small difference in specific gravity with respect to the reaction mixture, and a mixture of large and small specific gravity exists. Therefore, liquid separation operation using a specific gravity difference such as decantation is performed.
  • the high-boiling by-product since the high-boiling by-product has a property of solidifying at room temperature, the temperature of the reaction mixture is once lowered to solidify the high-boiling by-product and then separated and removed. However, it is necessary to reheat the reaction mixture. From these points, in order to facilitate the separation of the reaction mixture and the high-boiling by-products, it is preferable to extract and remove using an extraction solvent.
  • Such an extraction solvent is preferably a hydrocarbon having a lower boiling point than water, a low solubility in water, and a liquid at normal pressure, such as n-hexane and cyclohexane.
  • Compounds contained in the distillation residue include 4-methyl-5,6-dihydro-12H-pyran, methylisopropylketone, 2-methylbutanol, 2,6-dimethyl-2,5-butadiene, 2,6-Dimethyl-1,5-butadiene, 3-methyl-3-buten-2-ol, and the like.
  • compounds having various functional groups having 4 to 15 carbon atoms are also available. include.
  • a heating device is provided in the reactor itself in order to secure the amount of heat required for producing isoprene and the amount of heat required for distilling isoprene, water, unreacted raw materials and other low-boiling components.
  • a suitable auxiliary heating device is preferable.
  • a heat exchanger 3 is arranged outside the reactor as an auxiliary heating device, and a reaction between the reactor 1 and the heat exchanger 3 is performed through pipes P7 and P9.
  • an embodiment in which the reaction mixture is heated is exemplified.
  • the reaction mixture is circulated as it is to an external heat exchanger and heated. Since the amount of isobutylene dissolved in the reaction mixture is small, the boiling point rises in the reactor, and the temperature of the reaction mixture in the heat exchanger rises significantly. An increase in the temperature of the reaction mixture causes an increase in side reactions, which leads to a decrease in isoprene yield. To prevent this, as shown in FIG. 1, the reaction mixture was extracted in conduit P 7 for circulation, adding at least a portion of the C 4 through conduit P 8, the heat exchanger together these A preferred embodiment is that the mixture is heated in the vessel 3 and introduced into the reactor 1 through the line P9.
  • t-butyl alcohol prevents the temperature of the reaction mixture from rising due to heating, and is much less effective.
  • t - flop evening Nord is by contact with an acidic aqueous solution in the heat exchanger, converted into Isopuchiren, for the first time show the effect described above, as the c 4 be added to the reaction mixture were removed for circulating heating And isobutylene are preferred.
  • the calorie of the reaction distillate gas can be recovered and used effectively for the production of isoprene.
  • the calorie recovery for example, there is an embodiment in which mainly the water in the reaction distillate gas is condensed to recover the heat of the water (for example, in FIG.shrinking.)
  • the heat of the uncondensed reaction distillate gas is used as a heat source for vaporizing isobutylene (for example, in FIG. 2, the heat source is used in the heat exchangers 6 and 7).
  • the heat source when unreacted isobutylene in the organic layer obtained by condensing the reaction distillate gas and phase-separating it is recovered by distillation (for example, in Fig. 2, it is used as the heat source in the heat exchanger 11).
  • the steam obtained by the heat exchanger 5 may be used as the heating steam in the heat exchanger 11 or the like.
  • a part of the reaction mixture is continuously or intermittently controlled in order to control the concentration of the high-boiling by-product in the reaction mixture within the range of 0.5 to 40% by mass.
  • an extraction column, etc. remove at least a part of high-boiling by-products from the reaction mixture.
  • the present inventors Since the method of removing the high-boiling by-product is the point of the present invention, the present inventors have further studied. As a result, as described above, some of the accumulated high-boiling by-products have a large specific gravity and a small specific gravity with respect to the reaction mixture, and have a specific gravity relative to the reaction mixture in the reactor. It has been found that large high-boiling by-products tend to collect at the bottom of the reaction mixture, that is, at the bottom of the reactor, and high-boiling by-products having a low specific gravity tend to collect at the top of the reaction mixture.
  • an outlet for the reaction mixture is provided at least at the bottom of the reactor.
  • a sampling line P3 is provided at the center of the bottom of the reactor.
  • high-boiling by-products having a higher specific gravity than the reaction mixture are removed outside the reactor when a part of the reaction mixture is continuously or intermittently withdrawn. It is easier to do. It is preferable that such a discharge port is provided at the center of the bottom of the reactor, but the present invention is not limited to this.
  • the outlet of the reaction mixture is provided at the side wall of the reactor (reactor).
  • the height of the withdrawal port is such that the volume of the liquid when the reaction mixture is filled up to that height is at least 1/2 of the total volume of the reaction mixture to be accommodated at the start of production, and more preferably It is preferable that the height is set to be 2/3 or more (hereinafter, abbreviated as height h).
  • reaction mixture outlet is not provided on the side wall of the reactor, the reaction proceeds over a long period of time, and the high-boiling point with a lower specific gravity than the reaction mixture is placed above the reaction mixture.
  • concentration of the high-boiling by-product within the range of 0.5 to 40% by mass.
  • distilling out of the reaction mixture of isoprene, water, unreacted raw materials and other low-boiling components out of the reactor as a reaction distillate gas is hindered. This raises the problem that the steady state of the reaction cannot be maintained due to the rise, fluctuations in the concentration of the acid in the reaction mixture and the composition ratio of the raw materials.
  • the amount of the reaction distillate gas reduced, the amount of aqueous formaldehyde solution supplied to the reactor had to be reduced in order to maintain the level of the reaction mixture in the reactor at a constant level. Production volume decreases.
  • a stirrer (an external drive is not shown) is provided so that the stirring blade W rotates horizontally in the reaction mixture in the reactor, and a pipe P 6 for supplying C 4 is connected to the stirring blade in the reactor. extending to just below the., from inlet P 6- 1 to impinge the C 4 to stirring blade, supplied preferably is ejected.
  • the distance between the stirring blade and the supply port of C 4 must be strict.
  • the distance to the heart tip during the rotation of the stirring blade is 2 m, usually 0. Is preferably a range within 3 m , 0.2 m or less.
  • an inlet port P 6- 1 is curved tubes that make up the ring, supplied at appropriate intervals on its circumference
  • An embodiment in which a mouth is provided is preferred.
  • the radius of curvature of the ring-shaped inlet P6-1 is 50 to 80% of the distance from the rotation center of the stirring blade to the tip.
  • the interval between the supply ports provided on the circumference of the ring-shaped inlet port P6-1 is preferably such that the circumference is equally divided by 5 to 100, and is equally divided by 10 to 40. A degree interval is more preferred.
  • the reaction mixture heated after the addition of C 4 and then in the heat exchanger 3 is transferred to a pipe P 9.
  • a pipe P 9 To the lower part of the reactor, and supply it so as to hit the stirring blade W.
  • the lower part of the reactor is not particularly limited as long as the reaction mixture strikes the stirring blade when the reaction mixture is introduced again into the reactor, but the reaction mixture is introduced into the reactor from below the stirring blade. Is preferred.
  • reaction mixture returned from the heat exchanger to the reactor is not supplied so as to hit the stirring blade via line P9, the gas and liquid in the reaction mixture in the reactor become insufficiently dispersed.
  • the amount of high-boiling by-products increases and accumulates in the reactor, The concentration in the reaction mixture tends to increase.
  • water may be decomposed from the reaction distillate gas, and the water thus decomposed may be reused (hereinafter, dewatered from the reaction distillate gas and reused).
  • the water used is abbreviated as “recycled water.”)
  • the water condensed in the heat exchanger 5 is introduced into the distilling receiving layer 8, supplied to the reactor via the pipe P10-1 and the like, and reused.
  • the amount of the reaction mixture in the reactor can be kept constant, and the concentration of the high-boiling by-product in the reaction mixture is 0.5 to 0% by mass. Control within the range becomes easy.
  • the temperature of the recycled water is within a range of 120 to 140 ° C (under a pressure of about 1.5 MPa)
  • the amount of heat required for producing isoprene can be reduced. If recycled water is not used, i.e. fresh water (typically about 25 ° C) can still control the concentration of high-boiling by-products in the reaction mixture, but until heated to the reaction temperature This is economically disadvantageous because the amount of heat required increases.
  • Isoprene can be obtained by fractionating the organic layer of the distillate distilled out of the reaction system by performing the present reaction method.
  • steps required until the isoprene is finally fractionated from the distillate distilled from the line P2 in FIG. 1 refer to the known art (for example, Japanese Patent Application Laid-Open No. Sho 60-41838). You may.
  • the concentration of the high-boiling by-product in the reaction mixture in the reactor was out of the above range. The significance was confirmed.
  • the reactor 1 was prepared tank having an inner volume of 1 2 0 L, this, C 4 inlet conduit P 6, an aqueous formaldehyde solution inlet pipe P 1-1, the water inlet pipe P 1-2, an acidic aqueous solution (phosphate (Aqueous acid solution) Inlet line P1_3, distillate line P2 for products, etc., and reaction mixture withdrawal lines P3 and P4 are connected.
  • the reactor is equipped with auxiliary equipment necessary for reaction control, such as a thermometer, a pressure gauge, a stirrer, and a baffle plate.
  • reaction from a mixture extraction pipe P 3 branches the conduit P 7, the sampling One reaction mixture from the reactor is mixed with C 4, heating such mixture through the heat exchanger 3, the reactor To return to When returning the reaction mixture heated in the heat exchanger 3 to the inside of the reactor 1, the reaction mixture was jetted toward the stirring blade so as to hit the stirring blade.
  • Isoprene generated in the reactor 1 is distilled out of the reactor as a reaction distillate gas through the pipe P2 together with unreacted C 4 , water, formaldehyde and the like. These reaction distillate gases are sent to the heat exchanger 5.
  • heat exchange is performed between the reaction distillate gas flowing into the heat exchange pipe and the cooling water flowing into the heat exchanger (that is, the reaction distillate gas is cooled), and the reaction is performed. Water in the distillate gas is fragmented.
  • the cooling water that has flowed into the heat exchanger 5 obtains heat from the reaction distillate gas to become steam, and the heat is recovered.
  • the water decomposed in the heat exchanger 5 is sent to the distilling tank 8.
  • Part of the water in the distilling tank 8 is supplied directly to the reactor through line P 10-1 to be used for adjusting the amount of the reaction mixture in the reactor, and is also connected to line P 10-2. Heat exchange through Is supplied to the vessel 2, it is used to adjust the molar ratio between formaldehyde and C 4, are fed to the reactor 1 by evaporation with C 4. The remainder of the water in distilling tank 8 is sent to distilling tank 9.
  • the compounds not condensed in the heat exchanger 5 are condensed in the heat exchangers 6 and 7 and sent to the distillation receiving tank 9, where they are separated into an organic layer and an aqueous layer.
  • the organic layer is sent to the heat exchanger 7 where it is heated, and then sent to the distillation column 10 for separating isobutylene.
  • the fraction in the distillation column 10 is mainly composed of isobutylene, and is condensed in the heat exchanger 12 and then sent to the distillation receiving tank 13.
  • the bottom liquid of the distillation column 10 is mainly composed of isoprene and unreacted t-butanol. By purifying the bottom liquid in the distillation column 14, isoprene is obtained from the top of the column.
  • the main component of the bottom liquid of the distillation column 14 is t-butanol, which is separately purified and reused in the production method of the present invention.
  • the product is sent to the separation tank 4 and used as an extraction solvent when separating high-boiling by-products from the reaction mixture extracted from the reactor.
  • the reaction mixture (including high-boiling by-products) in the reactor 1 is withdrawn from each of the outlets provided near the center of the bottom surface of the reactor and on the side of the reaction mixture on the side wall of the reactor. After being mixed with water, the mixture is sent to a high-boiling by-product separation tank 4, where it is separated into an organic layer (extracting solvent) containing a high-boiling by-product and an aqueous layer.
  • the organic layer is effectively used for applications such as fuel, and the aqueous phosphoric acid solution in the aqueous layer is at least partially recycled to the reactor.
  • Sampling of the reaction mixture for measuring the concentration of high-boiling by-products in the reaction mixture in the reactor can be performed, for example, by providing outlets in the pipelines P3, P4, and P7. While confirming the concentration of the high-boiling by-product in the reaction mixture, stopping and executing the removal of the reaction mixture from the outlet so that the concentration falls within the range of 0.5 to 40% by mass. Is appropriately performed.
  • the reaction conditions in the reactor were a reaction temperature of 175 to 178 ° C, a reaction pressure of 1.52 MPa, and a rotation speed of the stirring blade of 48 to 55 rpm.
  • a reactor (internal volume 120L) was charged with 60L of 2.5% phosphoric acid aqueous solution, and under the above reaction conditions, 46% by mass aqueous formaldehyde solution was 3.24 kg / hour, isobutylene was 17.7 kg / hour, The reaction was started by continuously supplying t-butanol at a rate of 6.02 kg / hour and water at a rate of 9.08 kg / hour.
  • the concentration of the high-boiling by-products in the reaction mixture is adjusted to a predetermined value as described below by adjusting the removal amount of the high-boiling by-products mainly in the high-boiling by-product separation tank 4. It controlled so that it might become.
  • the controlled high-boiling by-product concentrations are as follows:
  • Example 1 0.5% by mass (Example 1), 1% by mass (Example 2), 2% by mass (Example 3), 5% by mass (Example 4), 10% by mass (Example 5), 20% by mass (Example 6), 30% by mass (Example 7), 40% by mass (Example 8).
  • Example 18 The respective reactions were carried out according to Example 18 and Comparative Example 14.
  • concentration of the high-boiling by-product in the reaction mixture was 0.540% by mass (Example 1).
  • the steady state of the reaction in the reactor can be maintained, the conversion of formaldehyde is always 98% or more, and the yield of isoprene is always 71% or more. I understand.
  • the concentration of high-boiling by-products in the reaction mixture was 0.540 It was found that by maintaining the amount within the range of%, isoprene can be efficiently produced while maintaining the steady state of the reaction.
  • the method for producing isoprene of the present invention can be carried out by a known method for producing isoprene (for example, see JP-A-56-79628 and HYDROCARBON PROCESSING, page 167 (January 1971). This is advantageous because the manufacturing process is simpler and the utility can be kept low. The fact that the yield improvement which could not be achieved by this method could be increased by about 2% in the present method is extremely advantageous in the field of the present invention from the viewpoint of production cost. .
  • the isoprene obtained by the production method of the present invention is effectively used as a basic chemical raw material for various chemical products and polymer raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

イソブチレンおよび/またはt−ブタノール、ホルムアルデヒドおよび水を酸性水溶液中に連続的または断続的に供給し、この反応混合液から生成したイソプレン、水、未反応原料および他の低沸点成分を含む混合物を留出させながら反応させることによりイソプレンを製造するに際し、前記反応混合液中に生成し蓄積されていく高沸点副生成物の濃度を0.5~40質量%の範囲内となるよう制御しながら、前記反応を行なう。

Description

イソプレンの製造方法
技術分野
本発明はイソプレンの製造方法に関する。 本発明の製造方法により得られるィ ソプレンは、 基礎化学原料として各種化学品およびポリマ一原料に有効に用いら れ
背景技術
イソプレンの製造方法としては、 酸性水溶液を含有する反応器に、 イソブチレ ンおよび/または t—ブ夕ノール (以下、 「イソプチレンおよび/または tーブ 夕ノール」 を 「c4」 と略記することがある。 ) 、 ホルムアルデヒドおよぴ水を 連続的または断続的に供給し、 かつ生成するイソプレンを水および他の低沸点成 分と共に反応系外に留出させながら反応を行う方法が知られている (例えば、 特 開昭 5 9— 7 0 6 2 3号公報参照)
また、 特開昭 5 9 - 7 0 6 2 3号公報に記載の製造方法において、 C4、 ホル ムアルデヒド、 水および酸性水溶液の混合物 (以下、 「反応混合液」 と略記する 。 ) の一部を反応器から取り出し、 これを C4の少なくとも一部と併せて加熱し た後、 再び反応器に導入する製造方法が知られている (例えば、 特開昭 5 9— 1 9 0 9 3 0号公報参照) 。 なお、 「水」 は酸性水溶液などの水溶液として含まれ ると解してもよく、 「反応混合液」 は、 反応による生成物および副生成物を含有 していてもよい。
また、 特開昭 5 9 - 7 0 6 2 3号公報に記載の製造方法において、 反応系から ガスとして留出する、 生成したイソプレン、 水、 未反応原料および他の低沸点成 分 (以下、 「生成したイソプレン、 水、 未反応原料および他の低沸点成分」 を 「 反応留出ガス」 と略記する。 ) 中の主として水を分縮させることにより水の熱量 を回収し、 さらに未凝縮ガスの熱量を、 イソブチレンを気化させる際の熱源や、 反応留出ガスを濃縮させ相分離して得た有機層から未反応イソプチレンを蒸留に より回収する際の熱源などに使用することを特徴とするイソプレンの製造方法が 知られている (例えば、 特閧昭 6 0 - 4 1 3 8号公報参照) 。
さらには、 反応混合液中に蓄積する高沸点副生成物を分離するに際し、 反応混 合液またはその一部に、 反応時の留出物の有機層から未反応原料およびイソプレ ンを留去して得られる残留物またはその一部を加え、 該高沸点副生成物を含む有 機層と酸性水溶液に分離することを特徴とするイソプレンの製造方法が知られて いる (例えば、 特開昭 5 9 - 1 1 6 2 3 6号公報参照) 。
しかしながら、 本発明者等が上記のような従来のィソプレンの製造方法を検討 したところ、 これらの製造方法には、 次の問題点が存在することが新たに判明し に o
即ち、 特開昭 5 9 - 7 0 6 2 3号公報、 特開昭 5 9 - 1 9 0 9 3 0号公報およ び特開昭 5 9 - 1 1 6 2 3 6号公報に記載の製造方法を単に実施しただけでは、 反応混合液中の高沸点副生成物の濃度が変動してしまい、 反応混合液中の酸の濃 度が安定せず、 装置の腐食の問題やイソプレン生成の反応成績が悪化するという 問題がある。
特に、 反応混合液の一部を反応器から抜き取って、 これを C4の少なくとも一 部と共に加熱する際、 反応混合液中の高沸点副生成物の濃度が高過ぎても低過ぎ ても、 熱が反応混合液に充分に伝わらないことが判明した。 熱が充分に伝わらな い場合、 反応器内の反応混合液の温度が徐々に低下し、 反応時における水の留出 量が減少する傾向となるので、 連続的に反応を行うために、 該反応混合液面の高 さを一定に制御すべくホルムアルデヒド水溶液の供給量を下げねばならず、 その 結果、 単位時間当たりのイソプレンの生産量が低下する傾向となる。
一方、 かかる状況で、 反応器から抜き取った反応混合液と C4の少なくとも一 部を過剰に加熱することで反応器中の反応混合液の温度を一定に保持しようとす ると、 イソプレンの製造に要する熱量の使用効率が低下するという問題や、 管路 に高沸点副生成物が蓄積することで管路が詰まり易くなるという問題などが生じ る。
そして、 特閧昭 6 0 - 4 1 3 8号公報に記載の製造方法では、 反応留出ガスが 有する熱量を有効に回収し再使用することができるものの、 ィソプレンの製造に 要する熱量の補足としては満足のいくものではなく、 工業的に実施するにはなお 改善の余地がある。
本発明の目的は、 上記した問題点を解決し、 従来よりも効率的にイソプレンを 製造し得る方法を提供することにある。
発明の開示
本発明は、 次の特徴によって、 上記目的を達成するものである。
( 1 ) イソプチレンおよび/または t —ブ夕ノール、 ホルムアルデヒドおよび水 を酸性水溶液中に連続的または断続的に供給し、 この反応混合液から、 生成した イソプレン、 水、 未反応原料および他の低沸点成分を含む混合物を反応系外に留 出させながら反応させることによるイソプレンの製造方法であって、
前記反応混合液中に生成し蓄積されていく高沸点副生成物の濃度を 0 . 5〜4 0質量%の範囲内となるよう制御しながら前記反応を行うことを特徴とする、 ィ ソプレンの製造方法。
( 2 ) 反応混合液を含有する反応器に、 該反応混合液の抜取口を設け、 該抜取口 から反応混合液の一部を抜き取り、 該反応混合液から高沸点副生成物の少なくと も一部を分離除去した後、 再び反応器に導入することにより、 反応混合液中の高 沸点副生成物の濃度を上記範囲内に制御する、 上記 ( 1 ) に記載のイソプレンの
( 3 ) 反応混合液の抜取口を少なくとも反応器の底部に設ける上記 (2 ) に記載 のイソプレンの製造方法。
( 4 ) 反応混合液の抜取口を反応器の側壁部に設け、 該抜取口の高さを、 その高 さまで反応混合液を満たした場合の該液の体積がイソプレンの製造時における該 液の全体積の 1 / 2以上となるような高さとする、 上記 (2 ) または (3 ) に記 載のイソプレンの製造方法。
( 5 ) 生成したイソプレン、 水、 未反応原料および他の低沸点成分を含む混合物 を反応留出ガスとして反応系外に留出させ、 該反応留出ガスから水を分縮させて 、 得られた水を再び反応器に導入することにより、 反応混合液中の高沸点副生成 物の濃度を上記範囲内に制御する、 上記 (1) 〜 (4) に記載のイソプレンの製 造方法。
(6) 反応器に、 反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装 置を設け、 イソプチレンおよび/または t—プ夕ノールを、 反応器内の攪袢羽根 の直下まで管路を延長して設けた導入口から攪拌羽根に向けて供給することによ り、 反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、 上記 (1) 〜(5) に記載のイソプレンの製造方法。
(7) 反応器に、 反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装 置を設け、 かつ、 反応器から反応混合液の一部を抜き取り、 これをイソプチレン および/または t一ブ夕ノ一ルの少なくとも一部と共に熱交換器で加熱した後に 再び反応器に導入する構成とし、 加熱した該反応混合液を反応器に設けた導入口 から攪拌羽根に向けて供給することにより、 反応混合液中の高沸点副生成物の濃 度を上記範囲内に制御する、 上記 (1) 〜 (6) に記載のイソプレンの製造方法 。
図面の簡単な説明
図 1は、 本発明の製造方法を説明するための製造設備の模式図である。
図 2は、 本発明の実施例において、 本発明による製造方法を実施するために構 築した設備の構成を模式的に示す図である。 同図中に示した熱交換器 2、 3、 5 、 6、 7、 11では、 配管の入出力関係を明確にするために、 熱交換器内部での 接続関係を実線と破線で模式的に表しているが、 これらは内部の配管形状を表す ものではない。
以下に、 図 1および図 2に記載の符号の意味を示す。 A:反応混合液、 P l〜 P 10 :管路、 1 :反応器、 2、 3、 5、 6、 7、 11、 12 :熱交換器、 4 : 高沸点副生成物分離槽、 8、 9、 13 :留出受層、 10、 14 :蒸留塔。
発明を実施するための最良の形態
本発明のィソプレンの製造方法は、 図 1の製造設備の模式図によって概略的に 示すとおり、 反応器 1内の酸性水溶液中に、 C4を管路 P 6から、 ホルムアルデ ヒドおよび水を管路 P 1から連続的または断続的に供給し、 この反応混合液 Aか ら生成した、 イソプレン、 水、 未反応原料および他の低沸点成分を含む混合物を、 留出用管路 P 2より反応留出ガスとして反応系外へ留出させながら反応させる手 法を用いる。 この製造手法の基礎技術については、 従来公知のイソプレンの製造 技術と同様であって、 前記した特開昭 5 9— 7 0 6 2 3号公報、 特開昭 5 9— 1 9 0 9 3 0号公報、 特閧昭 6 0 - 4 1 3 8号公報および特閧昭 5 9 - 1 1 6 2 3 6号公報を参照してよい。
ここで、 従来にはない本発明の重要な特徴は、 前記反応混合液 A中に生成し蓄 積されていく高沸点副生成物 (図示せず) の反応混合液中の濃度を 0 . 5〜4 0 質量%の範囲内となるように制御しながら、 前記イソプレンの製造を行う点にあ る。
例えば、 特開昭 5 9 - 7 0 6 2 3号公報には、 反応中に蓄積していく高沸点副 生成物を除去すること、 またその操作についての記載はあるが、 高沸点副生成物 の濃度が反応成績に及ぼす影響については何ら記載されていない。 これに対して、 本発明では、 高沸点副生成物を反応混合液中に一定量存在させることによって新 たな作用効果が得られることを見出し、 その濃度を 0 . 5〜4 0質量%の範囲内 となるように高沸点副生成物の除去操作を制御することを特徴としている。
濃度を制御する高沸点副生成物は、 反応器内では、 通常、 液中に広く分散して いるが、 攪拌効率によって、 反応混合液中の上部や下部に偏っていることもある c 高沸点副生成物の成分は特定できるものではないが、 本発明のイソプレンの製造 方法における生成物 ·副生成物の多量体などの高沸点有機化合物、 反応原料およ び反応装置由来の無機物などの不純物などが挙げられる。
かかる高沸点副生成物の反応混合液中の濃度を 0 . 5〜4 0質量%の範囲内と なるよう制御することで、 該高沸点副生成物が熱伝達媒体として好ましく作用す るので、 熱交換器等を用いた反応混合液の加熱効率を好ましい値に維持でき、 し かも高沸点副生成物による管路の詰まりなどのトラブルは生じない。 これによつ て、 従来よりも、 さらに効率よくイソプレンを製造することができる。
高沸点副生成物の反応混合液中の濃度は、 1〜3 0質量%の範囲内とするのが より好ましく、 熱交換性の向上、 および管路の詰まりなどのトラプルの抑制を高 度に両立させる観点からは、 2〜2 0質量%の範囲内とするのが特に好ましい。 高沸点副生成物の反応混合液中の濃度が 0 . 5質量%未満であると、 反応混合 液の加熱効率が低下し、 以下順に、 反応器内の反応混合液の温度が低下し、 水の 留出量が減少し、 反応器内の反応混合液面の高さを一定に維持するために反応器 に供給するホルムアルデヒド水溶液の量を減らすことになり、 結果、 単位時間当 たりのィソプレンの生産量が減少する。 前記した反応器内の反応混合液の温度の 低下を防止するには、 熱交換器における反応混合液の加熱を過剰に行うことが考 えられるが、 そのような方法ではィソプレンの製造に要する熱量の使用効率が低 下する、 管路に高沸点副生成物が蓄積して管路がつまる、 熱交換器表面付近の温 度が高くなりすぎて酸による腐食の影響を受け易くなるという問題がある。
一方、 高沸点副生成物の濃度が 4 0質量%を超えると、 熱交換器と反応器とを 接続する管路や、 該熱交換器自体の内部管路などが詰まり易くなり、 運転トラブ ルの原因となる、 熱交換器による反応混合液の加熱効率 (与熱効率) が低下する、 循環させている反応混合液が濃縮され易くなり、 濃度の高まった酸が装置を腐食 する原因となる、 などの問題を生じる。
反応混合液中の高沸点副生成物の濃度を上記範囲内となるように制御するため の方法は、 特に限定されないが、 例えば、 反応混合液の一部を取り出し (以下、 取り出した反応混合液を 「取出し反応混合液」 と称することがある) 、 後述する 適宜の除去処理法にて該取出し反応混合液から高沸点副生成物の少なくとも一部 を除去し、 かかる除去処理を受けた取出し反応混合液 (以下、 「除去処理済反応 混合液」 と称することがある) を再び反応器へ戻すという、 一種のフィードバヅ ク制御が簡便な制御手法である。 図 1の例では、 管路 P 3および/または P 4か ら反応混合液を抜き取り、 高沸点副生成物分離槽 4において高沸点副生成物を分 離除去し、 除去処理済反応混合液を管路 P 5から反応器へ戻している。 高沸点副生成物分離槽 4において、 反応混合液から高沸点副生成物を分離 ·除 去するための手法は、 特に限定されないが、 例えば、 有機溶媒を用いた抽出法を 好適に用いることができる。
反応器内の反応混合液の一部を抜き取る頻度は、 連続的でも、 断続的でもよい また、 抜き取り量は、 反応器内における高沸点副生成物の蓄積量などを考慮して 決定すればよい。 反応混合液の抜き取り方としては、 例えば、 内容積 1 2 0 Lの 反応器において、 反応混合液を 2 L/時で連続的に抜き取りながら、 高沸点副生 成物の反応混合液中の濃度を 0 . 5〜 4 0質量%の範囲内となるように制御する 方法などが挙げられる。
反応混合液中の高沸点副生成物の濃度を測定する方法は特に限定されず、 例え ば、 反応混合液の一部を抜き取って冷却すると、 高沸点副生成物は固化するため、 これを分離して質量を測定することにより、 反応混合液中の高沸点副生成物の濃 度を算出する方法などが挙げられる。
本発明において使用するホルムアルデヒドは、 水溶液として反応器に供給する 同伴する水に与える熱量、 つまりイソプレンの製造に要する熱量を低減するとい う観点から、 ホルムアルデヒド水溶液の濃度は、 できるだけ高濃度にするのが好 ましい。 ホルムアルデヒド水溶液の濃度は、 通常、 2 0〜7 0質量%の範囲内で あるのが好ましく、 2 5〜6 0質量%の範囲内であるのがより好ましい。 但し、 該ホルムアルデヒド水溶液の濃度が高すぎるとパラホルムアルデヒドが析出し易 くなるという問題が生じる。
本発明において使用する C4は、 3—メチルブタン一 1 , 3—ジオール、 3— メチルー 2—ブテン一 1—オール、 3—メチル一 3—プテン— 1一オール、 3— メチル— 1 —ブテン一 3—オール、 メチルイソプロピルケトン、 2—メチルブ夕 ナ一ル、 メチル— t 一プチルホルマール、 4 , 4一ジメチルー 1 , 3—ジォキサ ン、 4ーメチルー 5 , 6—ジヒドロ _ 2 H—ピランなどを含んでいてもよい。 ま た、 反応条件下でイソプチレンおよび t一ブ夕ノ一ルに分解するメチルー tーブ チルエーテルなどを含んでいてもよい。 本発明で使用する酸性水溶液は、 無機酸、 有機酸およびそれらの塩類などの酸 性物質の水溶液である。 該酸性物質としては、 反応条件下において低揮発性また は不揮発性のものが好ましく、 例えば、 無機酸 (リン酸、 硫酸、 ホウ酸など) 、 ヘテロポリ酸 (ケィタングステン酸、 リンタングステン酸など) 、 有機酸 (P— トルエンスルホン酸、 ベンゼンスルホン酸、 トリフルォロメ夕ンスルホン酸、 シ ユウ酸など) 、 酸性塩 (硫酸水素ナトリウムなど) などが挙げられる。
酸性水溶液の p Hは、 酸性物質の種類、 反応温度、 C4の供給速度、 ホルムァ ルデヒドの供給速度などにより異なり得るが、 通常、 p H O . 5〜2 . 5の範囲 内であるのが好ましく、 p H 1〜2の範囲内であるのがより好ましい。
本発明の製造方法においては、 反応器中に、 反応混合液の他に、 必要に応じて 反応条件下で不活性な低沸点化合物または不活性ガスを同時に供給しながら反応 を行うことが可能である。 かかる低沸点化合物としては、 炭化水素類が好ましく、 特に炭素数 1〜 1 0のもの、 例えば、 n—プロパン、 n—ブタン、 n—へキサン、 シクロへキサンなどが挙げられる。 また、 不活性ガスとしては、 窒素などが好ま しいものとして挙げられる。
反応器に供給する c4とホルムアルデヒドとのモル比 (以下、 「c4 ホルムァ ルデヒド」 と称する) は、 3以上であるのが好ましく、 5以上であるのがより好 ましい。 該モル比に、 厳密な意味での上限はないが、 このモル比を過度に大きく してもイソプレンの収率の向上効果は小さく、 かえってイソプレンの製造に使用 する熱量が増大して経済的に不利となる。 通常、 C4/ホルムアルデヒドは 2 0 以下であるのが好ましく、 1 2以下であるのがより好ましい。 なお、 c47ホル ムアルデヒドが 3未満であると、 イソプレンの収率が低下する傾向となる。
上記した C4とホルムアルデヒドとのモル比から明らかなとおり、 本発明では、 ホルムアルデヒドに対して C4を過剰に用いる。 よって、 本発明の製造方法にお いて、 反応器中に供給した C4の過剰量分は、 生成したイソプレン、 低沸点成分 および水と共に未反応のまま反応留出ガスとして反応系外へ留出するが、 かかる 反応系外へ留出した未反応の C4は、 他の留出成分から分離 ·回収後、 本発明の 製造方法に再使用することができる。
反応系外に留出した未反応の c 4は、 反応条件下におけるイソプチレンと t一 ブ夕ノールの平衡組成に近い組成である。 即ち、 たとえ本発明の製造方法におい て出発物質としてィソブチレンおよび tーブ夕ノールのうちいずれか一種のみを 反応器に供給した場合でも、 原料の原単位を低減する観点から未反応の原料を分 離 ·回収して再使用すれば、 イソプチレンと tーブ夕ノールの混合物を原料とし て使用することになる。
上記のとおり、 本発明では、 C4、 ホルムアルデヒドおよび水を酸性水溶液中 に連続的または断続的に供給し、 この反応混合液から、 生成したイソプレン、 水、 未反応原料および他の低沸点成分を含む混合物を、 反応留出ガスとして反応系外 へ留出させながら反応させる方法をとる。
イソプレンを高収率で得るためには反応器内の圧力 (但し、 反応条件下で不活 性な低沸点化合物を原料と共に供給した場合は、 その分圧を差し引いた圧力) が、 反応温度における酸性水溶液の蒸気圧の 1 . 1〜2 . 5倍の範囲内にあるのが好 ましく、 1 . 1〜2倍の範囲内にあるのがより好ましい。
なお、 反応温度における酸性水溶液の蒸気圧 (以下、 これを P wと略記す る。 ) は、 該反応混合液に含まれる酸性物質の種類と濃度によって一義的に決ま る物理定数である。 反応器内の圧力が P wの 2 . 5倍を超えるとイソプレンの収 率が顕著に低下する傾向となる。 一方、 反応器内の圧力が P wの 1 . 1倍未満で ある場合、 イソプレンの収率に顕著な低下はみられないが、 ホルムアルデヒドの 転化率が低下し、 また反応留出ガス中のイソプレンに対する水の割合が増加して、 反応で消費される熱量、 即ち、 イソプレンの製造に要する熱量が増大し、 経済的 に不利となる。
本発明における好適な反応温度は、 反応混合液中の酸の濃度を考慮して決定さ れ、 通常、 1 5 0〜2 2 0 °Cの範囲内であるのが好ましい。 反応温度を 1 5 0 °C 未満にすると、 反応速度を一定の水準に維持するために酸性水溶液の濃度を高め てもイソプレンの収率が低下する傾向となる。 一方、 反応温度が 2 2 0 °Cを超え てもイソプレンの選択率が著しく低下することはないが、 最適選択率を与える条 件でのホルムアルデヒドの転化率が低下し、 逆にホルムアルデヒドの転化率が高 くなるような反応条件を選択すると、 イソプレンからの逐次反応が進行して副生 成物が増え、 結果としてイソプレンの選択率が低下するので有益ではない。
反応器へのホルムアルデヒド源 (ホルムアルデヒド水溶液) の好ましい供給速 度は、 反応混合液中の酸の濃度、 反応温度および反応圧力を考慮して決定される ホルムアルデヒド源の供給速度を大きくするためには反応混合液中の酸の濃度 を上げるか、 あるいは反応温度を高める必要があり、 この場合、 反応器の腐食の 問題が生じる。 ホルムアルデヒド源の供給速度については下限はないが、 小さく し過ぎると容積効率が悪化する。 ゆえにホルムアルデヒド源の供給速度は、 通常、 反応混合液 1 k gにっきホルムアルデヒド換算で 0 . 2〜3モル 時の範囲内で あるのが好ましく、 0 . 5〜2モル/時の範囲内であるのがより好ましい。
反応器に供給する水の量は、 通常、 反応器中の反応混合液の量が一定に保たれ るように調節される。 すなわち、 この量は反応器から留出する水の量および反応 により増減した水の量によって決められる。
上記したように、 反応留出ガスを構成する成分の中で水の沸点は高いため、 反 応器内の圧力が高いと反応留出ガス中の水以外の成分の合計に対する水の割合が 減少し、 該圧力が低いと水の割合が増加する。 故に、 反応器から留出する水のモ ル数と留出する原料および生成物のモル数の比は反応器内の圧力によって規定さ れるといえる。 また、 留出する原料および生成物のモル数は、 供給される C4の モル数にほぼ等しいため、 留出する水と供給される C4の比率も反応器内の圧力 によって規定され得る。 従って、 供給する水の量は、 反応器内の圧力、 c4の供 給量および反応による水の増減を考慮して決定すればよい。
上記のとおり、 反応混合液中には、 反応を長時間にわたって実施するのに伴い、 高沸点副生成物が生成し蓄積される。 該高沸点副生成物は、 反応混合液中で相分 離し分散するため、 反応器内の反応混合液の一部を連続的または断続的に抜き取 り、 高沸点副生成物分離槽 (例えば、 デカンターや抽出塔など) に導いて高沸点 副生成物の少なくとも一部を除去し、 その濃度を制御する。
しかしながら、 この高沸点副生成物は、 反応混合液に対して比重の差が小さく、 さらに比重の大きいものと小さいものが混在しているため、 デカンテ一シヨンな どの比重差を利用した分液操作により分離するのは困難であり、 また、 該高沸点 副生成物は、 室温下で固化する性質を有するため、 反応混合液の温度を一旦下げ て高沸点副生成物を固化させてから分離除去する方法もあるが、 再び反応混合液 に熱量を与える必要がある。 これらの点から、 反応混合液と高沸点副生成物との 分離を容易にするために、 抽出溶剤を使用して抽出除去するのが好ましい。
かかる抽出溶剤としては、 水より沸点が低く、 水への溶解性が低く、 かつ常圧 で液状の炭化水素が好ましく、 例えば n—へキサン、 シクロへキサンなどが挙げ られ o
抽出溶剤としては、 反応器から反応系外へ留出した反応留出ガスに含有される 有機物から、 蒸留によって未反応原料およびイソプレンを留出させた後の蒸留残 渣として得られる化合物またはその一部の成分を使用することもできる。 かかる 蒸留残渣に含まれる化合物としては、 4—メチル—5, 6—ジヒドロ一 2 H—ピ ラン、 メチルイソプロピルケトン、 2—メチルブ夕ナ一ル、 2 , 6—ジメチルー 2 , 5—へブタジエン、 2 , 6—ジメチル一 1, 5—へブタジエン、 3 —メチル —3—プテン— 2 —オールなどが挙げられるが、 これら以外にも、 炭素数 4〜1 5の種々の官能基を有する化合物が含まれている。
本発明の製造方法を実施する場合、 イソプレンの製造に要する熱量、 ならびに イソプレン、 水、 未反応原料および他の低沸点成分の留出に要する熱量を確保す るため、 反応器自体に加熱装置を設けてもよいが、 適当な補助加熱装置を配置す る態様が好ましい。 例えば、 図 1に示すように、 反応器の外部に補助加熱装置と して熱交換器 3を配置し、 管路 P 7および P 9を通じて反応器 1と該熱交換器 3 との間を反応混合液が循環する構成として反応混合液を加熱する態様などが挙げ られる。
この態様の場合、 反応混合液をそのまま外部の熱交換器に循環させて加熱する と、 該反応混合液に溶存しているイソプチレンの量が少ないため、 反応器内に比 ベて沸点上昇が起こり、 熱交換器内の反応混合液の温度が大幅に上昇する。 かか る反応混合液の温度上昇によって副反応が増大し、 これによつてイソプレンの収 率低下が生じる。 これを防ぐために、 図 1に示すように、 循環のために管路 P 7 で取り出した反応混合液に、 C4の少なくとも一部を管路 P 8を通じて加え、 こ れらを併せて熱交換器 3で加熱し、 管路 P 9を通じて反応器 1へ導入する態様が 好ましい。
但し、 tーブ夕ノールはイソプチレンに比べて加熱による反応混合液の温度上 昇を防く、効果が著しく小さい。 しかも、 t —プ夕ノールは熱交換器内で酸性水溶 液と接することで、 イソプチレンに転換され、 はじめて前記した効果を示すため、 循環加熱のために取り出した反応混合液に加える c4としては、 イソプチレンが 好ましい。
本発明では、 反応留出ガスの有する熱量を回収して、 イソプレンの製造に有効 に利用することができる。
熱量回収の態様としては、 例えば、 反応留出ガス中の主として水を分縮させる ことにより水の持つ熱量を回収する態様が挙げられる (例えば、 図 2では、 熱交 換器 5において水の分縮を行なっている。 ) 。
また、 回収した熱量の用途としては、 未凝縮の反応留出ガスの熱量を、 イソブ チレンを気化させる際の熱源 (例えば、 図 2では熱交換器 6および 7における熱 源としている。 ) とすることや、 反応留出ガスを凝縮させて相分離して得た有機 層中の未反応イソプチレンを、 蒸留により回収する際の熱源 (例えば、 図 2では 熱交換器 1 1における熱源としている。 ) などに使用すること、 反応留出ガスを 水と熱交換させることにより水蒸気を発生させること、 反応留出ガスを直接、 ィ ソブチレンの回収、 tーブ夕ノールの回収またはィソプレンの回収もしくは精製 の際に用いられる蒸留塔の再沸器に導入し、 該再沸器の熱源として使用すること などが挙げられる。 また、 図 2において、 熱交換器 5で得られたスチームは、 熱 交換器 1 1などで加熱用のスチームとして用いてよい。 本発明では、 反応混合液中の高沸点副生成物の濃度を 0 . 5〜4 0質量%の範 囲内に制御するため、 上記したように、 反応混合液の一部を連続的または断続的 にデカンターや抽出塔などに導き、 該反応混合液から高沸点副生成物の少なくと も一部を除去する工程を含む。
この高沸点副生成物の除去方法は、 本発明のポイントであるため、 本発明者等 はさらに検討を行った。 その結果、 前記したように、 蓄積してくる高沸点副生成 物には、 反応混合液に対して比重の大きいものと小さいものがあり、 反応器中に おいて反応混合液に対して比重の大きい高沸点副生成物は反応混合液の下部、 つ まり反応器の底部に溜まり易く、 比重の小さい高沸点副生成物は反応混合液の上 部に溜まり易い傾向にあることを見出した。
そこで、 本発明の好ましい実施態様では、 反応混合液中の高沸点副生成物の除 去に際して、 反応混合液の抜取口を少なくとも反応器の底部に設ける。 例えば、 図 1では抜取り管路 P 3が反応器の底面中央に設けてある。 この抜取り管路 P 3 を用いることによって、 反応混合液に対して比重の大きい高沸点副生成物を、 反 応混合液の一部を連続的または断続的に抜き取る際に、 反応器外に除去し易くな る。 かかる抜取口は反応器の底面中央に設けるのが好ましいが、 ここに限定され ず、 比重の大きい高沸点副生成物を取り出し得る充分に低い位置に 1つ以上設け ればよい。
これと同様に、 本発明の好ましい実施態様では、 反応混合液に対して比重の小 さい高沸点副生成物を取り出し易くするために、 反応混合液の抜取口を反応器の 側壁部 (反応器の胴体側部壁面) に設ける。 その場合、 該抜取口の高さは、 その 高さまで反応混合液を満たした場合の該液の体積が、 製造開始時に収容すべき反 応混合液の全体積の 1 / 2以上、 より好ましくは 2 / 3以上の体積となるような 高さ (以下、 高さ hと略記する。 ) とすることが好ましい。 この高さ hの部位に 抜取口を設けることによって、 反応混合液の一部を連続的または断続的に抜き取 る際に、 反応混合液に対して比重の小さい高沸点副生成物を容易に除去すること が可能となる。 そして反応器の底部および側壁部の両方に反応混合液の抜取口を設けることに よって、 反応混合液に対する比重の大小を問わず、 高沸点副生成物を反応器中の 反応混合液から効率的に除去することが可能となり、 高沸点副生成物の濃度をよ り容易に 0 . 5〜4 0質量%の範囲内に制御することができる。
反応混合液の抜取口を反応器の底部に 1つも設けなかった場合には、 反応を長 時間にわたって行うに伴い、 反応器の底部に反応混合液に対して比重の大きい高 沸点副生成物が蓄積していき、 高沸点副生成物の反応混合液中の濃度を 0 . 5〜 4 0質量%の範囲内に制御することが困難となる。 そして、 反応混合液の加熱効 率の低下および管路の閉塞の問題や、 反応混合液中の酸の濃度や原料の組成比の 変動などにより反応の定常状態を維持できなくなるという問題が生じる。
また、 反応混合液の抜取口を反応器の側壁部に設けなかった場合には、 反応を 長時間にわたって行うに伴い、 反応混合液の上部に反応混合液に対して比重の小 さい高沸点副生成物が蓄積していき、 高沸点副生成物の濃度を 0 . 5〜4 0質 量%の範囲内に制御することが困難となる。 そして、 反応混合液から生成したィ ソプレン、 水、 未反応原料および他の低沸点成分の反応留出ガスとしての反応器 外への留出が妨げられて、 反応器内の反応混合液面の上昇、 反応混合液中の酸の 濃度および原料の組成比の変動などにより反応の定常状態を維持できなくなると いう問題が生じる。 さらに反応留出ガスの留出量が減少すると、 反応器内の反応 混合液面の高さを一定に維持するために反応器に供給するホルムアルデヒド水溶 液の量を減らさなければならなくなり、 イソプレンの生産量が減少する。
反応混合液中の高沸点副生成物の濃度を 0 . 5〜4 0質量%の範囲内に制御す るための、 反応装置の好ましい構成の一例を図 1を用いて説明する。 反応器内の 反応混合液中で攪拌羽根 Wが水平回転するように攪拌装置 (外部駆動装置は図示 せず) を設け、 C4を供給する管路 P 6を反応器内の該攪抨羽根の直下まで延長 し.、 導入口 P 6— 1から C4を攪拌羽根に当たるように、 好ましくは噴出させて 供給する。
C4が該攪拌羽根に当たるのであれば、 攪拌羽根と C4の供給口の距離に厳密な 意味での制限はないが、 c4の分散効率の観点からは、 例えば攪拌羽根の回転中 心から先端までの距離が 2 mである場合、 通常、 0 . 3 m以内の範囲であるのが 好ましく、 0 . 2 m以内の範囲であるのがより好ましい。 C4が該攪拌羽根に当 たらずに供給される形式の場合、 反応器内の反応混合液中の気体および液体の分 散が不十分となり、 高沸点副生成物の生成量が増加して反応混合液内に蓄積され る高沸点副生成物の濃度が高まる傾向となる。
また、 C4の導入口 P 6— 1の形態に特に制限はないが、 導入口 P 6— 1を構 成する管をリング状に湾曲させ、 その円周上に適当な間隔をおいて供給口を設け る態様が好ましい。 その場合、 リング状とした導入口 P 6— 1の湾曲半径は、 攪 拌羽根の回転中心から先端までの距離の 5 0〜8 0 %の長さとすることが好まし い。 また、 リング状とした導入口 P 6— 1の円周上に設けられる供給口の間隔は、 円周を 5〜 1 0 0等分する程度の間隔が好ましく、 1 0〜4 0等分する程度の間 隔がより好ましい。
上記したように、 反応器と外部熱交換器との間で反応混合液を循環させる際に、 反応混合液に C4を加えて外部熱交換器によって加熱し、 再び反応器へ戻すこと が好ましい (図 1の管路 P 7、 P 8 P 9 ) o
かかる反応混合液を反応器へ戻す際の好ましい態様としては、 例えば図 1に示 すように、 C4が加えられてから熱交換器 3で加熱された該反応混合液を、 管路 P 9により反応器の下部へ導入し、 攪拌羽根 Wに当たるように供給する。 これに よって、 反応器内の反応混合液中の気体および液体の分散を充分にし、 高沸点副 生成物の濃度の上昇を抑制することができ、 濃度の制御も容易となる。 ここで、 反応器の下部としては、 反応混合液を再度反応器に導入する際、 該反応混合液が 攪拌羽根に当たる場所であれば特に限定はないが、 攪拌羽根の下方から反応器に 導入するのが好ましい。
熱交換器より反応器に戻される反応混合液が管路 P 9を経由して攪拌羽根に当 たるように供給されない場合、 反応器内における反応混合液中の気体および液体 の分散が不十分となり、 高沸点副生成物の生成量が増加して反応器内に蓄積され、 反応混合液中における濃度が高まる傾向となる。
本発明では、 反応器に供給する水として、 反応留出ガスから水を分縮させ、 か かる分縮した水を再使用してもよい (以下、 反応留出ガスから分縮して再使用さ れる水を 「リサイクル水」 と略記する。 ) 。 例えば、 図 2では、 熱交換器 5にお いて分縮した水は留出受層 8に導入され、 管路 P 1 0— 1などを経由して反応器 に供給され、 再利用される。
かかるリサイクル水を直接反応器に供給することにより、 反応器内の反応混合 液量を一定に保つことができ、 高沸点副生成物の反応混合液中の濃度を 0 . 5〜 0質量%の範囲内に制御することが容易となる。 またリサイクル水の温度は 1 2 0〜 1 4 0 °C (圧力約 1 . 5 M P aの条件下) の範囲内にあるため、 イソプレ ンの製造に要する熱量を低減することができる。 リサイクル水を使用しない場合、 即ち、 新しい水 (通常約 2 5 °C) を使用しても反応混合液中の高沸点副生成物の 濃度を制御することはできるが、 反応温度に加熱するまでに必要な熱量が増大す るため、 経済的に不利である。
イソプレンは、 本反応方法の実施により反応系外へ留出した留出物の有機層を 分留することにより得ることができる。 図 1の管路 P 2より留出した留出物から 最終的にイソプレンが分留されるまでのステップについては公知技術 (例えば、 特開昭 6 0— 4 1 3 8号公報など) を参照してよい。
以下、 実施例により本発明を詳しく説明するが、 本発明はかかる実施例に何ら 限定されるものではない。
以下の実施例では、 本発明のイソプレンの製造方法を実施するための設備を実 際に構築し、 反応混合液中の高沸点副生成物の濃度を 0 . 5〜4 0質量%の範囲 内において種々の濃度で安定するよう制御し、 それそれの値の濃度を維持した状 態において反応を 8時間継続し、 それぞれについて、 最後の 1時間のホルムアル デヒドの転化率、 イソプレン選択率および収率を調べた。
また、 比較例では、 反応器内の反応混合液中の高沸点副生成物の濃度を上記範 囲外とし、 実施例と比較することによって、 高沸点副生成物の濃度の範囲の臨界 的意義を確認した。
(設備構成)
先ず、 本発明のイソプレンの製造方法を実施するために構築した設備の一例を 図 2を用いて説明する。
反応器 1として内容積 1 2 0 Lのタンクを用意し、 これに、 C4導入管路 P 6、 ホルムアルデヒド水溶液導入管路 P 1— 1、 水導入管路 P 1— 2、 酸性水溶液 (リン酸水溶液) 導入管路 P 1 _ 3、 生成物などの留出管路 P 2、 反応混合液抜 取り管路 P 3および P 4が接続されている。 また、 反応器は、 温度計、 圧力計、 攪拌機、 邪魔板など、 反応制御に必要な付帯装置を備えている。
該反応器 1に、 4 6質量%ホルムアルデヒド水溶液、 酸性水溶液としての 2 . 5 %リン酸水溶液およびホルムアルデヒドの 1 2倍モルの水を供給した。 一方、 ホルムアルデヒドの 8倍モルの C4を熱交換器 2で予熱し蒸発させて、 リング状 の供給口から攪拌羽根に吹き付けるように噴出させて反応器内に供給した。
また、 反応混合液抜取り管路 P 3から管路 P 7を分岐し、 反応器から抜き取つ た反応混合液を C4と混合し、 かかる混合液を熱交換器 3を通して加熱し、 反応 器に戻す構成とした。 なお、 熱交換器 3で加熱された反応混合液を反応器 1内に 戻す際には、 攪拌羽根に向けて該羽根に当たるように噴出させる構成とした。
反応器 1内で生成したイソプレンは、 未反応の C4、 水、 ホルムアルデヒドな どと共に、 管路 P 2を通して反応留出ガスとして反応器外へ留出する。 これらの 反応留出ガスは、 熱交換器 5に送られる。 熱交換器 5では、 熱交換用配管に流入 した反応留出ガスと、 熱交換器内に流入した冷却用水との間で熱交換が行なわれ (即ち、 反応留出ガスは冷却され) 、 反応留出ガス中の水が分縮される。 また、 熱交換器 5に流入させた冷却水は反応留出ガスから熱量を得てスチームとなり、 熱量の回収がなされる。
熱交換器 5で分縮した水は、 留出受槽 8へ送られる。
留出受槽 8の水の一部は、 管路 P 1 0— 1を通して反応器へ直接供給されて反 応器内の反応混合液量の調節に用いられ、 また、 管路 P 1 0— 2を通して熱交換 器 2へ供給され、 ホルムアルデヒドと C4とのモル比を調節するのに用いられ、 C4と共に蒸発させて反応器 1へ供給される。 留出受槽 8の水の残りは、 留出受 槽 9へ送られる。
一方、 熱交換器 5で凝縮されなかった化合物は、 熱交換器 6および熱交換器 7 で凝縮させ、 留出受槽 9へ送られ、 そこで有機層と水層とに分離される。 有機層 は、 熱交換器 7に送られて加熱された後、 イソプチレンを分離するための蒸留塔 1 0へ送られる。
蒸留塔 1 0における留分は、 イソプチレンが主成分であり、 熱交換器 1 2で凝 縮した後、 留出受槽 1 3へ送られる。
かかるイソプチレンを主成分とする留分の一部は、 熱交換器 6で加熱し蒸発さ せた後、 一部はホルムアルデヒドとのモル比を調節するために熱交換器 2へ、 そ して一部は熱交換器 3の沸点上昇を防く、ため熱交換器 3へ送られた後、 反応器 1 へ戻される。 また、 留分の残りは蒸留塔 1 0へ戻すか、 別途イソプチレンの精製 工程を経由した後、 本発明の製造方法に原料として再使用される。
蒸留塔 1 0の塔底液は、 イソプレンおよび未反応の tーブ夕ノールが主成分で ある。 この塔底液を蒸留塔 1 4で精製することにより、 塔頂部よりイソプレンが 取得される。
一方、 蒸留塔 1 4の塔底液の主成分は tーブ夕ノールであり、 別途精製して本 発明の製造方法に再使用するが、 この際に得られる副生成物は、 高沸点副生成物 分離槽 4に送られ、 反応器から抜き取った反応混合液からの高沸点副生成物の分 離の際に抽出溶剤として使用する。
反応器 1内の反応混合液 (高沸点副生成物を含む) は、 反応器底面中央および 反応器側壁部の反応混合液面付近に設けた各抜取口からから抜き取られ、 前記し た抽出溶剤と混合した後、 高沸点副生成物分離槽 4へ送られ、 そこで高沸点副生 成物を含有する有機層 (抽出溶剤) と水層に分離される。
有機層は燃料などの用途に有効利用され、 水層のリン酸水溶液は少なくとも一 部を反応器へリサイクルする。 反応器内の反応混合液中の高沸点副生成物の濃度測定のための反応混合液のサ ンプリングは、 例えば、 管路 P3、 P4、 P 7に取出口を設けて行うことができ る。 高沸点副生成物の反応混合液中の濃度を確認しながら、 該濃度が 0. 5〜4 0質量%の範囲内になるように、 該取出口からの反応混合液の取り出しの停止と 実行を適宜行う構成とした。
実施例 1〜 8
反応器における反応条件は、 反応温度 175〜 178 °C、 反応圧力 1. 52 M Pa 攪拌羽根の回転数 48〜55回転/分とした。
反応器 (内容積 120L) に、 60Lの 2. 5%リン酸水溶液を仕込み、 上記 反応条件下で、 46質量%ホルムアルデヒド水溶液を 3. 24 kg/時、 イソプ チレンを 17. 7 kg/時、 t—プ夕ノ一ルを 6. 02 kg/時、 水を 9. 08 kg/時の速度で連続的に供給し、 反応を開始した。
反応開始から 24時間後、 図 2に示す反応設備 [反応混合液の抜取口を、 反応 器の底部中央に 1つと側部 (反応器内の反応混合液の全体積の 4/ 5となる高 さ) に 1つ設け、 導入口 P 6— 1から C4を攪拌羽根に当たるように噴射し、 か っ管路 P 9を経由して反応混合液を反応器内に戻す際、 攪拌羽根に当たるよう噴 射する。 そして、 留出受槽 8からリサイクル水を反応器へ再度導入する形態をと つている。 ] において、 主に高沸点副生成物分離槽 4において高沸点副生成物の 除去量を調節することによって、 反応混合液中の高沸点副生成物の濃度をそれそ れ下記した所定の値となるように制御した。
制御した高沸点副生成物の濃度は次のとおりである。
0. 5質量% (実施例 1)、 1質量% (実施例 2) 、 2質量% (実施例 3) 、 5質量% (実施例 4) 、 10質量% (実施例 5)、 20質量% (実施例 6) 、 3 0質量% (実施例 7)、 40質量% (実施例 8)。
それそれの濃度で安定した状態で維持し、 それから 8時間反応を続け、 最後の 1時間のホルムアルデヒドの転化率、 イソプレン選択率および収率を調べた。 そ の結果を表 1に示す。 比較例 1 4
反応混合液中の高沸点副生成物の濃度をそれそれ 0質量% (比較例 1) 、 0. 3質量% (比較例 2) 、 50質量% (比較例 3) 、 60質量% (比較例 4) に維 持したこと以外は、 実施例 1 8と同様に反応を行ない、 最後の 1時間のホルム アルデヒドの転化率、 イソプレン選択率および収率を調べた。 この結果を表 1に 示す。
表 1
Figure imgf000021_0001
実施例 1 8、 比較例 1 4に従って、 それそれの反応を行なったところ、 表 1から明らかなとおり、 反応混合液中における高沸点副生成物の濃度を 0. 5 40質量% (実施例 1 8) の範囲内に維持することによって、 反応器内での反 応の定常状態が維持でき、 また、 ホルムアルデヒドの転化率が常に 98%以上と なり、 イソプレンの収率が常に 71%以上となることがわかった。
これらの結果から、 高沸点副生成物の反応混合液中の濃度を 0. 5 40質 量%の範囲内に維持することによって、 反応の定常状態を維持しながら効率よく イソプレンを製造することができることがわかった。
一方、 反応混合液中の高沸点副生成物の濃度を上記範囲外とした比較例 1〜4 では、 全て、 ホルムアルデヒドの転化率が 9 7 %を下回り、 イソプレンの収率も 常に 7 0 %未満となることがわかった。
また、 反応混合液中の高沸点副生成物の濃度を 0 . 5質量%未満とした比較例 1、 2では、 熱交換器 3による反応混合液の加熱効率が低下し、 そのため反応器 内の反応混合液の温度が低下したことによりホルムアルデヒドの転化率が減少し て収率が下がった。
高沸点副生成物の濃度を 4 0質量%を上回る値とした比較例 3、 4では、 反応 器 1と熱交換器 3を連結する管路内に高沸点副生成物が蓄積していき、 反応混合 液を熱交換器 3に送ることが困難になり、 熱交換器 3での加熱効率が低下した。 そのため、 反応器内の反応混合液の温度が低下したことによりホルムアルデヒド の転化率およびィソプレン選択率が減少して収率が下がった。
本発明のイソプレンの製造方法は、 公知の他のイソプレンの製造方法 (例えば、 特開昭 5 6 - 7 9 6 2 8号公報および HYDROCARBON PROCESSING, 1 6 7頁 ( 1 9 7 1年 1 1月) 参照) と比較して、 製造工程が簡潔であり、 さらにュ一ティリ ティ一を低く抑えることができ有利である。 この方法において、 これまで成し遂 げられなかった収率の向上を 2 %程度増加させることができたことは、 製造コス トの面から見ても本発明の分野においては非常に有益である。
産業上の利用可能性
本発明の製造方法により得られるイソプレンは、 基礎化学原料として各種化学 品およびポリマー原料に有効に用いられる。

Claims

請求の範囲
1 . イソプチレンおよび/または tーブ夕ノール、 ホルムアルデヒドおよび水 を酸性水溶液中に連続的または断続的に供給し、 この反応混合液から、 生成した • イソプレン、 水、 未反応原料および他の低沸点成分を含む混合物を反応系外に留 出させながら反応させることによるイソプレンの製造方法であって、
前記反応混合液中に生成し蓄積されていく高沸点副生成物の濃度を 0 . 5〜4 0質量%の範囲内となるよう制御しながら前記反応を行うことを特徴とする、 ィ ソプレンの製造方法。
2 . 反応混合液を含有する反応器に、 該反応混合液の抜取口を設け、 該拔取口 から反応混合液の一部を抜き取り、 該反応混合液から高沸点副生成物の少なくと も一部を分離除去した後、 再び反応器に導入することにより、 反応混合液中の高 沸点副生成物の濃度を上記範囲内に制御する、 請求の範囲第 1項に記載のイソプ レンの製造方法。
3 . 反応混合液の抜取口を少なくとも反応器の底部に設ける請求の範囲第 2項 に記載のイソプレンの製造方法。 '
4 . 反応混合液の抜取口を反応器の側壁部に設け、 該抜取口の高さを、 その高 さまで反応混合液を満たした場合の該液の体積がィソプレンの製造時における該 液の全体積の 1 / 2以上となるような高さとする、 請求の範囲第 2項または第 3 項に記載のィソプレンの製造方法。
5 . 生成したイソプレン、 水、 未反応原料および他の低沸点成分を含む混合物 を反応留出ガスとして反応系外に留出させ、 該反応留出ガスから水を分縮させて、 得られた水を再び反応器に導入することにより、 反応混合液中の高沸点副生成物 の濃度を上記範囲内に制御する、 請求の範囲第 1項〜第 4項のいずれかに記載の イソプレンの製造方法。
6 . 反応器に、 反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装 置を設け、 イソプチレンおよび/または tープ夕ノールを、 反応器内の攪拌羽根 の直下まで管路を延長して設けた導入口から攪拌羽根に向けて供給することによ り、 反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、 請求の範囲 第 1項〜第 5項に記載のィソプレンの製造方法。
7 . 反応器に、 反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装 置を設け、 かつ、 反応器から反応混合液の一部を抜き取り、 これをイソプチレン および/または t一ブ夕ノールの少なくとも一部と共に熱交換器で加熱した後に 再び反応器に導入する構成とし、 加熱した該反応混合液を反応器に設けた導入口 から攪袢羽根に向けて供給することにより、 反応混合液中の高沸点副生成物の濃 度を上記範囲内に制御する、 請求の範囲第 1項〜第 6項に記載のイソプレンの製 造方法。
PCT/JP2004/004038 2003-03-31 2004-03-24 イソプレンの製造方法 WO2004087625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04723001.6A EP1614671B1 (en) 2003-03-31 2004-03-24 Process for producing isoprene
JP2005504179A JP3917163B2 (ja) 2003-03-31 2004-03-24 イソプレンの製造方法
CN200480008845XA CN1768020B (zh) 2003-03-31 2004-03-24 制造异戊二烯的方法
US10/551,596 US7442844B2 (en) 2003-03-31 2004-03-24 Process for producing isoprene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003095152 2003-03-31
JP2003-095152 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004087625A1 true WO2004087625A1 (ja) 2004-10-14

Family

ID=33127431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004038 WO2004087625A1 (ja) 2003-03-31 2004-03-24 イソプレンの製造方法

Country Status (6)

Country Link
US (1) US7442844B2 (ja)
EP (1) EP1614671B1 (ja)
JP (1) JP3917163B2 (ja)
CN (1) CN1768020B (ja)
RU (1) RU2320627C2 (ja)
WO (1) WO2004087625A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553823C1 (ru) * 2014-05-28 2015-06-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения изопрена
WO2016194983A1 (ja) * 2015-06-03 2016-12-08 株式会社クラレ 共役ジエンの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2365574C1 (ru) * 2008-03-17 2009-08-27 Общество с ограниченной ответственностью "Еврохим-СПб-Трейдинг" Способ переработки побочных продуктов жидкофазного синтеза изопрена из изобутилена и формальдегида
SG181605A1 (en) * 2009-12-18 2012-07-30 Danisco Us Inc Purification of isoprene from renewable resources
CN101880210B (zh) * 2010-06-25 2013-04-24 浙江工业大学 一种共轭二烯类化合物的制备方法
EP2619159A1 (en) 2010-09-24 2013-07-31 Total Research & Technology Feluy Production of isoprene from iso-butanol
CN102516009B (zh) * 2011-11-16 2014-05-21 万华化学集团股份有限公司 一种液相法制备异戊二烯的方法
EP3040325A1 (en) 2014-12-31 2016-07-06 Shell Internationale Research Maatschappij B.V. Process for preparing ethylene, propylene and isoprene
CN105152832A (zh) * 2015-10-13 2015-12-16 宁波金海晨光化学股份有限公司 一种合成异戊二烯的工艺方法
CN113582826B (zh) * 2021-08-18 2023-09-12 阿拉善经济开发区新鑫化工有限责任公司 用酸碱试剂去除甲基异丙基甲酮生产中杂质异戊醛的方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062905A (ja) * 1973-09-22 1975-05-29
JPS5970623A (ja) * 1982-10-14 1984-04-21 Kuraray Co Ltd イソプレンの製造方法
JPS604138A (ja) 1983-06-20 1985-01-10 Kuraray Co Ltd イソプレンの製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511751A (en) * 1982-10-14 1985-04-16 Kuraray Company, Ltd. Process for producing isoprene
CA1215083A (en) * 1982-10-14 1986-12-09 Yoichi Ninagawa Process for producing isoprene
US4593145A (en) 1984-03-12 1986-06-03 Kuraray Company Limited Process for producing isoprene
RU2128637C1 (ru) 1997-08-20 1999-04-10 Закрытое акционерное общество "Еврохим" Способ получения изопрена
RU2177469C1 (ru) * 2000-09-18 2001-12-27 Общество с ограниченной ответственностью "ЕВРОХИМ - СПб" Способ получения изопрена

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062905A (ja) * 1973-09-22 1975-05-29
JPS5970623A (ja) * 1982-10-14 1984-04-21 Kuraray Co Ltd イソプレンの製造方法
JPS604138A (ja) 1983-06-20 1985-01-10 Kuraray Co Ltd イソプレンの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1614671A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553823C1 (ru) * 2014-05-28 2015-06-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения изопрена
WO2016194983A1 (ja) * 2015-06-03 2016-12-08 株式会社クラレ 共役ジエンの製造方法
KR20180015632A (ko) 2015-06-03 2018-02-13 주식회사 쿠라레 공액 디엔의 제조 방법
US11198657B2 (en) 2015-06-03 2021-12-14 Kuraray Co., Ltd. Method for producing conjugated diene

Also Published As

Publication number Publication date
EP1614671A4 (en) 2010-03-24
EP1614671B1 (en) 2015-08-19
CN1768020B (zh) 2010-04-21
JP3917163B2 (ja) 2007-05-23
RU2005133453A (ru) 2006-07-10
RU2320627C2 (ru) 2008-03-27
US20070106104A1 (en) 2007-05-10
EP1614671A1 (en) 2006-01-11
US7442844B2 (en) 2008-10-28
CN1768020A (zh) 2006-05-03
JPWO2004087625A1 (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
US8845972B2 (en) Process and apparatus for efficient recovery of dichlorohydrins
CN1038446A (zh) 生产芳香多元羧酸的改进方法
WO2004087625A1 (ja) イソプレンの製造方法
TWI362377B (en) Acetic anhydride and acetate ester co-production
WO2018216699A1 (ja) (メタ)アクリル酸の製造方法
JP5817730B2 (ja) ジトリメチロールプロパンの製造方法
US3972955A (en) Process for preparation of isoprene
JP5378207B2 (ja) (メタ)アクリル酸の製造方法
TW200909408A (en) Azeotropic distillation with entrainer regeneration
US2385546A (en) Continuous process for the preparation of acetylenic alcohols
WO2020261720A1 (ja) メタクリル酸メチルの製造方法
JPH03501976A (ja) 水性溶液から無水オキシムを製造する方法
JP2022079246A (ja) メタホウ酸の製造方法および当該メタホウ酸を用いた第2級アルコールの製造方法
JP2004339183A (ja) 無水マレイン酸の蒸留残渣の処理方法
JPS62255447A (ja) カ−ボニル含有化合物の製造方法
JP2588581B2 (ja) メタクリル酸エステルの製造法
JP2006104096A (ja) エチレンカーボネートの精製方法
JPS604138A (ja) イソプレンの製造法
JPS59116236A (ja) 高沸点副生成物の分離方法
JPS6136501B2 (ja)
CN110002977A (zh) 一种连续法生产频呐酮的装置与工艺
JP2022528886A (ja) ポリマーグレードのアクリル酸の生成
JPH06228127A (ja) トリオキサンの製造方法
JP2003221361A (ja) 易重合性化合物の製造方法
JPH0320368B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504179

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004808845X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004723001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005133453

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2007106104

Country of ref document: US

Ref document number: 10551596

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004723001

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10551596

Country of ref document: US